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ABSTRACT 

 

1. Identifying the drivers of population fluctuations in spatially distinct populations remains a 

significant challenge for ecologists. Whereas regional climatic factors may generate population 

synchrony (i.e., the Moran effect), local factors including the level of density-dependence may 

reduce the level of synchrony. Although divergences in the scaling of population synchrony and 

spatial environmental variation have been observed, the regulatory factors that underlie such 

mismatches are poorly understood.  

2. Few previous studies have investigated how density-dependent processes and population-

specific responses to weather variation influence spatial synchrony at both local and regional 

scales. We addressed this issue in a pond-breeding amphibian, the great crested newt (Triturus 

cristatus). We used capture-recapture data collected through long-term surveys in five T. 

cristatus populations in Western Europe.  

3. In all populations – and subpopulations within metapopulations – population size, annual 

survival and recruitment fluctuated over time. Likewise, there was considerable variation in 

these demographic rates between populations and within metapopulations. These fluctuations 

and variations appear to be context-dependent and more related to site-specific characteristics 

than local or regional climatic drivers. We found a low level of demographic synchrony at both 

local and regional levels. Weather has weak and spatially variable effects on survival, 

recruitment and population growth rate. In contrast, density-dependence was a common 

phenomenon (at least for population growth) in almost all populations and subpopulations. 

4. Our findings support the idea that the Moran effect is low in species where the population 

dynamics more closely depends on local factors (e.g. population density and habitat 

characteristics) than on large-scale environmental fluctuation (e.g. regional climatic variation). 

Such responses may have far-reaching consequences for the long-term viability of spatially 

structured populations and their ability to response to large-scale climatic anomalies. 

 

Keywords: demography, population synchrony, weather, density dependence, amphibian, crested newt  
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INTRODUCTION 

 

Understanding the mechanisms driving population dynamics is a critical challenge in ecology and 

conservation biology. During recent decades, researchers have paid particular attention to the 

mechanisms involved in the synchronization of population dynamics at different scales (Ranta et al. 

1995, Bjørnstad et al. 1999, Liebhold et al. 2004, Koenig & Liebhold 2016). Three mechanisms have 

been widely recognized to cause population synchrony: dispersal between populations (Kendall et al. 

2000, Ylikarjula et al. 2000); trophic interactions with other species that are themselves either 

synchronized or mobile (Ims & Andreassen 2000, Korpimäki et al. 2005); and synchronous stochastic 

environmental effects, called the Moran effect (Moran 1953, Koenig 2002). While the first two factors 

usually drive population synchrony at relatively local spatial scales, the Moran effect is considered a 

major mechanism for generating population synchrony at regional level (Koenig 2002). 

Moran’s (1953) concept states that synchrony in the dynamics of populations regulated by the 

same density-dependent processes will reflect correlated environmental perturbations. Consequently, 

population synchrony is expected to decay with increasing distance between populations in a manner 

similar to that of the synchrony of a potential underlying environmental driver. However, population 

synchrony usually occurs at a far smaller spatial scale than that at which environmental drivers operate 

(Koenig 2001, Peltonen et al. 2002, Trenham et al. 2003, Bjørnstad et al. 2008). For example, simulation 

studies have revealed that the degree of population synchrony is influenced by the form of density 

regulation. Specifically, population-specific density-dependence and nonlinear relationships between 

demographic rates and density typically reduce the synchronizing effect of spatially correlated 

environmental noise (Ranta et al. 1995, Bjørnstad et al. 1999, Royama 2005). Secondly, theoretical 

models predict that spatial variation of the demographic parameters contributing to population growth 

rate negates the Moran effect and then reduces population synchrony (Engen & Sæther 2005, Hugueny 

2006). In particular, variation in survival and recruitment caused by local environmental factors such as 

predation, interspecific competition and habitat quality could decrease population synchrony. 

Simulations have also demonstrated that the contribution of a covariate to spatial synchrony strongly 

depends on spatial heterogeneity in the covariate or on its effect on local dynamics (Engen & Sæther 
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2005, Hugueny 2006). Importantly, local expression of large-scale climatic phenomena could lead to 

context-dependent demographic responses to weather variation (Selwood et al. 2015), which could then 

result in low spatial synchrony. 

Several empirical studies have reported divergences in the scaling of population synchrony and 

spatial environmental variation (Koenig 2001, Peltonen et al. 2002, Trenham et al. 2003). However, few 

have empirically examined the factors that could underlie such mismatches (Haynes et al. 2013). No 

previous work has investigated how population-specific density-dependent processes and population-

specific responses to environmental variation (e.g. weather) could affect spatial synchrony at both local 

and regional scales. Pond-breeding amphibians are excellent biological models to address this issue. 

First, population synchrony has already been highlighted in these organisms (Trenham et al. 2003) and 

spatially correlated environmental weather variables (i.e. temperature and precipitation) could have 

strong synchronizing effects. Yet, several factors with potentially desynchronizing effects also play an 

important role in amphibian demography. Variation in pond characteristics may dramatically affect 

demographic rates (Unglaub et al. 2015, 2018). Furthermore, although amphibians may be highly 

sensitive to climate, their demographic responses to variation in weather seems highly context-

dependent (Cayuela et al. 2016a, Muths et al. 2017). Moreover, density-dependence has been often 

reported as a key driver of amphibian population dynamics (Altwegg & Reyer 2003, Harper & Semlitsch 

2007).  

