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Stability and innovation in the use of forecasting systems: a case study in a 

supply-chain company 
 

ABSTRACT 

 

Computer-based demand forecasting systems have been widely adopted in supply chain companies, 

but little research has studied how these systems are actually used in the forecasting process.  We 

report the findings of a case study of demand forecasting in a pharmaceutical company over a 

fifteen-year period. At the start of the study managers believed that they were making extensive use 

of their forecasting system that was marketed on the basis of the accuracy of its advanced statistical 

methods. Yet the majority of forecasts were obtained by using the system’s facility for judgmentally 

overriding the automatic statistical forecasts. Carrying out the judgmental interventions involved 

considerable management effort as part of an S & OP process, yet these often only served to reduce 

forecast accuracy. This study uses observations of the forecasting process, interviews with 

participants and data on the accuracy of forecasts to investigate the reasons underlying the 

managers’ use of the system at two levels, the individual and the organizational. This evidence is 

then interpreted using various theories to understand the longevity of the company’s forecasting 

process, despite  potential economic benefits  that could be achieved through change. However, 10 

years after the original case observations  radical transformations of the forecasting system were 

introduced. The paper concludes by considering the impetus for adopting the new system and 

processes, and the changes in organizational practices this has led to. 

 

Keywords: behavioural operations forecast adjustments; forecasting support systems; judgmental 

forecasting; actor-network; cognitive biases; task-technology fit; organizational factors.
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1 Introduction 

 

 

Accurate forecasts are crucial to the success of supply-chain companies and decisions 

relating to transportation, purchasing, inventory control, work-force scheduling, production planning 

and cash-flow planning are all dependent on them. Given the importance of accurate forecasting, the 

development and sales of computer-based statistical forecasting systems has become big business,  

with major suppliers such as SAP and JDA embedding forecasting modules in their advanced 

planning and retail offerings, while statistically focussed software providers such as SAS also supply 

companies with forecasting modules that are used in demand planning. In addition there are many 

focused providers (see Fildes, Schaer & Svetunkov, 2018 for a survey). However there is a great 

deal of evidence that the demand forecasts generated by such systems are routinely replaced by 

forecasts based on managers’ judgments (Fildes & Goodwin, 2007; Fildes et al., 2009; Fildes  & 

Petropoulos, 2015). Despite this the designers of these systems have paid little attention to the role 

of judgmental interventions (Goodwin, 2015) or the organisational environment within which their 

products are deployed (Asimakopoulos, Dix & Fildes, 2011; Asimakopoulos & Dix, 2013; see also 

Arvan et al., 2019).  

In the information systems literature relatively few papers have considered the on-going use 

of such tools as forecasting support systems (FSSs). (Examples are provided by Auer, 1998;  

Bagchi, Kanungo, and Dasgupta, 2003; Ruivo et al. 2014, while Venkatesh, Thong and Xu, 2016 

have reviewed ‘acceptance and use’ including adoption, showing the primary research emphasis has 

been on adoption.) In the forecasting literature the role of organizational process factors in affecting 

how such systems are used and their on-going performance  has also largely been neglected with 

such case-based research the exception: examples are provided by Smaros, 2007; Oliva & Watson, 

2009; Phillips & Nikolopoulos, 2019. Instead, most findings about forecasting in organizations have 

being obtained through questionnaire-based surveys which have focussed on respondents’ reports of 
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the methods used in the responding organization and the balance between statistical methods and 

judgment (e.g., Fildes and Goodwin, 2007; McCarthy et al., 2006).  More holistic researches have 

included a substantial study of the forecasting function in organizations based on case research in 16 

companies in the US by Moon, Mentzer and Smith (2003). They categorized the organizational 

issues in forecasting as occurring in four areas: integration across management functional areas, the 

methods adopted, the FSS and performance measurement.  Together these can lead to poor and 

limited processing of data, the use of inadequate algorithms, and finally, the ineffective interaction 

between the users and the system through both the choice of method and the adjustment of the 

statistical forecast (e.g., Goodwin et al., 2007; Fildes, Goodwin & Onkal, 2019). The Moon et al.  

study placed forecasting support systems at the heart of a successful process. This was confirmed 

more recently when Doering, and Suresh (2016) showed the use of  ‘advanced [forecasting] 

systems’ to be a determinant of overall competence as it affects, costs, service and accuracy.   

A more granular approach has examined the detailed forecasts produced by organizations.  A 

field study of thirteen manufacturing companies by Lawrence et al. (2000) revealed that their 

forecasts tended to be highly inefficient but it did not investigate how or whether the companies 

used computer-based forecasting systems. In a study of four companies Fildes et al. (2009) found 

that computer-based forecasts were being used inefficiently. Franses (2013) found similar 

inefficiencies and these various studies are summarized in Perera et al. (2018). The inefficiencies are 

thought to result for a wide variety of factors, both individual and organizational, within the 

constraints imposed by the FSS technology.  

Exactly how these factors, individual, organizational and technological, interact is the subject 

of this paper. The approach adopted here uses an in-depth study of forecasting in a pharmaceutical 

company to investigate how managers in the company used their computer-based forecasting system 

and why this often led to unduly inaccurate forecasts and an inefficient forecasting process. 
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Moreover, it seeks to explain why this ‘suboptimal’ situation persisted and how and why 

fundamental changes were eventually only implemented after a considerable amount of time.  

The rest of the paper is organised as follows. First, we investigate the existing literature in 

relation to this issue of stability and subsequent change in the configured  company forecasting 

process . We then explain why we have adopted a case-study based approach to address our research 

questions before explaining our data gathering process. The next section describes the company, its 

decision to purchase the forecasting system and the way in which the software was being used. 

Statistical evidence is used to present an additional perspective. Then we interpret our results to 

provide explanations of why the system was used in this way, why this state of affairs persisted  for 

several years before changes were made and how the changes came about. Finally, we present our 

conclusions, together with the practical implications of our results. 

The paper’s contribution is that it provides a  novel  in-depth understanding  of how an 

inefficient demand forecasting process with a forecasting support system at its heart can exist for 

many years without being challenged. For researchers in forecasting and operations it offers a rare 

case study that contrasts the technical with technology-in-practice’; such a focus emphasizes the 

importance of software design fitting with organizational processes. It also demonstrates what may 

be required in order for changes to eventually be implemented. By providing an account of the 

individual and organizational processes that are present in company forecasting and the motivations 

and interests of the key actors it is hoped that the paper will assist those whose mission is to improve 

company forecasting by capitalizing on the value-added potential in the organizational processes 

surrounding forecasting.  

2 Using forecasting support systems – a literature review 

2.1 Using a forecasting support system 

The research literature has paid little attention to the use of forecasting support systems  



Page 4 

 

 

(FSSs) in organizations, a curious omission since they are part of a multimillion dollar business with 

many product offerings (see for example the survey by Fildes et al., 2018). Asimakopoulos, Dix, & 

Fildes (2011) carried out an in-depth set of interviews1 with forecasters that  decomposed how they 

produced their forecasts to propose a nuanced set of tasks undertaken (within a task hierarchy) that 

aimed to capture the observed complexity of organizational forecast activity This was compared with 

the standard normative view as typically presented in the forecasting literature. Much of what was 

captured demonstrated that tasks were undertaken that lay outside the standard forecasting processes 

explicit in the software design. The core tasks identified through interviews with the software 

designers were data exploration, the choice and fitting of statistical models and the production and 

evaluation of  the resulting model forecasts. The forecasters required additional flexibility including 

the incorporation of ‘special factors’ such as a sales promotion or the impact of weather (perhaps a 

spreadsheet row permitting adjustments) and whether the forecast ‘makes sense’ (a graphical check).  

