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ABSTRACT: Li-Mn-O heterostructured composite nanomaterials show promise as 

potential electrodes in energy storage devices. However, the structures of these 

materials are complex, which hinders understanding of their operation and future 

exploitation. Here, we capture such complexity, within atom-level models, by using 

simulated amorphization and recrystallization method on LiMn2O4. Analysis of the 

resulting Li-Mn-O nanoparticle models reveal that they comprise domains of defect-

rich spinel, Mn3O4, layered Li2MnO3 and lithium-rich spinel Li1+xMn2-xO4 phases, which 

emanate from high temperature structural transformations. In addition, we observe 

grain-boundaries and intrinsic defects within the model structures. The discharge 

process was modelled by inserting surplus lithium atoms into the nanoparticles. This 

resulted in a decrease of both the Mn3O4 phase and the layered Li2MnO3-type 

structure concentration and the retention of the spinel Li1+xMn2-xO4 phases. Such 

models will help experiments unravel the hierarchical structural complexity of these 

composite materials. We also find that microstructural features, such as microtwinning 

and intrinsic dopants (vacancies, substitutionals and interstitials) result in a network of 

Li transport pathways, enabling Li mobility in all three spatial directions.
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Introduction 

 

The current application scope of LIBs has been expanded from consumer devices 

such as laptops and phones to transportation applications including electric vehicles 

(EVs) [1]. NMC is among the best cathode materials for the electrification of 

automobile vehicles given its advantages in high capacity, electrochemical stability, 

and cost effectiveness. [2-3], and much progress has been made in enhancing its 

performance, especially the nickel rich NMCs [4]. Although it is estimated that nickel 

has sufficient supply, the extent of deploying electro-mobility in the future could lead 

to its shortages [5]. Consequently, for long term sustainability of EVs on roads it is 

important to consider cathodes that use more abundant materials, such as 

manganese. Consideration of LMO cathodes means a compromise on energy density 

but a pronounced gain in rate capability, better low temperature performance, cost and 

high round energy efficiency per cycle [6]. 

 

It has been further reported that LiMn2O4 achieves an excellent cycle performance by 

blending with LiMO2 (M: Mn, Co, Ni etc.) [7-10] which has been recently embedded in 

commercialized EVs. An understanding of the electrochemical behaviour of LiMn2O4 

could be also extended to the analysis of related high-voltage electrodes such as 

LiNi0.5Mn1.5O4.[11,12]. In Li-rich NMCs, the composite layered spinel structures have 

played a significant role in enhancing capacity and suppressing voltage fade [13]. 

Nanoparticle-aggregated microspheres (primary and secondary) of Li-rich “layered (R-

3m)–layered (C2/m)–spinel (Fd-3m)” materials showed simultaneously great 

reversible capacity (302 mAh•g−1 at 0.2 C), higher initial Coulombic efficiency and 

superior rate capability, when compared to pure layered Li-rich material [14-17]. In 

addition, the increase in the cyclability and rate capability were attributed to the 

flexibility of smaller particles and their exposed large surface areas allowed faster 

charge/discharge because of the shortened electron and lithium ion diffusion distances 

[18,19].   Also all Mn – NMC (Johnson and Thackeray 2005) [20] . 

 

The presence of the spinel and layered structures in NMC cathodes, is inherent/typical 

of the spinel LiMn2O4, owing to its varied high temperature behaviour.  The study by 

Thackeray al [21, 22] revealed that on heating this compound from ambient 
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temperature, a (rock-salt) Li2MnO3 phase is formed at approximately 800K, which is 

followed by a high temperature spinel Mn3O4 phase that emerges around 1120°C 

(1393.15 K). The study has also shown that the spinel phase comprises a high 

concentration of manganese occupying tetrahedral sites and attributed this to the loss 

of oxygen and lithium (as Li2O) [23]. 

 

In principle, the spinel-Mn2O4 framework can deliver a capacity of ∼297 mAhg−1 when 

a Li+ ion is inserted/extracted into/from each of the 8a tetrahedral and 16c octahedral 

sites. However, the strong Jahn−Teller distortion of MnO6 octahedra that occurs due 

to Mn3+ formation, leads to a partly reversible phase transition that is associated with 

the 2.7 V plateau. An increase in the axial ratio c/a of the unit cell from 1.0 in the cubic 

phase to 1.6 in the distorted tetragonal phase is induced by the lithiation of Li1+δMn2O4 

(0 ≤ δ ≤ 1). Such anisotropic strain causes fracture of large particles and thus internal 

contact loss upon cycling [25-27]. Accordingly, NPD and first principles calculations 

proposed a comprehensive understanding on the reaction mechanisms involving the 

solid-solution regions within both cubic and tetragonal symmetries in addition to the 

two-phase transition between them [28]. 

