
Real-time Learning and Planning in Environments with Swarms:
A Hierarchical and a Parameter-based Simulation Approach∗

Lukasz Pelcner1, Shaling Li2, Matheus Aparecido do Carmo Alves3,
Leandro Soriano Marcolino1, Alex Collins1

1 School of Computing and Communications, Lancaster University
2 Portsmouth Business School, University of Portsmouth

3 Institute of Mathematics and Computer Science (ICMC), University of São Paulo (USP)
l.pelcner@lancaster.ac.uk, shaling.li@port.ac.uk, matheus.aparecido.alves@usp.br,

l.marcolino@lancaster.ac.uk, a.collins5@lancaster.ac.uk

ABSTRACT
Swarms can be applied in many relevant domains, such as patrolling
or rescue. They usually follow simple local rules, leading to com-
plex emergent behavior. Given their wide applicability, an agent
may need to take decisions in an environment containing a swarm
that is not under its control, and that may even be an antagonist.
Predicting the behavior of each swarm member is a great chal-
lenge, and must be done under real time constraints, since they
usually move constantly following quick reactive algorithms. We
propose the first two solutions for this novel problem, showing
integrated on-line learning and planning for decision-making with
unknown swarms: (i) we learn an ellipse abstraction of the swarm
based on statistical models, and predict its future parameters using
time-series; (ii) we learn algorithm parameters followed by each
swarm member, in order to directly simulate them. We find in our
experiments that we are significantly faster to reach an objective
than local repulsive forces, at the cost of success rate in some situa-
tions. Additionally, we show that this is a challenging problem for
reinforcement learning.

ACM Reference Format:
Lukasz Pelcner, Shaling Li, Matheus Aparecido do Carmo Alves, Leandro
Soriano Marcolino, Alex Collins. 2020. Real-time Learning and Planning in
Environments with Swarms: A Hierarchical and a Parameter-based Simula-
tion Approach. In Proc. of the 19th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2020), Auckland, New Zealand, May
9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
Swarms have a great range of applications, such as patrolling [6],
mapping [13], foraging [7], rescue [18], etc. Despite following sim-
ple local rules, the system may exhibit complex behavior, and its
decentralized nature makes them robust and fault tolerant. Hence,
we expect a wide presence of swarms across many domains.

However, a swarm may not always be under an agent’s control,
and may sometimes even be an agent’s antagonist. In those sce-
narios, they usually follow unknown algorithms, making it hard
to predict their behavior. Therefore, it is a great challenge for an
∗Equal contribution by the first two authors.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

agent to take decisions towards reaching a certain objective, in an
environment containing an unknown swarm. In particular, an agent
must estimate swarm members’ behavior while planning its actions
under strong real time constraints, since a swarm usually moves
quickly in an environment following fast reactive algorithms, and
leading to a fast-paced changing world state.

Previous work has studied how to add agents to influence a
swarm [4, 5], or how to add agents to a swarm in order to dis-
rupt coverage tasks [14]. However, these would still require full
knowledge of the underlying algorithm used by the swarm system.
Recently, inverse reinforcement learning has been proposed to cre-
ate a model of an unknown swarm [20], but without considering
using such models for decision-making, and real time constraints
for learning and planning.

Therefore, in this work we introduce the novel problem of tak-
ing decisions in an environment containing an unknown swarm
under real-time constraints and without any pre-training. That is, all
learning happens on-line, in a single execution, and no knowledge is
used across multiple runs. Hence, the agent can always handle new
unknown swarms.

We present two novel algorithms for this problem, which inte-
grate on-line learning and on-line planning. The first one proposes
an ellipse abstraction for the whole swarm, based on statistical
models, and uses time-series to predict how they will move in the
future. Our second algorithm uses simulations to estimate an er-
ror function, in order to continuously estimate the parameters of
the swarm potential algorithm by gradient descent. These models
are then used to perform Monte Carlo simulations for real-time
decision-making. Our approaches could be used in cooperative or
competitive settings, but we focus on the latter in our experiments.

We evaluate our technique in an “infiltration game”, where an
agent must reach a target without being captured by an unknown
patrolling swarm, without any pre-training. We are able to reach
the target significantly faster than applying reactive local decision-
making rules, at the cost of some success rate loss in some cases.
On the other hand, in very hard situations, we actually obtain the
same success rate than the reactive algorithm, with a significantly
better time. Additionally, we show that reinforcement learning
approaches have great difficulties in solving this problem.

2 RELATEDWORK
Planning in scenarios with a large number of agents is very com-
mon in Real Time Strategy Games. However, usually a centralized

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/287593323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

controller decides the actions of all units (agents), and scripts are
employed to reduce the action space and guide the search [10, 11].
Reinforcement learning can also be applied, given a set of scripts
to suggest actions to all agents [19]. In our case, however, we focus
on single-agent decision-making, given an unknown swarm in the
scenario. We also do not assume a set of scripts to suggest actions.

On the other hand, agents that model other agents for decision
making is a very active research area, as shown in a recent survey
[2]. In particular, agents model others in ad-hoc teamwork, where
teamsmust coordinate without pre-programmed rules. Manyworks
in that area assume a known algorithm template, and the main focus
is on learning parameters [1]. We take inspiration on this idea, but
focus on learning parameters of a complex swarm system.

Many works in multi-agent systems consider how to place and
move agents in order to influence the behavior of a swarm [4, 5]. In
those works a perfect model of the swarm is given to the influencing
agents, while we study how to achieve a certain objective given an
environment with an unknown swarm.

