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Abstract 

 

The greatest threats to biodiversity in Madagascar are habitat destruction, fragmentation and 

climate change.  Complementary in situ and ex situ research can aid conservation because many 

aspects of natural history that can usefully inform conservation measures are difficult to study 

in the field. The golden mantella is an excellent model as it is unique in that it is a charismatic, 

high profile Critically Endangered amphibian, but is abundant in captivity and highly suitable 

for ex situ research.  In situ research in a new protected area of Madagascar found surface 

temperature, litter coverage and the number of tree roots were the most important predictor 

variables associated with quadrats occupied by golden mantellas. Microclimatic measurements 

made in the field informed the design of the replicated climatic-controlled enclosures 

(Froggotrons) for golden mantellas at Paignton Zoo.  

Froggotrons revealed golden mantellas had a bimodal activity pattern during daylight hours 

even under different temperature regimes. At lower temperatures (16 ºC – 19 ºC) mantellas were 

overall less active than those at higher temperatures (20 ºC – 25 ºC), but the phasing and bimodal 

nature of the activity rhythm was the same under both temperature regimes. Most activity 

occurred when humidity levels exceeded 85%.   Golden mantellas were most active, spent most 

time in the open and less time on leaves at 21.5 ºC.  Where temperature deviated either way 

from 21.5 ºC there was an associated decrease in activity and an increased tendency to hide in 

leaves. Results also show that even under optimum temperature and humidity regimes less than 

50% of the frogs were active in open areas at any one time.  Ex situ results have been used to 

assist with the design and timing of field population assessments and shed light on issues 

concerning imperfect detection when applying models to assess abundance.  Species 

distribution modelling results suggest a potential south-eastwardly shift away from current 

distribution range and a decrease in suitable habitat from 2110 km2 under current climate to 

between 112 km2-138 km2 by the year 2085. Golden mantella research is a new development 

in the area of collaborative, complementary conservation. Integrating in situ and ex situ 

research may  help mitigate the multi-faceted and synergistic threats to biodiversity in 

Madagascar. 
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Chapter 1  

Introduction 

1.1  The extinction problem and biodiversity conservation 

 

Globally, the human population now stands at over 7 billion and is set to rise to approximately 

9.7 billion by 2050 (Lal, 2016). Each day 200,000 more people are added to the planet, and 

will need space to live, grow food and reproduce (Mills, 2007).  Certainly, it is the 

unprecedented and relentless growth in the human population that  has caused, and continues 

to underwrite, all other major problems associated with the mass extinction of species 

worldwide (Mittal and Mittal, 2013).  Populations, communities and ecosystems are under 

extreme pressure from land use change, habitat loss, over-harvesting, direct exploitation, 

invasive species, environmental contaminants and emerging infectious diseases (Beebee and 

Griffiths, 2005; Araujo et al., 2006; Hamer and McDonnell, 2008; Thuiller et al., 2008; Smol, 

2012). Climate change compounds and exacerbates the situation posing significant and serious 

threats to biodiversity both now and for the foreseeable future (Pounds et al., 1999; Root et al., 

2003; Pamesan et al., 2005; Bartelt et al., 2010).  

A recent report by the United Nations (2019) estimates that approximately 1 million species 

are threatened with extinction. Amphibians continue to be among the most threatened of all 

land vertebrates (Beebee and Griffiths, 2005; Norris, 2007; Bishop et al., 2012; Biega et al., 

2017) with 40%  assessed  as being at  risk (IUCN, 2019). Several authors have cited important 

ecological, biological, economical, medicinal, aesthetic or ethical reasons for preventing 

further harm or extinctions (Tudge, 1992; Ranvestel et al., 2004; Whiles et al., 2006; Altig et 

al., 2007; Verburg et al., 2007; Całkosiński et al., 2009; Hocking and Babbitt, 2014). The role 

of conservation organisations is to increase awareness, education and prevent the decrease in 

population abundance, community composition or extinction of wildlife (Tudge, 1992).  Ex 

situ, this role is increasingly being taken on by zoos (Biega et al., 2017), with protection of 

wild places and species, research and education at the top of many mission statements (Barongi 

et al., 2015).  With  approximately 700 million visits to zoos per year (Barongi et al., 2015) the 

potential to raise revenue and promote important conservation issues with the wider public is 

considerable (Griffiths, 2017). Additionally, research conducted in zoos can provide a unique 

opportunity to closely observe animal behaviour, which may be difficult to do in the wild 

(Barongi et al., 2015).   In situ conservation programmes may therefore benefit from  working 
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closely with zoos. Equally, zoos benefit from the relationship by fulfilling many of their 

conservation objectives and gaining further insights into the species they hold (Barongi et al., 

2015).   

Grant et al. (2019) suggest that the success of conservation actions is driven both by research 

and by the level of communication and collaboration between researchers and conservation 

managers.  Indeed, there is growing support for the use of integrated complementary in situ - 

ex situ conservation initiatives (IUCN SSC, 2014; Barongi et al., 2015; Trayler-Holzer et al., 

2018). The IUCN SSC (2014) have revised their guidelines on ex situ research and now provide 

a checklist to ensure it has relevance to the conservation needs of the species. The loss of 

species and habitats is ongoing and serious (IUCN, 2019; Plumptre et al., 2019), and bridging 

the gap between in situ and ex situ research to better inform conservation management 

decisions is crucial (IUCN SSC, 2014). It was from this perspective that my golden mantella 

research project was  conceived and undertaken.  

 

1.2  Climate Change, Range Shifts and Species Distribution Models (SDMs) 

Climate change is known to be a key player in driving species range shifts worldwide 

increasing the risk of further extinctions (Heikkenen et al., 2006; Braunisch et al., 2013). 

Therefore, comprehensive and reliable information regarding the potential for range shift is 

important for conservation planning (Liu et al., 2013).  Species Distribution Models (SDMs) 

are commonly used to this end and generally operate by exploring relationships between a 

species’ current distribution and its associated environment and then making extrapolations to 

predict possible range shifts given a warmer or cooler climate (Barbosa et al., 2013; Bateman 

et al., 2013; Cao et al., 2013; Meynard et al., 2013; Rodriguez-Rey et al., 2013). However 

SDMs designed to predict species ranges regularly do so without factoring in biotic interactions 

such as interspecific and intraspecific competition, species dispersal ability and barriers, 

predation, pathogens, parasites and  mutualisms (Guisan and Thuiller, 2005; Vicente et al., 

2011; Capinha et al., 2013; Bateman et al., 2013; Higgins et al., 2012).  Dormann (2007) 

provides further insight into the caveats of SDMs; for example, causal drivers are rarely 

quantifiable and have non-linear synergistic effects, spatial autocorrelation, and limiting factors 

may also change throughout a species range and differ with environmental change.  
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According to Kearney and Porter (2009), most distribution modelling follows the correlative 

method i.e. models treat an organism as a point on a map, statistically linking spatial data to 

distribution records. Kearney and Porter (2009) suggest that process-based models i.e. those 

that include information on species and environment interactions, are likely to provide more 

accurate distribution predictions.  There is also growing consensus that although SDMs are 

useful for identifying common trends among a variety of predictions they are limited when 

used in isolation and  provide more reliable results if used in conjunction with other predictive 

dynamic process-based models  (Anderson et al., 2009: Braunisch et al., 2013; Cao et al., 2013; 

Rodriguez-Rey et al., 2013). Process-based models have positive and negative aspects e.g. they 

are more robust and provide more detail but can be less flexible, more biased and data-hungry 

than correlative models (Kearney and Porter, 2009; Dormann et al., 2012; Gritti et al., 2013; 

Higgins et al., 2012). 

The fundamental point here is that SDMs of rare or cryptic species can be vague or imprecise 

because they are often built on limited data. Indeed, Marcer et al. (2013) acknowledge a need 

for using other models in conjunction with rare species SDMs to improve their accuracy but 

suggest they can still provide a valid and comprehensive insight into species distribution by 

capturing much of its realised niche. Dormann et al. (2012) recommend a combined workflow 

by using correlative models to help generate hypotheses on underlying processes which would 

then, along with ecological theory and experimental data, be used to inform process-based 

models. Gritti et al. (2013) and Iverson and McKenzie (2013) agree and advocate the use of 

hybrid SDMs rather than using correlative or processed-based models in isolation which can 

lead to major differences in the resulting forecasts. Heikkinen et al. (2006) are in favour of 

using SDMs as an approximation or ‘first filter’ twinned with a thorough understanding of the 

shortfalls, and Vicente et al. (2011) conclude that more informative projections of species 

distributions are possible if a combined modelling approach is followed where both regional 

and local predictors are used instead of the more usual binomial presence versus absence 

outputs. It is clear that sound ecological theory and more detailed information regarding 

important aspects of a species niche should be used to improve the accuracy of SDMs (Guisan 

and Thuiller, 2005; Kearney and Porter., 2009; Huey et al., 2012).  It is also important to 

recognise that natural systems are not closed and therefore it is not possible to account for all 

driving forces of species distributions, no matter how powerful the model (Heikkinen et al., 

2006).  
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1.3  Climate Change and Protected areas (PAs) 

Climate change is having an impact on the distribution of many species as they alter or shift 

ranges to avoid warming or increased precipitation, and there is great variation in responses 

between different taxa which may include either reduction, expansion or complete shift in 

range (Monzon et al., 2011). There are, though, some general global patterns emerging. For 

example, distributional changes are either towards higher latitudes (estimated to be 6.1 km 

northward per decade) or elevations (6.1 m upward per decade) in montane habitats (Parmesan 

and Yohe, 2003; Monzon et al., 2011; Thomas et al., 2012; Anderson et al., 2013).  In the 

distant past, as climate change occurred, species would have had longer to evolve and adapt to 

changing conditions: this is no longer the case (Monzon et al., 2011).   

 

Protected areas are the keystone of in situ conservation and act as refuges for species and 

ecosystem processes, they are also a useful tool in the search for ways to mitigate the effects 

of climate change on species and habitats. However, protected areas and reserves are of course 

sedentary usually with boundaries agreed and drawn up using political rather than current or 

future ecological requirements of the species living within them (Monzon et al., 2011; Thomas 

et al., 2012). Whilst protected areas may go some way to shielding species from habitat 

destruction, poaching and other anthropogenic pressures, they cannot offset many of the 

detrimental effects of climate change (Monson et al., 2011). It may be that some species will 

need to disperse beyond the boundaries of protected areas (Thomas et al., 2012). Monzon et al. 

(2011) recommend a renewed focus on adaptive strategies such as expanding and connecting 

future or existing PAs in order to aid the dispersal of vulnerable species or assisted migration, 

as well as measures that strengthen mitigation through research, community participation or 

sustainability.  

 

Existing and newly designated PAs will continue to be important if they are able to be colonised 

by species shifting into new regions. Conservation strategies should retain existing PAs to 

provide areas for colonisation with substantial effort put into deciding where new PAs are 

developed.  New PAs should be placed in areas where they are able to facilitate and 

accommodate the leading edge of species shifting range (Monzon et al., 2012). But funding for 

protected areas is finite and as such should be allocated to those high priority areas where 

species dispersal and survival is most likely (Buchanan et al., 2011).  The current position of 

many governments worldwide is to increase protected areas from approximately 10%  to 17% 
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of the earth’s land surface by 2020,  making the identification of suitable areas a priority 

(Buchanan et al., 2011; Pettorelli, 2012; Thomas et al., 2012).   

 

In summary, species that are unable to adapt to rapid climate change within their current 

habitats will either have to disperse or risk extirpation or extinction (Foden, 2013). If they are 

to disperse, they will need uninterrupted habitat as a corridor to new areas (Matisziw and 

Murray, 2009) and those areas will need to be situated where they are able to provide adequate 

protection or buffering from increased temperatures. Existing PAs may provide new habitat for 

some species or a leading edge for other species to facilitate a move into different areas 

(Thomas et al., 2012).  In order to decide which areas optimise a species ability to survive, 

more studies need to be carried out into species-specific habitat preference and population 

requirements incorporating information on demographic dynamics such as population size, 

isolation, density dependent competition, and limits to inter-population movement (Anderson 

et al., 2013).  

 

1.4  Madagascar 

Madagascar is situated in the Indian Ocean around 250 miles off the coast of Mozambique, 

East Africa.  The main sources of national income are agriculture, fisheries and livestock 

production (Worldbank, 2014). The country is classified as developing and low income where 

75% of its 22 million people exist on less than $1.00 per day (Worldbank, 2014).  Given the 

level of poverty across the country it is perhaps not surprising that threats to rainforest habitat 

remain high with the collection of plants and animals for medicinal or pet trade, logging, 

hunting and forest clearance for agriculture/industry taking their toll (Harper et al., 2007; 

Golden et al., 2012; Andriantsiferana et al., 2013). Around 90% of the population relies on an 

estimated 18 million m3 of wood for their annual energy needs with approximately half used to 

make charcoal (Minten et al., 2012). Forest cover decreased by 40% from the 1950’s up until 

the year 2000 with total forest land cover down from 27% to approximately 15% (Harper et 

al., 2007). A further 0.53% was lost between the years 2000 and 2005 (Eckert et al., 2011).  

Current estimates for primary forest cover stand at less than 10% (De Wilde et al., 2012). 

Recent political turmoil has also meant that rates of illegal logging have increased in some 

areas (Allnutt et al., 2013). 

However, Madagascar remains one of the world’s foremost biodiversity hotspots (Myers et al., 

2000; Raxworthy et al., 2008), and demonstrates one of the highest degrees of amphibian 
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endemism in the world, with at least 244 described species, and if predictions are correct, as 

many as 465 species in total (Vieites et al., 2009). More than 90% of endemic species on the 

island are dependent on forest and woodland habitat (Harper et al., 2007). Clearly, the need for 

biodiversity conservation in Madagascar remains high and should be classed as a priority 

(Myers et al., 2000, Raxworthy et al., 2008). Climate change is also a threat to species and 

habitats in the region, warming trends in Madagascar are equal to or above the global average 

which appears to be driving species upslope 19-51 m per decade (Raxworthy et al., 2008).  This 

is a particular problem for montane endemics which are restricted to narrow elevations close 

to summits of most of the major massifs in Madagascar (Jenkins, 1987; Andreone et al., 2005; 

Raxworthy et al., 2008).  

1.5  The Malagasy Massif 

Mountain ranges hold much of the world’s biodiversity, they are also the areas most likely to 

feel the negative effects of climate change (La Sorte and Jetz, 2010; Sheldon et al., 2011). 

Despite tropical montane regions exhibiting typically high levels of local endemism, the 

vulnerability of most tropical montane assemblages to climate change effects has not been well 

documented (Ricketts et al., 2005; Rull and Vegus-Vilarrubia, 2006). This vulnerability needs 

to be addressed as the majority of extinctions driven by climate change are likely to occur in 

tropical areas, which include both high species richness and narrow endemism, particularly in 

tropical montane systems (Root et al., 2003; Rull and Vegus-Vilarrubia, 2007; Raxworthy et 

al., 2008; La Sorte and Jetz, 2010; Monzon et al., 2011; Anderson et al., 2013). As montane 

species are often specialists, it can be assumed that species from such biographical zones may 

encounter a greater number of range-limiting climatic conditions (Hannah et al., 2002; Sheldon 

et al., 2011).  

A study conducted by Raxworthy et al. (2008) in Malagasy montane habitat revealed overall 

mean shifts in elevational midpoint of 19-51 m upslope for 30 species of reptile and amphibian 

with subsequent preliminary reviews of other massifs in the area indicating comparable trends. 

A number of studies have obtained similar results across a range of different countries and taxa 

including; plants (Rull and Vegus-Vilarrubia, 2006; Cross and Harte, 2007), mammals (Beever 

et al., 2010), birds (Sekercioglu et al., 2007; Anderson et al., 2013) and insects (Wilson et al., 

2005; Chen et al., 2011).  

The main problem with upslope displacement is that mountains tend to be smaller at the top 

than they are at the bottom which leaves upward range shifting species with less space than 
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they had before (Monzon et al., 2011). Species that do move upwards then have the added 

stress of increased competition for resources, less suitable and more isolated patches of habitat 

and different temperature or precipitation regimes which may act independently or together 

causing further stress (Thomas et al., 2006; Trivedi., 2008; McCain and Colwell, 2011; 

Monzon et al., 2011; Sheldon et al., 2011).  

1.6  Amphibians 

Of all the vertebrates amphibians are the group most likely to feel the greatest bio-thermal 

impact of changing temperatures due to their unique physiology, reproductive processes and 

highly permeable skins (Williams et al., 2008; Hoffmann et al., 2013). Physiological function 

and performance levels in ectotherms are highly dependent upon temperature (Deutsch et al., 

2008; Amarasekare and Salvage 2012). According to Putnam and Bennet (1981) the rate of 

biochemical reactions doubles with each 10ºC increase in temperature. Deutsch et al. (2008) 

describe a temperature performance curve for ectotherms based on Q10 (the rate of change of 

biological and chemical reactions after a temperature change of 10ºC) i.e. thermal performance 

rises gradually from critical thermal minimum until an optimum temperature is reached. 