 

Simulated amorphisation and recrystallization method, based on molecular dynamics 

methods, has been successfully employed to ‘synthesis’ various nano-architectures 

(nano- spheres, sheets, porous) of the binary CeO2 [29] and Li-ion battery electrodes 

such as MnO2  [30,31] and TiO2 [32]. In addition, the method yielded heterostructured 

or composite compounds with ramsdellite-pyrolusite and rutile-brookite polymorphs for 

MnO2 and TiO2 respectively. A model ternary Li2MnO3 nanosphere, has also been 

synthesised using this approach [33]. The A+R method allows for ‘spontaneous’ 

nucleation and growth of crystals with microstructural features, such as grain-

boundaries, dislocations and point defects occurs exothermically. Microstructures are 

consistent with those observed from the high resolution transmission microscope. In-

depth understanding of such microstructural features and active sites of ions can aid 

in the design and modification of high energy density electrode materials [34, 35],  

In the present study, we use the simulated amorphization and recrystallization method 

to generate atom-level models of LixMn2O4 (1≤x≤<2) nanoparticles, often referred to 

as primary particles. This will be followed by simulation of the charge/discharge 
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process, conducted by subsequently inserting lithiums into the nanoparticles whilst 

closely monitoring the effect of lithiation on the structural integrity of the host electrode 

material. The conditions for simulation will be guided by high temperature molecular 

dynamics simulation data reported in our previous work [26]. Proper harvesting and 

analysis of the microstructures for nanoparticles with different lithium concentrations 

can help to elevate understanding of the cubic to tetragonal spinel transition so crucial 

for the performance of this cathode.  
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2. Method   

In this section we discuss briefly, the potential models used to describe the interactions 

between Li–Mn-O ions, the codes used to perform the dynamical simulations, the 

construction of atomistic models, their amorphization and recrystallization as well as 

the discharge process.  

Potential models: Simulations in this work are based on interatomic potentials that 

were previously generated and reported for the Born model of the ionic solids, in which 

the Mn4+, Mn3+, Li+ and O2- ions interact via long-range Coulombic interactions coupled 

with short-range parameterized interactions [24].  

Simulation code: The DL_POLY [27] code was used to perform all the molecular 

dynamics (MD) simulations. This code utilizes three-dimensional periodic boundary 

conditions to represent the model infinitely in space. All simulations were performed 

within the NVE and NVT ensembles, for amorphization and recrystallization, 

respectively.  

Generating atomistic models: The nanoparticle was generated by cleaving a sphere 

with desired radius from the parent bulk. Stoichiometry was assured by removing 

either Mn/O/Li atoms from the outer surface to facilitate charge neutrality resulting in 

a nanoparticle with 26 642 atoms (8nm in diameter). A spinel structured crystalline 

seed in the form of a cube (morphology) was fixed at the centre of the nanoparticle 

during amorphization.  

Amorphization and recrystallization: The nanoparticle was amorphized at 1700K, 

while enclosed in a 100 Å box, which limits interaction with neighbouring nanoparticles 

and has dimensions sufficiently large in order for it not to interact with its images. The 

system was then allowed to recrystallize, during which time the ions had sufficiently 
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high mobilities to allow them to move into low-energy configurations within the 

timescales (typically nanoseconds) accessible to the simulation allowing evolution of 

microstructural features, such as: grain-boundaries, dislocations, point defects, as 

observed experimentally [28].   

Lithium intercalation: Lithium atoms were introduced into the spinel nanoparticle, 

specifically, four models were generated: Li1.25Mn2O4, Li1.5Mn2O4, Li1.75Mn2O4 and 

Li2.0Mn2O4 i.e. three nanospheres with different concentrations were obtained 

containing 4758, 5709, 6661 and 7360 lithium atoms, respectively. The program 

uploaded the insertion sites from the structure file, randomly selected a tunnel site and 

inserted a lithium ion at its vacant co-ordinates.  Charge neutrality was maintained by 

reducing an Mn4+ ion, closest to the (inserted) lithium cation, to Mn3+. This process 

was repeated for all the lithium ions inserted in the structure.    