Inverse reinforcement learning for modelling swarm systems has
been explored [20], where an unknown swarm is assumed to follow
a Markov Decision Process (MDP) policy, which is learned from
several observations. In our work we also learn a swarm model, but
our methods allow us to quickly learn in real-time in large domains,
without any pre-training.

Hierarchical abstractions have been applied for the control of
robotic swarms [15, 16]. In such works the robots are directly con-
trolled to move within a specific formation (e.g., an ellipse), and
controlling that formation allows easy control of the swarm. In our
work, however, we are learning a shape given a swarm that is not
under our control, and using that for predicting their behavior.

Finally, to the best of our knowledge, Sanghvi et al. [14] is the first
work to consider agents that must accomplish a certain objective
in a scenario given an antagonist swarm. They study how to insert
“fake” members that will disrupt a swarm performing a coverage
task, given a perfect model of the swarm and its parameters. On the
other hand, our approach is not focused in disrupting coverage, and
we learn swarm models on-line.

3 METHODOLOGY
We assume a swarm, composed of a set of agents Ω, where each
ω ∈ Ω decides its actions (e.g., acceleration vector) based on a
local decision given the subset of neighbor agents N ⊂ Ω that is
within a certain (unknown) distance r from ω. This local decision
is performed by an unknown algorithm.

Additionally, our approaches can be applied when agents in Ω
perform waypoint navigation, according to an (unknown) set of
waypoints W. That is, the local algorithm may push the agents
towards the next waypoint wi , and once any agent reaches wi , it
would push all agents towards wi+1. This situation happens, for
example, when the swarm is patrolling a certain area (as how we
will see later in our “infiltration game”). Note, however, that our
approaches support waypoint navigation, but that is not required.

We also consider an agent ϕ, where ϕ < Ω, but ϕ acts in the same
environment as the agents in Ω, and must accomplish a certain
objective. That is, ϕ does not follow a reactive algorithm like the
swarm, ϕ is able to observe the full state of the environment s , and

the corresponding output of a reward function R : S→ R, where
S is the set of all possible states. Hence, ϕ must find actions that
maximizes the expected sum of discounted rewards E[∑∞j=0 γ jτt+j],
where t is the current time and τt+j is the reward received j steps
in the future (γ ∈ [0, 1] is a discount factor).

For all agents in Ω and ϕ, we consider a continuous action space
(e.g., acceleration vectors). Additionally, ϕ does not control the time
of the state transitions, since it has no control of Ω. That is, while
ϕ is processing (learning or computing next action), the current
state s changes, since agents in Ω are moving. Like-wise, ϕ may
have a current speed and acceleration, and thus ϕ’s own movement
changes the state s while it is learning/computing its next action.
Therefore, we consider strong real-time constraints.

We also consider that the swarm is unknown at every execution.
Hence, there is no knowledge being accumulated across multiple
runs (like in reinforcement learning approaches), and all learning
happens within a single run. Additionally, we consider that ϕ does
not communicate with agents in Ω, and its objective may be either
cooperative or competitive against the swarm system (defined by
the reward function).

Our approaches have an on-line learning and an on-line planning
component, since models to predict Ω’s behavior must be learned
for ϕ’s decision-making, and they are both executed at every itera-
tion in real-time. In the next sections we show novel algorithms to
predict the swarm behavior: one that performs hierarchical abstrac-
tion simulations (HAS), based on statistical models; and another
that directly simulates the swarm (DSS) for parameter learning. We
will then explain how these models are used for decision-making.

3.1 Hierarchical Abstraction (HAS)
Instead of modelling each swarm member individually, we can
model the whole swarm as a group. The main idea is to define one
ellipse at each state covering (most of) the swarm members, and
use those to predict their future positions. Our main insight comes
from seeing the swarm as a sample of a 2-D Gaussian distribution,
allowing us to calculate an ellipse from the covariancematrix, which
covers the members at any arbitrary confidence level.

That is, for each state we obtain the location of all swarm mem-
bers in a matrix L, which we will use to calculate the ellipse pa-
rameters: center location (xc , yc), width (a), height (b) and angle
(θ). θ is the anticlockwise angle between the ellipse’s largest axis
and the positive x-axis. An affine transformation of the coordinates
using θ and (xc ,yc) is performed, leading to the ellipse equation:
((x−xc)×cos (θ)−(y−yc)×sin (θ))2

a2 +
((x−xc)×sin (θ)+(y−yc)×cos (θ))2

b2 =

1.
Given L at one state, we use the covariance matrix Σ to define an

ellipse covering themembers at an arbitrary confidence level (Figure
1 (a)). That is, assuming that L is a sample from a 2-D Gaussian
distribution, the eigenvectors of Σ (e⃗0, e⃗1) point to the direction of
largest spread of the data in L, and the eigenvalues represent the
variance along the eigenvectors’ direction. Hence, the eigenvectors
e⃗i define the two fundamental axes of the ellipse. By using the
standard deviation (

√
| |e⃗i | |), we can multiply the normalized axes by

a certain constant c
√
| |e⃗i | | in order to get a desired confidence level

(i.e., the probability of a point from the estimated distribution to lay
within the ellipse). c can be directly obtained from the Cumulative

a
b

θ

(a) Ellipse’s parameters are calculated
from covariance: a and b are its axes, θ
is its angle with the x-axis (dashed line).

Current ellipse

Pr
ev
io
us

el
lip

se
s Predicted

ellipses

(b) History of ellipses is used to predict future el-
lipses. Previous locations are in blue, and future
swarm locations are predicted in dashed black.

Figure 1: Hierarchical abstraction of a swarm.