In this study, we examined population synchrony, demographic responses to weather and 

density-dependence in the great crested newt (Triturus cristatus). We used capture-recapture data 

collected through long-term surveys in five T. cristatus populations in Western Europe over a 22-year 

period (1995-2016). Two of these five populations (i.e. POP1 and POP5) were spatially structured (i.e. 

composed of subpopulations occupying different ponds or group of ponds). This nested design allowed 

us to examine demographic processes at both local (i.e. within population) and regional (between 

population, over western Europe) levels. We predicted a relatively low level of spatial synchrony at both 

local and regional levels due to the characteristics of amphibian demography stated above.  We then 

examined how local demographic responses to climate and density-dependence may trigger population 

asynchrony. In particular, we investigated how weather fluctuation and population density may affect 
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survival, recruitment and population growth rate in the five populations and in the four subpopulations 

of POP1 and POP5. Based on previous studies (Cayuela et al. 2016a, Muths et al. 2017), we expected 

heterogeneous demographic responses (survival, recruitment, and population growth) to temperature 

and rainfall within and between populations. In addition, we predicted negative density-dependence to 

be a common phenomenon. At the regional level, we assumed that such density-dependent processes 

would have a desynchronizing effect since populations have different histories, are located in different 

geographical areas and are not connected by dispersing individuals. At the local level, we also predicted 

a desynchronizing effect of density as dispersal rates are low between subpopulations (see Material and 

method section) and because ponds may differ in terms of local characteristics. These multiple-level 

desynchronizing processes should lead to a negligible Moran effect in our study system. 

 

MATERIAL AND METHODS 

 

Biological model 

 

Triturus cristatus populations vary in age structure, with median age varying from 3-8 years (Jehle et 

al. 2011). Females usually produce between 150 and 300 eggs per year (Arntzen & Hedlund 1990, 

Hagström 1980). Larval stage lasts 2.5-3 months or more and sexual maturity is reached at 2-3 years 

(Miaud et al. 1993, Griffiths 1996). Reproduction occurs in still waters such as ponds, flooded quarries, 

lakes, irrigation canals and ditches where the adults spend usually 2–5 months during spring (from 

February to June). Outside this period, individuals occupy terrestrial habitats such as hedgerows, shrub, 

rough grassland or forest edges, and overwinter in underground refugia such as mammal burrows (Jehle 

& Arntzen 2000). The crested newt is a species in decline that is on the IUCN Red List in many countries 

(IUCN 2019), and it is protected by the European Habitats Directive (92/43/ CEE). 
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Studied populations, capture-recapture data and weather variables 

 

The study was conducted on five populations in France and the United Kingdom using the capture–

recapture method (for a map, see Appendix 1). Two populations (POP1 and POP2) are located in 

southeastern England and are 2.5 km apart and separated from each other by dispersal barriers, such as 

roads and unsuitable habitat (Zakaria 2018). Another population (POP3) is located in western France. 

The last two populations (POP4 and POP5) are located in southeastern France. The populations POP2, 

POP3 and POP4 occupy single breeding sites. POP1 and POP5 are spatially structured populations, both 

composed of four distinct subpopulations. In POP1, the four subpopulations occupy four distinct ponds, 

separated from each other by distances ranging from 200 to 800 m. According to Griffiths et al. (2010), 

there is a low level of adult movement among subpopulations with dispersal mainly occurring during 

the subadult phase. In POP5, the four subpopulations occupy four distinct pond groups. Each group was 

composed of three very close (15-30 m) ponds between which annual dispersal rates are high (<0.20; 

Cayuela et al. 2018a). The pond groups were separated from each other by a distance ranging from 60 

to 430 m; the number of breeding dispersal events among pond groups was low (i.e. 12 out of 2282 

individuals captured during the period 1996-2015), resulting in a mean dispersal rate of < 0.01. These 

12 individuals were discarded from our analyses. 

Newts were surveyed over periods ranging from 8 to 20 years between 1995 and 2016. The 

newts were captured using bottle traps (POP1 and POP2, see Griffiths et al. 2010), funnel traps (POP3), 

dipnets (POP4, see Cayuela et al. 2017) and seine net (POP5, see Cayuela et al. 2017). The number of 

capture sessions performed each year varied from 1 (POP5) to 33 (POP1) during the newt activity period 

in ponds. Note that in capture-recapture analyses, we merged the observations of intra-annual sessions, 

considering one single session per year. Newts were individually identified using pit-tags in POP3 and 

POP5, and by photographs of belly pattern markings in POP1, POP2 and POP4. Providing the image 

quality is high and the identification is done by trained personnel, belly patterns are a highly reliable 

method for identifying individual newts (Zakaria, 2018). Each individual was classified as adult or 

juvenile, and adults were sexed on the basis of the presence of a swollen cloaca and a large crest on the 

back in males (Hedlund 1990). As the number of juveniles was low in our datasets (juveniles only 
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occasionally found in the ponds), the following analyses were restricted to adults. Detailed information 

about the capture–recapture surveys (samples size, the number of captured newts, etc.) are provided in 

Appendix 1. 

In Western Europe, both precipitation and temperatures exhibit high synchrony declining with 

distance; the spatial autocorrelation remains statistically significant over a very large distance (up to 

2500 km; Koenig 2002). We therefore assumed that these two meteorological parameters could act as 

potential population synchronisers and could underly a Moran effect. We considered in our analyses the 

effect of four weather variables on survival, recruitment, and population growth: cumulative 

precipitation during breeding (March-May; ‘rainMM’) and non-activity periods (June-February; 

‘rainJF’); the minimum (‘tempDFI’) and the maximum temperature (‘tempDFS’) during winter 

(December-February). The weather variables were collected at meteorological stations (in France, 

Météo France stations; in Great Britain, UK Meteorological Office) located in the vicinity (within 3 to 

25 km) of the surveyed populations. These variables were selected based on the biology of the studied 

species. During the breeding period, low cumulative rainfall can increase mortality and decrease 

recruitment due to pond desiccation in amphibians in general (Muths et al. 2017) and in newts and 

salamanders in particular (Church et al. 2007). On the other hand, high rainfall usually stimulates 

breeding activities (Wells 2010) that are energetically demanding, which could increase adult mortality 

during the reproduction period. During the non-activity period when newts have left the pond and 

adopted a terrestrial lifestyle, high rainfall and high temperature could increase mortality due to 

respiratory and energetic constraints (Reading 2007, Griffiths et al. 2010). These effects were 

investigated in POP1, POP2, POP3 and POP5 (at the whole population level), as well as in two 

subpopulations of POP1 (POP1.1 and POP1.2) and POP5 (POP5.3 and POP5.4); too few individuals 

were captured in the other subpopulations to perform analyses. As POP4 has a different phenology due 

to Mediterranean climatic conditions, we considered the four following variables: the cumulative rainfall 

during the breeding period (October-April, ‘rainOA’) and the non-activity period (May-September, 