Temperatures higher than optimum will  again decrease performance levels until a critical 

thermal maximum is reached (Huey and Kingsolver, 1993; Deutsch et al., 2008; Amarasekare 

and Salvage 2012).  Lower thermal limits are more labile as they tend to track or correlate to 

ambient temperatures, whereas upper thermal limits to heat are not correlated to ambient 

temperature (Araujo et al., 2013). This means that tropical ectotherms are most at risk from an 

increase in ambient temperature because they already live close to their optimal temperatures 

with little distance between upper and lower temperature safety margins (Deutsch et al., 2008; 

Amarasekare and Savage, 2012; Moritz et al., 2012; Scheffers et al., 2013). Their ability to 

evolve or adapt to higher temperature is also highly restricted due to the rigidity of their upper 

thermal boundaries and limited dispersal capabilities (Somero, 2010; Araujo et al., 2013).  

 

According to Kearney et al. (2009) and Chevin et al. (2010), the main thermal challenge for 

amphibians living in tropical forests is to stay cool, and many species will use behavioural or 

physical means in order to buffer or regulate the effects of warming. Behavioural adaptations 

include; avoiding warmer areas, moving into water or shade, burrowing, climbing, behavioural 

posturing, or by using an altered daily or seasonal timing of activity (Stevenson, 1985; Kearney 

et al., 2009; Huey et al., 2012). But the control of body temperature by behavioural means will 

depend on the thermal heterogeneity of the environment as well as the availability of water 
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(Kearney et al., 2009; Huey et al., 2012). The implication is, if climate change increases the 

temperature regime in a tropical forest to the point where negative effects on a species cannot 

be mitigated by the use of behavioural means, the species will have to disperse to more suitable 

areas or die out. Rare endemics found in only a few localities on mountains with low dispersal 

ability and limited contact with other populations are the most at risk from extinction and will 

remain of primary concern (Ricketts et al., 2005; Chen et al., 2011). Of the endangered 

Madagascan montane amphibian species the golden mantella (Mantella aurantiaca) is one of 

the most threatened and in need of urgent and extensive conservation action. 

1.7  Mantella aurantiaca 

Mantella aurantiaca is a small, terrestrial, diurnal frog with aposematic colouration, endemic 

to the Eastern rainforests of Madagascar (Andreone et al., 2008; Tessa et al., 2009; 

Randrianavelona et al., 2010). M. aurantiaca are generally found in  primary or secondary 

rainforest (Andreone et al., 2005) at altitudes of approximately 873-1,054m above sea-level 

(Randrianavelona et al., 2010). Behra et al. (1995) and Rabemananjara et al. (2008) obtained 

abundance data for this species ranging between 500 and 3,000 individuals per ha and 836 and 

1,371 per ha respectively.  Their extent of occurrence is centred on Moramanga and estimated 

to cover approximately 112 km2 with an area of occupancy at just 10 km2 (Randrianavelona et 

al., 2010). Clusters of breeding ponds are found in two main areas (north – Ambatovy; south - 

Mangabe) together with Torotorofotsy and Analabe forests. 

 

Ex situ populations are held in-country at Parc Botanique et Zoologique de Tsimbazaza in 

Antananarivo and the Parc Exotique de Madagascar, Mandraka. There is also an assurance 

colony of around 400 individuals consisting of F1 (Wild founder animals) and F2 (offspring of 

founders) generations held at the Mitsinjo research facility in Andasibe (Edmonds et al., 2015). 

Worldwide, zoos have been keeping and breeding  golden mantellas since the 1960’s, and they 

are now held by numerous ex situ institutions, private collectors and the pet trade (Edmonds et 

al., 2015). 

M. aurantiaca is classified by the IUCN (2014) as Critically Endangered (CR) B2ab (iii, v) due 

to having an area of occupancy at less than 10 km2, fragmented   distributions and recent 

declines in populations and habitat (Andreone et al., 2008; Randrianavelona et al., 2010; IUCN, 

2014).  Mantella aurantiaca are listed on CITES Appendix II (IUCN, 2014) and have been a 

protected species since 2006, collection for export from natural habitat is allowed with a permit 
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and quota given by Ministry of the Environment and Forest (Randrianavelona et al., 2010). 

Threats to forests inhabited by this species include logging or clearance for agriculture, illegal 

collection of individuals, and gold mining. The latter generally impacts pond hydrology, or 

turbidity, through excavations in close proximity to the water bodies.  After initial reports of 

isolated incidences involving infection by Batrachochytrium dendrobatidis (Bd) in individuals 

exported commercially e.g. single cases for Heterixalus alboguttatus, Heterixalus betsileo, and 

Scaphiophyryne spinosa (Kolby, 2014), a more recent study has revealed that Bd is now 

prevalent in the wild (although not yet recorded in golden mantella populations) in Madagascar 

and poses a significant threat (Bletz et al., 2015). 

 

M. aurantiaca is under distinct pressure from anthropogenic activities (Woodhead et al., 2007; 

Andreone et al., 2008; IUCN, 2012; Rabearivony et al., 2010; Randrianavelona et al., 2010) 

which therefore makes it a prime candidate for in situ and ex situ conservation efforts 

(Randrianavelona et al., 2010). To date, captive based studies have concentrated on larval 

morphology (Jovanovic et al., 2009), skin alkaloids (Daly et al., 1997; Andriantsiferana et al., 

2009) and bacterial communities (Passos et al., 2018), evolution of colour patterns (Schaefer 

et al., 2002; Chiari et al., 2004), taxonomy (Odierna et al., 2001), mitochondrial diversity 

(Vences et al., 2004), tonic immobility (Passos et al., 2017a), calling and fitness (Passos et al., 

2017b)  and classification (Glaw and Vences, 2006). So far, no papers on species habitat 

preferences or reaction to projected climate change in- or ex situ have ever been produced. The 

proposed study is therefore designed to fill some of the gaps in our current understanding of 

the ecology and future needs of this iconic Malagasy anuran.   

 

In situ conservation aims and targets for 2011 – 2015 are set out in the Golden Mantella Species 

Strategy Document Produced by Madagasikara Voakajy ( Randrianavelona et al., 2010). The 

document advises on a number of key areas such as education, protection, restoration of 

terrestrial and aquatic habitat and encouraging conservation practices by promoting non-

extractive benefits to local communities. The plan also advocates the continued promotion of 

scientific research into species biology/ecology and engagement with international partner 

organisations in information sharing.  

 

 



20 
 

1.8  Global Action for Amphibians 

 

In 2001 the Global Amphibian Assessment (GAA) was launched in order to document the 

conservation status of amphibians worldwide (Zippel and Mendelson, 2008; Stuart, 2012).  By 

2004 the GAA had reported that one third of all described amphibian species were categorised 

as threatened, with habitat loss and Batrachochytrium dendrobatidis (Bd) infection high on the 

list of drivers behind species declines and extinctions (Stuart, 2012). In 2005 a global initiative 

identified 595 areas around the world that required conservation to avoid high species 

extinction, over half of the sites were chosen due to the presence of   highly endangered 

endemic amphibian species (Stuart, 2012). During the Global Amphibian Summit of 2005 the 

Global Amphibian Conservation Action Plan (ACAP) was formed, designed specifically to 

address the declines in amphibian species worldwide by providing a framework for prioritising 

future policies, research, resource use and funding (Zippel and Mendelson, 2008; Stuart, 2012). 

In 2009 an IUCN summit prioritised specific, and perhaps more achievable, sections of the 

original ACAP and the Amphibian Survival Alliance (ASA) was formed and charged with 

implementing ACAP policy (Stuart, 2012). At present there are several other international 

organisations involved in conservation programs that specifically target amphibians (Gascon 

et al., 2007). 

Working at a finer scale, in-country organisations (e.g. www.MadagasikaraVoakajy.org, and 

www.AssociationMitsinjo.org) are increasingly important not only for in situ wildlife research 

but as a way of informing and connecting local people and organisations to international 

institutions. In-country conservation organisations often have more local knowledge of current 

political, social and industrial problems impacting on habitats.  

Initially menageries, then ‘arks’ breeding animals for reintroduction, zoos are now increasing 

their contribution to in situ conservation with a much wider ex situ role focusing on 

reintroduction, research and education (Foster, 1999; Bowkett, 2009). Bowkett (2009) states 

that in order to optimise conservation success, zoos should balance ex situ management of 

threatened species with in situ conservation programs. The World Zoo and Aquarium 

Conservation Strategy developed  by Barongi et al. (2015) for The World Zoo and Aquarium 

Association (WAZA), also advocates and places great emphasis on the one plan/collaborative 

approach (Trayler-Holtzer et al., 2018). As does the IUCN (2014) who now provide a 5-step 

checklist for decision makers using the one  integrated strategic plan method. 
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According to Barbosa (2009), zoos could contribute to climate change research in no less than 

ten subject areas, including detailed studies of responses of individuals to specific variables 

and investigating those traits/species that respond to climate change. The advantage of studying 

animals in zoos is that we can simulate a number of different climatic conditions in a controlled 

environment and then collect and analyse data, a task that would be more expensive, labour 

intensive and probably almost impossible with some studies  in situ. Information gained from 

such studies could then be used to make predictions regarding the most likely effect of climate 

change on a population in situ and inform subsequent management options (Barbosa, 2009; 

Minteer and Collins, 2013).  

That said, there are problems commonly associated with ex situ conservation programs and 

studying species long term.  For example, the longer a population spends in captivity the more 

likely that inbreeding/inbreeding depression will occur (Lacy, 2012). A lack of available space 

needed to house even the minimum number of individuals required to avoid inbreeding in zoos 

means inevitably that many ex situ populations can suffer from inbreeding depression (Robert, 

2009; Lacy, 2012).  Species that have been in captivity for generations may also have changed 

behaviourally or genetically in order to adapt to their surroundings (Conway, 2011) i.e.  

survival skills may be lacking such as the ability to recognise threats from predators or finding 

food (Conde et al., 2011).  

Zoos collectively hold 1 in 7 threatened species of various population sizes with approximately 

2.6 million species held among 800 organisations including 25% of bird species, 20% of 

mammal species and 12% reptile species (Conde et al., 2011). However, only 3% of threatened 

amphibian species are held in zoos; not a good representation given over 30% of amphibians 

are categorised as threatened in the wild (Browne et al., 2011; Conde et al., 2011). Amphibians 

are generally neglected in ex situ conservation programs (Balmford et al., 1996; Griffiths and 

Pavajeau, 2008), although conversely, amphibian life history traits are extremely compatible 

to re-introduction and captive breeding programs i.e. hard wired physiology and behaviour, 

high fecundity, small body size and low maintenance (Bloxam and Tonge, 1995; Griffiths and 

Pavajeau, 2008; Browne et al., 2011).  

 

1.9  Integrating in situ and ex situ research  

In situ and ex situ research can and should be carried out in a complementary way (Barongi et 

al., 2015; Trayler-Holltzer et al., 2018) i.e. there are aspects of behaviour (e.g. microhabitat 
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selection) that are extremely difficult to rigorously assess in situ (Barongi et al., 2015). This is 

where ex situ research can have a role. In turn, knowledge regarding environmental and habitat 

variables, ecology and  biology in situ can be used to greatly improve the design, methods and 

execution of ex situ research. The underlying principle of collaborative and complementary 

research was fundamental to the approach I used for the golden mantella project. 

Zippel and Mendelson’s (2008) ‘Call to Action’ paper advocated using a more holistic 

approach to conservation practices where in situ and ex situ methods are complementary.  

Although research in both fields has come some way over the last few years, significant gaps 

in our knowledge remain with pollution, disease, and the design or siting of bio-reserves and 

impacts of climate change on population declines prioritised as a need for further investigation 

(Zippel and Mendelson, 2008). Lacy (2012) argues that captive and wild populations should 

not be considered as mutually exclusive management domains but that the persistence of one 

relies heavily on the other with the exchange of genes from the wild and research by way of 

captive studies benefitting wild populations. As an example, research by Schoville et al. (2011) 

noted severe population decline in the endangered yellow-legged frog (Rana mucosa) in 

California.  One population was used to establish a breeding colony ex situ and was 

subsequently used to obtain information on the genetic variation and possible connectivity to 

other populations. Their results demonstrated that each of the nine small populations found in 

three isolated mountain ranges had unique evolutionary lineages and as such should be 

managed separately.  

Captive bred animals have also been successfully used to supplement populations of a species 

that have become extirpated or extinct in the wild, such as ploughshare tortoises (Geochelone 

yniphora) or the Puerto Rican crested toad (Peltophryne lemur) (Pedrono and Sarovy, 2000; 

Beauclerc et al., 2010). Translocations and re-introductions have also been shown to be viable 

in a number of other scenarios and taxa including, but not restricted to, California condors 

(Gymnogyps californianus) (Burnett et al., 2013), whooping cranes (Grus americana) (Smith 

et al., 2011), black-footed ferrets (Mustela nigripes) (Biggins et al., 2011), Arabian oryx (Oryx 

leucoryx) (El Alqamy,et al., 2012),American bison (Bison bison) (Pyne et al., 2010), and  

Wyoming toads (Bufo baxteri) (Dreitz, 2006). 

Although re-introductions and translocations can play an important role in the conservation of 

wild populations each case will need intensive investigation before a release can occur. 

Science-based studies should first be undertaken to reveal if the proposed habitat is suitable, 

http://apps.webofknowledge.com.chain.kent.ac.uk/OneClickSearch.do?product=WOS&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&colName=WOS&SID=U2VbFt6BMs457Qgbn5q&field=AU&value=El%20Alqamy,%20H&cacheurlFromRightClick=no
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populations are viable and predicted impacts on existing populations, or whether the problems 

responsible for the original declines are still a threat (Caughley, 1994; Griffiths and Pavajeau, 

2008). Re-introduction should never be driven purely on the basis of the availability of the 

target species in ex situ breeding programs. The International Union for Conservation of Nature 

and Natural Resources [IUCN] also provide clarity and concise guidelines if reintroduction or 

translocation are to be carried out (IUCN, 1998; IUCN, 2013). 

 While zoos can and do contribute to in situ and ex situ conservation more work and space is 

needed. Cohesive complementary long term in and ex situ studies that further scientific 

knowledge, promote greater awareness and conservation actions are needed if we are to stem 

the decline of species in the short term, and make them sustainable for the long term.    

 

1.10  Problem statement. 

 

• Mantella aurantiaca is a specialist tropical montane species, Critically Endangered and 

threatened with extinction in the wild.  Apart from substantial habitat destruction and 

low levels of occupancy, the species is also extremely vulnerable to climate change.  

Without a deeper understanding of its specific habitat needs we are currently unable to 

determine the optimum habitat to save, create or translocate it to in order to allow its 

persistence in the wild.  Without studies such as this future actions will remain best 

guess, a scenario which is unacceptable. 

 

• Fine-scale climate models still do not tell us how a species will respond to climate 

change (Raxworthy et al., 2008). Species bioclimatic envelope models have a number 

of limitations such as the inability to model dynamic interactions, effects of 

competition, dispersal or other factors relating to amphibian biology/ecology (Hannah 

et al., 2002).  

 

• There have been a number of studies conducted into physiological and behavioural 

responses to the environment in amphibians (Wygoda, 1989; De Andrade and Abe, 

1997; Bartelt and Peterson, 2005; Whitfield et al., 2007; Tracy et al., 2008) although 

few have attempted to incorporate the data into a practical species specific model in 

order to predict future habitat conservation needs.   
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• There is a clear need for the integration of basic amphibian ecology into modelling, 

especially more physiological data explaining movement preferences before we are 

able to predict with any amount of confidence the implications of various landscape 

configurations and compositions (Semlitsch, 2008; Dodd, 2010).  

 

• The implication is that for those species with limited or restricted ranges, climate 

change will become a significant threat to survival as these species will exhibit a degree 

of sensitivity to changing thermal arrays (Lawler et al., 2010). This becomes even more 

apparent when regions with restricted micro-climates are considered. 

 

 

1.11  Scope of study 

 

There were three core components to this project, 1) Collection of data on the microhabitat use 

of golden mantellas in Madagascar, which was used to  inform the design of the ex situ 

experiments; 2)  The Froggotrons were used to do manipulations of microhabitat variables that 

would be impossible in situ, and 3) Climatic data were then used to construct SDMs and predict 

changes in the distributions under different scenarios. 

In order to provide greater predictive power in climate modelling for vulnerable habitats and 

species, it is important to understand that integrative and sensitivity analysis on the ecology of  

individual species is an essential supplement to existing models (Hannah et al., 2002). A greater 

understanding of the target species ecology and its response to changing habitat is desperately 

needed and undertaking this research in captivity will help illuminate many pressing questions.  

There are three main ways used to tackle scientific problems; correlational observational 

studies, experimental studies or modelling.  Correlational studies involve observing what 

occurs naturally without any interference or manipulation by the observer (Field et al., 2014). 

Experimental studies are conducted by manipulating one variable to see its effect on another 

(Field et al., 2014), whereas modelling is used to predict the possible outcomes of, for example, 

our future conservation actions. This study uses correlational and modelling methods to try to 

address the problems faced by golden mantellas in Madagascar. Correlational methods were 

used to explore the relationship between golden mantella presence and environmental 

variables. However, this study also goes a step further and proposes an additional ex situ 

experimental approach using the new Froggotron system developed at Paignton Zoo (Chapters 
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3 & 4). Experimental approaches to solve ecological problems have been used in the past on 

several species and systems including natterjack toads (Bufo calamita Laurenti) (Griffiths et 

al., 1993), food webs (Wilbur, 1995) and plants (Mishra et al., 2012).  Lawton et al. (1993) 

developed the Ecotron system, composing of 16 large climate chambers where they 

manipulated environmental variables including moisture, light and temperature and monitored 

whole community response to climate change. The Froggotron and Ecotron systems are similar 

in the way they operate, they also both provide a way of monitoring complex systems ex situ, 

where results can then be used to guide future fieldwork or conservation actions in situ. The 

Froggotron system differs because we use cameras and recording units connected to each unit 

to closely monitor single species behaviour over prolonged periods. 