Distribution Function (CDF) of the χ2 distribution with 2 degrees

of freedom [17], leading to a :=
√
c ′ | |e⃗0 | |
2 , and b :=

√
c ′ | |e⃗1 | |
2 , where

c ′ is such that χ2 CDF (c ′) equals our desired confidence level.
The center of the ellipse (xc ,yc) can be directly calculated as

the mean x and y across L. Finally, θ is the angle between the
largest eigenvector (e⃗l) and the x-axis: θ = arctan e⃗yl

e⃗xl
, where the

superscript indicates vector components.
Hence, each state st leads to 5 ellipse parameters: (xc ,yc ,a,b,θ)t .

Since there is a sequence of states up to the current one (t), wemodel
a time-series for each parameter: e.g., [x0c ,x1c , . . . ,xtc] for parameter
xc . We use the time-series up to t in order to forecast future ellipse
parameters over time, allowing us to predict the location and shape
of the swarm in the future (Figure 1 (b)). Note that this approach
allows one to make predictions without any knowledge of the swarm
algorithm, and does not require any estimation of waypoints.

For each parameter the sequence of values up to t is used as
input to a time series prediction model. We used non-seasonal
ARIMA (Auto-Regressive Integrated Moving Average) for time-
series prediction. Since 1970s, ARIMA has been widely used as
a general class for time series forecasting [3]. It has a family of
models, and each hyper-parametrisation (order) (p,d,q) describes a
particular one: e.g., (x , 0, 0) is AR(x) model (autoregressive model);
(0,x , 0) is I(x) model (differencing model); and (0, 0,x) is MA(x)
model (moving average ‘smoothing’ model). This is useful when
the structure of the time series is unknown, as in our case (given
the complexity of swarm movement). We noticed that a particular

order could eventually lead to converging predictions, which are
not suitable for later usage in decision-making.

Therefore, we run the predictions using a certain ARIMA order,
and switch the order with a differencing function to fit stationary or
non-stationary time series data. For example, when d = 0 in ARIMA
order (p,d,q), it would fit stationary data, and when d , 0, it would
fit non-stationary data. Hence, we define two orders o := (p,d,q),
o′ := (p′,d ′,q′), and a “switch” condition. The list of orders to be
tried starts as l := (o,o′), and sp is a function that swaps a list
(sp ((o,o′)) := (o′,o), sp ((o′,o)) = (o,o′)). Let li be the order i in the
list. We first run l1. If the “switch” condition is satisfied, we run l2,
and define l := sp (l) for the next iterations. Whenever the “switch”
condition is again satisfied, we change l to sp (l). This algorithm
could be generalized to trying multiple different orders, but we use
two due to the real time constraints.

Our “switch” conditions is: we calculate the difference of the
mean and the standard deviation between the predicted time series
and the observed time series (∆µ , ∆σ). If the mean or the standard
deviation of the predicted series is too different to the observed
series (∆µ > tµ or ∆σ > tσ), signaling a poor fit of the current
ARIMA order, we switch the order, where tµ and tσ are pre-defined
percentage thresholds. Note that in iterations where we switch, we
have run both l1 and l2 for the respective parameter. Hence, we can
choose the best time series for our prediction. If l1 fails because
∆σ > tσ we still use l1’s prediction in case l2 has even higher ∆σ
or ∆µ . Otherwise, use use l2’s prediction. We use this approach
because we noticed that it leads to more stable predictions.

HAS does not require any previous knowledge of the algorithm
being used by the swarm. However, it does assume that the swarm
moves in a coherent, ellipse-like fashion. The algorithm can still be
applied when this assumption does not hold, but the performance
would eventually degrade. In cases where this assumption is not
expected to hold well, one can apply the algorithm that we present
next, DSS, which does not depend on this assumption.

3.2 Direct Swarm Simulations (DSS)
3.2.1 On-Line Parameter Learning. DSS needs more assump-

tions than HAS. We consider that the swarm (Ω) algorithm is
parametrised by a list of parameters p. We consider that ϕ knows
the algorithm used by Ω, but does not know the list of parameters.
Therefore, ϕ must learn an estimation p̃ of the list of parameters,
and plan its actions in real-time.

Our parameter estimation is based on Monte Carlo simulations,
followed by polynomial regression and gradient descent to mini-
mize error. The main idea is to run multiple simulations assuming
different parameters, fit a polynomial to the errors, and then up-
date the estimated parameters following the gradient descent. We
write as pi the parameter in position i of p, as x i a certain value for
parameter pi , and as p̃ the list of current estimated parameters.

Let qtω be the position of a swarm member ω at time t , and t + e
be the time step where we run one parameter estimation iteration.
For each parameter pi , we will fit one polynomial. Let x̃ i be the
current estimated value for pi in p̃. We create a parameter list pr
to be simulated where all parameters p j are fixed to their current
estimated value x̃ j , except for the parameterpi that we are currently

error0

error1

t t + e

(a) Parameter simulations.
Swarm member is in
green, and dashed grey
are simulated ones to
learn a parameter.

pi

er
ro
r

X

x̃ i

(b) Gradient descent updates param-
eters after n simulations. Gray balls
show error of randomly chosen xr
values.

Figure 2: On-line parameter learning. Each simulation has
an error in predicting time t + e from time t (errori).

learning. That is, pr =< x̃0, . . . , x̃ i−1,xr , x̃ i+1, . . . , x̃m >, wherem
is the size of p, and xr is a random number within pi ’s range.