Data exploration involved plotting historical data, changing the data length and checking fit, 

which is not necessarily feasible in all FSSs. The designers interviewed emphasized the individual 

forecaster’s needs giving less weight to collaborative practices. For some users in some organizational 

contexts, this suggests there would be a fit with the software and for others a mismatch. Smith and 

Mentzer (2010) showed that the users’ perceptions of the task-technology fit influenced positively 

reported forecast performance. A key task for users was “knowledge sharing […where] the FSS 

played a key role in shaping a shared forecasting meaning and in fostering interactions among relevant 

stakeholders” (Asimakopoulos & Dix, 2013), and insofar as the FSS facilitated these interactions, they 

argued  the fit was improved. This, though was not explicit in the software’s design. 

Qualitative interactions and forecast adjustments have thus been established as a key set of 

tasks within supply chain forecasting, whether or not they enhance performance. The existing 

                                                 
1System designers were also interviewed. Two FSS users interviewed were part of the forecasting team in the case 

organization we study here. 
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psychological literature points to a number of reasons for this heavy reliance on the forecaster’s 

judgmental interventions in the company’s forecasting process. Clearly, some interventions are easy 

to justify. These will be where the forecaster has information, not available to the statistical system, 

about future events that are highly likely to have a large impact on demand.  The work of Payne, 

Bettman, and Johnson (1993) suggested that people seek to balance cognitive effort with accuracy 

considerations when making judgments and decisions. Making an adjustment involves more effort 

than the simple acceptance of a statistical forecast so a forecaster making judgmental interventions 

must perceive that there are benefits to be gained through this extra effort. In many cases these benefits 

will be political in that forecasters may deliberately bias their forecasts to try to gain advantage in the 

organisation (Fildes & Hastings, 1994; Galbraith & Merrill, 1996; Oliva & Watson, 2009).  However, 

accounting for adjustments where there is a genuine desire to achieve forecast accuracy, but where 

such adjustments prima facia do not enhance performance, requires a more elaborate explanation. 

 Kleinmuntz (1990) has suggested that one reason why people prefer to use their heads (i.e. 

judgment) rather than formulae, is ‘deluded self confidence’, which he defines as confidence that you 

will beat the odds because you have real expertise in a domain. Kleinmuntz concludes that “people 

are indeed not as good as they think they are at using their heads”. People also appear to be more 

tolerant of errors in human judgment compared to errors produced by algorithms. Dietvorst. Simmons 

and Massey (2014) found that people soon lost confidence in an algorithm when it erred, leading to a 

phenomenon that they termed ‘algorithm aversion’. Considerations like these may account for the 

findings in a study by Önkal, et al. (2009) where people made larger adjustments to forecasts they 

thought emanated from an algorithm than those they thought came from a human expert, even though 

the forecasts were identical. 

 Unlike the indications of systems such as a satnav it is inevitable that the forecasts produced 

by a demand forecasting system will be perceived to be inaccurate, not the least because of the noise 

associated with demand. The psychological literature on advice-taking suggests another reason why 



Page 6 

 

 

the imperfection of a support system might be exaggerated in the eyes of users. This research suggests 

that the weight attached to advice is dependent on the reputation of the adviser, but negative 

information about an adviser is perceived to be more diagnostic than positive (Yaniv & Kleinberger, 

2000). If we regard a statistical forecast as a form of advice, albeit from a machine, then errors arising 

from noise and special events may likely diminish the system’s reputation. Indeed, Kaplan, Reneau, 

and Whitecotton (2001) found that people were more likely to rely on a support system when its 

accuracy was not disclosed.  

This apparent imperfection in forecasting systems is also likely to be overemphasised because 

the environment may be thought of as largely predictable (Dawes ,1979). In particular, there is much 

evidence that humans have a poor conception of randomness (e.g. Falk and Konold, 1997). When 

confronted with randomness, they have a tendency to perceive patterns and causes (Siegrist, 

Cvetkovich, & Gutscher, 2001; Heuer, Merkle & Weber, 2016). This leads to the belief that greater 

mental effort will improve the accuracy of forecasts (Davis & Kottemann, 1994).  

These considerations imply that it is important to distinguish between the acceptance of a 

forecasting support system per se and acceptance of its automated output.  In Davis’s widely cited 

technology acceptance model (TAM) (Davis, 1989) the perceived usefulness of a system (defined as 

“the degree to which a person believes that using a particular system would enhance his or her job 

performance”) is a key driver of its acceptability.  Perceived usefulness is likely to be to be increased 

when the system allows users to manipulate aspects of the task, for example by changing parameters 

or overriding the forecasting method’s automatically selected by the system. However, actions like 

these will also be associated with a tendency to reject and override the system’s automatic output.  

While involvement with the task is likely to be associated with greater acceptance of the system, it 

can also lead to an illusion of control, which leads to further overconfidence (Davis & Kottemann, 

1994). Illusion of control occurs when factors that are usually associated with good performance in 

skilled situations are found in tasks where the outcome is largely or wholly governed by chance. This 
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increased confidence and acceptability is not, however, necessarily associated with greater accuracy. 

The manipulations that the user is permitted to perform might substantially reduce the accuracy of the 

system’s recommendations, when compared to the advice it would have produced automatically 

(Lawrence, Goodwin & Fildes, 2002). 

In summary, the literature suggests that individual forecasters will embrace an  FSS when the 

system design is flexible enough to accommodate the various tasks the forecaster and stakeholders 

engage in around the production of supply chain forecasts. However, they are likely to use the 

forecasting system inefficiently because of their over-confidence in their supposed expertise, their 

propensity to see patterns and causes when none exist, their exaggerated distrust of a system known 

to be imperfect and their need to control the outcome.  

2.2 Organizational interactions potentially influencing FSS use 

Individual forecasters in organizations do not usually work in isolation. Their job requires 

that they interact with other people from both inside and outside the organization in order to acquire 

information or to explain their forecasts.  As a result, it is also important to consider the potential 

effects of political, social and other influences on the way that they use forecasting support systems 

and the fit between the FSS and its stakeholders, as the technology is interpreted in practice. The 

forecasting literature has seen very limited organizational analysis. An early review of forecasting 

practice touched on process issues but failed to find any in-depth studies (Winklhofer, 

Diamantopoulos,  & Witt, 1996). In a wide-ranging case study, Fildes and Hastings (1994) identified 

the tasks forecasters undertook, their intra-organizational interactions and the limited information 

shared between functions, and the lack of such information in the FSS as important limitations on 

forecasting effectiveness. The case organization was analysed in terms of the credibility and 

importance of forecasting and the organizational motivation to improve. Improvements, the 

forecasters thought, were to be found in enhanced data (in the FSS), better software including an 

enhanced role for judgment as well as better methods. The major cross-organization study by Moon 
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et al. (2003) identified ‘degree of communication, coordination and collaboration’ across functional 

areas and the development of a consensus forecasting as important characteristics in effective 

organizational forecasting. They highlighted the role of the forecasting system in making 

information available: the FSS, the information it contains, the forecasters and other organizational 

actors through their interactions all contributed to the effectiveness of the forecasting process. 

