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Abstract  

Our knowledge and understanding to the heterogeneous structure and 

processes occurring in the Earth’s subsurface is limited and uncertain. The above is 

true even for the upper 100m of the subsurface, yet many processes occur within it (e.g. 

migration of solutes, landslides, crop water uptake, etc.) are important to human 

activities. Geophysical methods such as electrical resistivity tomography (ERT) greatly 

improve our ability to observe the subsurface due to their higher sampling frequency 

(especially with autonomous time-lapse systems), larger spatial coverage and less 

invasive operation, in addition to being more cost-effective than traditional point-

based sampling. However, the process of using geophysical data for inference is prone 

to uncertainty. There is a need to better understand the uncertainties embedded in 

geophysical data and how they translate themselves when they are subsequently used, 

for example, for hydrological or site management interpretations and decisions. This 

understanding is critical to maximize the extraction of information in geophysical data. 

To this end, in this thesis, I examine various aspects of uncertainty in ERT and develop 

new methods to better use geophysical data quantitatively. The core of the thesis is 

based on two literature reviews and three papers. 

In the first review, I provide a comprehensive overview of the use of 

geophysical data for nuclear site characterization, especially in the context of site clean-

up and leak detection. In the second review, I survey the various sources of 

uncertainties in ERT studies and the existing work to better quantify or reduce them. I 

propose that the various steps in the general workflow of an ERT study can be viewed 

as a pipeline for information and uncertainty propagation and suggested some areas 

have been understudied. One of these areas is measurement errors. In paper 1, I 

compare various methods to estimate and model ERT measurement errors using two 



Abstract  

ii 

 

long-term ERT monitoring datasets. I also develop a new error model that considers 

the fact that each electrode is used to make multiple measurements. 

In paper 2, I discuss the development and implementation of a new method for 

geoelectrical leak detection.  While existing methods rely on obtaining resistivity 

images through inversion of ERT data first, the approach described here estimates leak 

parameters directly from raw ERT data. This is achieved by constructing hydrological 

models from prior site information and couple it with an ERT forward model, and then 

update the leak (and other hydrological) parameters through data assimilation. The 

approach shows promising results and is applied to data from a controlled injection 

experiment in Yorkshire, UK. The approach complements ERT imaging and provides 

a new way to utilize ERT data to inform site characterisation. 

In addition to leak detection, ERT is also commonly used for monitoring soil 

moisture in the vadose zone, and increasingly so in a quantitative manner. Though 

both the petrophysical relationships (i.e., choices of appropriate model and 

parameterization) and the derived moisture content are known to be subject to 

uncertainty, they are commonly treated as exact and error‐free. In paper 3, I examine 

the impact of uncertain petrophysical relationships on the moisture content estimates 

derived from electrical geophysics. Data from a collection of core samples show that 

the variability in such relationships can be large, and they in turn can lead to high 

uncertainty in moisture content estimates, and they appear to be the dominating 

source of uncertainty in many cases. In the closing chapters, I discuss and synthesize 

the findings in the thesis within the larger context of enhancing the information content 

of geophysical data, and provide an outlook on further research in this topic. 
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Executive summary for the nuclear industry 

Uncertainty in the subsurface characterisation of nuclear sites poses significant risks in 

terms of operational cost and environmental protection. Improved knowledge of the 

uncertainty of subsurface properties and processes is needed in order to enhance risk 

mitigation. Geophysical methods, such as electrical resistivity tomography (ERT), 

provide a cost-effective way to delineate variations in subsurface properties and 

monitor subsurface processes, however, the uncertainty in the results from such 

methods is often overlooked. A recent successful time-lapse ERT field trial conducted 

at Sellafield's Magnox Swarf Storage Silo (MSSS) highlights the potential of these 

methods [1] by showing 3D resistivity variations over time due to saline tracer injection. 

This PhD project explores various ways to better exploit information from ERT and to 

track the associated uncertainty in subsurface characterisation. This includes better 

understanding of the ERT data, and incorporating ancillary data sources to the ERT 

analysis. 

We have studied the error structure in ERT data and proposed a new error model for 

geophysical measurements, which shows improved ERT inversion results and 

uncertainty estimation [2]. Recently, we have shown that there exists large variability 

in field petrophysical relationships and have developed a workflow quantifying pore 

water states (e.g. soil water content) derived from ERT. Even though different 

petrophysical relationships give consistent estimates of the change in total moisture, 

the estimates have large uncertainty bounds [3]. Our study also illustrates the joint use 

of coupled hydrogeophysical modelling and data assimilation to effectively estimate 

flow and transport properties in leak plumes. Our method proposes a range of 

hydrological models and then constrains them with time-lapse ERT data through data 

assimilation. The advantages of this method includes the flexibility to incorporate prior 

hydrogeological information and the ability to estimate flow and leak parameters of 

interest directly. The ensemble of hydrological model estimates also readily provides 

useful metrics for site management decisions, e.g. mass flux and mass discharge at any 

location or area within the model domain.  
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We have applied the above methods to the data collected from the Sellafield field trial 

and other sites. Overall, our work addresses the needs of the Nuclear 

Decommissioning Authority (NDA) by offering a suite of methods that can make 

geophysical methods more reliable and informative for site characterisation. 

Systematic application of ERT at NDA sites should contribute to a reduction in costs 

and risks in managing NDA's contaminated land portfolio.  
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1. Introduction 

1.1 Background 

Effective characterisation is essential to successful management of 

environmental sites (Artiola et al., 2004). They are, however, inherently labour- and 

cost-intensive because point samples are needed to be obtained from boreholes. It is 

often difficult to piece together the governing processes at the site based on the 

individual point samples. These challenges are exaggerated in nuclear sites where site 

access is restricted and risk of exposure of contamination is above average. 

Geophysical methods have been used in the last two decades to improve the 

effectiveness of  site characterisation because they can “scan” the subsurface rapidly 

like hospital scanners do (Binley et al., 2015). Therefore, they can provide information 

about subsurface conditions at a spatial and temporal resolution that is not attainable 

by point measurements (French et al., 2014). Like hospital scanners, geophysical 

methods do not directly detect the quantity of interest (QoI) (e.g. pore water solute 

concentration). Therefore, we need to understand how geophysical responses are 

linked to the QoI. In order to make geophysics more useful for nuclear site 

characterisation, we also need to understand how to better extract site information 

from geophysical data, how errors and uncertainties propagate, and how to more 

closely tie geophysical data to site conceptualization.  

1.2 Objectives and aims 

Using electrical resistivity tomography (ERT) (Binley, 2015a; Daily et al., 2005) 

as an example, the primary objective of this work is to develop methods to better 

quantify and improve the amount of information ERT can provide to aid site 

characterisation. Electrical resistivity is related to subsurface material and fluid 

properties; yet this relationship is controlled by multiple material and rock properties 

and is uncertain. Moreover, all the data collection and interpretation stages in ERT 

propagates through the interpretation workflow and contribute to the uncertainty of 

the final interpretation of the ERT data to infer the quantity of interest (QoI), whether 

it is soil water content, hydraulic parameters, or parameters describing the leakage of 
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a potential contaminant from a storage facility. Prior to this study, little work had been 

undertaken to specifically address the potential issues with uncertainty in using ERT 

for hydrological predictions. Among the few work that attempted to address them, the 

focus has been on either improving the inversion method, or reducing the uncertainty 

in Bayesian model selection. None of them has undertaken a whole-system approach 

for uncertainty quantification, nor have they evaluated aspects of uncertainty 

propagation that does not depend on the choice of inversion methods (e.g. 

measurement errors, petrophysical relationships). 

The specific aims identified to fulfil the above were to: 

 Identify the sources of uncertainty in ERT data collection, modelling, inversion, 

and interpretation  

 Assess the statistical distribution and correlation of ERT measurement errors 

 Assess the benefit of leak parameter estimation using ERT data directly (i.e. 

without inversion) 

 Examine the extent to which uncertain petrophysical relationships affect the 

estimation of soil water content (and its temporal changes) 

To achieve the above aims the project objectives were to: 

 Review the use of geophysical data for nuclear site characterisation worldwide 

(chapter 2) 

 Introduce the sources of uncertainty in ERT (chapter 3) 

 Conduct statistical analysis and develop a new model on ERT measurement errors 

(chapter 4) 

 Develop a coupled hydrogeophysical data assimilation approach for leak 

parameter estimation without reliance of ERT images (chapter 5) 

 Observe variability of petrophysical relationships in field soil samples, use it to 

populate a range of petrophysical models, and examine the variability in the 

estimated moisture content maps when ERT data is subjected the different 

petrophysical models  (chapter 6) 
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We have traced the normal workflow for geophysical studies and consider it as 

a pipeline for the propagation of both information and uncertainty and it can be used 

to illustrate the relationship between the chapters (Figure 1). The chapters correspond 

to three areas of interest for further investigation. An ERT study begins with designing 

the survey and then collecting the measurements. Then the data collected is inverted 

to obtain images of geophysical properties. The images are interpreted to understand 

the cause of the behaviour observed in the images. Finally, such interpretation may be 

applied for prediction of future events.  

 

Figure 1 The ERT workflow showing the various stages of conducting ERT survey and analysing its 

data. It also serves as a pipeline where information and uncertainty is propagated along. The 

annotation shows the relation between the chapters in this thesis and the workflow. 

 

Funded in part by the Nuclear Decommissioning Authority (NDA), this project 

has a focus on leak detection using ERT at nuclear sites. However, it was thought that 

some of the findings and conclusions from this study would improve the general 

understanding of using ERT for site characterisation and monitoring, and would be 

applicable for the deployment of ERT at other sites. It was also thought that some of 

the findings are applicable to the use of other geophysical methods for site 

characterisation.  

1.3 Outline 

Chapter 2 and 3 includes two literature review on the subject matter discussed 

in the thesis. The first one provides details on the context of the application of near-
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surface geophysical methods for nuclear site characterisation. The second review 

provides a detail discussion on the various sources of uncertainties in ERT by 

summarizing exisiting research and identifying knowledge gaps. 

Chapter 4 (Tso et al., 2017) describes an analysis of ERT measurement errors 

using permanently installed ERT arrays. Various types and formulation of 

measurement errors are assessed. A new model for ERT measurement errors is 

proposed to handle potential bias of faulty electrodes. This work is an essential first 

step to handle uncdertaintly propagation from ERT data in the hydrogeophysics 

workflow. 

Chapter 5 describes a novel geoelectrical leak detection method using coupled 

hydrogeophysical modelling and data assimilation techniques. The ERT data 

corresponding to the leak is used to provide information of the leak parameters and 

reduce uncertainty in the geological conceptualization of the site. This work highlights 

that in previously characterized sites (as in most nuclear sites), geophysical data can 

be a powerful tool to estimate leak parameters using a minimal amount of boreholes.  

Chapter 6 (also as Tso et al., 2019) explores the utility of inversion-based 

estimates of moisture content from ERT under the influence of uncertain petrophysical 

relationships. Field data shows that even cores within the same unit can show 

significant variation in petrophysical relationships and if the full range is considered, 

moisture content estimates can be highly uncertain. We advocate for the improved 

consideration of petrophysical uncertainty in future work. 

The above is followed by the discussion summary and conclusion sections. 

Part of this work has been conducted using the coupled hydrogeophysical code 

PFLOTRAN-E4D (Johnson et al., 2017), as illustrated in Figure 2. It was part of the 

PFLOTRAN software releases until the end of this PhD. An alternative approach to 

perform coupled hydrogeophysical simulation by running PFLOTRAN and E4D 

separately is outlined in the Appendix. 
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Figure 2 Snapshot showcasing coupled hydrogeophysical modelling using PFLOTRAN-E4D. The 2D 

flow and transport model simulates tracer injection at an injector in the upper left of the domain. 

Groundwater movement is towards an extraction well to the lower right. An ERT imaging cell with 4 

boreholes (20 electrodes each) is located at the centre of the domain. The animation shows that as the 

conductive tracer migrate through the ERT imaging cell, there is a corresponding increase in electrical 

conductivity in the ERT imaging cell. 
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2. Geophysical methods for nuclear site characterisation 

  

Manuscript prepared for journal submission as Tso, C.-H.M., Kuras, O., Binley, A. 

(201x) Geophysical methods for nuclear site characterisation 
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Background 

 Site characterisation, in the context here, involves desktop analysis of historic 

studies, making observations and collecting data in the field and interpreting them in 

order to build up a conceptual understanding of the geology, hydrogeology, 

hydrology, and contaminant transport processes at the site. This understanding allows 

assessments of exposure pathways and provides justification for clean-up decisions at 

the site. Geophysical methods allow mapping and monitoring subsurface properties 

and processes at resolutions and coverages that would otherwise be impossible to 

attain by other point-scale methods. The chapter summarizes the current applications 

of geophysical methods at nuclear sites and identifies critical gaps to be addressed in 

future work. 

Improved understanding of a site’s surface and subsurface conditions can 

greatly reduce the costs and risks of decommissioning. In particular, uncertainty in the 

site conditions contributes to tremendous financial and safety risks for multi-decade, 

multi-billion pound decommissioning projects. Conventional methods are cost- and 

labour-intensive because, traditionally, they rely on invasive, numerous local-scale 

measurements. The interpretation drawn from these methods may not represent the 

site-scale behaviour of the contaminant transport process. The above underpins a 

major discrepancy between the principle and implementation of contaminated land 

legislation. For example, in the U.K. contaminated land law, source-pathway-receptor 

linkage of the contaminant needs to be established in order to determine risk and 

responsibility (Environmental Protection Act 1990 - Part IIA Contaminated Land: 

statutory guidance). This has been proved to be very difficult to achieve in the 

subsurface environment. Geophysical methods offer a promising alternative as they 

provide much greater site coverage. Their short data collection cycle also allows time-

lapse monitoring of transport processes. Much of the development in inversion has 

been focused on improving the resolution of estimates or joint inversion of different 

data types. Our understanding of a site, however, is always subject to uncertainty and 

complicated by inconsistent scales of measurements. More robust methods to reduce 

uncertainty in interpreting different site data is needed to improve site characterisation.  
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 Site characterisation on nuclear sites (and ultimately the need for geophysics) 

can have very diverse drivers, often associated with different regulatory issues, 

different environmental hazards, and also different funding streams. More 

importantly, the different needs of characterisation are often related to different spatial 

and temporal scales of the problem. At the same time, some needs arise from a 

‘civil/nuclear engineering’ angle, while others from a more holistic ‘environmental 

assurance’ perspective. For example, the recent Sellafield leak monitoring work fell 

under ‘decontamination & decommissioning (D&D)’, which addresses immediate 

risks and often precedes more strategic ‘site restoration’ and ‘environmental 

remediation (ER)’ tasks (timescales = many decades). There is also the (separate) issue 

of long-term geological disposal, which requires characterization of the deeper 

subsurface. At Sellafield and other NDA sites, all near-surface issues fall under the 

responsibility of a ‘Land Quality’ directorate, and UK regulatory oversight comes from 

the Environment Agency (EA) and the Office for Nuclear Regulation (ONR). 

In this review, some conventional methods used in nuclear site characterisation 

are outlined. Then, the application of geophysics at a number of selected nuclear sites 

is reviewed. Finally, problems and aspects missing in current geophysical approaches 

are summarized, and suggestions made for possible solutions. This report only focuses 

on near-surface site characterisation (e.g. the shallowest 200 m). Geophysics can also 

be used in deep repositories, but they are used to address different needs. For a review 

of the technological development in characterizing potential deep repositories, the 

reader is referred to the work of Tsang et al. (2015). 

Conventional Methods 

 Nuclear site characterisation requires careful planning. Desk studies and site 

walk-overs allow building up of knowledge of the site’s history and current condition. 

They include surface mapping of geology, studying previous site records and 

investigation reports, and obtaining information from nationally held databases 

(Bayliss and Langley, 2003). They can provide the first evidence of site condition and 

can help determine the feasibility of a field study proposal. Once preliminary site 
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conditions are understood, and health, safety, and logistical issues are resolved, 

intrusive surveys can be arranged.   

Typically, conventional characterisation of nuclear sites involves the drilling of 

boreholes, pitting and logging of rocks, single- and cross-hole hydraulic testing, and 

monitoring of water levels (Bayliss and Langley, 2003). Groundwater sampling is often 

considered as the most important aspect of contaminated land assessment since they 

provide direct evidence of the radioactive level and the presence of other chemical 

constituents in groundwater.  

Tracer methods have also been used extensively to evaluate the contaminant 

transport behaviour at sites, for example, the US sites at Hanford (Ahlstrom et al., 1977) 

and Savannah River (Webster et al., 1970). They are often used to infer solute advection 

and dispersion properties of a site, which controls the rate at which a contaminant 

plume spreads. Stochastic methods (e.g. Gelhar and Axness, 1983; Zhang and Neuman, 

1990) can be used to relate small-scale tracer test results to large-scale displacements of 

contaminants.  

Geophysical surveys, such as surface and cross-borehole seismic and surface 

electromagnetic (EM), are common practice in conventional site characterisation. 

Common methods include electromagnetic conductivity mapping and sounding, 

resistivity profiling, and ground penetrating radar. The conventional use of geophysics 

distinguishes itself from its successors, not in the measurement techniques but its role 

in the investigation. Geophysics was thought to only provide a secondary, indirect 

means of characterizing a site prior to or in conjunction with intrusive work (Bayliss 

and Langley, 2003). Likewise, down-hole geophysical logging is also often used during 

the installation of boreholes. Again, conventional site characterisation does not 

consider it as a part of the formal investigation. For example, natural gamma logs are 

seen to assist overall approximation of hydraulic conductivity and allow data to be 

cross-correlated with other field data (Bayliss and Langley, 2003). In recent 

applications, however, both borehole and surface geophysics play a much more 

important role in nuclear site characterisation. A detailed discussion is provided in the 

next section. 
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As an illustration, all of the conventional characterisation tasks mentioned 

above were completed for part of the Sellafield site before 2000 (Bowden et al., 1998). 

The site was one of the two potential areas (the other being Dounreay, Scotland) to 

construct a low- and intermediate-level waste repository (Norton et al., 1997). Their 

results are reported respectively in thirty-some NIREX reports published between 1993 

and 1998.  

Geophysical Methods 

The use of geophysics for site characterization in nuclear sites can be traced back 

to the 1970s (e.g. Edwards, 1977; Robins, 1979). However, its potential use for 

characterising and monitoring nuclear sites was not recognized until the 1980s 

(Morrison et al., 1987). An idealized 2-D nuclear waste repository was used to show 

the effectiveness of surface-borehole ERT (Asch and Morrison, 1989). This review uses 

two U.S. Department of Energy legacy sites—the Hanford site and the Savannah River 

Site as case studies to discuss the development of applications of geophysical methods 

in nuclear sites. This review also covers sites from the U.S. Department of Energy's 

(DOE's) Integrated Field-Scale Subsurface Research Challenge (IFRC), a new program 

that commits multi-investigator teams to perform large, benchmark-type experiments 

on formidable field-scale science issues. IFRC consists of three legacy sites: Hanford 

300 areas, Washington, Rifle, Colorado, and Oak Ridge, Tennessee. Finally, a summary 

of applications in the United Kingdom and other countries are provided.  

Hanford Site and Hanford 300 Area IFRC Site 

The Hanford Site is located in south-central Washington State, the United 

States. It was selected in 1943 as part of the secretive project to build an atomic weapon 

(the Manhattan project) and was later expanded to produce weapon-grade and fuel-

grade plutonium. From 1945 to 1986, Hanford produced 65% of the plutonium 

produced in US government-owned reactors (67 metric tons) and reprocessed 96,900 

metric tons of Uranium (Gephart, 2010, 2003). It is among the largest open sites which 

the US Department of Energy is obligated to clean-up according to US environmental 
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laws. A more detailed review of the near-surface work done at Hanford is provided by 

Johnson et al. (2015a). 

The Hanford Site is built along a section of the Columbia River and is divided 

into the 100, 200, and 300 Areas. The 300 Area was responsible for producing uranium 

fuel rods. The fuel rods were then sent to the five chemical separation plants in the 200 

Area to extract plutonium.  Each of the separation and extraction processes used 

complex, toxic, and corrosive chemicals that ultimately produced large amounts of 

high-level radioactive waste (HLW), though the process has improved significantly 

over the years. The extracted plutonium was sent to the nine plutonium production 

reactors in the 100 Area. Currently, the 200 Area stores most of the site’s legacy waste 

facilities.  

The 300 Area is located at the east reach of Columbia River, while the 100 Area 

aligns with the River’s north reach, and the 200 Area is located in Hanford’s Central 

Plateau. Figure 1 shows a map of the Hanford site. The geology of Hanford mainly 

consists of two formations: (1) the upper, Hanford Formation hosting the unconfined 

aquifer in which groundwater flows; (2) the underlying, semi-confining Ringold 

Formation. The interface between the permeable Hanford Formation and the relatively 

impermeable Ringold Formation is a critical hydrogeological contact controlling the 

vertical flow and transport of contaminated groundwater into the Columbia River 

(Mwakanyamale et al., 2012).  

The use of electrical potential variations to detect leaks at Hanford can be traced 

back to the 1970s (Key, 1977). At the turn of the century, virtually all types of surface-

based geophysical methods have been tested at Hanford, including electrical resistance 

tomography (ERT), ground-penetrating radar (GPR), numerous electromagnetic, 

magnetic, seismic, and gravity methods. Over 250 geophysical surveys have been 

conducted in portions of every “Area” of the Hanford Site (Last and Horton, 2000).  
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Figure 1 Aerial view of the Hanford Site (Johnson et al., 2015a) 

The 200 Area is located away from the river and its major concern is the 

potential that contaminated water reaches regional groundwater or discharge to the 

adjacent Columbia River. A basalt unit underlying the Ringold Formation can be seen 

as a flow barrier yet its extent is unknown. Williams et al. (2012a, 2012b, 2012c, 2012d) 

combined seismic reflection, vertical seismic profile, geologic cross-section, and well 

control data to infer the subsurface basalt topography and showed that there is a 

significant gap known as the Gable Gap in the basalt flow barrier (up to a few km 

across), which provides a possible flow path for contaminants originating from the 200 

Area.  

Closer to the land surface, there are 40 single-shell HLW storage tanks in the B-

complex (the oldest one in Hanford) of the 200 Area, many of which have leaked or 

experienced overfill episodes, and several outlying subsurface infiltration galleries. 

The waste streams introduced to the vadose zone were highly saline and created zones 

of elevated electrical conductivity. The waste poses a significant risk to groundwater 

quality, and determining the distribution of vadose zone contamination remains one 

of the most significant challenges limiting remediation and closure of Hanford Site 
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waste disposal facilities. ERT surveys were conducted to determine the distribution of 

highly conductive waste in the subsurface. Electrodes were laid parallel and 

perpendicular to the tanks, trenches, and cribs (Rucker et al., 2007). A comparison 

between the tank release history and groundwater sampling shows that higher 

disposal volumes were generally accompanied by more dilute waste. One exception is 

at the BY-Cribs Area, which was subjected to high waste volumes with high ionic 

strengths. The inverted results are consistent with the contaminant release history 

(Johnson and Wellman, 2013). They identify a main plume for the BY-Cribs Area which 

is oriented directly beneath the cribs (i.e. unlined underground box-like structures to 

dispose of liquid contaminants (Gephart, 2003)) have not only migrated vertically but 

also laterally. An eastward trending lobe that dips downward at ~30o appears to 

originate from the northeastern-most crib and a southeast trending lobe that appears 

to be an extension of the main plume beneath the cribs. Figure 2 shows the estimated 

plume for the BY-Cribs Area. 

 

Figure 2 Estimated conductivity at the Hanford BY-Cribs (Johnson et al., 2010; Johnson and Wellman, 

2013)  

Within a tank farm there is typically extensive metallic infrastructure including 

pipes, tanks, wells, electrical lines, distribution manifolds, and fences that complicates 

the use of geophysical methods that aim to estimate electrical properties in the 

subsurface. For example, previous studies in the 200 Area show poor ERT resolution 

within the tank farm (Johnson and Wellman, 2013). Given the strong influence of 

metallic infrastructure on electrical resistivity response, it may be advantageous to 
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incorporate the infrastructure directly into the acquisition and modelling approaches 

(Johnson et al., 2014). The steel-cased wells originally used for drywell geophysical 

logging, for example, can be used as long electrodes in an electrical resistivity survey—

the concept was first tested by Ramirez (Ramirez et al., 1996). Recently, the method is 

applied using a pilot-scale field experiment (Rucker, 2012) and within an actual tank 

farm to image suspected releases from a tank (Rucker et al., 2013).  

Ramirez et al. (1996) compared the pre-spilt and after-spilt ERT images of a 

contaminant plume as it develops in soil under a tank already contaminated by 

previous leakage. They concluded the new contaminant plume can still be detected 

without the benefit of background data. Binley et al. (1997) tested the method of 

electrical current imaging for leak detection at a mock tank set up in the 200 East Area 

in Hanford. Both leaks from the centre of the tank and from the side were considered. 

Unlike ERT, electrical current imaging aims to resolve the distribution of the 

percentages of applied current within the electrode array and it can be sensitive to 

small leaks. Daily et al. (2004) pioneered the near-real-time and remote monitoring of 

leaks in underground storage tanks using ERT at the Hanford 200 East Area, as part of 

a 5-party “mock tank” demonstration study for geophysical leak detection 

technologies (Barnett et al., 2003, 2002). Based on the ERT images, a “leak/no-leak” 

decisions is made daily. The ‘blind test’ yielded a 57% success rate, which is further 

improved to 87% after defining a new criteria during re-analysis. The single-shell tank 

used is characteristic of the 177 of them at Hanford and another 51 at Savannah River 

currently containing waste. A number of steel-cased wells adjacent to the tank are used 

as ‘long’ electrodes to sense bulk resistivity beneath the tank as well as depth-averaged 

images of resistivity variation. 54,000 litres of sodium thiosulfate were episodically 

released from a steel tank in a blind test lasting 110 days. Each day during the test a 

leak or no-leak condition was declared based solely on analysis of the electrical data. 

The summary diagnostic measure proposed therein, the mean logarithmic ratio (MLR), 

is later used for value of information (VOI) studies to evaluate the benefit of using 

different ERT array to monitor possible leakage from geological storage of carbon 

dioxide (Trainor-Guitton et al., 2013b). The dataset from this study (Daily et al., 2004) 

is later used for the first stochastic Markov-chain Monte Carlo (McMC) inversion of 
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time-lapse ERT data (Ramirez et al., 2005). This technique combines prior information, 

measured data, and forward models to produce subsurface resistivity distribution that 

is most consistent with all available data. It allows quantification of the uncertainty of 

a generated estimate, and allows alternative model estimates to be identified, 

compared, ranked, and rejected. Similar leak detection systems are also used in later 

studies at the site (Calendine et al., 2011; Glaser et al., 2008). The above is a good 

example to illustrate how nuclear applications can set trends in geophysical 

methodology. 

The US Department of Energy (DOE) also initiated a treatability test program 

to desiccate a portion of the vadose zone to minimize migration of contaminants 

towards the water table, usually achieved by injection of non-reactive gas. The promise 

of the technology relies on reducing the moisture content of the vadose zone, and 

therefore monitoring its evolution over time is essential. A field test of using time-lapse 

ERT to monitor desiccation of the 100-m thick vadose zone at the Hanford 200 Area 

BC-Cribs and Trenches was conducted. The geophysical results show the creation of a 

desiccation plume and map its evolution over time (Truex et al., 2013a). The moisture 

content at the final time step agrees generally with independent neutron logging 

measurements. Neutron logging and other methods, however, cannot map the change 

in moisture content before and after the gas injection.  

Finally, geophysical methods have also been used to assist the engineering 

aspect of the remediation effort at the Hanford 200 Area. Specifically, they can be used 

to map pipelines in the subsurface. Since high-density GPR over a large area is not 

economically feasible nor necessary, electromagnetic induction (EM) and magnetic 

gradiometry surveys were conducted by towing the equipment behind an all-terrain 

vehicle outside TX and TY tank farms, covering ~40 hectares (Myers et al., 2008a, 

2008b). The identification of pipes in the subsurface can help minimize false-positive 

interpretation related to a potential contaminant disposed to the ground. 

The Hanford 300 Area contains infiltration ponds that were used to dispose of 

waste from uranium fuel rods production. It is adjacent to part of the Columbia River, 
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the largest river in the US by volume. There exist many uranium hot spots within the 

groundwater that vary with seasonal fluctuations in Columbia River stage levels 

(Williams et al., 2008). The highest desorption of uranium occurs when the river stage 

is as high as the smear zone beneath former ponds and trenches. As stage decreases, 

groundwater flow moves towards the river and carries the desorbed uranium.  

One of the challenges at the Hanford 300 Area is to understand the potential 

connectivity of contaminant plume to the Columbia River. Slater et al. (2010) used 

waterborne electrical resistivity and induced polarization surveys to map the thickness 

of the Hanford unconfined aquifer at the river bed, which is indicative of paleochannel 

structures that cause preferential groundwater flow. Using the temperature difference 

between groundwater and river water as a proxy, they also used fibre-optic distributed 

temperature sensing methods to map groundwater discharge along a 1.5 km stretch of 

shoreline adjacent to the 300 Area. Their results reveal variable, time-dependent, stage-

driven groundwater discharge and river water intrusion along the shoreline. 

Mwakanyamale et al. (2012) conducted further resistivity and IP surveys using seven 

profiles running approximately parallel to the Columbia River and ~20m apart to 

estimate the elevation of the Hanford-Ringold contact connecting the aquifer and the 

Columbia River.  

Johnson et al. (2012b) installed a 3-D electrode array near the 300 Area bank to 

monitor stage-driven river water intrusion and retreat using 4-D ERT. In particular, 

they capitalize on the distinctive contrast between groundwater and river water 

conductance. Methods of distilling data such as time-series and time-frequency 

analysis help improve the results. Correlation analysis between stage and bulk 

conductivity at several depths validates the location of a dominant groundwater/river 

water exchange zone along the shoreline previously identified by Slater et al. (2010). 

River water is commonly detected 250 m inland to the IFRC well field during 

spring runoff peak flow. Three 2-D ERT lines were deployed to monitor intrusion 

during the 2011 peak flow event. The moving water table boundary becomes 

problematic when smoothness-constrained inversion is used. Wallin et al. (2013) show 
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that removing regularization constraints between neighbouring elements near the 

water table boundary can effectively enable the inversion to map sharp contrast at the 

water table boundary. Using ERT and borehole electrical conductivity (EC) data 

collected from the IFRC well field in 2008, Johnson et al. (2012b) devised a new 

constrained inversion method that allows incorporation of known geostatistical, 

discontinuous boundary, and known conductivity constraints. The results are 

compared to borehole flowmeter data. Building upon these efforts, Johnson et al. 

(2015b) devised a warping mesh inversion to monitor the 2013 spring runoff at the 

IFRC well field. The computational mesh warps to the known water table boundary 

without changing mesh topology, thereby facilitating consistent regularization 

constraints in the time dimension. The inversion is highly effective that it is conducted 

near-real-time via wireless transfer. The real-time imaging provided information 

concerning the onset of river water intrusion to scientists conducting time-sensitive 

microbial sampling at the site.  

Kowalsky et al. (2005) described a method to jointly use borehole time-lapse 

GPR traveltimes data and neutron probe data to estimate unsaturated hydraulic 

properties fields, which they applied it to an infiltration experiment at the Hanford 200 

Area ‘Sisson and Lu site’.  Their method has jointly estimated petrophysical 

parameters and it corrects for initial over-prediction near the edge of the water plume. 

Their work is an excellent example of how the combined use of geophysics and point-

based monitoring data can improve both coverage and accuracy of the estimates of 

field-scale soil hydraulic parameters and the related moisture distribution. 

Lastly, the reader has referred also to a few other joint inversion studies at the 

Hanford 300 Area, which may be extended to include geophysical data in the future. 

For example, Murakami et al. (2010) assimilated large-scale constant-rate injection data 

with small-scale borehole flowmeter data using a Bayesian geostatistical inversion 

framework, the method of anchored distributions (MAD) (Rubin et al., 2010). Chen et 

al. (2012) expanded the study of Murakami et al. (2010) by using MAD to assimilate 

also results from two field-scale nonreactive tracer tests. Using the same dataset, Chen 
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et al. (2013) compare several ensemble-based data assimilation techniques for aquifer 

characterisation, which was the first study of its kind using field data.  

Finally, data management and visualization have become an important topic in 

nuclear site management and characterization. The Pacific Northwest National 

Laboratory has recently launched an online platform called SOCRATES 

(https://socrates.pnnl.gov/) (Truex, 2018) , where all well logs, remote sensing images 

and historical groundwater monitoring data of the Hanford site is available for plotting 

and download on a user-friendly browser application (Figure 3). It includes options to 

visualize selected wells only and several useful tools to visualize plume evolution over 

time. Of relevance to geophysics is that the SOCRATES platform also includes near-

real-time ERT inversion images from the Hanford permanent monitoring network. 

Such integrated data management platform can be valuable for deciding the 

appropriate remediation strategy. 

 

Figure 3 A screenshot for the browser-based integrated data platform SOCRATES for the Hanford site. 

It serves as a centralized portal for all data collected at Hanford Site. It includes a wide variety of tools, 

such as those for filtering data and exporting data and model domain for flow and transport modelling. 

Savannah River Site 

 Most of the plutonium not produced at Hanford is produced at Savannah River 

Site near Aiken, South Carolina. The main contaminants of concern, however, are 

https://socrates.pnnl.gov/
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chlorinated solvents such as trichloroethylene (TCE). One of the first time-lapse 

electrical resistivity tomography studies was conducted at the site by Daily and 

Ramirez (1995), to test the monitorability of methane air sparging for in-situ enhanced 

bioremediation of TCE. They used a differential tomography method to remove all 

static features of formation resistivity and found that the flow paths are confined to a 

complex three-dimensional network of channels. Another series of tests obtained 

images of water infiltration from the surface gives a similar conclusion, indicating the 

flow regime is minimally modified by infiltration.  

 Subsequently, time-domain electromagnetic soundings were used to define the 

electrical conductance of a clayey confining unit (aquitard), and shear-wave seismic 

reflection was used to define the stratigraphic framework (Eddy-Dilek et al., 1997). 

Later, three-dimensional (3-D) self-potential (SP) survey (Minsley et al., 2007) was 

conducted at part of the site and the data was inverted using the model of Shi (1998) 

to find an electrical current source model, taking into account the resistivity structure 

derived from a 3-D spectral induced polarization survey at the same field location. The 

sources and sinks of electrical current can be related to the zones of relatively high or 

low redox potential and are therefore interpreted in the context of contaminated areas. 

These results are reasonably correlated with contaminant concentration data obtained 

from several ground-truth well measurements, indicating that the SP sources can be 

an indicator of contaminated areas where electrochemical source mechanisms are 

active.  

Taking advantage of the often-coupled physical-geochemical-microbiological 

properties of subsurface materials, Sassen et al. (2012) pioneered a reactive facies 

concept and applied it to the site’s F-Area. The reactive facies concept is based on the 

hypothesis that subsurface units exist with distinct distributions of coupled 

physiochemical properties influencing reactive transport, such as effective surface area, 

mineralogy, and hydraulic conductivity. Applying Bayesian data mining algorithms 

to wellbore lithology, cone penetrometer testing, and cross-hole and surface seismic 

data, Sassen et al. (2012) identified two distinctive reactive facies, which were 

coincident to the two depositional facies at the site: a Barrier Beach and a Lagoonal 
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facies. Wainwright et al. (2014a) expanded the method over large scales at high 

resolution using a Bayesian hierarchal approach using recently acquired geochemical 

data in addition to the dataset from Sassen et al. (2012). The facies estimates are then 

used to obtain very high-resolution estimates of reactive facies-based transport 

properties, such as percentages of fines, hydraulic conductivity, and Al:Fe ratio. The 

modified approach is also a new formal methodology that quantifies the uncertainty 

of reactive-facies properties, as well as the uncertainty in the spatial distribution of 

reactive facies, using multiscale data sets.  

Oak Ridge IFRC Site 

At the Oak Ridge IFRC Site, Tennessee, the S-3 disposal ponds consisted of four 

ponds built in 1951. They received a yearly volume of 7.6 million litres of acidic (pH<2) 

liquid wastes consisting of nitric acid, uranium, technetium, cadmium, mercury, and 

chlorinated solvents for 32 years. In 1983, the ponds were drained and filled to 

neutralize the acidic wastewater, and they are covered with a multilayer cap to 

minimize leaching. The meteoric water falling on the cap is drained and diverted to a 

ditch surrounding the former S-3 ponds. The forced-gradient groundwater flow and 

the infiltration of meteoric water create a mixing zone for the contaminants down-

gradient. The meteoric water has very different water chemistry than the plume. The 

complexity of the geology at the site—saprolite overlaying fractured shale bedrock and 

limestone interbeds – add challenge to the remediation of the site. Together, 

understanding the subsurface heterogeneity within the plume pathways and how 

recharge events affect the transport and attenuation of the plume are the major goals 

of the geophysical investigation at this site.  

 The first geophysical studies conducted at the site were standard surface 

resistivity tomography and seismic tomography along a survey line immediately 

downgradient of the former S-3 ponds (Watson et al., 2005). Combined with limited 

borehole data, they are used as a rapid and effective method for defining the location 

of the high-ionic-strength plume and defining the transition zone between the saprolite 

and bedrock so that a field plot can be established on-site to test microbially-mediated 

reduction and immobilization of uranium (Wu et al., 2006).  
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 Subsequently, a Bayesian method was used to combine cross-hole seismic 

travel times and borehole flowmeter test data to estimate hydrogeological zonation 

(Chen et al., 2006). The Bayesian joint inversion approach permits information sharing 

between the hydrogeological and geophysical data. The study identifies an extended 

fracture zone along the primary axis of the plume. A later study inverts surface seismic 

refraction data with depth constraints (Chen et al., 2010) using boreholes drilled for the 

bioremediation pilot (Watson et al., 2005; Wu et al., 2006). They identify a zone of 

persistent seismic slowness along two transects, confirming the presence of a 

preferential flow path along the plume axis.  

 As more boreholes are drilled, more geochemical data are available. Joint 

interpretation of geochemical and geophysical data appears to be a valuable tool to 

study the hydrogeochemical processes in the heterogeneous subsurface at the site.  

Kowalsky et al. (2011) tested 10 coupled inversion cases using 1-D or 2-D 

hydrogeochemical models, combined with zero, one, or two ERT surveys from 

electrodes installed along two boreholes. Gasperikova et al. (2012) used difference 

inversion (Labrecque and Yang, 2001) to interpret data collected from 28 surface ERT 

datasets collected along the same profile, and 22 cross-well datasets spanning 5 

boreholes. The time-lapse inversion results show the evolution of nitrate levels 

distribution in the subsurface, which is used to guide the site’s large-scale modelling 

effort (Tang et al., 2010).   

 To better constrain geophysical inversion, detailed laboratory studies are 

conducted to study the petrophysical properties of the contaminated and flushed 

saprolites collected from the S-3 ponds (Revil et al., 2013a). A laboratory complex 

conductivity study is also conducted on samples from the S-3 ponds (Revil et al., 

2013b), followed by inverting 15 time-lapse resistivity snapshots using the active time-

constrained approach (ATC) (Karaoulis et al., 2011b). The inversion results capture the 

occurrence of an infiltration event during the winter of 2008–2009 with a dilution of 

the pore water chemistry and an increase of the pH. 
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Rifle IFRC Site 

The Rifle, Colorado site is located on a floodplain adjacent to the Colorado 

River. It contains three major hydrostratigraphic units: the fill layer, the shallow 

unconfined aquifer Rifle Formation (~1-3 m below land surface), and the low-

permeability Wastach Formation (~5-8 m below land surface). The site was previously 

used as a vanadium and uranium ore treatment facility. The Rifle site currently serves 

as a community field laboratory for research in biogeochemical characterization, 

bioremediation, subsurface microbial characterization and nutrient cycling. Recent 

studies at the site report the presence of a naturally-reduced zone (NRZ) within the 

aquifer sediments. The NRZ sediments had elevated concentrations of uranium, 

organic matter, and geochemically reduced mineral phases, such as metal sulfides, and 

were often associated with predominantly fine-grained sediment textures. The 

conceptual model of NRZ formation is that roots, twigs, and other plant materials 

accumulated during the river depositional process became buried and formed the 

reduced sediments and abundance of iron-reducing Geobacteraceae communities.  

Williams et al. (2009) conducted a spectral induced polarization survey to 

resolve subsurface microbial activity at a high spatial resolution during bioremediation. 

Fluids and sediments recovered from regions exhibiting an anomalous phase response 

were enriched in Fe(II), dissolved sulfide, and cell-associated FeS nanoparticles. Flores-

Orozco et al. (2011) extended the previous dataset and collected time-lapse induced 

polarization (IP) data during 100+ days of acetate injection, which was used to 

stimulate microbial growth and hence to immobilize U(VI) in the unconfined aquifer.  