‘rainMS’); the minimum (‘tempMSI’) and maximum (‘tempMSS’) monthly temperature during the non-

activity period (May-September). Additional information about weather variables (e.g. descriptive 

statistics, covariation patterns) are provided in Appendix 1. 
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Weather and density-dependent effects on survival and recruitment 

 

We examined transience and trap-dependence by performing goodness-of-fit (GOF) tests in the program 

U-CARE (Choquet et al. 2009a) and investigated the potential occurrence of recapture heterogeneity 

using the GOF test proposed by Jeyam et al. (2018). Using U-CARE, we performed an overall GOF test 

that was statistically significant in only two populations, namely POP1 (df = 118, 𝜒2 = 320.08, p < 

0.0001) and POP3 (df = 19, 𝜒2 = 35.81, p = 0.01; Appendix I). In these two populations, test 2CT (POP1, 

𝜒2 = 33.65, p = 0.02; POP3, 𝜒2 = 28.34, p = 0.03) detected trap-dependence; that was not the case for 

2CL (POP1, 𝜒2 = 4.84, p = 0.93; POP3, not estimated). In parallel, the tests 3SR (POP1, 𝜒2 = 40.90, p 

= 0.0001; POP3, 𝜒2 = 25.80, p = 0.0002) and 3SM (POP1, 𝜒2 = 31.69, p = 0.01; POP3, 𝜒2 = 5.13, p = 

0.16) detected an excess of transients. In parallel, we detected recapture heterogeneity in these two 

populations by using Jeyam’s GOF test (2018). The global test for heterogeneity was highly significant 

in POP1 (test statistic =3.46, p < 0.001) and POP3 (test statistic =3.98, p < 0.001). In summary, the fact 

that GOF tests simultaneously detected trap-dependence, transience, and heterogeneity indicated overall 

recapture heterogeneity rather than transience or trap-dependence alone (Jeyam et al. 2018). Following 

the recommendations of Jeyam et al. (2018) and the approach used in previous studies with a similar 

situation (Crespin et al. 2008, Cubaynes et al. 2010, Chambert et al. 2012, Cayuela et al. 2019a), we 

included Pledger’s heterogeneity mixtures (Pledger et al. 2000) in the multi-event models to take 

account of heterogeneity in recapture probability. 

To investigate whether survival was influenced by conspecific density and weather variables in 

each of the five populations, we considered a model with three states 𝐴1, 𝐴2 and D, where A means alive 

and D dead and where 1 and 2 correspond to the first and second heterogeneity class respectively. We 

considered two possible field observations, captured or not captured. The model contained three pieces 

of information: (1) the vector of initial states probabilities; (2) the survival matrix; and (3) the event 

matrix linking observations to individual latent states. At their first capture, individuals could be 

alternatively in two states: 𝐴1 and 𝐴2, resulting in the following vector of initial state probabilities:  
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(𝑖1 1 − 𝑖1) 

where i is the initial state probability. Then, information about survival was updated: individuals in the 

state 𝐴1 at t-1 could reach the state 𝐴1 at t (i.e. survive) with a probability 𝜙1 or die with a probability 

1-𝜙1; individuals in the state 𝐴2 at t-1 could reach the state 𝐴2 at t with a probability 𝜙2 or die with a 

probability 1-𝜙2. This results in the following matrix: 

(
𝜙1 0 1 − 𝜙1

0 𝜙2 1 − 𝜙2

0 0 1

) 

We did not consider heterogeneity mixtures on survival (usually used to investigate actuarial senescence 

and variation in life history strategies; Péron et al. 2010, Denoël et al. 2018) and we hold 𝜙1 and 𝜙2 to 

be equal in all the models. Lastly, observations were modeled: individuals in the state 𝐴1 could be 

captured with a probability 𝑝1 or not captured with a probability 1-𝑝1; individuals in the state 𝐴2 could 

be captured with a probability 𝑝2 or not captured with a probability 1-𝑝2. This leads to the following 

event matrix: 

(
1 − 𝑝1 𝑝1

1 − 𝑝2 𝑝2

1 0
) 

To examine whether annual adult recruitment (i.e., the proportion of sexually mature individuals 

recruited each year) was affected by conspecific density and weather variables in each of the five 

populations, we built a model following the structure of Pradel’s (1996) model, in which recruitment 

was modeled by reversing capture histories and analyzing them backwards. The model is conditional 

upon the first capture. The recruitment probability ψ was estimated as the probability that an individual 

present at time t was not present at t-1, that is, the proportion of “new” individuals in the population at 

t, while accounting for capture heterogeneity. Note that in our multi-event model, survival cannot be 

estimated along with recruitment. This model has the same structure as the previous model and only the 

recruitment matrix was modified as following: 

(
1 − 𝜓1 0 𝜓1

0 1 − 𝜓2 𝜓2

0 0 1

) 

We tested our hypotheses about survival and recruitment separately and by following a similar 

procedure. The models were implemented in the E-SURGE program (Choquet et al. 2009b). The 
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datasets from the five populations of T. cristatus differed in terms of the number of study years and 

study periods (Appendix 1). Hence, we separately analyzed the five datasets and then compared the 

population’s responses to weather variations and density using the outputs of the best-fitting models for 

each population. Models were ranked through a model-selection procedure using Akaike information 

criterion adjusted for a small sample size (AICc). The analyses were carried out in two steps. First, from 

the most general model [ϕ(t + sex), p(het + sex)], we evaluated the three following effects: sex (‘sex’), 

heterogeneity mixture (low vs high capture rates of individuals; ‘het’) and year-specific variation (‘t’). 

Only additive models were considered in our analyses; interactions were avoided to limit the problem 

of parameter identifiability and to increase model stability. We also avoided including year-specific 

variation on recapture rates due to recurrent convergence issues when the model [ϕ(t + sex), p(t + het + 

sex)] was considered; in many populations, the number of individuals captured each year was relatively 

low. Yet, time-specific recapture probability was supported in only two populations (POP1 and POP4; 

Appendix 3). Furthermore, the models [ϕ(t), p(t)] and [ϕ(t), p(.)] provided very similar estimates of 

survival in POP1 and POP4 (Appendix 3). Therefore, [ϕ(t + sex), p(het + sex)] was kept as a general 

model as time-specific survival is required in ANODEV analyses (see below). We examined all the 

possible combinations of effect, resulting in the consideration of 16 models per population and 

subpopulation.  