3. Results   

Recrystallisation: MD simulation, performed at 1700 K for 5 ns, led to the complete 

crystallization of the nanoparticle - nucleated by the crystalline seed, at the centre of 

the nanoparticle. A low energy structure was achieved by reducing the temperature to 

1 K; the MD acts as a pseudo energy minimization. The initial crystalline nanoparticle 

model, is shown in Figure 1 (a) with atoms occupying Wyckoff positions depicted in 

(b), followed by the amorphous system in (c) and SEM image of nanoparticle 

synthesized experimentally via the ultrasonic spray pyrolysis method(d) [28], the 

polycrystalline nanosphere obtained after recrystallization is shown in (e) with lithiums 

occupying 16c sites, in (f, g).  
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Figure 1: Spinel LiMn2O4 (a) crystalline nanosphere cleaved from the parent bulk, (b) 

atomic Li -Mn-O sites from crystalline model, (c) amorphous Li-Mn-O nanoparticles (d) 

SEM images of the LiMn2O4 nanoparticle [28], (e) recrystallized nanospheres of Li-

Mn-O and (f, g) slice cut from recrystallized sphere depicting atomic Li-Mn-O sites.  

Figure 2 illustrates the steps-by-step recrystallization of the Li-Mn-O nanoparticle. The 

initial amorphous Li-Mn-O structure is shown at time t= 0 ns. Crystallisation started 

around 0.3 ns, nucleated by the crystalline seed at the centre of the nanoparticle – 

and was complete after 0.6 ns. Crystallization was observed to propagate along 

different directions, resulting in the formation of a polycrystalline material with grain 

boundaries.  
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Figure 2: Atomistic structure of the Li-Mn-O nanoparticle with 26 642 atoms during 

crystallization at 0 ns, 0.3 ns, 0.6 ns, 1.5 ns, 3.0 ns and after cooling.  

Amorphous RDFs: The radial distribution function (rdfs) plots for amorphized 

nanosphere are shown in figure 3 (a). They depict the first peak at ~1.95 Å for Mn-O, 

~2.5 for O-O and ~3 Å for Mn-Mn, which represent the bond lengths between the 

relative atom species. These are followed by broader peaks beyond 5 Å radial 

distance, indicating that the nanosphere is in a disordered state and that the probability 

of locating the nearest neighbouring atom in relation to the reference atom is minimal.  

Recrystallised RDFs: In figure 3 (b) below, there is an increase in peak quantity and 

sharpness of the rdfs. The peaks attributable to Mn-O, Mn-Mn and O-O interactions 

occur between 2 and 4 Å. Sharper peaks emanate beyond 4 Å, for Mn-O, Mn-Mn and 

O-O interactions, indicating long-range order and therefore confirming that the spinel 

nanosphere has recrystallized.                                            
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Figure 3: RDFs of the Li-Mn-O nanosphere (a) before crystallization and (b) after 

crystallization at 1700 K.  

Cooled RDFs: The recrystallized structure was then cooled by performing MD 

simulations for: 500 ps at 1200 K, 250 ps at 800 K, 250 ps at 400 K and lastly 500 ps 

at 0 K. This helps remove thermal noise from the structure and makes characterisation 

easier. The total RDFs of the nanosphere at different temperatures are shown in figure 

4. Lowering of temperature increases peak sharpness and this is particularly distinct 

in the enlarged portion, in (b) where narrowing of peaks at different temperatures is 

clearly depicted, implying that the system is more crystalline.  
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Figure 4: Total RDFs of the Li-Mn-O nanosphere at different temperatures (a) and its 

magnified portion in (b). 

Characterization: In figure 5, a snapshot of the Li-Mn-O nanosphere is shown. A 

portion from this nanosphere is magnified in (b) to clearly show the occupancy of 

manganese (Mn) atoms on tetrahedral sites. Some atomic arrangements in this 

portion are similar to those of spinel Mn3O4. As such, the conventional unit cell of spinel 

Mn3O4 structure was captured in (c) and compared with a similar segment magnified 

from (b). The compatibility thereof suggested the presence of spinel Mn3O4 within the 

recrystallized Li-Mn-O nanosphere (a).   

                                  

Figure 5: (a) Recrystallized Li-Mn-O nanosphere, (b) magnified portion of the 

nanosphere with tetrahedral Mn, (c) conventional unit cell of perfect spinel Mn3O4 

showing structural arrangement and (d) magnified portion of (b) where an Mn3O4-type 

of arrangement is observed within the recrystallized Li-Mn-O nanosphere. 
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Detailed analysis was carried out by cutting through the nanosphere in the area 

enclosed with a white box in figure 6 (a). A snapshot of the slice is shown in (b), 

illustrating the atomic arrangement of Li, Mn and O atoms, which conform to a 

defective (layered) Li2MnO3 crystal structure. The model of perfect Li2MnO3 in (c) was 

compared with the magnified portion of (b) denoted as (d). Although the magnified 

portion in (d) is defective with vacancies and substitutions, the atomic arrangements 

comparable to those observed in (c).  