 

1.14  Research objectives and outline of analytical chapters 

 

Chapter 2: What are the predictors for M.aurantiaca microhabitat selection in situ?  

 

We surveyed forested habitat adjacent to mantella breeding ponds. Environmental and habitat 

data were sent back to the UK for analysis where results were used to inform temperature and 

humidity settings in ex situ climate chambers (Froggotrons).  It means we were able to set 

conditions in the Froggotrons to mimic environmental conditions on the forest floor in 

Madagascar and also gain an insight into habitat preferences in situ. 

 

 

Chapter 3: Diel activity budgets of M.aurantiaca ex situ. How active are the frogs at 

different times of day and night, and does the activity pattern change with temperature? 

 

Froggotrons were fitted with cameras capable of filming the frogs continuously over several 

days. We were interested in identifying the phasing of the activity rhythm  and if the intensity 

of activity changed with a change in temperature.  Results could be used to inform husbandry 

procedures i.e. optimal temperature and humidity levels.  Results were also useful to in situ 

teams to decide best times and/or conditions to survey for frogs. 

 

Chapter 4: Ex situ habitat preferences and response of M.aurantiaca to climatic variables. 

How does behaviour and micro-habitat use change with different environmental parameters? 
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The study concentrated on how micro-habitat use changed with different environmental 

parameters, the average proportion of frogs visible at any time and how important leaves are 

as a component of forest floor micro-habitat. This information is important to in situ research 

teams if population counts are being conducted under conditions of incomplete and imperfect 

detection. Ex situ husbandry benefits by the study revealing how long the frogs would spend 

being active at different temperatures. 

 

Chapter 5: Species Distribution Modelling. How does population distribution change and are 

there any areas that are less affected by climate change than others? 

 

Our aim was to provide an up-to-date species distribution model for the golden mantella using 

Maxent and GIS. We used two predicted climate change scenarios for 2085 and compared 

distributions in each to current distribution. Results are useful to in situ conservation managers 

in providing new areas classed as climatically  suitable. It may mean areas or habitat corridors  

not previously considered for protection may now be investigated further. 

 

Collectively the analytical chapters will fill gaps in our knowledge on golden mantella, 

behaviour, micro-habitat use and potential distribution under different temperature regimes, 

something we know little about. Results can then be used to better inform ex situ husbandry 

guidelines or help locate further appropriate areas and micro-habitat in situ for assisted 

colonisation if it is needed. 
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2.1  Abstract 

The golden mantella (Mantella aurantiaca) is a Critically Endangered (CR) frog, endemic to 

the Eastern rainforests of Madagascar. Although the species is very popular in the pet trade and 

widely bred in captivity, its specific habitat requirements in the wild are poorly understood.  

Ten forested sites in the Moramanga district of Madagascar were surveyed for microhabitat, 

environmental variables and the presence or absence of golden mantellas in quadrats positioned 

along transects in the vicinity of breeding sites. Mixed models were used to determine which 

variables best explained microhabitat use by golden mantellas. Sites where golden mantellas 

were found tended to have surface temperatures of 20-23 C, UVI units of about 2.9, about 30% 

canopy cover and 30% herbaceous cover. Within sites, golden mantellas preferred 

microhabitats that had 70% leaf litter coverage and relatively low numbers of tree roots. This 

information can be used to improve the identification and management of habitats in the wild 

as well as to refine captive husbandry needs. 

 

2.2  Introduction          

Conservation of critically endangered species requires information at different spatial scales. 

Species Distribution Models (SDMs) can combine climatic and landscape variables from 

regional or national sources to provide large-scale pictures of habitat preferences and predicted 

distribution range (Guisan and Thuiller, 2005). However, within the predicted range a species 

is likely to be patchily and unevenly distributed with occurrence within a habitat patch 

dependent on microhabitat and its associated microclimate. Microhabitat variables cannot 

usually be extracted from remote sensing or landcover maps and need to be measured directly 

on the ground (Stanton et al., 2012). This can be problematical for small, microhabitat specialist 

species that are difficult to observe. However, understanding microhabitat preferences is 

crucial to both providing appropriate habitat management in the field and for informing captive 

management conditions in ex situ programmes (Semlitsch et al., 2009; Piludu et al., 2015; 

Tapley et al., 2015).  

The golden mantella (Mantella aurantiaca) is a small, montane, diurnal, frog endemic to the 

Eastern rainforests of Madagascar (Glaw and Vences, 2007).  Its extent of occurrence is 699 

km2 and centred in the Moramanga district (Piludu et al., 2015). The known area of occupancy 

for this species is low at less than 10 km2 (Vences and Raxworthy, 2008) with two main 

population clusters, one to the north of Moramanga at Ambatovy, Torotorofotsy forest and 



47 
 

Analabe forest (Piludu et al., 2015). South of Moramanga clusters of breeding ponds are also 

found within fragments of Mangabe forest (Piludu et al., 2015).  Due to a low area of 

occupancy, fragmented distribution and a decline in both numbers and suitable forest habitat, 

this species is categorised as Critically Endangered (CR) B2ab (iii, v) and listed on CITES 

Appendix II (Vences and Raxworthy, 2008). Current threats to the golden mantella and their 

rainforest habitat include logging, illegal collection for the pet trade, the destruction of breeding 

ponds due to mining activity, forest clearance to make way for subsistence agriculture and 

climate change (Andreone et al., 2008; Vences and Raxworthy, 2008; Piludu et al., 2015). The 

golden mantella therefore continues to be a prime candidate for in situ and ex situ conservation 

initiatives, but further research on habitat needs could help fill some knowledge gaps 

(Randrianavelona et al., 2010). 

Most of the forest fragments inhabited by golden mantellas are deemed to have a protected 

status (Piludu et al., 2015). In reality, the actual practical protection afforded to these areas is 

low, and forest clearance, mining and the illegal collection of golden mantellas continues 

regardless.  According to Piludu et al. (2015) there are now more threatened golden mantella 

populations in forests with protected status than there are in forests without protected status. 

There is clearly a need to identify and prioritise new sites for future conservation actions such 

as assisted colonisation (Piludu et al., 2015; Andreone et al., 2016). However, without an in-

depth knowledge of specific environmental/habitat requirements for the species, finding, 

creating, restoring or protecting optimum habitat is difficult. This study was therefore designed 

to determine the environmental and microhabitat variables that influence the presence of 

golden mantellas in the wild. The results will help to identify areas where this species is most 

likely to persist and thrive. 

2.3  Methods 

2.3.1  Data Collection 

Ten sites within the protected area of Mangabe-Ranomena-Sahasarotra, Moramanga District, 

eastern Madagascar, each containing or bordering known golden mantella breeding ponds, 

were targeted for surveys (Fig.1). Nine of these sites were surveyed between 28 November 

2014 – 12 December 2014, and the tenth earlier on in the year in March 2014.  These periods 

correspond to the main breeding activity periods for this species. 
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Figure 1: The distribution of ten forested sites surveyed in Madagascar. (a): Madagascar with 

a highlighted area (grey) denoting the political district of the surveys. (b): Highlights the 

position of forest surveys within the political district. (c): Shows the distribution and distance 

between forest sites surveyed (Black dots), sites are labelled (A) Antanimbaritsara, (B) 

Ambinanin`I Lemafy, (C) Bekomy 2, (D) Bejofo, (E) Andriamarohangotra 2, (F) Andravinala, 

(G) Andavaioka 4, (H) Antoko, (I) Sasarotra 17, (J) Sasarotra 25. Background map data are 

derived from globcover (European Space Agency) and is at 300m resolution (i.e. each square is 

300mx300m in map c). 

 

All surveys took place between 0700-1400 hrs each day, one visit per site. The surveys were 

centered on breeding pools located in shallow valleys. A series of transects were established 

on the slope running down to each pool. The first transect was positioned at the valley bottom 

and ran parallel to the pool. Subsequent transects were positioned at 30 m intervals up the slope, 

each following the contour at that position, with the last transect positioned along the crest of 

the slope (Fig.2).  
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Figure 2: Diagrammatic representation of transect lines of twenty 1 x 1 m quadrats (White 

boxes) spaced at 30 m intervals running parallel to the breeding pond (White oval). Black boxes 

indicate where a golden mantella was seen outside of the transect/quadrat line and all 

environmental and microhabitat data within 1 m2 of the individual were recorded. (Courtesy of 

Rakotondrasoa et al., 2015; unpublished report). 

 

The number of transects and the number of associated quadrats surveyed depended on the 

length, width and topography of the slope accessible to the survey team, i.e. two sites contained 

five transects, seven sites had three transects and one site had two transects. Where the top of 

a slope was bordered by a pathway the crest transect was placed 3 m down slope from the 

pathway, two further transects were then surveyed, one either side of the path. This meant that 

the two sites with crest paths had five transects in total.  Along each transect 1 m x 1 m quadrats 

were established at 4 m intervals and transects contained between 10–20 quadrats, sites with 

more transects therefore having more associated quadrats. A two-person research team moved 

along the transect line stopping, surveying and recording environmental variables (Table 1) 

and the number of golden mantellas counted in each quadrat. 
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Table 1: Variables, type and method of measurement used to collect data. 

 

 

 

Transect lines at the valley bottom were surveyed first, followed by next nearest transect as the 

slope was ascended. Golden mantellas observed outside the transects were also recorded and 

microhabitat variables measured within 1 m2 of these locations. 

  

Variable Method of collection 

Surface temperature (°C) RolsonTM Infrared thermometer 

Ultra-Violet B (UVI units) Solarmeter 6.5TM Ultra-Violet Index meter 

Canopy cover (%) Estimate 

Herbaceous cover (%) Estimate 

Moss cover (%) Estimate 

Litter Cover (%) Estimate 

Litter depth (cm) Tape measure 

No dead trees Count 

No large trees (diameter < 1 m) Count 

No small trees (~ 1.5 m height) Count 

No trees cut  Count 

No trees damaged by cyclone Count 

Canopy height (m) Estimate 

Number of tree roots Count 
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2.3.2  Statistical analysis 

 

Statistical analyses were carried out using the statistical software R (R Core Team, 2017). The 

quadrats from the ten forests were classified into presence or absence of golden mantella 

categories and then initially tested for significant differences in microhabitat variables using 

the Wilcoxon Rank Sum Test.  A Generalized Linear Mixed Model (GLMM) was then 

developed using the number of quadrats occupied and unoccupied to determine which 

independent variables (Table 1) were most likely to influence the microhabitat preference of 

golden mantellas (Table 2).  

We then followed Zuur et al. (2009) by removing the independent variable with the highest p 

value and re-running the GLMM. This procedure was repeated until only significant (p≤ 0.05) 

independent variables were left. Sites was held as a random factor in the models and we 

assumed a binomial error distribution with a logit link function.  
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2.4  Results 

Our analyses showed that for all ten sites combined, two microhabitat variables differed 

between quadrats with and without mantellas: litter cover and number of tree roots (Wilcoxon 

tests all P<0.001). The GLMM also identified litter cover, number of tree roots and surface 

temperature as important predictors of golden mantellas (Table 2).  

Table 2: Generalised Linear Mixed Model results showing potentially important predictor 

variables associated with golden mantellas (As canopy cover is alphabetically first in the list 

of variables it is labelled by R software as the Intercept and then used as a reference point). We 

provide the z-value (z = ( x - x̄ )/ s) and corresponding p-value for testing the null hypothesis 

that the slope and intercept is equal to 0 (Zuur et al., 2009).   

 

Variable Estimate Std Error z value p (>|z|) 

Intercept -0.682 0.858 -0.795 0.426 

Surface 

temperature  

-0.085 0.037 -2.262 0.023 

Litter cover 0.011 0.003 3.035 0.002 

Litter depth  0.038 0.020 1.851 0.064 

Tree roots 0.173 0.050 3.455 0.000 

 

Within the sites, golden mantellas tended to occupy quadrats with at least 70% leaf litter 

coverage and low (mean = 1.73) numbers of tree roots rather than quadrats with no or very low 

numbers of tree roots (Table 2). However, across the sites, the number of golden mantellas 

declined in areas with very dense tree roots (Fig 2).  

Although not important at the microhabitat selection level, at the time of the surveys the sites 

where golden mantellas were found tended to have surface temperatures of 20-23 ºC, UVI units 

of about 2.9, and about 30% canopy cover and 30% herbaceous cover (Table 3; Figs 2-3).  
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Figure 2: The total number of frogs observed combined for all ten sites versus (a) percentage litter cover, (b) litter depth in cm, (c) the number of 

tree roots, (d) UVB intensity (UVI units), (e) percentage canopy cover and (f) herbaceous cover. Each of the data points (black dots) represent the 

specific number of frogs recorded at each associated level of independent variable and are fitted with a LOESS smoother (blue line) to most closely 

model the relationship between independent variables and the total number of frogs seen. The shaded area represents a 95% confidence interval.
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Figure 3: The total number of golden mantellas encountered combined for all ten sites and 

associated surface temperatures. Each of the data points (black dots) represent the specific 

number of frogs recorded at each temperature and are fitted with a LOESS smoother (blue line) 

to most closely model the relationship between surface temperature and the total number of 

frogs seen. The shaded area represents a 95% confidence interval.
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Table 3: Percentage of quadrats surveyed with or without golden mantellas at each of the ten forested sites. The range and mean of the predictor 

variables associated with mantella presence are also shown (% Litter cover, Litter depth, Number of tree roots, Surface temperature, UVI units, 

% Canopy cover and % Herbaceous cover).  The percentage of quadrats not containing mantellas with associated ranges and means for predictor 

variables are also shown for each site.  The bottom two rows show the differences between predictor variable means for quadrats with or without 

golden mantellas at all ten sites combined. 

 

       Site Golden 

mantella 

% of 

Quadrats 

% Litter cover   Litter depth 

(cm) 

Number of tree 

roots 
 Surface temp (

 º
C) UVB (units) % 

Canopy cover 

% Herb cover 

Range Mean Range Mean Range Mean Range Mean Range Mean Range Mean Range Mean 

     Sassarotra 25 with 51 0 -100 65 0 - 24 10.4 0 - 8 1.6 18.1 - 27.7 22.3 3.0 – 8.3 5.0 0 - 100 30 0 - 100 32 

without 49 0 - 90 39 0 - 17 4.4 0 - 3 0.5 19.2 – 29.8 23.2 3.6 – 8.8 6.0 0 - 70 22 0 - 100 50 

     Sassarotra 17 with 47 30 - 100 74 2 - 26 13.0 0 - 20 4.7 19.5 – 27.8 22.4 1.2 – 3.6 1.6 0 - 60 29 0 - 80 42 

without 53 30 - 100 67 2 - 16 8.5 0 - 10 2.2 18.7 - 27.9 22.1 1.2 – 4.9 2.3 0 - 80 25 10 - 90 42 
     Antanimbaritsara with 36 0 - 100 75 0 - 18 6.0 0 - 3 1.1 16.9 – 22.9 20.0 0.9 – 1.7 1.4 0 - 90 36 0 - 100 25 

without 64 0 - 100 72 0 - 12 5.0 0 - 4 1.2 15.6 – 24.3 19.2 0.3 – 1.6 1.2 0 - 90 33 0 - 100 29 

     Andriamarohangotra with 31 0 - 100 39 0 - 5 2.2 0 - 2 0.5 18.6 – 20.3 19.3 1.5 – 6.1 4.3 0 - 60 15 0 - 80 32 

without 69 0 - 90 51 0 - 10 3.2 0 - 4 0.4 19.2 – 20.4 19.7 1.6 – 6.4 3.7 0 - 70 21 0 - 100 37 
     Andravinala with 27 40 - 100 79 10 - 25 16.5 0 - 5 1.4 18.6 – 21.1 20.1 2.7 – 5.6 3.9 0 - 60 27 0 - 50 14 

without 73 10 - 100 76 5 - 30 14.0 0 - 4 0.8 17.7 – 21.6 19.8 2.1 – 5.7 3.1 0 - 80 25 0 - 80 18 

     Andavaioka 4 with 19 20 - 100 73 2 - 20 7.4 0 - 8 2.5 18.1 – 22.1 20.1 2.0 – 3.0 2.4 0 - 90 49 0 - 80 29 

without 81 10 - 100 65 1 - 30 9.1 0 - 7 1.9 15.4 – 25.8 20.2 1.6 – 3.2 2.3 0 - 100 27 0 - 100 30 
     Ambinanin’I Lemafy with 18 40 - 100 92 3 - 18 6.7 0 - 5 1.7 16.5 – 26.9 19.0 0.5 – 4.5 1.4 0 - 80 24 10 - 80 33 

without 82 0 - 100 61 0 - 18 6.9 0 - 5 1.1 15.1 – 43.2 24.3 0.3 – 7.8 1.9 0 - 80 18 0 - 90 40 

     Bejofo with 14 0 - 85 58 1 - 7 3.2 0 - 1 0.1 16.8 – 22.9 19.1 3.3 – 7.5 4.6 0 - 80 38 10 - 75 39 

without 86 0 - 95 52 0 - 12 3.9 0 - 4 0.2 14.3 – 27.7 19.1 0.8 – 9.6 3.9 0 - 90 39 0 - 90 32 
     Bekomy with 11 40 - 80 81 2 - 5 3.9 0 - 6 1.7 17.3 – 22.2 19.2 0.8 – 1.3 1.1 40 - 80 57 10 - 10 10 

without 89 10 - 100 73 0 - 22 6.1 0 - 4 1.2 17.0 – 36.7 21.4 0.9 – 5.8 1.7 0 - 80 40 0 - 90 16 

     Antoko with 9 90 - 100 98 5 - 12 9.0 0 - 5 2.0 19.8 – 22.6 21.2 2.4 – 3.7 3.2 0 - 90 17 10 - 80 38 

without 91 10 - 100 84 1 - 18 5.5 0 - 15 1.6 18.2 – 40.4 22.0 1.3 – 6.3 2.8 0 - 100 40 10 - 90 33 
     Mean of Sites with 26  73.4  7.8  1.73  20.2  2.9  32.2  29.4 

without 74  64.0  6.7  0.9  21.1  2.9  29.0  32.7 
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2.5  Discussion 

 

Although the relative number of occupied quadrats varied among sites, this may have been a 

result of environmental conditions on those survey days being particularly propitious for 

mantella activity, rather than reflecting real difference in abundances between sites. 