In a second step, after determining the best-fitting model, we examined the effect of weather 

and density variables on survival probability using ANODEV as recommended in Grosbois et al. (2008). 

This approach allowed us to evaluate the fit of a model including a single meteorological covariate 

(𝑀𝑐𝑜𝑣) relative to  both the constant (𝑀𝑐𝑠𝑡) and the time-dependent (𝑀𝑡) models. The statistic 

𝐹𝑡𝑒𝑠𝑡𝑐𝑠𝑡/𝑐𝑜𝑣/𝑡 has been derived as following: 

𝐹𝑡𝑒𝑠𝑡𝑐𝑠𝑡/𝑐𝑜𝑣/𝑡 =  (
𝐷𝑒𝑣(𝑀𝑐𝑠𝑡) − 𝐷𝑒𝑣(𝑀𝑐𝑜𝑣) 

𝜁 − 1
) 

This statistic tests the null hypothesis 𝐻0 that the meteorological covariate in 𝑀𝑐𝑜𝑣 has no significant 

effect on survival or recruitment. It follows under 𝐻0 a Fisher-Snedecor distribution with 𝜁 − 1 degrees 

of freedom, where 𝜁 is the number of parameters required to describe the relationship between survival 

and the focal climatic covariate. To examine the effect of population density at t-1 on survival and 
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recruitment, we estimated population size at t-1 by using Horvitz-Thompson estimator. For POP1 and 

POP3 where recapture heterogeneity was detected using GOF tests, we used the modified version of the 

Horvitz-Thompson estimator proposed by Cubaynes et al. (2010). All variables (weather and density) 

were scaled (i.e., z-scored) when they were entered in the models. 

 

Weather and density-dependent effects on population growth rate 

 

To assess the effect of density-dependence and weather on population growth rate, we used Gompertz 

state-space (GSS) models (de Valpine & Hastings 2002). We followed the approach described in Kéry 

& Schaub (2012) and Băncilă et al. (2015). The abundance time series of the five populations and the 

four subpopulations of POP1 and POP5 were analyzed separately. The abundances were corrected by 

the time-constant recapture probability (i.e. Horvitz-Thompson estimator) obtained from the capture-

recapture models. As recapture probability fluctuates over time in several populations (Appendix 3), we 

verified that using population sizes corrected for time-specific recapture probability did not affect our 

results (Appendix 5). The log-transformed (log(X+1)) population sizes 𝑋𝑡 in a pond at time t are 

described by: 

𝑋 ~ Normal(𝑁𝑡 , 𝜎𝑜𝑏𝑠
2 ) 

where 𝑁𝑡 is the unobserved true population size at time t and 𝜎𝑜𝑏𝑠
2  is the observation variance. This piece 

of the GSS model described the observation process and allows for observation error while assuming 

that newt abundance may overestimate or underestimate true population size. 𝑁𝑡 was defined from a 

normal distribution: 

𝑁𝑡  ~ Normal(𝑁𝑒𝑥𝑝,𝑡 , 𝜎𝑝𝑟𝑜𝑐
2 ) 

where 𝜎𝑝𝑟𝑜𝑐
2  designates the process variance (i.e. stochastic variability in newt abundance) and 𝑁𝑒𝑥𝑝,𝑡 

the expected population size at time t. The effect of population density at t – 1 was modeled as following: 

𝑁𝑒𝑥𝑝,𝑡  ~ Normal(𝑁𝑡−1 + 𝑎 + 𝑏1𝑁𝑡−1) 
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where a is the intercept and b the coefficient slope for the effect density at t – 1. To evaluate the effect 

of weather variables on population growth rate, we considered models including one weather variable 

at a time. The model had the following form: 

𝑁𝑒𝑥𝑝,𝑡  ~ Normal(𝑁𝑡−1 + 𝑎 + 𝑏2𝑤𝑡) 

where 𝑤𝑡 is the z-scored weather covariate at time t and 𝑏2 is the slope coefficient. 

 The models were fitted in JAGS (Plummer 2003), using the R package jagsUI (Kellner 2018), 

with vague normal priors with a mean 0 and a precision of 0.0001 for a and b parameters. Vague uniform 

priors ranged within an interval 0-10 were applied for the standard deviation of 𝜎𝑜𝑏𝑠
2 and 𝜎𝑝𝑟𝑜𝑐

2 . We used 

a normal prior with a mean equal to the log-transformed population size and a variance of 100 for the 

first value of the time series. Three MCMC chains were ran with 2 000,000 iterations and a burn-in of 

1,000.000. Chains were thinned by a factor 20. We assessed model convergence with the Gelman-Rubin 

statistic R-hat; we assumed that the model convergence was satisfactory when R-hat values were less 

than 1.1 (Brooks & Gelman 1998, Gelman & Hill 2006). We considered that the effect of a variable on 

population growth rate was significant if the credible intervals (CRI) of the slope coefficient did not 

include 0 (Kéry & Schaub 2011, Băncilă et al. 2015). 

