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Abstract— Protein structure prediction has been one of the most 

challenging tasks undertaken in bioinformatics. Fragment 

assembly methodologies have emerged as the most accurate 

approaches to predict protein conformations without the need of 

homologues. Rosetta – a fragment-based tool – has consistently 

been at the forefront for two decades. Rosetta assembles candidate 

conformations using fragments of length 9 and 3 extracted from a 

pool of high-resolution proteins. Herein, an extensive study has 

been conducted highlighting the importance of the size 3 

fragments – 3-mers - the role of which is both refining and 

correcting. Reduction of the number of those fragments from 200 

to 100 revealed that Rosetta was able to produce first models of 

improved accuracy (+8%) for alpha and alpha-beta targets by 8%. 

Accordingly, an amended pipeline was proposed: it involves 

adjusting the number of 3-mers according to sequence-based 

structural class prediction of the protein target. 
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I.  INTRODUCTION  

Among all the biochemical reactions taking place in the 
living cell, many relies on the action of proteins. For instance, it 
has been estimated that absence of some enzymes – the largest 
set of proteins – can make one biological reaction lasts up to 1.1 
billion years [1];  unsurprisingly, they are referred to as “the 
eyes, arms and legs of living cells” [2]. Following the translation 
process, the ribosome generates a protein as a linear sequence of 
amino acids adopting the shape of an extended random coil. 
Then after a set of biophysical interactions, the very quick 
folding process occurs spontaneously where the linear chain 
adopts a compact and rigid structure. This final conformation, 
also known as the native structure, is believed to be unique 
amongst all possible conformations as it corresponds to the 
shape with the lowest free energy.   

From a drug design perspective, knowledge of the exact 
coordinates of the tertiary native structure of proteins is 
considered invaluable [3]. To this end, scientists and 
bioengineers have designed in vitro environments where they 
are able to observe proteins folding and/or reaching their final 
thermodynamically stable conformations, gaining insight about 
the natural folding mechanism that takes place inside the cell, 
i.e. in vivo. The main laboratory techniques are X-ray 
crystallography, Nuclear Magnetic Resonance (NMR), and 
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Electron Microscopy (EM). Eventually, the 3D conformations 
that they managed to resolve are deposited in the Protein Data 
Bank (PDB) – the world’s largest repository of proteins with 
known structures [4]. Despite enormous advancements in those 
techniques, there is still enormous gap between the numbers of 
proteins with known structures and known proteins: the current 
ratio is estimated at about 0.01%*. This is due to, not only the 
high cost of those laboratory techniques in terms of time and 
money, but also technical limitations when dealing, in particular, 
with membrane and large proteins.   

To address this, for more than two decades, 
bioinformaticians have undertaken the challenge to design 
computer software that predict a protein’s correct native 
structure from its amino acid sequence, i.e. in silico prediction. 
Although production of such tool has remained an ambitious 
goal, the research field of Protein Structure Prediction (PSP) has 
made significant progress. In order to access those 
advancements, a biannual competition called Critical 
Assessment of techniques for protein Structure Prediction 
(CASP) was established in 1994. In its latest version, CASP13 – 
2018, the average structure accuracy when dealing with the most 
challenging targets reached nearly 66%. Although, thanks to 
mainly the exploitation of deep learning techniques, this is a 
dramatic improvement on performance delivered 2 years earlier 
at CASP12 (+13%) [5], further improvements and original ideas 
are still needed. Indeed, none of the available PSP tools has so 
far been able to deliver ‘acceptable’ conformations, i.e. 
structures whose knowledge support drug design, for all targets. 

Rosetta is considered to be one of the most accurate PSP 
tools when dealing with challenging targets. Conceptually, it is 
based on two steps: the assembly of fragments of 9 amino acids 
to predict a target’s general shape and its refinement using 
fragments of size 3. Herein, we examine the role of size 3 
fragments exploring if their capability goes further than 
ameliorating an already correct fold. Then, we propose a strategy 
relying on the protein target’s structural class to ensure that 
Rosetta improves models during its second step. 
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II. COMPUTATIONAL TECHNIQUES FOR PROTEIN 