We then run a simulation from time step t to time step t +e . That
will lead to estimated positions q̃t+eω for all ω ∈ Ω. For a certain
agent ω, we calculate the error of pr as errorr = dist (qt+eω , q̃t+eω),
where dist is some distance metric. In this paper we use the Eu-
clidean distance. We show an example in Figure 2 (a), where we
display the error of two simulations.

This process repeats n times. Therefore, we have a set R of ran-
dom parameters pr ∈ R, and their corresponding errors errorr
for each ω. Considering only a fixed position pi (the one that we
tried different xr values), we fit a polynomial f using the pairs
(xr , errorr) for each ω. That allows us to update x̃ i by gradient
descent as: x̃ i ′ := x̃ i − α × f ′(x̃ i), where f ′(x̃ i) is the derivative of
f calculated at point x̃ i and α is the learning rate (Figure 2 (b)).

This whole process repeats for each parameter pi , leading to a
new list of estimated parameters p̃′ω . That is, we fitm polynomials
usingn points for each, wherem is the size of p, for eachω ∈ Ω. Note
that for each ω we may find a different estimated list p̃′ω . Therefore,
the final estimated list p̃′ will be the average estimated values
across all ω. The whole process repeats every iteration. Therefore,
for the next iteration p̃′ will be used as the next iteration’s current
estimated value p̃.

3.2.2 Waypoint Learning. If Ω’s local algorithm performs way-
point navigation, then in order to run the simulations in DSS, it is
necessary to estimate the set of waypoints W. That is because if the
local algorithm has an attraction force towards a waypoint wi , then
the set needs to be estimated to simulate the swarm for learning
and decision-making, and we do not assume prior knowledge of
such set for greater applicability.

Hence, ϕ observes the movement of all agents Ω for l time steps.
Every j time steps, the current center of mass c across all agentsω ∈
Ω is added to an ordered set M, as a potential waypoint. That is, c is
the average position across Ω at the current time step. Afterwards,
M’s size is reduced to produce the final set of estimated waypoints
W̃, since frequently storing c tends to over-estimate the waypoints.
We go across every triple of points (wi ,wi+1,wi+2) in M, in order.
We consider the vectors v⃗0 defined by connectingwi+1 towi , and v⃗1
by connectingwi+1 towi+2. If the angle between v⃗0 and v⃗1 is higher
than a certain constant β , we add only wi and wi+2 to W̃, since
they are close to a straight line, and hence wi+1 is not providing

much extra information. Otherwise, we add all 3 points to W̃. In the
next iteration we perform the same test with (wi+1,wi+2,wi+3),
and so on, until covering all points in M.

Additionally, it is necessary to estimate what is the current way-
point in W̃, in order to simulate Ω. Hence, we calculate the closest
waypoint wc to one of the swarmmembersω, the angle β1 between
ω’s heading and the vector connectingω to wc , and the angle β2 be-
tween ω’s heading and the vector connecting ω to wc+1. If β1 < β2,
we estimate that the swarm is going towards wc , otherwise we
estimate wc+1.

3.3 On-Line Planning
In addition to learning a model of the swarm Ω, ϕ takes actions to
accomplish a certain objective (i.e., maximize its value function) in
the environment with the unknown swarm. Given the real time
constraints, ϕ must quickly decide its actions, since ω ∈ Ω follows
simple reactive neighborhood-based algorithms, and are usually
constantlymoving.We propose thatϕ usesMonte Carlo simulations
at every iteration for decision-making, for both HAS and DSS.

That is, ϕ samples a certain action a from the set of possible
actions A using a sampling strategy, and simulates the effect of
taking that action a for h simulated time steps. ϕ must simulate
state transitions at a quicker speed than the real state transitions,
since |A′ | × h transitions must be simulated, where A′ ⊂ A is the
set of sampled actions. Not necessarily all these simulations will
terminate at a single real iteration, but their accuracy will decrease
the longer it takes, since ϕ and agents in Ω keep moving, changing
the current state s .

For each simulated iteration, ϕ samples an action a until complet-
ing h simulated time steps, using a default policy for simulations. In
the end of the process, ϕ takes the action with the highest estimated
value. In Section 4.1 we explain the sampling strategy and the de-
fault policy that we used in an “infiltration” game, which can also
be seen as an example to make the process more clear. Note that
we are not applying aMonte Carlo Tree Search, but justMonte Carlo
simulations. Each action a ∈ A′ is tried a single time in simulation.
This allows ϕ to quickly take a decision concerning its next ac-
tion. During the simulations, in HAS ϕ uses the predicted sequence
of ellipse parameters: [(x1c ,y1c ,a1,b1,θ1), . . . , (xhc ,yhc ,ah ,bh ,θh)].
Therefore, the swarm is replaced by a single ellipse that moves
at each simulated iteration. In DSS ϕ uses the current estimated
parameters p̃ and estimated waypoints W̃ to directly simulate the
behavior of each member of the swarm Ω.

The whole process described in Section 3.1 (for HAS), 3.2.1 (for
DSS) and 3.3 repeats at every iteration, once ϕ is again able to run
computations. That is, ϕ is constantly updating its model of the
swarm, and performing simulations to decide its next action. If the
swarm Ω is doing waypoint navigation, in DSS ϕ first estimates the
set of waypoints W̃ for l iterations, before it starts moving. InHAS it
also waits for l iterations, in order to get initial observations before
trying to forecast using the time-series. Afterwards, ϕ moves by
continuously applying on-line learning and planning, as described.