 

Population synchrony within and between-populations 

 

The temporal synchrony among populations was assessed using the variance partitioning methodology 

(Grosbois et al. 2009, Schaub et al. 2015). More specifically, we built a generalized mixed model 

(GLMM) treating the estimate of population size as the dependent variable using a Poisson distribution 

to specify the error term and the ln transformation as the link function. The study population was 

introduced as a fixed explanatory term in the model. We estimated yearly abundance by dividing the 

number of captured newts by the time-constant recapture probability obtained from the multi-event 

capture-recapture models described below (i.e. Horvitz-Thompson estimator). For subpopulations for 

which capture-recapture models were not built, we used the mean recapture probability estimated for 

the whole population. As recapture probability may vary over time in several populations (Appendix 3), 
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we verified that using population sizes corrected with time-specific recapture probability did not affect 

our results. Given the uncertainty of population size estimates, we also controlled for potential 

underestimation of our estimates of population synchrony. Neither of these adjustments substantially 

changed our results (Appendix 2). Both the time t and its interactive effect with the population t*p were 

introduced as random effects in the model. The model was thus specified as follows: 

N𝑝𝑡~ Poisson (𝜆𝑝𝑡) 

where 𝑁𝑝𝑡is the estimated demographic size of population p at time t following a Poisson distribution 

with 𝜆𝑝𝑡, the expected demographic size as  

𝑙𝑛(𝜆𝑝𝑡) = ∑ 𝛽𝑝𝑥𝑝
𝑘
𝑝=1 + 𝛼𝑡 + 𝑒𝑝𝑡, 

with  

𝛼𝑡~ Normal(0, 𝜎𝛼
2) 

where 𝜎𝛼
2 is the shared temporal variance between the k populations, and  

𝑒𝑝𝑡~ Normal(0, 𝜎𝑒
2) 

where 𝜎𝑒
2 the residual temporal variance specific to each p population. 𝛽𝑝 is the main population effect 

(associated to the dummy variable 𝑥𝑝 specifying the partial intercept for the population p) accounting 

for the overall difference of demographic size between the k populations.    

The temporal synchrony among populations was then measured using Intraclass Correlation 

Coefficient (ICC) that expresses the ratio of the temporal variation that is common across all studied 

populations and the entire amount (i.e. spatiotemporal) of variation. ICC values close to 1 indicate a 

quasi-perfect temporal synchrony among populations; values close to 0 indicate complete asynchrony, 

and values below 0.5 indicate relatively low synchrony. We computed the adjusted Intraclass 

Correlation Coefficient (ICCadj) using the delta method to accommodate the latent variance inherent to 

the Poisson distribution associated to the GLM model (see Nakagawa et al. 2017, for justification and 

implementation):  

𝐼𝐶𝐶𝑎𝑑𝑗 =
𝜎𝛼

2

𝜎𝛼
2 + 𝜎𝑒

2 + 𝜎𝑑
2 

where 𝜎𝑑
2 is the latent variance inherent to the Poisson distribution estimated as  



14 
 

𝑙𝑛 (1 +
1

𝜆𝑝𝑡
) 

with  

𝐸(𝜆𝑝𝑡) ≈
1

𝑘
∑ 𝛽𝑝𝑥𝑝

𝑘

𝑝=1

+ 0.5(𝜎𝛼
2 + 𝜎𝑒

2) 

To estimate population synchrony at the regional scale we restricted the time series of each 

population to the 2000-2015 period to ensure a balanced dataset across populations. In the case of POP1 

and POP5, we used the estimated total population size to compute this estimation. Estimation of 

population synchrony at the local scale was performed separately for POP1 and POP5 using the 

population size estimated for each of their subpopulations (i.e. replacing population by subpopulation 

in the formula above) during the whole study period. 

 

RESULTS 

 

Population synchrony at local and regional scales  

 

Population size drastically varied over time and across populations and subpopulations (Fig. 1). The 

level of synchrony at the local scale varied greatly between populations (Table 1): it was relatively high 

in POP5 but rather low in POP1 as indicated by their respective ICC. At the regional scale, we found a 

relatively low level of population synchrony as indicated by the estimated ICC (0.212, Table 1). We 

further used another GLMM to decompose the total variance as the sum of the shared temporal variance 

between POP1 and POP5, the shared temporal variance between sub-populations of each population and 

the residual temporal variance specific to each subpopulation. The level of synchrony between 

populations was estimated at the lower bound (i.e. 0, Appendix 2), and the average level of synchrony 

between subpopulations (within each population) was moderate (i.e. 0.488, Appendix 2). In sum, the 

level of synchrony was variable between subpopulations at a local scale, and low between populations 

on a continental scale. 
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Survival and recruitment variation within- and between-populations 

 

Within-populations, our analyses revealed that mean survival (provided by the model where survival 

was constrained to be constant over time) displayed slight subpopulation-specific variation in POP1 and 

POP5. In POP1, the survival was 0.61±0.02 (mean ± standard error) in POP1.1 and 0.66±0.02 in POP1.2. 

In POP5, survival ranged from 0.23±0.01 in POP5.3 to 0.36±0.01 in POP5.4. In the different 

subpopulations of POP1 and POP5, survival varied widely between years (Fig. 2). At the population 

level, survival displayed broad population-specific variation. Mean survival was relatively high in POP2 

and POP3, 0.83±0.02 and 0.87±0.02 respectively. Survival was lower (0.62±0.01) in both POP1 and 

POP4 and drastically lower in POP5 (0.29±0.01). Survival varied between years to a lesser extent in 

POP2 and POP3 (Fig. 2) where mean survival was higher. By contrast, it broadly varied between years 

in POP1, POP4 and POP5 (Fig. 2). The effect of sex on survival was absent or marginal in all the 

populations and subpopulations (Fig. 2, and model selection procedures in Appendix 3). 

 At the within-population level, recruitment displayed slight subpopulation-specific variation in 

POP1 and POP5. In POP1, recruitment was 0.35±0.02 in POP1.1 and 0.32±0.02 in POP1.2. In POP5, 

recruitment was 0.51±0.03 in POP5.3 and 0.65±0.02 in POP5.4. In the different subpopulations of POP1 

and POP5, recruitment fluctuated among years (Fig. 3). At the population level, mean recruitment 

(estimated in the model where recruitment was constrained to be constant over time in each population) 

was relatively similar in POP1 (0.33±0.01), in POP2 (0.25±0.03) and in POP3 (0.29±0.03). Yet, it was 

higher in POP4 (0.43±0.01) and drastically increased in POP5 (0.71±0.01). In all five populations, 

recruitment was highly variable between years (Fig. 3). Sex had little effect on recruitment in all the 

populations and subpopulations (Fig.  3, and model selection procedures in Appendix 4). 

 

Influence of density-dependence and weather on survival and recruitment 

 

Our analyses revealed a weak effect of density-dependence and a heterogenous effect of weather on 

survival at both subpopulation and population levels (Fig. 4) – ANODEV results are summarized in Fig. 