The IP inversion identified zones with different redox characteristics, particularly an 

increase in polarization effect accompanying the precipitation of iron sulphide. These 

factors are critical in terms of controlling the rate and fate of bioremediation of uranium 

in the subsurface. A later, more detailed inversion of the data finds that the 

polarization effect of geochemically reduced, biostimulated sediment remains much 

higher than background aquifer materials over a broad frequency bandwidth (0.06-120 

Hz) (Flores-Orozco et al., 2013). Chen et al. (2013) combined the IP and aqueous 

geochemistry time series using a hidden Markov model to estimate the timing of the 

most probable transitions of redox states, which cannot otherwise be inferred from 
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measurements directly. Wainwright et al. (2016) took a multi-step approach to map the 

NRZ and the two hydrostratigraphic contacts at the site. They first inverted ERT and 

time-domain IP (TDIP) data collected from ten of the surface lines. Statistical analysis 

was then used to find correlations between the inverted geophysical model and 

lithological logs information from 187 wells. Finally, the Bayesian reactive facies 

approach (Sassen et al., 2012; Wainwright et al., 2014a) is used to map the most 

probable surfaces of the two contacts and volume of the NRZ.  This is the first study 

that demonstrates the ability of TDIP imaging surveys for characterizing hotspots that 

have unique distributions of subsurface lithological and biogeochemical properties. A 

recent work by Chen et al. (2016) uses Bayesian methods to combine 47 years of 

streamflow data upstream of the site and large-scale climate information to predict 

future groundwater dynamics at the site. Results from this work can be used alongside 

those from geophysical investigations to better understand subsurface structures and 

processes at the site. 

United Kingdom sites 

Geophysical methods are also used extensively in sites in the United Kingdom 

for nuclear site characterisation. Regrettably, many of work are not available in the 

public domain. The use of electrical methods can be traced back to the 1970s (Robins, 

1979) at Sellafield, Cumbria – U.K. ’s most complex nuclear site. Since then, there has 

been a continuous effort to use different geophysical methods to map the subsurface 

at different areas of Sellafield (Lean, 1998a, 1998b; Ross, 2004; Serco/Golder, 2010, 2009, 

2008a, 2008b; TERRADAT (UK) LTD., 2012, 2004, 1998). Examples of methods used 

include micro-gravity, downhole geophysical logging, EM61 (time domain metal 

detector), GPR, and electrical resistivity imaging (ERI) surveys. In earlier years, gravity 

and aeromagnetic data had been used (Kimbell, 1994). 

The potential use of different geophysical methods is considered at all U.K. 

nuclear sites (Booth, 1997), including the potential use of existing boreholes (Cooper, 

1997). A comparative assessment among ten geophysical methods and case studies at 

seven U.K. nuclear sites was also made (Cooper and Ross, 2005), where the authors 

concluded that “the use of geophysical techniques at U.K. Nuclear Licensed Sites has 
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a number of advantages over intrusive surveys in terms of dose rate to workers, 

reduced time to obtain data, safety of workers and cost as intrusive surveys can be 

prohibitively expensive on such sites”. 

Most of the geophysical applications at U.K. nuclear-licensed sites take a rather 

conventional approach. Geophysics plays only an assistive role in site characterisation 

programs and its use focuses on identifying geophysical anomalies. There are a few 

exceptions that explore the potential to monitor subsurface processes using borehole 

electrical methods. At the Low-Level Waste Repository in Cumbria, the United 

Kingdom, Kemna et al. (2004) has shown in a cross-hole ERT and IP survey that the 

image of imaginary conductivity reveals additional information that allows 

lithological decimation than the image of real conductivity. Throughout 2000, 2-D ERT 

had also been used to monitor a tracer injection test at Drigg and the plume arrival 

shows good agreement to background hydraulic gradient-based calculations (personal 

communication with Andrew Binley, Lancaster University).  

A full-scale field experiment applying 4D (3D time-lapse) cross-borehole ERT 

to the monitoring of simulated subsurface leakage has been undertaken at a legacy 

nuclear waste silo at the Sellafield Site (Kuras et al., 2016, 2015, 2014, 2011), similar to 

the one at Hanford (Daily et al., 2004; Ramirez et al., 2005). A 4-D inversion (Kim et al., 

2009) was used to estimate the time-lapse changes in conductivity, and they have 

revealed likely pathways of simulant flow in the vadose zone and upper groundwater 

system. The geophysical evidence was found to be compatible with historic 

contamination detected in permeable facies in borehole sediment cores, and with a 

geological model based on wider scale borehole stratigraphy. The results suggest that 

laterally discontinuous till units act as localized hydraulic barriers, which can 

substantially affect flow patterns and contaminant transport in the shallow subsurface 

at Sellafield.  

In 2011, the Environment Agency reviewed the use of geophysical techniques 

for nuclear site characterization (Environment Agency, 2011). The report ranks the 

potential applicability of nine geophysical methods in nine different geological 

environments in terms of providing information in six areas (e.g. geotechnical, 
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hydrogeological, gas migration). The review’s focus was on the siting a geological 

disposal facility (GDF). DC electrical resistivity method ranked low on the table, 

probably because (i.) only a single-line surface survey is considered, (ii.) static but not 

time-lapse surveys are considered, and (iii.) specific setups (such as leak detection or 

tracer injection monitoring) is not considered. As already demonstrated in this chapter, 

when used in the right context, DC electrical resistivity methods can be an extremely 

powerful tool for nuclear site characterization. 

Sites in other countries 

 For other countries, information about decommissioning of military-grade 

nuclear facilities is often not available in the public domain. Previous work that is 

related to disposal or storage of nuclear waste is briefly reviewed in the following. 

 In Russia, little is known about their application of geophysics for nuclear site 

characterization. However, as an activity for a visit to Russia by a team of U.S. 

Lawrence Berkeley National Laboratory scientists through the Russian-American 

Center for Contaminant Transport, Frangos and Ter-Saakian (1996) performed 

resistivity and IP surveys at the Chelyabinsk Nuclear Waste Site. They attribute the 

anomalously low IP response recorded in some of the contaminated areas to a 

radiolytic reaction with the dissolved nitrate, yielding oxygen which, in turn, reacts to 

remove accessory pyrite from the host rocks. 

 At the French Institute of Radiological Protection and Nuclear Safety (IRSN) 

experimental platform at Touremire (Aveyron, France), surface ERT was performed 

for the underground research laboratory (for deep repository science) using two 2.5 

km-long profiles to complement earlier 3-D seismic reflection investigations of 

limestone and clay-rock formations (Gélis et al., 2010). Several distinct vertical low-

resistivity discontinuities were found, one associated with the regional Cernon fault, 

while others are consistent with the location of well-identified secondary faults.   

 In northern European countries, geophysics is widely used for potential deep 

waste repository characterisation, but not in near-surface remediation. Sweden is one 

of the earliest countries to recognize the benefit of geophysical methods in nuclear site 
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characterisation (Ahlbom et al., 1983). However, its work is mostly focused on deep 

repositories (e.g. > 1 km). Note that Sweden will be the first country to house a deep 

geological repository for its high-level radioactive waste (HLW).  Borehole radar was 

used in an early SKB project to monitor tracer transport in fractured crystalline rock  

(Olsson et al., 1991; Olsson and Gale, 1995). Single-hole geophysics, as well as seismic 

cross-hole and reflection experiments were also conducted in the late 1980s and 1990s 

by the Swedish National Defense Institute and the Swedish Geological Co. Detailed 

surface ground magnetic and resistivity measurements were taken for a potential deep 

geologic repository for spent nuclear fuel in Oskarshamn (Stenberg, 2008). Similarly, 

in Finland 30 borehole seismic surveys ware used to develop a complex site model 

alongside existing magnetic and EM mapping data (e.g. Enescu et al., 2004). 

 In recent years, China has recognized the benefit of geophysical methods in the 

design of disposal sites for its rapidly increasing number of nuclear power plants 

(Zheng et al., 2000). Unfortunately, most of them are published in Chinese journals. 

For example, a resistivity survey was conducted to select the disposal facility for the 

Daya Bay Nuclear power plant near Hong Kong (Zhao, 2000).  In Taiwan, geophysics 

is also recognized as an important tool for nuclear site characterisation. For example, 

geophysical methods were used to assist the building of the conceptual site model and 

numerical transport models of the low-level nuclear waste repository in the western 

Pacific island of Lan-Yu (Huang, 2013). Surface electromagnetic survey and high-

resolution audio-frequency magnetotelluric (AMT) surveys are used for the Xinchang 

site in Beishan area in Gansu province, which is China’s proposed site for geological 

disposal of high-level radioactive waste (Wang et al., 2018).  

Moving Forward 

The wide range of applications of geophysical methods in nuclear sites has 

highlighted their utility and versatility in mapping subsurface facies and monitoring 

time-lapse changes in water and contaminants in the subsurface. Geophysical methods 

no longer only play an assistive role in identifying structural contrasts in the 

subsurface; they have also emerged to be a highly flexible and cost-effective suite of 



Moving Forward  

44 

 

tools to provide time-lapse monitoring of subsurface processes and high-resolution 

imaging of the subsurface.  

A necessary first step to quantify uncertainty in geophysical data is to 

understand their errors. Like any measurements, basic research should be conducted 

to determine the error levels, which is currently lacking. For example, ERT 

measurements are generally taken using four electrodes, which may present some 

unique challenges.  Similarly, varying resolution in a geophysical image is well 

recognized in the geophysical and hydrological community (e.g. Day-Lewis et al., 2005; 

Singha and Moysey, 2006). Previous work has devised non-stationary calibration to 

compensate such variation. It remains unclear, however, how to translate variations in 

resolution to variations in uncertainty. When a geophysical property is translated to a 

quantity of interest (QoI, e.g. solute concentration, saturation), a conversion using 

petrophysical relationship needs to be assumed. The conversion is subject to 

uncertainty and its impact on the estimates of the QoI and its uncertainty remain 

unclear. 

Nuclear site characterisation often spans decades and often lead to overlapping 

work. Because of a large amount of historical information available, it is easy for 

findings from previous characterization effort to be ignored. An effective, unifying 

uncertainty and image appraisal framework from design, data collection, to 

monitoring, is needed. It should take a sequential data collection approach that allows 

evaluation of uncertainty reduction since there are alternating tasks of data collection 

and interpretation. Data assimilation approaches can be used effectively to fuse 

information from various site characterisation efforts together. 

Currently, there is a lack of a framework to compare the reliability of different 

characterisation options, particularly their ability to reduce risk and uncertainty. 

Forward simulations can be used to establish the data reliability of different methods 

(Bratvold and Begg, 2010; Nenna and Knight, 2013; Trainor-Guitton, 2014; Trainor-

Guitton et al., 2013b, 2013a, 2011). Decision analysis (Bratvold and Begg, 2010) and 

probabilistic risk assessment (PRA) (Figure 4) (Paté-Cornell et al., 2010), which has a 
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long history in evaluating nuclear reactor risks, can be used to rank different 

alternatives.  

Installation of field monitoring programs should be able to justify its costs. The 

use of the value of information (VOI) (Eidsvik et al., 2015) to evaluate different 

alternatives, whether it is to decide on installation or monitoring strategies, is common 

practice in environmental applications. For example, they are used to decide the 

optimal number of point samples to be collected (Back, 2007), worth of hydraulic 

conductivity to determine maximum pumping in ecologically sensitive zones (Feyen 

and Gorelick, 2005) or alternatives to groundwater remediation (Lee et al., 2012; Liu et 

al., 2012). The VOI framework has also been applied to the use of geophysical methods 

to solve subsurface problems under uncertainty, including determining the 

monitorability of leak during geological storage of CO2 (Trainor-Guitton et al., 2013b), 

placement of geothermal (Trainor-Guitton, 2014; Trainor-Guitton et al., 2014) wells, 

and the value of using TDEM to monitor a groundwater desalinisation project (Nenna 

et al., 2011). In CO2 storage, long-term monitoring programs need to be in place before 

any data is collected. Some pioneering research on optimizing uncertainty reduction 

(Eslick et al., 2014) and VOI analysis (Sato, 2011) can be found. 

Although there are many merits of VOI calculations, they are context-specific. 

Also, some characterization problems are more flexible than others to changes during 

their implementation. A solution is to incorporate the value of flexibility (VOF) (Begg 

et al., 2013) calculation when choosing characterisation alternatives. VOF has become 

popular in manufacturing operation research and oil and gas markets. Programs that 

can bring more side benefits to potential future uses and overall site objectives should 

be favoured. 

 Uncertainty quantification or reduction creates no value in or of itself and does 

not necessarily lead to better decision making (Bickel and Bratvold, 2008). Uncertainty 

quantification methods must be decision-focused. Modelling details, including 

uncertainty quantification, should only be included if it helps separate the alternatives 

under consideration. Therefore, a decision should be made as soon as there is enough 

information. An iterative decision analysis (Figure 4) is needed so that great detail is 
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built into the model only when it is relevant to an important area. This approach also 

accommodates learning and refinement, as well as a stopping rule that can reduce 

work that does not increase value. On a related note, very often investigations are not 

optimized to answer specific questions. The use of hypothesis-driven approaches issue 

(Leube et al., 2012; Nowak et al., 2012) and task-driven approach for Bayesian 

geostatistical design (Nowak et al., 2010) have emerged in recent work to address this. 

A selection of other work simply focuses on designing programs to minimize risks (de 

Barros et al., 2012; de Barros and Rubin, 2008; Tartakovsky, 2013; Varouchakis et al., 

2016). 

 Advances in data analytics allow real-time and continuous monitoring and 

anomaly detection of data collected at nuclear site. For example, Schmidt et al. (2018) 

used Kalman filter for real-time and continuous estimation of tritium and uranium 

concentration from a live stream of specific conductance (SC) and pH data at Savannah 

River Site F-Area. This is achieved by building data correlation between the input and 

concentration data using principal component analysis (PCA) and coupling it with a 

concentration decay model. The current implementation is limited to point sensors in 

boreholes. Similar methods can be extended to incorporate geophysical data. If the 

inverted images are needed, near-real-time inversions will need to be set up, like the 

one that has been used to monitor and optimize remediation of contaminants real-time 

at the Hanford site (Pacific Northwest National Laboratory, 2016). 

 In summary, there is a need to better understand the errors, uncertainties, and 

information content of geophysical data and how they are translated and propagated 

in the various stages of analysis. There is also a need to continue developing flexible 

methods to incorporate different types of monitoring data from various 

characterisation efforts. These efforts are pivotal to make geophysical data more useful 

for nuclear site characterisation. 

 

Figure 4 An illustration of the iterative decision analysis framework (Paté-Cornell et al., 2010). 
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Abstract 

The use of near-surface geophysics methods has become prevalent in many 

areas, including environmental investigations, engineering, agriculture, archaeology, 

forensic science, mineral exploration and hydrogeology. With improvements in 

infrastructure, equipment, and modelling software and tools, near-surface geophysical 

techniques have become more accessible. These developments allow the methods to 

be readily used, in some cases, with limited background understanding of the 

theoretical principles and limitations.  

Like any other kind of measurement or interpretation, the near-surface 

geophysical methods are subject to errors and uncertainties. To maximise the benefits 

of such methods and reduce over-interpretation or failure to capture the maximum 

information content they can provide, it is necessary to understand and manage the 

various sources of errors and uncertainties, particularly to quantify them and assess 

how they propagate through the various stages of interpretation. Using electrical 

resistivity tomography (ERT) as an example, we review the various sources of 

uncertainty and discuss approaches to handle them in practice. These sources include 

measurement errors, inversion, petrophysical relationships, and application-specific 

uncertainties.  

 In this review, we outline the advances made in characterizing and reducing 

uncertainty along the various stages of the workflow and reveal that most approaches 

focus their effort at a particular stage and rarely considers multiple sources of 

uncertainties. Potential directions for future research includes: (i) reducing overall 

prediction uncertainty through experimental design optimization; (ii) value of 

information that considers uncertainty in the entire workflow; (iii) consider jointly 

multiple sources of uncertainty and their effect downstream of the workflow; (iv) 

propose alternative workflows to bypass certain high uncertainty steps in certain 

applications. 
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1) Introduction  

Geophysical methods often provide a cost-effective and relatively rapid means 

of collecting data on the properties of subsurface. The use of near-surface geophysics 

methods has become prevalent and widely accessible due to improvements in 

infrastructure, equipment, and modelling tools. These developments allow the 

methods to be readily used, in some cases, with limited background understanding of 

the theoretical principles and limitations. This draws many new users from different 

fields. The geophysical properties returned from such surveys are often not the 

quantity of interest (QoI) in these applications. Rather, the geophysical properties are 

used as a proxy or are then converted to the QoI. For example, an electrical resistivity 

tomography (ERT) survey returns a (smoothed or blocky) image of electrical resistivity 

while monitoring the movement of a saline tracer (e.g. Cassiani et al., 2006; Kemna et 

al., 2004; Wilkinson et al., 2010b). However, a hydrologist is interested in the soil 

moisture content or solute concentration, which are converted from resistivity using 

petrophysical relationships. Likewise, time-lapse resistivity images during CO2 

injection monitoring needs to be converted to changes in CO2 concentrations (Carrigan 

et al., 2013; Doetsch et al., 2013; Schmidt-Hattenberger et al., 2016; Yang et al., 2015). 

Like any other kind of measurement or interpretation, the use of near-surface 

geophysics involves errors and uncertainties. To maximise the benefits of using near-

surface geophysics there is a need, therefore, to understand and manage the various 

sources of errors and uncertainties, in particular to quantify them and assess how they 

propagate through the various stages of interpretation. The issue of uncertainty in 

near-surface geophysics has become more relevant in recent years because these 

methods have been increasingly used in a quantitative manner for prediction of 

properties or state variables, or for decision making after being converted to QoIs. A 

comprehensive appraisal of their various sources of uncertainties and their impact on 

making predictions and decision making is desperately needed. 

We focus our review on ERT, one of the most commonly used near surface 

geophysical methods, with an emphasis on hydrogeophysics. In general, an ERT 

survey follows the following five-step workflow: experimental design (i.e. desk study), 
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data collection, inversion, interpretation, and prediction (Figure 1). While this serves 

as a pipeline where information is passed along from measurements to prediction, it 

also allows the propagation of uncertainties along it. Each part of the workflow 

presents its own sources of uncertainties. Therefore, our review is organized as follows. 

We will first discuss measurement and data errors in section 2 and inversion in section 

3. We will then discuss interpretation of ERT results (section 4) before revisiting 

inversion, this time focusing on incorporation of auxiliary information (section 5), 

which is followed by a discussion on experimental design and emerging methods. We 

then offer some conclusions and recommendations. Our review is limited to discussing 

the various sources of uncertainties along the ERT workflow. Specialized reviews on 

selected topics are available: for example, electrical imaging (Falzone et al., 2018), time-

lapse electrical imaging (Singha et al., 2015), geophysical imaging for surface water-

groundwater interaction and the critical zone (McLachlan et al., 2017; Parsekian et al., 

2015), landslide monitoring (Whiteley et al., 2019), and soil structure mapping 

(Romero-Ruiz et al., 2018). A more general review on the uncertainty quantification in 

hydrogeology and hydrogeophysics can be found in Linde et al. (2017). 

 

Figure 1 Various sources of errors and uncertainties propagate through the ERT workflow (Binley et al., 

2015; Tran et al., 2016; Truex et al., 2013a). The workflow begins with experimental design, where the 

objectives and details of the field campaign are laid out. It progresses to data collection in the field 

using a data acquisition system. Then the data is inverted to obtain results in a usable format for 

interpretations and discussions. Finally, the findings are used for decision making or prediction of 

future events. 

2) Measurement and data errors 

In most ERT inversion approaches an objective function incorporating a weighted 

misfit is used, allowing data value to be inversely weighted according to their errors. 

It is important to recognise that such errors are not just measurement errors – they 
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should also recognise modelling errors due to imperfections of the forward model to 

represent the physics of electrical current flow. 

2.1. Measurement errors and data quality 

Measurement errors are often ignored (or poorly estimated) and yet they 

propagate through the workflow. There are three ways to quantify measurement 

errors: (i) stacking errors, which is returned by the ERT equipment based on averaging 

the voltage signal caused by the injection of a low frequency alternating current; (ii) 

repeatability errors, which are obtained by repeating the measurement sequence; (iii) 

reciprocal errors, which are obtained by repeating measurement sequence but the 

current and potential electrodes are swapped.  

If we follow the classical approach and consider that all measurement errors 

follow a normal distribution (i.e. assuming the measurements are independent and 

identically distributed (i.i.d.) random variables and follow the central limit theorem), 

then, for a given electrode quadrupole, each of the error quantities we obtain is only a 

point on the normal distribution. Therefore, these errors needs to be fitted into an error 

model to predict the error weights to be used in an inversion, and also to identify any 

outlier data that one may wish to discard (or, ideally, repeat after addressing the source 

of error, e.g. high contact resistance). Most error models recognize the proportionality 

effect of ERT transfer resistance data, meaning the magnitude of the error in a transfer 

resistance should be more or less proportional to the magnitude of the measurement. 

It is important to note that such information on error trends cannot be established from 

measurements expressed as apparent resistivity, since the measurements (and 

associated errors) are scaled according to a geometrical factor.  The simplest transfer 

resistance error model, therefore, is a straight line between the transfer resistance and 

the measurement errors (or variances) recorded (Binley et al., 1995; Slater et al., 2000). 

This may be done in the linear, semi-log, or log-log space. The scatter in such a data-

error plot from such a process can make error model determination challenging. To 

alleviate this issue, the data-error pairs may be grouped into logarithmically equally 

distributed bins of transfer resistance before fitting (Koestel et al., 2008). It is normal to 

consider measurement errors as uncorrelated. Recognizing the different electrodes 
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used in a ERT survey may contribute differently to measurement errors; Tso et al. (2017) 

devised a linear mixed effect model to fit a linear model to the errors, while using the 

electrode number as an additional grouping variable.  

There has been other studies of specific ERT applications focussed on 

improving data quality. For example, Deceuster et al. (2013) developed an algorithm 

to automatically detect changes in electrode contact properties for long-term 

permanent ERT monitoring surveys. Mitchell and Oldenburg (2016) developed a new 

data quality control methodology for large ERT datasets to identify and characterize 

highly contaminated data from different noise sources. Lesparre et al. (2017) suggested 

when performing difference inversion on time-lapse data (see section 3.4 for details), 

reciprocal errors should be computed using difference in data between time steps. 

Wilkinson et al. (2008) identified some electrode configurations that are highly 

sensitive to geometric displacement in crosshole surveys. 

One practical concern is that whether different ERT equipment gives 

comparable response and whether their inverted resistivity results agree. The study of 

Parsekian et al. (2017) compared six commercially available ERT equipment on the 

same line of electrodes and showed that they give statistically similar apparent 

resistivity results. They also showed by measuring the full waveform of a 4-electrode 

array that systematic errors might be introduced due to poor electrode contact and 

instrument-specific recording settings. In practice, some sources of systematic errors, 

such as incorrectly swapping the connection of two electrodes, may be identified and 

corrected in the data processing stage. In spite of the equipment used, at least one error 

estimate should be recorded for error modelling and uncertainty propagation.  

2.2. Forward modelling errors 

In most ERT applications, current flows are not modelled analytically but are 

approximated by finite difference or finite element models. Both methods require 

discretization in space. The quality of the mesh (i.e. discretization) affects the quality 

of the modelling of current flow and the discrepancy between the data generated by 

the forward model and analytical solution (usually for a homogeneous domain) is a 

forward modelling error. This can be especially important for surface surveys 
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conducted in areas with rough or uneven topography (e.g. slopes). In general, the mesh 

should be highly refined near electrode locations since the potential gradient is highest. 

In field studies, the mesh should also extend laterally and downwards from the survey 

area to satisfy the infinite earth assumption, or appropriate accounting should be made.  

Forward modelling errors can also exist due to the effect of 3-D variability not 

accounted for in a 2-D representation. Resistivity variation orthogonal to the survey 

line (in a 2-D survey) can influence measurements but will not be correctly modelled 

in a 2-D model.  An example of this is where an ERT survey is used to monitor the 

migration of a solute plume. Another example of 3-D effects is a borehole used for 

deployment of electrodes in a cross-borehole configuration. Nimmer et al. (2008) 

demonstrate the various scenarios where 3-D effects may be dominant in 2-D borehole 

ERT studies (Figure 2): large diameter boreholes, borehole backfills with contrasting 

conductivities to the formation, non-cantered targets, and heterogeneity outside the 

imaging plane. Doetsch et al. (2010a) cautioned against the potential borehole-fluid 

effects in borehole ERT studies, especially for shorter dipole spacing. Wagner et al. 

(2015a) suggested using an explicit discretization of the borehole completion to 

mitigate borehole-related effects for CO2 monitoring. Large forward modelling error is 

most likely to occur in media containing complex fracture networks. To account for 

this issue, a number of authors have proposed discrete fracture forward models as an 

alternative (Beskardes and Weiss, 2018; Demirel et al., 2019; Roubinet and Irving, 2014) 

to conventional finite element forward models. Electrode position errors are also 

known to contribute to ERT data errors (Oldenborger et al., 2005), with recent work 

focusing on accounting for movement of electrodes in landslide studies (Wilkinson et 

al., 2016, 2010a). A further source of forward modelling error is failure to treat 

electrodes as non-point sources or sensors, which can be significant for small scale 

studies. 
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Figure 2: Example of 3D borehole effects in 2D inversion reported in Nimmer et al. (2008), which shows 

the 2.5D inversion results from Slater et al. (1997). The heavily fractured zone at around 25-m depth 

can be seen as a low resistivity contrast to the background, but the large high resistivity (>2x105 Ω m) 

in the centre of the image appears to be a result of the 2D resistivity model compensating for the low 

resistivity along the borehole. 

3) Inversion 

In order to convert raw geophysical measurements (e.g. transfer resistances or 

apparent resistivities) into useful products to interpret (e.g. spatial distribution of 

electrical resistivity), data have to be converted to some parameter distribution that 

can reproduce the measured data using a forward problem that describes the 

underlying geophysical process, i.e. inversion. Inversion almost always suffer from ill-

posedness: Hadamard (1902) states that a well-posed problem must: (1) have a solution, 

(2) the solution is unique, and (3) the solution’s behaviour changes continuously with 

the initial conditions. Consequently, identifying a solution in the parameter space is 

challenging.  

When analysing a geophysical inverse problem, obtaining an optimal model is 

usually not sufficient (Shi, 1998). Normally we also wish to have an estimation of 

uncertainties and resolutions in the information content of the images. In other words, 

we wish to know to what degree the inversion results represent the true (unknown) 

structure. Any inversion procedure is considered to be incomplete without any 

uncertainty or resolution analysis (ibid.). Taking a multi-hypothesis viewpoint, one 
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would also hope to use geophysical data to falsify or corroborate hydrological models 

(Linde, 2014). The Popper-Bayes philosophy proposed by Tarantola (2006) even argues 

that data should be used first to falsify models. Regrettably, the above tasks have rarely 

been undertaken due to heavy computational demand, difficulty in defining and 

segregating sources of uncertainty, and the lack of framework to do so. 

For most geophysical applications, the goal is to estimate spatial variability and 

patterns of geophysical properties. This is challenging because of ill-posedness and 

this is addressed either by regularization or computationally intensive Bayesian 

inversion. 

3.1. Regularized Inversion 

The most common approach to tackling the problem of ill-posedness is to use 

a Tikhonov-type regularization function, which makes such problems solvable by 

minimizing the roughness of an image. Not surprisingly, the resultant images are 

smooth. Philosophically, this approach can be considered as using an Occam’s razor 

or adopting the law of parsimony, which argues “among competing hypotheses, the 

one with the fewest assumptions should be selected” (note that “use the smoothest 

image” is a strong assumption). This philosophy can be problematic in geophysical 

inversion because maximum smoothness is often not justified, for example, in 

fractured or layered systems, or when the subsurface is stimulated, e.g. by solute 

injection.  

To obtain the baseline resistivity structure, we seek to find a model solution 

that minimizes the following objective function: 

Φ = Φ𝑑 +Φ𝑚 = (𝑑 − 𝐹(𝑚))
𝑇
𝑊𝑑
𝑇𝑊𝑑(𝑑 − 𝐹(𝑚)) + 𝛼𝑚

𝑇𝑅𝑚𝑚    (1) 

where d are the data (e.g. measured apparent resistivities), F(m) is the set of simulated 

data using the forward model and estimated parameters m. 𝑊𝑑  is a data weight matrix, 

which, if we consider the uncorrelated measurement error case and ignore forward 

model errors, is a diagonal matrix with entries equal to the reciprocal of the errors of 

each measurement. Forward modelling errors are also added to the diagonal of 𝑊𝑑. 𝛼 
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is the scalar regularisation factor, while 𝑅𝑚 is a roughness matrix that describes the 

spatial connectedness of the parameter cell values. 

Using a Gauss-Newton procedure (see derivation in Appendix 1), the above is 

solved iteratively using the following solution: 

(𝐽𝑇𝑊𝑑
𝑇𝑊𝑑𝐽 + 𝛼𝑅𝑚)∆𝑚 = 𝐽𝑇𝑊𝑑

𝑇𝑊𝑑(𝑑 − 𝐹(𝑚)) − 𝛼𝑅𝑚𝑚𝑘     (2) 

𝑚𝑘+1 = 𝑚𝑘 + ∆𝑚 

where 𝐽  is the Jacobian (or sensitivity) matrix, given by 𝐽𝑖,𝑗 = 𝜕𝑑𝑖 𝜕𝑚𝑗⁄ ; 𝑚𝑘  is the 

parameter set at iteration 𝑘 ; and ∆𝑚  is the parameter update at iteration 𝑘 . The 

derivation of equation (2) can be found in the appendix. For the case of ERT, the inverse 

problem is typically parameterized using log-transformed resistivities. The 

computation of the Jacobian (or sensitivity) matrix 𝐽  can be a computationally 

demanding task. Adjoint-state methods (Skyes et al., 1985) are normally applied to 

greatly improve the computation of sensitivity matrices by efficiently computing the 

gradient. Massive improvements have also been made in terms of computational 

power. Highly parallelized codes (e.g. Johnson et al., 2010) have been developed to 

greatly speed up computation by splitting matrix computations across multiple nodes.  

3.2. Image appraisal 

The model resolution matrix (R) is a matrix derived from the forward operator 

of an inverse problem, which describes the quality of mapping in the model space. It 

is given by: 

𝐑 = (𝐽𝑇𝑊𝑑
𝑇𝑊𝑑𝐽 + 𝛼𝑊𝑚

𝑇𝑊𝑚)
−1
𝐽𝑇𝑊𝑑

𝑇𝑊𝑑𝐽       (3) 

A well-posed inverse problem would have a model resolution matrix that is a 

diagonal matrix of 1. Strictly speaking, R can only be derived for linear inverse 

problems. For weakly non-linear problems, it is common practice to approximate R by 

linearization. Many methods have been proposed to evaluate the attributes of R for 

image appraisal. Ramirez et al. (1995) used the diagonal elements of R as estimates of 

spatial resolution of ERT images for cross-hole ERT surveys. More recently, Friedel 

(2003) used the concept of averaging kernels (i.e. truncated singular value 
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decomposition) to analyse attributes of R. Alumbaugh and Newman (2000) analysed 

individual columns of R (also termed as PSFs for Point Spread Functions) in order to 

estimate the spatial variation of the resolution in the horizontal and vertical directions 

for 2-D and 3-D electromagnetic conductivity inversions. Their study was later 

extended by Oldenborger and Routh (2009) to detect artefacts and study model 

dependence of resolution. Day-Lewis and Lane (2004) and Day-Lewis et al. (2005) used 

R combined with random field averaging and spatial statistics of the geophysical 

property to predict the correlation loss between geophysical properties and 

hydrological parameters. They showed that the correlation varies greatly within the 

tomogram and direct application of petrophysical models to tomograms may yield 

misleading estimates of hydrological properties. Caterina et al. (2013) reviewed the use 

of R for image appraisal and edge detection techniques and proposed a new image 

appraisal procedure that combines both methods. More details on edge detection is 

given in section 4.1. 

The computation of R is very expensive (Nolet et al., 1999; Oldenborger et al., 

2007) as it solves for the inverse of a matrix that contains the sums and products of 

roughness and sensitivity matrices. R is a full matrix so sparse matrix solvers cannot 

be used to improve computation efficiency. Alternative approaches are taken to 

estimate resolution (or a proxy) at a considerably lower cost: some uses data error-

weighted cumulative sensitivity (Kemna, 2000), while other uses the depth-of-

investigation (DOI) concept (Oldenburg and Li, 1999). The latter essentially compares 

how different the estimates are given two different prior models. These approaches 

have inherent problems: for the prior, high sensitivity is not always correlated with 

good resolution, while for the latter the DOI evaluates only a small subspace of R and 

often sends false alarms of high or low resolutions.  

Commonly used Tikhonov-type methods (i.e. regularizations), although 

sufficient to produce a mathematically unique solution, do not really eliminate 

uncertainty (Kitanidis, 2011). Their estimates are associated with errors, but these 

errors are only measures of the discrepancy between the forward model and the “true” 
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model, which does not contain much information on their uncertainty. Since the model 

is deterministic, model structure uncertainty is assumed to be negligible.  

In most practical cases, there exists information that may be helpful to better 

solve an inverse problem in addition to the measurements. For example, the layering 

of the subsurface from regional scale geological studies may be helpful to improve 

estimates from a local ERT studies. Strictly speaking, such features cannot be 

incorporated to the deterministic framework because unlike Bayesian methods, there 

is no way within this framework to incorporate information that is not described by 

the inverse model. The only option is to introduce some bias to the regularizations. For 

example, one may force stronger regularization in one direction than the others, which 

can be achieved at various degree of sophistication (Elwaseif and Slater, 2012; 

Farquharson, 2008; Günther et al., 2006; Lelièvre and Farquharson, 2013). One may 

even remove regularization in a certain region (e.g. Doetsch et al., 2012a; Johnson et al., 

2012b), such decision is usually informed from other data sources such as ground 

penetrating radar (GPR) reflection data. This approach is common and practical as it 

is a simple way to improve the estimates. In many cases, different regularization makes 

dramatic changes in the estimate. An alternative to incorporate a priori geological 

information is to use geostatistical regularization operators, which has recently been 

extended to irregular mesh (Jordi et al., 2018). Sometimes regularization information 

comes in the form of structural orientation information, which a recent study has 

offered a couple of strategies to incorporate them in regularized inversion (Ross, 2004). 

The problem with any regularization in deterministic inversion is that it is difficult to 

evaluate whether its choice is justified. Even though the computation of sensitivity and 

resolution matrix incorporates the regularization, these two measures only describe 

the mapping of data on the model space. Again, a deterministic model assumes there 

is no model uncertainty, which in many case this assumption is not justified.   

A common misconception is to equate improved resolution to uncertainty 

reduction—the two are not necessarily related. It is common in the literature to use 

“uncertainty” and “resolution” interchangeably, as if they are the exact opposite. 

Generally, resolution of an image is referred to its quality or its sharpness or its ability 
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to identify features. Some geophysical literature, however, refers resolution analysis to 

the analysis of non-uniqueness and uncertainty of solutions to inverse problems 

(Gouveia and Scales, 1997; Mosegaard, 1999). Such a definition originates from the 

Backus-Gilbert method (Backus and Gilbert, 1970, 1968)—the first attempt to quantify 

uncertainty in geophysics because this method poses the inverse problem as finding 

the optimal trade-off between variance (i.e. a measure for uncertainty) and spread (i.e. 

a measure for spatial resolution). Subsequent articles are often not very clear whether 

they are referring to the resolution of the recovered image (i.e. or model) or that of the 

inverse problem. Even though subsequent work does not always link spatial resolution 

and uncertainty, this confusion in terminology gives the wrong impression that the 

two are necessarily the same.  As an illustration of the problem, it is possible to get a 

very sharp image of the subsurface properties but not know whether they are artefacts 

or true features. Perhaps more critically, the sharper images may not change our ability 

and confidence to answer the scientific questions of interest. On a related note, the 

model resolution matrix (R) in geophysical inverse theory (Menke, 1989) is a measure 

of mapping information from the data space to the model space. A more diagonal R 

only means that such mapping is better. In the most extreme case, the subsurface can 

be treated as homogeneous, making the inverse problem well-posed and thus well-

resolved but such formulation of the inverse problem will produce an image that does 

not show any features of interest. Also, the computation of R requires the error level 

of each data point to be known. Therefore, care must be taken to relate improved 

resolution and uncertainty reduction. Nevertheless, the use of R is very useful to guide 

and optimize geophysical survey design, which will be discussed in section 6.1. 

Another metric to consider the uncertainty of inversion results is through the 

examination of the posterior model covariance matrix MCM. There are two methods 

to obtain the MCM. The first one is through computing it from the sensitivity matrix 

obtained in the linearized inversion equations itself (Alumbaugh and Newman, 2000; 

Ruggeri et al., 2014), which is given by 

𝐌𝐂𝐌 = (𝐽𝑇𝑊𝑑
𝑇𝑊𝑑𝐽 + 𝛼𝑊𝑚

𝑇𝑊𝑚)
−1

        (4) 
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The second method is to perturb the data with its noise level and run Monte Carlo 

simulations of the inversion (Aster et al., 2005; Tso et al., 2017). The MCM is given by  

𝐌𝐂𝐌 =
𝐀𝑇𝐀

𝑞
          (5) 

where 𝑞 is the number of realizations and rows of 𝐀 contains the difference between 

the model estimate of each realizations and the average model. The diagonal terms are 

the variances of the estimated model parameters, while the off-diagonal terms 

represent smoothing between pairs of parameters. Examinination of the MCM can 

provide insights to the uncertainty trade-off among different model parameters. 

Notice that this method tends to return low uncertainty estimates in low resolution 

areas (e.g. away from electrodes). The perturbed measurements mostly affect the high-

resolution region while the low-resolution regions are mainly controlled by 

regularization, which causes the latter to show low variability. A variant of the Monte 

Carlo approach is the data kit inversion (Fernández-Muñiz et al., 2019) which borrows 

the idea of random sampling with replacement from bootstrapping. Instead of using 

the entire dataset for inversion in each realization, a random subset of random size is 

drawn at each realization. A similar idea of using bootstrapping for uncertainty 

quantification was applied to the CO2 saturation samples derived directly from time-

lapse ERT at the Cranfield Pilot Site (Yang et al., 2014).  

Uncertainty quantification of resistivity models recovered from deterministic 

methods is one of the most poorly understood issues in geophysics. Only an inversion 

based on a statistical approach provides a systematic framework to quantify such 

uncertainties (Pankratov and Kuvshinov, 2015).  

The regularized inversion suffers a number of shortcomings. Ideally, our goal 

is not to obtain a unique solution (i.e. usually the smoothest model), but all the possible 

models. In the next section, we change philosophy and introduce a number of other 

approaches to invert ERT data. 
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3.3. Global optimization approaches and Bayesian inversion 

Regularized inversion smooths the model space to arrive at a single solution 

which is a local minimum. This solution may not be a global minimum of the objective 

function. In this case, global optimization approaches can be useful. This is usually 

achieved by Monte Carlo methods such as particle swarm optimization or particle 

filter (Fernández-Martínez et al., 2019). The advantage of these methods is that unlike 

regularized inversion, it does not require the gradient of the problem, thus it does not 

require the objective function to be differentiable nor the computation of the Jacobian 

matrix. 

Bayesian inversion relies on Bayes rule to relate prior model probabilities 𝑃(𝑚) 

to posterior ones 𝑃(𝑚|𝑑̃) by a likelihood function 𝐿(𝑚|𝑑̃)  = 𝑃(𝑑̃|𝑚) given observed 

data 𝑑̃ : 

𝑃(𝑚|𝑑̃) =
𝑃(𝑚)𝑃(𝑑̃|𝑚)

𝑃(𝑑̃)
         (6) 

Assuming Gaussian probabilities, the likelihood function becomes 

𝐿(𝑚|𝑑̃) ∝ exp (−
1

2
(𝑑 − 𝐆(𝑚))𝑇𝐶𝑑𝑑

−1(𝑑 − 𝐆(𝑚)))       (7) 

where 𝐆(𝑚) is the forward model, while the a priori model distribution becomes 

𝑃(𝑚) ∝ exp (−
1

2
(𝑚 −𝑚𝑝𝑟𝑖𝑜𝑟)

𝑇𝐶𝑀
−1(𝑚 −𝑚𝑝𝑟𝑖𝑜𝑟))      (8) 

where 𝐶𝐷𝐷
−1 and 𝐶𝑀

−1  are the data and model covariance matrices respectively. The 

maximum a posteriori (MAP) solution 𝑚𝑀𝐴𝑃 is commonly computed, and it is where 

the following objective function is minimized: 

𝑚𝑀𝐴𝑃  = (𝑑 − 𝐆(𝑚))
𝑇
𝐶𝑑𝑑
−1(𝑑 − 𝐆(𝑚)) + (𝑚 −𝑚𝑝𝑟𝑖𝑜𝑟)

𝑇𝐶𝑀
−1(𝑚 −𝑚𝑝𝑟𝑖𝑜𝑟)  (9) 

The prior or model regularization is often simplified by replacing 𝐶𝑚 with a 

matrix that quantifies the first derivative of the proposed model (flatness), the second 

derivative (roughness) or its deviation from 𝑚𝑝𝑟𝑖𝑜𝑟 (damping) multiplied by a model 

regularization weight. Notice that it is common practice for both the deterministic and 

the Bayesian approach to apply model regularizations. However, they have important 

distinctions. For the deterministic approach, regularization is applied directly to the 
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estimated model. For the Bayesian approach, regularization is through the probability 

density of the prior model assumed. Note that although there is striking resemblance 

between the formulation of Tiknonov regularization and that of Bayesian MAP 

inference and perhaps the solutions obtained are similar, the goals and interpretations 

of the two methods are rather different (Shi, 1998). The former determine maximum 

model smoothness that allows for data fitting, while the latter sample a probability 

distribution of models that are consistent with both the data and prior information. In 

fact the regularizing terms of the two (i.e. 𝑚𝑇𝑅𝑚𝑚 and 𝐶𝑀
−1) can never be equal because 

the inverse of 𝑚𝑇𝑅𝑚𝑚 is ill-posed. 