However, none of these studies, nor the practitioner literature focussing on ‘Sales and Operations 

Planning’ 2 have examined how forecasters, carrying out their tasks, interact with other 

organizational actors through the FSS (Tuomikangas and Kaipia, 2014).  

Beyond the field of forecasting, a range of models have been developed to try to explain how 

the interplay between the technology itself and these social interactions determines the way in which 

technology is used (Orlikowski,1992). For example, the Unified Theory of Acceptance and Use of 

Technology (UTAUT) model (Venkatesh et al., 2003) posits that the way technology is used will be 

influenced by “the person’s  perception that most people who are important to him [or her] think  he 

[or she] should perform or not perform the behaviour in question” (Fishbien and Ajzen, 1975). These 

models vary in the relative importance that they place on the role of humans and technology in 

influencing each other and in shaping working practices. For example, at one extreme, the 

technological imperative model (e.g., Siegel et al., 1986) implies that technology is an exogenous 

influence on human behaviour and organisational attributes. This view discounts the actions of 

humans in developing, appropriating and changing technology and assumes that people operate and 

behave like machines. Under this assumption, forecasters would “compliantly carry out the orders 

and commands they received, making efficient and effective use of all information and all 

technologies available to them” (Davis et al., 1992).  

This viewpoint can be contrasted with models which adopt  a ‘social construction of 

technology’ perspective. These models recognise that forecasting is carried out within a complex 

                                                 
2 Tuomankangas and Kaipia (2014) give a synthesis of the existing literature, both practitioner and academic. 
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social context, that the forecasting system will be understood differently by different individuals and 

that the meaning attached to the forecasting system will be determined by a shared understanding 

arising from social interaction. In this perspective the design,  shaping and use of a forecasting 

system would be seen as  resulting from political actions and negotiations between a multiplicity of  

stakeholders (Orlikowski, 1992; McGovern &  Hicks, 2004). While this perspective acknowledges 

that there is duality in that people and technology interact reciprocally it has been criticised for 

understating the role of technology and its characteristics in this process (Hanseth, 2004). The 

dichotomy between human and non-human entities is avoided by using the concept of an actor, 

being any element which has the power to initiate action and can be either a human, a collection of 

humans or an item, as here, such as a forecasting system (e.g. Latour, 2005 in proposing his Actor-

Network theory). We have adopted a social construction of technology perspective in understanding 

the forecasting processes we have observed while recognizing Hanseth’s criticisms. 

3 Research Method 

As our literature review revealed issues of organizational practice have enjoyed little research 

attention (for a summary see e.g. Fildes, 2017): the focus of forecasting research has primarily been 

on modelling methods  and the evaluation of different methods. However, the objectives of the 

research we report on here are quite different in that we seek to understand how forecasters go about 

their organizational tasks when using these methods through a forecasting support system. We 

therefore need a more in-depth approach. 

3.1 The Case Study Approach 

For  a deep account of the reasons underlying  the way managers use and interact with their 

forecasting systems we needed to understand their  perspectives, beliefs and motives because it is 

reasonable to assume that, according to these characteristics,  they are behaving rationally as 

individuals (Kanter, 1977). Such an understanding  is unlikely to be achieved through a ‘traditional’ 

survey device like a postal questionnaire, though to date this approach has been the predominant 
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method for investigating forecasting practices in companies (e.g. Dalrymple, 1987; Klassen & 

Flores, 2001; Mady, 2000; Sanders & Manrodt, 1994; Fildes & Goodwin, 2007; Fildes & 

Petropoulos, 2015). As the literature review makes clear, what is required is a study of a real 

forecasting process undertaken at two levels –first at the level of the individual forecaster and then at 

the level of the network of all the participants in the process. Our research also required  a  

methodology that could reveal a deep understanding of reasons for the managers’ behavior and of 

the social and organizational context in which they operate. We therefore adopted an interpretive 

approach (Walsham, 1995;  Nandhakumar & Jones, 1997; Easterby-Smith et al., 2011)  based on 

direct observations of the forecasting process and semi-structured interviews with participants. We 

also triangulated the results obtained with statistical data relating to the forecasts. From this we have 

developed an explanation of the way that individual managers used and perceived the system  and  

how these individual psychological factors were combined with other forces that existed both within 

and outside the organisation so that any pressures to change the existing use of the system would be 

likely to be supressed. 

Although we have observed similar behaviour to that described below in several companies, 

in common with many other case-based studies we decided to focus on one company. There are a 

number of advantages to this single organization case study approach (Walsham, 1995). In 

particular, it allows a situation to be studied in depth and from a range of perspectives.  

3.2 Data gathering 

The company we studied was, and remains in 2019, a cost-conscious UK subsidiary of an 

American pharmaceutical company embracing a number of business units, which prides itself on its 

application of modern management methods: Aspects of this organization have been disguised for 

reasons of confidentiality, both organizational and personal. The company supplies products for 

treating both animals and humans.  Initially, the research study involved visits to the company’s 

local headquarters by either two or three researchers over a period of around six months. The first 
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visit included a presentation by the company’s managers, followed by a general question and answer 

session. The researchers also observed two meetings where the forecasts were finalised and they 

conducted semi-structured interviews with the main participants in the forecasting process: two 

Logistics Managers,  a Product Manager, a Marketing Manager, a Finance Manager, a placement 

student who was acting as  a Commercial Manager, and a Stock Replenishment  Planner. 

Independent sets of notes were taken by each of the researchers at all meetings and interviews, 

which were also tape-recorded. The research team sent a summary of their understanding of the 

organisation and its forecasting process to the company for validation and any necessary corrections. 

In addition, members of the team attended two user conferences run by the company which supplied 

the forecasting system and also interviewed two of their software developers.  Note that, while our 

approach is predominantly interpretive, we have also had access to statistical evidence and  have 

used this  to triangulate and strengthen our findings (Nardulli, 1978; Benbasat, Goldstein, & Mead,  

1987). This consisted of a sample of 3264 forecasts that were supplied by the company and for 

which the actual outcomes were known. Following the initial field work, after major changes had 

been made to the company’s forecasting process, we interviewed managers who had implemented 

the new system or who had been involved with the process during the change.3 This has allowed us 

to discover why the changes had occurred and how they had been made possible. 