4 EXPERIMENTS
In order to evaluate our approach, we ran experiments in an “infil-
tration game”. We place a certain target in the environment, and a

Figure 3: Swarm infiltration game: an attacker (red agent)
must reach a target (red square) without being “caught”,
while a swarm flocks around the area (green agents).

swarm of agents (“defenders”) navigate in the target area following
a set of waypoints. The swarm moves following the classical boids
algorithm [12], with an extra attractive force towards waypoints.
That is, we first consider three local rules, as in the classical al-
gorithm: cohesion, alignment, and separation. Cohesion calculates
an acceleration vector towards the average position of all agents
within a radius rc ; alignment calculates an acceleration vector to-
wards aligning the heading of the agent with the average heading
of all agents within a radius ra . Finally, separation calculates the
aggregated acceleration vector towards the opposite direction of all
agents within a radius rs (that is, local repulsive forces), avoiding
collisions. These repulsive forces are inversely proportional with
the distance (i.e., the closer one member is to another, the higher
the repulsive force). Each force vector is multiplied by a weight: λc ,
λa , λs , and the final acceleration is given by the weighted average
of all these forces. Therefore, the classical algorithm has 6 different
parameters. In addition, we add an acceleration force towards the
next waypoint, of fixed magnitudemw .

Another agent (“attacker”) must reach the target without be-
ing touched by the defenders. The attacker must learn a model of
the swarm of defenders, and use this model in order to plan its
movement towards the target. In Figure 3 we show a screenshot
of the infiltration game. Note that defenders may move over the
target, and do not simply navigate around it, making the problem
significantly hard. For the interested reader, we show videos of our
proposed algorithms, and the algorithm we compare against (de-
scribed later in Section 4.2.2), at https://youtu.be/xLAcUCOuPuQ.

4.1 Sampling Strategy, Default Policy, and
Reward Function

As the reader may recall from Section 3.3, our on-line planning
methodology needs a sampling strategy for deciding actions to be
simulated, and a default policy, for simulating actions into the future.
We also need to define an appropriate reward function for ϕ.

In our “infiltration” game, ϕ considers a set V⃗ of acceleration
vectors of fixed magnitude. Each v⃗ ∈ V⃗ is generated by randomly
sampling x and y positions from the uniform distribution with
range [−1, 1], and then normalizing the resulting vector to the fixed
magnitude. For each v⃗ ∈ V⃗, ϕ simulates a constant v⃗ acceleration
(assuming velocities are saturated at a certain value) for all the h
simulated time steps. I.e., our default policy repeatedly applies the

(a) “Easy” (b) “Medium” (c) “Hard”

Figure 4: Three different levels of difficulty, and the corre-
sponding waypoints that we learn in DSS.

same action. We define our reward function as: 1 ifϕ reaches the tar-
get in the current simulation (terminating the current simulation);
the negative of the distance between ϕ and the target in the final
simulated state; and −∞ if a swarm member collides with ϕ (also
terminating the current simulation). In HAS it is not possible to
check if ϕ collides with a swarm member in a simulation. Therefore,
we consider the −∞ reward if ϕ collides with the predicted ellipse,
also terminating the current simulation. We use γ = 1.

4.2 Results
4.2.1 Waypoint Learning. We first present our results in way-

point learning in DSS, since they clarify the three different difficulty
settings that we consider (“easy”, “medium”, and “hard”). Each dif-
ficulty setting is defined by a different set of waypoints. Figure 4
shows the position of the target, the waypoints, and the estimated
waypoint sets after cleaning (W̃) for the “easy”, “medium” and “hard”
setting. Red squares represent the true waypoints followed by the
defenders, while the pink square represents the target position. The
circles represent the estimated waypoints, after cleaning the set. As
we can see, “easy” mode leads to an “8”-shaped movement centered
on the target, while “medium” and “hard” leads to a circular mo-
tion around the target. These are waypoints for the whole group,
not for the individual agents. That is, depending on the number of
agents, there will be agents over the target when following these
waypoints (as we can see in Figure 3), making the attacker problem
significantly hard.

Note that the estimated waypoints are not close to the true
waypoints, but they still represent well the actual movement that is
performed by the defenders. That is, the real motion of the defenders
follows the 8-shaped pattern in “easy”, and the circular patterns in
“medium” and “hard” (instead of being, e.g., a triangle in “medium”
and a straight line in “hard”), because of the motion dynamics.
Therefore, the estimated waypoints still allow us to simulate their
behavior. In order to evaluate that quantitatively, we run a scenario
with 41 defenders, and we allow them to execute 10 laps following
their true waypoints. We then count how many times they go over
each estimated waypoints, and we find close to 98% in “easy”, 89%
in “medium”, and 47% in “hard”.

4.2.2 On-line learning and planning. We first compare our ap-
proaches against a naive algorithm, which only applies attraction

https://youtu.be/xLAcUCOuPuQ

and repulsion forces. That is, in naive the attacker has an attrac-
tive force that accelerates it towards the target, with no radius
limitations andmw magnitude. Additionally, the attacker suffers
repulsive forces in the opposite direction of any defender within
a radius of rs , and with λs weight (inversely proportional to the
distance, as before). The summation of all these forces pushes the
attacker towards the target, while (almost) ensuring that there will
be no collisions against any defenders. This approach is based on
the classical potential field algorithm in mobile robotics [8]. Later
we also comment how reinforcement learning (DQN [9], Duelling
DQN [21]) performs.

We ran experiments for a varying number of defenders and
difficulty level. The initial position of the attacker is randomly
chosen on the right hand side of the target, at a fixed initial distance
of 3500 pixels. We repeat all experiments 30 times, and evaluate the
average results. No knowledge is retained between executions (i.e.,
there is no pre-training, every execution starts from scratch). In all
plots, the error bars show the confidence interval (ρ = 0.01), and
when we say that a result is significantly better than another we
mean with statistical significance considering ρ ≤ 0.01.