Similar to the resolution matrix in deterministic methods, the resolution of the 

inverse model is given by the posterior covariance matrix (Tarantola, 2005). However, 

it is rarely computated because to define it often requires assumption such as Gaussian 

prior probability density of the model, and linear relationship between model 

parameters and data. Recently, Gunning et al. (2010) shows that resolution of 

controlled-source electromagnetic (CSEM, a type of CSAMT method) data can be 

inferred by either hierarchical models with free parameters for effective correlation 

lengths (“Bayesian smoothing”), or model–choice frameworks applied to variable 

resolution spatial models (“Bayesian splitting/merging”) (Kaipio and Somersalo, 2006). 

Such evaluation of resolution for Bayesian inversion, however, has never been done 

for near-surface geophysics applications.  

Moving beyond the MAP solution, a major challenge for applying Bayesian 

inversion rigorously is the evaluation of posterior distribution. In many cases, one 

needs to approximate the full posterior probability distribution. Markov chain Monte 

Carlo methods (McMC) build Markov chains in the parameter space formed of a 

sequence of random variables that are drawn proportional to the posterior distribution 

(i.e. importance sampling). Although many samples (or in many cases, model runs) 

are needed, it nonetheless provides a means to sample high dimension and very 

complicated posterior distributions accurately. More importantly, they allow 

alternative model estimates to be identified, compared, ranked, and rejected. The 

posterior distribution is obtained when a chain “forgets” its initial states and converge 
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to a unique and stationary distribution. With some simplifications, the algorithm to 

construct a McMC chain is outlined in Figure 3. 

For geophysical applications, since complex model proposals are not described by a 

functional form, the extended Metropolis rule (Mosegaard and Tarantola, 1995) is often 

used to determine the acceptance probability 𝛂: 

𝛂 = min {1,
𝐿(𝑚𝑝𝑟𝑜𝑝,𝜂|𝑑̃)

𝐿(𝑚𝑐𝑢𝑟𝑟,𝜂|𝑑̃
}        (10) 

For more information on the Bayesian approach and McMC, the readers are referred 

to Brunetti (2019). 

 

1. Randomly select a point in the model space as the initial position, 𝑚0. Decide 

on the total number of nstep steps to run. 

FOR i = 1:nstep 

2. Set 𝑚𝑐𝑢𝑟𝑟 = 𝑚𝑖−1 

3. Propose a random move in the parameter space to generate 𝑚𝑝𝑟𝑜𝑝 

4. Draw a value u from the uniform distribution between 0 and 1, 𝑈(0,1) 

5. Accept or reject 𝑚𝑝𝑟𝑜𝑝based on an acceptance probability 𝜶: if 𝑈 < min(1, 𝛼) 

then 𝑚𝑝𝑟𝑜𝑝 is accepted and the chain moves to the new position, 𝑚𝑖 = 𝑚𝑝𝑟𝑜𝑝; 

otherwise, 𝑚𝑝𝑟𝑜𝑝 is rejected and the chain does not move, 𝑚𝑖 = 𝑚𝑐𝑢𝑟𝑟 

ENDFOR 

 

Figure 3 An outline of the Markov chain Monte Carlo (McMC) inversion algorithm. 

   An additional strength of Bayesian inversion is the ability to perform trans-

dimensional inversion. Conventional inversion algorithms require the user to define 

the number of resistivity values to be estimated and the locations to which they 

correspond. Trans-dimensional inversion, however, jointly estimates the number of 

cells that discretize the model domain, sizes and shapes of the cells, and their resistivity 

values. Generally, they utilize McMC algorithm for inversion and Metropolis-Hasting 
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method for sampling the prior. Andersen et al. (2003) used a random coloured 

polygonal model to jointly estimate shapes of different resistivity zones within a model 

domain and the resistivity values of each zone. Sometimes it is preferable to consider 

electrical resistivity changes, such as the delineation of plume caused by saline tracer 

release. Ramirez et al (2005) used McMC to estimate the resistivity distribution from 

the ratio of two ERT datasets. Using a base representation algorithm, their method 

proposes subvolumes of varying sizes, shapes and resistivity values. Taking advantage 

of Voronoi cells and the reversible-jump Markov chain Monte Carlo algorithm, Galetti 

and Curtis (2018) developed a more robust and practical method for trans-dimensional 

ERT inversion (TERT). They have also shown that TERT yield superior uncertainty 

estimates than those obtained from conventional methods (e.g. resolution and 

sensitivity matrix). Trans-dimensional inversion is advantageous over fixed-

dimensional inversion because it alleviates the “curse of dimensionality” (i.e. 

computational demands of stochastically exploring higher‐dimensional spaces (i.e. 

more unknowns) explode exponentially) (Curtis and Lomax, 2001; Scales and Snieder, 

1997) and it takes advantage of the natural parsimony for Bayesian inference, meaning 

the posterior models are only as complex as is required by data or prior information. 

In a way, this is the result of a trade-off between Occam Factor (i.e. the ratio of posterior 

to prior accessible volume) and high likelihood (low misfit). A mathematical proof of 

this concept is given by Ray et al. (2018, 2016). 

Bayesian methods treat uncertainties as probabilities and imply a 

multiplicative relationship between different sources of uncertainty. Figure 4 shows 

the framework of Bayesian inversion and their effect on uncertainty, as manifested in 

the spread of probability density functions.  In Tikhonov-type methods, all input 

uncertainties are lumped to the starting model, making other sources of uncertainty 

intractable. Bayesian  methods, in contrast, allow one to disentangle or segregate 

sources of uncertainty using multiplicative error models and sequential data 

assimilation models (Rojas et al., 2008; Salamon and Feyen, 2010) or Bayesian 

hierarchical models (Tsai and Elshall, 2013).  
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Figure 4 Uncertainty quantification in Bayesian inversion (Iglesias and Stuart, 2014). The black dashed 

lines and red solid lines denote prior and posterior probabilities. Essentially, the data drives an 

updating of input probabilities (e.g. model parameters) and lead to an updating of model outputs, 

including quantities of interest that are not directly observable from data. 

3.4. Time-lapse inversion 

The fast collection cycle of geophysical methods makes them suitable to 

monitor subsurface processes. Sequences of images can be used to evaluate the 

temporal evolution of subsurface properties. Hayley et al. (2011) summarizes the 

various approaches used for time-lapse inversion. The most straightforward one is to 

invert each image individually (i.e. absolute inversion). The initial model for starting 

the inversion in absolute imaging is often the same for each time step, though the 

conductivity model from the previous time step has also been used, as in Oldenborger 

et al. (2007). The ratio inversion (Daily et al., 1992; Ramirez et al., 2005) inverts the ratio 

of the resistivity between two times, while difference inversion (Labrecque and Yang, 

2001) seeks to minimize the misfit between the difference in two datasets and the 

difference between two model responses. The cascaded inversion (Miller et al., 2008; 

Oldenborger et al., 2007) adds the constraint that the second inversion result should be 

similar to the first. The 4-D inversion (Kim et al., 2009) seeks to invert data from all 

times using a single system of equation. To do so, time regularization is added so that 

changes from one time to another are smooth. A variety of the method is the active 

time constraint approach (Karaoulis et al., 2011b, 2011a), which allows the time 

regularization to vary depending on the degree of spatial resistivity changes occurring 

between different monitoring stages. In simultaneous time-lapse inversion (Hayley et 

al., 2011),  time-lapse inversion for two time steps are done simultaneously and 

constraints of smoothness and closeness to a reference model are applied to the 
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difference image produced. It produces images of similar resolution to difference 

inversion while needing less tailoring of regularization parameters. Following the 

same idea of focusing (section 6.1), comparing R from different times also allow one to 

anticipate areas where model parameters change most in time, thus allowing temporal 

focusing (Wagner et al., 2015b; Wilkinson et al., 2015) . The feature is particularly 

attractive for long-term monitoring systems where resistivity in only part of the 

inversion domain is expected to change significantly over time. The above approaches 

have all applied some smoothness constraints between datasets in the inversion and 

they yield inferior results in zones where sensitivity is low and resistivity change is 

abrupt. Hermans et al. (2016a) suggested a  covariance-constrained difference 

inversion, which computes the covariance between datasets and use it instead of 

arbitrary smoothing functions to constrain the inversion. 

An alternative approach to invert absolute time-lapse electrical resistivity data 

is to use the extended Kalman filter (Lehikoinen et al., 2009; Mitchell et al., 2011; Nenna 

et al., 2011). Kalman filter approaches, which have been successful for electrical 

impedance tomography in medical imaging (Kaipio et al., 1999; Trigo et al., 2004; 

Vauhkonen et al., 1998) and is rapidly gaining its popularity in hydrology (e.g. Reichle 

et al., 2008; Schöniger et al., 2012; Xue and Zhang, 2014), allows inclusion of 

information from previous time steps. Interesting properties of Bayesian filtering 

approaches like Kalman filter include (i) both source terms and data can be taken as 

uncertain; (ii) allows joint estimation of sources and model parameters. Ward et al. 

(2014) combined Kalman filter and edge detection algorithms to track the movement 

and evolution of saline tracer in 2-D and 3-D time-lapse experiments. Other methods 

to improve time-lapse inversion includes time-series and time-frequency analysis 

(Johnson et al., 2012a), as well as the data-domain correlation approach (Johnson et al., 

2009).  

Resolution analysis and image appraisal methods for individual inversion are 

also used for time-lapse inversion. Measures have not been developed specifically for 

time-lapse inversion. For uncertainty analysis, one may follow either a frame-by-frame 

analysis or a McMC approach as in individual inversion. The mean-log ratio (MLR) is 
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commonly used to assess the amount of added information of a new image (Ramirez 

et al., 2005; Trainor-Guitton et al., 2013b). 

4) Interpretation, application, and prediction 

4.1. Interpretation of ERT images 

Interpretation of inverted ERT images is not straightforward because they are 

smoothed representation of the actual system and their appearance are governed by 

the inversion algorithm used. This tasks is further complicated when the resolution of 

the survey is low. Dumont et al. (2018) studied the effects of smoothed resistivity 

changes, pore water dilution, temperature, and initial water distribution on the 

interpretation of infiltration depth, area, and volume at a landfill site and found that 

the failure to consider these effects can lead to misestimating the infiltration metrics. 

Carey et al. (2017) used forward modelling to investigate inversion artefacts resulting 

from time-lapse ERT during rainfall simulations under three moisture contrast 

scenarios and eight array configurations and showed that both factors contribute to 

artefact development. 

In some applications, the goal of conducting an ERT survey is to infer interfaces 

from the resistivity images. Most studies identify the interfaces by visual interpretation, 

while a few have attempted to do so using some automatic algorithms. The most 

common one is the steepest gradient method (Chambers et al., 2013, 2012; Nguyen et 

al., 2005), which assumes the interface is located at the point where resistivity is 

steepest along a depth profile. Bouchedda et al. (2012) used parallel ERT and radar 

travel time inversion and a Canny edge detector to exchange structural information 

between them at every iteration to jointly estimate resistivity and slowness distribution. 

Alternatively, an iso-resistivity surfaces approach can be used when the resistivity at 

the interface is known through an independent measurement (Chambers et al., 2013). 

Chambers et al. (2014b) applied a fuzzy c-means clustering approach (Ward et al., 2014) 

to assign each cell within a ERT image to its most likely population and calculate the 

resistivity at the interface. They found that it shows superior perfomance at a 
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catchment site where the assumptions of the steepest gradient method break down. 

Wainwright et al. (2016) took a multi-step approach to map the naturally-reduced zone 

and the two hydrostratigraphic contacts at the Rifle IRFC site in Colorado. They first 

inverted ERT and time-domain induced polarisation data collected from ten surface 

lines. A Bayesian hierarchical analysis was then used to find correlations between the 

inverted geophysical model and lithological logs information from 187 wells. There 

exists another class of methods where the interface is inferred in the inversion and they 

are discussed in section 5.1. 

In some other applications, the goal of ERT is to calibrate hydrological models 

and derive its parameters. Earlier studies focus on user ERT to capture tracer 

breakthrough and derive vadose zone parameters (Binley et al., 2002a; Cassiani and 

Binley, 2005). More recent study extends such use to more complex problems. For 

example, Doetsch et al. (2013) found that including the reservoir boundaries as 

structural constraints significantly improves the images of increasing supercritical CO2 

saturation. They then used ERT-derived changes in subsurface electrical resistivity 

along with gas composition data to constrain and calibrate hydrological models. 

4.2. Petrophysical uncertainty 

Petrophysical relationship converts geophysical data or parameter to 

hydrological parameter of interest. They are largely considered as uncertain and can 

impact any hydrological applications that uses geophysical data. A large number of 

previous field and laboratory studies, however, has applied petrophysical 

relationships deterministically (e.g. Chambers et al., 2014a; Dumont et al., 2018, 2016; 

Miller et al., 2008; Wehrer and Slater, 2015). Among them, some studies compared 

ERT-derived moisture contents with point-based moisture measurements (e.g. theta 

probes, neutron probes, or Time domain reflectometry (TDR)) (Beff et al., 2013; Hübner 

et al., 2015). Many review articles for hydrogeophysics and near-surface geophysics 

have highlighted it as an outstanding challenge (Binley et al., 2015; Linde and Doetsch, 

2016). Two studies have considered uncertain petrophysical relationships in their 

analysis: Huisman et al. (2010) estimated a few Archie parameters alongside with other 

parameter of interest, while Irving and Singha (2010) considered a range of Archie 
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parameters in their McMC updating scheme. Recently, Tso et al. (2019) shows that the 

natural variability in petrophysical parameters can lead to high uncertainty in 

moisture content estimates derived from inverted ERT images. 

There have been attempts to overcome this issue by estimating some form of 

non-stationary petrophysical relations. Day-Lewis et al. (2005) uses a random field 

averaging analysis, where an assumed covariance is used to describe the spatial 

structure of the geophysical parameter and generate a realization for the geophysical 

model, and together with an assumed petrophysical model, generate a realization of 

the hydrological parameter of interest. Through analysing the model resolution matrix 

of the geophysical inversion, random field averaging is used for upscaling and 

generating ensemble variance tomograms and correlation coefficient between 

estimated and true geophysical parameter. With them, probabilistic pixel-specific 

petrophysical between hydrologic and estimated geophysical parameters can be 

established for inversion of lab or field data. Moysey et al. (2005) and Singha and 

Gorelick (2006) devises a full inverse statistical (FISt) calibration. Their method starts 

with generating realizations of hydrogeological model. Passing the hydrogeological 

models through a petrophysical model and geophysical forward model, realizations 

of geophysical synthetic data are produced. Inverting each of the geophysical synthetic 

data deterministically, the resultant images can be used to upscale hydrogeological 

property models and develop non-stationary apparent petrophysical relations to better 

estimate hydrologic properties.  

5) Inversion continued 

5.1. Incorporation of prior information and facies/interface detection 

Introducing prior knowledge (or assumed knowledge) of the subsurface in the 

inversion can have a dramatic effect on the resultant images: the spatial structure can 

be significantly enhanced. This can be done in both the regularized inversion 

framework where model roughness matrix is modified, and in the Bayesian 

framework where prior knowledge of the spatial variability of properties can be 

prescribed as prior probabilities (e.g. Andersen et al., 2003; Linde et al., 2006). The 
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effects of incorporating prior information in inversion of ERT data is demonstrated by 

Caterina et al. (2014), where they compare smoothness constrained inversion, reference 

model inversion, structural inversion, and geostatistical inversion under various 

settings. 

Among Bayesian methods, geostatistical approaches (Linde et al., 2006; e.g. Yeh 

et al., 2002) can be very robust and effective. They treat spatial properties as a random 

field conditioned on data. For example, Linde et al. (2006) invert DC resistivity and 

ground-penetrating radar traveltime data with a regularized least squares algorithm 

but use stochastic regularization operators based on geostatistical models to constrain 

the solution. The successive linear estimator (Yeh et al., 2002; Yeh and Liu, 2000) uses 

a perturbation method to yield conditional expectation and the associate variance of 

the subsurface conductivity field. At the end of each iteration, the covariance matrices 

are updated. For the quasi-linear geostatistical approach (Kitanidis, 1995), the trend of 

the data is updated instead. Kitanidis (2015a) reports that using the highly parallelized 

forward code of Johnson et al. (2010) as a black box in lieu of the principal component 

geostatistical approach (PCGA) (Lee and Kitanidis, 2014), which utilizes the leading 

principal components from the prior covariance, a good approximation of the solution 

can be obtained at a fraction of the cost. Latest approaches devise the use of multi-point 

geostatistics (Hu and Chugunova, 2008; Linde et al., 2015a; Mariethoz and Caers, 2014) 

or the Matérn covariance family in their inversion (Bouchedda et al., 2015). The 

advantages of these methods is that they can better handle non-stationarity of spatial 

variation and the geostatistics parameters can be estimated in the inversion. There is 

potential to take advantage of the advances in ensemble Kalman inversion (Chada et 

al., 2018), such as using a combination of level set methods, Matern covariance 

functions and ensemble Kalman inversion for ERT data. The advantages of this 

method are: (i.) can perform Bayesian inversion at a fraction of the cost of McMC, (ii.) 

allows joint estimation of spatially varying correlation scales of the resistivity field, (iii.) 

level set method allows the delineation of sharp contrast without the need to impose 

constraints a priori. 



Inversion continued  

83 

 

The roughness matrix in deterministic smoothness-constrained inversion can 

be replaced by a model covariance matrix determined by geostatistical model 

(Hermans et al., 2012). The approach yields superior results than conventional 

inversion because it only smooths the model parameters to a level that is controlled by 

the correlation length. The same approach can be extended to difference inversion of 

time-lapse data (Hermans et al., 2016a). Alternatively, the model covariance matrix can 

be determined using an image-guided approach. For example, structural information 

from a seismic or GPR image can be extracted by first converting it to a greyscale 

guiding image and then infer the coefficients of the model covariance matrix based on 

structure oriented semblance (Zhou et al., 2014). Such approach has also been applied 

to stochastic inversion (Zhou et al., 2016). It should also be noted that besides the 

commonly used Tihonov regularization for smoothness-constrained inversion, the 

total variation (TV) which favours a piecewise constant solution is another popular 

choice. A total generalized variation scheme which alternate between the two is 

recently proposed to avoid bias towards one of the two without any noticeable extra 

computational cost (Sibbertt et al., 2017).  

If there are known interfaces in the model domain, the roughness matrix can 

be modified by disconnecting the regularization between two neighbouring model 

parameters, with the option to prescribe known resistivity values. This approach is 

particularly useful in fractured medium (Robinson et al., 2015) (see example in Figure 

5), segregating known zones (e.g. bedrock and sediments) (Bazin and Pfaffhuber, 2013; 

Coscia et al., 2011; Johnson et al., 2012b), and engineered barriers with known 

boundaries (Slater and Binley, 2003). The regularization disconnect approach requires 

prior knowledge of the interfaces. In some applications, there may be a sharp target in 

the domain of which its location is not known (e.g. tracking a moving plume). In this 

situation, focusing approaches that penalize changes in a certain way is preferred. One 

example is the minimum gradient support (MGS) functional (Portniaguine and 

Zhdanov, 1999), which minimizes the area where strong model variation and 

discontinuity occur. An issue of this method is that the solution is very sensitive to the 

MGS parameter. Nguyen et al. (2016) developed a data-driven approach to optimally 

select the MGS parameter for time-lapse data. Finally, Fiandaca et al. (2015) proposed 
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a generalized focusing method for time-lapse changes, which allows joint tuning of the 

sharpness of the timeless changes and the size of the area/volume influenced by such 

changes.  

We have mentioned methods to interpret interfaces from ERT images (section 

4.1). A potentially more reliable alternative is to estimate the interface within the ERT 

data inversion. Irving and Singha (2010) used a sequential McMC approach for (i) 

tracer concentration data, (ii) ERT data, and (iii) both to estimate the membership 

probability of a binary facies systems. This approach can be extended to estimate 

heterogeneous resistivity fields within each facies or zones using a Metropolis-within-

Gibbs method in which the model proposals are symmetric and the interface and 

physical properties are updated alternately within the Gibbs framework (de Pasquale 

et al., 2019; Iglesias et al., 2014). For a critical zone-bedrock problem (Figure 6), two 

heterogeneous field for the entire model domain are generated (which are cropped to 

match terrain) and then the two fields and the interface between them are sequentially 

updated using a McMC algorithm.  This resultant resistivity image clearly resolves 

both the interface boundary and the in-zone heterogeneity. 

 

Figure 5 This synthetic example shows that by disconnecting the smoothness constraint in a 

regularized ERT inversion, the fracture network (red and yellow) is much better recovered (Robinson 

et al., 2015). Compared with the smoothness constraint inversion, the smoothness disconnect case 

shows pronounced elongated fractures and recover the very high conductivities along them. 
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Figure 6 A new Bayesian inversion method that jointly estimates both the interface of the two units 

and the sub-unit resistivity variations (de Pasquale et al., 2019). The approach estimates the resistivty 

field of both unit (assuming they span the entire model domain) and their interface. The resultant field 

is obtained by combining the two fields along the interface. 

5.2. Coupled (joint and constrained) and uncoupled methods, and process-based 

methods 

The ultimate goal of geophysical inversion is rarely just the mapping of 

geophysical properties. Usually it is used to gain understanding of other processes, for 

instance, hydrogeology or hydrological processes. As shown already in section 4), the 

process of interpreting an ERT image or to translate an ERT image to quantities of 

interest can be a source of significant uncertainty. Coupled inversion or coupled 

modelling can be an effective means to handle such issues because (i.) the inverse 

problem is formulated in such a way that it returns the quantities of interests directly 

and (ii.) usually the underlying process model that drives the geophysical response is 

incorporated in the forward models used for inversion. 

Traditionally, a geophysical image is used as a proxy for the spatial distribution 

of interest. This approach is termed ‘un-coupled hydrogeophysical inversion’. An 

alternative is to use a ‘coupled hydrogeophysical inversion’ (Hinnell et al., 2010; 

Huisman et al., 2010; Irving and Singha, 2010; Kowalsky et al., 2005; Looms et al., 2008; 
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Pollock and Cirpka, 2010), where feedback between geophysical and hydrology is 

explicitly defined (as prior hydrological conceptualization). There are also situations 

where multiple geophysical datasets are available to describe the same process. For 

example, Lochbühler et al. (2013) used the structure-coupled approach (Doetsch, 2011; 

Gallardo and Meju, 2011) to jointly invert multilevel crosshole slug interference tests, 

temporal moments of tracer breakthrough curves, and cross-hole ground penetrating 

radar data. Doetsch et al. (2010b) used the structural constraint to jointly invert ERT 

and GPR data so that the geophysics-derived moisture content honours both 

modalities. Huisman et al. (2010) used the DREAM algorithm (Vrugt et al., 2009), 

which runs multiple Markov Chains simultaneously at the same time, to jointly use 

ERT data and moisture content data from time-domain reflectometry (TDR) to estimate 

soil hydraulic parameters of a model dykes. They also used AMALGAM (Vrugt and 

Robinson, 2007) to approximate the Pareto front of parameter pairs. Jardani et al. (2013) 

devised a stochastic McMC approach to invert hydraulic conductivity distribution 

between two wells using ERT, self-potential and salt tracer concentration data jointly. 

Notice that the application of coupled approaches is not limited to near-surface 

processes. For example, transient pressure pulses and dc resistivity  acquired at 

permanent borehole sensors can be jointly inverted (Alpak et al., 2004). Similarly, the 

combined use of electrical and gas composition data are used to constrain CO2 

simulations (Doetsch et al., 2013).   

When there are multiple geophysical data sets, the relationship between two 

geophysical modalities may not be known for certain. In this case, the inversion may 

benefit from not enforcing strict feedback between them. This is termed the 

constrained inversion. Figure 7 shows the different strategies to invert multiple 

geophysical data sets. Similarly, to relate geophysical and hydrological properties, 

some petrophysical relationships are needed. These relationships can be determined 

in the laboratory but they can be unreliable when applied to field problems. It may be 

desirable to impose some “soft” process constraint instead so that uncertain inversion 

results are related to one another in a more flexible sense. One idea is to use Monte 

Carlo simulations using flow and transport models to generate training images that 

are used as prior information to constrain geophysical inversion (Oware et al., 2013). 
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While fully coupled approaches assume strict feedback between two modalities, and 

individual inversion uses some possibly ambiguous regularization constraints, 

process-based inversion can be viewed as an intermediate approach that allows 

physically based regularization. 

 

Figure 7 Illustration of different approaches for integrating multiple geophysical data sets for a 

hydrogeological interpretation (Doetsch, 2011). Individual processing invert each dataset invidually 

before interpreting them together qualitatively.  Joint inversion invert all available datasets together—

explicit assumptions between different process models are required. A constrained inversion use parts 

of the inversion results from one inversion to constrain another. 

5.3. Data assimilation and data fusion of multiple data types 

A straightforward way to enhance the information content in geophysical 

measurements is to integrate hydrological and geophysical data from different sources. 

This integration, however, is never as straightforward as it seems because different 

data are measured in different spatial and temporal scales (Kitanidis, 2015b). This is a 

problem because most integration would require the use of a Bayesian framework, but 

the scales issues violate the “consistency” requirement for Bayesian updating. 

Nevertheless, there have been many attempts to integrate data of different scales, 

mostly relying on bringing all measurements to the same manageable scale. Ruggeri 

et al. (2013) uses a two-step Bayesian sequential simulation approach: they first link 

the low- and high-resolution geophysical data via a stochastic downscaling procedure, 

followed by relating the downscaled geophysical data to the high-resolution hydraulic 

conductivity distribution. JafarGandomi and Binley (2013) develop a trans-

dimensional geophysical data fusion workflow that first transform all geophysical data 

into 1-D. Then they run stochastic joint inversion using Markov chain Monte Carlo 
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methods to obtain discrete 1-D models. Subsequently, the information of the 1-D 

models are quantified using entropy measures, which can be used to improve survey 

design. Finally, the discrete 1-D models are fused using the Bayesian maximum 

entropy approach (Christakos, 2000) to obtain 2-D or 3-D spatial distribution of 

geophysical properties.   

Localized averages can sometimes help assess and distinguish the information 

embedded in different images. Miller and Routh (2007) and Routh (2009) use funnel 

function analysis to provide a formalism to compute upper and lower bounds of 

localized averages of the image. This framework can be helpful to determine scale 

dependent (target-oriented) uncertainties taking into account the resolution of the 

geophysical data. This idea can also be used probabilistically as adaptive kernel 

smoothing to estimate the probability density of the data variable for each training 

image at a much lower dimension (Hermans et al., 2015; Park et al., 2013).    

 As discussed in previous sections, prior information plays a dramatic role in 

modifying inversion results. Better incorporation of prior information gives more and 

better information for an inverse problem to start with. We should continue exploring 

methods to improve incorporation of prior information. Moreover, the goal of 

inversion is to obtain more accurate posterior estimates and their uncertainty bounds. 

Better incorporation of prior and other sources of information means more information 

to constrain the posterior solution, and thus it is key to the uncertainty quantification 

in ERT. 

6) Discussion 

6.1. Experimental design 

Once we understand the geophysical workflow and how errors and 

uncertainties enter and propagate along it, this knowledge can be used to design 

experiments with the aim to maximize the extraction of information or minimization 

of uncertainty. Current work focusses mostly on inversion and examine whether 

particular inversion algorithms and survey design to resolve the target feature. 
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However, after understanding how uncertainty propagates along the ERT workflow, 

future work should consider also other sources of uncertainty in experimental design. 

For regularized inversion, the resolution matrix R can be used to confirm 

whether a proposed survey can resolve model parameters of interest, as well as 

ranking the merits of competing survey proposals (Friedel, 2003; Furman et al., 2007, 

2004; Leube et al., 2012; Loke et al., 2014; Maurer et al., 2010). The ‘Compare R’ method 

seeks to incrementally add measurements that would lead to the greatest resolution 

improvement to the measurement scheme (Stummer et al., 2004; Wilkinson et al., 2012, 

2006). Its variant combines the optimization for time-lapse studies (Wilkinson et al., 

2015) and electrode placement (Uhlemann et al., 2018). Similar approaches, some work 

in the other direction (i.e. incrementally reduce measurements from a full set), can be 

found in the literature (Blome et al., 2011; Maurer et al., 2000). 

Bayesian approach also allows optimization of survey design. However, it does 

not take a model resolution viewpoint as in deterministic inversion. Classical 

approaches are based on the expected utility of data (de Barros and Rubin, 2008; Feyen 

and Gorelick, 2005; Fu and Jaime Gómez-Hernández, 2009; Neuman et al., 2012; Shi et 

al., 2013). Alternatives have been proposed such as the use of multi-objective 

optimization (Nowak et al., 2015, 2012).  

Existing literature only consider optimizing the design based on inversion 

outputs. However, recognizing uncertainty stems from and propagates through the 

ERT workflow (Figure 1), future work should strive to reduce the overall prediction 

uncertainty instead and consider uncertainty sources at all steps along the workflow 

(Figure 8). This approach can be used in conjunction with value of information (VOI) 

analysis, which has been applied to ERT data previously (Nenna et al., 2011; Trainor-

Guitton et al., 2013b), to provide an estimate on whether the proposed field campaign 

leads to added value or whether it is cost-effective. 
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Figure 8  The ERT workflow as a pipeline for information and uncertainty propagation is helpful for 

the experimental design of ERT surveys. It can be optimized to minimize uncertainty and maximize 

the extraction of information. 

6.2. Emerging methods and future work 

The quantification of uncertainty in ERT is an important research topic 

challenged by computational time constraints. Recently, Fernández-Martínez (2019) 

developed an algorithm based on singular value decomposition and an exploratory 

member of the particle swarm optimization family to speed up the estimation of ERT 

model parameter uncertainty. Computation time reductions can also be achieved by 

speeding up the forward model. Surrogate models or support vector machines can be 

used to approximate model response at a fraction of the normal computation cost and 

has been applied to many sub-disciplines of hydrology (Asher et al., 2015), yet there 

has not been any application to near-surface geophysics.  

The rapid advances of data science has provided new tools to approach the 

inversion and uncertainty quantification problems (Scheidt et al., 2018). In particular, 

the idea of Bayesian evidential learning is proposed as a new scientific protocol for 

uncertainty quantification. It does not rely on traditional inversion methods but 

instead rely on machine learning from Monte Carlo simulations. Meanwhile, some 

authors argue for more geological realism in hydrogeophysics (Linde, 2014; Linde et 

al., 2015b) and stress the importance of falsifying models that are inconsistent to data. 

Machine learning are also applied to the estimation of moisture content variation from 

ERT images (Moghadas and Badorreck, 2019). The authors built artificial neural 

networks using the time series of soil moisture measurements at five depths and they 

argue that the use of artificial neural networks better captures the nonlinear 
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spatiotemporal behaviour of the wetting front than traditional petrophysical models 

from the ERT data. With the rapid growth of automated ERT monitoring systems 

deployed worldwide, key environmental data science challenges such as data 

interoperability and real-time data analytics on cloud computing platforms will 

become highly relevant. 

This review has focused on using ERT as the main source of information. 

However, it is noteworthy that ERT information are often used as “soft” data to 

constrain other models, such as groundwater models. There is increased use of such 

approach to constrain realizations of groundwater models generated using multi-point 

geostatistics (Gottschalk et al., 2017; Hermans et al., 2015).  

Recent work has extended coupled hydrogeophysical inversion to include even 

more processes. In this situation, usually ERT data is used directly without inversion. 

Tran et al. (2016) devised a coupled thermal-mechanical-hydrogeophysical inversion 

to simultaneously estimate subsurface hydrological, thermal and petrophysical 

parameters using hydrological, thermal and electrical resistivity tomography (ERT) 

data. To reduce the number of unknown parameters, they screen the parameters using 

global sensitivity analysis (Wainwright et al., 2014b) and fixed parameters that are 

found to have negligible effect on the observation. The Morris (1991) method is 

generally suitable for hydrogeophysical problems because of the relatively small 

number of forward model runs required. More computationally intensive global 

sensitivity analysis with the Sobol (2001) indices requires more forward runs and is 

usually performed using surrogate modelling techniques (e.g. polynomial chaos 

expansion), as demonstrated in a recent study on travel time of radionuclides (Deman 

et al., 2016). There are a number studies that compares the two global sensitivity 

analysis methods (e.g. Gan et al., 2014; Hermans et al., 2014). Tran et al.  (2017) uses 

soil liquid water content, temperature and electrical resistivity tomography (ERT) data 

and a McMC inversion scheme to estimate the vertical distribution of soil organic 

carbon content during a freeze-thaw event in the Arctic tundra. Even though the 

models used to model ERT response are ever more complex, the principles discussed 

above are relevant and can be used to guide future advances in data collection and 
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modelling. Another example is the coupled inversion of CO2 and hydraulic pressure, 

CO2 arrival times and ERT data at the Ketzin site (Wagner and Wiese, 2018; Wiese et 

al., 2018), where singular value decomposition and PEST (Christensen and Doherty, 

2008) are used in combination to estimate parameters for a multi-physical reservoir 

model.  

7) Conclusion 

We have reviewed the various sources of uncertainties in ERT along its 

workflow. Each of the steps along the workflow presents its unique challenges to 

represent and reduce its uncertainties, while these uncertainties propagate 

downstream along the workflow. Significant effort has been put to characterize and 

reduce uncertainty at each step. While majority of the literature has focused on 

reducing inversion uncertainty, we also see an emergence of techniques focusing on 

better handling of uncertainties in the interpretation or experimental design of ERT 

surveys. We have shown that the inverse problem formulations for deterministic and 

Bayesian inversion are similar but their meaning are not identical. We also highlight 

that the ERT inverse problem, in general, is not a simple trade-off between resolution 

and uncertainty. Future work needs to better address the apparently low uncertainty 

(due to low resolution) away from electrodes in smoothness constrained inversions. 

Incorporation of prior information, coupled inversions, and data assimilation are key 

areas of research to improve the applicability and reliability of ERT results. Currently, 

it is uncommon to consider uncertainty propagation along the entire ERT workflow. 

Future work can focus on better describing such uncertainty propagation and perhaps 

proposing alternative workflows to bypass certain high uncertainty steps. 
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Appendix 1: Derivation of the Gauss-Newton solution to the 

regularized inverse problem 

We begin by writing the objective function 𝜙 = 𝜙(m) using Taylor expansion and set 

m = m𝑘 + Δm 

𝜙(m𝑘 + Δm) = 𝜙(m𝑘) + 𝛁𝜙(m𝑘)Δm+
1

2
ΔmT𝛁2𝜙(m𝑘)Δm + 𝐻.𝑂. 𝑇.     (11) 

where m𝑘 is model estimate at the 𝑘-th iteration, Δm is model increment, and H.O.T. 

denotes higher-order terms. At the true solution m = m∗, 𝜙 reaches a minimum so the 

derivative of the above equation is zero. Therefore, we differentiate both sides of the 

equation above, drop the higher-order terms (third derivatives or above) and set it = 0  

𝛁𝜙(m𝑘 + Δm) ≈ 𝛁𝜙(m𝑘) + 𝛁2𝜙(m𝑘)Δm = 0      (12) 

Rearranging the terms give:  

𝛁2𝜙(𝐦𝑘)𝚫𝐦 = −𝛁𝜙(𝐦𝑘)        (13) 

Now we seek to obtain the first and second derivatives of the objective function. The 

commonly used objective function takes the form of  𝜙 = 𝜙𝑑 + α𝜙𝑚  , where α is a 

scalar damping factor, 𝜙𝑑 and 𝜙𝑚 are the data misfit and model roughness objective 

functions, respectively. 

The data misfit function 𝜙𝑑 is the sum of data residuals 𝑟𝑖 squared (or equivalently in 

matrix notation): 

𝜙𝑑 = ∑ 𝑟𝑖
2𝑁

𝑖=1 = ∑ (
 𝑑𝑖−𝐹𝑖(m)

 𝜎𝑖
)
2

𝑁
𝑖=1 or   𝜙𝑑 = (d − F(m))

𝑇
𝐖𝑑
𝑇𝐖𝑑(d − F(m))  (14) 

where the data weighting matrix 𝐖𝑑 is a diagonal matrix and its (𝑖, 𝑖)-th entry is given 

by 1/𝜎𝑖  . The model roughness objective function 𝜙𝑚  is (or equivalently in matrix 

notation): 

𝜙𝑚 = ∑ ∑ (𝑚𝑗 −𝑚𝑗′)
2

𝑗′∈𝑆𝑗
𝑀
𝑗=1       or        𝜙𝑚 = m

𝑘𝑇𝐑𝒎m
𝑘     (15) 

where 𝑆𝑗 is a set of parameter indices that are neighbors of 𝑗. The roughness matrix 𝐑 

is a symmetric matrix with integer coefficient. The sum of coefficients in each row and 

each column should be zero. 
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Therefore, the combined objective function is:  

𝜙 = 𝜙𝑑 + α𝜙𝑚 =∑(
 𝑑𝑖 − 𝐹𝑖(m)

 𝜎𝑖
)
2𝑁

𝑖=1

+ α∑∑(𝑚𝑗 −𝑚𝑗′)
2

𝑀′

𝑗′=1

𝑀

𝑗=1

 

or        𝜙⏟
1×1

= 𝜙𝑑 + α𝜙𝑚 = (d − F(m))
𝑇
𝐖𝑑
𝑇 𝐖𝑑⏟
𝑁×𝑁

(d − F(m))⏟      
𝑁×1

+ αm𝑘
𝑇
𝐑𝒎⏟
𝑀×𝑀

m𝑘⏟
𝑀×1

   (16) 

Taking derivative with respect to m gives the first derivative of 𝜙, 

𝜕𝜙

𝜕𝑚𝑗
= −2∑(

 𝑑𝑖 − 𝐹𝑖(m)

 𝜎𝑖
)(
 1

 𝜎𝑖
)
𝜕𝐹𝑖
𝜕𝑚𝑗

+ 2α∑∑(𝑚𝑗 −𝑚𝑗′)

𝑀′

𝑗′=1

𝑀

𝑗=1

𝑁

𝑖=1

  

or      𝛁𝜙(m𝑘) = 2[−𝐉𝑇𝐖𝑑
𝑇𝐖𝑑(d − F(m)) + 𝛼𝐑𝒎m

𝑘]        (17) 

where [
𝜕𝐹1/𝜕𝑚1 ⋯ 𝜕𝐹1/𝜕𝑚𝑀

⋮ ⋱ ⋮
𝜕𝐹𝑁/𝜕𝑚1 ⋯ 𝜕𝐹𝑁/𝜕𝑚𝑀

] are the entries of the Jacobian matrix J of size 𝑁 ×𝑀. 

We take derivative with respect to 𝑚 again to obtain the second derivative of  𝜙, 

𝜕2𝜙

𝜕𝑚𝑗
2
= −2∑(

 𝑑𝑖 − 𝐹𝑖(m)

 𝜎𝑖
)(
 1

 𝜎𝑖
)
𝜕2𝐹𝑖
𝜕𝑚𝑗

2

𝑁

𝑖=1

+ 2∑
𝜕𝐹𝑖
𝜕𝑚𝑗

(
 1

 𝜎𝑖
)
2 𝜕𝐹𝑖
𝜕𝑚𝑗

𝑁

𝑖=1

+ 2α∑∑(𝑗 − 𝑗′)

𝑀′

𝑗′=1

𝑀

𝑗=1

       for j = 1,… ,m   

or        𝛁2𝜙(m𝑘) = 2[−𝛁𝐉𝑇𝐖𝑑
𝑇𝐖𝑑(d − F(m)) + 𝐉

𝑇𝐖𝑑
𝑇𝐖𝑑𝐉 + 𝛼𝐑𝒎]     

According to Oldenburgh and Li (2005), the first terms accounts for the change in the 

sensitivity when the model is perturbed. It is computationally burdensome to compute 

and also its importance decreases as the optimization proceeds because the difference 

between the predicted and observed data become smaller. For these reasons this term 

is generally neglected and we use an approximate Hessian  in the computations: 

𝜕2𝜙

𝜕𝑚𝑗
2
≈ 2∑

𝜕𝐹𝑖
𝜕𝑚𝑗

(
 1

 𝜎𝑖
)
2 𝜕𝐹𝑖
𝜕𝑚𝑗

𝑁

𝑖=1

+ 2α∑∑(𝑗 − 𝑗′)

𝑀′

𝑗′=1

𝑀

𝑗=1

       for j = 1,… ,m   

or        𝛁2𝜙(m𝑘) ≈ 2[𝐉𝑇𝐖𝑑
𝑇𝐖𝑑𝐉 + 𝛼𝐑𝒎]        (18) 

The approximate Hessian is positive semi-definite so its inverse exists. Finally, by 

combining equations (13), (17) and (18) into: 

𝟐[𝐉𝑇𝐖𝑑
𝑇𝐖𝑑𝐉 + 𝛼𝐑𝒎]Δm = −𝟐[−𝐉

𝑇𝐖𝑑
𝑇𝐖𝑑(d − F(m)) + 𝛼𝐑𝒎m

𝑘]  (19) 

Cancelling and rearranging terms: 

(𝐉𝑇𝐖𝑑
𝑇𝐖𝑑𝐉 + 𝛼𝐑𝒎)⏟            
𝑀×𝑀

Δm⏟
𝑀×1

= 𝐉𝑇𝐖𝑑
𝑇𝐖𝑑(d − F(m)) − 𝛼𝐑𝒎m

𝑘
⏟                    

𝑀×1

     (20) 
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Abstract  

Measurement errors can play a pivotal role in geophysical inversion. Most 

inverse models require users to prescribe or assume a statistical model of data errors 

before inversion. Wrongly prescribed errors can lead to over- or under-fitting of data, 

however, the derivation of models of data errors is often neglected. With the 

heightening interest in uncertainty estimation within hydrogeophysics, better 

characterisation and treatment of measurement errors is needed to provide improved 

image appraisal. Here we focus on the role of measurement errors in electrical 

resistivity tomography (ERT). We have analysed two time-lapse ERT datasets: one 

contains 96 sets of direct and reciprocal data collected from a surface ERT line within 

a 24h timeframe; the other is a two-year-long cross-borehole survey at a UK nuclear 

site with 246 sets of over 50,000 measurements. Our study includes the characterisation 

of the spatial and temporal behaviour of measurement errors using autocorrelation 

and correlation coefficient analysis. We find that, in addition to well-known 

proportionality effects, ERT measurements can also be sensitive to the combination of 

electrodes used, i.e. errors may not be uncorrelated as often assumed. Based on these 

findings, we develop a new error model that allows grouping based on electrode 

number in addition to fitting a linear model to transfer resistance. The new model 

explains the observed measurement errors better and shows superior inversion results 

and uncertainty estimates in synthetic examples. It is robust, because it groups errors 

together based on the electrodes used to make the measurements. The new model can 

be readily applied to the diagonal data weighting matrix widely used in common 

inversion methods, as well as to the data covariance matrix in a Bayesian inversion 

framework. We demonstrate its application using extensive ERT monitoring datasets 

from the two aforementioned sites. 
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Graphical abstract  

 

Probability density functions (PDF) of different ERT errors for 24h of surface ERT data collected at a 

wetland site in the UK. The mean repeatability errors generally increase with the period of time 

considered. Reciprocal errors generally agree with short-term repeatability errors. The PDF of stacking 

errors shows much lower mean and variance. Using stacking errors as a measure of measurement errors 

may lead to overfitting of data during inversion and underestimation of uncertainty. 