STRUCUTRE PREDICTION 

A. Overview 

Despite the variety of computational approaches developed 
for protein structure prediction, they can be classified within two 
categories: Template-Based Modelling (TBM) and template-
Free Modelling (FM). As its name implies, the TBM category 
relies on known protein structure(s), i.e. template(s), available in 
the PDB, to build a putative structure from the sequence of a 
protein of interest. Generally, methods belonging to this 
category rely on two steps. First, appropriate template(s) need to 
be identified, and then they are exploited to build the protein’s 
conformation. Those methods can be further divided into two 
major classes: homology modelling and fold recognition. Whilst 
the first one relies on sequence-based homology for template 
selection, the second one requires sequence-structure 
compatibility. In homology modelling, also known as 
comparative modelling, sequence similarity exceeding 30% 
suggests that the target and the template share a similar 3D 
structure [6]. However, when sequence similarity is lower, the 
more demanding fold recognition approach, also called 
threading, may be a better alternative. Sequence-structure 
alignment is conducted to find templates the conformation of 
which are compatible with the amino acid sequence of the target. 
In practice, some carefully crafted fitness function is used to 
assess if any of the templates’ conformations is likely to be 
adopted by the target’s sequence.  

The alternative to TBM, i.e. template free modelling – also 
known as ab initio –, is to build conformation ‘from scratch’ 
relying on Anfinsen’s theories [7], [8]. Those theories state that, 
not only is the amino acid sequence alone sufficient to dictate 
the corresponding structure as the folding process is purely 
physical, but also the native structure is the one associated to the 
lowest free energy. Consequently, ab initio approaches employ 
energy functions known as force fields (FF) to evaluate the 
forces amongst atoms and amino acids so that the conformation 
with the lowest energy score can be discovered. Although ab 
initio methods are considered the most challenging PSP 
approaches, they are able, in principle, to predict structures of 
targets for which no template can be identified. Those 
techniques, also known as physics-based since they use laws of 
physics to simulate the folding mechanism, have enormous 
computational needs, which limits their usage to state-of-the-art 
supercomputers and large grid computing systems. Such 
processing requirements led to the development of distributed 
computing initiatives such as, Folding@home and 
Rosetta@home[9], where the general public is asked to 
participate by giving access to their personal computers, which, 
when idle, perform protein folding tasks. 

B. Fragment-based methods  

Limitations due to the computational complexity of ‘pure ab 

initio’ methods have prompted the need of a more practical 

approaches, yet still able to predict Free Modelling targets. The 

concept behind a new type of approach, i.e. fragment-based 

assembly, was inspired from two main observations. First, the 

sequence-structure correlation is stronger when short sequences 

are considered, although its strength varies depending on the 

secondary structure. Second, any protein conformation can 

successfully be replicated by simply assembling short 

substructures from other proteins the global shape, i.e. fold, of 

which may be totally different. Consequently, FM targets could 

be built by assembling short substructures from diverse protein 

templates without homology requirements regarding the 

selection of those templates. Although fragment-based PSP 

approaches only rely loosely on physics, they have delivered 

remarkable performance in recent CASP events. As a result,  

Rosetta [10], I-TASSER [11], and QUARK [12], all fragment-

based frameworks, are now the leading approaches when 

dealing with FM targets. Such success has been driven by two 

main features of those approaches: i) instead of employing 

resource hungry molecular dynamics simulations to simulate 

the actual folding path, they concentrate on finding the resulting 

conformation using typically Monte Carlo simulations; and ii)  

instead of using individual atoms or amino acids as basic 

building blocks, sets of amino acids, or fragments, are 

considered as rigid units of construction, making much faster the 

optimization process towards a near-native conformation. A 

consequence of those strategies is that fragment-based PSP tools 

do not require high performance facilities and can often be 

executed on standard personal computers.  

A characteristic of fragment-assembly methods is that, due 

to the random nature of search trajectories, they usually produce 

a large number of putative structures, called decoys, from which 

the most native-like conformation has to be identified. While 

selecting the best model within a pool - sometimes thousands of 

them - of decoys may be performed using clustering or quality 

assessment techniques, often the model with the lowest energy 

score is elected, it is then known as the first model.  

C. Rosetta 

Among fragment-based methods, Rosetta - described for the 
first time twenty years ago contributing to CASP3 [13] - has 
consistently been at the forefront of template free modelling 
being updated regularly.  Nowadays, it is an open source 
package that comprises many macromolecular modelling tools 
and applications [10]. The execution of the fragment assembly 
phase – Rosetta’s core – relies on the target’s sequence, its 
profile, and typically 25 fragments of size 9 and 200 of size 3 for 
each amino acid position. They are extracted from a fragment 
library built in advance using the ‘fragment picker tool’ [14] and 
a dataset of non-homologous high-resolution protein templates 
(~16k). Besides sequence similarity, secondary structure 
predictions are used to select suitable fragments of both size 9 – 
also known as 9-mers – and size 3 – 3-mers. 