Nevertheless, our results show that at quadrat or transect level, the number of frogs encountered 

increases as percentage litter cover increases. Golden mantellas are a tropical forest floor 

species and are dependent on leaf litter to provide cover, create territories, forage, breed, and 

more easily regulate hydration state and body temperature. Like all frogs, golden mantellas can 

mitigate for the effects of evaporative water loss via the skin in drier or warmer conditions by 

morphological and/or behavioural means (Duellman and Trueb, 1994). Adult frogs take up 

water via absorption across the skin surfaces when in close contact with moist soils and 

substrates (Duellman and Trueb, 1994). Granular skin on the ventral surface then facilitates 

increased capillary action drawing water up from moist soils and provides increased skin 

surface areas for absorption. However, morphological adaptations such as cutaneous 

sculpturing or increased permeability and vacuolisation will only be advantageous in moist 

microhabitat (Hillyard et al., 1998). Therefore, the frogs must move between, or remain in, 

microhabitats where they are able to reduce the evaporation gradient of water from the body to 

the surrounding environment and rehydrate at a rate that offsets the amount of water lost.  

Blomquist and Hunter (2010) obtained similar results for wood frogs (Rana sylvatica), which 

were more likely to inhabit areas with greater humidity, substrate moisture, canopy cover, leaf 

litter depth and coverage. Seymour (1972) and Walvoord (2003) found that green toads (Bufo 

debilis) and cricket frogs (Acris crepitans) were more likely to select moist habitat when 

exposed to higher temperatures. Several other amphibian studies have obtained similar results 

and demonstrated that core temperatures, evaporative water loss and subsequent habitat 

selection were all highly influenced by ambient temperature and humidity (Tracy, 1975; Tracy, 

1976; Pough et al., 1983; Semlitsch et al., 2009; Kohler et al., 2011; Tracy et al., 2013). It is 

now widely regarded that anuran activity is more limited by the effects of dehydration than by 

temperature, and as such hydroregulation is more important than thermoregulation (Seymour, 

1972; Preest & Pough 1987; Tracy et al., 1993; Preest & Pough, 2003; Tracy et al., 2013). 

 

Our results suggest that golden mantellas prefer sites with about 30% canopy cover, and there 

is a tendency for fewer frogs to be observed in areas with dense canopy cover and tree roots. 
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Golden mantellas are known to frequent sun-exposed areas within forest (Glaw and Vences, 

2007) and the time of day or weather patterns may have an influence on mantella activity in 

these areas. Sunlight interception and irradiance at ground level depends to a certain extent on 

the height and positioning of the canopy (Dodd, 2010). The amount of cloud cover and 

orientation of the sun to the canopy gap can also be important in determining UVB and 

temperature levels at the forest floor (Pringle et al., 2003). Higher levels of UVB and 

herbaceous cover may be indicative of higher levels of disturbance or more extensive gaps in 

the canopy. Larger gaps in the canopy allow more solar radiation to penetrate further towards 

the forest floor which in turn increases soil and surface temperatures, lowers humidity, reduces 

leaf litter and food sources, these effects are amplified as canopy gap size increases (Carlson 

and Groot, 1997, Semlitsch et al., 2009).  

It is plausible that as litter depth and the number of tree roots in a given quadrat increase, frog 

detectability becomes compromised.  Greater coverage of herbaceous plants may also impede 

the ability of researchers to observe the frogs. According to an unpublished report by 

Rakotondrasoa et al. (2015), direct counts of golden mantella can be biased and challenging. 

An example is given where a count was carried out and around 400 mantellas were observed, 

yet further surveys were carried out and 2000 individuals were later captured in the same area. 

Indeed, it is generally acknowledged that at the population level count data for amphibians may 

be unreliable given imperfect detection, and where possible should be underpinned by capture 

mark recapture techniques, good quality habitat data and expert opinion (Schmidt, 2003; 

Sewell et al., 2010; Griffiths et al., 2015; Barata et al., 2017). 

The rainy season begins in November in Madagascar, and this corresponds to the start of the 

breeding season for golden mantellas. The Bejofo site was surveyed in March, towards the end 

of the breeding season when frogs may have migrated back up the hill away from ephemeral 

breeding ponds. Indeed, all golden mantellas encountered in Bejofo were recorded in the hill-

top quadrats. The other nine sites were surveyed in November and as such we would expect to 

observe more frogs in the valley bottom transects near to the breeding ponds. However, this 

was not the case, as more frogs were observed in the higher transects on the slope or crest of 

the hill. It may be that the frogs are migrating down to the breeding ponds and laying eggs in 

leaf litter, then migrating back up to warmer surface temperatures on the slope and crest. Lower 

average temperatures recorded in valley bottom transects may also mean fewer frogs are active 

outside of leaves and observed. The timing of the surveys was dictated by logistics and weather, 
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but either way, there was no evidence that the difference in the timing of surveys between sites 

made any difference to observations of microhabitat use. 

2.6  Conclusion 

We recommend maintaining the integrity of current golden mantella forest habitat, increasing 

connectivity between breeding ponds and keeping disturbance of these areas to a minimum by 

increasing the levels of protection. Piludu et al. (2015) recommend an increase in effort or a 

new approach to safeguard breeding ponds, involving sampling and surveillance for detection 

of emerging pathogens, such as the chytrid fungus Batrachochytridium dendrabatidis (e.g. 

Bletz et al., 2015). The monitoring of local climate and the study of predicted climate change 

effects and further development of species distribution and population viability models to 

determine future relevant sites should continue (Piludu et al., 2015). Like Rakotondrasoa et al. 

(2015), we recommend continuing the search for new ponds and the continued monitoring of 

existing ponds, as well as continuation of research and estimations of population sizes using 

capture-mark-recapture techniques. Understanding the relationship between rare species and 

subsequent avoidance by animals of certain microhabitats within their range is vital if we are 

to plan future management strategies in important forest habitat (Semlitsch et al., 2009; Irwin 

et al., 2010; Pike et al., 2010).  Information on such factors as day-time surface temperatures, 

canopy cover and litter cover can be used to inform the identification, creation and restoration 

of suitable habitats in the wild, as well as the requirements of the species in captivity. 
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3.1  Abstract   

The critically endangered golden mantella (Mantella aurantiaca) is an iconic, montane, 

endemic frog found in the Moramanga district, Madagascar. Ecological and behavioural data 

for this highly threatened species are sparse, and much of the future mitigation and habitat 

protection work will need to be based upon scientific evidence provided by both in situ and ex 

situ studies focused on habitat preferences and requirements. Rare species with cryptic 

lifestyles are almost impossible to study in the wild, especially if continuous behavioural data 

over prolonged periods are required.  This study therefore utilized environmental information 

gathered in the field to design a system where these can be measured in captivity. Using 

climatically controlled chambers (the “Froggotrons”), we analysed the 24-hour activity budget 

of the golden mantella and how different temperatures impact on their daily activity profile. 

Golden mantellas showed a bimodal pattern of activity during the day with much less activity 

during the night. Frogs kept at warmer temperatures (20-25ºC) were more active than those 

kept under cooler conditions (16-19 ºC). However, the bimodal pattern was retained under the 

different temperatures, so there was no temperature-induced phase shift. Most activity was 

observed when humidity levels were above 85%. These findings can inform ongoing field 

surveys through determining the optimum times of day to either capture or count golden 

mantellas for further conservation actions. 

Keywords: Madagascar; zoo research; activity budgets; habitat preference 
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3.2  Introduction 

Circadian rhythms are driven by an internal biological clock providing species with a way of 

anticipating, adapting and optimising their behaviour to suit conditions brought about by daily 

fluctuations in light levels and associated temperatures (Jones et al., 2011; Pita et al., 2011).  

Such behavioural rhythms have been studied in a wide range of taxa including birds (Ollason 

and Slater, 1973: Pablos et al., 1995; Singh et al., 2015), mammals (Stephan and Zucker, 1972; 

Pickard et al., 1995; McMahon et al., 2014), reptiles (Gourley, 1972; Firth and Belan, 1998; 

Tawa et al., 2014), invertebrates (Campbell, 1976; Shimizu et al., 1997; Jones et al., 2011), 

fishes (Mueller, 1973; Sanchez-Vazquez et al., 1998; Tolozo-Villalobos et al., 2015), plants 

(Hoshizaki and Hamner, 1964; Paulsen and Bogorad, 1988; Hartzell et al., 2015) and 

amphibians (Demian and Taylor, 1977; Griffiths, 1985; Hasegawa and Cahill, 1998: De 

Carvalho et al., 2014).  However, most behavioural rhythm studies have been conducted with 

mammalian or invertebrate species and are less well understood in amphibians (De Carvalho 

et al., 2014). 

Evolutionary and adaptive reasons for the emergence of behavioural rhythms are wide ranging 

but are thought to stem from the interaction of several main processes including; predator - 

prey dynamics, avoidance of competition or for thermoregulatory benefit (Andrews et al., 

2009; Donati et al., 2009).  Physiological control of the diel cycle is via the hormone melatonin, 

which acts as a signal to facilitate the onset of an internal clock (Chiba et al., 2005; Trivedi and 

Kumar, 2014). Melatonin and circadian rhythms may be driven by the internal biological clock, 

but the intensity of activity in amphibians is also influenced by a number of other factors 

including temperature and humidity (Griffiths, 1983). There are two measurable aspects of 

activity rhythm e.g. phase – where the activity occurs in relation to the imposed cycle, and 

amplitude-how much activity there is during the activity phase. In ectotherms, changing the 

temperature can affect phase and/or amplitude. Mammals and birds have circadian rhythms 

that are synchronized by the light-dark cycle and are independent of temperature (Aschoff, 

1981). In ectotherms this is not the case; the light-dark cycle may be the main synchronizer of 

the activity cycle, but the amplitude of activity may depend on temperature. Amphibians are 

intricately linked to their external environment due to their ectothermic physiology, permeable 

skins, reproductive cycles and life history traits (Williams et al., 2008; Hoffmann et al., 2012). 

This means they are driven to seek microhabitats where they are more likely to be able to 

conserve water and thermoregulate.   
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The critically endangered golden mantella (Mantella aurantiaca) is an iconic, montane, 

endemic frog found in the Moramanga district, Madagascar. This species is under threat from 

the effects of continued climate change, habitat destruction, collection for the pet trade and 

invasive species (Piludu et al., 2015).  In-country conservation organisations are working with 

local communities and others involved in the removal of forests to mitigate the results of forest 

clearance.  However, specific microhabitat preference data for this species are sparse and much 

of the future mitigation and habitat protection work should be based upon scientific evidence 

provided by both in situ and ex situ studies focussed on specific habitat requirements - 

something we know little about.  Rare species with cryptic lifestyles are very difficult to study 

in the wild, especially so if we require continuous behavioural data over prolonged periods.  

This study therefore utilizes environmental information gathered in the field to design a system 

where behavioural data can be replicated and continuously measured in captivity.  

Historically, activity budgets have been studied ex situ by researchers manipulating or 

simulating environmental conditions in laboratories and then using direct visual observations 

(Valdimarsson et al., 1997; Pepin et al., 2006; Dishman et al., 2009; Tan et al., 2013; Mohapatra 

et al., 2014; Watts et al., 2014), video recording (Murphy et al., 2011; Howerton and Mench 

2014) or a combination of both techniques (Weller and Bennett, 2001; Polcak and Gvozdik, 

2014). Activity can be studied by using a correlative approach with environmental conditions 

e.g. collection of data on microhabitat and environmental variables and relating this 

information to a measure of activity of the target species.  However, we are unaware of any 

other in situ or ex situ study that has concentrated solely on habitat preferences and activity 

budgets of M. aurantiaca under different temperature regimes.  Based on in situ and ex situ 

observations, we predict that M. aurantiaca would be most active during daylight hours, but 

that those activity levels would be related to temperature.  

 

3.3  Methods 

3.3.1  Design of enclosures 

Research was conducted from 12th – 21st May 2015 at the amphibian biosecure facility at 

Paignton Zoo Environmental Park.  Eight replicated enclosures (termed “Froggotrons”) were 

constructed on site using compressed plastic fibre boards, each measuring 1 m x 0.78 m x 1.2 

m with a Perspex viewing/access window at either end. A 150 mm deep trough at the front of 

each tank was filled with water; small pebbles were placed at each end to allow the frog’s safe 



66 
 

access and exit.  Enclosure lids were covered with a fine mesh to allow light in and prevent 

escape by frogs or the invertebrates used as live food. Each Froggotron was fitted with a misting 

system operated via a timer set to spray for two minutes twice daily (08:30 hrs and 16:30 hrs). 

Tank floors were covered in coconut matting and split into a 2 x 2 matrix comprising four equal 

sections using thin string, the fifth section made up by the water trough area. Leaves were 

placed on the floor of each tank in piles covering an area equal to approximately 50% of the 

total floor area (Figure 1).  Each tank was fitted with a small camera (420 TVL colour camera 

with infra-red night vision capability) connected to a digital video recorder set to record 24 

hours per day.  

 

 

Figure 1: Design of the Froggotron. Leaves were set out to cover approximately 50% of the 

floor area as indicated by the shaded squares.  The clear squares represent coconut matting 

areas on the tank floor without leaves. 
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3.3.2  Temperature and light regimes 

Two rooms within the amphibian biosecure centre were used to house 4 tanks each; one room 

was kept at 16-19ºC (Cooler Room) and the other at 20-25ºC (Warmer Room). Temperatures 

in both rooms were maintained by air conditioning systems, the presence of lighting and other 

heating systems meant that the warmer room invariably increased in temperature during the 

day. Temperature in the cooler room dropped slightly during the afternoon. Our intention was 

to replicate in-situ wet season light levels for the duration of the study. Therefore, light levels 

increased in stages in the mornings via a timer starting with small (300 mm) UV-B T5’s 

fluorescent tubes providing first light at 06:15 hrs, followed by larger fluorescent ceiling room 

lights activated around 08:30 hrs by keepers and finally full daylight bulbs (150 w metal halide, 

Eye Colour PAR36 TM) directly over each tank timer activated at 09:00 hrs.  Full spectrum 

daylight bulbs were set to turn off at 16:00 hrs followed by ceiling room lights at 17:00 hrs, 

with the small fluorescent tube lights out and full darkness at 18:15 hrs. In 2014 light and 

temperature measurements were made at forest floor level at golden mantella sites in 

Madagascar. Full day time light levels ranged between 200 ~ 400 lux (light meter CEM DT-

1300TM) and temperatures were between 21 – 23 ºC.  Camouflage netting was fitted to the lids 

of each tank to simulate canopy cover, taking light levels down to those recorded in the forests.  

Frogs were fed every other day between 11:00am – 2:00pm with either fruit flies (Drosophila 

melanogaster) or hatchling crickets (Gryllus bimaculatus). 

3.3.3  Behavioural monitoring 

Eighty golden mantellas were split into two groups of 40, each group (now called Group 1 and 

Group 2) were again separated into sub-groups of 10 frogs (4 males, 6 females), and each of 

the sub-groups were placed in identical Froggotrons.  Group 1 was allocated to the warmer 

room; Group 2 were allocated to the cooler room. Our priority was to ascertain the diel activity 

patterns of the frogs by recording behaviour continuously for 24 hours each day over a period 

of 10 consecutive days. We reviewed the recorded material via instantaneous scan sampling at 

30 min intervals noting frog numbers, behaviour, area of the enclosure and the type of substrate 

used (leaves or coconut mat). We determined a frog to be active if it had emerged from hiding 

within leaves (Gunderson and Leal, 2016). Each enclosure was allocated a temperature and 

humidity data logger (EL-USB-2TM) set to record every 30 minutes, and timing was 

synchronised with the video recording system. Research was carried out with approval from 
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The Wild Planet Trust’s Animal Welfare and Ethics Committee and in compliance with 

"Guidelines for the use of animals in research," published in Animal Behavior, Vol 99, 2015. 