Highlights  

 Stacking, reciprocal and repeatability errors are compared using statistical 

analysis 

 Having common electrodes increase correlation between measurements 

 A new error model based on grouping the electrodes used is developed 

 The new model yields better inversion results and uncertainty estimates 

Keywords  

ERT, resistivity, measurement errors, uncertainty, linear mixed effects, inversion  
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1) Introduction 

Measurement errors are an integral part of scientific observations. Properly 

describing such errors is essential to harness the information about the observed 

behaviour contained in the measurements. Measurement errors may be random or 

systematic. In commonly used geophysical inverse methods, measurement errors are 

assumed to be uncorrelated and random.  In the context of an inversion, the total data 

error is given by the square root of the sum of squares of measurement errors and 

modelling errors. Sources of modelling errors include inaccuracy of the forward model 

(e.g. due to discretisation of a numerical model) and appropriateness of a forward 

model (e.g. representing a 3D problem using a 2D model). Numerical modelling errors 

are relatively well understood because they can be studied by comparing forward 

modelling data of a homogeneous domain with analytical solutions (see Binley, 2015).  

We, therefore, focus here on measurement errors, in particular within the context of 

electrical resistivity tomography (ERT). 

1.1. The role of ERT measurement errors 

Measurement error estimates play a critical role in ERT inversion (see more in 

section 2.3). They affect the amount of damping imposed on the data and also the point 

at which convergence is attained. Both of the above are achieved by weighting data in 

the objective function, and thus, measurement error estimates control whether there 

will be over-fitting or under-fitting of data during inversion. This concept can be 

illustrated by comparing various inverted images. Figure 1 shows the results of 

inverting synthetic ERT experiments corrupted by 5% Gaussian noise. In the synthetic 

domain, a resistive target is placed between x = 15 m and x = 20 m and the topsoil is 

relatively conductive (Figure 1a). Inverting the data with 10% assumed Gaussian noise 

leads to under-fitting and a very smooth resultant image (Figure 1b), while assuming 

2% noise leads to over-fitting and a number of artefacts (Figure 1d). This simple 

example shows that inversion results can be sensitive to the assumed measurement 

error levels. Failure to prescribe them adequately can significantly change the resultant 

image. 
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Attempts have been made to account for data errors in a more sophisticated 

manner. Robust inversion (Kemna, 2000; Morelli and LaBrecque, 1996)  adjusts error 

weights when there are apparent outliers. It is important, however, to notice that the 

outliers are linked to a specific error weight derived a priori by the error model—they 

may not be outliers anymore if a different error model is used. Similarly, in Bayesian 

inversion (e.g. Irving and Singha, 2010; Ramirez et al., 2005), one needs to prescribe the 

estimated data uncertainty in the likelihood function. While different inversion 

strategies handle measurement errors differently, a robust and accurate prescription 

of measurement errors is essential to obtain reliable and realistic inversion results.  

The impact of measurement errors is not limited to inversion—it is a natural 

extension of stochastic inversion where posterior models are estimates of uncertainty, 

whereas deterministic inversion results (or an ensemble of them) can further be used 

to estimate uncertainty via Monte Carlo approaches. Therefore, uncertainties in 

measurements would propagate to uncertainties of model estimates. Similarly, if the 

inversion results are used to detect or monitor subsurface processes, or to infer 

hydrological properties, their associated errors can be traced back to measurement 

errors. It is apparent that measurement errors propagate through the various stages of 

a hydrogeophysics study workflow. With the heightening interest in uncertainty 

estimation within hydrogeophysics (Binley et al., 2015; Huisman et al., 2010; Linde et 

al., 2015b; Rubin and Hubbard, 2005; Vereecken et al., 2006), better characterisation 

and treatment of measurement errors is necessary to provide better image appraisal. 

1.2. Measurement errors in ERT: a review 

The handling of measurement errors in ERT surveys, despite its importance as 

outlined above, is variable. The simplest (but not necessarily the most reliable) method 

of assessing a measurement error in an ERT measurement is through the use of 

stacking, i.e. the repeated measurement of transfer resistance through a number of 

cycles of current injection. Such stacking assessment offers valuable in-field data 

quality appraisal but, as shown later, may be of limited value in quantifying a data 

weight for ERT inversion.  Alternatively, repeatability errors can be obtained by 

multiple, separate measurements of transfer resistance over time. Usually this involves 
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a repetition of the entire ERT measurement sequence sometime after the first attempt. 

Reciprocity checks are another method of measurement error assessment.  Reciprocity 

is the general physical principle where the switching of source/sink and observation 

locations would yield the same response (Parasnis, 1988). It is, for example, utilised in 

groundwater hydrology (Barker, 1991; Bruggeman, 1972; Delay et al., 2011; Falade, 

1981). Reciprocity checks for ERT are conducted by swapping the current and potential 

electrodes. Reciprocity breaks down when the ground response is non-linear (i.e. non-

ohmic for ERT) or time-dependent (i.e. something changes between forward and 

reciprocal measurements). 

  As LaBrecque et al. (1996a) point out, both repeated and reciprocal 

measurements are measures of precision not accuracy. Sources of systematic error are 

not accounted for explicitly in measurements of precision – some procedures may miss 

them entirely while others lump them as random errors. Reciprocal errors treat the 

swapping of electrodes as a way to account for some systematic errors while 

repeatability errors do not consider them at all. Therefore, reciprocal errors may be 

more useful to eliminate bias caused by using a particular pair of electrodes as 

transmitter and another as receiver. The most commonly used errors in ERT, however, 

are stacking errors and they are misreferred as repeatability errors (Day-Lewis et al., 

2008). Modern ERT instruments are equipped with stacking capability and they 

automatically return stacking errors. In other words, stacking errors can be obtained 

without re-running the measurement procedure, which is very attractive in time-

sensitive or time-consuming surveys.  

We surveyed a number of published ERT studies and report their description 

of error analysis in Table 1. From Table 1, we see that reciprocity is a commonly used 

measure, while a small fraction of field and experimental studies do not report their 

treatment of errors at all. Studies often attribute their exclusion of reciprocal errors to 

logistical constraints and argue that reporting stacking errors is sufficient. After errors 

are obtained, an error model (usually a linear relationship linking error to transfer 

resistance) is established (Binley et al., 1995). Once obtained, such a relationship may 

be used to predict the errors of individual measurements and thus contribute to the 
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data weight in the inverse modelling. Some authors, however, assign observed errors 

directly in the inverse modelling, although this is potentially flawed unless statistical 

robustness of the quantified error is established (recognising that for most surveys 

errors are only computed from two observations). This practice also makes it 

impossible to identify “disinformative data” (Beven and Westerberg, 2011). From the 

reported error models, it is observed that error levels are generally higher for cross-

borehole surveys, largely due to more challenging electrode contact conditions 

(compared to most surface ERT array surveys). Prior to fitting the error model and 

carrying out inversion, measurements with high errors are often eliminated; 

sometimes more than 20% of the collected data are removed. For time-lapse studies, it 

is quite common that the entire time series of an individual resistance measurement is 

removed if any part of the time series is deemed to be an outlier. For recent work on 

time-lapse cross-borehole ERT, see Schmidt-Hattenberger et al. (2016) and Yang et al. 

(2014). 

 Error models are generally a function of average measured transfer resistance 

(i.e. the error in a transfer resistance increases with the magnitude of transfer resistance) 

because of the well-known proportionality effects (Aster et al., 2005) in DC resistivity 

measurement errors (Binley, 2015; Binley et al., 1995). In studies where errors are 

accounted for, there is generally a preference to use model-predicted errors rather than 

individually observed errors since error assessment based on two observations is 

potentially unreliable. Some studies mitigate this potential issue by binning (or 

grouping) data with similar transfer resistance together before fitting an error model 

(Koestel et al., 2008; Robinson et al., 2015; Wehrer and Slater, 2015). This practice 

should give more robust error estimates, although the error model may vary with the 

number of bins used.  

To better characterise measurement errors, more understanding of the factors that 

contribute to them is needed. Current practice leaves many of the assumptions in 

ERT measurement errors modelling unchallenged. For example, do measurement 

errors show temporal or spatial correlations? Can we improve from using linear 

measurement error models? Are stacking errors and reciprocal errors comparable 
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indicators of measurement errors? ERT surveys typically use each of the electrodes 

for multiple measurements. Ramirez et al. (2005) notes that this may increase the 

probability that measurement errors are correlated, however, there has been no 

published work addressing this issue. 

 

Figure 1 Synthetic problem for demonstration (a) Synthetic domain with a more conductive layer near 

the surface and a resistive area between x = 15m and x = 20m. The synthetic data from running a forward 

model in (a) is perturbed with 5% Gaussian noise and then inverted by assuming (b) 10% linear error 

model (c) 5% linear error model (d) 2% linear error model. Note that rms error is defined as 

√∑ (𝒐𝒃𝒔 − 𝒔𝒊𝒎)𝟐𝒏
𝒊=𝟏 /𝒏 , where obs and sim are vectors of observed/true and simulated transferred 

resistances of length n respectively. Note that the convergence target for all the inversions is a chi-

squared statistic of 1. 

1.3. Recent work on ERT measurement errors 

Attempts have been made to handle potential systematic effects of 

measurement errors. Zhou and Dahlin (2003) studied the effect of spacing errors for 8 

types of common 2D resistivity arrays. They confirm the common observation that ERT 

error outliers are often correlated with high contact resistances for some of the 

electrodes used in a measurement. Wilkinson et al. (2008) developed an approach to 
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filter out configurations that are highly sensitive to geometric error in crosshole ERT 

surveys. Similarly, Wilkinson et al. (2016, 2010a) developed techniques to recover 

movements of permanently installed electrodes so that active landslides can be 

monitored using time-lapse ERT data only. As the popularity of time-lapse surveys 

increases, specific methods to handle and characterize measurement errors in large 

time-lapse datasets emerge. Deceuster et al. (2013) developed a method to automate 

the identification of changes in electrode contact during time-lapse ERT experiments. 

More recently, Mitchell and Oldenburg (2016) developed a 4-step data quality control 

methodology for very large ERT datasets. 

Recently, Kim et al. (2016) proposed a new measurement protocol in which self-

potential (SP) data are obtained immediately prior to measuring DC. It involves 

swapping the polarities of the two current electrodes in each measurement to obtain a 

positive and a negative potential (i.e. thus a forward and backward resistance) for each 

measurement. This protocol claims to account for SP effects in DC measurements and 

eliminate distortions in the DC resistivity potential field caused by all unknown 

mechanisms including ambient noise.  

1.4. Outline of this work 

This paper addresses a number of practical issues related to the treatment of 

measurement errors in ERT inversion. We compare stacking, repeatability, and 

reciprocal errors in their utility to describe errors in measurements. We also study 

whether measurement errors are correlated in time and/or in space. We then 

hypothesize that measurement errors in ERT are not only linearly dependent on 

transfer resistances, but that the electrodes used in taking each measurement can be 

used as a grouping variable to improve error characterisation. We show that using the 

new error model leads to better inversion results and uncertainty estimates through 

synthetic and field experiments data. We first describe the datasets and analysis 

methods in section 2.1 and 2.2. Then we describe the ERT inversion and uncertainty 

estimation methods used in section 2.3 and 2.4. Section 3) reports results for the error 

analysis. We introduce a new error model based on linear mixed effects models and 

grouping of electrodes in section 4), and section 5) shows results of inversion and 
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uncertainty quantification. We then discuss the implications of the results in section 6), 

and provide conclusions and recommendations in section 7). 

 

2) Approach 

With recent advances made in the development of automated ERT systems, 

ERT experiments can be conducted remotely, allowing the collection of a large volume 

of background ERT measurements for quality control purposes. These rich datasets 

can be exploited to investigate the behaviour of measurement errors through statistical 

analysis. They provide opportunities to explore errors in ERT datasets, including the 

assessment of temporal and spatial correlation of errors. We scrutinize two large field 

datasets through statistical analysis of different types of measurement errors.  

First, we examine the probability density functions for each error type, namely 

stacking, reciprocal and repeatability errors. This allows us to understand the mean 

and variance of their distributions. Next, we use autocorrelation and correlation 

coefficient analysis to study the sequential and spatial correlation of errors between 

measurements. Insights about the potential correlation in measurement errors can help 

in developing improved error models. We study the validity of repeatability errors by 

computing the autocorrelation and correlation coefficient of the departure from the 

mean of repeated measurements instead of using the repeatability errors directly. If 

repeatability errors are purely random, using any subset of the set of repeats for each 

given measurement should give the same errors and thus the departure from the mean 

should exhibit little correlation. We compare inversion of ERT data using different 

error types and models on identical datasets to illustrate how they manifest in 

inversion results. Lastly, we obtain uncertainty estimates of inversion results using a 

Monte Carlo simulation procedure. This allows us to visualize how measurement 

errors propagate into uncertainty in model estimates (in this study we assume there 

are no other error sources). 
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Table 1 Table of error models reported in the literature 
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2.1. Dataset description 

A synthetic dataset, along with two field datasets collected by the British 

Geological Survey (BGS) are used for this work. 

2.1.1. Synthetic Dataset 

A synthetic dataset was created for use as an illustrative example using the 

synthetic domain and array of Figure 1. The array consists of 25 2-m spaced surface 

electrodes. As seen in Figure1(a), the resistivity structure of the domain consists of a 

1m thick, 100 Ωm top layer. Beneath it is a 200 Ωm formation, in which a 500 Ωm unit 

protrudes vertically.  

We created a forward model of dipole-dipole transfer resistances on the 

synthetic domain using R2 (http://www.es.lancs.ac.uk/people/amb/Freeware/R2/ 

R2.htm) to obtain measurement error-free data. Two sets of synthetic data are 

generated by adding noise to these data: one with 2% Gaussian noise everywhere, and 

the other with 10% Gaussian noise on measurements involving three of the electrodes 

on the left (x = 6m, 14m, 22m) and 2% noise everywhere else.  The second noisy dataset 

was created to simulate the effect of a non-uniform error model that may be typical of 

surveys in areas with variable electrode contact or quality.   

2.1.2. Boxford Dataset 

The first field dataset is from the Boxford Water Meadows Site of Special Scientific 

Interest in Berkshire, United Kingdom (Chambers et al., 2014b; Musgrave and Binley, 

2011; Uhlemann et al., 2016). The collection of the data was automated using the BGS’s 

PRIME system. The ERT array is next  to the Northern Array used in Uhlemann et al. 

(2016), having 32 electrodes spaced at 0.6 m. A dipole-dipole type measurement 

configuration was chosen with dipole lengths (a) of 0.6 m to 2.4 m, and dipole 

separation multipliers (n) of 1 to 8. The measurement sequence includes 516 pairs of 

reciprocal measurements. Less than 15 minutes was needed to complete the 

measurement sequence and each of the measurements is obtained by stacking multiple 

readings from the same cycle of current injection to improve signal-to-noise ratio. The 

measurement sequence was repeated 96 times within a 24 hour period starting at 5:43 

a.m. on 19th November 2015, yielding 96 independent repeats of full reciprocal data. 

http://www.es.lancs.ac.uk/people/amb/Freeware/R2/%20R2.htm
http://www.es.lancs.ac.uk/people/amb/Freeware/R2/%20R2.htm
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Each of the repeats has 516 measurements (or pairs of reciprocals). During the 24-hour 

period, the air temperature in the area varied between 7 and 10 oC and there was no 

recorded precipitation. 

2.1.3.  Sellafield Dataset 

A full-scale 3-D time lapse cross-borehole ERT trial to monitor simulated 

subsurface leakage was undertaken at a UK nuclear licensed site in Sellafield, Cumbria, 

United Kingdom (Kuras et al., 2016). The data collection setup includes four 40m deep 

boreholes and 160 electrodes. The data collection cycle of each ERT frame is less than 

a day, and each day’s data includes 51,302 dipole-dipole measurements, including 

12,481 pairs of reciprocals. The monitoring spanned a 2-year period with 246 days of 

data collection during that time. The first nine months of monitoring includes three 

stages of conductive leak simulant injection, while the remainder was designed for 

long-term background monitoring. The collection of data was automated using BGS’s 

ALERT system. In order to be consistent with the autocorrelation analysis of the 

Boxford dataset, we divide the data into two subsets of 96 days (one encompasses all 

three injection periods while the other is during long-term background monitoring) 

for autocorrelation analysis. 

2.2. Analysis methods  

2.2.1. Definition of measurement error types 

 Stacking errors are given by the averaging of ‘stacks’ obtained by the ERT data 

collection equipment. Usually they can be output alongside the measured transferred 

resistance from the data collection console. 

For reciprocal errors, if 𝑅𝑓  is the forward (normal) transfer resistance for a 

particular quadrupole and 𝑅𝑟 is the reciprocal of that measurement where its current 

and potential dipoles are swapped with the forward measurement, then the mean 

absolute transfer resistance (|R|) and absolute errors (|e|) are simply: 

 |R| =
||𝑅𝑓|+|𝑅𝑟||

2
  and  |e| =

||𝑅𝑓|−|𝑅𝑟||

2
.            (1)  
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As a proxy for repeatability errors, the departure from the mean of the j-th repeated 

reading for measurement number i (di,j) is given by: 

𝑒𝑖,𝑗 = 𝑑𝑖,𝑗 − 𝑑𝑖̅      (2) 

where 𝑑𝑖̅ is the mean value for the i-th measurement. 

2.2.2.  Statistical analysis of measurement errors 

The probability density function of an error type for a dataset is obtained by fitting 

a Gaussian distribution to the population of errors.  Autocorrelation is defined as the 

correlation among a sequence of values at a given lag 𝐿: 

autocorr(L) =
𝐸[(𝑋𝑡−𝑋̅)(𝑋𝑡+𝐿−𝑋̅)]

𝑣𝑎𝑟(𝑋𝑡)
=
∑ (𝑋𝑡−𝑋̅)(𝑋𝑡+𝐿−𝑋̅)
𝑞−𝐿
𝑡=1

𝑣𝑎𝑟(𝑋𝑡)
                                              (3) 

where 𝐸[ ] is the expected value, 𝑋𝑡 is a time-series, 𝑋𝑡+𝐿 is a time-series shifted by lag 

𝐿, and 𝑋̅ and var(𝑋𝑡) are the mean and variance of the time series respectively. q  is the 

number of repeats for a measurement. 

Correlation analysis can be used to study the potential correlation between 

measurement errors. The correlation coefficient, r , for the correlation between 

arbitrary variables x and y is defined by the products of standard scores (also known 

as z-scores or standardized variables) as follows: 

𝑟 = 𝑟𝑥𝑦 =
1

𝑞−1
∑ (

𝑥𝑖−𝑥̅

𝑠𝑥
) (

𝑦𝑖−𝑦̅

𝑠𝑦
)

𝑞
𝑖=1                                 (4) 

For the purposes of our analysis of measurement error correlations, x and y are 

series of two measurements that we consider and q is the number of repeats. 𝑥̅ and 𝑦̅ 

are the means of x and y respectively, while sx and sy are the standard deviations. 

2.3. Inversion methods 

To obtain 2D tomograms from electrical measurements from the synthetic study 

and Boxford site, we use the finite-element based, Occam-type, two-dimensional 

electrical resistivity inversion program R2 

(www.es.lancs.ac.uk/people/amb/Freeware/R2/R2.htm). The three-dimensional 

inversion (Sellafield dataset) was performed by using the commercial code 

http://www.es.lancs.ac.uk/people/amb/Freeware/R2/R2.htm
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Res3DInvx64 (Loke and Barker, 1996). The inverse problem is posed as a minimization 

problem, where the objective function is defined as 

 𝛷 = 𝛷𝑑 +𝛷𝑚 = (d − 𝐅(𝐦))
𝑇
𝐖d
T𝐖d(𝐝 − 𝐅(𝐦)) + 𝛼𝐖m

T𝐖m   (5) 

 where d are the data vector (e.g. measured apparent resistivities), F(m) is the set of 

simulated data using the forward model and estimated parameters m. Wd is a data 

weight matrix, which, if we consider the uncorrelated measurement error case and 

ignore forward model errors, is a diagonal matrix with entries equal to the reciprocal 

of the standard deviation of each measurement. Forward modelling errors are also 

added to the diagonal of Wd. Usually a forward model is run for the computational 

grid using a known homogeneous domain. Any discrepancy between the computed 

and known apparent resistivity values (i.e. data errors) will be added to the reciprocal 

of Wd by means of square root of sum of squares. In this study, we assume 

measurements errors are the only source of data errors while other sources, such as 

forward modelling errors and field procedural errors, are negligible. To regularize the 

minimization problem, a model penalty term 𝛷𝑚 = 𝛼𝐖m
T𝐖m is added to impose the 

spatial connectedness of the parameter cell values. 𝛼  is a scalar that controls the 

emphasis of smoothing.  

We can state a desired level of data misfit as 𝛷𝑑 = 𝑁 , where 𝑁 is the number 

of measurements (Binley, 2015). In an Occam’s solution, we seek to achieve this desired 

data misfit subject to the largest possible value of α. The process is achieved by utilizing 

the Gauss–Newton approach, which results in the iterative solution of 

 (𝐉T𝐖d
T𝐖d𝐉 + 𝛼𝐖m

T𝐖m)∆𝐦 = 𝐉T𝐖d
T𝐖d(𝐝 − 𝐅(𝐦)) − 𝛼𝐖m

T𝐖m  

 (6) 

𝐦𝑘+1 = 𝐦𝑘 + ∆𝐦 

where J is the Jacobian (or sensitivity) matrix, given by 𝐽𝑖,𝑗 = 𝜕𝑑𝑖/𝜕𝑚𝑗 ; 𝐦𝑘   is the 

parameter set at iteration k; and  ∆𝐦 is the parameter update at iteration k. For the DC 

resistivity case, the inverse problem is typically parameterized using log-transformed 

resistivities. 
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  The resolution matrix for the inversion is given by:  

𝐑 = (𝐉T𝐖d
T𝐖d𝐉 + 𝛼𝐖m

T𝐖m)
−1𝐉T𝐖d

T𝐖d𝐉    (7) 

2.4. Error propagation and uncertainty quantification methods 

We follow the Monte Carlo uncertainty propagation procedure of Aster et al. 

(2005) outlined below. The goal is to simulate a collection of noisy data vectors and 

then examine the statistics of the corresponding models. The advantage of this method 

is that it can be readily applied to field data where no repeats are available. The 

procedure is achieved by the following steps: 

1. Propagate the inverse solution 𝐦̅ into an assumed noise-free baseline jx1 data 

vector 𝐝 (where j is the size of number of measurements) using the forward 

model G: 

𝐆𝐦̅ = 𝐝                                   (8) 

2. Generate q realizations (i = 1, …, q) of noisy data about 𝑚̅ using the error model 

 𝐝i = 𝐝b + 𝛆.∗ 𝐙                                                               (9)  

where 𝜺 is the jx1 vector of error levels predicted by the error model and Z is 

the standard normal distribution variable and .* is element-wise 

multiplication. 

3. Invert the q realizations (i = 1, …, q) of noisy data using the inverse model  

      𝐆𝐦i = 𝐝b + 𝛆i                                                             (10) 

4. Let A be a q x m matrix where the i-th row contains the departure of the i-th 

model from the baseline inverse solution 𝑚̅ 

   𝐀i = 𝐦i
T − 𝐦̅T                                        (11) 

5. An empirical estimate of the model covariance matrix is given by 

         cov(𝐦̅) =
𝐀T𝐀

𝑞
                                                                            (12) 

6. 95% confidence interval about 𝐦̅ is given by 
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         𝐦̅ ± 1.96 ∙ diag(cov(𝐦̅))1/2                                                         (13) 

7. Similarly, the coefficient of variation of the estimate is given by 

 diag(cov(𝐦̅))1/2./𝐦̅𝑇                                                               (14) 

where diag() is a function that extracts the diagonal elements of a matrix and ./ is 

element-wise division.                                       

3) Analysis of Errors in Field Datasets 

In this section, we report results from the statistical analysis of different types 

of errors with the methods outlined in section 2.1 and 2.2. Probability density functions 

(PDFs) show the ranges of these errors, while autocorrelation and correlation 

coefficient analysis reveals the potential autocorrelation of errors for successive 

repeated measurements and correlation of errors between pairs of measurements, 

respectively. 

3.1. Probability density function of reciprocal and repeatability errors 

Before detailed statistical analysis of measurement errors is performed, we first 

examine the probability density function of errors obtained from the Boxford dataset. 

Since the measurements are repeated 96 times, we can define repeatability errors based 

on averaging different numbers of repeats. Figure 2 shows the repeatability errors 

based on measurements obtained with a 30 minute, 1 hour, 2 hour, and 24 hour 

window. They correspond to averaging 2, 4, 8, and 96 repeats. The mean of the PDF 

increases with greater time windows while the variance first decreases, then increases 

for the 24 hour repeatability error. When large windows of averaging are used, changes 

in the subsurface condition such as diurnal changes in temperature can be mistaken as 

errors. This is supported by the observed increase in the mean. For the 24 hour sampled 

PDF, the lower tail overlaps that of the 1 hour and 2 hour PDFs while having a much 

greater spread. Clearly some measurements do not vary much during the 24 hours 

monitoring period while others do: measurements sensitive to the shallower 

subsurface will be more susceptible to external influences (e.g. temperature, 

evaporation, etc.). 
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Figure 2 also shows the PDF for stacking errors for each of the measurements 

as well as the reciprocal errors from individual datasets. The reciprocal errors PDF 

essentially overlay that of the 30 minute repeatability errors. Their similarities may be 

explained by the fact that both of them are obtained from averaging pairs of 

measurements. It is noteworthy, however, that both the mean and variance of the PDF 

for reciprocal errors (which is collected in a 15 minute timeframe) is slightly higher—

which is opposite to our general observation that repeatability errors increase with the 

size of the averaging window. Reciprocal errors may be sensitive to other error 

contributions not registered by repeatability errors, or the process of taking a reciprocal 

measurement introduces an additional source of error.  

The stacking errors PDF overlays the low-end of the PDFs of repeatability 

errors while having a very small variance. In other words, stacking errors do not 

register any of the high-error measurements that appear in the true assessment of 

repeatability or in reciprocal errors. For instance, the PDF shows that almost none of 

the stacking errors are higher than 10-4 Ω, which covers a majority of the area under 

the other PDFs. This shows that stacking errors are potentially an inadequate measure 

for describing the true quality of ERT measurements.  

The second portion of Figure 2 shows the PDF of stacking, reciprocal, and 2-

week (which correspond to six frames) repeatability errors for the Sellafield dataset. In 

general, the ranges of magnitude of the errors are greater due to ground conditions 

and contact resistances. Similar to the Boxford results, we find that the stacking errors 

are an order of magnitude smaller than reciprocal errors. Since a larger time window 

(i.e. days) is used to obtain the repeatability errors, they are significantly greater than 

the reciprocal errors.  
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Figure 2 (a) Comparison of stacking errors, repeatability errors, and reciprocal errors for the Boxford 

dataset by plotting probability density functions. The PDFs of reciprocal errors and repeatability errors 

are comparable to each other. The stacking errors PDF, however, show very low mean and low variance. 

Using stacking errors for measurement errors characterisation may lead to significant underestimation 

of uncertainty and over-fitting of data. (b) Comparison of stacking errors, repeatability errors, and 

reciprocal errors for the Sellafield dataset. The PDFs for Sellafield show greater variances than those 

for Boxford. Since a two-week repeatability cycle is used, the repeatability errors are much greater than 

reciprocal errors. In general, the stacking errors are more than an order-of-magnitude smaller than the 

reciprocal errors, indicating there may be significant underestimation of errors if they are used as error 

weights.  The mean and standard deviation of each fitted normal distribution is shown next to the 

legend. 

3.2. Autocorrelation analysis 

Autocorrelation analysis is used to investigate whether there is “memory” (i.e. 

correlation in time) in ERT measurement errors. We compare autocorrelation plots 

between the (i) departure from the mean and (ii) reciprocal errors of individual 

measurements  for the Boxford dataset in Figure 3. Each grey translucent line 

represents the autocorrelation function of a measurement, while the red line is the 

mean averaged across all measurements. The red hashed regions highlights the area 

with an autocorrelation value below the critical Pearson’s correlation coefficient 

(Pearson and Hartley, 1970), which is around 0.2 for 96 timesteps. For the departure 
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from the mean, the autocorrelation drops to 0.5 on average at lag 1 and then decreases 

steadily. This is likely to be due to the presence of diurnal temperature effects within 

the 24 hour data collection cycle. Individual reciprocal errors, show negligible 

autocorrelation for all lag numbers (i.e. within the hashed region). Thus, we can 

conclude the individual reciprocal errors between any two repeated measurements are 

independent from one another for this survey. From the above, we see that the 

assumption of uncorrelated errors is appropriate for reciprocal errors but not so much 

for long-term repeatability errors. 

Figure 4 shows the autocorrelation of (a) departure from the mean and (b) 

reciprocal errors for the 96 datasets collected continuously at the Sellafield site 

encompassing the three injection periods (22th Jan 2013 – 3rd Nov 2013) and those for 

another 96 datasets during the long-term background monitoring period (i.e. no 

injection, 5th Nov 2013 – 31st Mar 2014). We can see much greater autocorrelation of 

errors at Sellafield than at Boxford. Like in the Boxford dataset, the departure from the 

mean shows greater autocorrelation than individual reciprocal errors, both for 

injection and long-term background monitoring. In general, however, the departure 

from the mean and reciprocal errors during background monitoring reach insignificant 

autocorrelation sooner than during injections. While the 96 datasets at Boxford were 

collected in less than 24 hours, the two groups of 96 datasets examined above were 

collected over a period of months. It is certain that the subsurface condition had 

changed during the monitoring period due to injection, dilution and dispersal of tracer, 

as well as regional groundwater and vadose zone changes (see Kuras et al. (2016) for 

details). 



Analysis of Errors in Field Datasets  

136 

 

 

Figure 3 Autocorrelation of (a) departure from the mean (as a measure of repeatability errors) and (b) 

reciprocal errors for the 96 datasets collected continuously continuously within 24h at the Boxford site. 

The number of lags is on the horizontal axis (here 1 lag = 15 minutes). Each grey translucent line plots 

the autocorrelation of one of the 516 ERT measurements as a function of lag. The red line denotes the 

mean autocorrelation. For each autocorrelation plot, 96 datasets are considered. The hashed region has 

insignificant correlation according to the critical Pearson’s test (around ±0.2). 

 

 

Figure 4 Autocorrelation of (a) departure from the mean (as a measure of repeatability errors) and (b) 

reciprocal errors for the 96 datasets collected continuously at the Sellafield site encompassing the three 

injection periods (22/1/2013 – 3/11/2013). The number of lags is on the horizontal axis (here 1 lag = ~2 to 

3 days). Each grey translucent line plots the autocorrelation of one of the 12481 ERT measurements as 

a function of lag. The red line denotes the mean autocorrelation. For each autocorrelation plot, 96 

datasets are considered. The hashed region has insignificant correlation according to the critical 

Pearson’s test (around ±0.2). Similarly, (c) and (d) show the same for the long-term background 

monitoring period (i.e. no injection, 5/11/2013 – 31/3/2014).  
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3.3. Correlation coefficient analysis  

Although measurement errors are commonly assumed to be uncorrelated in 

ERT, previous studies have highlighted the potential of correlation in measurement 

errors because ERT surveys typically use the same electrodes for multiple 

measurements (Ramirez et al., 2005). We have computed the correlation coefficient 

matrix for departure from the mean and reciprocal errors for the Boxford dataset. We 

subdivide all the correlation coefficients into two groups: one group consists of pairs 

of measurements that share one or more electrodes and the other consists of all 

measurement pairs. Next, we grouped departure from the mean or reciprocal errors as 

a function of dipole-dipole separation multiplier n and plot the mean of each group. 

We show in Figure 5 that for all n used for the Boxford dataset, the mean correlation 

coefficients for measurement pairs that share one or more electrodes are always higher 

than the means for all pairs. The mean correlation coefficients for reciprocal errors are 

orders of magnitude smaller than those of departure from the mean. The effect of 

electrode sharing is also pronounced for reciprocal errors—the mean correlations of all 

reciprocal errors pairs are negligible while those for pairs that share one or more 

electrodes are consistently higher. Note that electrode sharing only occurs in ~10% of 

all pairs.  Figure 5 shows that by taking into account the correlation of the electrodes 

used to make multiple measurements, ERT measurement errors may be better 

modelled. With the autocorrelation results, we also show that the departure from the 

mean exhibits more spatial and temporal correlation than the reciprocal errors.  

4) A New Error Model 

4.1. Model definition and implementation 

Our error analysis reported in section 3) revealed that the combination of 

electrodes used appears to influence ERT measurement errors. Therefore, we 

developed a new error model based on linear mixed effects (LME) models to group 

measurement errors by the electrodes used to obtain them, which allows us to 

incorporate the effects of electrode combinations. 

 



A New Error Model  

138 

 

 

Figure 5 Mean correlation coefficient of departure from the mean (as a measure of measurement errors) 

and reciprocal errors for measurement pairs from the Boxford dataset as a function of dipole separation 

multiplier n. For both departure from the mean and reciprocal errors, mean correlation coefficients are 

distinctively higher for measurements that share electrode(s) in their quadrupoles than the mean 

correlation coefficients for all measurements, indicating by considering the effect of using each 

electrode to make multiple measurements may improve error models. Also, note that the reciprocal 

errors have strikingly lower correlation coefficients than the departure from the mean. Note that 

electrode sharing only occurs in ~10% of all pairs.   

 

The linear mixed effect model is a powerful statistical tool in settings where 

repeated measurements are made on the same statistical units (longitudinal study), or 

where measurements are made on clusters of related statistical units (Bates et al., 2015; 

Diggle et al., 2015; Pinheiro and Bates, 1988; West et al., 2007). It is especially useful to 

group qualitative variables that influence the data. In general, a mixed effect model is 

given by  
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 𝐲 = 𝐗𝛃⏟
𝑓𝑖𝑥𝑒𝑑

+ 𝐙𝐛⏟
𝑟𝑎𝑛𝑑𝑜𝑚

+ 𝛆⏟
𝑒𝑟𝑟𝑜𝑟

     (15) 

where y is the n-by-1 response vector (i.e. dependent variable), and n is the number of 

observations; X is an n-by-p fixed-effects design matrix, and p is the number of fixed 

effect variables; β is a p-by-1 fixed-effects vector and q is the number of random effect 

variables; Z is an n-by-q random-effects design matrix; and 𝐛 is a q-by-1 random-effects 

vector. ε is an n-by-1 unknown vector of random, independent and identically 

distributed errors. In broad terms, fixed-effects are variables that are expected to have 

an effect on the dependent variable (i.e. explanatory variables in linear regression), 

while random effects are categorical grouping factors. 

Linear mixed effect models can now be readily fitted using the MATLAB® 

statistics and machine learning toolbox and the lme4 package for R (Bates et al., 2015). 

In this paper, we model measurement errors in ERT by treating transfer resistances as 

fixed effects and each of the electrodes used (A, B, M, N) as grouping variables. The 

above model was implemented in MATLAB® (see supplementary information for 

more details).  

The linear mixed effect model essentially establishes a hierarchy or grouping 

when fitting the measurement errors. Fitting is achieved by both optimizing fit within 

each cluster, while the covariate vectors link the fixed and random effects between 

clusters. The clustering introduces additional degrees of freedom that allow a better fit 

of measurement errors than commonly used linear models. An illustrative example of 

the LME grouping formulation can be found in the supplementary information, along 

with details for fitting the LME error model to the Boxford and Sellafield field datasets. 

The evolution of the error model coefficients with time is also described.  

4.2. LME error model behaviour for time-lapse ERT measurements 

A longitudinal survey is a correlational research study that involves repeated 

observations of the same variables over long periods of time. One of the original uses 

of LME models is to handle longitudinal data in tracking studies to eliminate potential 

bias of using the same samples. For example, in a drug study the health indicators of 

the same group of patients are sampled multiple times during a long period. The times 
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at which they are sampled can be used as an additional grouping variable in the LME 

model. With the increased popularity of long-term monitoring using ERT and other 

geophysical methods, it may be beneficial to treat measurement errors as longitudinal 

data too. In Figure 6, we compare fitting observed measurement errors in the 96 repeat 

datasets from Boxford individually (i.e. obtaining 96 LME equations) and as 

longitudinal data (i.e. obtaining one LME equation, with the repeat number as an 

additional grouping variable). The scatter plots show that a much better fit is obtained 

by fitting each of the 96 datasets individually. In other words, treating ERT 

measurement errors as longitudinal data does not better characterise them. 

Measurement errors should instead be characterised on a frame-by-frame basis for 

long-term geophysical monitoring. Of course, this comparison does not involve the 

same degree of freedoms for both methods, which should be repeated using more 

robust criteria (e.g. Bayesian information criteria). 

 

Figure 6 Comparison of fitting reciprocal errors of time-lapse data as (a) individual datasets, fitting 

each dataset individually with a different LME model and (b) longitudinal data, fitting all data with 

one LME model. The above shows that it is much better not to treat errors as longitudinal data.   

5) Comparison of Error Models using Image Appraisal  

Improvements in the measurement error model are only useful if they can lead 

to better inversion results. We applied the new error model to the synthetic data and 

field data from the Boxford and Sellafield sites. Also, we will consider the resolution 
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matrix and model variance from Monte Carlo simulations to see whether using the 

new error model can give additional insight to data and reduce uncertainty. 

5.1. Synthetic data  

Using the synthetic domain introduced in section 2.1, we compared the 

inversion results and the corresponding resolution matrices and uncertainty estimates 

using different error models. Note that since Figure 1 and Figure 7 use the same 

domain and have the same resistivity structure, Figure 1(c) can be seen as a benchmark 

case where the data is inverted with perfect knowledge of measurement errors. 

Figure 7 (a – c) shows inversion results for synthetic data where measurements 

involving three “bad electrodes” are corrupted by 10% noise and others by 2% noise. 

We first compare the inversion with two linear error model—one assumes there are no 

bad electrodes (i.e. the 2% error model), while the other is obtained by fitting the 

corrupted data with the Koestel et al. (2008) model (i.e. the 4.52% linear model). We 

see that the resultant resistivity model from assuming the 2% linear error model is very 

noisy while that from assuming 4.52% linear error model is smoother. With the LME 

error model, however, the inversion result is the most similar to that of the benchmark 

case (Figure 1c) (see also rms errors printed on plots). The effect of better 

characterisation of measurement errors by the LME model is manifested in the 

inversion results.  

Figure 8 (a – c) shows the diagonal terms of the resolution matrices for the 

inversion using (a) 2% linear, (b) 4.52% linear, and (c) LME error models. In general, 

the resolution patterns are uniform laterally yet decreases with depth. For the 2% linear 

error model, we see that some of the artefacts from the inversion results are also shown 

on the resolution pattern. For the LME error model, the resolution on the right is 

somewhat higher than on the left for the top layer, where the bad electrodes are located. 

The resolution values are between that of (a) and (b) in most of the cells, although some 

of the cells near the surface show very high resolution. The above shows that while the 

resolution from the linear error model is purely a function of distance away from 

sources and sensors and therefore cannot distinguish quality between measurements, 
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the LME error model allows the inversion to resolve areas unaffected by the bad 

electrodes better. 

 Subsequently, we ran Monte Carlo experiments using the procedure in section 

2.4 to understand how uncertainty in measurement errors propagates to affect 

uncertainty in the parameter estimates. The Monte Carlo experiment results can be 

used to form empirical model covariance matrices. This matrix shows how information 

is shared between parameters (i.e. model estimate of different elements). In the ideal, 

noise-free and well-defined case, the model covariance matrix should be a zero matrix, 

meaning the parameter is deterministically known and the parameters are not 

correlated with one another. Figure 9 (a – b) show that assuming a 2% linear error 

model yields lower model covariances than the 4.52% model, which is expected 

because lower percentage error implies less sharing of data. Also, the band of high 

covariances is also narrower. With the LME model (Figure 9c), however, we notice that 

the model covariances values are lower than those of the 2% and 4.52% models. More 

importantly, the spread of the high covariance region is less uniform than the linear 

models, meaning that only measurements affected by the bad electrodes share 

information heavily with others. The above agrees with the comparison of resolution 

matrices—the new error model is able to exploit information in noisy data without 

increasing the overall noise level.  