The fragment-assembly task is divided into two subsequent 
phases: 9-mers and then 3-mers insertions. As each fragment, in 
principle, corresponds to a local energy minimum, it is kept rigid 
so that its integration within the model being build decrease the 
conformation’s entropy. Not only is the choice of the location of 
insertion chosen randomly, but also the choice of a 9-mer among 
the 25 available and a 3-mer out of 200 is also random. Once the 
fragment insertion process finishes, a coarse-grained 
conformation is generated where side chains are represented by 
centroid atoms. All bond angles, bond lengths, and side chains 
atoms are added afterwards based on statistical data that suggest 
their most likely values [15]. 



III. PRELIMINARY EXPERIMENTS 

As mentioned earlier, Rosetta operates using two stages of 

fragment insertions/substitutions: 28,000 insertion attempts of 

9-mers, followed by 8,000 3-mer insertion attempts. The first 

stage is considered as the crucial one since it leads to the overall 

shape of the conformation; it is divided into several sub-stages 

where terms of the force field are subsequently added to tighten 

the acceptance criterion of a fragment replacement. In 

comparison with a 3-mer substitution, not only may a 9-mer one 

dramatically changes the substructure where the replacement 

takes place, but will also affect the general shape of the model 

being built. While usage of such large ‘jumps’ provides a good 

strategy to escape local minima, they are unlikely to allow 

reaching a near-native conformation. This is achieved by the 3-

mer phase, the purpose of which is to refine the conformation 

built in the initial stage by performing 8,000 additional 

insertions, i.e. small ‘jumps’ are attempted to get deeper in the 

funnels of the search area rather than skipping them.  

Since the number of available fragments of size 3 for each 

position is 200, they may offer quite a lot of structural diversity. 

A consequence could be that those insertions may go well 

beyond structure refinement leading to relatively dramatic 

structural corrections. Whilst such corrections can be 

advantageous to the putative models that did not converge 

towards the correct fold following the 9-mer insertions phase, 

they may be destructive to those that only lack some refinement.  

To highlight the modelling abilities of the 3-mer insertion 

phase, structure predictions were conducted using standard 

Rosetta and disabling Rosetta’s 9-mer insertion phase (3-mer 

only Rosetta): in each scenario, 20,000 decoys were generated 

for each of the 33 protein targets defined in Section IV. Figure 

1 shows their result comparison in terms of the first model using 

the GDT-TS metric. As expected, standard predictions clearly 

outperform 3-mer only Rosetta (quality average: -21.8%), yet, 

it was able to attain a better first model in 9 out of the 33 targets. 

This confirms that correction and refinement are not the sole 

capabilities of the 200 3-mer fragments insertion phase, since it 

can also produce competitive conformation for some targets. 

Figure 2 shows one of those successful 3-mer only predictions 

(74.7 GDT) using PyMol for their visualisation [16]. 

 

Figure 1. GDT of the First Model out of 20,000 decoys. The score used is the 

GDT-TS, where a high value means a high similarity. 
 

A previous study demonstrated that standard Rosetta’s 

performance varies according to the structural class of the 

protein target [17]. It relies on the three main classes defined by 

CATH – a database that classifies proteins based on structure 

and functions [18]: mainly alpha, mainly beta and alpha beta. 

Table I reports the results of that study showing that the higher 

the amount of beta sheets in a target, the lower is the accuracy 

of the first model generated by Rosetta. As sequence-based 

structural class prediction is highly accurate, many tools having 

reported an accuracy exceeding 90% [19], this technology is 

mature enough to exploit such prediction in a sequence-based 

PSP pipeline.  

 

Figure 2. Structures of the native model (left) and first model’s conformation 

(right) using 3-mer only Rosetta (PDB ID: 4FM3) 
  
TABLE I. Performance of Rosetta according to a target’s structural class 

 

 Number of 

targets 
Average of the first model’s 

GDT for Rosetta 

Mainly Alpha  16  39.5  
Mainly Beta  18  23.4  
Alpha Beta  33  27.4  

 

Based on the above, one may suggest that the role of 3-mers 

in Rosetta may be optimised according to a protein’s structural 

class. Herein, using empirical studies, this hypothesis is 

investigated by amending the number of 3-mer fragments based 

on the predicted structural complexity of the protein target. In 

the next section, two sets of experiments are presented. 

According to the target’s structural class, they reveal when the 

standard 3-mer insertion phase is either useful or detrimental. 