 Comparison between Li-Mn-O atomic arrangements calculated in this work and 

measured experimentally by Long et al [6], are shown in figure 7. The atomic 

arrangement is similar to that of Li4Mn5O12 (lithium-rich phase of Li1+xMn2-xO4) in which 

lithium atoms occupy 16d positions. Conversely, in LiMn2O4 Mn atoms are located on 

these sites. This lithium-rich phase is advantageous because it suppresses Jahn-Teller 

distortions due to its oxidation state of Mn4+ [14] unlike LiMn2O4 which experiences 

domination of Mn3+ during redox reactions of the charge and discharge process. In 

addition to this phase, another slice showed the presence of Li2MnO3 within the 

nanosphere in (d). This layered structure accords with the HRTEM image of diffraction 

spots for layered Li2MnO3 characterized experimentally by Long et al in (e) [6].  

                                         

Figure 6: (a) Schematic representation of recrystallized spinel, (b) slice cut through 

the nanoparticle, (c) slice cut through a perfect bulk model of Li2MnO3 and (d) 

magnified portion of the slice in (b) showing the presence of Li2MnO3.  
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Figure 7: (a) HRTEM image of defective spinel Li4Mn5O12 [6] (b) simulated spinel 

component (this work) in Li-Mn-O nanosphere, (c) Experimental co-existing spinel and 

layered composite [3], (d) simulated Li2MnO3 phase in Li-Mn-O nanosphere and (e) 

experimental diffraction spots of Li2MnO3 structure [6]. 

Discharge Process: Nanospheres with various lithium concentrations are illustrated 

by the snapshots in figure 8. The structures illustrate crystallization along different 

directions from Li1.00Mn2O4 to Li1.50Mn2O4.  The Li1.75Mn2O4 nanoparticle, exhibits 

extensive multiple grains, and it subsequently transforms into a single crystalline 

phase after full lithiation, at Li2.0Mn2O4. The structural variations observed in snapshots 

correspond to changes in the voltage profile across the concentration range. In order 

to understand the effect of lithiation on the structural integrity of the host Li-Mn-O 

material, the nanospheres were characterised using graphical techniques, particularly 

for composition Li1.75Mn2O4 and Li2.00Mn2O4 as shown in figure 9 (1) and (2), 

respectively. In segment (1), a slice (b), depicting the co-existence of magnified 

layered (c) and spinel (e) components within the lithiated Li-Mn-O nanosphere, was 

cut through (a). The simulated layered component was compared to the atomic 

arrangement of perfect (bulk) Li2MnO3 in (d) and similarities were observed in terms 

of atomic arrangements. Furthermore, a larger portion on the same slice (e), conforms 

to the spinel crystal structure; a model of the perfect (bulk) spinel Li1+xMn2O4 unit cell 

is shown in (f). Segment 2 illustrates dominance of the spinel component on the 

microstructures cut across slices 1-3. This may imply that after transformation from 
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Li1.75Mn2O4, predominance of spinel phase occurs unlike composites observed at 

lower Li concentrations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: (i) Nanospherical LixMn2O4 with various lithium concentrations where: (a) 

Li1.00Mn2O4, (b) Li1.25Mn2O4, (c) Li1.25Mn2O4, (d) Li1.75Mn2O4 and (e) Li2.00Mn2O4.  
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Figure 9: [1] (a) Slice cut through Li1.75Mn2O4 nanosphere depicting (b) slight 

Li2MnO3–type arrangement, (c) model Li2MnO3, (d) spinel component in Li1.75Mn2O4 

and (e) model of spinel Li4Mn5O12. (i) Recrystallized nanosphere of Li2.00Mn2O4 cut 

across 3 segments illustrating predominance of spinel components in the 

microstructures. 