 The diagonal term of the empirical model covariance matrix (i.e. variance) 

shows the variability among parameter estimates from multiple Monte Carlo 

simulation realizations. Specifically, the higher a diagonal term, the more uncertain is 

the estimate. We plot their ranges in Figure 8 (d – f). For all three error models, the 

variability is always the smallest at depth because deeper regions are less well resolved 

for surface arrays. As a result, the model estimates at greater depths are closer to the 

initial guess values and therefore, there is less difference between the realizations of 

Monte Carlo model estimates. In Figure 8 (g – i), we plot the model-averaged 

parameter estimates. The transparency of each element is inversely proportional to its 

model variance, as shown in Figure 8 (d – f). In other words, the elements that have 

more variable or uncertain estimates have greater transparency. The inversion results 
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from assuming a 2% error model are more variable than for the 4.52% model. Model 

averaging also smooths out the noisy artefacts from deterministic inversion (compare 

Figure 8g and Figure 7a). The LME error model gives the most reliable model estimates 

among the three error models tested. Also, it is worth noting that the model-averaged 

parameter estimates are comparable to that obtained from deterministic inversion. 

This means that with the LME error model, there is no need to run many realizations 

of the inverse model in order to obtain reliable parameter estimates. Importantly, 

inversion using the LME error model gives the highest resolution and the least model 

variance (Figure 8), and reduces uncertainty in inversion results. 

 

Figure 7 Synthetic surface ERT experiments to demonstrate the performance of the error models. For 

data involving 3 bad electrodes(marked by “X”), data is corrupted by 10% white noise while for the 

rest of the data 2% white noise is added.  (a) Inverted resistivity distribution using the 2% linear error 

model (b) Inverted resistivity distribution using a 4.52% (obtained from the Koestel et al. (2008) method) 

linear error model (c) Inverted resistivity distribution using the LME error model. Note that the 

convergence target for all the inversions is a chi-squared statistic of 1. 
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Figure 8 (a – c) Diagonal of resolution matrix for inversion using the following error models for inverting the synthetic data corrupted by “bad electrodes”: (a) 2% linear 

model (b) 4.52% linear model (c) LME model. (d - f) variance of element-wise log-resistivity estimates using each of the error models obtained from Monte Carlo experiments. 

The colour scale is the same for all three error models.  Darker cells indicate more similar model estimates between Monte Carlo estimates. (g - i) mean model estimates 

from Monte Carlo experiments. The transparency is controlled linearly by the variance shown in (d – f). With model averaging, the mean estimates of the three error models 

are similar.  It is noted, however, the deterministic results from the LME model agrees the best with its model-averaged results.  
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Figure 9 Empirical model covariance matrix using the Monte Carlo uncertainty propagation procedure 

and the following error models: (a) 2% linear model (b) 4.52% linear model (c) LME model. The size of 

the matrix is m x m, where m is the number of model parameters. By comparing (a) and (b), it is shown 

that assuming higher error levels, there is higher covariance between model parameters. With the LME 

error model, the model covariance is the lowest. While the spread of high covariance entries are quite 

even throughout the matrix, we can see that the spread for (c) is quite uneven: generally, elements on 

the left of the domain have higher spread. 

5.2. Boxford field data 

In Figure 10, we compare the inversion results of field data for the Boxford 

datasets. When using reciprocal data, we only consider one of the 96 available datasets 

(i.e. the first of the 96 repeats). The resultant image from using linear or LME error 

models for reciprocal or 24-h repeatability errors (not shown) for the Boxford dataset 

are effectively identical. When the linear model is applied to the stacking errors, the 

resultant image shows a rather sharp feature. Surprisingly, when the LME model is 

applied to the stacking errors, there is no distinguishable difference between its result 

and those using reciprocal or 24-h repeatability errors. This shows that although we 

have shown above and warned against the potential underestimation of measurement 

errors caused by using the stacking errors, the LME error model is capable of 

minimizing such effects. We suspect that because of the low mean and low variance of 

the stacking errors, the linear error model is forced to assign very low errors across the 

dataset. The LME error model, in contrast, has more degrees of freedom to better fit 

the observed stacking errors. Note that this does not guarantee physically more 

realistic results. 

This finding has significant implications because all modern ERT equipments 

output stacking errors and these do not require additional data collection time. For 

many existing datasets where only stacking errors are available or in applications 
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where the collection of repeats and reciprocal is prohibitive, we recommend using a 

LME error model instead of a linear model for the stacking errors.  

 

Figure 10 Inversion results from Boxford using (a) linear error model for stacking errors, (b) LME error 

model for stacking errors, (c) linear error model for reciprocal errors.  

5.3. Sellafield field data 

We inverted the Sellafield data collected on 5th February 2013, which was two 

days before the first tracer injection (Kuras et al., 2016). Of the 51,302 measurements in 

the sequence, there are 12,412 pairs of valid reciprocal measurements. We fitted them 

with the LME error model. Note that we have not removed any high-error outliers. 

Figure 11 shows the resultant 3-D static inversion image and its associated uncertainty 

estimates (model standard deviation and model coefficient of variation) derived from 

Monte Carlo simulations. The resultant model clearly delineates zones of high and low 

resistivities. In terms of uncertainty, regions next to the borehole and towards the top 

of the monitoring array have significantly higher model standard deviation. 

Compared with the absolute images of resistivity reported in Kuras et al. (2016) (note 

that we use the same mesh and inversion code), Figure 11a shows similar patterns but 

with a smaller range and variations in resistivities.  
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Figure 11 (a) 3-D static deterministic inversion results from Sellafield on 5th February, 2013. Error 

weights are prescribed by fitting an LME error model. Black lines are boreholes installed with 

electrodes. (b) The corresponding uncertainty estimates obtained from Monte Carlo simulations, given 

by model standard deviation from Monte Carlo experiments.  (c) The corresponding coefficient of 

variation of Monte Carlo model estimates.  

6) Discussion  

In the present study, we have used statistical methods to explore ways to 

improve the current practice of modelling measurement errors in ERT. Among them, 

we have found that the correlation coefficients of measurement pairs that share some 

of the electrodes are consistently higher than average. Therefore, we have developed a 
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new error model that considers such effects in ERT surveys by adding electrode-

specific fitting terms (i.e. the LME error model). 

The proposed error model based on the linear mixed effect (LME) model shows 

superior performance in terms of characterising errors when compared against an 

unknown linear error model. The LME model assumes that errors are linearly 

dependent on transfer resistances and employs the electrodes used to make each 

measurement as grouping variables. The LME error model can more accurately predict 

observed measurement errors. However, as we have already argued in section 4.2, 

individual errors should not be used directly for inversion because in most practical 

situations they are only averages between two points. To improve the robustness of 

the linear error models, errors can be grouped by the magnitude of transfer resistances 

(Koestel et al., 2008). Such binning, however, is arbitrary and the resultant error models 

can be sensitive to the number of bins used. The LME error model is based on the same 

idea of grouping, yet it considers all of the four electrodes that are used to make each 

dipole-dipole quadrupole measurement and uses them as the grouping variable. 

Electrode number is a qualitative variable and it is a reasonable assumption that each 

electrode has slightly different quality. 

The patterns of resolution matrix and model covariance matrix associated with 

using the LME error model are different from those using the linear model. This has 

important implications for inversion and uncertainty estimation because it shows that 

the LME model is capable of detecting poorer measurements and downweighting 

them in an inversion. Most inversion schemes are capable of weighting data according 

to their quality. Yet in common ERT practice, either uniform percentage errors (i.e. a 

linear model) are assumed or the errors are not characterised at all. The LME error 

model is one of the first statistical tools to characterise the variable quality of ERT 

measurements (while not using individual errors directly) so that the data weighting 

schemes in inverse models can be fully utilized.  

 While fitting a LME model for each set of reciprocal errors gives promising 

estimates, fitting time series of reciprocal errors with a single LME model and using 

the sequence of data collection as an additional grouping variable (i.e. as longitudinal 
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data) can yield inferior results. Evaluation of the individual resultant LME error 

models reveals that, for the dataset considered here, the fixed and random effects 

coefficients vary over the 24-hour period. Such results challenge our common 

assumption that electrode quality is extremely stable. The laboratory study by 

LaBrecque and Daily (2008) on the measurement errors of 15 electrode materials 

showed many possibilities for electrode quality to evolve during the course of a ERT 

experiment, some even in the timescale of minutes. Therefore, taking many repeats for 

measurements probably will not provide better error estimates because electrode 

quality may evolve during the process. In summary, we recommend the collection of 

reciprocal measurements at each timeframe and fit a LME model based on the 

measured transfer resistance and electrodes used to capture the minor variations in 

electrode quality during ERT experiments.   

We have found in the Boxford inversion results that there is no distinguishable 

difference between using repeatability and reciprocal errors in inversions (figures not 

shown). From the PDFs, the stacking errors are much smaller and much less variable 

than the repeatability or reciprocal errors at Boxford. With the linear error model, the 

resultant image for using stacking errors is noisy. With the LME error model, however, 

the inversion image is comparable to that obtained from using repeatability or 

reciprocal errors. We attributed its better results to the better handling of spurious and 

overly optimistic estimates of errors by the LME error model. 

For the Sellafield dataset, we demonstrated the application of the new LME 

error model to model reciprocal errors and used its predicted errors for 3-D inversion 

and uncertainty quantification (i.e. model variance). Such uncertainty estimates are 

useful as they visualize how uncertainties in measurements propagate to uncertainties 

in the inverse model estimate. 

We have highlighted in the previous section that the new LME error model can 

be widely applied to essentially any ERT inversion algorithms. It better predicts errors 

that are used to prescribe weights of the data weighting or covariance matrix. The 

resultant matrix remains diagonal so that it does not increase computation costs during 

inversion. Unlike the data quality control strategies recently proposed by Deceuster et 
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al. (2013) and Mitchell and Oldenburg (2016), the new LME error model can be applied 

to any static and time-lapse ERT problems regardless of their size. Since the model 

considers the effect of the variable quality of electrodes, it requires minimum culling 

of data or re-inversion. Alternatively, the new LME error model can be used alongside 

with other data quality control strategies. 

The flexibility of the LME model allows it to be applied to characterisation of 

errors in other geophysical measurements. For example, geophones used in seismic 

tomography can be used as grouping variables for their errors. A straightforward next 

step for future study would be to extend the LME error model to induced polarisation 

(IP) studies. It has been reported in the literature that IP surveys are even more 

sensitive to electrode configuration than ERT. Much recent work has been done to 

improve quality of IP measurements. For example, Dahlin et al. (2013) conducted a 

duplicate IP survey for a planned tunnel using two types of cable spreads: one with 

standard multi-core cables and the other with separate cable spreads for transmitting 

current and measuring potentials. They suggest that the single cable spread is 

sufficient to give good IP data but suggest the use of separate cable spread for spectral 

IP inversion and recovery of Cole-Cole parameters. Flores-Orozco et al. (2012) 

quantified the  measurement errors in spectral IP imaging and established a new phase 

error model. It is an extension of previous models where the discrepancy between 

normal and reciprocal measurements is analysed (Binley et al., 1995; LaBrecque et al., 

1996a; Slater and Binley, 2006). They also conducted a bin analysis to ensure the 

assumption of a normal distribution of errors is valid and showed that, for spectral IP 

measurements, phase error discrepancies show a consistent behaviour for all 

frequencies. They proposed an inverse power-law relationship between the error on 

phase and the corresponding resistance. This brief review highlights the similarities 

between ERT and IP measurement error models and we believe that the proposed LME 

model can improve IP measurement errors characterisation, too. Future studies should 

consider applying the LME error model. 

 Finally, the proposed LME models can be used readily in Bayesian 

formulations for ERT inversion. The LME error model can be used to prescribe entries 
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of the data covariance matrix in their likelihood functions, which are usually assumed 

to be diagonal for computational convenience. Note that the LME method considers 

errors due to electrodes used as a grouping variable rather than enforcing a correlation 

function, which would lead to a full data covariance that is computationally difficult 

to invert. By treating the potential correlation of electrode effects as grouping variables 

instead, the data weighting or covariance matrix remains diagonal; furthermore, strict 

and unnecessary assumptions on the correlation between measurements are avoided.  

7) Conclusion and recommendations 

Our analysis of field datasets shows that short-term repeatability and reciprocal 

errors are very comparable, while stacking errors are significantly lower. Repeatability 

errors, however, may increase over time because of subsurface changes between 

repeats. Repeatability errors also tend to show greater autocorrelation in time for the 

same measurements, as well as correlation between measurements, than reciprocal 

errors. Stacking errors are found to have significantly lower magnitude and variability, 

indicating it may be an overly optimistic measure of measurement error. Correlation 

coefficients between pairs of measurements that share some of the electrodes used are 

higher than pairs that use completely different electrodes. This confirms speculations 

from previous studies that the common use of electrodes may contribute to some 

correlation in errors (Ramirez et al., 2005).  

Based on our error analysis, we confirm the value of collecting reciprocal data 

in ERT studies, although when making reciprocal measurements, care should be taken 

to avoid electrode charge-up effects (Dahlin, 2000; Wilkinson et al., 2012). If it is too 

difficult to set up reciprocal measurements, we recommend running a duplicate survey 

immediately after the completion of the original survey. Long-term repeatability data 

does not bring extra benefits for fitting error models because subsurface conditions 

may change over time. But they may be very useful for long-term quality assurance, 

for example, detecting instrument drift or abnormal system behaviour. Stacking errors 

should be avoided when assigning error weights because of their low magnitude and 

low variability. For modelling the measurement errors, we recommend fitting a linear 
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mixed effect (LME) model over the commonly used linear model. The new LME error 

model uses both the combination of electrodes used for making ERT measurements 

and the proportional relationship between errors and transferred resistance in order to 

better characterize measurement errors. Our synthetic example shows that the LME 

error model is capable of picking up errors due to the varying quality of electrodes and 

adjusts resolutions in the inverse model accordingly. This is different from the 

traditional linear model approach where the resolution everywhere in the entire 

inverse model domain has to reduce. The new LME model not only improves the 

inversion results, but also reduces the uncertainty (i.e. variance) in the model estimates. 

For time-lapse data, we recommend fitting a LME model for each time step because its 

coefficients change over time and fitting all the data from the different time steps with 

a single LME model (i.e. as longitudinal data) yields inferior results. We have 

demonstrated the applicability of the above-recommended procedure by fitting the 

LME model to errors observed in two field datasets and inverting the data. This 

procedure is easy to implement and requires minimal changes to the current practice. 

Widely implementing this procedure in future geophysical studies can greatly 

improve their overall reliability—a necessary step towards obtaining more 

quantitative information from geophysical methods across a range of disciplines and 

applications.  
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10) Supplementary information 

LME electrode grouping formulation 

To demonstrate the formulation of the new error model, we use a small subset 

of the Boxford data to create different formulations of the linear mixed effects (LME) 

error model. The first 25 measurements from the first set of Boxford are selected to fit 

different models. We show that in Figure SI 1 that the linear or the binned linear 

models perform poorly when fitting the reciprocal errors. By using LME models that 

use average transfer resistance as the fixed effect, we see that much better fit of errors 

is achieved by selecting any one of the four electrodes as a grouping variable. The LME 

model essentially matches all the observed errors if all four electrodes are used as 

grouping variables. It can be further improved by using dipole separation a and dipole-

dipole separation multiplier n as additional grouping variables.  

We recommend fitting the LME error model in log-log scale to avoid negative 

error estimates. Also, one should recognize if reciprocal errors are used, either the 

configuration for “direct” and “reciprocal” set can be used to fit the model. Finally, 

when there are incomplete reciprocal measurements, the LME model can be used in 

“prediction mode” to estimate their errors. 
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Fitting LME models to field data 

 We fit each of the 96 sets of Boxford reciprocal errors data individually with a 

LME model, where average transfer resistance is the fixed effect variable and the 4 

dipole-dipole electrodes (i.e. c1, c2, p1, p2) are the grouping variables. Figure SI 2 

shows the evolution of the fixed-effect coefficients with time. The resultant coefficients 

vary within a range but we can see they fluctuate significantly over time. The ±95% 

confidence interval is also plotted as shaded regions. Figure SI 3 shows the random 

effects coefficients of the resultant LME model for the first set of Boxford data as a 

function of electrode number. We can see that the random effects coefficients span a 

smaller range than the fixed effect ones. We can also see that the coefficients for the 

four grouping variables (i.e. c1, c2, p1, p2) are somewhat correlated. It is important, 

however, to note that random effect coefficients change discernibly with time.  

 We find that the binned linear model is quite stable at Sellafield regardless of 

whether tracer was injected or not (Figure SI 4). It is therefore important to study 

whether an LME model is stable too. Again, we fit each of the 246 sets of Sellafield data 

individually with an LME model. Figure SI 5 shows the evolution of the fixed-effect 

coefficients with time. Figure SI 6 shows the random effects coefficients of the resultant 

LME model for the 5th February 2013 Sellafield data as a function of electrode number. 

We can see that the coefficients are an order-of-magnitude higher than in the Boxford 

data. We can also see that for certain electrode numbers the random effect coefficients 

have much higher magnitudes, which indicates that some electrodes have a greater 

impact on the observed errors from the fixed effect (i.e. transferred resistance).  Finally, 

the coefficients estimates do not show significant trends during the 2-year monitoring 

periods, both during and outside the injection periods. 

A guide to implement the LME error model in MATLAB® 

 To fit a LME model in MATLAB®, the statistics and machine learning toolbox 

is required. Assume you have vectors of electrode configurations c1,c2,p1,p2, average 

transferred resistances R, and observed measurement errors err, they first need to be 

put into a MATLAB® table by using the command: 
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tbl=table(log10(R),log10(err),c1,c2 

p1,p2,'VariableNames',{'R','err','c1','c2','p1','p2'}); 

 

Then fit the LME model with the following command: 

lme = fitlme(tbl,'err ~ R+(R|c1)+(R|c2)+(R|p1)+(R|p2)'); 

 

This formulation assumes potential correlated random effects among grouping 

variables c1, c2, p1, p2. To get the LME model-predicted measurement errors, use the 

command: 

fitted(lme) 

If prediction of measurement errors is needed (i.e. the dataset contains measurements 

with no error observations avaialable), use the command: 

predict(lme,tblnew) 

where tblnew is a table of vectors of electrode configurations where predictions are 

made. 

A guide to implement the LME error model in R 

To fit a LME model in R, the lme4 package is required. Fit the LME error model 

using the command:  

lme <- lmer(Res_Err ~ 

Res_Ave+(Res_Err|C1)+(Res_Err|C2)+(Res_Err|P1)+(Res_Err|P2)) 

 If you would like to run the above R script in Python, the rpy2 

(https://rpy2.bitbucket.io/) interface may be used.  

https://rpy2.bitbucket.io/
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Figure SI 1 Illustration plot to compare fitting linear and LME model for ERT measurement errors. The 

LME error model provides a much better fit to measurement errors, especially the high measurement 

errors.  

 

 

Figure SI 2 Fixed effects coefficients for the LME error models for each of the Boxford datasets. The x-

axis is the dataset number in ascending order of collection (the time required to collect the 96 datasets 

is around 24 hours). The left panel is when ‘intercept’ is used as the random-effect coefficient and the 

right panel is for transfer resistance. The solid line is the maximum-likelihood estimate, while the 

shaded area is enclosed by +/-95% confidence intervals. 
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Figure SI 3 Random effects coefficients for the LME error model for a frame of the Boxford dataset. 

The x-axis is the electrode number, where c1 and c2 are when the measurements are used as current 

electrodes and p1 and p2 are when they are used as potential electrodes. The left panel is when 

‘intercept’ is used as the random-effect coefficient and the right panel is for transfer resistance. The 

solid line is the maximum-likelihood estimate, while the shaded area is enclosed by +/-95% confidence 

intervals. Note the fixed effects for this linear mixed effect error model is 4.3708e-05 +/- 1.5628e-05 for 

‘intercept’ and 1.5742e-04 +/- 7.527e-05 for transfer resistance.  

 

Figure SI 4 Time series of linear error model for reciprocal errors at Sellafield. Errors higher than 20% 

are not fitted. The blue line is the intercept of the linear model estimate, while the green and red lines 

are the estimates for the slope. The three shaded regions are stimulant injection periods. It is shown 

that the slope of the linear error models (i.e. percentage errors) did not vary significantly during the 

monitoring period and the stimulant injection has little impact on error levels.  
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Figure SI 5  Time series of the fixed effect coefficients estimates for the LME error model for Sellafield. 

The three shaded regions are stimulant injection periods. 

 
Figure SI 6 Random effect coefficients for LME error model at Sellafield on 5th February, 2014. The x-

axis is the electrode number, where c1 and c2 are when the measurements are used as current electrodes 

and p1 and p2 are when they are used as potential electrodes. The left panel is when ‘intercept’ is used 

as the random-effect coefficient and the right panel is for transfer resistance. The solid line is the 

maximum-likelihood estimate, while the shaded area is enclosed by +/-95% confidence intervals. Note 

the fixed effects for this linear mixed effect error model is 0.47852 +/- 0.4865 for ‘intercept’ and 0.01428 

+/- 0.027414 for transfer resistance. 
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Abstract   

Time-lapse electrical resistivity tomography (ERT) measurements provide indirect 

observations of hydrological processes in the Earth's shallow subsurface at high spatial 

and temporal resolution. ERT has been used in the past decades to detect leaks and 

monitor the evolution of associated contaminant plumes. Specifically, inverted 

resistivity images allow visualization of the dynamic changes in the structure of the 

plume. However, existing methods do not allow the direct estimation of leak 

parameters (e.g. leak rate, location, etc.) and their uncertainties. We propose an 

ensemble-based data assimilation framework that evaluates proposed hydrological 

models against observed time-lapse ERT measurements without directly inverting for 

the resistivities. Each proposed hydrological model is run through the parallel coupled 

hydro-geophysical simulation code PFLOTRAN-E4D to obtain simulated ERT 

measurements. The ensemble of model proposals is then updated using an iterative 

ensemble smoother. We demonstrate the proposed framework on synthetic and field 

ERT data from controlled tracer injection experiments. Our results show that the 

approach allows joint identification of contaminant source location, initial release time, 

and solute loading from the cross-borehole time-lapse ERT data, alongside with an 

assessment of uncertainties in these estimates. We demonstrate a reduction in site-

wide uncertainty by comparing the prior and posterior plume mass discharges at a 

selected image plane. This framework is particularly attractive to sites that have 

previously undergone extensive geological investigation (e.g., nuclear sites). It is well 

suited to complement ERT imaging and we discuss practical issues in its application 

to field problems. 
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Graphical abstract  

 

Estimation of leak parameters and their uncertainties using raw geophysical data and data 

assimilation. 

1) Introduction 

Identification of solute loadings from an unknown source is a complex yet 

critical problem. For example, understanding the whereabouts of the source(s) of 

contamination is often the first question that needs to be addressed in a remediation 

project. This identification, however, is not straightforward and it is often complicated 

by factors such as unknown forcing (e.g., boundary and flow conditions), aquifer and 

vadose zone heterogeneity, and limited data (in terms of number, types, temporal and 

spatial coverage). Because of these complications, attempts to assess source 

identification should also address the uncertainties in the estimates, and provide 

realistic and actionable uncertainty bounds. 

Traditional point-based sampling methods suffer from limited coverage and 

resolution. As prompted, in part, by the wealth of studies in stochastic subsurface 

hydrology that argued for better field techniques, geophysical methods have emerged 

as valuable tools for investigating shallow subsurface processes over the past two 

decades (Binley et al., 2015). Geophysical methods can provide much larger spatial and 

temporal resolution. Once installed, autonomous long-term monitoring systems, such 
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as ALERT (Kuras et al., 2009), can repeatedly collect geophysical data and transmit it 

back to the office using telemetry. Among them, electrical resistivity tomography (ERT) 

is particularly suitable for leak detection due to its sensitivity to fluid conductivity. 

Note that leak detection is not limited to the detection of the breakthrough of saline 

fluids (as proxies of contaminants), but it also includes monitoring the integrity of 

water-retaining structures (e.g. embankments or levees) (Abdulsamad et al., 2019) and 

landfills (Audebert et al., 2014; Chambers et al., 2006; Maurya et al., 2017). 

Many previous ERT studies have focused on inferring plume characteristics by 

delineating the plume geometry (Aghasi et al., 2013), obtaining summary statistics of 

the plume structure (e.g. spatial and temporal movements) (Crestani et al., 2015; 

Pidlisecky et al., 2011; Singha and Gorelick, 2006), or developing methods for 

automatic tracking of plumes (Ward et al., 2016). There is also a substantial amount of 

work dedicated to delineating local hydraulic properties using ERT (e.g. Camporese et 

al., 2011). As an effort to better use geophysical data for hydrogeological studies, 

comparisons between coupled and uncoupled hydrogeophysical inversions of ERT-

monitored tracer tests have been made (Camporese et al., 2015; Hinnell et al., 2010). 

Others have tried to address the uncertain link between hydrological systems and 

geophysical data using data-driven or machine learning approaches (Hermans et al., 

2016b, 2015; Oware et al., 2013). There is also increased use of geophysics to estimate 

remediation efficiency (LaBrecque et al., 1996b). For example, Power et al. (2014) 

applied 4D active time-constrained inversion to time-lapse ERT data to estimate the 

volume of solute plume remediated in a laboratory experiment. 

 The various electrical methods applied to the mapping and monitoring at the 

U.S. Department of Energy Hanford nuclear site has greatly improved the readiness of 

these methods (Johnson et al., 2015a). For example, the work on the monitoring of the 

groundwater/river water interaction beneath the Hanford 300 Area infiltration bonds 

(Johnson et al., 2012; Johnson et al., 2015b; Slater et al., 2010; Wallin et al., 2013) shows 

ERT is well suited for monitoring such complex and dynamic processes, while the 

successful monitoring of vadose zone desiccation (Truex et al., 2013b, 2012) at the BC 

Cribs Area demonstrates its capability to monitor 3-D changes in moisture content 
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caused by gas injection. The leak tank experiments in the 1990s and 2000s have 

contributed some important work in geoelectrical leak detection. The first two mock 

tank experiments set up a 15 m diameter steel tank at the Hanford site and ERT 

tomograms clearly shows area of resistivity decrease of the leak plume (Ramirez et al., 

1996). A subsequent series of mock tank experiments evaluated a number of electrical 

methods for leak detection (Barnett et al., 2003).  Among them, a “blind test” was 

carried out for 110 days where the release episodes were not known to the modeller 

(Daily et al., 2004). The modeller achieved a 57% success rate in defining a leak or no 

leak declaration during the test, although further analysis have greatly improved the 

success rate. A follow-up study on the dataset used Markov chain Monte Carlo 

inversion to estimate the probability distribution of the plume of being in different 

sizes and shapes (Ramirez et al., 2005). 

 In groundwater hydrology or hydrogeophysical problems, models are often 

too complex (in terms of parameterisation) such that fully Bayesian methods such as 

Markov chain Monte Carlo (McMC) methods are rarely applied (Irving and Singha, 

2010). Data assimilation has played an increasingly important role in subsurface 

characterization (Zhou et al., 2014). For example, Chen et al. (2013) used p-space 

ensemble Kalman filter (EnKF) (Nowak, 2009; Schöniger et al., 2012) and ensemble 

smoother (ES) to assimilate head, flowmeter, and conservative tracer test data to 

characterize the permeability field of the Hanford 300 area. Zovi et al. (2017) used 

surface ERT results to generate facies model that honour the geophysical data, then 

used restart normal-score EnKF to estimate the hydraulic conductivity (K) field. In a 

recent review, it was concluded that the iterative ES (IES) could achieve results 

comparable with those of the EnKF, at a fraction of EnKF’s computational cost (Li et 

al., 2018). This computational saving stems from the difference in their formulation—

in the EnKF, the data are sequentially integrated into the model at simulation time 

steps while in ES all the data are combined together and assimilated only once (note in 

IES the amount of data between updating steps are the same). Since EnKF assimilates 

data in a sequential fashion (i.e. one time step after another), the number of 
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assimilation steps equals the number of time steps present in the data. Therefore, EnKF 

is more computationally expensive than IES when data from many time steps are used. 

The Hanford leak tank studies and other earlier work on geoelectrical leak 

monitoring have focused on obtaining time-lapse ERT images during the suspected 

leak, and making “leak/ no leak” decisions based on the images. It is difficult, however, 

to use geophysical images to infer leak parameters such as leak location, solute loading, 

and onset time. Recent hydrogeophysical studies have attempted to estimate 

parameters of interest from geophysical data without inverting for geophysical images. 

Different hydrological model proposals are evaluated and compared to observed 

geophysical data. For example, Manoli et al. (2015) used an iterative particle filter 

approach and a coupled hydrogeophysical forward model to estimate hydraulic 

conductivity, K, of up to four zones from ERT data obtained during a controlled 

infiltration experiment. This approach is then extended to a field study which 

considers both ERT and ground penetrating radar (GPR) data in K estimation (Rossi et 

al., 2015). Scholer et al. (2012) used time-lapse crosshole ground GPR data collected 

under different infiltration conditions to estimate unsaturated soil hydraulic properties 

using a McMC inversion. Kowalsky et al. (2005) jointly estimated the dielectric and 

unsaturated zone parameters using both GPR and hydrological data. Johnson et al. 

(2009) developed a data-domain correlation approach for joint hydrogeological 

inversion of time-lapse hydrogeological and ERT data to jointly estimate fluid solute 

concentration and resistivity without explicitly specifying a petrophysical transform. 

Though contaminant source identification has been a persistent problem in 

hydrogeology (Michalak and Shlomi, 2007; Shlomi and Michalak, 2007; Sun, 2007; Sun 

et al., 2006; Sun and Sun, 2015), advances in data assimilation methods have opened a 

new avenue in addressing this problem. Only a few studies have jointly estimated leak 

parameters and hydraulic parameters (Datta et al., 2009; Koch and Nowak, 2016; 

Wagner, 1992). Zeng et al. (2012) developed a sparse grid Bayesian method for 

contaminant source identification, which greatly reduced the computational burden in 

McMC sampling and accurately identifies both leak parameters and time-varying 

source strengths in case studies. Xu et al. (2016) simultaneously identified the above 
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contaminant source parameters using the restart normal-score ensemble Kalman filter, 

while subsequently Xu et al. (2018) extended the method to also identify the 

heterogeneous hydraulic conductivity field. The method has recently been applied to 

a sandbox study (Chen et al., 2018), where six leak parameters and 2 parameters for 

the location of an impermeable plate are estimated. Assuming known source location, 

Kang et al. (2018) estimated K and Dense Non-Aqueous Phase Liquid (DNAPL) 

saturation (and thus total DNAPL volume) from ERT data using restart EnKF.  

In contaminated land studies, there has been a paradigm shift to focus more on 

site-wide metrics.  Instead of focusing on thresholds from point-based measurements, 

mass discharge and mass flux has been used increasingly (Brusseau and Guo, 2014; 

Christ et al., 2010, 2006; Hadley and Newell, 2012). Several studies are dedicated to 

studying their estimation and uncertainty bounds from point measurements (Cai et al., 

2011; Troldborg et al., 2012, 2010), while Balbarini et al. (2018) used regression kriging 

of collocated concentration and geoelectrical data to improve mass discharge estimates. 

In this paper, we introduce an ensemble-based data assimilation framework to 

jointly identify various leak parameters with their associated uncertainty bounds from 

ERT data. The method evaluates proposed hydrological models (i.e. different 

hydrogeological units, different leak locations and loads) against observed time-lapse 

ERT measurements. To the best of our knowledge, this work is the first attempt to 

estimate solute source parameters using raw ERT data, as most previous work focuses 

on estimating hydraulic parameters or reconstructing solute distribution. A key 

feature of our method is that it allows visualization of uncertainty reduction by 

comparing the envelopes of prior and posterior mass discharge curves. The methods 

and data used in this work are detailed in section 2. Results of the various synthetic 

and field test cases are reported in section 3 and 4 respectively. Finally, we discuss and 

summarize our findings in section 5 and 6 respectively. 
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2) Methodology 

We begin by outlining the different steps in the framework, followed by details 

of the different framework components. Finally, we introduce the datasets used in test 

cases. 

2.1. Overview of framework 

The data assimilation framework (summarized by Figure (a)) begins by 

proposing a range of hydrological models (i.e. model parameters such as leak 

locations). All parameters for variably saturated flow and transport simulation need to 

be prescribed, either as a fixed constant or a distribution (which will be updated by the 

DA framework). Also, the setup for the ERT experiment (e.g. mesh, electrode locations, 

measurement protocols, petrophysical transforms) need to be included. Once we have 

an ensemble of model proposals, they are fed to simulate the ERT response using 

PFLOTRAN-E4D (Johnson et al., 2017). The misfits between observed and simulated 

ERT responses are used to form data error covariance matrices, which in turn are used 

to update the model proposals. The entire process repeats until the misfit criterion is 

met or the algorithm reaches the user-specified maximum number of iterations.  

 

 

Figure 1 (a) Flowchart of the overall data assimilation framework used in this work. More details are 

found in the subsections. (b) The goal of this framework is that upon conditioning of geophysical data, 

the envelope of possible mass discharge time series will become less uncertain.  
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2.2. Coupled hydrogeophysical forward modelling 

We use the massively parallel code PFLOTRAN-E4D (Johnson et al., 2017) for 

coupled hydrogeophysical forward modelling. E4D (Johnson et al., 2010) is an ERT 

code which has state-of-the-art capability for parallelization and for accurate 

modelling of metallic infrastructure (e.g. tanks and pipes that are common at 

contaminated sites) (Johnson and Wellman, 2015) and near-real-time inversion to 

monitoring bioremediation (Johnson et al., 2015c). E4D has been used for ERT 

modelling on a number of complex problems such as those at the Hanford Site. 

PFLOTRAN (Hammond and Lichtner, 2010 , also see pflotran.org) is a state-of-the-art 

massively parallel subsurface flow and reactive transport code. PFLTORAN-E4D 

(implemented as “hydrogeophysics” mode in the 2018 PFLOTRAN distributions used 

in this work) translates states of the PFLTORAN model to bulk electrical conductivity 

𝜎𝑏 distribution using an interpolation matrix that maps between the meshes of the two 

codes given a petrophysical transform. To do so, users need to provide elementwise 

petrophysical parameters (e.g. Archie parameters), times when the simulated ERT 

measurements are needed, and the fluid conductivities of the groundwater and the 

injected tracer. In this work, we assume surface electrical conductivity is negligible and 

use Archie’s law as the petrophysical relationship: 

𝜎𝑏 = 𝜎𝑤𝛷
𝑚𝑆𝑤

𝑛       (1) 

where 𝑚, is the cementation exponent, and 𝑛 is the saturation exponent. Specifically, 

fluid conductivity 𝜎𝑤 , porosity 𝛷  , and fluid saturation 𝑆𝑤  are passed from the 

PFLOTRAN output to E4D through the mapping routine. After the petrophysical 

mapping, E4D will run a forward simulation with the given ERT survey configuration 

and 𝜎𝑏 distribution to produce the simulated ERT data. Note that PFLOTRAN-E4D is 

no longer supported in newer PFLOTRAN releases. The mapping routine is available 

through the corresponding author. 

2.3. Prior parameter generation: Latin hypercube sampling 

For multi-parameter data assimilation problems, we need to use an efficient scheme to 

generate 𝑛𝑟𝑒𝑎𝑧 model proposals. We use Latin hypercube sampling (LHS) to obtain 

multi-parameter model proposals that efficiently span the parameter space. The LHS 
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approach is implemented using the R package Envstats (Millard, 2013). For the 

synthetic and field examples, we assume multivariate Gaussian distribution (𝑛𝑟𝑒𝑎𝑧 = 

32) and multivariate uniform distribution (𝑛𝑟𝑒𝑎𝑧 = 64) for the prior distribution of 

parameter values respectively. The use of more realizations and a non-informative 

prior in the field example is due to greater parameter uncertainty. 

2.4. Data assimilation: ensemble smoother with multiple data assimilation (ES-

MDA) 

In this work, we use the ensemble smoother with multiple data assimilation 

(ES-MDA) (Emerick and Reynolds, 2013) to update hydrological models. ES-MDA is 

also known as an iterative variant of ensemble smoother (ES). The ES-MDA has been 

used heavily in hydrocarbon reservoir history matching of production and seismic 

data, but there are growing applications in hydrology. For example, Ju et al. (2018) 

combined ES-MDA with Gaussian process surrogate modelling and tested the new 

method on synthetic 2-D transient groundwater flow problems. Lan et al. (2018) 

combined sequential ensemble-based optimal design and ES-MDA to accurately and 

efficiently estimate the heterogeneous distribution of physical and geochemical 

parameters in groundwater models. Aalstad et al. (2018) used ES-MDA and fractional 

snow-covered area retrieved from satellites to estimate the snow distribution at Arctic 

sites. Song et al. (2019) used ES-MDA with level set parameterization to estimate the 

three-facies heterogeneous permeability field at the Hanford IFRC site, while Kang et 

al. (2019) jointly assimilated ERT and concentration data using ES-MDA alongside 

with direct sampling (Mariethoz et al., 2010) to estimate the non-Gaussian hydraulic 

conductivity field from a synthetic salt injection experiment. More recently, a modified 

version of ES-MDA has been used for crosshole GPR travel-time tomography in 

conjunction with approximate forward solvers and model error correction (Köpke et 

al., 2019). 

An ensemble smoother (ES) considers all available time-lapse data 

simultaneously for updating the model parameters. The ES-MDA method essentially 

allows iterative updating of the nonlinear ES problem by inflating the observational 

errors by a factor α and solve the updating equation α times iteratively. It has been 
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shown that iterative updating better handles nonlinearity in the data assimilation 

problem than the classic ES formulation. Our implementation of the ES-MDA 

procedure is summarized below:  

1. Prepare observational data (and their error levels) to be used for data assimilation 

(DA) 

2. Set up a base PFLOTRAN-E4D model 

3. Decide on which parameter(s) to update, either based on expert judgement or some 

preliminary global sensitivity analysis. The parameter estimation may be affected 

if important parameters are neither assumed correctly nor updated. Sample 𝑁𝑒 

realizations from the prior distribution of parameter(s) values (e.g. assume normal 

or uniform distribution) to obtain parameter array m at 𝑙 =  0 (𝒎0). Parameters 

that are not being updated are assumed known and base model values are used 

throughout the DA process for all realizations. 

4. Run PFLOTRAN-E4D using 𝒎0 to obtain an ensemble of simulated ERT data 

5. Updating. For 𝑙 = 1 to 𝑁𝑎 (where 𝑁𝑎 is the number of data assimilation steps), 

(i.) The data misfit from the (𝑙 − 1)-th iteration is given by 

𝑚𝑖𝑠𝑓𝑖𝑡 =
∑ ∑ (𝑑𝑖,𝑜𝑏𝑠−𝑑𝑖,𝑗)

𝑁𝑒
𝑗=1

𝑁𝑑
𝑖=1

𝑁𝑒× 𝑁𝑑
      (2) 

where 𝑁𝑑 is the number of measurements and 𝑑𝑖,𝑗 is the 𝑖-th data of the 

𝑗-th realization. 

 

(ii.) Obtain the auto covariance matrix of model predictions 𝑪𝐷𝐷 and the 

cross-covariance matrix between the parameter vector and model 

predictions 𝑪𝑀𝐷 by 

𝑪𝐷𝐷 = cov(𝒅
𝑗, 𝒅𝑗) ≈

1

𝑁𝑒−1
∑ (𝒅𝑗 − 𝒅̅)(𝒅𝑗 − 𝒅̅)

𝑇𝑁𝑒
𝑗=1           (3) 

𝑪𝑀𝐷 = cov(𝒎
𝑗, 𝒅𝑗) ≈

1

𝑁𝑒−1
∑ (𝒎𝑗 − 𝒎̅)(𝒅𝑗 − 𝒅̅)

𝑇𝑁𝑒
𝑗=1       (4) 

where 𝒅𝑗  and 𝒎𝑗  are vectors of simulated data and model parameter 

estimates of the 𝑗-th realization, respectively. The overbar denotes the 

mean across realizations of a matrix. 
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(iii.) For each ensemble member, perturb the observation vector using 

𝒅𝑢𝑐 = 𝒅𝑜𝑏𝑠 +√𝛼𝑙𝑪𝐷
1/2
𝒛𝑑       (5) 

where 𝛼𝑙  is an inflation coefficient, 𝒛𝑑~𝑁(0, 𝑰𝑁𝑑) , 𝑰𝑁𝑑  is an identity 

matrix of size 𝑁𝑑, 𝑪𝐷 is the covariance matrix of the measurements error, 

𝒅𝑜𝑏𝑠  is a vector of the observed field data. Because of the linear 

approximation in the update step and the use of a limited number of 

realizations in an ensemble, the ensemble Kalman filter-like methods 

have a tendency to systematically underestimate the variance of the 

model variables (Zhang et al., 2010). Resampling the vector of perturbed 

observations at each iteration tends to reduce sampling problems 

caused by matching outliers that may be generated when perturbing the 

observations (Emerick and Reynolds, 2013). 