 

4 The forecasting system and forecasters 

At the start of our study in 2004 the UK subsidiary, responsible for a number of European 

countries, was using a forecasting support system that it had bought seven years earlier. Other 

regions were using different software including relying on Microsoft Excel. These FSSs  were used 

to forecast the monthly demand for its products worldwide. The UK system went through various 

                                                 
3 We do not suggest the study was initially seen as longitudinal, but after reviewing the continuing lack of research in 

this area, we sought out new contacts.  
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upgrades and changes in the supplier’s ownership, remaining in use until 2015.  The original system 

had been bought ‘off-the-shelf’ (as opposed to being an in-house development), with some 

‘personalised’ settings tailored to the company by the supplier based on an analysis of the 

company’s sales data. At the time of the purchase it was thought that a forecasting system was 

needed “to do the job properly”, as one logistics manager explained. Before this, individuals had 

made their own forecasts, often using a ruler to fit a line to paper copies of sales graphs. The system 

was chosen by a group of middle managers over two alternatives (including an Enterprise Resource 

Planning (ERP) system) with a 9 to 1 vote in its favour. The choice was primarily driven by the 

perceived ‘user-friendliness’ of the system, and the marketing and sales people commented that they 

particularly liked the ease with which the forecasts could be changed to reflect managerial judgment.   

The system was perceived as being  “fairly extensively used” [in the words of one logistics 

manager] in producing forecasts. Its use was regarded as a big improvement on the previous 

approach and managers felt that forecasting accuracy had also improved –though no empirical data 

existed to support this. The system was regarded as “the best available” [this quote is from the same 

logistics manager] and, while some users had complaints about particular facilities, most were 

generally satisfied with it. Its perceived central role in the forecasting process was never questioned 

and no one, in the meetings we had with participants, suggested switching to an alternative system 

or making other fundamental changes to the existing forecasting process. 

The system consisted of a database and query language, various statistical forecasting 

algorithms, graphical facilities and an interactive component which permitted the user to adjust the 

statistical forecast that the software has generated. The adjustment could be performed directly by 

changing the forecast that the method had produced, by changing the parameters of the algorithm or 

the number of historic observations used to fit the forecasting model.  Changing the parameters of 

the algorithm allowed the users to select different models, such as simple exponential smoothing or 

smoothing with trend and seasonal components. Systems like this are marketed by vendors largely 
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on the basis of the accuracy and sophistication of their in-built automatic statistical methods. For 

example, at the time SAP claimed that its Forecasting and Replenishment for Retail (SAP F&R) 

software provided a “sophisticated demand forecast” with automated calculations. These marketing 

postures fairly reflect (and reflected) the motivation of demand planners where accuracy has always 

been seen as the primary objective (Fildes & Goodwin, 2007). 

At the start of the study, there were three logistics managers who were responsible for the 

initial forecasts for around 350 stock keep units (SKUs) and for managing the inventory. The 

forecasting process also involved fifteen product managers, who looked after the sales of groups of 

products, as well as financial and marketing managers. In addition, a  placement student was 

spending a year using the system to produce forecasts for products with ‘well behaved’ demand 

patterns. Interestingly, the marketing and sales staff took a keen interest in the forecasts for their 

products, which contrasted with the attitude of staff in some other companies visited by the research 

team. In these other companies sales personnel apparently saw their objectives as maintaining 

customer relationships and making deals and, in consequence, had little interest in numbers, 

forecasts and computer systems. 

Three years before our study, the company had adopted the Six Sigma approach4 to 

managing. Two logistics managers had achieved ‘green belt’ status, while another manager was in 

the process of achieving the higher level of ‘black belt’. This indicates that they had achieved a 

proficiency in the application of statistical tools to management problems, although they had no 

training in statistical forecasting methods and minimal training in the use of the FSS (the manual had 

been lost a long time earlier). One of the Six Sigma projects that coincided with our study concerned 

the company’s forecasting process. 

                                                 
4 Six Sigma is a data driven method for eliminating defects in any process – including those used in manufacturing and 

service industries. 
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Forecasting had been selected for the Six Sigma treatment because, i) in the words of one 

manager:  “it took an enormous amount of time, effort and resources and pain to produce the various 

forecasts” and ii) there were concerns about forecast accuracy. At a rough estimate, forecasting was 

taking around 80 person-hours of managers’ time each month in meetings alone (see later) and the 

managers clearly wanted to see this effort rewarded with higher levels of accuracy. Because of this 

the forecasting improvement project was regarded as “a big strategic project”.  

4.1 How the forecasting support system was used 

The primary objective of the forecasters was to produce forecasts of demand looking forward 

two months, reflecting the production planning requirements of the company’s manufacturers. In 

theory, the derivation of the forecasts involved two main tasks. First, a logistics manager cleaned the 

sales history to remove the effects of stockouts (these are known from data on orders) so that the 

series represented the level of demand.  They then used the system to produce the ‘base-line’ 

forecasts. These were forecasts which take no account of market intelligence (MI) and were simply 

based on an extrapolation of past demand patterns. Secondly, these base forecasts were presented at 

a forecast review meeting where they were judgmentally adjusted for MI to produce the final 

forecast. As we will show, the actual practice of producing the forecasts involved some blurring of 

these stages. MI was sometimes used in setting the baseline forecasts at stage 1, while recent past 

patterns in the demand were sometimes used as a reason for adjustment at review meetings rather 

than MI.  

A particular difficulty in producing accurate forecasts arose because of the effects of cross 

border trade (CBT) where customers buy the company’s products from overseas subsidiaries, 

usually at a lower price. This resulted in many unforeseen fluctuations in the demand data that were 

used when producing the forecasts. The degree to which CBT had impacted on the most recent 

observations was also difficult to ascertain as it took time to obtain information on the level of this 

activity. Apart from CBT, there were many other uncertainties in the market, such as the outcomes 
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of tenders, competitors’ actions and consumers’ behaviour. For example, with animal medicines, 

farmers might switch brands when the drug ceased to be effective because bacteria had become 

resistant to its effects.  

Task 1 Obtaining the baseline forecasts 

The patterns of the demand history varied according to the product types.  However, the forecasters 

explained that most products had a life-cycle which caused their underlying pattern to have a non-

linear trend (see fig 1). From this perspective, in the early years of a product’s life it took time for 

demand to build up as doctors needed to be persuaded to prescribe the drug. Following this, the 

product  experienced a mature phase of demand, before finally losing its patent protection. This 

caused sales to decline as generic products were marketed at a lower price. The figure also shows 

two months ahead forecasts at various stages of the product life cycle where a forecasting method 

similar to that embedded in the company’s FSS, ETS (Hyndman & Khandakar, 2008), has been used 

to produce them. 

**Insert figure 1 about here** 

Notwithstanding the demand forecasters’ belief in the product life cycle, the statistical methods 

embedded in the system were designed to extrapolate linear trends as the figure shows. Despite the 

adequacy of these linear forecasts for parts of the cycle, one forecaster explained that, to try to adapt 

the system’s automatic extrapolations so that they matched the perceived life-cycle pattern, they  

proceeded as follows:  

a) They selected an ‘appropriate’ length of demand history, for a given product so that the system 

generated a trend line that gave the best fit to the selected data, using the least squares criterion. 

Usually, two years of past data were used, but it could be much less (e.g. six months) and by 

manipulating the length of the demand history, a more acceptable trend line could often be obtained. 

The two-month ahead forecasts were then calculated from an extrapolation of this trend line. 
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b)  To further improve the apparent fit of the trend line to the past data and also to obtain forecasts 

that “looked right”, the forecasters often used their judgment to override the forecasts obtained in (a). 