Figure 10 demonstrates the intermediate phases identified during lithiation of 

Li1.5Mn2O4 at atomistic level (i, iii) compared with similar findings from first-principles 

calculations (ii, iv) [29]. The Mn−O bond lengths from nanospherical Li1.5Mn2O4, 

illustrate both Mn3+O6 and Mn4+O6 octahedra with characteristic features of the (a) 

cubic-Li1.5Mn2O4 (b) and tetragonal-Li1.5Mn2O4 intermediate phases. The bond length 

of Mn3+O6 along the c-axis follows the increase trend from by a factor of 0.08 in this 

work which with agrees well with the 0.07 factor observed in first principle calculations 

[29]. This implies similar observations of structural transitions in the spinel structure.  
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Figure 10: (a) The Mn−O bond lengths of Mn3+O6 and Mn4+O6 octahedra in the cubic-

Li1.5Mn2O4 calculated with (i) atomistic simulations and (ii) first principle calculations. 

(b) tetragonal-Li1.5Mn2O4 based on (iii) atomistic simulations and (iv) first principle 

calculations. 

Crystallographic Defects: In figure 11, the recrystallized nanoparticle is depicted in 

(a) and consists of ~10 nm scale similar to that shown by the TEM in (b). High 

resolution of simulated spinel LiMn2O4 is shown in magnification of (a) below, 

highlighting the polycrystallinity of the nanoparticle during synthesis as it was found in 

experiments and depicted in the high resolution TEM (b) below. The yellow boxes in 

magnifications of (a) and (b) represent the spinel tunnels on the nanomaterials. Further 

analysis was carried out by cutting a slice through the nanosphere and changing the 

atomic display into spheres as shown in figure 10.  Snapshot (1) depicts grain 

boundaries denoted by pink dots. A segment from the middle of the slice was enlarged 

on the right of image (1) illustrating Li-Mn-O atomic arrangements and is shown using 

polyhedral rendering (2) and CPK (3) format. Point defects, such as substitution of Mn 

atoms by Li atoms at some atomic sites (green rectangle), were observed together 
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with Mn vacancies (green circles). Substitution of Mn by Li enables Li mobility within 

the material; possible pathways are indicated by the red arrows in (2). The CPK format 

in (3) helps to show that atoms within the system are well ordered   despite the complex 

defect microstructure. The nanoparticle consists of grain boundaries as shown in (1) 

and the upper grain boundary region is indicated on the slice cut through the 

nanosphere in (4) by stick representation. Magnification of the grain boundary region 

in (4) is illustrated by a black oval on the right depicting atoms ordered along different 

directions at approximately 45 degrees angle. 

The recrystallized nanosphere (6661 lithium atoms), with a structural composition of 

Li1.75Mn2O4, is depicted in figure 12 (a). The sphere contains ordered patterns of Li, 

Mn and O atoms along different directions. A portion of this nanosphere was sliced 

along the white dotted lines and the slice is shown in (b) below. The same slice is 

presented in (c) for oxygen layers, with CPK representation to showing grain 

boundaries in regions labelled 1-6 and lastly a segment was magnified in (d), depicting 

several point defects such as interstitials (blue box) and vacancies (light orange box) 

that occur within the nanosphere. This indicates the presence of Frenkel defects in the 

Li1.75Mn2O4 nanosphere system. 

   

Figure 11: (a) Snapshot of recrystallized Li-Mn-O nanosphere (this work) with 26 642 

atoms and its magnified resolution showing tunnels in yellow boxes and (b) TEM 

images of the LiMn2O4 nanoparticle with high resolution TEM image of the LiMn2O4 
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powder [19]. (c) (1) Slice cut through the Li-Mn-O nanosphere with 26 642 atoms 

revealing crystallographic defects such as (2, 3) point defects and (4) grain-boundary 

structure that has evolved during recrystallization and enlarged segment of the grain 

boundary (black oval). 

                               

Figure 12: (a) Recrystallized L1.75Mn2O4 nanosphere, (b) slice cut through nanosphere 

(c) grain boundary region and (d) point defects in the nanosphere. 

X-ray Diffraction Patterns: Analysis of the model structures for mono-, intermediate 

and di-lithiated Li-Mn-O nanoparticles, with different lithium concentrations, have 

indicated the presence of co-existing spinel and layered domains. To further 

characterise the nanoparticles, calculated XRDs of the model systems are compared 

with experiments in fig 13. The diffraction pattern for simulated Li-Mn-O nanospheres 

with various concentrations is illustrated in figure 13 (a) and compared with (b) spinel 

Li4Mn5O12 [29], (c) spinel LiMn2O4 [30], (d) spinel Li2Mn2O4 [30], (e) layered Li2MnO3 

[30], (f) spinel Mn3O4 [31], (g) pure layered Li-Mn-O [9] and (h) layered/spinel Li-Mn-O 

. The first peak emerging on the diffraction patterns of the simulated nanospheres in 