 

(iv.) Update the parameter ensemble using: 

𝒎𝑙 = 𝒎𝑙−1 + 𝑪𝑀𝐷(𝑪𝐷𝐷 + 𝛼𝑙𝑪𝐷)
−1⏟            

𝐾𝑎𝑙𝑚𝑎𝑛 𝑔𝑎𝑖𝑛

(𝒅𝑢𝑐 − 𝒅𝑙−1)
𝑇⏟        

𝑚𝑖𝑠𝑓𝑖𝑡

    (6) 

Note that in order to preserve the equivalence between single and 

multiple data assimilation, it is necessary that ∑ 1/𝛼𝑙
𝑁𝑎
𝑙 = 1 (Emerick 

and Reynolds, 2013). This effectively serves to update the average 

sensitivity matrix. 

(v.) Run PFLOTRAN-E4D 𝑁𝑒 times using 𝒎𝑙 to obtain the updated 

simulated data ensemble 

7. If solution does not converge, repeat steps 3-7  with a higher α and/or 𝑛𝑟𝑒𝑎𝑧. 

Convergence is achieved when the ensemble root-mean-square-error of the 

ERT data misfit equilibrates: 

 𝑅𝑀𝑆𝐸 = √
1

𝑁𝑑

1

𝑁𝑒
∑ ∑ (𝑑𝑖

𝑜𝑏𝑠 − 𝑑𝑖,𝑗
𝑠𝑖𝑚)

𝑁𝑒
𝑗=1

 𝑁𝑑
𝑖=1      (7) 

 ES-MDA outperforms ES in non-linear problems because the smoother 

effectively represents a single Gauss–Newton iteration with a full step and an average 

sensitivity matrix (Reynolds et al., 2006) that is approximated by the covariance 

matrices of the prior ensemble. Instead of a single and potentially large Gauss-Newton 

correction, ES-MDA allows multiple smaller corrections through the use of multiple 
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iterations. To damp the parameter updating and to correctly sample from the posterior 

distribution of model parameters, the covariance matrices must be inflated (Emerick 

and Reynolds, 2013). The above issue is sometimes referred to as residual sampling 

error in data assimilation literature, with inflation being a common technique to 

account for it (Carrassi et al., 2018). The ES-MDA scheme is more flexible and easier to 

implement than conventional Gauss-Newton methods because it does not require 

derivation of sensitivity matrices. Previous work have shown that good results can be 

obtained in a few iterations (e.g. 4-10), while using a decreasing order of  𝛼𝑙‘s only 

resulted in small improvements compared to using constant 𝛼𝑙‘s. It can be shown that 

ES-MDA has links to annealed importance sampling (Stordal and Elsheikh, 2015). A 

comparison between ES-MDA and ES is provided by Evensen (2018). 

In this work, the above steps (except forward modelling) were implemented in 

R. For the synthetic studies presented, we set 𝑁𝑎 to 7 and use a constant 𝛼𝑙 of 7, which 

appears to obtain convergence in all cases and also satisfies the criterion ∑ 1/𝛼𝑙
𝑁𝑎
𝑙 = 1. 

Because the initial misfit for the field data is much larger than that for the synthetic 

data, the algorithm was unstable and more difficult to converge. Thus, for our field 

study we set a constant 𝛼𝑙  to 200 and iterate until the RMSE is stabilized, which is 

achieved within ten iterations. Although this violates the ∑ 1/𝛼𝑙
𝑁𝑎
𝑙 = 1 criterion, we 

remark that its choice is determined based on data noise levels and discrepancy 

between observed and simulated data, which can be high in field data. A higher 𝛼𝑙 can 

be seen as adding regularization to the ensemble Kalman scheme (Iglesias, 2016). An 

alternative approach is to adaptively decide 𝛼𝑖  at each iteration automatically (e.g. 

Iglesias and Yang, n.d.; Le et al., 2016) based on the mean of RMSE of data misfit across 

all realizations. 

In previous hydrogeology applications using ensemble Kalman methods, the 

hydraulic heads or solute concentrations are often transformed using normal-score 

transformation (e.g. Schöniger et al., 2012). We consider ERT data to be more Gaussian 

than hydrogeological data so we use raw ERT data (transfer resistances) directly in this 

study but such scaling may improve results.  
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2.5. Plume mass discharge 

Mass discharge is the integral of solute fluxes across a control plane (ITRC, 

2010). The control plane can be a model or site boundary, the water table, or any 

arbitrary planes. Mass flux is defined as  𝐽 = 𝑞0𝐶, where is 𝑞0 groundwater flux and 𝐶 

is solute concentration. It follows that the solute mass discharge (or equivalently solute 

integral flux) across a control plane is defined as 𝑀𝑑 = ∫ 𝐽𝑑𝐴
𝐴

, where 𝐴 is area of the 

control plane and 𝐽 is the spatially variable solute mass flux. Note that since the solute 

fluxes are vectors, it is possible for solute mass discharge to be negative. As shown in 

Figure 1(b), one way to visualize reduction in site-wide uncertainty is by observing a 

reduction of spread of the mass discharge time series. 

3) Synthetic experiments based on the Sellafield ERT field trial  

Between 2013-2014, a field ERT trial was conducted at the Sellafield Nuclear 

Site in Cumbria, U.K. (Kuras et al., 2016; Tso et al., 2017) by the British Geological 

Survey to demonstrate the utility of a permanent ERT monitoring system to support 

critical decommissioning activities at nuclear sites. Four vertical boreholes and two 

inclined boreholes with forty electrodes each were installed in front of the Sellafield 

MSSS building. The field trial included three controlled injections of an electrically 

conductive tracer (as simulant of the silo liquor) into the vadose zone. Time-lapse ERT 

data were collected during the experiment.  

We built a PFLOTRAN model based on the hydrogeological model developed 

for Sellafield (Kwong and Fowler, 2014) and an E4D model based on the electrode 

locations and design of the field trial. Details of the PFLOTRAN and E4D models are 

found in Table 2. Note that there are multiple units in the domain, but only the 

hydraulic parameters in the main unit (i.e. sandy drift) is listed in Table 2. The 

parameters not being estimated are kept constant during parameter estimation. 

To test our method, we obtained synthetic ERT data based on the experimental 

setup of the field trial and consider a series of parameter estimation cases. They are 

summarized in   
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Table 3. Unless otherwise stated, the parameters not being estimated are 

assumed to be known exactly. We began by considering the estimation of leak location 

(𝑥𝑙𝑜𝑐 ,𝑦𝑙𝑜𝑐 ), both for a leak inside and outside the ERT monitoring cell. Then we 

proceed by also estimating the solute loading (𝑞), release onset time (𝑡0). Subsequently, 

we estimate both leak parameters and uniform Archie parameters (𝑚, 𝑛) jointly, which 

is important in field applications as fixing the parameters imposes too much 

confidence on uncertain petrophysical relationships. Finally, we consider a few cases 

with uncertainty and heterogeneity in hydraulic conductivity (𝐾). In the first case, the 

𝐾 field has a log variance of 1.0 but its mean value is unknown; while in the second 

case, the 𝐾 field is heterogeneous but its mean value is known.  In the last case, the 

mean 𝐾 value is being estimated for a heterogeneous field. Other potential parameters 

to consider includes water table depths, permeability [log10 (m2)], porosity, 

unsaturated zone van Genuchten parameters, recharge rates, depth of the leak (𝑧𝑙𝑜𝑐), 

and duration of the leak (𝑑𝑡). Each iteration takes 40 minutes on average to run on 192 

cores on PNNL’s institutional computing facility. Note that only the forward 

modelling is parallelized, not the parameter updating. 

 

Figure 2 . (a) PFLOTRAN model domain for the Sellafield MSSS. The grey area is the MSSS building, 

which is modelled as impermeable. The hashed area is the ERT imaging cell consisting of four ERT 

boreholes. (b) A snapshot of the simulated tracer concentration due to injection. (c) The corresponding 

distribution of electrical conductivity within the ERT imaging cell obtained via petrophysical 

transform.   
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Table 2 “True” coupled hydrogeophysical model parameters used for synthetic experiments. It is 

developed based on the Sellafield field trial. *Only parameters for the main zone are listed below. 

#Leak location for some cases is (33.4534, -14.4303) instead. Note that for all cases the leak location is 

at the water table. 

PFLOTRAN simulation  Value 

Total simulation time (days) 30 

Model dimensions (m) 40 x 40 x 20 

Grid spacing (m) 1 x 1 x 1 

Horizontal permeability (m2) * 8.8854 x 10-10 

Vertical permeability (m2) * 4.4427 x 10-11 

Porosity * 0.2 

Water table depth (m) 6.0  

van Genuchten 𝑚  0.5 

van Genuchten 𝛼  1 x 10-4 

Residual water saturation  0.1 

Leak location (m) # (20,-10,18.1) 

Leak period (day) 12-30 

Leak rate (m3/d) 8.0 

Background fluid conductivity (S/m) 1 x 10-4 

Leak fluid conductivity (S/m) 0.1 

Mass discharge plane Vertical plane at y=-25.03m 

E4D simulation  Value 

Full Model dimensions (m) 100 x 100 x 100 

Imaging cell dimensions (m) 9.5 x 22.8 x 41.5 

Grid spacing  Unstructured 

Number of elements 380457 

ERT imaging times (day) Every 5 days between day 5 to day 30 

Archie’s cementation exponent 1.3 

Archie’s saturation exponent 2.0 
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Table 3 Summary of synthetic cases. All cases converge in seven iterations. 

Figure 

Size of 

ensemble 

(𝑁𝑒) 

Parameter(s) 

to estimate 
Prior distribution Comments 

Initial and 

final RMSE 

Figure 3a 32 𝑥𝑙𝑜𝑐, 𝑦𝑙𝑜𝑐 6x6 grid (exclude corners)  

Uniform spacing 

X range: -5 – 55m 

Y range: -33 - -3m  

 

Estimation of the 

leak location on 

the x,y plane ; leak 

is located within 

the ERT cell 

3.63  1.01 

Figure 3b 32 𝑥𝑙𝑜𝑐, 𝑦𝑙𝑜𝑐 

  

6x6 grid (exclude corners)  

Uniform spacing 

X range: -5 – 55m 

Y range: -33 - -3m  

Estimation of the 

leak location on 

the x,y plane; leak 

location is outside 

the ERT cell 

7.66  1.01 

Figure 4 32 𝑥𝑙𝑜𝑐, 𝑦𝑙𝑜𝑐,𝑞, 
𝑡0 

Multivariate uncorrelated truncated Gaussian: 

xloc = list(mean=25.0, sd=20.0, min=-

5.0,max=55.0), 

yloc = list(mean=-18.0,sd=10.0,min=-33.0, 

max=-3.0), 

q = list(mean=15.0,sd=10.0,min=0.0, max=30.0), 

t0 = list(mean=15.0,sd=10.0,min=0.0, max=30.0) 

Estimation of the 4 

leak parameters 

7.01  1.01 

Figure 5 32 𝑥𝑙𝑜𝑐, 𝑦𝑙𝑜𝑐,𝑞, 

𝑡0, 𝑚, 𝑛 

Multivariate uncorrelated truncated Gaussian: 

xloc = list(mean=25.0, sd=20.0, min=-

5.0,max=55.0), 

yloc = list(mean=-18.0,sd=10.0,min=-33.0, 

max=-3.0), 

q = list(mean=15.0,sd=10.0,min=0.0, max=30.0), 

t0 = list(mean=15.0,sd=10.0,min=0.0, max=30.0), 

c = list(mean=1.6,sd=0.5,min=0.0, max=2.0), 

m = list(mean=2.5,sd=0.8,min=0.0, max=3.0) 

Joint estimation of 

leak parameters 

and uncertain 

(homogeneous) 

petrophysical 

parameters 

(Archies 

cementation factor 

and saturation 

exponent) 

22.65  1.65 

Figure 6a 32 𝑥𝑙𝑜𝑐, 𝑦𝑙𝑜𝑐,𝑞, 
𝑡0 

Multivariate uncorrelated truncated Gaussian: 

xloc = list(mean=25.0, sd=20.0, min=-

5.0,max=55.0), 

yloc = list(mean=-18.0,sd=10.0,min=-33.0, 

max=-3.0), 

q = list(mean=15.0,sd=10.0,min=0.0, max=30.0), 

t0 = list(mean=15.0,sd=10.0,min=0.0, max=30.0) 

Leak estimation 

under the 

influence of 

permeability 

heterogeneity 

3.30  1.10 

Figure 6b 32 𝑥𝑙𝑜𝑐, 𝑦𝑙𝑜𝑐,𝑞, 
𝑡0 

Multivariate uncorrelated truncated Gaussian: 

xloc = list(mean=25.0, sd=20.0, min=-

5.0,max=55.0), 

yloc = list(mean=-18.0,sd=10.0,min=-33.0, 

max=-3.0), 

q = list(mean=15.0,sd=10.0,min=0.0, max=30.0), 

t0 = list(mean=15.0,sd=10.0,min=0.0, max=30.0) 

Leak estimation 

under the 

influence of and 

uncertain 

(homogeneous) 

permeability  

6.47  1.31 

6.66  1.70 

6.50  1.22 

6.53  1.41 

6.54  1.27 

 

Figure 7 32 𝑥𝑙𝑜𝑐, 𝑦𝑙𝑜𝑐,𝑞, 

𝑡0, 𝐾 

Multivariate uncorrelated truncated Gaussian: 

xloc = list(mean=25.0, sd=20.0, min=-

5.0,max=55.0), 

yloc = list(mean=-18.0,sd=10.0,min=-33.0, 

max=-3.0), 

q = list(mean=15.0,sd=10.0,min=0.0, max=30.0), 

t0 = list(mean=15.0,sd=10.0,min=0.0, max=30.0), 

K = list(mean=-9.0,sd=sqrt(1.0),min=-11.0, 

max=-7.0)) 

Joint estimation of 

leak parameters 

and uncertain 

(homogeneous) 

permeability 

values 

3.30  1.03 
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3.1. Base cases 

Our initial example considers the estimation of the leak location (Figure 3). The 

prior realizations are laid in a rectangular grid. We consider both the cases where the 

leak is within and outside the ERT imaging cell. Although the estimate at the first 

iteration is superior when the leak is within the imaging cell, the leak location is 

accurately estimated after seven iterations in both cases. Figure 4 shows the results 

from the joint estimation of four leak parameters: the (𝑥, 𝑦) coordinates of the leak 

location, leak rate, and onset time, assuming a wide multivariate Gaussian prior 

distribution. After conditioning the parameter values with ERT data, all four leak 

parameters are accurately estimated. Figure 4b shows the mass discharge curves across 

a pre-defined plane. The mass discharge curves for the prior distribution are highly 

variable, while those for posterior distribution collapse to the true curve. 

 

 

Figure 3 Estimation of leak location. (a) The true leak location is within the ERT array (33.4534, -

14.4303). (b) The true leak location is outside the ERT array (20, -10). In both cases, the data 

assimilation framework successfully identified the true leak location within a few iterations. 

 

 



Synthetic experiments based on the Sellafield ERT field trial  

 

 

184 

 

 

 

Figure 4 Joint estimation of leak parameters: (𝒙, 𝒚) location, leak rate, and onset time. (a) Violin plots 

showing the prior and posterior parameter distributions. The true values are marked with an orange 

lines.  The posterior parameter values collapse around the true values (b) Prior and posterior tracer 

mass flux across the pre-defined plane. All the posterior curves collapse to nearly the true curve (green). 

Note that the sign of mass discharge denotes its direction across the plane.  

3.2. Effects of petrophysical parameters 

Figure 5 shows the joint estimation of leak parameters and Archie 

petrophysical parameters. The prior estimates are generated as multivariate 

Gaussian distributions using Latin hypercube sampling. The posterior 

estimates are in very good agreement with the true values, with the exception 

that the onset time is slightly underestimated. It is noteworthy that including 

the Archie parameters as a covariate has caused the RMSE of the prior 

ensemble to be much higher than those in other synthetic test cases (see   
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Table 3), highlighting that it causes a larger range of transfer resistance values. 

 

Figure 5 Joint estimation of leak and petrophysical parameters: the prior and posterior parameter 

distributions are shown as violin plots. The true values are marked with orange lines.   

3.3. Influence and joint estimation of uncertain (homogeneous) hydraulic 

conductivity 

Figure 6a shows the estimation of leak parameters under uncertain 𝐾 values. 

Estimating leak parameters under 𝐾  uncertainty leads to highly uncertain and 

inaccurate leak parameter estimates. Figure 6b shows the estimation of leak 

parameters with variance of log𝐾 equal to 2, 3, 5, 7, 10, while assuming the mean 

𝐾  values are known exactly and unit correlation lengths. Although some 

variations in the estimates are seen, they generally lie close to the true values. 

There is no apparent correlation between the leak parameter estimation 

performance and the variance of the field. Figure 7 shows the estimates of leak 

parameters and effective hydraulic conductivity. The results show good estimates 
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of the leak locations, while that for 𝑞 and 𝑡0 is manifested as a narrow envelope. 

The posterior uncertainty for 𝐾 remains high and the algorithm underestimates 

the effective 𝐾  value. Again, the envelope of mass discharge curves is greatly 

reduced, demonstrating a reduction in uncertainty. However, the posterior curves 

do not collapse to the true curve, indicating significant uncertainty in the estimates. 

 

Figure 6 (a)  The estimation leak parameters under uncertain K values and logK variance = 1.0. The 

violin plots show the prior and posterior parameter distributions. The true value is marked with an 

orange line.   (b) The estimation of leak parameters at variance of log10(K) equal to 2, 3, 5, 7, 10 , while 

assuming the mean K values are known exactly and the K field is isotropic and is of unit correlation 

length. The violin plots show the posterior parameter distribution, while the true value is marked with 

an orange line. 
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Figure 7 (a) Joint estimation of leak parameters and effective hydraulic conductivity. The violin plots 

show the prior and posterior parameter distributions. The true value is marked with an orange line. (b) 

Prior and posterior tracer mass flux across the pre-defined plane. The true curve is marked in green in 

the posterior plot. 

4) Field application at the Hatfield site 

4.1. Data description 

To illustrate the approach in a field setting we use data from a solute injection 

experiment at the Hatfield (Yorkshire) site in the UK. At the site, six boreholes were 

drilled in 1998 in order to monitor tracer injection, two of which were for transmission 

GPR measurements (H-R1 and H-R2), while four were for ERT measurements (H-E1, 

H-E2, H-E3, and H-E4). These four ERT boreholes consist of sixteen stainless steel mesh 

electrodes equally spaced between 2 and 13 m depth. These boreholes were drilled to 

a depth of 12 m and completed with 75 mm PVC casing. Both the ERT and radar 

boreholes have a weak sand/cement grout backfilling the annulus. A tracer injection 

borehole was also installed (H-I2), located within the centre of the borehole array. The 

injection borehole is 3.5 m deep, with a 100 mm diameter slotted section and gravel 

pack between 3 and 3.5 m depth.  
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We focus our discussion using the ERT results from the March 2003 tracer 

infiltration experiment at Hatfield (Winship et al., 2006). The tracer consisted of 1,200 

litres of water, dosed with NaCl to give an electrical conductivity value of   2200 µS 

cm-1 (groundwater electrical conductivity at the site was measured as 650 µS cm-1). The 

tracer was injected over a period of three days, from 14th March 2003 to 17th March 2003 

at a steady rate of approximately 17 litres per hour.  A float valve in the injection 

borehole was used to control the head in the injection borehole, and hence the flow 

rate. Duplicate sets of background measurements of ERT were made on 6th March and 

13th March. Tracer flow was monitored by means of a pressure transducer in a storage 

tank, which gave a way of calculating the cumulative injection volume over time. The 

tracer injection port H-I2 was screened between 3m and 3.5m below ground surface. 

The tracer injection was monitored by ERT measurements from four boreholes and 

inverted images clearly show the plume migration, as shown in Figure 8 (Winship et 

al., 2006). During the tracer test no rainfall was observed at the site. The water table 

was observed at approximately 10 m depth. 

After removal of outliers, 3108 of the 3172 measurements are kept and 5% 

Gaussian data error is assumed in the inversions. Let 𝑡 =  8 be the day where injection 

commenced, ERT snapshots for 𝑡 =  7, 10, 15, 21 days are used in the inversion. Table 

4 lists the baseline parameters for our simulation, which are largely adopted from 

Binley et al. (2002a). The parameters not being estimated are kept constant during 

parameter estimation. 
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Figure 8 Setup of the tracer injection test at Hatfield (H-I2 is the injection borehole and H-E1 to H-E4 

are ERT boreholes) and the time-lapse resistivity images (iso-surfaces are plotted for 7.5% reduction of 

resistivity relative to baseline) obtained from a difference inversion of the ERT data (reproduced from 

Winship et al., 2006) 

 

Table 4 Baseline coupled hydrogeophysical model parameters used for the parameter estimation 

from the Hatfield field ERT data. *The domain consists of 3 meters of top soil and a uniform main 

zone. Only parameters of the main zone are listed below. 

PFLOTRAN simulation  Value 

Total simulation time (days) 41 

Model dimensions (m) 30 x 33 x 16 

Grid spacing (m) 1 x 1 x 0.5 

Permeability (m2) * 4.8225 x 10-13 

Porosity * 0.32 

Water table depth (m)  -12.0 

van Genuchten 𝑚 * 0.6 

van Genuchten 𝛼 * 3.5 x 10-3 

Residual water saturation * 0.04 

Recharge (m/day) 1 x 10-4 

Leak location (m) (3.0, 4.0,-3.0) 

Leak period (day) 8-11 

Leak rate (m3/d) 0.408 

Background fluid conductivity (S/m) 0.22 

Leak fluid conductivity (S/m) 0.065 

Mass discharge plane Vertical plane at y = -3 m 

E4D simulation  Value 

Full Model dimensions (m) 500 x 500 x 50 

Imaging cell dimensions (m) 10 x 13 x 15 

Grid spacing  Unstructured 

Number of elements 46482 

ERT imaging times (day) for inversion 7, 10, 15, 21 

Archie’s cementation exponent 1.35 

Archie’s saturation exponent 1.35 
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4.2. Parameter estimation 

We applied the proposed leak detection framework to the Hatfield field data 

and consider two cases (details are listed in Table 5). The first case estimates four leak 

parameters and two Archie parameters (𝑥𝑙𝑜𝑐, 𝑦𝑙𝑜𝑐, log 𝑞 , 𝑡0,𝑚, 𝑛) . The second case 

considers the estimation of a few additional parameters, namely the duration of the 

leak event (𝑑𝑡) and the uniform horizontal and vertical hydraulic conductivity (𝐾 and 

𝐾𝑧). We consider 𝐾  anisotropy may exist at the site because well logs suggest the 

presence of fine layers (Binley et al., 2001). Compared to the earlier synthetic examples, 

convergence was much more difficult to achieve. We have used the following 

modification to our methods to circumvent this issue: we estimated log 𝑞 instead of 𝑞, 

used more realizations, and used a uniform prior instead of a Gaussian one. We 

transformed the leak location priors to a uniform grid to aid the interpretation of the 

results. We have not considered the estimation of depth of the leak source in any of 

our examples because for most leak detection problems, the leak depth is usually 

precisely known: for example, base of storage tanks/silos, depth of buried pipelines, 

and bottom of landfill lining. Each iteration takes 2.5 hours on average to run on 192 

cores. Note that only the forward modelling is parallelized, not the parameter updating. 

Results from the base case is reported in Figure 9. Figure 9(a) shows that the 

posterior estimates of most parameter pairs form a small cluster. The estimates of 𝑥𝑙𝑜𝑐 

and log 𝑞 are close to the true values, while those for 𝑦𝑙𝑜𝑐 and 𝑡0 are slightly above the 

true (known) values. The inversion appears to have no sensitivity to 𝑚, while the 

estimation of 𝑛 converges to a very small value of about 0.53. Note that in this field test 

the true values of 𝑚 and 𝑛 are not known. In the inversion of field data, we would not 

necessarily consider the estimates of 𝑚 and 𝑛 representative of actual petrophysical 

parameters, but rather they act as hyperparameters to adjust any discrepancy in model 

structure. Figure 9(b) shows that the variability of mass discharge curves between 

realizations is greatly reduced upon conditioning of ERT data. Specifically, its spread 
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is reduced by two orders of magnitude, highlighting a reduction in site-wide 

uncertainty of the plume migration. 

Results from the second case are reported in Figure 10. We observe a larger 

spread in the parameter space but similar results for the estimation of 𝑚 and 𝑛. 𝑥𝑙𝑜𝑐, 

𝑦𝑙𝑜𝑐, and 𝑡0 are slightly overestimated. The inversion appears to have no sensitivity to 

𝐾 and 𝐾𝑧. The estimates of log 𝑞 and 𝑑𝑡 centres around the true value, indicating the 

inversion algorithm also correctly estimates the total solute loading (𝑞 × 𝑑𝑡)  that 

enters the flow and transport modelling domain. This underscores that the proposed 

data assimilation framework does not suffer from mass balance issues that are 

common in inverted resistivity-based approaches. 

 

Table 5 Summary of cases for the Hatfield field example 

Figure 

Size of 

ensemble 

(𝑁𝑒) 

Parameter(s) 

to estimate 
Prior distribution Comments Final RMSE 

Figure 9  64 𝑥𝑙𝑜𝑐, 𝑦𝑙𝑜𝑐, 

log 𝑞, 𝑡0, 𝑚, 
𝑛 

Multivariate uncorrelated uniform: 

Adjusted uniform grid from 𝑥𝑙𝑜𝑐 0-8m 

and 𝑦𝑙𝑜𝑐 =0-10m 

log 𝑞= list(min=-2.0, max=1.0), 

𝑡0= list(min=0.0, max=20.0), 

𝑚 = list(min=0.5, max=2.5), 

𝑛 = list(min=0.5, max=2.5) 

Base case 223.1615.3 

(iter=8, 

stabilized 

afterwards) 

Figure 10 64 𝑥𝑙𝑜𝑐, 𝑦𝑙𝑜𝑐, 

log 𝑞, 𝑡0, 𝑑𝑡 

𝑚, 𝑛, 𝐾, 𝐾𝑧 

Multivariate uncorrelated uniform: 

Adjusted uniform grid from 𝑥𝑙𝑜𝑐 0-8m  

and 𝑦𝑙𝑜𝑐 =0-10m 

log 𝑞= list(min=-2.0, max=1.0), 

𝑡0= list(min=0.0, max=20.0), 

𝑑𝑡 = list(min=1.0, max=5.0), 

𝑚 = list(min=0.5, max=2.5), 

𝑛 = list(min=0.5, max=2.5), 

𝐾 = list(min=-13.0, max=-9.0), 

𝐾𝑧 = list(min=-13.0, max=-9.0) 

𝐾, 𝐾𝑧, and 

𝑑𝑡 are also 

estimated. 

310.6613.95 

(iter = 2, 

stabilized 

afterwards) 
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Figure 9 (a) Parameter scatterplots showing pairs of parameter values for the Hatfield example 

estimating leak and Archie parameters. The parameter symbols and units are defined in section 3. Grey 

squares indicate prior parameter values while black circles in date posterior values. The true leak 

parameters used in the field injection experiment is indicated by red triangles. (b) The prior and 

posterior mass discharge time series. The sign of mass discharge indicates the direction across the 

defined plane.   
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Figure 10 Parameter scatterplots showing pairs of parameter values for the Hatfield example estimating 

leak and Archie parameters and hydraulic conductivities. The parameter symbols and units are defined 

in Table 4 and section 3. Grey squares indicate prior parameter values while black circles indate 

posterior values. The true leak parameters used in the field injection experiment is indicated by red 

triangles. 

4.3. Global sensitivity analysis using the Morris method 

To better understand the sensitivity of ERT data to various parameters in the 

coupled hydrogeophysical problem used to analyse the Hatfield dataset, we 

performed a global sensitivity analysis using the Morris method (Morris, 1991; Tran et 

al., 2016; Wainwright et al., 2014b) that is implemented in the R package sensitivity 

(Iooss, 2019). The Morris method returns the elementary effect (EE) of the parameters, 

which can be considered as an extension of the local sensitivity method. Since the mean 

EE represents the average effect of each parameter over the parameter space, the mean 
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EE can be regarded as a global sensitivity measure. To ignore the effects of the sign, 

the mean of absolute EE is usually reported (mean |EE|). In general, for the parameter 

ranges considered, parameters with high mean |EE| have a large impact on the data. 

Unconditional realizations are generated using the Morris algorithm based on the 

parameter ranges specified in Table 6 and the parameter space is sampled uniformly. 

We used 25 chains, so for a 13 parameter problem 25 × (13 + 1) = 350 realizations are 

generated. We run the forward models using PFLOTRAN-E4D to obtain simulated 

ERT response (the settings are the same as those in Table 4, unless otherwise stated). 

We set the objective function for calculating the mean |EE| to be the weighted misfit 

between the simulated and observed ERT data at Hatfield. The same dataset as in the 

previous section is used.  

Results from the global sensitivity analysis of the Hatfield experiment shows 

that some parameters, especially water table depths and two of the van Genuchten 

parameters have the largest effects on the data misfit (Table 6), followed by uniform 

permeability, porosity and Archie parameter values. Leak parameters has low mean 

|EE|, indicating the difficulty for ERT data to inform their estimation if the others are 

not known with confidence. Among them, 𝑥𝑙𝑜𝑐  and 𝑦𝑙𝑜𝑐  have the highest and the 

lowest mean|EE|, respectively. Recharge has virtually no effect on the data misfit. The 

results show that using ERT data and coupled hydrogeophysical modelling is a 

challenging problem. Future work can benefit from better constraining the problem 

incorporating additional data sources (e.g. pressure head, concentration, temperature, 

saturated and unsaturated hydraulic parameters). Our results agree with that of Tran 

et al. (2016), who showed Archie parameters have a higher mean |EE| than van 

Genuchten 𝛼. However, they found the mean |EE| of van Genuchten 𝑚 is negligible, 

while the largest mean |EE| they found is around 8.0. This highlights the Morris 

sensitivity analysis is best considered in a case-to-case basis, as it is affected by the 

observed data and the selected parameter ranges. We also report a list of realizations 

with low data misfit in Table 6. We observe that none of the realizations have an RMSE 

lower than 7.4 and their parameter values vary greatly. It is noteworthy that a “true” 

deterministic run (using parameters in Table 4) would give an RMSE of 4.82 (Figure 
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11). The above shows that some solutions to the ERT leak detection problem can be 

considered equifinal.  

 

Table 6 Global sensitivity analysis results using the Morris (1991) method on selected parameters on 

the Hatfield coupled hydrogeophysical model. The parameter ranges considered and the mean 

absolute elementary effect (|EE|) are reported. Parameter value combinations from ten realizations 

with the lowest RMSE are also reported.   

Parameters 

[units] 
Range Mean|EE| #24 #59 #61 #62 #63 #133 #150 #152 #153 #154 

xloc [m] 0.0 – 8.0 7.65 0.0 8.0 2.0 2.0 2.0 6.0 2.0 2.0 2.0 2.0 

yloc [m] 0.0 – 10.0 0.18 0.0 10.0 2.5 2.5 2.5 10.0 7.5 7.5 7.5 7.5 

q [log10 

(m3/d)] 
-2.0 – 1.0 1.82 -2.00 -1.25 -1.25 -1.25 -1.25 1.00 -1.25 -1.25 -1.25 -1.25 

t0 [d] 0.0 – 20.0 1.53 15.00 5.00 5.00 5.00 5.00 15.00 20.00 20.00 20.00 20.00 

Archie m [-] 1.0 – 1.5 26.52 1.38 1.00 1.00 1.00 1.00 1.50 1.50 1.50 1.50 1.50 

Archie n [-] 0.5 – 2.0 11.68 1.63 0.88 0.88 0.88 0.88 2.00 1.63 1.63 1.63 1.63 

water table [m] -14.0 – -9.0 49.39 -14.00 -14.00 -14.00 -14.00 -14.00 -14.00 -12.75 -12.75 -12.75 -12.75 

permeability 

[log10 (m2)] 
-15.0 – -12.0 6.85 -15.00 -12.00 -12.00 -14.25 -14.25 -12.00 -12.00 -12.00 -12.00 -12.00 

porosity [-] 0.25 – 0.35 12.34 0.25 0.35 0.35 0.35 0.35 0.28 0.35 0.35 0.28 0.28 

VG α [Pa-1] 2e-4 – 2e-3 7.50 2.0e-3 2.0e-4 2.0e-4 2.0e-4 1.55e-3 2.0e-4 6.5e-4 6.5e-4 6.5e-4 6.5e-4 

VG m [-] 0.4 – 0.8 115.16 0.7 0.7 0.7 0.7 0.7 0.5 0.4 0.7 0.7 0.7 

VG Sr [-] 0.01 – 0.2 69.30 0.2 0.01 0.01 0.01 0.01 0.1525 0.01 0.1525 0.1525 0.1525 

recharge 

[mm/d] 
0.0 – 0.001 0.03 0.00 7.5e-4 7.5e-4 7.5e-4 7.5e-4 0.00 1.0e-3 1.0e-3 1.0e-3 2.5e-4 

RMSE -- -- 7.54 11.10 11.22 11.15 10.57 9.30 8.25 9.40 7.44 7.42 

 

 

Figure 11 Transfer resistance scatter plot between the observed and simulated data at Hatfield. The 

simulated data uses parameter values listed in Table 4. 
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5) Discussion 

ERT has been used to detect leaks from nuclear sites for more than two decades. 

The conventional approach is to use inversion to obtain smoothed images of resistivity 

at different times and to assess whether there is a leak. This approach does not allow 

estimation of leak parameters and inversion of large time-lapse ERT datasets can be 

computationally demanding. We have presented a data assimilation framework to 

estimate leak parameters from ERT data. It evaluates hydrological model proposals 

based on the misfits between simulated and observed ERT data and update the model 

proposals. The estimated leak parameters are presented as a posterior distribution. It 

also outputs plume mass discharge across a plane, which can be used as a metric to 

evaluate site-wide uncertainty reduction. These features are not available in existing 

methods. Since current methods to estimate mass discharge are based on interpolation 

of point measurements, our coupled modelling approach provides an alternative to 

quantify mass discharge estimates. Together with point measurements and ERT 

imaging, other methods can help establish multiple lines of evidence to better inform 

decision making in nuclear site characterisation. 

Our synthetic results show that the method allows very good estimation of leak 

parameters (e.g. leak rate, loading size, and location). They also show that this 

framework can work reasonably well under the influence of uncertain petrophysical 

parameters and mean K values, as well as under K heterogeneity with small correlation 

lengths. With the rapid growth of autonomous ERT systems to monitor infrastructure, 

such as British Geological Survey’s ALERT and PRIME (Huntley et al., 2019) systems, 

our approach can provide additional value to ERT data and supplement inverted 

resistivity images. Our work also has potential to be applied to other non-point source 

leak detection problems such as seepage through embankments, or using a different 

geophysical method such as self potential (SP).  

We have only examined problems with a few parameters (e.g. leak parameters 

and homogeneous Archie and permeability values). All hydrological and 

petrophysical parameters that are not being updated are treated as known constants, 

which can be strong assumptions on uncertain subsurface properties. Future work 
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should strive to relax such assumption and jointly estimate more parameters. The prior 

distribution of the uncertain parameters may have an effect on the performance of our 

data assimilation approach. Nonetheless, we emphasize that they should be chosen 

based on site-specific prior knowledge. In this work, we have considered a relatively 

simple problem: a single conservative source with known concentration (thus fluid 

conductivity) with a single release episode. With the aid of relevant auxiliary 

information, our framework has the potential to be extended to more complex 

problems. 

The challenges we have encountered when dealing with field data highlights 

the need of unbiased and reliable prior information for the proposed method to work 

in practice. Equifinality (Beven, 2006; Binley and Beven, 2003) obviously exist in the 

leak detection problem since multiple combinations of leak, petrophysical, and 

hydraulic parameters can give similar data misfits. Different parameterization, scaling 

of parameters, and additional data sources may alleviate the problem. But ultimately, 

methods that allow rejection of model proposals may be desirable. Nevertheless, our 

method can be considered both a quick and approximate method for quantifying 

posterior uncertainty of parameters of interest, as well as a flexible method to perform 

regularized inversion without forming the Jacobian (Iglesias, 2016), which can be 

advantageous for coupled problems. Our proposed method is best used in well 

characterized sites where an abundance of historical data can be used to build prior 

models. Alternatively, our method can also be used in controlled tracer injection 

experiments to estimate hydraulic, petrophysical and transport parameters. 

There exists unique challenges for using raw ERT data in data assimilation. ERT 

datasets are usually quite large, with each timeframe containing hundreds to tens of 

thousands of data points. The fast collection of ERT data mean that multiple datasets 

can be collected daily. However, due to computation constraints, we have only used 

data from a few selected days. Also, each ERT quadrupole measurement neither 

represent the state response at a point (as in head or concentration data) or the overall 

system response (as in hydrocarbon production rates). These challenges do not appear 

to impact leak estimation from synthetic results. But their implications warrant further 
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investigation—for example, can we compress raw ERT data for data assimilation since 

they may contain significant redundant information? 

Frameworks for efficient high-dimensional data assimilation (Ghorbanidehno 

et al., 2015; Li et al., 2015, 2016) can be used to jointly estimate a heterogeneous 

permeability field. Methods such as level set methods, discrete cosine transform (DCT) 

and principal component analysis (PCA) can reduce the number of parameters to 

describe a highly heterogeneous field. A recent study has applied ES-MDA in 

combination with level set methods (Iglesias and McLaughlin, 2011; Tai and Chan, 

2004) to estimate the three-facies heterogeneous permeability field from conservative 

tracer test data at the Hanford IFRC site (Song et al., 2019).  Future work should explore 

their utility in hydrogeophysical data assimilation. Likewise, we have assumed 

relatively simple petrophysical relationships in our coupled hydrogeophysical models. 

Whether more complex petrophysical models will improve data assimilation results 

remains an open question. We also have not examined joint assimilation of ERT data 

with head or concentration data, which can be promising for further constraining our 

results. In this paper, we have used a relatively small ensemble of highly detailed, fully 

coupled hydrogeophysical simulations as the forward model. Our work can benefit 

from a recently developed, adaptive multi-fidelity version of ES-MDA (Zheng et al., 

2018), which leverages both the accuracy of highly detailed models and the efficiency 

of simplified models within the ES-MDA framework.  

6) Conclusions  

We propose a data assimilation framework that allows the use of time-lapse 

ERT data for solving hydrological parameters in a leak detection problem. It does not 

produce any ERT images during inversion; rather, it updates parameters in the 

hydrological model to minimize ERT data misfit. The use of an ensemble-based 

framework allows straightforward computation of uncertainty estimates. Site-wide 

uncertainty reduction can be visualized by comparison of prior and posterior mass 

discharge curves. Synthetic and field results demonstrate its utility under a variety of 

settings, e.g. when uniform hydrological and Archie parameters are estimated jointly. 
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This new framework can be readily extended to solving other complex problems (e.g. 

multiple modalities) of interest that is monitored by geophysical data. We have only 

used ERT data in our analysis but the framework is highly flexible that it is 

straightforward to incorporate multiple data types. Our method complements 

electrical resistivity imaging and is particularly applicable to sites where some prior 

characterization is performed and uncertainty estimates for the parameters that drive 

the underlying processes observed are desired. 
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Abstract   

The spatiotemporal distribution of pore water in the vadose zone can have a critical 

control on many processes in the near‐surface Earth, such as the onset of landslides, 

crop yield, groundwater recharge, and runoff generation. Electrical geophysics has 

been widely used to monitor the moisture content (𝜃) distribution in the vadose zone 

at field sites, and often resistivity (𝜌) or conductivity (𝜎) is converted to moisture 

contents through petrophysical relationships (e.g. Archie's law). Though both the 

petrophysical relationships (i.e. choices of appropriate model and parameterisation) 

and the derived moisture content are known to be subject to uncertainty, they are 

commonly treated as exact and error‐free. This study examines the impact of uncertain 

petrophysical relationships on the moisture content estimates derived from electrical 

geophysics. We show from a collection of data from multiple core samples that 

significant variability in the 𝜃(𝜌)  relationship can exist. Using rules of error 

propagation, we demonstrate the combined effect of inversion and uncertain 

petrophysical parameterization on moisture content estimates and derive their 

uncertainty bounds. Through investigation of a water injection experiment, we 

observe that the petrophysical uncertainty yields a large range of estimated total 

moisture volume within the water plume. The estimates of changes in water volume, 

however, generally agree within (large) uncertainty bounds. Our results caution 

against solely relying on electrical geophysics to estimate moisture content in the field. 

The uncertainty propagation approach is transferrable to other field studies of 

moisture content estimation. 

Key points: 

 Field evidence demonstrating strong variability of 𝜃(𝜌) relationships at the site 

is provided 

 The proposed methods show the impact of different uncertain 𝜃(𝜌) models on 

𝜃 estimates from ERT and their associated uncertainty bounds  

 Nevertheless, different Archie models give consistent difference in 𝜃 estimates, 

though their uncertainty bounds are large 
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Plain language summary 

Maps and images of electrical resistivity have been widely applied to effectively 

monitor the wetting or drying of the Earths' near‐surface. But how well can they 

quantify such change? How variable are the petrophysical model parameters that 

relate resistivity and moisture content? Does uncertainty in such relationships impact 

our confidence in moisture content estimates from resistivity imaging? Our analysis of 

field samples collected at a UK field site reveals great variability in petrophysical 

parameters. Using a uncertainty propagation method, which combines the uncertainty 

contributions from both petrophysical parameters and resistivity data errors, we find 

that the variable petrophysical parameters can lead to high uncertainty in moisture 

content estimates and they appear to be the dominating factor in many cases. These 

effects on uncertainty are greater than previously appreciated. The implication is that 

realistic uncertainty bounds are needed whenever electrical geophysical methods are 

used to quantify the amount of water present underground or its changes over time. 