We use the following parameters for parameter estimation: sim-
ulation horizon e = 20, number of simulations n = 20. For on-
line planning: simulation horizon h = 800, number of simulations
|V⃗| = 300. Waypoint learning happens for l = 1000 iterations
(which are considered when we evaluate our results). For HAS we
use the χ2 CDF to 99.9955% confidence level (very close 100%),
leading to c =

√
20, ARIMA orders o = (2, 1, 3) and o′ = (2, 0, 3),

tµ = 15% and tσ = 40%. In the initial trials, we experimentally
observed that these two ARIMA orders lead to good predictions.

We evaluate DSS when learning the radius of cohesion, alignment
and separation (DSS-3), and when learning the radius of only separa-
tion (DSS-1). Hence, we consider the case of learning 3 parameters,
or a single parameter. We use learning rate α = 1 when learning
the separation radius, and α = 15 when learning the radius for
cohesion and alignment. These learning rates are higher than usual
because we noticed very small derivative values, and the number of
learning iterations is highly limited by the real time constraints. For
DSS-3 we decay the learning rates at the rate 0.9, since we noticed
that it leads to more stable executions when considering multiple
parameters. The parameters that are not being learned are fixed
to the correct values. We consider the following possible ranges
for the parameters: cohesion and alignment: [50, 90]; separation:
[20, 60]. Values are measured in pixels. Note that HAS does not have
previous knowledge of any of the swarm algorithm parameters.

For the defenders algorithm, we fix the following parameters:
rc and ra = 70; rs = 30; λc = 0.9; λa = 1.2; λs = 2.0;mw = 0.04.
When running naive, the attacker considers rs = 30; λs = 2.0;
mw = 0.51. When running DSS and HAS, the simulated actions v⃗
have magnitude 0.1. For all agents and in all algorithms, velocities
saturate at 1, and all distance metrics are in pixels. Additionally,
attractive forces are applied after the saturation for all algorithms
(leading to a final saturation of 1+mw). Note that we put ourselves
in a slight disadvantage, since naive’smw > 0.1.

We evaluate our results in terms of time to reach the target, and
success rate, which is the proportion of times that the attacker

1We tried different parametrisations but did not see any significant differences.

Naive DSS-1 DSS-3 HAS

20 40 60 80 10
0

12
0

Number of Defenders

40

60

T
im

e
to

T
ar

ge
t

(s
)

(a) “Easy” Scenario

20 40 60 80 10
0

12
0

Number of Defenders

50

100

T
im

e
to

T
ar

ge
t

(s
)

(b) “Medium” Scenario

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

Number of Defenders

100

200

300
T

im
e

to
T

ar
ge

t
(s

)

(c) “Hard” Scenario

Figure 5: Time to reach target in three different scenarios.

reaches the target without being caught by the defenders, within a
time limit of 300s. Additionally, for DSS-1 and DSS-3, we evaluate
the normalised squared error of the parameters estimations, and in
HAS the coverage level of the ellipses. The time to reach the target
is only counted in successful executions (i.e., not being captured by
the defenders). In order to better explore a large number of swarm
members, we ran up to 240 agents in the “hard” scenario.

In Figure 5 we show the time to reach the target for all scenarios,
and a varying number of defenders. When a result is not shown,
it means that there was no successful execution for that particular
algorithm in that particular scenario. As we can see, we are able to
reach the target significantly faster than naive in the “medium” and
“hard” scenarios (for number of defenders ≥ 120 in both cases). We
also notice that DSS-1, DSS-3, and HAS have a very consistent time
to reach the target around 60s across all scenarios and number of de-
fenders (growing very slowly with the number of defenders), while
naive quickly grows as the number of defenders and/or scenario
difficulty level increases.

20 40 60 80 10
0

12
0

Number of Defenders

0

20

40

60

80

100

Ti
m

e
(s

)

Attack Naive
Learn DSS-1

Attack DSS-1
Learn DSS-3

Attack DSS-3
Learn HAS

Attack HAS

Figure 6: Proportion of time used in actual attack in the
“easy” scenario, in comparison with naive.

In “easy”, we are not faster than naive because of the time taken to
estimate the waypoints W̃. If we count only the time after waypoint
learning (Figure 6), when the attacker is actually moving, we find
that all algorithms are significantly better than naive with 120
defenders. Hence, our algorithms scalemuch better when the swarm
size gets higher, and the impact grows with the difficulty level.

Regarding success rate (Figure 7), we find that naive is signifi-
cantly better most of the time, but consistently drops in the “hard”
scenario, and is not significantly different than DSS-1 for |Ω| ≥ 180,
and for all other algorithms for 220 defenders. Meanwhile, we are
able to obtain a significantly better time to target in these scenarios.

It is interesting to note that DSS obtains higher success rates in
“hard” than in “medium”. This result seems to indicate that different
scenarios may require different parametrisations of the algorithm.
In the “medium” scenario, HAS obtains significantly better success
rates than DSS for |Ω| ≥ 60 (ρ ≤ 0.09 in the 60 case). On the other
hand, DSS-3 is significantly better than HAS with 60 agents in the
“easy” scenario, and with 60 and 80 in “hard”; and DSS-1 in “hard”
with 120 and 180 agents. In other cases, however, the algorithms
are not significantly different.