This could be simply achieved by using a mouse to reposition the trend line on the graph. For example 

one forecaster stated “I’d actually re-model it [the statistical forecast] using different lengths, different 

levels, different trends and try and make … or use [the] system to generate, a more, what’s the word 

I’m looking for, a more reasonable forecast”. One forecaster admitted: “I don’t know how it [the 

forecasting system] calculates” and said that sometimes s/he was surprised at the system’s 

extrapolations judging them to be unrealistic. In some cases the forecasters were ostensibly trying to 

model the non-linear trends resulting from the perceived product life-cycle by fitting and adjusting 

linear trends to relatively short sequences of past data. (We will discuss later whether the perception 

that linear extrapolations were inadequate for short-term forecasts, was correct or, indeed, whether 

this was merely a pretext for intervention.) 

Task 2 Incorporating the effects of market intelligence (MI) 

The system’s displays of the forecasts resulting from Stage 1 were presented on a large screen at one 

of 17 monthly product group review meetings. As mentioned above, the main purpose of these 

meetings was officially to allow the forecast to take into account market intelligence (MI). One 

forecaster stated: “I guess the most important task in terms of the forecasting system[s]  is actually the 

meetings that we have where we use it and we produce the new forecast”. The attendees at the forecast 

review meetings were the relevant product manager, whose role was to adjust the forecast for MI, the 

relevant forecaster, who might challenge these adjustments, and representatives of the market 

research, finance and commercial functions. One of the logistics managers said “years ago we 

[Logistics] owned the [forecasting] process;  [Marketing] owned the forecasts”. Since then, senior 

management had insisted that all parties at the review meetings had to jointly own and agree the 

forecasts.  
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The review meetings that were observed differed in  character. For example, the first meeting 

concerned forecasts for animal products.  Here, the forecasts that were agreed were based almost 

exclusively on the product manager’s intimate knowledge of his market. These were never 

challenged.  A meeting to forecast the demand for a human medicine had a number of contrasting 

characteristics. In particular, there was great emphasis on very recent demand history. As stated 

earlier, the forecast initially presented usually were based on, at most, two year’s past data because 

“further back the trends tend to be different” [Quote from a Logistics Manager].  The 

appropriateness of this forecast was then assessed in a forensic discussion of very recent demand 

patterns, with particular emphasis on the last three months. An explanation was sought for every 

movement in the graph over these months, though reasons for these movements were usually 

unknown or highly speculative (e.g. “Why was October low and November high?” Answer: 

“…November is normally part of the wholesaler’s build …. We always do better in November. 

Having said that we didn’t last year, did we?” )  [Quotes are taken directly from tape recordings of 

the meeting].  

The actual forecasting process can thus be summarised as: 

Automatic statistical baseline forecast  

  Replacement with judgmentally derived  baseline forecast  

  Further judgmental adjustment at Review Meeting to obtain final forecast. 

4.2  The accuracy of the judgmental interventions 

To investigate the effect of the judgmental interventions on forecast accuracy we carried out 

an analysis of the sample of 3264 forecasts that were supplied by the company. Because managers 

had kept no record of the original automatic statistical baseline forecasts that would have been 

generated  by their system and because we had restricted access to this software we simulated these 

forecasts by applying the Forecast Pro forecasting system (www.forecastpro.com), in automatic 
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mode to 24 consecutive months of past demand data. These simulated forecasts provided plausible 

estimates of the automatic statistical baseline forecasts produced by the company FSS as they were  

based on a similar algorithm. However, because only 24 months of past data was available to us, we 

may have underestimated the system’s ability to produce accurate baseline forecasts. 

First, we estimated the effect of replacing the system’s automatic statistical baseline forecasts 

with judgmental baseline forecasts. We were unable to do this for baseline forecasts that had been 

subsequently adjusted for market intelligence as a record of the original automatic system-generated 

baseline forecast did not exist. Our analysis was therefore confined to the 37.7% of baseline 

forecasts that were recorded as unchanged –even though they may have differed from the original 

software’s automatic forecasts. We assumed that a baseline forecast had been changed when the 

recorded baseline forecast differed from the baseline forecast produced by Forecast Pro. For these 

forecasts, the company’s judgmental baseline forecasts were, on average, slightly less accurate than 

those automatically supplied, despite the extra effort entailed in producing them - their median 

absolute percentage error (MdAPE) was 12.0%, while the MdAPE for the automatic simulated 

baseline forecasts was 11.7%.   Thus, to the extent that this difference in accuracy is not a result of 

our estimation process, it appears that the cost of ignoring the system’s recommendations was 

primarily one of wasted management effort and time in their various meetings rather than serious 

damage to forecasting accuracy. These results also cast doubt on the life cycle as the demand 

forecasters conjectured.  

62.3% of all the recorded baseline forecasts were subsequently judgmentally adjusted, 

ostensibly for MI. Did these adjustments lead to improved accuracy? Analysis of the sample 

indicated that moderate improvements were sometimes achieved:  the MdAPE of the baseline 

forecasts was 17.3%, while that of the adjusted forecasts was 14.3%. However, only 51.3% of 

forecasts were improved through MI adjustment and the most successful adjustments tended to be 

larger.  Less than 45% of the smallest adjustments (below the first quartile) improved accuracy 
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while  over 58% of the largest adjustments (above the third quartile) resulted in improvements. The 

size of the adjustment is probably a measure of the strength of the market intelligence possessed by 

the members of the review meeting. It seems therefore that only when the proposed adjustment was 

substantial was the effort of making the judgmental adjustment worthwhile.  

How did managers perceive the quality of their forecasting process? The perception of one of 

the logistics managers was that they were “good on reporting error levels, but not good on using the 

data that they have to improve forecast accuracy” (e.g. stock level data that were available for some 

customers were not used). In particular, this manager thought that there was potential for improving 

their ability to learn from past forecast errors. However, despite the forecasting improvement project 

managers saw little need for fundamental changes in their use of the statistical system that they had 

purchased. Although the system’s statistical methods played a limited role in the forecasting process, 

the final forecasts were largely perceived and presented by the managers as being the output of an 

advanced modern system –indeed they were referred to as the ‘System forecasts’. Carrying out the 

judgmental interventions involved considerable management effort and time, which could only be 

justified economically if they had led to improved accuracy. But the company forecasters instead 

relied on their beliefs that their interventions were valuable without seeking any evidence that this 

was the case. 

 In many respects the observed forecasting process in the pharmaceutical company was 

contrary to the ‘normative’ approach suggested by forecasting research. In general, this indicates 

that managers should allow appropriate statistical forecasting methods to identify regular patterns in 

data (assuming that sufficient data is available for this purpose) (Goodwin, 2002) or alternatively, 

regard their judgmental approach to model selection as complementary to an automatic approach 

(Petropoulos et al., 2018).  (Although, Petropoulos et al. found that judgmental model selection 

could lead to more accurate forecasts, the selection in their study was restricted to a choice between 

‘optimised’ forecasting models. Forecasters did not have the ability to change parameters or the 
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length of data history to which a model was fitted.)  As we have discussed, manipulating  a 

statistical model, that is designed to identify regular patterns may lead to forecasters reading false 

patterns into the noise that appears in time series (O’Connor, Remus, & Griggs, 1993). Further, 

judgmental interventions should only be applied to statistical forecasts when the forecaster has 

important information about forthcoming events that is not available to the statistical method. 