The findings highlight the importance of better characterization of petrophysical 

parameters and the need to supplement the interpretation of resistivity‐based moisture 

content estimates with other data sources. 

1) Introduction 

Monitoring the amount of moisture in the Earth's near‐surface is critical in 

many applications. For example, the distribution of soil moisture is an important 

trigger for landslides (Ray and Jacobs, 2007). The amount of water available for root 

water uptake is the most important factor for crop yield (Ahmed et al., 2018). Similarly, 

the saturation of the vadose zone governs the rate of groundwater recharge and travel 

times of surface contaminants (e.g., nitrate) to an aquifer (Green et al., 2018; Turkeltaub 

et al., 2018). 

The measurement of moisture content ( 𝜃 ) in the subsurface is not 

straightforward. Point sampling can only cover a small number of discrete points in 

an investigation area and can be labor‐intensive. These point data may not be 

representative of site‐scale variability. In addition, intrusive sampling may disrupt the 
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critical processes occurring in the soil (e.g., root growth). Alternative field methods are 

needed to improve our ability to measure and monitor moisture content. A 

comprehensive review of the different ground‐based methods to determine soil 

moisture is given by Jonard et al. (2018). 

The well‐established correlation between moisture content and the bulk 

resistivity (𝜌) in porous media (Glover, 2015; Lesmes and Friedman, 2005) allows the 

use of electrical methods (e.g., electrical resistivity tomography [ERT] and 

electromagnetic induction [EMI]) to be applied to study vadose zone processes. They 

can be used to derive 2‐D or 3‐D distributed resistivity models over a relatively large 

area, and these resistivity models can, in turn, be used for translation to moisture 

content via petrophysical relationships. ERT or EMI offers much larger spatial 

coverage than point‐based methods without disrupting the Earth materials. 

Specifically, ERT is typically performed in transects or between boreholes, while EMI 

tends to provide even greater spatial coverage since it is commonly used for mapping. 

When applied in time‐lapse mode, they can be a powerful tool to reveal temporal 

variations in soil moisture (Robinson et al., 2009). 

Over the past two decades, electrical geophysics has been widely used in many 

applications in the vadose zone, and increasingly the resistivity images are translated 

to obtain quantitative estimates of moisture content. Examples of these applications 

include monitoring the onset of landslides (Lehmann et al., 2013; Uhlemann et al., 2017), 

hillslope moisture dynamics (Bass et al., 2017; Cassiani et al., 2009; Hübner et al., 2015; 

Yamakawa et al., 2012), seasonal changes in soil moisture dynamics (Amidu and 

Dunbar, 2007; Binley et al., 2002b), root zone water uptake (Beff et al., 2013; Brillante et 

al., 2015; Garré et al., 2011), unfrozen moisture in permafrost (Oldenborger and 

LeBlanc, 2015), soil moisture profiles beneath different wheat genotypes (Shanahan et 

al., 2015), watershed characterization (Miller et al., 2008), and wetland dynamics 

(Chambers et al., 2014b; Scaini et al., 2017; Uhlemann et al., 2016). Previous laboratory 

studies have shown that ERT is suitable for characterizing moisture content dynamics 

and tracer breakthrough in the unsaturated zone (e.g. Koestel et al., 2008; Wehrer and 

Slater, 2015). 
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To translate resistivities to moisture content, a petrophysical relationship needs 

to be determined. (Note that although the root “petro” implies an application related 

to rocks [as in this study], similar physical laws applies to soils as well.) One common 

method is to take core samples from the field for laboratory testing (Amidu and 

Dunbar, 2007) using well‐established procedures (see Hen-Jones et al., 2017; 

Jayawickreme et al., 2008). The samples are often oven dried and re‐wetted, and their 

resistivities are then repeatedly measured as their saturation changes. Although 

hysteresis has been reported in the wetting‐drying behavior of samples, laboratory 

testing is usually only applied to a single drying or wetting regime. Another method 

is to calibrate field‐based inverted resistivity from ERT with in situ measurements of 

soil moisture, for example, using time domain reflectometry (TDR) probes. Several 

studies have compared moisture content estimates from TDR and ERT (Brunet et al., 

2010), and in recent years it has become increasingly popular to use such field‐derived 

petrophysical relationships. The local TDR‐derived moisture content is taken as error‐

free, and this is typically used to calibrate against inverted resistivities using Archie's, 

Waxman–Smits (Cassiani et al., 2009; Garré et al., 2013; Lehmann et al., 2013; Michot et 

al., 2003), or data‐driven models (Brillante et al., 2014). More recently, calibration 

methods have been developed for apparent electrical conductivity from EMI against 

TDR‐derived moisture content (Robinet et al., 2018). The repeated EMI‐moisture 

content monitoring study of Martini et al. (2017)shows that this is not as 

straightforward as the relationship between electrical conductivity and moisture 

content can change with time. Whalley et al. (2017) compared the change in electrical 

conductivity from EMI and ERT with changes in water content from neutron probe 

measurements. The third (and perhaps most common) option is to simply use 

literature values for petrophysical parameters (e.g., Friedman, 2005). Regardless of the 

method for the assignment of petrophysical relationships, errors will be present in 

some form. Laboratory measurements assume the observed relationship and errors 

from small samples taken at a few locations can be applied to the entire resistivity 

model. Field‐based petrophysical relationships, on the other hand, assume the inverted 

resistivity model having insignificant and uncorrelated errors so that they can be used 
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to calibrate against in situ soil moisture data. In other words, the resistivity model 

uncertainty is implicitly counted twice. 

The uncertainty of the moisture content estimates from electrical geophysics 

not only stems from the uncertainty in the resistivity model, but it also propagates 

through from any constitutive relationships linking geophysical and hydrological 

properties, and yet these relationships are frequently assumed to be precise and error‐

free (Binley et al., 2015), in part due to the time and effort required to measure 

petrophysical parameters in the lab. In fact, they are known to be uncertain due to the 

competing properties of the pore fluids, pore geometry, and pore surface area on 

resistivity measurements (Weller et al., 2013). Petrophysical model uncertainty is also 

one of the primary factors limiting the utility of coupled inversion approaches (i.e., 

joint estimation of geophysical and hydraulic properties; Singha et al., 2015). While 

some stochastic modeling approaches (e.g. Hermans et al., 2015; Hinnell et al., 2010; 

Wiese et al., 2018) allow some modifications so that petrophysical model uncertainty 

can be accounted for, resolving issues caused by such uncertainty remains an area of 

research. Recent coupled inversion approaches allow the option to jointly estimate 

petrophysical parameters. Kuhl et al. (2018) devised a coupled inversion approach to 

jointly estimate soil hydraulic parameters, petrophysical parameters, and root 

parameters simultaneously. Such methods are promising, but there are concerns over 

the non‐uniqueness in the inverse problem formulation and that the petrophysical 

parameters obtained may merely be “effective” ones. In summary, research is needed 

to investigate the extent of the impact on moisture content estimates due to uncertain 

petrophysical relationships. 

The oil and gas industry, from where many of the foundational petrophysical 

relationships used in hydrogeophysics are borrowed, or originate, has been aware of 

the potential impact of petrophysical uncertainty. For example, Glover (2017) 

highlighted that various sources of uncertainties in Archie parameters can lead to 20–

40% error in hydrocarbon saturation. For instance, even an uncertainty of 0.01 in a 

saturation exponent of 2 (i.e., 0.5% or 2 ± 0.01) would result in an error in global oil 

reserves of about USD ±254.36 billion based on figures in December 2015. While it is 



Introduction  

 

 

216 

 

difficult to put a monetary value on many near‐surface applications, the above 

calculation underscores the highly sensitive nature of petrophysical parameters, and 

one should anticipate a similar scale of error in soil water content estimation from 

electrical hydrogeophysics. 

It is not until recently that the issues associated with petrophysical uncertainty 

have been investigated. The pioneering work of Brunetti et al. (2018) considered the 

effect of petrophysical uncertainty on using ground penetrating radar (GPR) data for 

Bayesian hydrological model selection. There has also been some study on the 

parameter uncertainty of petrophysical models. For instance, Laloy et al. (2011) tested 

five “pedo‐electrical” models for the reproduction of electrical resistivity (determined 

by ERT) in a silt loam soil sample across a range of moisture and bulk density values. 

They were inverted within a Bayesian framework, thereby identifying not only the 

optimal parameter set but also the parameter uncertainty and its effect on model 

prediction. However, to date, there has not been any study on how the uncertainty of 

petrophysical relationships affects the quantitative estimation of soil water in the 

vadose zone using electrical geophysics. The findings on this question are relevant to 

many applications mentioned above. 

In this work, we present a first attempt to investigate the extent to which 

moisture content estimates are affected by uncertainty in petrophysical models. Our 

aims are to understand the likely variability in petrophysical models and to develop a 

method for petrophysical uncertainty propagation, which can be used to explore 

contributions to uncertainty in the estimation of soil moisture. We review time‐lapse 

ERT monitoring data of a controlled infiltration experiment and the rock core data 

collected in the same formation. We test the two types of petrophysical models on the 

core data and apply it to the inverted resistivity model, while keeping track of the 

uncertainty propagation quantitatively. The methods and data used in this work are 

detailed in section 2. We report results from our analysis in section 3. Finally, we 

discuss our findings in section 4 and provide our conclusions in section 5. 
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2) Materials and methods 

Our study focuses on data from earlier comprehensive field and laboratory 

investigations, at Hatfield (near Doncaster, South Yorkshire, UK) and Eggborough 

(near Selby, North Yorkshire, UK). Two field sites, 17 km apart from each other, were 

instrumented to study recharge processes to a Sherwood Sandstone aquifer. Tracer 

injection experiments, monitored by both ERT and GPR, were performed at both sites. 

At Eggborough, ERT and GPR surveys were conducted in 1999 (Binley et al., 2002a; 

Cassiani and Binley, 2005), and the data were used to study the utility of joint inversion 

of ERT and GPR data (Bouchedda et al., 2012; Linde et al., 2006) and the influence of 

prior information on vadose zone parameters estimation in stochastic inversion 

(Scholer et al., 2011). Similarly, both ERT and GPR surveys were conducted during 

tracer injection at Hatfield, and they have been used in a series of studies to improve 

the monitorability and predictability of vadose zone processes using geophysical 

measurements (Binley et al., 2004, 2002a, 2002b, 2001; Binley and Beven, 2003). Two 

radar and four ERT boreholes were drilled around an injector to monitor tracer 

injection. Each ERT borehole consists of 16 stainless steel mesh electrodes equally 

spaced at 0.733 m between 2 and 13 m depth. The borehole electrodes were 

supplemented with eight surface electrodes. Two cored boreholes were drilled close to 

the tracer injection area to obtain a depth profile of grain size distribution. Note that 

the top 2 meters is topsoil while its underlying material is weakly cemented sandstone. 

A similar borehole ERT and GPR setup was applied for the monitoring experiment at 

the Arreneas infiltration plant in Denmark (Haarder et al., 2012; Looms et al., 2008). 

In this study, we fitted the Archie relationships for the cores collected at 

Eggborough and used them as realizations of petrophysical models. We then 

simulated the ERT response of a water injection experiment, assuming a baseline 

petrophysical relationship. We then inverted the ERT response and use each of the 

realizations of petrophysical models to estimate moisture content with uncertainty 

bounds, which we compared against the simulated value. We summarize the 

workflow of our approach in Figure 1. 



Materials and methods  

 

 

218 

 

 

Figure 1 Moisture content (𝜽) estimation and petrophysical uncertainty propagation workflow used in 

this study. Rectangles indicate model inputs or data, while ovals represent modeling or analysis steps. 

We obtained synthetic ERT and 𝜽 data using PFLOTRAN‐E4D. Then we inverted the ERT data and 

used the Eggborough cores as different petrophysical models. They were passed through the moisture 

content estimation and uncertainty estimation framework to obtain ERT‐estimated 𝜽, which were 

compared against the 𝜽 data. ERT = electrical resistivity tomography. 

 

2.1. Eggborough Core Samples 

Core samples collected at Eggborough were used to measure the spectral 

induced polarization responses at various saturations (Binley et al., 2005), and they are 

compared with various physical and hydraulic properties (Supporting Information 

Table S2). They found a strong correlation between mean relaxation time and hydraulic 

conductivity and showed that the former is affected by saturation. Binley et al. (2005) 

did not include the data showing the direct current (DC) resistivity and hydraulic 

properties were not published. Also, they focused their analysis on only three of the 

samples extracted. In this work, we examine the DC resistivity–saturation behavior of 

all the samples to understand its variability and the impact of such variability on 

estimating moisture content from ERT. 

The grain size distribution of the Eggborough cores and blocks are plotted as 

percentiles (Figure 2a). Also, the percentages of sand, silt, and clay at Eggborough are 

plotted as depth profiles (Figure 2b). Note that the cores are not repacked sample but 

instead they are weakly cemented core plugs. In this work, we use the Eggborough 

data to obtain petrophysical relationships for predicting moisture content in a water 

injection simulation. 
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Figure 2 (a) Cumulative density functions of grain size distribution of Eggborough cores and blocks. 

The legend shows the core or block ID. (b) Depth profiles of sand (blue), silt (red), and clay (yellow) 

percentages for Eggborough cores. 

2.2. Water Injection Simulation 

The March 2003 tracer infiltration experiment at Hatfield (Binley, 2003; 

Winship et al., 2006) used a tracer that consisted of 1,200 L (or 1.2 m3) of water, dosed 

with NaCl to give an 𝜎𝑓 of 2,200 μS/cm (groundwater 𝜎𝑓 was 650 μS/cm). The tracer 

was injected over a period of 3 days, from 14 March 2003 to 17 March 2003 at a steady 

rate of 17 L/hr. The tracer injection port was screened between 3 and 3.5 m below 

ground surface. The water table was at 10 m below ground surface. The layout of the 

electrodes is shown in Figure 5. 

Since our focus here is the change in moisture content, we numerically repeat 

the Hatfield 2003 injection experiment with groundwater instead of a conductive tracer. 

We used the parallel coupled hydrogeophysics code PFLOTRAN‐E4D (Johnson et al., 

2017) to simulate the flow and transport of the water injection and to obtain the 

corresponding ERT response. PFLOTRAN (Hammond et al., 2014) is a subsurface flow 

and reactive transport code, and we use the Richards model to simulate variably 

saturated flow. E4D (Johnson et al., 2010) is a 3‐D modeling and inversion code 

designed for subsurface imaging and monitoring using static and time‐lapse 3‐D 

electrical resistivity or spectral induced polarization data, which we use here as a 
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forward ERT simulator. The PFLOTRAN grid consists of 129,600 cells that are 0.25 to 

1 m wide and 0.5 m thick. The E4D mesh is an unstructured tetrahedral mesh generated 

by tetgen (Si, 2015). The resultant mesh comprises 8,124 nodes and 46,842 elements. 

PFLOTRAN‐E4D interpolates and maps the PFLOTRAN outputs to electrical 

resistivity on the E4D mesh given element‐wise petrophysical transform. ERT 

snapshots are taken on Days 7, 9, 10, 15, 18, 21, 27, and 41. We assume a 2% 

measurement error in each of the 3,108 measurements taken in each frame. An 

additional 2.5% is added to the data errors in the inversions to account for forward 

modeling errors. The hydraulic conductivity field is assumed uniform and uses the 

values reported in Binley et al. (2002a). The parameters used in the simulation can be 

found in Table 1. The assumed petrophysical parameters are also plotted in Figure 4.  

Parameters Value Parameters Value 

Initial water saturation 0.375 Water fluid conductivity 650 μS/cm 

Injector depth interval 3-3.5 m Assumed 𝑛 1.35 

Water injection Rate 0.408 m3/d Assumed ρs (at 650 μS/cm) 44 Ω m  

Injection period Day 8-11 Assumed ERT data errors 4.5% 

Hydraulic conductivity 0.4 m/d van Genuchten 𝛼 10 m−1 

Porosity 0.32 van Genuchten 𝑛 2.5 

    
Table 1 Parameters used for the water injection experiment. 

 

2.3. Petrophysical models 

2.3.1. Archie’s Law 

Assuming a minimal contribution from electrical conductivity on the grain 

surface, Archie's law relates bulk electrical resistivity 𝜌  (1/conductivity) to fluid 

saturation 𝑆. It is given by 

𝜌 = 𝜎𝑓
−1𝜙−𝑚𝑆−𝑛            (1) 

where 𝑚 is the cementation factor, 𝜎𝑓 is the fluid conductivity, 𝜙 is the porosity, and n 

is the saturation exponent. Assuming constant material and fluid properties (e.g., 𝑚, 𝑛, 

and 𝜎𝑓), Archie's law can be re‐written in terms of the electrical resistivity at saturation 

(i.e., 𝑆 = 1), which is given by 
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𝑆 = (
𝜌𝑠

𝜌
)

1

𝑛
       (2) 

where 𝜌𝑠 = 𝜎𝑓
−1𝜙−𝑚 . To obtain best‐fit estimates of Archie parameters, a straight line 

is fitted for  log10(𝑆) and log10(𝜌𝑠) using the least‐squares criterion. The fitting routine 

returns the covariance structure of the model estimates, which can be used to 

determine the 68% confidence interval (1 standard deviation) of the model estimates. 

Note that 𝜌𝑠  corresponds to a particular 𝜎𝑓 . Therefore, it needs to be scaled when 

applied to a different 𝜎𝑓 using equation 1. We note that constant fluid conductivity 

may not be appropriate in a range of environments (e.g., Altdorff et al., 2017). Because 

the clay content in the cores is low, the results from fitting the Waxman–Smits model 

are not reported. Note that saturation and moisture content 𝜃 are related by 𝑆 = 𝜃/𝜙. 

The total amount of moisture 𝑉𝑤 within a volume 𝑉 is given by 𝜙𝑉𝑆. 

 

 The fractional change of 𝜃, or equivalently that of 𝑆, is given by 

𝜃𝑡

𝜃0
= (

𝜌𝑡

𝜌0

𝜎𝑓,𝑡

𝜎𝑓,0
)

−1

𝑛
         (3) 

where the subscirpts 𝑡 and 0 represent the variable at time 𝑡 and at baseline. 

 

2.4. ERT modelling and inversion 

We use the code R3t version 1.8 

(www.es.lancs.ac.uk/people/amb/Freeware/R3t/R3t.htm) for ERT inversion. To obtain 

the resistivity variation, we seek to find a model solution that minimizes the following 

objective function: 

Φ = Φ𝑑 +Φ𝑚 = (𝑑 − 𝐹(𝑚))
𝑇
𝑊𝑑
𝑇𝑊𝑑(𝑑 − 𝐹(𝑚)) + 𝛼𝑚

𝑇𝑅𝑚          (4) 

where 𝑑 is the data (e.g., measured apparent resistivities), 𝐹(𝑚) is the set of simulated 

data using the forward model and estimated parameters 𝑚. 𝑊𝑑 is a data weight matrix, 

which, if we consider the case of uncorrelated measurement error and ignore forward 

model errors, is a diagonal matrix with entries equal to the reciprocal of the errors of 

each measurement. Forward modeling errors are also added to the diagonal of 𝑊𝑑. 𝛼 

http://www.es.lancs.ac.uk/people/amb/Freeware/R3t/R3t.htm
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is the scalar regularization factor, while 𝑅 is a roughness matrix that describes the 

spatial connectedness of the parameter cell values. 𝛼 is selected via a line search, and 

isotropic smoothing is applied. 

Using a Gauss–Newton procedure, the above is solved iteratively using the following 

solution: 

(𝐽𝑇𝑊𝑑
𝑇𝑊𝑑𝐽 + 𝛼𝑊𝑚

𝑇𝑊𝑚)∆𝑚 = 𝐽𝑇𝑊𝑑(𝑑 − 𝐹(𝑚)) − 𝛼𝑅𝑚𝑘    (5) 

𝑚𝑘+1 = 𝑚𝑘 + ∆𝑚 

where 𝐽  is the Jacobian (or sensitivity) matrix, given by 𝐽𝑖,𝑗 = 𝜕𝑑𝑖 𝜕𝑚𝑗⁄ ; 𝑚𝑘  is the 

parameter set at iteration 𝑘; and ∆𝑚 is the parameter update at iteration 𝑘. For the DC 

resistivity case, the inverse problem is typically parameterized using log-transformed 

resistivities. 

For analysis of time-lapse ERT, we follow the difference inversion approach 

(Labrecque and Yang, 2001) to invert on the change in ERT data. Its model penalty 

function seeks to minimize model variation relative to a reference mode 𝑚𝑟𝑒𝑓:  

Φ𝑚 = 𝛼(𝑚 −𝑚𝑟𝑒𝑓)
𝑇
𝑅(𝑚 −𝑚𝑟𝑒𝑓)       (6) 

Again, using a Gauss-Newton procedure, the objective function can be solved 

iteratively by: 

(𝐽𝑇𝑊𝑚
𝑇𝑊𝑚𝐽 + 𝛼𝑅)∆𝑚 = 𝐽𝑇𝑊𝑑 ([(𝑑 − 𝑑𝑟𝑒𝑓) − (𝐹(𝑚) − 𝐹(𝑚𝑟𝑒𝑓))]) − 𝛼𝑅(𝑚 −𝑚𝑟𝑒𝑓)    

𝑚𝑘+1 = 𝑚𝑘 + ∆𝑚     (7) 

where 𝑑𝑟𝑒𝑓 is the baseline data vector. This approach, which has been proven to be 

effective in removing the effect of systematic errors (e.g., artifacts), has been applied to 

numerous time‐lapse imaging studies (Doetsch et al., 2012b; LaBrecque et al., 2004). 

Note that the same mesh is used for both ERT forward modeling and inversion. 

 

2.5. Uncertainty propagation and moisture content estimation 

After inverting the electrical resistivity models, we can obtain the 

corresponding element‐wise moisture content using the petrophysical relationships. 
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The quantity of water within a certain volume is given by the spatial integral of the 

moisture content within the volume. 

Rules of analytical uncertainty propagation (Chen and Fang, 1986; Taylor, 1982) 

were followed to propagate petrophysical uncertainty to moisture content estimates at 

each element. The uncertainty of saturation estimated from Archie's law is given by 

the following equation (see Appendix A for details): 

𝜎𝑆
2 = (

𝜕𝑆

𝜕𝜌
)
2
𝜎𝜌
2 + (

𝜕𝑆

𝜕𝜌𝑠
)
2
𝜎𝜌𝑠
2 + (

𝜕𝑆

𝜕𝑛
)
2
𝜎𝑛
2       (8) 

where 𝜎2 is the variance of parameters. 𝜎𝜌𝑠
2  and 𝜎𝑛

2 are determined by the parameter 

fitting procedures.  𝜎𝜌
2 are determined by running Monte Carlo simulations of ERT 

inversion (Aster et al., 2005; Tso et al., 2017). This procedure, in essence, samples the 

measurement errors based on the prescribed error levels and obtains a distribution of 

inverted resistivity at each cell due to the perturbed measurements. The first term in 

the above equation can be viewed as the variance contribution from the variance of 

ERT inversion, while the other terms are the contributions from the uncertainty in the 

petrophysical fits. When evaluating the difference in saturation between two survey 

times, it is important to take account of the fact that their uncertainties may be 

correlated. Therefore, the variance of the difference in saturation 𝛥𝑆 is given by 

𝜎∆𝑆 = √𝜎𝑆
2 + 𝜎𝑆0

2 − 2cov(𝑆, 𝑆0)       (9) 

where 𝑆0 is saturation at baseline and cov(𝑆, 𝑆0) is approximated by all the 𝑆 values in 

the model domain at the two times. The variance of saturation can be converted to that 

of the total amount of water (𝑉𝑤) within a volume by 

𝜎𝑉𝑊
2 = (

𝜕𝑉𝑊

𝜕𝜙
)
2
𝜎𝜙
2 + (

𝜕𝑉𝑊

𝜕𝑆
)
2
𝜎𝑆
2 = (𝑉𝑆)2𝜎𝜙

2 + (𝑉𝜙)2𝜎𝑆
2      (10) 

If porosity 𝜙 is assumed to be known and constant, the first term is dropped. For a 

finite element domain consisting of many elements, the total variance is simply the 

sum of variances of all the elements. 
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3) Results 

3.1. Fitting Archie models 

Figure 3 shows the water saturation–electrical resistivity relationship of 12 of the 

Eggborough cores and blocks. Note that some sample exhibits rather large scatter, and 

in a few occasions, the resistivity shows a decrease with decreasing saturation. Archie's 

law is fitted on the data. The best‐fit line and the corresponding ±1 standard deviation 

envelope are also plotted. Both 𝜌𝑠  (27.45–64.35 Ω m ) and n (0.513–2.174) show 

significant variability. As observed in Table S1, the variability in Archie parameters 

does not tend to correlate with texture‐related properties. In most previous studies 

literature‐based estimates of Archie parameters are adopted, and where laboratory 

analysis is carried out, only a few samples are used. The significant variability (within 

the same unit) and lack of correlation with other properties presented here illustrate 

the challenge of constraining Archie parameters in the field. Our data show two 

distinct groups of clay contents (∼2% and ∼3.5%), and the corresponding Archie 

parameters show slightly different ranges. Figure 3 also shows the Archie's parameter 

estimation of all Eggborough cores and blocks. The predictions using the best estimate 

of the parameters are shown in solid lines, while the 68% (i.e., ±1 standard deviation) 

confidence intervals are shown in dashed lines. It shows that when fitting all of the 

cores and blocks together, the resultant standard deviation is low, leaving some data 

points outside the ±1 standard deviation envelope. We have also included the fit for 

Hatfield cores reported in Binley et al. (2002b) and summarize all the Archie models in 

Figure 4. Further details, including hydraulic and surface area measurements, of the 

Eggborough cores and blocks can be found in Table S2.   
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Figure 3 Archie's parameter estimation of individual Eggborough cores and blocks. The predictions 

using the best estimate of the parameters are shown in solid lines, while the 68% (i.e., ±1 standard 

deviation) confidence intervals are shown in dashed lines. Note that the measurements are made at  

𝝈𝒇 = 𝟏𝟎𝟎𝟎 𝛍𝐒 𝐜𝐦
−𝟏. Note that 𝝆, which is the dependent variable, is shown on the x‐axis.  

 

Figure 4 Summary of Archie model fits for the Eggborough/Hatfield cores and blocks. Note that 

values correspond to  𝝈𝒇 = 𝟏𝟎𝟎𝟎 𝛍𝐒 𝐜𝐦
−𝟏. The point label “synthetic” is the “true” solution 

considered in the synthetic study in section 3.2. 
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3.2. Moisture content estimation for the water injection simulation 

The time‐lapse ERT monitoring data during the water injection simulation was 

inverted using a difference inversion as described above. The iso‐surfaces in Figure S1 

show a volume that has 5.5% reduction of resistivity relative to baseline (Day 7). The 

inversion results capture the geometry and the swell‐shrink dynamics of the plume 

very well. The plume expanded gradually once the injection commenced and then 

migrated downward within a few days after the injection finished. 

Our subsequent results focus on an ERT snapshot 10 days after the injection 

(Day 18). Figures 5a and 5b show the resultant mean and standard deviation of 

electrical resistivities obtained from Monte Carlo runs of ERT inversion. Since we have 

assumed uniform initial saturation, the variation of resistivity is within the same order 

of magnitude. The center region of the ERT array shows reduced resistivity due to 

injection. The standard deviation is higher around the electrodes and is lower in the 

center region because the resolution of ERT decreases away from electrodes. 

Conceptually, however, the uncertainty in the center region through which the water 

plume evolves should be higher. This issue is not addressed in this study. Based on the 

Monte Carlo inversion results, Figure 5c shows the volume extracted from the ERT 

inversion domain where there is at least a 5.5% reduction in resistivity on Day 18 

relative to the pre‐injection baseline (Day 7). Such a threshold is used so that the effects 

of inversion artifacts are minimized. The size of this volume is 79.97 m3. The total 

amount of water in this volume at Days 7 and 18 are 9.65 and 10.68 m3, respectively. 

The resistivities on the nodes of the extracted volume were converted to saturation 

using the different petrophysical relationships (i.e., Archie model fits) discussed above, 

while a Monte Carlo experiment was run to estimate the uncertainty in the inverted 

resistivities. 
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Figure 5 (a) Mean (log10) and (b) standard deviation (linear) of electrical resistivity for Day 18 obtained 

from Monte Carlo runs of electrical resistivity tomography inversion. (c) Extracted volume where there 

was a 5.5% reduction of resistivity relative to baseline on Day 18. The purple cubes are electrode 

locations.  

For each of the petrophysical models, we then integrate the moisture contents 

over the extracted volume to estimate the total water volume (𝑉𝑤) in it. At the same 

time, we derive error bars for the total water volume estimates using equations 8 and 

9. Figure 6a shows the mean and uncertainty bounds for the amount of water within 

the extracted volume, assuming a constant porosity of 0.32. For Day 18 (post‐injection), 

best estimates of total water volume among Archie models lie between 8.70 m3 

(Binley02) and 16.74 m3 (VEC15‐5), except for VEG2R1 and VEC18‐1 that lie at 2.51 and 

3.88 m3, respectively. The size of the error bars varies between ±0.68 m3 (VEG2R1) and 

±2.28 m3 (VEG15‐8), or between 9.59% (VEC18‐2) and 27.01% (VEG2R1), depending on 

the Archie parameters estimates and their uncertainties. We observe similar results for 

Day 7 (pre‐injection), yet we note that while the size of the error bars generally 

increases from Day 7 to Day 18, the increase ranges from 0.19 m3 (HEC15‐1) to 0.72 m3 

(“all”). 
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Figure 6 (a) Total water volume within the extracted volume (with uncertainty bounds) using the 

different petrophysical models. The uncertainty bounds correspond to ±1 standard deviation. The 

vertical lines show the true total water volume. (b) The corresponding changes in the amount of 

moisture within the extracted volume relative to baseline. The vertical lines show the true change in 

total water volume. (c) The contribution of different variables to the variance of total moisture of each 

petrophysical models. (d) Additional variance (i.e., uncertainty) caused by uncertain porosity values 

(0.32±0.032). The contribution from uncertain porosity is significant in most cases, especially when the 

variance in saturation is low. 

Figure 6b shows the change in total water volume on Day 18 relative to baseline. 

The mean change is the difference between the total water volume at the two times. 

Using equation 10, the error bars shown here have accounted for potential correlation 

between total water volume estimates between the two times. As a result, when fluid 

conductivity is assumed constant, the uncertainty bounds for the change in total 

moisture would lie between one and two times of that of the total moisture. The Archie 

models estimate an increase in mean change in total water volume of 0.46 m3 (VEG2R1) 

to 1.08 m3 (VEG2R2). They are more consistent than the estimates of the absolute total 

water volume. Note that the total injection volume was 1.224 m3 , meaning all the 

models have underestimated the addition of water due to injection. The uncertainty 
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bounds in Figure 6b are generally large, ranging from ±0.71 m3 (VEG2R1) to ±2.96 m3 

(VEC15‐8), or 154% (VEG2R1) to 350% (HEC15‐1) of the mean value. This shows that 

even though the mean estimates for the change in total water volume using Archie 

models is consistent, they are nevertheless highly uncertain. 

The size of the error bars in Figure 6a is determined by a combination of the 

uncertainty of the petrophysical parameters (𝜌𝑠  and 𝑛 ) and that of the inverted 

resistivities 𝜌. Based on equations 8 and 9, the variance of the total moisture estimates 

is the summation of the squared product of the partial derivative and standard 

deviation of the individual terms. We plot the terms as stacked bars for Day 18 (post‐

injection) in Figure 6c to show their contribution to the total variance. The square root 

of the total height of the bars equals the size of the error bars in Figure 6a. The 

contribution from inverted resistivities 𝜌 is below 2 (m3)2 for all the Archie models. 

For the Archie models with variance smaller than 2 (m3)2, inverted resistivities can be 

an important source of errors; otherwise, the effects of uncertain petrophysical 

parameters dominate. Our results indicate that for the Archie models, 𝑛 plays a more 

important role than 𝜌𝑠, with the exception of Binley02, which shows very low n error. 

𝑛  contributes 3.88% (VEG2R1) to 69.25% (HEC15‐1) of the total variance, while 𝜌𝑠 

contributes 2.55% (VEG2R1) to 36.71% (VEC16‐3) of the total variance. 

So far we have assumed the porosity has a constant value of 0.32. Additional 

uncertainty is introduced if it is treated as uncertain. We consider the case where 

porosity is assumed to be 0.32 ± 0.032. In Figure 6d, the height of the blue bars is the 

total height of the bars in Figure 6c. The height of the yellow bars shows the additional 

variance due to the uncertain porosity value, which ranges from 0.0631 (m3)2 

(VEG2R1) to 2.8026 (m3)2 (VEC15‐5). Percentage‐wise, the uncertain porosity values 

lead to an increase in variance ranging from 13.7% (VEG2R1) to 108% (VEC18‐2). 

We have examined in Figure 6b the change in total moisture within the 

extracted volume. We examine in Figure 7 the change in volume of water within each 

finite element cell of the extracted volume. Figure 7a shows the estimated change in 

the volume of water (𝑉𝑤) in four selected cells. It is observed that while the true change 

spans from 0 to 0.18 m3, the estimates for Archie models stay within the 0 to 0.05 m3 
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range. Figure 7b shows the scatter plots for the ERT‐estimated Vw using the 15 Archie 

models. For all of them, the fit at individual cells is unsatisfactory. Conversely, in 

Figure 6b the changes in total moisture within the extracted volume are fairly 

consistent across the petrophysical models, and they agree with the true value. We 

observe that within the extracted volume (the threshold was change in inverted 

resistivity greater than 5.5%), 101 of 219 cells show change in saturation of less than 

0.01. This indicates the true water plume is much narrower than estimated by ERT 

inversion and highlights the detection limit of ERT, particularly in the context of 

smoothness‐constrained inversion used here. The smoothing effect of the ERT 

inversion, however, roughly preserves mass balance in this case. 

 

Figure 7 (a) Electrical resistivity tomography estimated changes in volume of water in four selected 

cells. The vertical lines indicate the true change. (b) Scatter plots showing the fit for change in volume 

of water at individual cells using the 15 Archie models. The red dashed line in each plot is the best‐fit 

line of the scatter points. 
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4) Discussion and implications for future research 

4.1. Fitting petrophysical models 

Most previous studies have either fitted petrophysical models for up to a few 

cores or used petrophysical parameters based on literature values without assuming 

any errors or uncertainty. Our results from cores collected at a relatively uniform and 

clay‐free sandstone unit suggest that in future studies, a wider range of petrophysical 

relationships or a larger uncertainty bound should be assumed. The 𝑛 and 𝜌𝑠 estimates 

do not appear to show significant correlation with other properties that were measured, 

making it difficult to constrain petrophysical relationships with more core samples. In 

fact, compared with previous studies at Hatfield and Eggborough, the use of more core 

data reveals greater petrophysical model uncertainty. The individual Archie model fits 

are good, but the concatenated data set shows a U‐shaped 𝜃(𝜌)  behavior, which 

suggests saturation is controlled by properties other than a saturation exponent or it 

implies a heterogeneous petrophysical parameter field. 

4.2. The uncertainty propagation approach 

We have proposed and demonstrated an effective procedure to propagate 

uncertainties in petrophysical relationships to uncertainties in the inferred moisture 

contents and the amount of water within the plume. The procedure requires mean and 

standard deviation of both the petrophysical parameters and the inverted resistivities. 

The application of this method on field data using two types of petrophysical models 

shows how uncertainty in petrophysical parameters and ERT data errors propagate 

through the modeling and inversion process and lead to uncertainty in moisture 

content estimates. Specifically, the inversion procedure smooths the resistivity profiles 

(a proxy of moisture content) spatially, while the uncertain petrophysical relationships 

add uncertainties to the quantitative conversion from resistivity to moisture content. 

These uncertainties, if untracked, can lead to significant bias and over‐confidence in 

the moisture content estimates. 

Part of our analysis has utilized a commonly employed smoothness‐based 

inversion for our geophysical data to evaluate the impact of uncertain petrophysical 
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relationship. Other inversion algorithms may yield different uncertainty estimates. In 

fact, a limitation of this work is that our computation of the uncertainty contribution 

from inverted resistivity only considered the propagation of data errors through the 

inversion code. We have assumed no uncertainty contribution from the choice of the 

inverse model, its resolution, or its discretization, mainly because there is no standard 

procedure to compute the uncertainty of an inverted resistivity field yet. Some 

emerging techniques, such as trans‐dimensional ERT (Galetti and Curtis, 2018), are 

attempts to address this issue. We also acknowledge Markov chain Monte Carlo 

sampling (Brunetti and Linde, 2018) may be more accurate and robust than the 

conventional MC sampling we use here. 

Finally, we note that our approach follows the classical approach to error 

analysis (Taylor, 1982). The extent to which some of the underlying assumptions are 

valid, such as whether the uncertainties of petrophysical parameters and inverted 

resistivities are independent, is open to future investigation. Nevertheless, we 

highlight that the uncertainty propagation framework presented in this work is flexible 

and straightforward. It is potentially applicable to any type of petrophysical models 

and inversion methods, and it may be extended to consider the uncertainty of the 

inversion itself. It is independent of the inversion methods and petrophysical models 

used, and we expect it to be used widely in future studies. 

4.3. Total moisture content estimation 

The great variety of petrophysical models lead to a large range of total water 

volume estimates (Figure 6a). This shows that using only a single petrophysical model 

deterministically can give misleading results. It also shows that any applications 

wishing to quantify the absolute amount of moisture present must not rely on 

geophysics alone. The changes in moisture content estimated by Archie's law, however, 

are generally consistent (Figure 6b). This can be explained by the work of Lehmann et 

al. (2013), who show that the fractional changes in moisture content obtained from 

electrical resistivity are a scaling of the saturation exponent only. This means the other 

parameters in simple empirical models do not play a role in converting ratios of 

inverted resistivities to ratios of 𝜃. Nevertheless, most applications are interested in at 
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least the difference of moisture content between two times, not just their relative 

change. We note the high uncertainty bounds associated with the change in 𝜃 obtained 

from most of the Archie petrophysical models. This shows that this scaling of 𝑛 can 

lead to highly uncertain estimates of the amount of the change. This effect should be 

acknowledged and assumed when interpreting ERT‐derived moisture contents. 

Moreover, other parameters in petrophysical models are still important in other 

frequently used methods. For example, coupled modeling of hydrogeophysics 

requires reliable petrophysical relationships. Examining the impact of the different 

uncertain petrophysical parameters and models remains an important research 

question. 

Our uncertainty analysis shows that for most cases, the uncertainty in ERT‐

derived saturation is dominated by uncertain petrophysical parameters, not uncertain 

inverted resistivities due to data errors (Figure 6c). This presents a challenge because 

unlike inverted resistivities, petrophysical uncertainties cannot be straightforwardly 

reduced by good quality data or better inverse modeling approaches. Future studies 

should focus their efforts on better characterizing petrophysical uncertainties and 

incorporating them in moisture content estimation procedures. Figure 6d also shows 

that significant additional uncertainty can be caused by uncertain porosity values. 

Since porosity ultimately controls the volume of pore space for water to fill, better 

characterization of it can reduce the uncertainty of the moisture content estimates from 

ERT. 

Our work has focused on a water injection experiment where there is no 

variation in fluid conductivity over time. Changes in fluid conductivity (e.g., in a saline 

tracer injection or leak of saline solute) will further complicate the estimation of 

moisture content changes since bulk resistivity is affected by both fluid conductivity 

and moisture content. When inverting time‐lapse ERT data, the change relative to 

baseline is often set to be minimized. This setting works well in our water injection 

experiment but may give an insufficient change in resistivity to account for both 

changes in saturation and fluid conductivity. 
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Since laboratory petrophysical measurements are labor‐intensive and time‐

consuming, many authors have used TDR data (in shallow vadose zone investigations) 

to fit field‐based petrophysical relationships (e.g. Fan et al., 2015). The typical setup, 

for shallow investigations, consists of a trench with ERT, TDR, and temperature 

sensors installed. This in situ setup can be viewed as advantageous over lab 

measurements since it correctly represents pore water conductivity (given dynamic 

exchange of ions between particles and pore water) and avoids forced conditions in 

the lab. Despite its advantages, the range of 𝜌 it considers is limited because only the 

range of the ERT‐measured apparent ρ are evaluated. Given the large variability of 

petrophysical relationships observed in this study, perhaps the TDR data are best used 

to independently verify or constrain the inverted moisture contents (e.g. Beff et al., 

2013). It is important to check independently whether the uncertainty bounds of ERT‐

predicted moisture content consistently capture the TDR data. While TDR or neutron 

probe can only be applied in shallow soil, radar can be used in deeper investigations. 

The joint use of ERT and radar measurements (e.g. Binley et al., 2002a; Linde et al., 

2006) yields independent estimates of moisture contents and allows cross‐validation. 

We have examined the changes in total moisture content in the extracted 

volume and at selected locations obtained from ERT and their agreement with the 

simulation. Future uncertainty studies should consider the agreement by comparing 

ERT estimates and other (e.g., TDR and neutron probe) data in the field. Further work 

should also examine the extent to which the uncertainty in ERT‐derived moisture 

content affects the decision making in specific applications, such as landslide 

monitoring or precision agriculture. 