Furthermore, in Figure 8 (a) we show examples of the learning
curves for DSS-1 and DSS-3. We can see that DSS-3 has much lower
learning iterations, due to the real time constraints, and it converges
quicker, since we apply a decreasing learning rate in that case. For
DSS-1, we see that it constantly decreases. In Figure 8 (b) we show
an example of the “coverage” results of HAS, in the same scenario.
That is, we represent the percentage of agents that are within the
observed and the predicted ellipses across time. As we can see, we
are able to cover most of the swarm even when doing predictions,
always covering more than 90% of the members in the observed
ellipses, and at least 60% in the predicted ellipses.

Finally, we analyze the time taken for learning and planning at
each iteration (Figure 9). DSS runs faster than HAS for a smaller
number of defenders, and thus is able to update the acceleration
vector more frequently, leading to a higher number of updating
iterations. Even so, HAS is able to obtain similar results to DSS, and
even outperforms it in some cases. For a larger number of defenders
(160), however, HAS actually starts to run faster than DSS.

4.2.3 Comparison with Reinforcement Learning. We tested the
performance of DQN [9] and Duelling DQN [21] in our setting,
algorithms that were able to achieve super-human performance
in Atari games. We use the original DQN architecture, hence the

Naive DSS-1 DSS-3 HAS

20 40 60 80 10
0

12
0

Number of Defenders

0.25

0.50

0.75

1.00

S
uc

ce
ss

R
at

e
(%

)

(a) “Easy” Scenario

20 40 60 80 10
0

12
0

Number of Defenders

0.0

0.5

1.0

S
uc

ce
ss

R
at

e
(%

)

(b) “Medium” Scenario

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

Number of Defenders

0.0

0.5

1.0
S

uc
ce

ss
R

at
e

(%
)

(c) “Hard” Scenario

Figure 7: Success rates across three different scenarios.

4 most recent frames defines the current state. The agent uses ϵ-
greedy approach, with ϵ decreasing from 1.0 to 0.1 over the course
of 5000 steps; and γ = 0.99. Additionally, we simplified the problem
for the DQN agents: (i) We defined a reduced action space with 10
discrete actions, each defining an acceleration vector of the same
magnitude as used in our algorithms (0.1). These are uniformly
distributed across the whole 2π angular range. (ii) We removed the
real time constraints, and “paused” the swarm while the attacker
is computing its next action. Therefore, DQN is handling an easier
problem than the results shown in the previous section. Addition-
ally, in all executions we kept the scenario fixed, and the attacker
always started in the same position.

We first analyzed the hard scenario with 60 swarm members. We
analyzed three variations of DQN: (i) DQN-1: We give a positive
reward (200) when the attacker is able to reach the target, and a
negative reward when there is a collision with a swarm member
(−200). After 10 minutes the attacker receives a timeout reward
(−200) and the game re-starts. (ii) DQN-2: We use the same rewards
as before, but for each non-final state we give a reward 1/d , where

0 20 40 60 80 10
0

Iterations

0.26

0.28

0.30

0.32

0.34

E
st

im
at

io
n

E
rr

or
(%

)

DSS-1

DSS-3

(a) Learning curves for DSS-1 and DSS-3

0
20

0
40

0
60

0
80

0

Time-steps

0.4

0.6

0.8

1.0

M
em

b
er

s
co

ve
re

d
(%

)

Observed

Predicted

(b) Observed and predicted ellipses coverage

Figure 8: Example of learning curves and ellipses coverage,
in “medium” scenario with 100 defenders.

d is the current distance between the attacker and the target, in
order to help guide the agent towards the target. (iii) Duelling DQN:
The same as (ii), but using the Duelling DQN algorithm instead.

After many days of training, however, the DQN agents were
still unable to reach the target. DQN-1 ran up to 235 games, DQN-
2 ran 848 games, and Duelling DQN ran 549 games. In DQN-1,
72% were timeouts, and the remaining 28% were collisions with
defenders. In DQN-2, 77% and 23% were timeouts and collisions,
respectively. Finally, in Duelling DQN, 73% were timeouts, and 27%
were collisions. Hence, the agent was not even able to experience
a successful game. In the same scenario, however, our algorithms
obtain up to 75% success rate, and reach the target in around 55s,
learning in a single game (i.e., no training, there is no knowledge
carried across runs).

In order to investigate further, we also analyzed DQN-2 in the
easy scenario, with 20 swarm members. Similarly, however, after
512 games we saw 77% timeouts, 23% collisions, and no victories.
We can see, therefore, that this problem is quite challenging for
reinforcement learning.

We observed in the resulting DQN-2 policies that the agent
learned to get closer to the target, but to avoid the area where
the swarm navigates. Therefore, it would not be able to reach the
target. This shows a fundamental issue with reinforcement learning
approaches: there is a very high probability of receiving the most
negative reward when the agent is approaching its goal. Therefore,
the agent could end up learning to avoid its goal completely.

0 50 10
0

15
0

20
0

Update Number

200

400

600

T
im

e
(n

s)

DSS-1 DSS-3 HAS

(a) 60 members

0 25 50 75 10
0

Update Number

200

400

600

800

T
im

e
(n

s)

DSS-1 DSS-3 HAS

(b) 160 members

Figure 9: Processing time forDSS andHAS algorithms, in the
“hard” scenario.

5 CONCLUSION
We introduce the novel problem of learning a model of an unknown
swarm in real-time, within a single execution, and using that model
for decision-making. We present two novel algorithms: one that
creates a hierarchical abstraction of the swarm, and another that
simulates the individual swarm members in order to learn the
swarm algorithm parameters. The first one does not require any
knowledge of the swarm algorithm, but it assumes that they would
move in a coherent, ellipse-like fashion. The second is free of this
assumption, but needs knowledge of their algorithm, as it focuses
on learning its parameters. We compare against local repulsive
forces across three different scenarios, and we find that we are able
to reach our goal significantly faster, at the cost of success rate in
some cases. Additionally, we find that the hierarchical approach
has significantly better success rate than directly simulating the
swarm members in one of the scenarios, while in the others their
performance is not significantly different. We also analyzed several
variations of DQN in a simplified version of our problem, showing
that it imposes great challenges for reinforcement learning.