(a), is a shoulder peak, around 2θ=20–25° which was identified as (020) and (110) 

peaks of monoclinic Li2MnO3 (C2/m). It is said to correspond with the ordering of Li 

and Mn atoms in the transition metal layers [9].  The simulated XRD has four other 

distinct peaks (2θ ~ 29, 39, 45 and 66 ⁰). This growth of the [220] peak at 2θ ~ 29⁰ is 

due to occupancy of a significant number of manganese ions in the tetrahedral sites 

of the spinel structure, forming Mn3O4 as a result of high temperature synthesis [32].  
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Figure 13: XRD patterns for (a) simulated layered/spinel nanospheres (this work), (b) 

spinel Li4Mn5O12, [29] (c) spinel LiMn2O4 [30], (d) spinel Li2Mn2O4 [30] (e) layered 

Li2MnO3 [30], (f) spinel Mn3O4 [31],  (g) pure-layered Li-Mn-O [9] and (h) layered-spinel 

Li-Mn-O [9]. 
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The third peak appears between 37⁰ and 38⁰ for all reference systems though not 

exactly at the same point as it seems to have shifted slightly towards 38 in other plots. 

This is followed by a very strong peak observed around 45⁰ in the simulated diffraction 

pattern and corresponds to all reference XRDs from experiments. The last peak 

(2θ~66⁰) appears to be a combination of peaks between 65 and 70 in the reference 

layered spinel and pure layered XRDs. Figure 14 represents diffraction plots for 

lithiated nanospheres (Li1.00Mn2O4 Li1.25Mn2O4, Li1.5Mn2O4, Li1.75Mn2O4 and 

Li2.00Mn2O4) with magnified peaks in order to interrogate the effect of lithiation on the 

significant differences in peak intensity. The Li2MnO3 peak (Peak A) around 2θ = 20–

25° has an almost constant peak intensity between Li1.00Mn2O4 and Li1.5Mn2O4. The 

peak then increases for the Li1.75Mn2O4 nanosphere and flattens after complete 

lithiation at Li2.00Mn2O4. Peak B at 2θ=29° (220) decreases with an increase in lithium 

 

 

Figure 14: Superimposed X-Ray Diffraction (XRD) patterns of the simulated 

nanospherical models of:  LiMn2O4 (red), Li1.25Mn2O4 (royal blue), Li1.5Mn2O4 (pink), 

Li1.75Mn2O4 (cyan) and Li2.00Mn2O4 (green). Magnification of the characteristic peaks 

for (A) Li2MnO3, (B) Mn3O4, (C) and (D) LiMn2O4. 

concentration in the system, indicating reduction in tetragonally co-ordinated Mn2+ 

atoms and flattens drastically for the fully lithiated Li2.00Mn2O4. Peak C emerges at 
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2θ~39, as a characteristic spinel peak and shift more towards LiMn2O4 (2θ~37.8⁰) as 

the Li concentration increases in the nanosphere. The broad peak at 2θ~66⁰ narrows 

with an increase in lithium concentration.  

4. Discussions  

Nucleation and growth of primary and secondary LMO and Li-rich manganese based 

NMC particles, with optimum tap density and well-rounded morphologies, is of great 

importance in providing good performance in Li-ion batteries; hence models that could 

contribute to these ideal properties are of essence. The current study has successfully 

synthesised LiMn2O4 nanoparticles, with an aid of crystalline seed, using simulated 

amorphization and recrystallization techniques. The amorphous nanoparticles were 

allowed to evolve, leading to crystallization, and a wide variety of structural features 

such as grain-boundaries and defects (interstitial, vacancies and substitutions), were 

captured within a single simulation cell. Such simulated particles are consistent with 

the widely reported cathode primary nanoparticles, which normally aggregate to form 

porous secondary particles [9, 33]. Furthermore, their dimensions (8nm) are within an 

order of magnitude of experimentally synthesised primary particles with diameters 

commencing from 20 nm. Simulated synthesis of larger systems and their aggregation, 

though computationally demanding, are currently underway and will provide valuable 

insights to the cracking and degradation of secondary particles during charging and 

discharging processes. 