5, and complete ANODEV outputs can be found in Appendix 3. The only statistically significant effects 
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were found in POP1 (Fig. 4). At the subpopulation level, survival was negatively influenced by the 

cumulative rainfall during the March-May period (RainMM, F = 11.67, p = 0.003) and during the June-

February period in subpopulation POP1.1 (RainJF, F = 5.13, p = 0.04) but not in POP1.2. In this 

subpopulation, we detected a negative effect of population density on survival (density, F = 4.73, p = 

0.04). At the population level, the two weather effects detected in POP1.1 were also detected at whole 

population level (RainMM, F = 12.97, p = 0.002; RainJF, F = 5.64, p = 0.03) but no effect of population 

density was found. In POP4, we also detected a negative effect of the cumulative rainfall during the non-

activity period (RainMS, F = 5.91, p = 0.03) on survival. 

Our results revealed heterogeneous effects of weather and density-dependence on adult 

recruitment (Fig. 4) – ANODEV results are summarized in Fig. 5, and complete ANODEV outputs can 

be found in Appendix 4. At the subpopulation level, we detected a negative density-dependent effect on 

recruitment in POP1.1 (density, F = 6.06, p = 0.02) while no effect was detected in POP1.2. In POP5.3, 

we found a negative relationship between recruitment and the maximum mean temperature during 

winter (TempDFS, F = 8.14, p = 0.02) whereas no effect was detected in POP5.4. At the population 

level, we detected a negative density-dependent effect on recruitment in POP1 (density, F = 8.47, p = 

0.01) and POP4 (density, F = 5.93, p = 0.03). By contrast, we found a positive effect of density on 

recruitment in POP3 (density, F = 8.30, p = 0.03). We detected an effect of weather on recruitment in 

two populations. In POP5, recruitment was negatively affected by cumulative rainfall during the aquatic 

period (RainMM, F = 7.35, p = 0.01); in POP4, the minimum temperature during the non-activity period 

had a negative impact on recruitment.  

 

Influence of density-dependence and weather on population growth rate 

 

Negative density-dependence was a common phenomenon within populations (for the GSS outputs, see 

Appendix 5). In POP5, we found negative density-dependent effects on population growth rate in the 

four subpopulations POP5.1 (𝑏1 = -0.49±0.29), POP5.2 (𝑏1 = -0.36±0.18), POP5.3 (𝑏1 = -0.56±0.22) 

and POP5.4 (𝑏1 = -0.96±0.39). In POP1, we detected a negative density-dependent effect on population 

growth in POP1.2 (𝑏1 = -1.06±0.43) and a trend (i.e. large size effect, but CRI including 0) in 
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subpopulation POP1.1 (𝑏1 = -0.41±0.29), POP1.3 (𝑏1 = -0.12±0.08) and POP1.4 (𝑏1 = -0.39±0.28). By 

contrast, weather effects were slight and less important (Fig. 5). In POP1, cumulative rainfall during the 

aquatic period negatively affected population growth rate in subpopulation POP1.4 (𝑏2 = -0.55±0.23). 

In addition, we detected a trend of a detrimental effect of cumulative rainfall during the non-aquatic 

period in POP1.2 (𝑏2 = -0.21±0.18) and POP1.3 (𝑏2 = -0.30±0.17); the sign was also negative in POP1.1 

(𝑏2 = -0.24±0.23) and POP1.4 (𝑏2 = -0.30±0.26). In POP5, we only detected trends of weather effects 

in the subpopulation POP5.1 where population growth was positively affected by the minimum 

temperature during winter (𝑏2 = 0.16±0.12) and by rainfall during the activity period (𝑏2 = 0.17±0.14). 

 At the population level, density-dependent regulation was also widespread (for the GSS outputs, 

see Appendix 5). We detected negative effects of population density on population growth in POP4 (𝑏1 

= -0.91±0.46) and POP5 (𝑏1 = -0.41±0.23). In addition, a similar trend was found in POP1 (𝑏1 = -

0.28±0.24) and POP3 (𝑏1 = -0.39±0.30). By contrast, we failed to detect any effect of density-

dependence in POP2 (𝑏1 = -0.06±0.18), Overall, however, weather had a negligible influence on 

population growth (Fig. 5).  

 

DISCUSSION 

 

 We found a low level of demographic synchrony at both local and continental levels in T. cristatus 

populations across western Europe. Our study also revealed that weather had weak and spatially variable 

effects on survival, recruitment and population growth rate. In contrast, density-dependence was a 

common phenomenon (at least for population growth rate) in all the populations and subpopulations. 

Although capture rates in some years and some populations may have been low, our results suggest that 

population dynamics more closely depend on habitat-specific factors rather than regional weather 

fluctuations, resulting in a low synchrony within and between populations.  
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Weak and spatially heterogeneous effects of weather on population dynamics 

 

Overall, we found that weather variation has relatively weak effects on demographic rates at the 

subpopulation and populations levels. At the population scale, we detected only three statistically 

significant relationships between survival and weather factors (cumulative rainfall during the breeding 

and non-activity periods) in two populations (POP1 and POP4). In POP1, the two relationships (rainfall 

during the breeding and non-aquatic periods) were also detected in one of the two subpopulations 

(POP1.1). The negative relationship between survival and rainfall during non-breeding activity (POP1 

and POP4) confirms the outcomes of a previous study over a shorter timeframe on this population 

(Griffiths et al. 2010). High rainfall often results in waterlogged soils, which could impair respiration 

during overwintering. It could also stimulate newt activity during periods with unsuitable weather 

conditions (i.e. summer in POP4), resulting in a negative impact on their survival. Moreover, our results 

indicate that high rainfall during the breeding period also negatively affects adult survival (POP1). As 

in many other amphibians, high rainfall levels during the reproduction period increases the level of 

energetically-demanding activities related to breeding (breeding migration, mate searching activities, 

competition for mates; Wells 2010), which may increase mortality rates. Our findings therefore suggest 

that these weather effects on adult survival were highly context-dependent and variable across the 

distribution range of T. cristatus. This confirms recent work that highlighted strong context-dependent 

effects of weather on survival in other amphibian species (Cayuela et al. 2016a, 2017; Muths et al. 2017). 