(Sanders & Ritzman, 2001; Fildes, Goodwin, & Lawrence, 2006; Sroginis, Fildes and Kourentzes, 

2019)., Moreover, the size of these adjustments should be accounted for and their rationale recorded 

(Goodwin, 2002) and they should, in general, be true adjustments to statistical forecasts –accounting 

only for the extra information- rather than replacements of these forecasts (Goodwin & Fildes, 

1999). Finally, any choice of method, or any decision on what length of series history to employ 

should be informed, as far as possible, by analysis of the historical data and past forecast accuracy. 

 This raises the question: why did managers in a company operating in a  highly competitive 

environment adopt such an inefficient approach to an activity as crucial as demand forecasting?  The 

question is important because this situation continues to persist in many forecasting processes in 

other companies (for a recent summary of its prevalence see  Sroginis, et al., 2019). While the 

literature may provide part of the answer, it is important to examine whether other factors are 

involved. 

 

5 Explaining the use of the system  

Various theories purport to explain how individuals adopt, use and modify technology (here the FSS) 

so that their individual and organizational collaborative requirements are met. Orlikowski (2000) 

emphasized that such technologies need to be understood through the lens of ‘technologies-in-

practice’ rather than immutable artefacts. The tasks that forecasters undertake (Asimakopoulos et al., 

2011), as we have described in the previous section, lead to the system being ‘bent’ so that the 
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normative models implicit in the system’s design are modified to meet these individual and 

organizational requirements. We adopt these two lenses to understand what we have observed. 

5.1 An individual perspective 

The statistical forecasting system used in this company was designed to filter out the random noise 

that is associated with demand time series in order to identify the underlying systematic patterns so 

that this could be extrapolated into the future. However, the managers exhibited an intolerance of 

randomness and, consistent with Dawes (1979), they appeared to believe that almost every movement 

in their graphs had a predictable cause: “if you go into the numbers, look at the grid……open the plot 

, go back…and then understand why in 2001 there was a different pattern” (Asimakopoulos, Dix,, & 

Fildes, 2011, from an interview with a user). This tendency to see causes and explanations for random 

changes was apparently exacerbated when individual managers were regarded as experts in the factors 

that underlay the behaviour of a time series. For example, it was clearly difficult for a marketing 

manager  to admit they could not account for all of the month-to-month increases or decreases in the 

demand for a product, even though many of these movements were probably inherently unpredictable. 

In addition, in seeking to explain these movements, hindsight bias (Fischhoff, 1975) is likely to 

increase the belief that the random movements could have been predicted.  

As we have indicated, the facility in the forecasting system that allowed the judgmental 

manipulation of the base-line forecasts using a mouse was highly regarded by the forecasters and, 

consistent with studies on participatory design,  was a major factor in the acceptability of the system. 

However, as we discussed earlier, such participation can be associated with an illusion of control 

which would further enhance belief in the predictability of demand. 

In this company the devaluing of the automatic forecasts was exacerbated by the fact that some 

of the movements in the time series, which a statistical method will discount as noise, could be 

foreseen, at least in part. These movements were caused by special events for which there may have 

been little or no past data, thereby precluding statistical estimation. In these circumstances, the human 
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forecaster, who is aware of the impending event, will usually improve on the statistical forecast by 

intervening (Goodwin & Fildes, 1999).  However, the observable deficiency of the statistical forecast 

on these occasions apparently contaminated belief in the automatic forecasts on other occasions, when 

its errors were genuinely unpredictable (Goodwin & Fildes, 1999), an example of algorithm aversion 

(Dietvorst et al.,2015). 

This belief that all or much of the variation in time series is explainable appeared to have 

another important effect. While a statistical method will usually characterise a time series as having a 

relatively simple systematic pattern overlaid with noise, the managers seemed to perceive the series 

as a set of individually explainable outcomes. This is associated with a propensity to use epistemic 

logic (where the focus is on the underlying causes of an individual event) rather than aleatoric logic 

(where the focus is on the set of observations and element specific information is ignored (Beach, 

Christensen-Szalanaski, & Barnes, 1987). This emphasis on case-specific information meant that 

‘base-rate’ information, like long term trends, was underweighted (Tversky & Kahneman, 1974; Hoch 

& Schkade, 1996).  It also meant that the forecasters’ interest was usually confined to recent 

observations which were perceived as being the result of current ongoing or recently concluded events. 

Their attempts to get the statistical forecasts to provide as close a fit as possible to a few recent 

observations was symptomatic of this. In any case, recalling the many events and circumstances that 

were perceived to have shaped the past history would have put too great a load on memory so there 

was a natural bias towards recency. Against this background, the automatic forecasts of a statistical 

time series method were bound  to be regarded with scepticism. The focus on recent patterns and 

individual outcomes meant that the system’s ability to detect longer term systematic underlying 

movements was generally undervalued. 

The psychological literature on accepting advice also provides insights into why the automatic 

statistical forecasts were often changed. Research by Yaniv and Kleinberger (2000) suggested that 

people are more likely to trust their own beliefs, rather than the advice because they have greater 
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access to the rationale for these beliefs. The statistical forecasting system did not provide an 

explanation for its forecasts and the advice it provided was therefore mute and unsupported.  

    

5.2 The organizational forecasting perspective  

The individual perspective that we have just adopted does not provide a complete 

explanation for the way that the forecasting system was used. For example, why were managers 

apparently happy with a system that was unable to explain movements in time series that they 

judged to be largely predictable and which produced only linear extrapolations when they perceived 

the underlying trends in demand to be non-linear? Also, there were pressures in the organisation to 

improve forecast accuracy, through for example the Six Sigma initiative, so why were the 

fundamental aspects of the forecasting process and the way the system was used never questioned?  

. We first set about classifying the interests of the actors associated with the forecasting 

process.  The actors we identified as having important roles were the senior managers and 

accountants, the marketing and product managers, the logistics managers who produced the 

forecasts and the software vendor. We also considered the role of the FSS itself.  

For the purpose of understanding the networked forces that create stability, it is useful to 

start with the perspective of a single actor. This actor will be referred to as the ‘focal actor’ and we 

examine how other actors’ alignment with the focal actor’s interests led to the formation of a stable 

network of aligned interests (Sidorova & Sarka, 2002).   In our case, we designate the software 

vendor as the focal actor, though we could have taken the perspective of another actor as our starting 

point and we would still have derived the same rationale for the formation of the network. 

The vendor was interested in obtaining sales of the forecasting system. This interest was 

served by advertising the accuracy and sophistication of the system’s inbuilt statistical methods and 

its facilities for incorporating judgmental intervention, together with the system’s ease of use 

(evidence for the highlighting of these attributes was found on the software company’s web site).  



Page 24 

 

 

The vendor also wanted to maximise the profit on the sale. This would be achieved by selling a 

system containing a standard (rather than a customised) set of statistical forecasting methods in 

order to spread the system’s development costs. In the words of one software developer: “We live in 

a  commercial reality, you see, and the customer will come along and say I would like something [ a 

new facility] and you say I can’t do this unless you co-fund  the development” [this quote has been 

slightly re-worded to improve clarity]. The provision within the software of easy-to-use facilities for 

judgmental intervention would thus serve the vendor’s interests in a second way because it would 

effectively place the costs of any local adaptation (or customisation) of the forecasts upon the user. 