3.3.4  Data analysis 

Non-parametric tests were used as the number of mantellas active were shown to deviate 

significantly (p ≤ 0.05) from a normal distribution. After the initial twenty-four-hour activity 

budget was analysed, data were then separated to represent day (06:30am – 18:00 hrs pm) and 

night (18:30pm – 06:00 hrs am) hours. As activity was minimal during the night, activity, 

temperature and humidity relationships during daylight were only analysed further. Daytime 

data recorded for activity, temperature and humidity across all four tanks in each room were 

averaged, warm and cool room means were then compared using a Wilcoxon Signed Rank 

Test. Further, the total number of frogs observed were combined across all 8 tanks at each 30-

minute time interval point between 06:30am – 18:00 hrs over ten days and plotted against 

temperature and humidity levels (Fig. 3). Statistical analyses were carried out using ExcelTM 

and the R program TM (R Core Team, 2016).  Data analysis followed the protocol developed by 

Zuur et al. (2009), a step by step guide for choosing and using General Additive Modelling 

(GAM) techniques. Therefore, we initially applied a simple linear model which was then 

modified to include variance structure e.g. room was added as a random variable (See: 

Appendix 1 for full GAM methodology). We then further developed a maximal model fitted 

with Maximum Likelihood (ML) and non-significant terms were removed stepwise (Zuur et 

al., 2009). We compared the fit of models using Akaike’s Information Criterion (AIC), and 

then refitted and validated the final model with Restricted Maximum Likelihood (REML) 

(Zuur et al., 2009).  Residuals from the final model were found to display heterogeneity (a non-

random pattern) which meant there was a strong chance of there being a relationship between 

x and y variables (Zuur et al., 2009). GAM was therefore deemed appropriate because it allows 

for non-linear relationships between the response variable and multiple explanatory variables 

to be modelled (Zuur et al., 2009).   

3.4  Results 

Under both warm and cool conditions golden mantellas showed a bimodal pattern of activity 

during the day with little activity during night hours (Figure 2). The first peak in activity 

occurred around or approximately one hour after the larger 150w metal halide lamps were 

activated.  
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a)  

 

b)                  

 

 

Figure 2: The mean 24-hour activity budget of M.aurantiaca plotted at 30 min intervals (with 

standard error bars) held in the a) cooler room (16-19
º
C) and b) warmer room (20-25 

º
C) over 

ten consecutive days. Daylight hours are between 06:15am and 18:15pm, lights are turned out 

fully and the tanks are in darkness at all times before and after this period and are represented 

by light-dark bars above each plot.  
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Frog activity was significantly higher in the warmer room (Median= 2.90) than in the cooler 

room (Median = 0.75), T = 0, p ≤ 0.01, humidity was not significantly different in the warmer 

room (Median = 88.69) than in the cooler room (Median = 90.70), T = 99.5, p = 0.25.  Activity 

levels peaked in the morning between 06.15 and 10.00 hrs in the cooler and warmer rooms, 

with a second peak in activity in the warmer room between 13.00 and 15.00 hrs.  The total 

number of frogs active between the hours of 06.30 and 18.00 hrs increased with an increase in 

temperature with most activity occurring between temperatures 21ºC – 22ºC (Figure 3a). 

Activity was also at its greatest when humidity levels were around 85% (Figure 3b). However, 

even under warm conditions and during the activity peaks, less than half of the frogs were 

usually active in the open areas of the enclosures.  

GAM results 

We fitted the temperature data and humidity data with LOESS smoothers which strongly 

suggested both relationships were non-linear (Figure 3). From here we developed GAMs with 

smoothing terms on temperature, which was significant (df = 7.346, F = 33.81, p < 0.001), and 

humidity which was also shown to be significant (df = 3.945, F = 8.86, p < 0.001).   

a) 
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b) 

                                                                                                                                                                                                                                                   

 

 

Figure 3: The total number of frogs seen combined across all tanks over ten consecutive days 

in relation to a) changing temperatures (cooler enclosures 16-19
º
C; warmer enclosures 20-25 

º
C) and b) % humidity over the same time period. Data points (black dots) are fitted with a 

LOESS smoother (blue line) to most closely model the relationship between temperature and 

the total number of frogs seen. The shaded area represents a 95% confidence interval. 

3.5  Discussion  

Continuous monitoring showed that golden mantellas were largely diurnal, which is entirely 

consistent with observations from the field (Glaw and Vences, 2007). The bimodal pattern of 

activity recorded under both warm and cool conditions suggest a behavioural rhythm that has 

evolved to avoid the warmest and driest part of the day in the forest.  

There was a difference in activity levels at different temperatures, with frogs in the warmer 

enclosures (20-25 
º
C) being more active in the open areas outside the cover of the leaves than 

those in the cooler enclosures (16-19
º
C).  Several studies involving ectotherms have shown that 

both the amplitude and phasing of activity can shift with extreme changes in temperature 

(Heckrotte, 1975; Griffiths, 1983; Ellis et al., 2009). However, temperatures experienced 
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during this study were never high enough to induce such behaviour in the frogs.  Therefore, 

there was no shift in activity phasing by the golden mantellas, and  only a slight damping of 

the dusk peak in the cooler tanks.  

 

The difference in intensity of activity between temperatures may be explained by general 

amphibian physiology and subsequent responses to temperature and humidity levels. 

Amphibian metabolic rates increase exponentially with an increase in temperature until their 

body temperature reaches its thermal optimum, above this point metabolic rate then falls until 

it reaches a critical thermal maximum (Duellman and Trueb, 1994). Although critical thermal 

minima and maxima for the golden mantella are unknown, the temperatures used here were 

based on those at which activity has been observed in the field so are probably well within their 

thermal limits.  

 

Most activity was seen at temperatures of approximately 21 ºC to 22 ºC in the warm room, 

which may be indicative of the thermal optimum for this species and corresponding to surface 

body temperatures observed in the field. Temperatures cooler than 18ºC result in lower activity 

levels even if humidity is above 80%; on the contrary, activity levels drop as temperature 

decreases. A recent study by Rija et al. (2014) on Kihansi spray toads (Nectophrynoides 

asperginis) obtained similar results after they compared activity levels at different times of day, 

temperatures and relative humidity. Further, a study by Kohler et al. (2011) concentrated on 

activity levels and optimal body temperatures for common frogs (Rana temporaria) and found 

that jump lengths peaked at an optimal temperature and shortened with a decrease in 

temperature. Several other studies focussing on amphibians have also recorded temperature-

dependent activity levels and behaviour (Putnam and Bennet, 1981; Samajova and Gvozdik, 

2009; Sanabria et al., 2013).  

Our results suggest the optimum time to encounter golden mantellas is between first light and 

approximately 10.00 hrs with another peak in activity under warmer temperatures (20 ºC – 

25ºC) between 13.00 and 15.00 hrs.  This information will be useful to in situ conservation 

managers for determining the best time of day to survey frog numbers or catch individuals in 

order to translocate them to other areas. However, the results also showed that even under 

optimum conditions, usually less than half of the frogs present in the enclosures are active at 

any one time outside the leaf litter refuges. Low levels of detectability in the field remains a 

challenge for cryptic species such as amphibians (Schmidt, 2003; Sewell et al., 2010; Barata et 



73 
 

al., 2017). Ex situ studies in which the actual number of frogs present in an enclosure is known 

may therefore inform the design and analyses of such field surveys.  For example, the study 

showed that there was never more than 50% of the frogs visible at any one time  i.e. results 

could be used to estimate the ratio of frogs detected to the number of frogs undetected under 

different temperature and humidity scenarios in the field. 

Our findings are also useful in informing best working practices and guidelines for keeping 

golden mantellas in captivity. Future research should focus on habitat preferences under 

climate change scenarios. Then, once the climatic envelope and habitat requirements of the 

species are known, further surveys and habitat assessments should be carried out to identify 

areas for habitat creation and management for the species, as well as the potential for assisted 

colonisation.  
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The effects of temperature and humidity on microhabitat use by 

golden mantella (Mantella aurantiaca) frogs at Paignton Zoo 
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4.1  Abstract 

Climate change impacts biological systems worldwide, none more so than in montane tropical 

forest and on rare amphibian species living in these habitats.  The critically endangered golden 

mantella frog from Madagascar is facing an uncertain future as temperature rise changes its 

relationship with the surrounding habitat. Our study was carried out in replicated 

environmentally controlled enclosures (Froggotrons) based at Paignton Zoo Environmental 

Park in Devon, UK. Results show that at 21.5°C more golden mantellas were active, spend the 

most time active and were most likely to move away from a leaf litter substrate. At 20-23 °C, 

individual mantellas spend periods of approximately 7.5 minutes continuously active in open 

areas before retreating to a hiding place. Temperatures either side of this optimum saw a 

decrease in the length of activity bouts, and an increase in time spent on leaves e.g. activity 

bout length decreased by around 30% to about 5 minutes at temperatures 3-5 °C lower or higher 

than 20-23 °C. Continued temperature rises associated with climate change may drive golden 

mantella populations to shift distribution to higher cooler altitudes. The problem is that this 

may not be possible in areas where the frogs are confined to small isolated forest patches that 

are already towards the highest altitude available. 

 

 

 

Keywords: Zoo research, Madagascar, amphibian conservation, climate change 
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4.2  Introduction 

Climate change continues to threaten and degrade complex biological systems worldwide and 

can profoundly change the relationship between a species and its environment (Blaustein et al., 

2010).  Understanding the implications of rising temperatures on species activity patterns and 

microhabitat use is needed if we are to mitigate negative effects and plan future conservation 

measures (Gunderson and Leal, 2015). The amount of time an animal is active impacts upon 

the time it can apportion to different behaviours such as interspecific competition, hunting, 

feeding, and reproduction (Gunderson and Leal, 2015). A reduction in time spent reproducing 

or foraging will lead to a decrease in offspring, energy acquisition, growth rate and fitness 

(Angilletta, 2001). Thus, when environmental change impacts negatively on species activity 

patterns, the vulnerability to extinction increases (Sinervo et al., 2011; Logan et al., 2015). 

Several studies have recorded reduced fitness due to temperature rises affecting activity 

budgets across a range of ectothermic taxa and species including invertebrates (Corbet et al., 

1993; Buckley and Kingsolver, 2012; Kingsolver et al., 2013), reptiles (Grant and Dunham, 

1988; Sinervo et al., 2011; Logan et al., 2015) and amphibians (Carouso et al., 2014; Frishkoff 

et al., 2015). For example, a recent study by Logan et al. (2015) revealed activity in the tropical 

lizard Anolis lemurinus is severely restricted as temperature rises past their thermal optimum, 

which reduced time available for feeding or reproductive behaviours.  Sinervo et al. (2010) 

suggest that 39% of local lizard populations and 20% of lizard species may be in danger of 

extinction by 2080 due to a reduction in activity levels associated with climate change. Carouso 

et al. (2014) documented substantial and rapid changes in body size for plethodontid 

salamanders due to climate change and acknowledged that where individuals have reduced 

activity levels and capacity to forage, restrictions on growth occur.  

 

Climate change may be particularly damaging to tropical ectothermic species (Logan et al., 

2015). This is partly because many tropical species have become thermally specialised by 

adaptation to narrow environmental temperature margins (Kingsolver et al., 2013; Logan et al., 

2015). Montane tropical forest species face even more of a challenge given that many are 

considered specialists and highly restricted to specific altitudes (Hannah et al., 2002; 

Raxworthy et al., 2008). Amphibians are among the most threatened of all montane species by 

rising temperatures due to their ectothermic physiology, permeable skins, and in many cases, 

poor dispersal ability (Parmesan, 2006; Raxworthy et al., 2008).  
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The golden mantella (Mantella aurantiaca) is a critically endangered frog from the central 

eastern rainforests of Madagascar (Vences and Raxworthy, 2008). It lives on forested slopes at 

altitudes ranging from around 900 – 1000 m above sea level and is restricted to the Moramanga 

region where the area of occupancy for this species is low at approximately 10 km2 (Vences 

and Raxworthy, 2008). Threats to golden mantella habitat include logging and/or slash and 

burn to make way for subsistence agriculture; artisanal or industrial mining destroying breeding 

ponds; collection for the pet trade and climate change (Piludu et al., 2015). Temperatures are 

predicted to rise in Madagascar to between 1.1-2.6 °C by 2050, rainfall across the country is 

also predicted to increase, apart from along the south-east coast which will become drier in 

austral summer months (Hannah et el., 2008; Tadross et al., 2008). The implications are that 

forest floor microhabitats used by the frogs will change. Equally, if temperatures rise beyond 

the optimum preferred by golden mantellas this may also impact behaviour and, ultimately, 

fitness i.e. as time spent inactive in refuges increases, time spent on reproduction and hunting 

decreases. Increasing the protection levels of current areas of habitat will not protect species 

from climate change. However, the first step towards mitigating the negative effects of climate 

change on golden mantellas may be to look at exactly how it is they use their habitat, which 

type of substrate or refuges they prefer and if a rise in temperatures affects the length of activity 

bouts.  

Golden mantellas are ground-dwelling frogs associated with leaf litter (Glaw and Vences, 

2007), and like most frogs, need to seek moist shelter in order to cool down and/or re-hydrate 

(Duellman and Trueb, 1994). As leaf litter is an important component of golden mantella 

microhabitats (chapter 2), we  hypothesised  that a sustained change in temperature away from 

thermal optima would affect the length of activity bouts and time spent  hiding in leaves. This 

type of research is very difficult to carry out in-situ, as following a small frog continuously 

through forest habitat would be almost impossible. Also, in-situ it would be difficult to estimate 

the proportion of the population that was unobservable due to non-detection, but this can be 

done ex-situ in the Froggotrons using known numbers of frogs. 

 Research was carried out in two parts: in Experiment 1, our intention was to determine how 

important leaves were as a microhabitat under controlled environmental conditions. In 

Experiment 2, we explored how temperature influences the length of activity bouts and the   

time spent hiding in leaves. 
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4.3  Methods 

In Experiment 1 the term “on leaves” was used to refer to any frog, hiding or visible, recorded 

as being in the area of the tank containing leaf litter.  In Experiment 2 the term “in the open” 

was used for any frog timed as active (visible) in any area of the tank with or without leaves 

having emerged from hiding.    

In Experiment 1, the leaf substrate pattern was designed specifically to test how important leaf 

cover was to golden mantellas i.e. frogs were given a direct 50/50 choice between staying in 

leaves or not (Fig 1a). To prevent directional bias tank 1 had all leaves covering the right half 

of the floor area, tank 2 the left half, tank 3 the back half and tank 4 the front half  of the floor 

area, floor layout was repeated in both warm and cool rooms.  In Experiment 2, leaf substrate 

was set so that areas with and without leaves were interspersed, this was used to better represent 

the patchy distribution of leaf litter on the forest floor (Fig 1b).   

Research was conducted from 10th – 19th Oct 2014 (Experiment 1) and 19th – 23rd Nov 2016 

(Experiment 2) at the Amphibian Biosecure Facility at Paignton Zoo Environmental Park in 

eight custom made climatically controlled environmental units (Froggotrons), each measuring 

1m x 780 mm x 1.2 m. A 100 mm wide by 150 mm deep trough at the front of each tank was 

filled with water.  Tanks were covered with a fine mesh to allow light in and prevent escape by 

frogs, or invertebrates used as live food. Each Froggotron was fitted with a misting system 

operated via a timer set to spray for two minutes twice daily (0830 hrs and 1630 hrs). Tank 

floors were covered in coconut matting.  In Experiment 1, tank floors were split into two equal 

sections using thin string, red oak (Quercus rubra) leaves were placed on the floor of each tank 

covering 50% of the total floor area (Figure 1a).  In Experiment 2 leaves were placed on the 

floor of each tank in piles covering an area equal to approximately 50% of the total floor area 

and set in a checkerboard effect (Figure 1b).  Each tank was fitted with a small camera (420 

TVL colour camera with infra-red night vision capability) connected to a digital video recorder 

set to record 24 hours per day.  

4.3.1  Behavioural monitoring 

Eighty golden mantellas were split into two groups of 40, each group (now called Group 1 and 

Group 2) were again separated into sub-groups of 10 frogs (4 males, 6 females), and each of 

the sub-groups were placed in identical Froggotrons.  Group 1 was allocated to the Warmer 

Room (20-25°C); Group 2 was allocated to the Cooler Room (16-19°C).  
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Our priority in Experiment 1 was to observe substrate preference patterns of the frogs by 

recording behaviour continuously for each daylight period (06:30-18:00) for 10 consecutive 

days. We reviewed the recorded material via instantaneous scan sampling at 30 min intervals 

noting frog numbers in or out of leaves.  A frog was categorised as on leaves if at least half of 

the frog’s body was in contact with leaves. 

 In Experiment 2 our priority was to ascertain the length of activity bouts when frogs were 

active anywhere in a tank and not hiding under leaves. This was done by recording behaviour 

continuously for 12 hours for each daylight period over 5 consecutive days. We reviewed the 

recordings in hourly blocks for each tank in both rooms. As each hour was viewed, the footage 

would be paused at the first sighting of a frog breaking cover, and the frog would be monitored 

until it returned to cover. Frogs were categorised as free from leaf cover as soon as they had 

their full body out in the open and were categorised as back in cover as soon as any part of the 

head was back under leaves. The difference in time points between free from leaf cover and 

back in cover gave the total amount of time each frog spent active and not hiding in leaves. 

Each tank was allocated a temperature and humidity data logger (EL-USB-2TM) set to record 

at 30-minute intervals, and timing was synchronised with the video recording system. Research 

was carried out with approval from The Wild Planet Trust’s Animal Welfare and Ethics 

Committee and in compliance with "Guidelines for the use of animals in research," published 

in Animal Behavior, Vol 99, 2015. 