Another important aspect of the study is the generation of simulated composite or 

heterostructured cathode primary nanoparticles. Careful inspection of Li-Mn-O 

microstructural features, captured in structural snapshots and simulated XRDs, 

reveals that the nanoparticles crystallize into interconnected patterns with the 

presence of layered Li2MnO3-type and spinel domains, including Li4Mn5O12 and 

Mn3O4. Such layered-spinel composites have been reported experimentally in Mn 

based ternaries [3]. In particular, surface post modification on Li-rich materials to form 

spinel membrane which encapsulated layered particles, has enhanced related rate 

capability and cycling stability [9, 11]. More significantly, layered layered composites 

of NMC, which yielded high specific capacity (~250 mAh/g), were partly corrected for 

voltage fade by controlled insertion of a spinel component [6] or by formation of 

platelets [7] 
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We now provide a rationale for the presence of several phases which are constituents 

of heterostructured nanoparticle, in the current study, where the amorphisation 

recrystallization method, which is a high temperature process, was applied on the 

spinel LiMn2O4. The occupancy of manganese atoms within some 3D tunnels of the 

recrystallized nanoparticles and lithium ions moving to the outer surface, instead of 

occupying 8a tetrahedral sites as expected in the pure spinel LiMn2O4, has been 

explained in a study by Thackeray al [32]. The formation of various high temperature 

structures, such as Li2MnO3 and Mn3O4, on heating the parent spinel Li[Mn]2O4 from 

ambient temperature, has been discussed in the introduction. In the current study, a 

mixture of seeds of such phases co-exist in the high temperature amorphous phase 

and leads to the formation of a heterostructure during the re-crystallisation of the 

nanoparticle, which is retained on annealing to 0K. On the contrary, a similar high 

temperature simulation study on a parent Li2MnO3 tends to yield nanoparticles without 

spinel components, since the layered phase is dominant both at low and high 

temperatures [23]. 

Related composites or heterostructures were previously synthesised by simulations 

for binary MnO2 [20, 24] and TiO2 [22, 34] nanoparticles, together with experimental 

syntheses of lithium manganese oxides [35, 36]. In contrast to previously simulated 

binaries, the complexity of the current LixMn2O4 heterostructured nanoparticle 

emanates from it being a ternary compound, compounded by the possibility of 

adopting several polymorphic crystal phases when synthesised at high temperatures. 

Here, we have captured such complexity by evolving the structures, starting from 

amorphous pre-cursors, rather than generating models using crystallographic 

symmetry operators. Consequently, the current study has paved a way for exploring 

performance optimisation of one of most promising cathodes, the Li-rich Mn based 

compound, by varying the content of its polymorphs.  

We now consider how the simulated heterostructured nanoparticle is affected by 

lithiation, during discharge. The microstructural features deduced from crystallised 

nanoparticle are quite interesting. In the concentration range of LiMn2O4 to 

Li1.50Mn2O4, large single crystalline and limited mulit-grained boundary regions are 

noted in each nanoparticle, and their location shifts with the Li content. However, at 

Li1.75Mn2O4 the multigrained portion extends to the entire nanoparticle, which 

subsequently becomes single crystalline at Li2Mn2O4 and depicts presence of the 
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tetragonal spinel phase. The microstructural images further show that whilst the lower 

Li concentration particles (Li1.25 to Li1.75) are clearly heterostructured, composed of the 

layered and spinel components, the one related to Li2Mn2O4 is dominated by the spinel 

phase. Such features are consistent with the XRD patterns which are nearly 

superimposed in the range Li1.0 to Li1.50. However, distinct changes of XRD peaks are 

noted for the Li1.75Mn2O4 concentration, where they are generally broadened. In case 

of the highest concentration, Li2Mn2O4, the widths of the XRD peaks are suddenly 

reduced and significantly smaller than those of lower concentrations, Li1.00 to Li1.50. In 

addition, the peak height corresponding to the Li2MnO3 phase, at 2θ=20–25°, has 

been drastically reduced, together with that of the spinel Mn3O4 at 2θ=29° (220). The 

structural transition above Li1.50 is somehow expected, since it is consistent with the 

reported marked reduction in voltage from 2.8 to 2.0V, depicted in Region III [ ]. This 

is accompanied by a symmetry change from cubic spinel Fd-3m to tetragonal spinel 

I41/amd, where the occupation of 8a sites by Li is minimal and that of 16c is prevalent 

[30], which is clearly depicted in our simulated microstructures. Whilst previous work 

has extensively discussed structures and phenomena occurring at Li1.50  and Li2.0, the 

current study has explicitly highlighted the emergence, presence and disappearance 

of an intermediate phase Li1.75Mn2O4,   

In the study of thermal stability for spinel, the Li2MnO3-layered structure emerged as 

a result of lithium and oxygen loss to the surface thus later forming Mn3O4 at high 

temperatures. The study indicated internal redox reaction was responsible for 

generating a defected spinel phase in which Mn2+ (d5) ions are stabilized in tetrahedral 