This could also reduce the chances of the system being blamed for forecast errors, so ensuring 

continued use. Continued use was in the vendor’s interests because users would pay for the 

maintenance of the system and would attend user conferences and purchase upgrades. Also, the 

existence of an active body of existing users was likely to attract new customers. 

However, the provision of  an easy-to-use facility for judgmental intervention was also in the 

interests of the company’s middle managers. They could be seen to be using an advanced system 

containing reportedly sophisticated and accurate statistical methods, while at the same time being 

easily able to control the forecasts. The existence of these facilities for intervention was particularly 

useful in the enrolment of the product managers whose participation in forecasting was seen as 

crucial because of their market intelligence. It allowed them to derive prestige by demonstrating 

their expertise in their markets at forecast review meetings and gave them the opportunity of 

attempting to push the forecasts in directions that suited the balance of their interests. For example, 

one product manager, commenting on the system, said:  “It’s there, it’s useful, but it needs to be 

managed since no way can it have the market intelligence”.  

  The fact that FSS produced linear extrapolations, when the managers perceived the 

underlying trends to be non-linear, was paradoxically a factor that assisted in securing its 

acceptance. It provided a pretext for interventions, allowing users to make adjustments for other 
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reasons. To maintain their own standing, the logistics managers needed to produce baseline forecasts 

which looked credible at review meetings where colleagues had an intolerance of noise in the time 

series.  To achieve this they could use the intervention facilities to fit and refit past trends to 

different lengths of past history until a close fitting trend was  achieved. One logistics manager 

described the system as being “quite good” because it allowed the graphical fit of the trend line to be 

easily assessed when judgmental changes were made to it or the length of the demand history 

altered. 

The senior managers, including accountants, had as their objectives accurate forecasts to 

support the annual planning cycle, and the avoidance of costs arising from forecast errors (such as 

excess inventory). It was in senior managers’ interests to receive timely forecasts that they perceived 

to be from an advanced, modern forecasting system yielding baseline forecasts that were as accurate 

as possible, given the then current technology.  It was also in their interests to ensure the inclusion of 

all relevant middle managers in the process. The  FSS served these interests because, it produced 

graphical and tabular displays that could be used in review meetings involving groups of managers 

and allowed forecasts to be easily and publicly changed during these meetings. The old ‘ruler and 

paper’ system would not have been compatible with such meetings. Senior Managers also wanted to 

be able to exercise some control and monitoring of  this process. From their perspective the system 

also had a facility which allowed for adjustment for market intelligence and, by requiring 

documentation of these adjustments, they perceived that control over the process could be exercised 

though this was not implemented in practice.  Also, in relation to total turnover, the cost of the 

system was small (though it was large enough to be regarded as a serious tool).  

As we have discussed, all the actors had a stake in resisting any change. For the middle 

managers it would involve the risk of losing the benefits of control over the forecasts, disruption and 

(in the case of the managers with direct forecasting responsibility) the need to learn a new system. 

For the senior managers changing to another system would have involved purchasing and other 
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costs, disruption and probably resistance from middle managers. Nor was any evidence collected on 

the value-added arising from the different tasks that contributed to the final forecast. Had this been 

collected, it might have signalled a need for change. All of this served to consolidate the alignment 

of interests of the vendor and middle and senior managers and helped to ensure the stability of the 

network configuration. Although managers indicated that they felt their forecasts’ accuracy could be 

improved (this was part of their main motive for inviting us into the company) they evidently wished 

to make these improvements within the existing structure. A suggestion by one of the researchers at 

the end of the interviews that the company might be using an inappropriate system, and that what 

was needed was a model that supported extrapolations based on product life cycles, was received 

sceptically. It was apparent that the company would have liked to find ways of making better use of 

available information generated by the many forecast review meetings in order to improve the 

quality of their judgmental interventions, but the role of the forecasting system would, they said, 

remain unchanged. As the system designers had noted, generally FSSs are not designed around the 

concept of collaborative work. 

6 Why and how the forecasting system changed 

We returned to the case organization 14 years after our previous visits to find that what had 

seemed a stable system had changed dramatically with new software and new processes at the core. 

Within the various regional subsidiaries there had been a wide range of forecasting processes and 

software; forecasts were produced from the purely judgmental to the more sophisticated system 

observed in the case subsidiary. Managers who were external to the UK subsidiary perceived this 

assortment of methods to be inefficient and in 2011 a centralized demand management team, a small 

‘Centre of Excellence’, was set up ‘to validate and consolidate the global pharma demand and 

represent the link between the local affiliates and the global supply chain planning organizations’. 

Centres were also established in some of the other business units, which typically employed staff 

with technical (statistical) expertise.  They considered that the centralization of processes and 
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software would allow quality control to be exercised, accuracy targets set and the sharing of 

information between regional units. In addition, the organization as a whole had become a user of 

SAP which in 2013 led, after consideration of some limited alternatives, to the adoption across all 

regions of SAP-APO. SAP as implemented offered major additional capabilities beyond forecasting 

including support for logistics and manufacturing operations.  

In trying to understand the disruptive forces that led to changes in the system and its 

processes, we have interviewed two major actors, the company-wide manager in charge of demand 

planning and a software provider of supporting forecasting software. In addition, we were able to 

interview one of the original forecasters in the UK subsidiary. Factors internal to the organisation  

(though external to the subsidiary), rather than changes in the environment appeared to provide the 

stimulus for change in the company we studied.  

In his critique of theories of change Todnem By (2005) classifies change in organisations in 

terms of (i) its rate of occurrence (e.g. continuous or discontinuous and infrequent), (ii) its scale (e.g. 

department based or strategic) and (iii) how it comes about (e.g. through careful planning or as a 

reaction to external events).  In this case, the initial change was discontinuous and isolated, 

company-wide –though not affecting the company’s strategic direction – and it was planned, rather 

than reactive.  

The punctuated equilibrium model has been used to explain why some organizations 

experience long period of stability followed by occasional sudden changes (Gersick, 1991). In an 

application of the model to the adoption of software in organizations, Lassila and Brancheau (1999) 

indicate that it posits that stable or ‘equilibrium’ periods are “sustained by inertia resulting from 

various factors of cognition, motivation and obligation”. .  This characterization is consistent with 

observations in this company. Disruption can result from ‘internal changes that cause structures and 

activities to go out of alignment or from changes outside the organization that impair the system’s 

ability to adjust with its environment’.  More specifically, internal factors that can lead to change 
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include: (i) employee turnover (Lassila and Brancheau, 1999) -where new employees bring novel 

perspectives to the organization; (ii) a subjectively perceived misfit between what the current 

process is delivering and what it  ought to be delivering and (iii) a desire for the restoration of 

control by senior managers  (Jacobs et al. 2013). These elements all figure in the changes in the 

company’s demand planning processes. 