For the interested reader, our source code is available at https:
//github.com/lsmcolab/dss-has.

Acknowledgements: This research was partially supported by
EPSRC EP/R01860X/1, and AUSPIN. We would also like to thank
the School of Computing and Communications, the Portsmouth
Business School, Jó Ueyama, and Andrew Wood for their support.
Additionally, we thank Caio Ferreira Bernardo for useful comments.

https://github.com/lsmcolab/dss-has
https://github.com/lsmcolab/dss-has

REFERENCES
[1] S. Albrecht and P. Stone. 2017. Reasoning about Hypothetical Agent Behaviours

and their Parameters. In Proceedings of the 16th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS’17).

[2] S. V. Albrecht and P. Stone. 2018. Autonomous Agents Modelling Other Agents:
A Comprehensive Survey and Open Problems. Artificial Intelligence (AIJ) 258
(2018), 66–95.

[3] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. 2015.
Time series analysis: forecasting and control. John Wiley & Sons.

[4] K. Genter and P Stone. 2016. Ad Hoc Teamwork Behaviors for Influencing a
Flock. Acta Polytechnica (2016).

[5] K. Genter, S. Zhang, and P Stone. 2015. Determining Placements of Influenc-
ing Agents in a Flock. In Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2015).

[6] Arnaud Glad, Olivier Simonin, Olivier Buffet, and François Charpillet. 2010.
Influence of different execution models on patrolling ant behaviors: from agents
to robots. In Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS).

[7] Nicholas Hoff, Robert Wood, and Radhika Nagpal. 2013. Distributed Colony-
Level Algorithm Switching for Robot Swarm Foraging. InDistributed Autonomous
Robotic Systems: The 10th International Symposium, Alcherio Martinoli, Francesco
Mondada, Nikolaus Correll, Grégory Mermoud, Magnus Egerstedt, M. Ani Hsieh,
Lynne E. Parker, and Kasper Støy (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 417–430.

[8] O. Khatib. 1986. Real-time obstacle avoidance for manipulators and mobile robots.
International Journal of Robotics Research 5, 1 (1986), 90–98.

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level Control through Deep Reinforcement Learning. Nature 518 (2015).

[10] Rubens O. Moraes and Levi Lelis. 2018. Asymmetric Action Abstractions for
Multi-Unit Control in Adversarial Real-Time Games. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI).

[11] Rubens O. Moraes, Julian Marino, Levi Lelis, and Mario Nascimento. 2018. Action
Abstractions for Combinatorial Multi-Armed Bandit Tree Search. In Proceedings
of the AAAI Conference on AI and Interactive Digital Entertainment (AIIDE).

[12] Craig W. Reynolds. 1987. Flocks, herds and schools: A distributed behavioral
model. In Proceedings of the 14th annual conference on Computer graphics (SIG-
GRAPH 87). ACM Press, 25–34.

[13] Joseph A. Rothermich, M. İhsan Ecemiş, and Paolo Gaudiano. 2005. Distributed
Localization and Mapping with a Robotic Swarm. In Swarm Robotics, Erol Şahin
and William M. Spears (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
58–69.

[14] Navyata Sanghvi, Sasanka Nagavalli, and Katia Sycara. 2017. Exploiting Robotic
Swarm Characteristics for Adversarial Subversion in Coverage Tasks. In Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS).

[15] V. G. Santos and L. Chaimowicz. 2011. Hierarchical congestion control for robotic
swarms. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS).

[16] Vinicius Graciano Santos and Luiz Chaimowicz. 2014. Cohesion and segregation
in swarm navigation. Robotica 32, 2 (2014), 209–223.

[17] Vincent Spruyt. 2014. How to draw a covariance error ellipse? Com-
puter vision for dummies (2014). https://www.visiondummy.com/2014/04/
draw-error-ellipse-representing-covariance-matrix/

[18] D. P. Stormont. 2005. Autonomous rescue robot swarms for first responders. In
Proceedings of the 2005 IEEE International Conference on Computational Intelligence
for Homeland Security and Personal Safety (CIHSPS). 151–157.

[19] A. R. Tavares, S. Anbalagan, L. S. Marcolino, and L. Chaimowicz. 2018. Algorithms
or Actions? A Study in Large-Scale Reinforcement Learning. In Proceedings of
the 27th International Joint Conference on Artificial Intelligence (IJCAI).

[20] A. Šošić, W. R. KhudaBukhsh, A. M. Zoubir, and H. Koeppl. 2017. Inverse Re-
inforcement Learning in Swarm Systems. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS).

[21] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and
Nando De Freitas. 2016. Dueling network architectures for deep reinforcement
learning. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning (ICML’16). 1995–2003.

https://www.visiondummy.com/2014/04/draw-error-ellipse-representing-covariance-matrix/
https://www.visiondummy.com/2014/04/draw-error-ellipse-representing-covariance-matrix/

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Hierarchical Abstraction (HAS)
	3.2 Direct Swarm Simulations (DSS)
	3.3 On-Line Planning

	4 Experiments
	4.1 Sampling Strategy, Default Policy, and Reward Function
	4.2 Results

	5 Conclusion
	References