IV. DATA SETS, EXPERIMENTS AND RESULTS 

The evaluation dataset contains 33 targets selected from 

previous CASP competitions. It is diverse in terms of sequence 

lengths and protein structural classes: lengths range from 33 to 

141 amino acids and proteins belong to the three main structural 

classes, i.e. mainly alpha, mainly beta and alpha beta. Since the 

raison d’être of ab initio protein structure prediction is the 

ability to infer new folds, all proteins homologous to those of 

the evaluation dataset were removed from the data set from 

which fragments are built (based on E-value lower than 0.05 on 

PSIBLAST). The evaluation metric used to evaluate the 

accuracy of predicted models against the native structures is the 

 

 



Global Distance Test – Total Score (GDT-TS) (GDT in the text) 

– that is the formal assessment criterion used in CASP. Its value 

ranges between 0 and 100, where 0 means no structural 

similarity and 100 represents a perfect superimposition [20].  

Conforming to the blind assessment of PSP methodologies 

that involve a large number of decoys, the first model, i.e. the 

structure with the lowest energy amongst the set of decoys, is 

used to compare Rosetta’s standard predictions with those of 

the amended pipeline.  

For each protein target, three experiments were performed, 

each using a different number of available 3-mers: standard 

predictions, i.e., 200 3-mers, 100 3-mer predictions (denoted as 

‘100 3-mers’), and 25 3-mer predictions (denoted as ‘25 3-

mers’). The 100 and 25 3-mers were chosen using the top scores 

that Rosetta’s fragment-picker associated to each fragment. For 

each of the three experiments, 20,000 decoys were generated. 

When available, CATH annotations were used to associate the 

targets to structural classes, otherwise CATH’s standard 

thresholds of 15% helix and 10% strand [21] were adopted to 

manually annotate targets. 

As Figure 3 and Table II show, when the number of 3-mer 

fragments was reduced to 100, improvement in terms of overall 

performance – in terms of first model - was negligible, i.e. 

+0.4%. However, when only alpha and alpha-beta targets are 

considered, a different picture emerges: for 14 out of those 23 

targets, a better first model was produced with an average 

improvement of 8.7%. Conversely, the average of GDT 

degradation of the 10 mainly beta targets reaches 18.0%. The 

results of this experiment support our hypothesis: not only do 

alpha and alpha-beta structures not need a large amount of 

correction, but also it may also affect negatively the 

conformation produced during the 9-mer insertion phase.  

Figure 3. GDT of the first models of standard predictions versus predictions 

made using 100 3-mers 
 

This conclusion is confirmed by the second set of 

experiments where the number of 3-mers was further decreased 

to 25. However, as only minor improvements are achieved for 

alpha and alpha beta targets (see Table II), this suggests that the 

low diversity of the 25 fragments does not allow exploring 

sufficiently the conformation space around the model produced 

during the first phase. Those results are in line with those of a 

thorough study by Zhang and Xu - I-TASSER’s pioneers - 

where they concluded that no less than 100 fragments is needed 

for each position in the amino acid sequence to attain a native-

like conformation [22]. Figure 4 illustrates the improved quality 

of the first model obtained for an alpha target when using 100 

3-mers instead of standard Rosetta. 
 

TABLE II. Detailed comparison between the first model’s quality of 100 3-

mers and 25 3-mers with that of the standard predictions 
 

Average GDT change of First Models compared to standard approach 

 All 

three 

classes  

Mainly 

alpha  
Mainly 

beta  
Alpha 

beta  
Mainly alpha 

and alpha 

beta classes 

only 

100 3-
mers  

+0.4%  +11.4%  -18.0%  +6.4%  +8.7% 

25 3-mers -4.8%  +3.3%  -27.8%  +1.5%  +2.4% 

Figure 4. From left to right. Structures of first model produced using 100 3-
mers (GDT = 64.5), native structure and first model produced using standard 

Rosetta (GDT = 44.5) for a 74 amino acid protein (PDB ID: 2LY9) 

V. CONCLUSION 

 This investigation clarifies the role that 3-mer insertions 

have while conducting protein structure prediction using 

Rosetta. It unveils that usage of 3-mers is not limited to minor 

corrections, but that fragments of size 3 may be sufficient to 

generate a conformation of reasonable accuracy. Moreover, 

experiments reveal that the standard number of 3-mers, i.e. 200, 

is not optimal when dealing with targets composed of more than 

15% helices, i.e. alpha and alpha beta targets, as excessive 

fragment diversity tends to degrade the quality of the generated 

conformation. Accordingly, a new pipeline for Rosetta-based 

protein structure prediction is proposed - see Figure 5. This study 

proposes that usage of 100 3mers offers probably a good 

compromise in terms of fragment variety for non-beta 

dominated targets.   

 

 

 



Figure 5. Proposed Rosetta-based protein structure prediction pipeline. 
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