The outstanding driver of change here was the top-down requirement for standardisation. The 

company-wide introduction of SAP as a platform proved the opportunity: the UK subsidiary’s 

satisfaction with the established FSS was of limited counter-weight. The change was demanded by 

an allied network of actors at the top of the multinational organization who perceived a misfit 

between the existing process across the company and what it could be achieving, and who, wished to 

establish some central control over the process. By virtue of their position, these actors had the 

power to push forward their agenda, aided by the centralized technological change.  It also appears  

that their arguments for change were sufficient to establish  ‘the balance of opinion’ amongst those 

who would be directly affected by the innovation. One manager at the centre of the organization 

reported that there was ‘curiosity’ and ‘lots of interest’ in the proposed new system when the 

rationale for it was explained to them. However, the new system lacked the graphical flexibility of 

the old, the forecaster in the subsidiary commented, and was initially regarded as ‘not as easy to 

use’.  

With new staff technically trained in post, the centralized demand have continued to innovate 

and in 2016 implemented a model selection routine bolted on to APO., where the initial baseline 

forecasts were automatically generated by the system (APO enhanced by the bolt-on forecasting 

software, iqast (www.iqast.de),  which had been shown to lead to improved accuracy). These 

baselines were then used to highlight products needing review by the regional subsidiaries. The 

senior analyst, through analysis from the enhanced software, committed time to discuss with the 

subsidiaries the recommended models.  However the subsidiaries continued to have final 
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responsibility for their forecasts with their S&OP process remaining essentially unchanged: the 

major change was in the construction of the base-line. The forecast users remained much the same as 

in earlier years, including production and operations but also finance. The earlier emphasis on 

product life-cycle, which justified many of the adjustments, has to a certain extent been absorbed 

into a more extensive  S&OP process where more information is available to the participants. Trust 

in the forecasts, the senior global demand analytics manager remarked, was gained by “sitting down 

with the affiliates”  to show the value of the new base line and  of working together on the final 

forecast: “with this approach you can gain trust [and] cause the local team to feel empowered…. Not 

just receiving a number from the top”. 

From  a forecasting perspective it is unclear to what extent the innovation led to 

improvements in the process in the UK subsidiary: dramatic improvements were claimed elsewhere. 

In selecting SAP, no comparative testing of alternative algorithms was carried out and in fact, SAP-

APO is known to have limited forecasting capability with method selection heuristics that are poorly 

designed (Chockalingam, 2010).  Moreover, while the new system precluded the manipulation of the 

system’s parameters, ex-post judgmental adjustment of its forecasts was still permitted –one 

manager who led the innovation estimates that forecasts for established products are “70% statistics 

and 30% management judgment”, while for new products the contribution of judgment was 50%.  

He also estimated that the innovation had reduced the mean absolute percentage error (MAPE)  of 

forecasts by around 7 percentage points after the introduction of SAP, but no empirical evidence was 

available to substantiate this.  

The new forecasting process has proved stable for many of the same reasons that the original 

process, which had stayed in place for around 20 years. The key new actors coming into play that 

changed the equilibrium were an alternative software system (SAP) with a forecasting module (SAP-

APO), those senior managers looking for a consistent process across regions and the newly formed 

central demand management team. Its centralized adoption left the regional forecasting roles and 
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tasks unscathed and the forecast value added (FVA) (Gilliland, 2008) of the task of judgmental 

adjustment to support market intelligence was initially unanalysed. However, in one important 

respect, the new network has been designed so that change in  one key component, the generation of 

the base line forecasts through novel software extensions, could be organic with future innovations 

such as the introduction of machine learning methods easy to implement.  As a second example, in 

2019/20 based on the earlier success, the team was expanded to continue to work towards better base 

line forecasts and “explore usage of new technologies”. Also, a new process whereby the 

subsidiaries only focus on the products where the FVA has been estimated as positive leaving the 

remaining products untouched, is being introduced. These innovations have been made possible 

through the centralized demand management team’s remit and the trust established between the 

small centre and the subsidiaries, an aspect not present in all the business units. However, SAP-APO 

has remained a significant constraining force, an ‘actor’ that requires others to work around it. 

Features in the old system such as changing the data used in choosing the baseline model have 

disappeared but the top-down model selection routine has proved sufficiently convincing that those 

producing the final consensus forecast can work successfully with the changed organizational 

network. The senior analyst commented, “The Global Demand Analytics Team however will focus 

in the next years in evaluating the latest state of the art software to further increase the accuracy of 

the baseline.” 

7 Conclusions 

From the technological imperative perspective, people make rational economic decisions in adopting 

and using technology. The forecasting processes in this company cannot easily be interpreted through 

such a lens. Instead with the complementary perspectives of individual forecasters’ cognitive 

processes, the tasks they undertake and an organizational analysis , the decision to   use the original 

forecasting system despite its poor task-technology fit  becomes understandable. The case study 

evidence we have presented has highlighted a number of key lessons about support systems-in-use. 
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Firstly, managers used the system in a way which did not accord with its design and advertised 

purpose. They effectively moulded the system so that the collaborative tasks they undertook and their 

shared understanding of the market could be ‘inscribed’ into the FSS. The new software system (APO) 

in its production of baseline forecasts was outside the local forecasters’ influence and not amenable 

to their direct intervention. 

Secondly, the research has focussed on the on-going operation of an IS,  the individual and 

organizational drivers for sub-optimal (economic) use  and why these patterns of  behaviour persisted 

and subsequently changed. This research poses a stark question to those seeking to improve the quality 

of forecasting in supply-chain companies: how can individual cognitive biases and the organisational 

and personal barriers embodied in stable networks like the one described be overcome to achieve more 

efficient but equally acceptable forecasts? No elements of the established network facilitated process 

improvement or provided an incentive for individuals to change their mental models of the forecasting 

task. 

Thirdly, the research shows that change was difficult and long in coming even when there were 

external interventions such as the company-wide 6-sigma project or the introduction of researchers 

such as us, analysing forecast errors and the processes and software from which they derived. Change 

in the end came about by a centralized initiative, external to the network of actors we had observed 

and it was discontinuous. It was driven by software standardization across the whole organization. 

The new system had a poorer task-technology fit, nor was it appraised on the grounds of offering 

improved accuracy. However, the establishment of the Centre of Excellence in Demand Management 

provided the means by which accuracy improvements were achieved. The vested interests that many 

actors had in continuing to make heavy use of judgmental interventions remains in the new 

organizational processes, despite their known limitations. But once again, centralized changes are 

expected to lead to less frequent and more effective interventions. 
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Our continued involvement with a wide range of supply-chain companies and software 

providers, together with the findings of recent surveys, lead us to expect that judgmental interventions, 

despite their limitations, will continue to meet the individual and collaborative organizational needs 

of the forecasters, ensuring a consensus around which the organization can plan. The challenge for 

researchers and software designers alike is to develop FSSs that can meet such organizational 

requirements while at the same time improving forecast accuracy. Such a novel research agenda  

places equal weight on innovative statistical methods and the effective incorporation of ‘forecast value 

added’, where this is potentially valuable, into the forecasting process. For this to happen customers 

will need to create a demand for more sophisticated FSSs, despite the perceived threat to their 

autonomy as forecasters, as well as a willingness to pay for these improved facilities (Goodwin, 2015). 

This will require a recognition of the operational benefits that increased accuracy can bring and a 

demonstration that improved FSSs can achieve this. 
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Figure 1 A typical product life cycle, as hypothesized, with ETS forecasts (from forecast origins 6, 12, 18 and 24)  
 

 
 

 