 Weather also had a low influence on adult recruitment. Indeed, we detected only two statistically 

significant relationships between adult recruitment and one weather factor in POP5 and POP4. In POP5, 

we found a negative relationship between recruitment and cumulative rainfall during the breeding period 

in year y-1. A higher level of energetically-demanding activities in immatures, such as natal dispersal 

during the previous year, might increase mortality rates. Such increases could then result in lower 

recruitment the following year. We also recorded a negative relationship between recruitment and the 

minimum monthly temperature during the non-activity period in POP4 and the subpopulation POP5.3. 

This pattern is in accordance with a previous study in amphibians showing that higher temperatures may 

increase mortality rates due the depletion of energy reserves during overwintering (e.g. Reading 2007).  
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Lower survival of immatures in year y-1 could then affect recruitment. Like survival, the weather effects 

on adult recruitment varied across the distribution range of T. cristatus. 

 Finally, GSS models did not reveal any effect of weather on population growth rate at either 

subpopulation or population levels. This suggests that the three weather variables considered in our 

study that have been previously reported as important drivers for amphibians (e.g. Cayuela et al. 2016a, 

Muths et al. 2017), have a relatively weak effect on T. cristatus population dynamics. It is also congruent 

with our capture-recapture analyses that showed slight and spatially heterogeneous effects of weather 

on adult survival and recruitment. The spatial inconsistency of the weather effects within and between-

population levels is thus a potential mechanism that might reduce the population synchrony at landscape 

and regional scales.  

 

Density-dependence, a central driver of population dynamics 

 

Our study revealed that density-dependence during the adult stage was a common driver in the dynamics 

of T. cristatus populations. We detected negative effects of density on population growth rates in almost 

all the subpopulations and the populations, although the detection of density-dependent effects on 

survival and recruitment was more variable. We only found a negative effect of density on survival in 

subpopulation POP1.2. Yet, we detected a negative effect of density on adult recruitment in two of the 

five studied populations (POP1 and POP4). By contrast, we detected a positive effect of density-

dependence on recruitment in POP3. This population occupies a pond created at the beginning of the 

sampling, and positive density-dependence likely results from mate finding Allee effect (Gascoigne et 

al. 2009, Cayuela et al. 2019b).  

As density effects on adult recruitment and survival varied across populations, it is very likely 

that density-dependent mechanisms at larval and juvenile stages cause the widespread negative effects 

of density on population growth. In amphibians, large population size usually results in high larval 

density in ponds (Berven 1990, Beebee et al. 1996). High density of larvae negatively affects larval 

growth and survival as well as postmetamorphic performances (Petranka 1989, Van Buskirk & Smith 

1991, Anderson & Whiteman, 2015, Ousterhout & Semlitsch 2016).  Such density-dependent processes 
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during early life-history stages may lead to a decrease in juvenile recruitment and a reduction of 

population size at the next generation (Vonesh & De la Cruz 2002, Ousterhout & Semlitsch 2016), and 

can therefore produce the pattern of density-dependent population observed here. Further studies are 

therefore warranted to investigate how the effects of density-dependent mechanisms at different life 

stages (i.e., larvae, juveniles, and adults) drive population growth in T. cristatus, and in amphibians in 

general. Although frequently difficult to achieve in the field, increasing capture rates may increase the 

precision of demographic inferences and avoid the convergence issues encountered in our study when 

both time-specific survival and recapture rates were considered. 

 Although density-dependence was a widespread phenomenon in T. cristatus, the strength of 

density-dependence on population growth differed among populations. Indeed, we failed to detect 

density-dependence in some populations and, when it was different from 0, the coefficient slope (i.e., 

size effect) describing the density effect varied among populations and subpopulations. This indicates 

that both geographically distant populations as well as connected subpopulations may have contrasting 

density-dependence structures. In such cases, the differences are likely driven by local environmental 

characteristics (e.g., trophic resources, interspecific competition in ponds; Griffiths & De Wijer 1994, 

Griffiths et al. 1994) and transient population dynamics (i.e., increase or decline over the study period), 

along with very low dispersal rates (Cayuela et al. 2019b). 

 

Weak population synchrony within and between-populations 

 

Our study highlighted a higher level of population synchrony within-populations than between-

populations. However, population synchrony was weak, suggesting a negligible Moran effect, even at a 

relatively small spatial scale: the correlation coefficients were relatively low among the subpopulations 

of POP1 (0.28) and POP5 (0.61). A higher ICC in POP5 than in POP1 is likely due to lower Euclidean 

distances between subpopulations (from 200 and 800 m in POP1 and from 60 to 430 m in POP5). At 

this spatial scale, the meteorological conditions and the landscape characteristics are expected to be 

relatively homogeneous. Consequently, the low subpopulation synchrony may result from the effects of 

local demographic and environmental factors. The contrasting density-dependence structures observed 
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among subpopulations in our study system may broadly explain the low subpopulation synchrony in 

POP1 and POP5. Moreover, local variation in survival and recruitment driven by pond characteristics 

(Unglaub et al. 2015, 2018) also probably reduces the level of subpopulation synchrony.  

At the regional scale, the level of population synchrony was particularly weak (i.e. 0.2 when 

performing the analysis only at the regional scale, close to 0 when performing the analysis at both the 

regional and local scale using POP1 and POP5, see Appendix 2). In addition to the mechanisms 

discussed above, regional climatic variation could further reduce population synchrony. Moreover, the 

very low level of synchrony could be also caused by inter-population differences in demographic 

strategies (in amphibians, see for instance Cayuela et al. 2016b). Indeed, our results show broad variation 

in survival and recruitment rates, several showing ‘fast’ life histories (low survival and high recruitment, 

POP1) while others displayed decelerated life histories (high survival and low recruitment, POP2 and 

POP3).  