4.3.2  Data analysis 

Statistical analyses were carried out using the R program TM (R Core team, 2018). Where the 

number of frogs on leaves, time spent in the open, temperature or humidity data were shown 

to deviate significantly (p ≤ 0.05) from a normal distribution non-parametric tests were used. 

The numbers of frogs on leaves (Experiment 1) were averaged for each room and then 

compared using a Wilcoxon matched pairs test.  Generalised Linear Models were developed to 

determine which independent variables influenced a) preference for leaves or non-leaves, and 

b) the time golden mantellas spent in the open.  
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Figure 1(a) Represents the floor area set up within each Froggotron in Experiment 1, leaves 

were set out to cover approximately 50% of the floor area.  (b) Represents the floor area set up 

within each Froggotron in Experiment 2, leaves were again set to cover approximately 50% of 

the floor area, this time using a checkerboard configuration.  The clear squares represent areas 

of the tank floor without leaves. 

4.3.3  Room set up and light level regime  

Temperatures in both rooms were maintained by air conditioning systems, the presence of 

lighting and other heating systems meant that the Warmer Room invariably increased in 

temperature during the day. Our intention was to replicate in-situ wet season light levels for 

the duration of the study. Therefore, light levels increased in stages in the mornings via a timer 

starting with small (300 mm) UV-B T5’s fluorescent tubes providing first light at 0615 hrs, 

followed by larger fluorescent ceiling room lights activated around 0830hrs by keepers and 

finally full daylight bulbs (150w metal halide, Eye Colour PAR36 TM) directly over each tank 

timer activated at 0900 hrs.  Full spectrum daylight bulbs were set to turn off at 1600 hrs 

followed by ceiling room lights at 1700 hrs, with the small fluorescent tube lights out and full 

darkness at 1815 hrs.  Camouflage netting was fitted to the lids of each tank taking light levels 

down to those recorded (light meter CEM DT-1300TM) in the forests surrounding golden 
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mantella breeding ponds in Madagascar (See: Chapter 2). Full day time light levels ranged 

between 200 ~ 400 lux.  Frogs were fed every other day between 1100-1400 hrs with either 

fruit flies (Drosophila melanogaster) or hatchling crickets (Gryllus bimaculatus) dusted with 

NutrobalTM nutritional supplement.  

4.4  Results  

Experiment 1: On leaves or not on leaves 

The number of frogs that preferred to stay in the half of the enclosure  with leaves was 

significantly higher in the cooler room over ten days T = 0,  p ≤ 0.01. (Fig. 1). Temperature 

and humidity levels are highly significant in determining whether golden mantellas venture 

into areas without leaves (Table 1). The number of frogs observed on leaves falls as temperature 

increases to 21°C and as humidity levels rise; the number of frogs seen on leaves then rises 

again as temperatures increase (Fig. 2). Almost all the frogs in the cooler room  spent the majority 

of their time on leaves. 

 

 

Figure 2:   Medians, interquartile ranges and total ranges for the number of frogs observed on 

leaves in the cooler (16-19°C) versus warmer (20-25°C) rooms.  
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Table 1: GLM results showing temperature and humidity are highly significant in predicting 

golden mantella presence in areas of the tanks with leaves and that responses to temperature 
depend on humidity. 
 

 Estimate Std. Error t  value Pr(>|z|)     

Temperature  0.619922    0.280421     2.211    0.032 

Humidity  0.068392    0.061266     1.116    0.270   

Interaction -0.007189    0.003098   -2.321    0.025 

 

Null deviance: 14.6925  on 47  degrees of freedom 

Residual deviance:  4.0543  on 44  degrees of freedom 

 

 

 

a) 
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b)

 

 

Figure 3: Mean number of frogs seen on leaves averaged across 8 Froggotrons (warm and cool 

rooms combined) over ten consecutive days relative to a) changing temperature and b) % 

humidity over the same time period. Data points (black dots) are fitted with a loess smoother 

(blue line) to most closely model the relationship between temperature and the total number of 

frogs seen. The shaded area represents a 95% confidence interval. 

 

Experiment 2: The amount of time spent in the open and not hiding under leaves 

 

Temperature and humidity levels are highly significant in influencing the amount of time 

golden mantellas spend active (Table 2). The frogs spent longer in the open at the higher 

temperatures (Fig. 3). Humidity peaks at around 21°C (Fig. 4), the amount of time spent in the 

open also peaks at 21°C (Fig. 5). A combination of temperature at 21°C and humidity levels 

over 90% therefore results in frogs spending more time in the open areas, and less time hiding 

and being inactive (Fig. 5). Golden mantellas spent significantly more time in the open and not 

hiding under leaves in the warmer room (W = 1,  p ≤ 0.01). The length of activity bouts is 

approximately 7.5 minutes in the warm room, and around 30% shorter in the cooler room (Fig 

3). 
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Table:2: GLM results showing temperature and humidity are highly significant in predicting 

the length of activity bouts (i.e. number of seconds golden mantella are active outside leaf litter) 

and that responses to temperature depend on humidity. 
 

 Estimate Std. Error Z value Pr(>|z|)     

Temperature -1.225863    0.151427   -8.095 < 0.001 

Humidity -0.216967    0.033520   -6.473 < 0.001 

Interaction  0.013868    0.001646     8.424   < 0.001 

 

Null deviance: 1327.39  on 23  degrees of freedom 

Residual deviance:  402.43  on 20  degrees of freedom 

 

 

 

 

 

 

 

Figure 4: Medians, interquartile ranges and total ranges for the length of activity bouts i.e. 

number of seconds spent active during a continuous activity bout in the open and not hiding in 

leaf litter in the cool (16-19°C) or warm (20-25°C) rooms. 
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a) 

 

 

b) 

 

Figure 5: (a) the number of seconds spent in the open (see clarification of terms in methods) 

peaks as temperature increases to around 21 – 21.5 ºC and b) the number of seconds spent in 

the open versus humidity levels for both the cooler room and warmer room data combined.  
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4.5  Discussion 

Golden mantellas spent longer on or in leaves in the cooler (16-19°C) room tanks. In the warmer 

(20-25°C) room more golden mantellas were active and frogs undertook longer continuous 

activity bouts. Individuals were also more likely to venture away from leaves as temperature 

increased from 17°C and continued until a peak 21.5 °C was reached. There was a decrease in 

activity, length of activity bout and the number of frogs in the open again as temperature 

increased.  Humidity levels also peaked at temperatures of approximately 21-22°C. Humidity 

levels rose and fell with temperature, closely followed by a similar pattern of rise and fall in 

both the numbers of frogs observed on leaves, and the amount of time spent hiding in them.  

Activity in amphibians is intricately linked to body temperature and hydration state and is 

dependent upon ambient temperature and humidity (Duellman and Trueb, 1994). Golden 

mantellas have highly permeable skins that lose water quickly to the environment via 

evaporation which in turn affects their hydration state (Duellman and Trueb, 1994). Several 

physiological systems are negatively affected by a decrease in hydration state including 

metabolic rate, muscle condition, digestion and development (Bartelt 2010). Frogs can mitigate 

for the effects of higher temperatures by using physiological or behavioural means i.e. they 

may move into areas with more favourable conditions and offset evaporative water loss by the 

intake of water via the skin.   Alternatively, lower temperatures will slow metabolic rates, in 

this instance the frogs will retreat under leaves and conserve body heat by decreasing their 

activity.   

Golden mantellas are a diurnal montane forest floor dwelling species (Vences and Raxworthy, 

2008).  They prefer to stay upon or within substrates that allow them to offset the detrimental 

effects of higher or lower than optimum temperatures or humidity levels. However, when 

temperatures are near to optimum and humidity levels are high the frogs will spend more time 

in the open and venture away from their preferred substrate. 

Madagascar is predicted to see an increase in temperature of 1.1 – 2.6 °C by 2050 (Hannah et 

al., 2008). This has implications for all species but especially so for montane based amphibians 

who are often specialist, poor at dispersal and restricted to forest fragments (Araujo et al., 2013; 

Somero, 2010). A study by Raxworthy et al. (2008) found that several reptile and amphibian 

species shifted their range upslope in response to a rise in temperature.  Golden mantella 

populations are already distributed close to the summits of the hills they inhabit and so are 

limited in their ability to shift range upslope in response to an increase in temperature.   
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Our results show that as temperature and humidity levels moved away from those preferred the 

frogs were less active i.e. spent more time hidden in leaves and were less likely to venture away 

from leaf litter.  Climate change predictions for golden mantella forest habitat are at the lower 

end of the scale. Indeed, a subtle rise may in the long-term affect population growth due to a 

restriction on their activity and ability to utilize microhabitats, in turn impacting upon the length 

of time spent hunting or interacting with con-specifics. 

Golden mantella numbers are falling, their habitat is under threat from logging, mining and 

encroachment by agricultural practices (Vences and Raxworthy, 2008). Climate change is 

driving temperature and humidity change at micro-habitat level (Raxworthy et al., 2008). As 

temperature increases activity will decline, less activity means less time devoted to breeding or 

feeding.  Numbers will continue to fall unless ways can be found to offset the threats faced by 

the golden mantellas.  

We recommend future conservation strategies for climate change mitigation should include 

species distribution modelling, which may prove useful in identifying climate stable areas 

within or close to current golden mantella population distributions. In this way it may be 

possible to prepare or reinstate wildlife corridors or protected areas for either translocation or 

reintroduction of new populations if current mantella breeding sites become unviable. 
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5.1  Abstract 

The impact of climate change on Malagasy amphibians remains poorly understood.  Equally, 

deforestation, fragmentation and lack of connectivity between forest patches may leave 

vulnerable species isolated in habitat that no longer suits their environmental or biological 

requirements. We assess the predicted impact of climate change by 2085 on the potential 

distribution of a Critically Endangered frog species, the golden mantella (Mantella aurantiaca), 

that is confined to a small area of the central rainforest of Madagascar. We identify potential 

population distributions and climatically stable areas.  Results suggest a potential south-

eastwardly shift away from the current range and a decrease in suitable habitat from 2110 km2 

under current climate to between 112 km2 – 138 km2 by the year 2085 – less than 7% of 

currently available suitable habitat. Results also indicate that the amount of golden mantella 

habitat falling within protected areas decreases by 86% over the same period.  We recommend 

research to ascertain future viability and the feasibility of expanding protection to newly 

identified potential sites. This information can then be considered in future conservation actions 

such as habitat restoration, translocations, re-introductions or the siting of further wildlife 

corridors or protected areas. 
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5.2  Introduction  

Madagascar is one of the world’s mega-biodiversity hotspots, with extremely high levels of 

endemism across the island (Myers et al., 2000; Vieilledent et al., 2013).  Amphibians follow 

the trend with 325 known frog species, 99% of which are endemic (IUCN, 2018), and 

potentially many more yet to be described (Glaw and Vences, 2007). Most species are located 

within the Eastern rainforest belt (Glaw and Vences, 2007). However, forests across 

Madagascar are being depleted at an alarming rate, i.e. from 1953 to 2014 forested land cover 

decreased from 27% to 15 % (Brown et al., 2015; Vieilledent et al., 2017).  Forest fragments 

that remain are also decreasing in size with mean distance to forest edge dropping from 1.5 km 

to 300 m respectively (Brown et al., 2015; Vieilledent et al., 2017). Fragmentation of already 

depleted forest areas may impede the movement of species with low vagility between habitat 

patches, increase access for loggers or hunters, expose deep forest species to forest edge effects, 

increase competition for limited resources, or result in habitat patches too small to sustain 

viable populations (Cushman, 2006; Echeverria et al., 2006; Vieilledent et al., 2017).   

Predictions for climate change across Madagascar suggest a rise in temperature of 1.1 ºC –2.6 º 

C by 2050 (Tadross et al., 2008).  Temperatures vary along a gradient from north to south, with 

the lowest rises predicted in the northern and coastal areas, and highest rises in the southern 

spiny forest region (Hannah et al., 2008).  Rainfall is predicted to increase across the island 

except along the south-east coast where it will become drier in winter months (Hannah et al., 

2008).  According to Seidl et al. (2017), climate change has the potential to affect forests in 

complex ways i.e. an increase in temperature and lower rainfall may lead to higher instances 

of tree die-off, forest fires, fuel build up, or insect abundance.  Under hotter and wetter 

conditions, soil erosion, runoff and sedimentation become more likely (Seidl et al., 2017). 

Deforestation and climate change may therefore act synergistically driving species to shift their 

range to areas with more favourable conditions (Raxworthy et al., 2008). Historically, large 

tracts of contiguous forest may have made dispersal to higher, cooler or more climatically 

stable areas easier. However, with many montane forested areas in Madagascar now highly 

fragmented, dispersal for some species is difficult, if not impossible (Brown et al., 2015).  

Golden mantellas (Mantella aurantiaca) are Critically Endangered montane forest dwelling 

frogs from the Central Eastern Rainforest areas of Mangabe and Analamay in Madagascar 

(Piludu et al., 2015). They are found at altitudes of between 900 m and 1000 m asl and the area 

of suitable habitat occupied by this species is low at around 10 km2.  A recent survey by Piludu 
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et al. (2015) found 139 breeding sites, many of which were in areas under threat from 

agricultural expansion, artisanal mining or collection for the pet trade, with the majority in 

areas already classed as protected.  

Climate change may exacerbate problems faced by golden mantellas as they are already found 

at altitudes close to the summits of the slopes they inhabit, leaving no real opportunity for 

dispersal to higher, cooler altitudes.  It is clear there are few in situ conservation management 

options remaining i.e. the frogs either adapt to climate change where they are, or alternative 

viable habitat is located in case it is needed.  To this end Species Distribution Modelling (SDM) 

can play an important part in identifying suitable areas for the possible translocation or 

reintroduction of golden mantella populations.  SDM is the process of exploring the 

relationships between species distribution and associated environmental and habitat variables, 

and then predicting spatial relationships (Márcia-Barbosa et al., 2013 Bateman et al., 2013; 

Cao et al., 2013; Meynard et al., 2013; Rodriguez-Rey et al., 2013). We follow several other 

authors (Blank and Blaustein,2013; Chunco et al., 2013; Groff et al., 2014; Sharifi et al.,2017) 

in using SDM to identify and prioritise optimum habitat requirements, where potential 

anthropogenic disturbance and climate change impacts are at their lowest. Results may then be 

used to guide future management decisions regarding the placement of protected areas and the 

reintroduction or translocation of golden mantellas to favourable sites if needed. 

5.3  Methods 

5.3.1  Data collection and study area 

The aim of modelling was to explore potential suitable habitat to inform broader conservation 

decisions, the extent of the study was an area around Moramanga Province, Madagascar.  

Records of golden mantella sightings were collected by Madagasikara Voakajy research teams 

from ten sites within the protected areas of Mangabe, each containing or bordering known 

golden mantella breeding ponds. Nine of these sites were surveyed between 28 November 2014 

– 12 December 2014, and the tenth earlier on in the year in March 2014.  These periods 

correspond to the main breeding activity periods for this species.  All surveys took place 

between 0700-1400 hrs each day, one visit per forest. The surveys were centered on breeding 

pools located in shallow valleys (See: chapter 2 survey methods).  
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5.3.2  Species distribution modelling  

A total of 198 golden mantellas were recorded across the ten surveyed sites in Moramanga.  In 

order to meet the assumptions of Maxent with environmental data and reduce spatial bias, we 

needed to reduce golden mantella presence data to one observation (one frog) per 250 m grid 

square (See: Elith et al., 2011). In doing so we reduced presence data to 98 Mantella aurantiaca 

locations at a 250 m spatial grain.  

We used remotely sensed data (Table 1) for climate and habitat variables to model current and 

future distributions for golden mantellas. Remotely sensed data have greatly improved over 

recent years and now provide good, useable information to answer ecological questions (Pfeifer 

et al., 2011). High resolution, baseline current climatic data were from Worldclim (Hijmans et 

al., 2005) and future climate projections  (Representative Concentrations Pathways (RCP) 4.5 

and 8.5) were sourced from AFRICLIM (Platts et al., 2015). RCP are greenhouse gas 

concentration projection scenarios adopted by the Intergovernmental Panel on Climate Change 

so that climate change studies and modelling might use a set of standardised measures (Van 

Vuuren et al., 2011).  RCP 4.5 assumes CO2 concentrations will continue to rise to 

approximately 650 parts per million (ppm) by 2100 and stabilise thereafter (Van Vuuren et al., 

2011). RCP 8.5 assumes rising CO2 concentrations to approximately 1370 ppm by 2100 (Van 

Vuuren et al., 2011).  

Table 1: Data downloaded/used in analysis and associated codes from Worldclim. Bio4, Bio10 

and Bio16 are measurements. 

Code Description 

Bio4 Temperature seasonality ( ºC x 10) Standard deviation over monthly values 

Bio10 Mean temp warmest quarter ( ºC x 10) Any consecutive 3-month period 

Bio16 Rainfall wettest quarter (mm) Any consecutive 3-month period 

Wd Maximum water deficit (mm) Consecutive months that experience rainfall < 

monthly PET (Potential Evapotranspiration, Hargreaves method), over 

which the shortfall in rain is accumulated. Also defined by Stephenson 

(1998) as the amount of water by which potential evapotranspiration (PET) 

exceeds actual evapotranspiration (AET).  