4.4. Strategy when petrophysical data is unavailable 

With the increasing popularity of ERT or EMI studies for hydrological 

investigations, there will be an increasing number of studies that do not collect samples 

for petrophysical calibration, which is often more time‐consuming than the 

geophysical survey itself. Conversely, a few depth profiles of grain size distributions 

are relatively easy to obtain (e.g., using a hand auger) in near‐surface applications. Soil 

texture is commonly used to approximate unsaturated zone parameters through 
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pedotransfer functions (e.g., ROSETTA: Schaap et al., 2001; Zhang et al., 2016), and it 

will be useful if these functions can approximate the petrophysical parameters or 

models too. Future efforts should be devoted to building a global database on 𝜃(𝜌) and 

grain size distribution data, in order to formulate pedotransfer functions across sites. 

Data‐driven methods such as multiple adaptive regression splines (Brillante et al., 2014) 

are particularly suitable for this task because they are capable of handling fairly large 

datasets (e.g., 105 observations and 100 variables). We attempted to apply some of 

these methods to fit the Eggborough data (not reported here), but we have too few 

samples to apply them reliably. Nevertheless, they are potentially powerful methods 

to apply in the future once there is a database for near‐surface petrophysical 

measurements. 

4.5. Relevance to EMI and other geophysical methods 

We have focused mainly on the effect on ERT inversion results, but similar 

conclusions can be extended for EMI results or methods that use a combination of EMI 

and ERT results (von Hebel et al., 2014), as well as other applications in 

hydrogeophysics where petrophysical transforms are involved. Moreover, we 

recognize that there is a wealth of literature studying the spatial and temporal patterns 

of electrical conductivity and soil moisture in the Earth's near‐surface. Similarly, there 

have been many recent studies on data assimilation of moisture content data across 

multiple spatial scales (e.g. Zhu et al., 2017). Hydrogeophysicists, while frequently 

working at the plot‐scale and site‐scale, should be involved in these developments. 

Closer collaboration between soil scientists, geostatisticians, geophysicists, and 

hydrologists are needed to tackle this grand challenge. 

5) Conclusion 

Our study showed the extent of petrophysical variability present at a field site 

and demonstrated an approach to computing uncertainty bounds of moisture content 

estimates due to uncertain petrophysical models. First, we showed that highly variable 

petrophysical relationships can be observed in field samples of a relatively uniform 

and clay‐free sandstone unit. We then fitted and applied various petrophysical models 
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to convert ERT images to moisture content images. The different petrophysical models 

led to a wide range of total moisture content estimates of a plume, but their changes 

over time generally agreed. Using rules of error propagation, we were able to quantify 

the uncertainty bounds of the moisture content estimates and gained further insight 

by showing the individual contribution of the petrophysical parameters and inverted 

resistivities terms to the total uncertainty. We showed that, assuming the inverse 

model only smooths the resistivity field, the uncertainty is dominated by the 

petrophysical parameters. The total uncertainty was found to be 7.52–23.18% of the 

mean total water volume estimate. When translated to the change in time, the 

uncertainty can be as high as several multiples of the mean estimate—both 

uncertainties are higher than previously appreciated. 

Our results have highlighted the potential danger of converting ERT images to 

moisture content from similar environments using a single petrophysical model 

deterministically. In particular, they should not be used to quantify the amount of 

moisture present independently of other data. Although the different Archie 

petrophysical models give consistent estimates of the change in total water volume, 

their relatively large uncertainty bounds highlight that even though electrical 

geophysics reliably determines the direction of the change in 𝜃, its quantification of the 

amount of such change is highly uncertain. It is prudent to assume large uncertainties 

for 𝜃 and 𝛥𝜃 estimates where they have not been quantified. Data‐driven methods (e.g., 

multiple adaptive regression splines) have the potential to be applied to build 

petrophysical models where such data are unavailable. 
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Appendix A: petrophysical uncertainty propagation 

Following the analytical sensitivity analysis of Chen and Fang (1986) and Taylor (1982), 

we can obtain the uncertainty contributions of the various terms in Archie's law 

(equation 2). Assuming they have uncorrelated errors, by laws of error propagation, 

the variance of saturation is given by 
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Monte Carlo ERT inversion runs 

Given the data errors of the ERT measurements, the Monte Carlo uncertainty 

propagation procedure of Aster et al. (2005) (as used in Tso et al. (Tso et al., 2017)) can 

be used and is outlined below: 

8. Propagate the inverse solution 𝐦̅ into an assumed noise-free baseline jx1 data 

vector 𝐝 (where j is the size of number of measurements) using the forward 

model G: 

𝐆𝐦̅ = 𝐝        (11) 

9. Generate q realizations (i = 1, …, q) of noisy data about 𝐦̅ using the error 

model 

 𝐝i = 𝐝b + 𝛆.∗ 𝐙     (12) 

where 𝜺 is the j x1 vector of error levels predicted by the error model and Z is 

the standard normal distribution variable and .* is element-wise multiplication. 

10. Invert the q realizations (i = 1, …, q) of noisy data using the inverse model  

      𝐆𝐦i = 𝐝b + 𝛆i        (13) 

11. Let A be a q x m matrix where the i-th row contains the departure of the i-th 

model from the baseline inverse solution 𝑚̅ 

   𝐀i = 𝐦i
T − 𝐦̅T        (14) 

12. An empirical estimate of the model covariance matrix is given by 

         cov(𝐦̅) =
𝐀T𝐀

𝑞
        (15) 

13. 95% confidence interval about 𝐦̅ is given by 

         𝐦̅ ± 1.96 ∙ diag(cov(𝐦̅))1/2                      (16) 

14. Similarly, the coefficient of variation of the estimate is given by 

diag(cov(𝐦̅))1/2./𝐦̅𝑇                      (17) 

where ./ is element-wise division.                                       
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Figure S1. Inverted ERT images from the Hatfield controlled infiltration experiment. The 
electrode locations are shown in purple squares. The iso-surfaces show area that has 5.5% 
reduction of resistivity relative to baseline (Day 7). 

 

 

Table S1. Relationship between Archies parameters with clay content, cation exchange 
capacity (CEC), and surface area to pore volume ratio (Spor). Note that Spor data is not 
available for some cores. 

 
 

 

 

 

  

R2 Clay content  

(%) 

CEC 

(meq/100g) 

Spor  

(μm-1)  

𝜌𝑠 (m) 0.2655 0.2913 0.6301 

𝑛 (−) 0.0017 0.0871 0.2018 
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7. Discussion summary  

A primary goal of this thesis is to identify the sources of uncertainty in ERT 

data collection, modelling, inversion, and interpretation. In the introduction section, I 

outlined a 5-step workflow (Figure 1.1) for ERT and argued that information and 

uncertainty propagates through it. I then identified three specific research areas to 

address in chapters 4-6 of this thesis. I have reviewed in chapter 2 the geophysical 

methods that have been used extensively for nuclear site characterisation (particularly 

in the USA). Uncertainty and risk assessment is a recurring topic in these work because 

of the management decisions that are made at these sites. A comprehensive review of 

the sources of uncertainties in the ERT workflow was given in chapter 3, which 

provides an overview of existing work on handling uncertainty at specific stages of the 

workflow. Most of the work reviewed focused on inversion, with a few exceptions that 

considers the remaining aspects. Summaries of the findings of this thesis can be found 

below and in Figure 1. 

 Chapter 4 reviewed the various aspects of measurement errors in ERT. I 

compared the three common type of errors obtained during data acquisition—stacking 

errors, repeatability errors, and reciprocal errors and assessed the statistical 

distribution and correlation. Using data from two long-term monitoring dataset 

provided by the British Geological Survey, it was found that stacking errors are 

consistently an order of magnitude lower than others while repeatability and 

reciprocal errors tend to agree and show little auto-correlation. Since errors obtained 

in the field is only an instance in the assumed Gaussian distribution for noise, they 

need to be modelled before being fed to inversion. Linear models are commonly used 

to account for proportionality effects. It was found that each electrode used for making 

a ERT measurement has a secondary effect on errors. Such effect is incorporated using 

a new linear mixed effect model and it leads to superior inversion results in cases 

where certain electrodes are of significantly lower quality than others.  

In some applications, the goal of using ERT is to predict some quantities of 

interests while the ERT images themselves are not directly relevant. Chapter 5 assessed 

the benefit of leak parameter estimation using ERT data directly (i.e. without inversion). 
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It provided a first attempt to combine steps 3-5 of the ERT workflow (Figure 1, see also 

chapter 1) to estimate leak parameters directly from raw ERT data. This can be 

achieved by combining coupled hydrogeophysical modelling and data assimilation, 

where the ERT data misfits update the distribution of flow model parameters. The 

reduction of model uncertainty upon conditioning on ERT data can be visualised in 

reduced spread in model parameters as well as mass discharge curves over a user-

defined plane.  The proposed method is promising as it offers a way to estimate leak 

parameters from ERT data, but care should be taken in model proposals and 

interpreting the posterior. For leak detection and similar problems, the proposed 

method can provide additional insights that complements ERT inversion. It is 

particularly releveant to nuclear sites because most of them have undergone series of 

site investigation over the past decades and has a wealth of prior site characterisation 

information. It should be noted such framework is not limited to geophysical data but 

can be used in any site characterisation work. The key idea is to use data to constrain 

one’s prior understand of the site conceptualization. 

Geophysics are also frequently used in the unsaturated zone to infer changes 

in spatial distribution of moisture content with time. This is important because higher 

moisture content can mean more water available for crop growth or faster solute 

transport from near-surface sources to aquifers. However, the spatially varying 

resolution of geophysical inversion as well as the uncertainties in the petrophysical 

relationships relating moisture content and geophysical properties can complicate the 

inference of moisture content from geophysical data. Chapter 6 addressed a classic 

problem in the interpretation of ERT image—the quantification of an imaged moisture 

plume. The chapter examined the extent to which uncertain petrophysical 

relationships affect the estimation of soil water content (and its temporal changes). 

These effects were quantified and compared for the first time using an uncertainty 

propagation framework for resistivity-derived moisture content estimates. It was 

shown that natural variability of petrophysical models can be high and as a 

consequence the moisture content estimates can vary significantly. It was also shown 

that it is possible that petrophysical parameters to be a more significant source of 

uncertainty than ERT measurement errors and inversion. The original goal in chapter 
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6 was to quantify the uncertainty in the volume of a solute plume. However, there is 

no straightforward way to disentangle the contribution of saturation and solute 

concentration to resistivity. An analysis like the one in chapter 6 to solutes is highly 

relevant, but some major adaptations need to be made. 

 

Figure 1 A diagram summarizing the major findings in this thesis and their relation to the ERT 

workflow. 

Long-term ERT monitoring has provided a new dimension to the wealth of 

geophysical data available. For example, in the Sellafield data, daily data for about 1.5 

years is available. An initial ambition that was not materialized is to make use of the 

full time series of the ERT data such as to make "live" leak/no-leak calls based on raw 

ERT data and to automatically flag “interesting” time slices for inversion. In this thesis, 

however, full time series are only used in the measurement error characterisation 

chapter. Others have only used data from a few selected time slices available in order 

to save computation time (note that the observartion ensemble is ((𝑛𝑑 × 𝑛𝑡) × (𝑛𝑒), 

where 𝑛𝑑, 𝑛𝑡 and 𝑛𝑒 are number of measurements, number of time slices, and size of 

the ensemble respectively. Recently, I have come across statistical methods for 

changepoint detection (i.e. mean and/or variance shifts in time series) (Killick et al., 



Discussion summary  

251 

 

2012) to automatically identify features of interest from ERT data with both online and 

offline modes. It has been used in an increasing number of environmental applications 

and they have potential to be used for geophysical monitoring data. 

In this thesis, a deliberate decision was made not to focus on ERT inversion so 

that other sources of uncertainties can be considered. However, inversion remains an 

integral part of the ERT workflow and UQ in ERT and it will remain an important area 

of research. To obtain inversion uncertainty, we have used traditional Monte Carlo 

sampling for simplicity. There exist other alternatives such as Bootstrap inversion 

(Schnaidt and Heinson, 2015) that can improve the efficiency, accuracy, and robustness 

of such sampling. We also recognize that the uncertainty estimates from the above 

procedures do not represent the uncertainty of the parameter space, but rather the 

effect of parameter uncertainty due to data errors (i.e. how data errors are propagated 

through inversion). Some of the inversion approaches listed in the following are 

perhaps more suitable for this task. 

Because Markov chain Monte Carlo (McMC) methods conditionally accept and 

reject model proposals, it is argued that they provide more robust and accurate 

uncertainty estimates. In particular, it provides the full posterior parameter probability 

distribution, which can be multi-modal in highly uncertain regions such as interfaces. 

At the start of the PhD, I decided not to use McMC because of its very high 

computation cost. This high cost is in part due to computation needed to generate 

model proposals, and in part due to parameterization (i.e. very fine parameterization 

is used), among other factors. Significant progress has been made on McMC in both 

areas. For example, graph cuts (Zahner et al., 2016) allow rapid generation of many 

model proposals with the same characteristic features using training images. Trans-

dimensional ERT (Galetti and Curtis, 2018) allows estimation of unstructured 

parameter cell sizes and shapes alongside with their resistivity values. Recently, a two-

step methodology based on area-to-point kriging is proposed to generate fine-scale 

multi-Gaussian realizations from smooth tomographic images (Nussbaumer et al., 

2019). 
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Even though there are many inversion strategies available, our understanding 

on the topology of the ERT inverse problem or the parameter space uncertainty 

behaviour is limited. One piece of work I have started during my PhD is to investigate 

whether we can use gradient-based approach to locate regions of global minima. The 

concept here is to randomly sample the parameter space with particles and calculate 

their local gradient. Then starting with one of the particles, look for the next closest 

particle that is downhill of the current one. The process will continue until the search 

path reaches a valley, where it will either bounce between two particle locations, or it 

will form an orbit that joins several particle locations that outlines the boundary of the 

valley. An example is shown in Figure 2. This approach, first proposed by Curtis and 

Spencer (1999), is not itself an inversion method, but it can improve the modeller’s 

understanding of the structure of the inverse problem they are facing, with a much 

smaller computational cost than an uncertainty analysis that uses a fully Bayesian 

McMC inversion. 

Although McMC inversions are promising and advance rapidly, more efficient 

methods (e.g. 3-D problems that can be calculated on a laptop) for ERT inversion with 

uncertainty quantification and more flexible parameterization to account for spatial 

scales are needed to aid enhancing the information content of geophysical data and its 

uncertainty quantification. My leak detection work is one of the first that uses data 

assimilation for raw ERT data. Such methods should also be considered, where 

appropriate, for ERT inversion. There is potential for data assimilation methods to be 

combined with level set or multi-point geostatistics (MPS) parameterization to 

estimate a multi-scale heterogeneous resistivity field efficiently and provides 

approximation of its uncertainty. Such methods allow target features that do not have 

a constant length scale and normally not well recovered by smoothness-constrained or 

traditional covariance-based (i.e. two-point) geostatistical inversion to be resolved 

reasonably well. 

The simulation of some hydrological problems can require a very long run time, 

which makes it prohibitive to use them directly for uncertainty quantification. 

Examples include regional-scale modelling of surface water-groundwater exchange or 
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predicting the fate of radionuclides decades or centuries into the future. In these cases, 

building surrogate models that approximate the behaviour of the full forward model 

will be useful. It ensures that the the uncertainty quantification methods described in 

this thesis is applicable to all hydrogeophysical problems. 

Big data and machine learning methods have brought about radical changes in 

many fields. Application of data-driven methods has emerged in recent 

hydrogeophysical studies (Laloy et al., 2017; Nguyen et al., 2016). Bayesian evidential 

learning (Hermans et al., 2018) has also been applied, where it provides an incremental 

framework for characterisation to inform site management decisions. Specifically, 

before data acquisition, Monte Carlo simulations and global sensitivity analysis are 

used to assess the information content of the data to reduce the uncertainty of the 

prediction. After data acquisition, prior falsification and machine learning based on 

the same Monte Carlo simulations are used to directly assess uncertainty on key 

prediction variables from observations.  A big challenge of applying machine learning 

methods is the availability of training data. For example, I have attempted to train a 

data-driven model for petrophysical relationships but the data I had access to was 

insufficient to build a robust model. The hydrogeophysics community can work 

together to build databases of laboratory and field data for building machine learning 

models. Recent work in surface water hydrology has also explored the use of deep 

learning methods (Shen, 2018), which has begun to show potential in 

hydrogeophysical studies (Laloy et al., 2017). 

Forty years ago, Lytle and Dines (1978) developed the so-called “impedance 

camera”, which can be considered as one of the earliest work on ERT. They noted 

“Items worthy of future research include an assessment of the influence of noise in the data, a 

study of the accuracy of the reconstruction and its spatial dependence, and evaluation of the 

degree of dependence of various measurement configurations, an analytic study of the resolution 

limit, and a determination of the extent to which the use of a priori knowledge affects the 

interpretation. ” As addressed in this thesis, the challenges these pioneers highlighted 

are more far-reaching and relevant than they were then and 40 years on we are getting 

there. 



Discussion summary  

254 

 

 

 

Figure 2  (Top) Parameter space of a 3-parameter layered ERT problem using 24 surface electrodes in 

dipole-dipole configuration. The axis represents the uniform parameter value of each layer in log scale. 

The true resistivity for all three layers are 100 𝛀 𝐦. The red cross indicate the true parameter value. The 

data misfit surface (left) and the derived streamlines to the data misfit mimima (right) are plotted. 

(bottom) Gradient fields using 500 samples. The red polygons are the loops and the black cross is the 

true values. The gradient field somewhat point towards the true minima. 9 loops are identified, 

spanning a large fraction of the parameter space. 
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8. Conclusions and recommendations 

8.1 Conclusions  

Geophysical methods have been a suite of valuable tools to provide 

information for site characterisation. This thesis has formalised the ERT workflow as a 

pipeline for information/uncertainty propagation. It has focused on the sources of 

uncertainties in the various aspects of the ERT workflow while making contribution in 

better understanding several of its less explored aspects.  

Through literature review and new analysis included here, we now better 

understand the behaviour of the various sources of uncertainties in ERT. We have also 

investigated how uncertainties at a given stage of the workflow propagates 

downstream. Using rules of error propagation, the impact of uncertainties that 

stemmed at any stage of the workflow can be approximated using Monte Carlo 

analysis. This provides a powerful design and evaluation framework to quantify, rank, 

and in some cases reduce the sources of uncertainties in an ERT study.  

Statistical analysis of ERT measurement errors from long-term monitoring 

datasets shows that the use of reciprocal and repeatability errors are preferred and they 

have negligible correlation in time. Variations in electrode quality may have a minor 

effect on measurement errors and a new error model is proposed to account for such 

effects. Similarly, detailed examination of field samples allows us to better understand 

the variability of petrophysical relationships in real-world settings. The impact of such 

variability to moisture content estimates as it is propagated down the ERT workflow 

is then assessed, which is found to be consistent but with larger error bars than 

previously appreciated. A method that combined the inversion and prediction steps 

together to bypass the typical workflow is also developed. It is suitable for situations 

where there is abundant prior site information and a clear list of non-geophysical 

parameters to be estimated. This approach is applied to leak detection problems and 

estimated leak parameters from ERT data (with the help of prior hydrogeological 

model) directly, which is not achievable from typical ERT inversion.  
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The findings in this thesis are highly relevant to nuclear site characterisation. A 

literature review in the thesis shows geophysics is widely applied in nuclear sites and 

the industry has been used to dealing with uncertainties. The methods developed in 

the thesis not only can improve the reliability of using ERT in general but also provides 

a wealth of information for decision making at a nuclear site. 

This thesis contributes to a growing number of studies which aims to extract 

additional meaningful information from ERT datasets  (e.g. see PhD work of Crestani, 

2013; Robinson, 2015; Wagner, 2016; Ward, 2018). The results from the work presented 

here demonstrates both the capability to extract more information from ERT, while the 

linked issue to better track and quantify uncertainties in ERT studies is highlighted. 

This thesis presents an uncertainty propagation framework that can serve as a basis 

for further development of methods that seek to extract additional information from 

ERT data for site characterisation.  

8.2 Future work   

Due to the limited scope of this thesis, many of the aspects on the information 

content and uncertainty for geophysical data for site characaterization have not been 

fully investigated. An area of research that has not been addressed in this work is to 

track and quantify the amount of information and uncertainty that propagate through 

the entire ERT workflow. This can be investigated further using both synthetic 

examples and real-world problems. Once we have estimated the contribution of 

uncertainty and information in each step and the way they propagate throughout the 

pipeline, we can optimize each step for experimental design. This thesis focuses on 

ERT only, but the approach developed in it are applicable to other geophysics or site 

characterisation methods. Future work should also investigate the uncertainty 

propagation where there is fusion of data types and multiple modalities, e.g. fusion of 

satellite, air-borne, surface, and ground-based measurements. Similar uncertainty 

quantification methods can be extended the related concept of value of information 

(VOI), which computes the expected monetary return of a characterisation option. 

Such calculations can rank characterisation methods in terms of their cost-effectiveness 

and show the added value of including each additional method. An alternative to VOI 
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calculations is information content calculations (JafarGandomi and Binley, 2013; 

Nearing and Gupta, 2015), where the marginal gain in information from various 

characterisation options can be compared. Finally, a vision has been proposed recently 

to perform integrated modelling and uncertainty analysis in virtual laboratories using 

cloud computing platforms (Blair et al., 2019, 2018). One use of collaborative 

workspaces is that it allows users to perform individual modelling tasks and specify a 

workflow to compute uncertainty propagation across all components, which is well-

suited for the ERT workflow described in this thesis. 

This thesis has considered the behaviour and detection of a single leak event 

with a single source of assumed constant loading under “clean” antecedent conditions. 

Of course, these assumptions do not always hold in real-world applications. There is 

limited existing work that consider multiple source identification, most of them are 

based on Bayesian formulation. It is my hope that my work presented here can be 

generalized to handle more complex conditions that are present in some of the most 

complex environmental sites in the world. 

Part of this thesis uses data assimilation methods on ERT data to estimate leak 

parameters and uniform hydro geophysical parameters. Some recent work has used 

data assimilation from head, concentration, or ERT data (in some cases, their 

combination) to estimate hydraulic parameter fields or plume geometry. Future work 

should explore the development of a more generalized framework to estimate 

parameters of both categories jointly. Likewise, the use of these methods for 

hydrogeological parameter using multiple injection (or leak) or abstraction events (i.e. 

as in hydraulic tomography or tracer tomography) (e.g. Tso et al., 2016; Zha et al., 2019) 

have potential to improve characterisation of environmental sites. 
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Appendix 1: Instructions on using PFLOTRAN-E4D 

A significant portion of this thesis uses the software PFLOTRAN-E4D (Johnson et al., 

2017) for hydrogeophysical simulations. The software had been part of the PFLOTRAN 

releases but this feature is no longer supported by the end of 2018. The section 

documents an alternative procedure to run hydrogeophysical simulation by calling 

PFLOTRAN and E4D sequentially. 

The approach documented in Johnson et al. (2017) runs PFLOTRAN and E4D in 

parallel by assigning a number of nodes to run the former and others to run the latter. 

When optimized, this can be advantageous in terms of run time, especially for very 

long hydrological simulations. An alternative and perhaps more straightforward and 

flexible approach is to run PFLOTRAN and then run E4D (each in parallel using all 

available resources). We can extract outputs from the PFLOTRAN output file (in HDF5 

format) using a script, call the FORTRAN mapping subroutines in Johnson et al. (2017), 

and write to E4D input files. The scripts are available from the thesis author. 

Steps (on a Linux-type machine): 

1. Install PFLOTRAN and E4D (if not already) 

2. Install f2py so that FORTRAN codes can be importable to python (if not 

already). After installation, load python in your terminal and type: 

f2py -c -m test_interp2 test_interp2.f90 

f2py -c -m mapit mapit.f90 

Make sure the resultant executables are in the directory to run PFLOTRAN-E4D. 

3. Now you can call two of the python scripts in the folder: 

build_pf_to_e4d_mat

rix.py 

It builds the interpolation matrix. You only need to 

call it once for each set of PFLOTRAN and E4D 

meshes. 

map_pf_to_e4d.py It maps PFLOTRAN outputs to E4D mesh and 

perform petrophysical transform (You can modify it 
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to specify whatever model you like). It needs to be 

called whenever E4D needs to be run. Make sure 

you review the script and understand the mapping 

it uses. 

 

You will also need to change these files, which are read by the scripts. 

sim_times.txt 

(or equivalent) 

Specifies the PFLOTRAN output times to which E4D is 

called (note: they must be specified in the PFLTORAN 

input file), the background conductivity file, and the 

petrophysical transform file. 

background.si

g 

Specifies electrical conductivity for each cell in the E4D 

mesh. This value will be used if interpolation from 

PFLOTRAN is not available. 

wax_smit.sig Specifies petrophysical parameters (I.e. Waxman-Smit here) 

for each cell in the E4D mesh  

All files required 

to run E4D mode 2 

(forward model) 

 

 

An example bash script for running PFLOTRAN-E4D this way 

(hydrogeophysics.sh): 

#!/bin/bash -l        ## Do not comment out this line. Must be 

included for bash scripts 

module load python 

  

## run PFLOTRAN, for example: 

$ mpirun -n 4 $PFLOTRAN_DIR/src/pflotran/pflotran -pflotranin 

myinputfile.in 
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## build interpolation matrix 

python build_pf_to_e4d_matrix.py 

  

## map PF output to sigma files and run E4D for each specified 

times. 

python map_pf_to_e4d.py 

  

Notes on the PFLOTRAN (.in) input file in order to run PFLOTRAN-E4D 

1. The output time which E4D will call must be specified as PFLOTRAN output 

times 

2. “Tracer” must be specified as a primary species 
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Appendix 2: A guide to performing global sensitivity analysis 

using the Morris (1991) method 

The following is a exrept of an interactive Jupyter Notebook with python codes 

included in the ResIPy distribution (link). 

Global sensitivity analysis is a Monte Carlo based method to rank the importance of 

parameters in a given modelling problem. As opposed to local senstivity analysis, it 

does not require the construction of the Jacobian, making it a flexible tool to evaluate 

complex problems. 

Global sensitivty analysis is available in mainly uncertainty quantificaiton packages, 

as well as some flow and transport programs (e.g. iTOUGH2). GSA is also very 

popular in catchment modelling and civil engineering/risk analysis problems. 

Some GSA work in hydrogeophysics (mainly by Berkeley Lab): 

 coupled hydrological-thermal-geophysical inversion (Tran et al 2017) 

 making sense of global senstivity analysis (Wainwright et al 2014) 

 Sensitivity analysis of environmental models (Pianosi et al 2014) 

 hydrogeology of a nuclear site in the Paris Basin (Deman et al 2016) 

 Global Sensitivity and Data-Worth Analyses in iTOUGH2 User's Guide 

(Wainwright et al 2016) 

In this tutorial, we will see how to link the ResIPy API and SALib for senstivity 

analysis. Two key elements of SA are (i) forward modelling (Monte Carlo runs) and (ii) 

specifying the parameter ranges. This notebook will showcase of the use of the Method 

of Morris, which is known for its relatively small computational cost. This tutorial is 

modified from the one posted on https://github.com/SALib/SATut to demonstrate its 

coupling with ResIPy 

Morris sensitivity method 

The Morris one-at-a-time (OAT) method (Morris, 1991) can be considered as an 

extension of the local sensitivity method. Each parameter range is scaled to the unit 

interval [0, 1] and partitioned into (p−1)(p−1) equally-sized intervals. The reference 

https://gitlab.com/hkex/pyr2/blob/master/jupyter-notebook/Morris.ipynb
https://www.hydrol-earth-syst-sci.net/20/3477/2016/hess-20-3477-2016.pdf
https://doi.org/10.1016/j.cageo.2013.06.006
https://doi.org/10.1016/j.envsoft.2016.02.008
https://doi.org/10.1016/j.ress.2015.11.005
http://eesatough.lbl.gov/assets/files/02/documentation/iTOUGH2-Sensitivity_Analysis.pdf
https://github.com/SALib/SATut
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value of each parameter is selected randomly from the set 0,1/(p−1),2/(p−1),…,1− Δ. 

The fixed increment Δ=p/2(p−1) is added to each parameter in random order to 

compute the elementary effect (EE) of 𝑥𝑖 

𝐸𝐸𝑖 =
1

𝜏𝑦

𝑓(𝑥1 ∗,… , 𝑥𝑖 ∗ +𝛥,… , 𝑥𝑘 ∗) − 𝑓(𝑥1 ∗, … , 𝑥𝑘 ∗)

𝛥
 

where 𝑥𝑖 ∗ is the randomly selected parameter set, and τy is the output-scaling factor. 

To compute EEi for k parameters, we need (𝑘 + 1) simulations (called one “path”) in 

the same way as that of the local sensitivity method. By having multiple paths, we have 

an ensemble of EEs for each parameter. The total number of simulations is 𝑟(𝑘 + 1), 

where r is the number of paths. 

We compute three statistics: the mean 𝐸𝐸, standard deviation (STD) of 𝐸𝐸, and mean 

of absolute 𝐸𝐸. 

mean EE (μ) represents the average effect of each parameter over the parameter space, 

the mean EE can be regarded as a global sensitivity measure. 

mean |EE| (μ∗) is used to identify the non-influential factors, 

STD of EE (σ) is used to identify nonlinear and/or interaction effects. (The standard 

error of mean (SEM) of EE, defined as 𝑆𝐸𝑀 = 𝑆𝑇𝐷/𝑟0.5 , is used to calculate the 

confidence interval of mean EE (Morris, 1991)) 

Importing libraries 

%matplotlib inline 

import warnings 

warnings.filterwarnings('ignore') 

import os 

import sys 

sys.path.append((os.path.relpath('../src'))) # add here the relative 

path of the API folder 

 

import numpy as np # numpy for electrode generation 

import pandas as pd 

from IPython.utils import io  # suppress R2 outputs during MC runs 

from resipy.R2 import R2 
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API path =  C:\Users\mtso\Downloads\pyr2-master\src\resipy 

ResIPy version =  1.1.6 

The SALib package 

SALib is a free open-source Python library 

If you use Python, you can install it by running the command 

pip install SALib 

Documentation is available online and you can also view the code on Github. 

The library includes: 

 Sobol Sensitivity Analysis (Sobol 2001, Saltelli 2002, Saltelli et al. 2010) 

 Method of Morris, including groups and optimal trajectories (Morris 

1991, Campolongo et al. 2007) 

 Fourier Amplitude Sensitivity Test (FAST) (Cukier et al. 1973, Saltelli et al. 1999) 

 Delta Moment-Independent Measure (Borgonovo 2007, Plischke et al. 2013) 

 Derivative-based Global Sensitivity Measure (DGSM) (Sobol and Kucherenko 

2009) 

 Fractional Factorial Sensitivity Analysis (Saltelli et al. 2008) 

SALib Tutorial 

 

# import the packages 

from SALib.sample import morris as ms 

from SALib.analyze import morris as ma 

from SALib.plotting import morris as mp 

Create ERT forward problem with ResIPy 

In the code below, created a R2 forward problem to be analyzed 

k = R2() 

elec = np.zeros((24,3)) 

elec[:,0] = np.arange(0, 24*0.5, 0.5) # with 0.5 m spacing and 24 ele

ctrodes 

k.setElec(elec) 

#print(k.elec) 

 

# defining electrode array 

http://salib.readthedocs.org/
http://salib.github.io/SALib/
http://www.sciencedirect.com/science/article/pii/S0378475400002706
http://www.sciencedirect.com/science/article/pii/S0010465502002801
http://www.sciencedirect.com/science/article/pii/S0010465509003087
http://www.tandfonline.com/doi/abs/10.1080/00401706.1991.10484804
http://www.tandfonline.com/doi/abs/10.1080/00401706.1991.10484804
http://www.sciencedirect.com/science/article/pii/S1364815206002805
http://scitation.aip.org/content/aip/journal/jcp/59/8/10.1063/1.1680571
http://amstat.tandfonline.com/doi/abs/10.1080/00401706.1999.10485594
http://www.sciencedirect.com/science/article/pii/S0951832006000883
http://www.sciencedirect.com/science/article/pii/S0377221712008995
http://www.sciencedirect.com/science/article/pii/S0378475409000354
http://www.sciencedirect.com/science/article/pii/S0378475409000354
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470059974.html
https://github.com/SALib/SATut
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x = np.zeros((24, 3)) 

x[:,0] = np.arange(0, 24*0.5, 0.5) 

k.setElec(elec) 

 

# creating mesh 

k.createMesh(res0=20) 

 

# add region 

k.addRegion(np.array([[2,-0.3],[2,-2],[3,-2],[3,-0.3],[2,-0.3]]), 50) 

k.addRegion(np.array([[5,-2],[5,-3.5],[8,-3.5],[8,-2],[5,-2]]), 500) 

 

# define sequence 

k.createSequence([('dpdp1', 1, 10)]) 

 

# forward modelling 

k.forward(noise=0.025) 

 

# read results 

fwd_dir = os.path.relpath('../src/resipy/invdir/fwd') 

 

obs_data = np.loadtxt(os.path.join(fwd_dir, 'R2_forward.dat'),skiprow

s =1) 

obs_data = obs_data[:,6] 

 

# plot 

k.showMesh() 

Working directory is: C:\Users\mtso\Downloads\pyr2-master\src\resipy\

invdir 

clearing the dirname 

computed DOI : -7.67 

Using a quadrilateral mesh. 

quad 

written mesh.dat file to  

C:\Users\mtso\Downloads\pyr2-master\src\resipy\invdir\mesh.dat 

Writing .in file... 

done 

 

Writing protocol.dat ... 

done 

 

Running forward model 
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 >> R  2    R e s i s t i v i t y   I n v e r s i o n   v3.3 << 

 

 >> D a t e : 21 - 08 - 2019 

 >> My beautiful survey 

 >> F o r w a r d   S o l u t i o n   S e l e c t e d << 

 >> Determining storage needed for finite element conductance matrix 

 >> Generating index array for finite element conductance matrix 

 >> Reading start resistivity from resistivity.dat 

 

 Measurements read:   165     Measurements rejected:     0 

 

 >> Total Memory required is:          0.395 Gb 

Inf or NaN: filterData: 0 / 165 quadrupoles removed. 

strange quadrupoles: filterData: 0 / 165 quadrupoles removed. 

165/165 reciprocal measurements NOT found. 

0 measurements error > 20 % 

computed DOI : -3.67 

Forward modelling done. 

Mesh plotted in 0.08826 seconds 

 

Define a problem file 

In the code below, a problem file is used to define the parameters and their ranges we 

wish to explore, which corresponds to the following table: 

Parameter Range Description 

rho0 [ohm m] 10^[0.5,3.5] background 

rho1 [ohm m] 10^[0.5,3.5] inclusion A 
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Parameter Range Description 

rho2 [ohm m] 10^[0.5,3.5] inclusion B 

morris_problem = { 

    'num_vars': 3, 

    # These are their names 

    'names': ['rho1', 'rho2', 'rho3'], # can add z1 z2 etc. 

    # Plausible ranges over which we'll move the variables 

    'bounds': [[0.5,3.5], # log10 of rho (ohm m) 

               [0.5,3.5],  

               [0.5,3.5]#,  

   #            [-3,-1],  

   #            [-7,-4],  

              ], 

    # I don't want to group any of these variables together 

    'groups': None 

    } 

Generate a Sample 

We then generate a sample using the morris.sample() procedure from the SALib 

package. 

 

number_of_trajectories = 20 

sample = ms.sample(morris_problem, number_of_trajectories, num_levels

=10) 

len(sample) 

print(sample[79,:]) 

[1.83333333 1.83333333 0.5       ] 

Run the sample through the monte carlo procedure in R2 

Great! You have defined your problem and have created a series of input files for forward 

runs. Now you need to run R2 for each of them to obtain their ERT responses. 

For this example, each sample takes a few seconds to run on a PC. 

 

#%%capture 
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simu_ensemble = np.zeros((len(obs_data),len(sample))) 

for ii in range(0, len(sample)): 

    with io.capture_output() as captured:          # suppress inline 

output from ResIPy 

        # creating mesh 

        k.createMesh(res0=10**sample[ii,0])   # need to use more effe

ctive method, no need to create mesh every time 

 

        # add region 

        k.addRegion(np.array([[2,-0.3],[2,-2],[3,-2],[3,-0.3],[2,-0.3

]]), 10**sample[ii,1]) 

        k.addRegion(np.array([[5,-2],[5,-3.5],[8,-3.5],[8,-2],[5,-2]]

), 10**sample[ii,2]) 

 

        # forward modelling 

        k.forward(noise=0.025, iplot = False) 

        out_data = np.loadtxt(os.path.join(fwd_dir, 'R2_forward.dat')

,skiprows =1) 

        simu_ensemble[:,ii] = out_data[:,6] 

    print("Running sample",ii+1) 

Running sample 1 

Running sample 2 

Running sample 3 

… 

Running sample 77 

Running sample 78 

Running sample 79 

Running sample 80 

Factor Prioritisation 

We'll run a sensitivity analysis of the power module to see which is the most influential 

parameter. 

The results parameters are called mu, sigma and mu_star. 

 Mu is the mean effect caused by the input parameter being moved over its range. 

 Sigma is the standard deviation of the mean effect. 

 Mu_star is the mean absolute effect. 

The higher the mean absolute effect for a parameter, the more sensitive/important it is* 



Appendix 2: A guide to performing global sensitivity analysis using the Morris (1991) 

method  

310 

 

 

# Define an objective function: here I use the error weighted rmse 

def obj_fun(sim,obs,noise): 

    y = np.divide(sim-obs,noise)   # weighted data misfit 

    y = np.sqrt(np.inner(y,y)) 

    return y 

 

output = np.zeros((1,len(sample))) 

for ii in range(0, len(sample)): 

    output[0,ii] = obj_fun(simu_ensemble[:,ii],obs_data,0.025*obs_dat

a)    # assume 2.5% noise in the data 

     

# Store the results for plotting of the analysis 

Si = ma.analyze(morris_problem, sample, output, print_to_console=Fals

e) 

print("{:20s} {:>7s} {:>7s} {:>7s}".format("Name", "mean(EE)", "mean(

|EE|)", "std(EE)")) 

for name, s1, st, mean in zip(morris_problem['names'],  

                              Si['mu'],  

                              Si['mu_star'],  

                              Si['sigma']): 

    print("{:20s} {:=7.3f} {:=7.3f} {:=7.3f}".format(name, s1, st, me

an)) 

Name                 mean(EE) mean(|EE|) std(EE) 

rho1                 78050.042 78050.042 38362.374 

rho2                 2595.171 2738.277 4484.274 

rho3                 1594.958 1595.198 2568.473 

 

# make a plot 

import matplotlib.pyplot as plt 

import numpy as np 

fig, ax = plt.subplots() 

ax.scatter(Si['mu_star'],Si['sigma']) 

ax.plot(Si['mu_star'],2*Si['sigma']/np.sqrt(number_of_trajectories),'

--',alpha=0.5) 

ax.plot(np.array([0,Si['mu_star'][0]]),2*np.array([0,Si['sigma'][0]/n

p.sqrt(number_of_trajectories)]),'--',alpha=0.5) 

 

plt.title('Distribution of Elementary effects') 

plt.xlabel('mean(|EE|)') 

plt.ylabel('std($EE$)') 
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for i, txt in enumerate(Si['names']): 

    ax.annotate(txt, (Si['mu_star'][i], Si['sigma'][i])) 

     

# higher mean |EE|, more important factor 

# line within the dashed envelope means nonlinear or interaction effe

cts dominant 
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Appendix 3: Annotated bibliography for related textbooks 

1. Scheidt, C., Li, L., Caers, J., 2018. Quantifying Uncertainty in Subsurface 

Systems, Geophysical Monograph Series. John Wiley & Sons, Inc., Hoboken, NJ, 

USA. 

This book (Scheidt et al., 2018) begins by stating its motivation—the earth 

resources challenge and the challenge to make decision under uncertainty. It 

then gives an excellent review of available data science tools that are relevant 

for UQ and introduces sensitivity analysis methods and Bayesianism. It is 

followed by a detailed review on geological priors and inversion, which is 

rarely found in other text. Subsequently, it introduces the concept of Bayesian 

evidential learning and provides several application example of UQ. Finally, 

this book provides an overview of available computer codes and an outlook for 

UQ in subsurface systems. 

2. Sun, N.-Z., Sun, A., 2015. Model Calibration and Parameter Estimation. 

Springer New York, New York, NY.  

This book (Sun and Sun, 2015) begins with a review both classical multi-

objective and statistical parameter estimation methods. It is followed by a 

review for model differentiation, model dimension reduction, and model 

structure identification methods. Its final chapters reviewed goal-oriented 

modelling, uncertainty quantification and optimal experimental design 

methods for environmental inverse problems. The major strength of this books 

is its completeness and it links classical and statistical inverse problem 

formulation. 

3. Eidsvik, J., Mukerji, T., and , Bhattacharjya, D. ,2015. Value of Information in 

the Earth Sciences. Cambridge University Press, Cambridge.  

This book (Eidsvik et al., 2015) reviews the concept of value of information (VoI) 

analysis in subsurface characterisation, which is popular in petroleum and 

mining industry but also sees growing applications in groundwater protection 

and environmental conservation. It presents a unified framework for assessing 

the value of potential data gathering schemes by integrating spatial modelling 

and decision analysis, which is useful for site characterisation as it can be 
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applied to determine whether a proposed survey can provide sufficicient 

information that justifies its cost. This book also describes relevant quantitative 

tools such as decision trees and influence diagrams, as well as models for 

continuous and discrete dependent spatial variables, including Bayesian 

networks, Markov random fields, Gaussian processes, and multiple-point 

geostatistics. 
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