 

Conclusion 

 

The effects of weather on T. cristatus were weak and highly variable both within and between 

populations. In contrast, density-dependence had a strong influence on the dynamics of T. cristatus 

populations. Our study demonstrated that context-dependent weather effects as well as local variation 

in density-dependence structure are drivers of low population synchrony within and between 

populations. To date, our study is one of the few that have linked population synchrony, density-

dependence and heterogeneous demographic responses to weather in natural populations. Although our 

analyses were focused on one newt species, the low levels of population synchrony reported  may be a 

widespread phenomenon in pond-breeding amphibians in which density-dependence (Petranka 1989, 

Van Buskirk & Smith 1991, Anderson & Whiteman, 2015), as well as both aquatic  (Pearman 1995, 

Morin 1997, Relyea 2004) and terrestrial habitat characteristics (Patrick et al. 2008) have a strong impact 

on larval and juvenile survival. By contrast, the effect of climate on demographic rates seems highly 

context-dependent (Cayuela et al. 2016a, Muths et al. 2017), which should inevitably lead to a weak 

Moran effect among populations. Moreover, it is likely that low population synchrony is a common 
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demographic feature in many freshwater organisms. Indeed, high population asynchrony has been 

reported in a broad range of freshwater fishes in which demographic parameters strongly depend on a 

combination of local aquatic factors and density-dependence (Chevalier et al. 2015). In such taxa, a 

relatively low level of synchrony might have far-reaching consequences for the long-term viability of 

spatially structured populations. In particular, low population synchrony likely limits the risk of 

extinction of spatially structured populations, allowing rescue effects between subpopulations and the 

colonization of patches after local extinction. In addition, it is expected to have important consequences 

for population response to climate change, by mitigating extinction risk caused by large-scale climatic 

anomalies. To generalize our findings, we encourage further studies to examine the relative contribution 

of synchronizing (dispersal, weather variation) and desynchronizing (density, local environmental 

factors) drivers of population synchrony and dynamics. 
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Table 1. Synchrony among the five populations (i.e. regional level) and within two populations (i.e. 

local level, POP1 and POP5) of great crested newt. ICC and shared/specific temporal variance of 

population size. N is the total number of observations used,  𝜎𝛼
2 is the shared temporal variance among 

populations,  𝜎𝑒
2 is the temporal variance specific to each population, 𝐸(𝜆𝑝𝑡) the expected mean 

demographic size over all populations. 

 

Scale N 𝜎𝛼
2 𝜎𝑒

2 𝐸(𝜆𝑝𝑡) ICC 

Regional 69 0.15 0.56 100 0.21 

Local POP1 76 0.43 1.04 39 0.28 

Local POP5 80 0.87 0.53 47 0.61 
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Fig.1. Population sizes and 95% CI (derived from survival models) in the five studied populations 

(POP1, POP2, POP3 and POP4) of great crested newt and their respective subpopulations (POP1: 

POP1.1, POP1.2, POP1.3 and POP1.4; POP5: POP5.1, POP5.2, POP5.3 and POP5.4). The confidence 

intervals were obtained by dividing the counts by the upper and lower confidence limits of recapture 

probability. 

Fig.2. Survival probability in five populations (POP1, POP2, POP3, POP4 and POP5) of great crested 

newt in Western Europe. Survival has been also estimated in subpopulations (i.e. ponds or groups of 

ponds) of POP1 (POP1.1 and POP1.2) and of POP5 (POP5.3 and 5.4). In subpopulation POP.5.3, we 

excluded the first five years of survey (1996-2002) because few newts were captured. Males are shown 

in full circles; females are shown in empty circles. 

Fig.3. Recruitment probability in five populations (POP1, POP2, POP3, POP4 and POP5) of great 

crested newt in Western Europe. Survival has been also estimated in subpopulations (i.e. ponds or groups 

of ponds) of POP1 (POP1.1 and POP1.2) and of POP5 (POP5.3 and 5.4). In subpopulation POP.5.3, we 

excluded the first five years of survey (1996-2002) because few newts were captured. Males are shown 

in full circles; females are shown in empty circles. 

Fig.4. Effects of density (i.e. population size at t–1) and weather variables on survival (A-E) and 

recruitment (F-J) in five populations of great crested newt in Europe. In the POP1, POP2, POP3 and 

POP5, four meteorological factors were considered in the analyses: cumulative rainfall during the 

breeding period (March-May) and the non-activity period (June-February) as well as minimum and 

maximum monthly temperature during the winter (December-February). As POP4 displays a 

phenological shift, we considered the four meteorological factors: cumulative rainfall during the 

breeding period (October-April) and the non-activity period (May-September) as well as minimum and 

maximum monthly temperature during the non-activity period. The figure shows all the significant 

relationships (assessed using ANODEVs) between demographic parameters and weather variables. For 

each relationship, the time-specific estimates of the demographic parameters are fitted against the 

considered covariate (circles) and lines show the predictions provided by the model including the 
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weather covariate. In the cases where a sex-specific effect was retained, parameter estimates and 

predictions for males are shown in full circles and full lines; those of females are shown in empty circles 

and broken lines.  

Fig.5. Effects of density (i.e. population size at t–1) and weather variables on population growth 

survival, and recruitment in five populations of   great crested newt (POP1 to POP5) in Europe. POP1 

and POP5 includes four subpopulations (POP1.1 to POP1.4, and POP5.1 to POP5.4). In the POP1, 

POP2, POP3 and POP5, four meteorological factors were considered in the analyses: cumulative rainfall 

during the breeding period (RainMM) and the non-activity period (RainJF) as well as minimum 

(TempDFI) and maximum (TempDFS) monthly temperature during the winter. As POP4 displays a 

phenological shift, we considered the four meteorological factors: cumulative rainfall during the 

breeding period (RainOA) and the non-activity period (RainMS) as well as minimum (TempMSI) and 

maximum (TempMSS) monthly temperature during the non-activity period. The coefficient slope of the 

relationship between demographic rates and variables is given and appear in bold when the effect is 

significant (capture-models: p-value of the ANODEV < 0.05; GSS models: the CRI does not include 0). 

For recruitment and survival, a complete description of the coefficient slopes (and their 95% CI) and the 

outputs of ANODEVs is provided in Appendix 3 and 4. The complete outputs of GSS models (posterior 

distribution, coefficient slopes) are provided in Appendix 5. 
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