 

Canopy_hght Canopy height (m) 
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En_veg_ind Enhanced vegetation index (reflects variation in canopy structure and 

architecture (Vieilledent et al., 2017). Mean annual Enhanced Vegetation 

Index is from 16-day 250 m MODIS MOD13Q1 data from the years 2007 

– 2017 (Didan, 2015). 

 

Lc250m Landcover classes cropland, forest etc categorical variable (percentage per 

250m grid square). Data is from the European Space Agency (globcover 

project). 

Top wet Topographic wetness, the presence of water based on upstream 

contribution, slope and soil content. It is a measure of the potential for 

water to flow into the grid cell and of how likely it is to remain there. 

 

Potential distributions were modelled using Maxent (v. 3.3.3k), a standard SDM technique 

using presence-only data (Hernández et al., 2006; Pearson et al., 2007). Climate data were at 1 

km resolution and habitat/vegetation data were at 250 m resolution, but for Maxent to work, 

both sets of data must be at the same scale. All 1 km data were therefore interpolated to 250 m 

portions, ensuring that values in each grid cell were maintained, e.g. if the 1 km grid square 

had a temperature of 20°C , then all of the 250 m grid squares that make up that 1 km grid 

square would also be at 20°C. Habitat variables were included as static variables (a variable 

that may change with climate change, but we are unable to predict the amount of change due 

to compounding factors such as anthropogenic disturbance) within the distribution models for 

future scenarios. We used static variables as it is difficult to model dynamic variable change 

(e.g. vegetation growth) along with projected climate change. Although we understand 

vegetation will alter with climate, preliminary runs of the model suffered from excluding 

vegetation variables altogether, we therefore chose to keep these static variables (See: Stanton 

et al., 2012).   

Maxent makes several assumptions which affect the performance of the model (Phillips et al., 

2006) and constrain final spatial patterns of species distribution. We therefore used a 

regularization multiplier (See: Appendix 2), described by Merow et al. (2013) as placing a 

Bayesian priori distribution on model parameters (i.e. using current knowledge and reasonable 

expectation to predict potential distribution). The regularization multiplier effectively 

constrains or relaxes the fit around the data balancing the need for both accuracy of predictions 

and generality (Elith et al., 2011). Prior to running final models, we adjusted the regularization 
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multiplier and selected the most appropriate model from Akaike Information Criteria (AIC) 

(Warren et al., 2010; Warren & Seifert, 2011). In addition, the  final models were cross-

validated ten times, and to determine drivers of distribution, we jack-knifed environmental data 

(Phillips et al., 2006)(See: Appendix 2). All other settings were set to default. We used Albers 

Africa Equal-area projection to equalise grid cell size (Elith et al., 2011) to ~0.250 m2  and an 

appropriately scaled kernel density bias file was used to restrict the placement of pseudo-

absences (See: Fourcade et al., 2014). Maxent is a presence-only modelling system based upon 

definite species sightings, which means it does not utilize any known absence information. 

Instead it fills the gaps using pseudo-absences (estimated absences). Pseudo-absences are 

estimated by taking known presence data for large numbers of similar species (kernel density 

file) and then determining the probability of finding a given species across different areas and 

habitat. This research used a kernel density file constructed from amphibian sightings across 

Madagascar.  We used maximum test sensitivity plus specificity logistic threshold (Liu et al., 

2005) for all distributions to identify areas of highly suitable habitat (Appendix 2). The Habitat 

Suitability Index (Fig.1) (how suitable an area is for a species based upon the variables entered 

into the model) was calculated using Maxent (Appendix 2).  To describe the current golden 

mantella area of occurrence we developed a Minimum Convex Polygon (MCP) based on the 

raw data for M. aurantiaca occurrences and then added a 10 km buffer (Smith and Green, 2005, 

suggest maximum dispersal distances for most amphibians would not exceed far beyond 

10km), to create an over-estimate of current area. We then used a threshold value to create 

areas of high likelihood of occupancy within the buffered MCP and the area of potential climate 

space was assessed (km2) (Appendix 2). 

For each climate scenario we used a metric from Bungard et al. (2018, unpublished) to measure 

the level of imperilment based on the index of net change (𝑁𝑐) in area: 𝑁𝑐 is calculated for 

golden mantellas, as the sum of the change for each future scenario; future increase in area 

(𝑇𝑓𝑖) (km2) minus future decrease in area (𝑇𝑓𝑑) over the area under current climate conditions 

(𝑇𝑐). 

Equation 1. 

𝑁𝑐 =  ∑
(𝑇𝑓𝑖 − 𝑇𝑓𝑑)

𝑇𝑐
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Finally, we assessed how well the current system of protected area networks surrounding 

golden mantella area of occupancy accounts for golden mantella distribution in both current 

and future climate scenarios. To do this, we calculated for each scenario, the simple metric of 

area of suitable habitat within the protected area network/total area of suitable habitat using 

ARCGIS proTM. 

5.4  Results 

Our model demonstrated a good fit with the data (AUC = 0.994, SD = 0.001) and showed that 

two main drivers influence M. aurantiaca distributions under current climatic conditions; 

landcover (contributed 32% to the final model) and the length and severity of the dry season 

(water deficit; model contribution: 31%) (Fig. 1). Golden mantellas are found mainly in 

broadleaved evergreen forest (rainforest) and only have a narrow tolerance of extended dry 

conditions. The potential distribution of golden mantellas under current climate conditions 

extends outside the current MCP (Fig. 1b) with potentially highly suitable habitat occurring in 

a narrow south-west to north-east band divided into two distinct areas. These areas embrace 

the two known population centres for golden mantellas, Mangabe in the south and 

Torotorofotsy/Analamay in the north. From our models, local protected areas currently offer 

protection to 24% of potentially suitable habitat for golden mantellas. As climate changes, so 

does the distribution of golden mantellas, with the area of suitable habitat decreasing from 

2,110 km2 (current climate) to 121 km2 and 138 km2 (RCP 4.5 and 8.5 respectively; Fig.1) and 

protected area decreases by 86% for both climate scenarios. Slightly larger areas of suitable 

habitat predicted under the higher RCP 8.5 scenario would seem counter-intuitive, however it 

may be that more variation in topography or changes in range and availability of water at higher 

altitudes increases available area.   Further, we observed a range shift under scenarios RCP 4.5 

and RCP 8.5 to the south-east of the current distribution by 10-15 km2 (Fig 2).  Within the 

projected habitat distribution range under RCP 4.5 and 8.5, there are several areas that are 

predicted to be climatically stable (Fig 3). By climatically stable we mean consistently provides 

areas of suitable habitat across climate scenarios. Assuming landcover remains the same then 

the areas highlighted here also provide suitable habitat in terms of water deficit i.e. the range 

of water deficit stays within the boundaries needed by golden mantellas.
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Figure 1:  (a) the presence of broadleaved evergreen rainforest and (b) the length and severity of the dry season are the main drivers for the 

distribution of golden mantellas. Habitat suitability is given as between 0 (unsuitable) and 1 (highly suitable) and is based on variables initially 

entered in to MaxEnt (Table 1). Water deficit (Wd) is the amount of water by which potential evapotranspiration exceeds actual evapotranspiration 

(derived from remote sensed satellite data) and is indicative of the severity of the dry season.   The red line is the response curve (fit of the data), 

the blue line is the standard deviation.  Our model suggests habitat suitability is high where water deficit remains low at around 400 mm i.e. 

associated with a short dry season. 
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Figure 2. Species Distribution Modelling for the golden mantella showing A) political divisions with Moramanga highlighted with a black 

border. B) potential distribution under current climate. Potential distributions under C) RCP 4.5, 2085 and D) RCP 8.5, 2085, decrease in size 

and shift in a south-easterly direction. 

D C B A 
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Figure 3. There are several climate stable spaces predicted within the range of projected distributions for RCP 4.5 and RCP 8.5 
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5.5  Discussion 

We investigated whether projected climate change scenarios would influence current golden 

mantella population distributions in rainforest habitat in Madagascar. Our results suggest 

golden mantella population distribution is driven by the type of available habitat and the 

amount of water retained within those habitats. Our models predict that as the length and 

severity of the dry season increases, the availability of suitable habitat for golden mantellas 

decreases from 2110 km2 currently to 121 km2 under RCP 4.5, and to 138 km2 under RCP 8.5 

by 2085.  Consequently, less than 7% of currently available habitat is likely to remain suitable 

under these scenarios. We also reveal that local protected areas currently offer protection to 

24% of potentially suitable habitat for golden mantellas. Models predict that the distribution of 

viable habitat will shift 10 – 15 km away from its current location with the majority (86%) 

falling outside of protected areas.  

Increased temperatures and reduced rainfall will change forest habitat by restricting the 

availability of moisture to vegetation, soil and substrate (Bartelt et al., 2010). As microhabitat 

becomes warmer and drier the opportunity for thermoregulation and hydroregulation become 

more challenging. Frogs lose water quickly from the skin by evaporation, and to mitigate this 

loss they need to find moist habitat in which to take up water at least as quickly as it is being 

lost (Duellman and Trueb, 1994).  Several studies have found that montane amphibians may 

shift range upslope to cooler areas when exposed to prolonged ambient temperature rises 

(Raxworthy et al., 2008). However, this is not an option for golden mantellas as they already 

live at, or close to, the crests of the slopes they inhabit.   Further, although golden mantellas 

are known to migrate a few hundred metres between the crest and breeding ponds (Piludu et 

al., 2015), rather less is known regarding their long-range dispersal ability. Current mantella 

forest habitat is also highly fragmented and usually bordered by agricultural land or deforested 

areas. Consequently, land use other than forest may well prevent range expansion or shift to 

track preferred environmental variables.  Indeed, Harrison et al. (2006) state that where a 

species is in decline they may not automatically shift or expand their current range to track 

preferred climatic variables. Willis et al. (2015) advise that if climate suitability changes 

markedly within a species current distribution and there is no suitable climate/habitat within 

realistic colonisation range, then translocation to suitable areas should be considered.  
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SDM results identify several locations considered climatically stable and relatively close 

(within the Moramanga area) to current golden mantella distributions (Fig. 3).  However, it is 

currently unknown if the locations identified contain forest specifically suited for golden 

mantellas.  Ideally, we would hope to survey those new sites and other areas in between current 

and potential distributions to ascertain if there is a realistic opportunity to place wildlife 

corridors, which may facilitate golden mantella range shift.   

There is already a programme of survey and research which seeks new areas in which to create, 

restore or protect breeding ponds and habitat (Piludu et al., 2015); however, in light of our 

current findings, it may be prudent to consider searching further afield for new sites. Our results 

suggest these new sites should be sought a further 10-15 km south-east from current golden 

mantella distributions. 

The complexity of biological interactions between species, environment and anthropogenic 

influence over time means there are constraints on the accuracy of any prediction we may make 

(Harrison et al., 2006).  However, climate change is already impacting heavily on species and 

ecosystems (Hannah et al., 2008; Raxworthy et al., 2008; Tadross et al., 2008), and as such 

conservation actions should be planned and carried out without delay using the knowledge and 

techniques we do have, rather than wait until more advanced methods become available 

(Rowland et al., 2011). 

We therefore recommend carrying out surveys to test whether newly highlighted areas 

identified as climatically stable or within projected distribution under climate change are in 

fact suitable for the potential translocation or introduction of golden mantellas in terms of 

microhabitat and water bodies for breeding.  Further research should be conducted into the 

feasibility of placing wildlife corridors between current and potential golden mantella 

distribution to facilitate range shift to safer areas. Expanding protection and status to potential 

climate stable areas and projected population distribution ranges should also be a priority. 
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Chapter 6  

General Discussion 

6.1   Summary of in situ and ex situ approaches used 

Prior to this project, very little evidence-based ecological research on golden mantellas existed. 

Several authors had described classification (Zimmerman et al., 1996), known distribution 

(Glaw and Vences, 2007), skin alkaloids, toxicology and colour (Garraffo et al., 1993; Daly et 

al., 1997; Chiari et al., 2004), feeding ecology (Woodhead et al., 2007); age structure 

(Jovanovic and Vences, 2010); chromosome morphology (Pintak et al., 1998) and ex situ 

husbandry guidelines (Staniszewski, 1998; Walker et al., 2013). However, work on habitat 

preferences of this Critically Endangered species in the wild was lacking. Similarly, no research 

had addressed the question of how climate change might affect golden mantella activity and 

habitat preference, or as a following consequence, future population distribution.  

My research has gone some way in addressing these knowledge gaps.  To reveal microhabitat 

preferences, I assessed and analysed a large data set that had been collected in situ across 10 

golden mantella breeding sites in Madagascar.  Ex situ, I addressed key questions regarding 

activity budgets including timing and intensity. I examined how activity patterns of golden 

mantellas compared under different temperatures in order to better understand how thermal 

challenges through climate change might affect golden mantella behaviour.  I followed this by 

investigating leaf litter as an important component of microhabitat, and how the use of leaf 

litter as a refuge related to temperature and humidity.  I developed a species distribution model 

for the golden mantella based on the current distribution, and then modelled future distribution 

under predicted climate change scenarios in Madagascar.  I have conducted trial habitat surveys 

in situ, and throughout the project lifetime worked closely with colleagues involved in 

conducting surveys or carrying out conservation management actions in Madagascar. I have 

also made my research results available via the media and through scientific journals.  In this 

way I hoped to not only provide clarity and information on the plight of a critically endangered 

species, but also to bridge the gap between in situ and ex situ research. Below I discuss my key 

findings, results and the implications for the golden mantella. 
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6.2  Key findings  

In Chapter 2, I explored in situ mantella habitat, gathered data on environmental and habitat 

variables and was then able to determine which microhabitat components were important and 

most likely to determine golden mantella microhabitat use.  Results showed the amount of leaf 

litter coverage and depth; number of tree roots and surface temperature levels were the most 

important predictor variables associated with quadrats occupied by the frogs. Results revealed 

optima of over 70% litter coverage, surface temperatures of 20 – 23 ºC (range 17 – 29 ºC) and 

comparatively low numbers of tree roots. Information gained in the field was used to inform 

temperature and moisture settings in zoo-based climate chambers (Froggotrons). By using 

Froggotrons, I was able to more closely monitor golden mantella behaviour than is possible in 

the field.  This revealed golden mantellas had a bimodal activity pattern during daylight hours 

even under different temperature regimes. At lower temperatures (16 ºC – 19 ºC) mantellas were 

overall less active than those at higher temperatures (20 ºC – 25 ºC), but the phasing and bimodal 

nature of the activity rhythm was the same under both temperature regimes. Results also 

showed that most activity occurred when humidity levels exceeded 85%.   Golden mantellas 

were most active, spent most time in the open and less time on leaves at 21.5  ºC.  Where 

temperature deviated either way from 21.5 ºC there was an associated decrease in activity and 

an increased tendency to hide in leaves. Results also show that even under optimum 

temperature and humidity regimes less than 50% of the frogs were active in open areas at any 

one time.  Species distribution modelling revealed a large decrease in viable habitat by 2080 

and a shift in population distribution away from forest currently classed as being in protected 

areas.   

6.3  Implications 

Species distribution modelling for the golden mantella predicted climate change has the 

potential to make current habitat less favourable, or indeed non-viable, as a result of increased 

temperature and drier conditions.    A study by Bartelt et al. (2010) on the western toad 

(Anaxyrus boreas) obtained similar results, i.e. if the toad’s forest habitat became drier, 

balancing their hydrological and thermological needs would become more difficult.  There is 

also evidence to suggest montane amphibians, along with other species and taxa, shift their 

distributions upslope to avoid rising ambient temperatures (Raxworthy et al., 2008; Feeley et 

al., 2011; Freeman and Freeman, 2014; Cheng et al., 2019).  The problem golden mantellas 

have is that they already live on the upper slopes in relatively small and isolated patches of 
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remnant forest (Piludu et al., 2015), leaving no opportunity for the frogs to disperse to higher 

cooler altitudes.  

My research highlighted the most important components of microhabitat for the frogs. 

However, given this will only be useful in the future if any habitat surveyed is in an area 

considered to be the least affected by climate change, research also highlighted areas predicted 

to stay climate stable. 

6.4  Why the research was needed 

Andreone et al. (2005) proposed an urgent need to increase research and gather data on biology, 

distribution and adaptability of Malagasy species. Raxworthy et al. (2008) advocated carrying 

out surveys in the Madagascan montane environment on endemics; describing species current 

elevation distributions; assessing species extinction vulnerabilities to upslope displacement due 

to climate change; archiving distribution data for future monitoring and where possible, the 

collection of detailed habitat and microhabitat data as this would enhance our understanding of 

the mechanism of distribution shifts.   

Andreone et al. (2008) produced the Sahongasy Action Plan for Madagascar which prioritised 

a number of conservation strategies including; predicted shifts in species distribution due to 

climate change; identification of amphibian refugia for adaptation to climate change; surveys 

to collect data on priority species and improvement of public awareness. The Sahongasy Action 

Plan for 2016 – 2020 (Andreone et al., 2016) reviewed the former 2008 plan and went on to 

develop a revised set of priorities and actions including; the identification of high elevation 

areas for future surveys; species adaptability to climate change; the identification of priority 

areas not yet in protected areas; habitat assessments; conduct in situ research in support of ex 

situ work and the identification of priority sites for assisted colonisation.   