(8a) coordination in Mn3O4 as this is a high temperature spinel phase [37].  However, 

when surplus lithiums were intercalated into the nanoparticles, the concentration of 

Mn2+ atoms in tetrahedral sites was reduced as evident in the microstructures (figure 

9) and XRD patterns (figure 14, where the [211] peak at 2θ=29° decreased with 

increasing lithium concentration. This is in line with the prediction that 16c octahedral 

sites are more favourable than tetrahedral sites during cycling owing to less energy 

being required to remove lithium ions from the octahedral sites than the tetrahedral 

sites of the Li[Mn2]O4 spinel. The XRD patterns also showed an increase in lithium 

concentration constituted to the formation of more spinel LiMn2O4 type structure within 

the nanoparticle. 
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The impact of layered components within the spinel-structured nanoparticles needs to 

be well understood to clarify the effect of its existence within the electrode material 

and how it would affect the electrochemical performance of the material. Several 

studies have been carried out in the past on the Li2MnO3 cathode in lithium cells, either 

in isolation or as a component in layered–spinel composite electrodes (M = Mn, Ni) in 

which the layered Li2MnO3 and LiMO2 component oxide materials are structurally 

integrated, via a shared common oxygen sub-lattice, at the atomic level. Findings from 

the work of Johnson et al [3]  during the investigation of electrochemical performance 

of spinel-layered composites indicated that Li2O could be partially extracted from the 

Li2MnO3 component, whilst retaining an electrochemically active layered MnO2 

component in which lithium can be inserted and extracted. These findings advised that 

the layered-spinel composite electrodes are technologically important because of their 

high voltage (>4.5V) and high storage capacity (>250 mAh/g). Accordingly, the layered 

spinel component is important in achieving both high storage capacities and (three-

dimensional) lithium transport pathways. 

Our findings epitomise the need to have models, which capture the structural 

complexity of the real material. This includes: the atomistic structure and connectivity 

of the network of pores, the exit holes through which the Li ions intercalate and 

deintercalate from the material and the microstructure of the material (microtwinning 

and connectivity of the 1 x 1 tunnels, (point) defects, dislocations and more general 

grain-boundaries). Moreover, to simulate the diffusion process, where the mobility of 

Li is likely concerted, a high number of Li ions must be included within a single 

simulation cell to capture the diverse range of correlated mechanisms associated with 

Li mobility. At present, the number of atoms required to capture all these features within 

a single model is too large to be considered quantum mechanically (using for example, 

density functional theory) and therefore atomistic simulation, using pair potentials, 

continues to provide a valuable tool to be used in conjunction with quantum 

mechanical methods; together they provide unique insight for experiment. 

5. Conclusion   

Atom-level models, for Li-Mn-O composite/heterostructured nanoparticles, were 

synthesised by simulating the crystallisation of the system, starting from amorphous 

precursors. The presence of the layered (Li2MnO3) and spinel (Mn3O4, LiMn2O4, 



27  

  

Li4Mn5O12) polymorphs were deduced from microstructural features and XRD 

patterns. The discharge of the nanoparticle by lithiation, in the range LiMn2O4 to 

Li1.5Mn2O4 does not reflected much change in structure since it all corresponds to the 

cubic Fd-3m spinel. However, a significant change to a multigrained structure is noted 

at the intermediate phase, Li1.75Mn2O4, which is confirmed by visualised nanoparticles 

and substantially broadened XRDs. Upon further discharge, a transition to a tetragonal 

spinel, with the symmetry I41/amd, is noted at Li2Mn2O4 and the spinel phase appears 

to be dominant at such highest concentration. Contrary to most previous work, such 

deductions are drawn from a technique (simulated amorphisation recrystallization)  

that allows spontaneous generation of large nanoparticles (26 000 atoms) at various 

Li concentrations. 

 

Specifically, we show how the layered components and microstructural features, are 

important in achieving both high storage capacities and (three-dimensional) lithium 

transport pathways. The microtwinning enables channels (for Li mobility) to traverse 

all three spatial directions. The Li2MnO3 component allows for extraction of Li2O 

enabling charge cycling whilst retaining an (electrochemically active) MnO2 layer.  The 

intrinsic defects, including vacancies and substitutionals help facilitate mobility of Li 

through the lattice during charge cycling by providing additional pathways and 

increase three-dimensional connectivity of the pathways so that Li can move freely 

throughout the material. 
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