My golden mantella research has addressed issues linked to each of the priorities recommended 

above and will feed into future conservation strategies for Malagasy amphibians.  This research 

bridges the gap between in situ and ex situ conservation by using data collected in the field to 

inform appropriate temperature and humidity levels in Froggotrons for ex situ research. In turn, 

research results using Froggotrons has been used to inform in situ survey procedures.   
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6.5   Limitations of the research 

There were of course some unavoidable limits imposed on this project e.g. behavioural research 

was conducted ex situ in Froggotrons and at potentially higher densities than found in situ. 

However, research needed to be conducted at realistic and practical levels i.e. each frog may 

well require more space to closely resemble in situ life than we could ever provide within the 

confines of a zoo.  Further, the golden mantellas used in this project were mainly bred in 

Paignton Zoo, but several also came from The University of Kent, Bristol Zoo and Heathrow 

Airport (unknown if wild or captive bred, they were confiscated on landing).   None, as far as 

is known, had been part of a breeding programme to preserve genetic diversity. Therefore, we 

do not know how their genetic diversity compares to those in the wild or how this might have 

influenced behaviour. For example, Passos et al. (2018) found that captive golden mantella 

skin had a lower diversity and relative abundance of associated bacterial species than their wild 

counterparts. Kraaijeveld et al. (2006) found that anti-predator behaviour in Mallorcan midwife 

toads (Alytes muletensis) tended to dampen after 9 – 12 generations in captivity.  Nevertheless, 

amphibian physiology means they may only maintain hydrated and within optimal body 

temperature range by responding to ambient temperature and humidity levels in biological 

patterns e.g. by seeking moist refuge to cool down if conditions become too dry  (Duellman 

and Trueb, 1994). This suggests that the way golden mantellas responded to temperature and 

humidity regimes provided in the Froggotrons, would be a fair indication of how they might 

respond under similar conditions in the wild.  

6.6  In situ / ex situ research and wider implications 

 My golden mantella research is complimentary to, and part of, a growing conservation 

research collective consisting of several teams, each having their own field of expertise e.g. 

tonic immobility, calling frequency and the composition of bacterial skin communities by 

Luiza Passos and Gerado Garcia at Chester Zoo (Passos et al., 2017; Passos et al., 2018); 

evidence based ex situ husbandry including diet, skin micro-biota and UV-B radiation by 

Richard Preziosi, Christopher Michaels and Racheal Antwis at the University of Manchester 

(Antwis and Brown, 2009; Antwis et al., 2014; Michaels et al., 2014; Michaels et al., 2015); 

reproduction and ex situ husbandry by Devin Edmonds at Mitsinjo in Andasibe Madagascar 

(Edmonds et al., 2015) and the detection and mitigation of Batrachochytrium  dendrabatidis 

by Molly Bletz in Madagascar (Bletz et al., 2015). Zoo ex situ conservation is usually carried 

out for reintroduction, research and education (Harding et al., 2016) or as a way of raising much 
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needed funding for protection and mitigation measures in-country (BIAZA, 2019). For 

example, Paignton Zoo in the UK has several on-going, long term projects committed to 

species conservation in situ including, for example, black crested macaque (Macaca nigra), 

Aders duiker (Cephalophus adersi) and hazel dormouse (Muscardinus avellanarius) (Paignton 

Zoo, 2019). Indeed, organisations represented by BIAZA (British and Irish Association of Zoos 

and Aquariums) collectively raise over £20 million each year for this type of conservation 

project (BIAZA, 2019). 

Golden mantella research is a new development in terms of how a combination of in situ and 

ex situ research can aid conservation. Firstly, the golden mantella is unique in that it is a 

charismatic, high profile amphibian that is Critically Endangered, but is abundant in captivity 

(Andreone et al., 2005; Vences and Raxworthy, 2008). This species is also highly suitable for 

ex-situ research i.e. small, active by day, captive husbandry is well-understood and it breeds 

well in captivity, which means we can obtain sufficient numbers to ensure rigorous replication 

in research. Additionally, in situ and ex situ research and surveys were carried out in a 

complimentary and collaborative way i.e. research teams surveyed habitat and then shared data 

so that environmental variables could be set to the correct levels in the Froggotrons.  In situ 

habitat data was also used in both the analysis of habitat preferences and for species distribution 

modelling. Results were then passed back to in situ research teams recommending survey 

times, potential for detection and new climate stable habitat areas.   

Golden mantella research has provided much needed evidence highlighting habitat preferences 

and the potential negative impacts of climate change.  Although this research was species-

specific it does feed in to a general and familiar picture when viewed from a worldwide 

perspective.  We know that Montane amphibian species are particularly susceptible to rising 

temperatures (Hannah et al., 2002; Parmesan, 2006; Raxworthy et al., 2008) and that impacts 

can be complex and wide-ranging affecting all aspects of life history from species 

biology/ecology (Jara et al., 2019) to distribution (Kafash et al., 2018).  For example, Kissel et 

al. (2018) found that climate change reduced adult survival and facilitated a decrease in 

population growth rate in the montane dwelling cascades frog (Rana cascadae).  Kafash et al. 

(2018) used species distribution modelling to reveal a potential and substantial loss in suitable 

habitat for two species of alpine newt (Triturus ivanbureschi and Triturus anatolicus) due to 

predicted climate change.  The potential for climate change to act synergistically with other 

threats such as predation pressure or in the dispersal of pathogens is also well known (Campos-
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Cerqueira et al., 2017; Polo-Cavia et al., 2017). The negative effects of climate change are not 

exclusive to montane amphibians, there is evidence to suggest a wide range of species and taxa 

are also affected including birds (Northrup et al., 2019), mammals (Soultan et al.,  2019), 

reptiles (Logan et al., 2015), fishes (Talloni-Alvarez et al., 2019), invertebrates (Kingsolver et 

al., 2013) and plants (Mariani et al. 2019). The advantages of the golden mantella research on 

the wider scale is that the project provides yet more evidence, if it were needed, that 

anthropogenic induced climate change coupled with habitat destruction/fragmentation has the 

real potential to drive species to extinction.  What the golden mantella research also set out to 

do was provide evidence to inform the specific needs of the species and relate that to current 

or future habitat. In doing so we are better placed to deal with immediate threats such as habitat 

loss and  provide greater protection to the most appropriate areas. In producing species 

distribution models we may also be able to help mitigate for future threats such as climate 

change by highlighting areas classed as climatically stable.  

6.7 Future research and recommendations 

Several authors directly involved with golden mantella conservation have made 

recommendations for future conservation measures (Andreone et al., 2006; Gardner et al., 

2014; Bletz et al., 2015; Edmonds et al., 2015; Piludu et al., 2015; Harding et al., 2016).  

However, perhaps a new and detailed order of hierarchal importance prioritising the measures 

is needed for clarity.  

Habitat destruction is the most pressing problem facing the species. A three-year study by 

Piludu et al. (2015) has shown that most (over 50%) golden mantella forest habitat is still under 

threat from either agricultural expansion, mining or frog collection. Therefore, increasing the 

protection of existing breeding ponds and surrounding habitat should be made the first priority.  

However, realistic and effective protection of species and habitat can really only be achieved 

by engaging with local communities (Ormsby and Kaplin, 2005).  Indeed, the 2011 – 2015 

Species Conservation Strategy (SCS) stated that there was a lack of awareness by local people 

as to the conservation status, legal status, biology and ecology of golden mantellas 

(Randrianavelona et al., 2010). The report goes on to suggest that this is due to a lack of easily 

accessible results and that research results are usually published in overly technical or foreign 

languages (Randrianavelona et al., 2010). This is important, as Ormsby and Kaplin (2005) 

found that an increase in knowledge of conservation issues was positively correlated with 

favourable attitudes towards conservation management strategies. The SCS report points out 



120 
 

that there had also been minimal benefit to local communities faced with extremely challenging 

environments and economic circumstances.  According to Fiallo and Jacobson (1995), poverty 

in rural areas intensifies the need for natural resources found in forests in protected areas. 

Unfortunately, golden mantella breeding ponds are located in forests that are targeted for the 

expansion of farming and gold mining activity (Piludu et al., 2015).  

 

Research by Gardner et al. (2015) demonstrated the highly dynamic and complex nature of 

livelihood change within communities living near protected habitat.  Gardner et al. (2015) go 

on to advocate both developing and monitoring flexible management strategies to rapidly deal 

with livelihood changes in communities surrounding protected areas as they occur.  

Understanding local community perceptions and interactions with protected areas are therefore 

critical components of any future management strategies (Fiallo and Jacobson., 1995; Ormsby 

and Kaplin., 2005; Yang et al., 2015).  Therefore, along with Gardner et al. (2015), I 

recommend exploratory meetings with farmers operating on the edges of protected areas in 

order to ascertain if existing farmland could be improved or used in a more productive and 

sustainable way.  This kind of intervention has been shown to work on several occasions in 

Madagascar (Andrianaiavo et al., 2002; Barrett et al., 2004; Tsujimoto et al., 2009) and may 

help decrease the need for farmers to expand into forested areas containing golden mantella 

habitat.  

 

The second priority should be to monitor local climate and climate change effects on current 

habitat (Piludu et al., 2015). During this project I have already identified, by way of SDM, 

several areas that could be described as climatically stable within the current area of occurrence 

of the golden mantellas. I would therefore also recommend that surveys be conducted to 

ascertain future viability and the feasibility of expanding protection to new areas highlighted 

in chapter five. This could also require habitat restoration in these areas to improve 

microhabitats and breeding areas. Such information can then inform potential future 

conservation actions such as sustainable collection of individuals (Robinson et al., 2018), 

translocations, re-introductions or the siting of further wildlife corridors or protected areas.  

 

Without protecting golden mantella and their current habitat their numbers will continue to 

decrease.  However, ongoing climate change is a threat that cannot be mitigated for within most 

of the areas currently occupied by the species.  Therefore, a two-pronged approach to golden 
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mantella conservation needs to be applied. On one hand we must protect the species within its 

current location by keeping habitat intact.  On the other hand, we must also assess the future 

viability of current mantella forest and where connections can be made to potentially climate 

stable areas under predicted climate change. 

 6.8  Conclusion 

Madagascar is rich in biodiversity and endemic species, but is economically and infrastructure 

poor, a combination which means conservation intervention on the island is critical but both 

complex and arduous. Nevertheless, with such a vast array of biodiversity and species 

endemism at stake, it is a place worth making substantial efforts to protect.   The human 

population of Madagascar increased from 16 million to 24 million during the period 2000 – 

2015 and is predicted to continue to around 40 million by 2045 (Vieilledent et al., 2013; 

Vieilledent et al., 2017). This continued and rapid population growth is positively correlated 

with increased and progressive rates of deforestation on the island (Vieilledent et al., 2013). 

Climate change may well aggravate and intensify an already critical situation if predictions for 

rises in temperature and rainfall are proven to reflect reality (Hannah et al., 2008; Raxworthy 

et al., 2008; Tadross et al., 2008; Jones et al., 2019).  

The first step in attempting to mitigate for the effects of climate change on Malagasy 

amphibians is to provide evidence on species’ responses to rising temperatures and associated 

hydrological regime change.  This is no small problem and will continue to require a concerted 

and joint effort between local and international, in situ and ex situ organisations in the future. 

However, the golden mantella conservation initiative has a real chance of being successful, in 

most part due to the hard work of local people and in-country conservation organisations.   The 

way in which we ex situ organisations can help is by providing infrastructure and resources for 

research, advice, financial assistance and focussing public opinion internationally.  In this way 

we may, as a collective force, be successful in preventing the extinction of this iconic, 

charismatic and beautiful Madagascan frog. 
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7.1  Appendix 1 

Supplementary results to chapter 3 

 

Modelling was carried out  by using a protocol developed by Zuur et al. (2009) pages 90-91 

and 129 -142 used in conjunction with R. Zuur et al. (2009) suggest the following steps. Step 

1; plot standardised versus fitted residuals to check if the assumption of homogeneity is valid. 

A variation in residual pattern is indicative of heterogeneity and so the advised step 2 is to fit 

a general least squares model for comparison. Step 3; add variance structure i.e. incorporate 

room as a random factor. Step 4; compare models using AIC. Step 5; add Maximum 

Likelihood (ML) estimation to the model. Step 6; an ANOVA is used on the ML model and 

non-significant terms are dropped. Step 7; The ML model before and after the non-significant 

term is dropped are compared. Step 8; The final model (the lowest AIC scoring ML model 

from step 7) is re-fitted with Restricted Maximum Likelihood Estimation (REML). The overall 

process proposed by Zuur et al. (2009) is a way of validating whether mixed modelling is 

appropriate for specific data analysis, and if so, which modelling method is best. Step 9; add 

LOESS smoothers to show that data follow a non-linear distribution. Step 10; General Additive 

Modelling with smoothing terms on a) temperature and b) humidity. 

Below I give the R script I used and the results generated at each stage of the process. 

Step 1:    I initially applied a simple linear model (slm): 

library (nlme) 

library (lme4) 

slm <- lm(Activity~Temp+Humidity+Time, data = dframe1)# 

plot(slm, select = c(1)) 
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Figure 1: A simple linear regression model where Activity is based upon temperature, humidity 

and time.  Residuals versus fitted values. The residual spread increases for larger fitted values 

which indicates heterogeneity (Zuur et al., 2009). 

 

Step 2: For model comparison fit the model using a GLS (General least squares) 

 

form <- formula(Activity~Temp+Humidity+Time) 

m.gls<- gls(form, data=dframe1) 

summary(m.gls) 

 

       AIC            BIC              logLik 

  224.0912      253.5493        -85.0456 

 

 

Step 3:  Add variance structure i.e. room is added as the random component and models are  

compared. 
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model1 <- lme(form, random = ~1|froom, method = "REML", data = dframe1) 

summary (model1) 

 

       AIC               BIC            logLik 

  223.1484      253.6976       -83.57419 

 

 

Step 4: Compare models m.gls and model1 

anova (m.gls, model1) 

 

               Model       df         AIC            BIC             logLik       Test       L.Ratio        p-value 

m.gls         1             27       224.0912     253.5494    -85.04560                         

model1      2             28       223.1484     253.6976    -83.57419  1 vs 2    2.942826      0.0863 

 

lme model (model1) improved on the lm (m.gls) , L = 2.940, df = 1, p = < .0864 

AIC dropped from 224.0893 to 223.1496 which  justified using the mixed model approach. 

 

Step 5: Add ML to model 

m1.full <- lme(form, random = ~1|froom, method = "ML", data = dframe1) 

summary (m1.full) 

Linear mixed-effects model fit by maximum likelihood 

 Data: dframe1  

       AIC               BIC               logLik 

  328.2315         380.6251        -136.1157 

 

Step 6: ANOVA is used on the model with ML (m1.full) 

anova (m1.full) 
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                   numDF         denDF           F-value            p-value 

(Intercept)     1                   21               18.244346        0.0003 

Temp             1                   21                6.439342         0.0192 

Humidity       1                   21              10.819006         0.0035 

Time            23                   21                1.049393         0.4581 

            

 

Time is not significant (p = 0.459) and so is removed using shorthand code for dropping a 

variable e.g: 

m1.a<- update(m1.full, .~.-Time)  

Step 7: The old model with Time (m1.full)  is compared to the new model without Time (m1.a)             

anova(m1.full,m1.a) 

                Model      df      AIC             BIC           logLik       Test     L.Ratio        p-value 

m1.full         1          28     328.2315    380.6251  -136.1157                         

m1.a             2            5     316.1407    325.4967 -153.0703    1 vs 2  33.90916       0.0665 

 

Removing Time improved the model i.e. AIC decreases from 328.2315 to 316.1407 

 

Step 8:  Final model refitted with REML 

form <- formula(Activity~Temp+Humidity)#creating shorthand use form 

model1 <- lme(form,random = ~1|froom, method = "REML", data = dframe1) 

anova(model1) 

                      numDF             denDF                  F-value                    p-value 

(Intercept)         1                     44                      18.810236                 0.0001 

Temp                 1                     44                       6.444054                  0.0147 

Humidity           1                     44                     10.612774                  0.0022 

 

summary (model1) 
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       AIC                   BIC                     logLik 

  313.3241             322.3574             -151.6621 

 

Justified in using a mixed effect model Re-fitted with REML as  AIC decreased from 316.1407 

to  313.3241 

 

Step 9: We fitted data with LOESS smoothers to better show the pattern in data points, it shows 

there is a non-linear relationship.  

library(ggplot2)  

 plot1<-ggplot(dframe1,aes(Temperature.in.Celcius,Total.number.of.frogs.seen,)) 

 plot1+geom_point()+theme_classic()+labs(x ="Temperature in Celcius",y = "Total number 

of frogs seen")+stat_smooth(method = loess,level= 0.95,aes(fill=room)) 

                                       

plot2<-ggplot(dframe1,aes(Humidity,Total.number.of.frogs.seen,)) 

plot2+geom_point()+theme_classic()+labs(x ="% Humidity",y = "Total number of frogs 

seen")+ xlim= c(0,10,20,30,40)+ stat_smooth(method = loess,level= 0.95,aes(fill=room)) 

 

According to Zuur et al. (2009) Gamm is designed specifically for modelling non-linear so we 

applied the following in R. 

Step 10: General Additive Modelling with smoothing terms on temperature and humidity. 

a) Smoothing term on Temperature GAM and output 

 

library (mgcv) 

n.gam <- gam(Activity~ s(Temp)+Humidity,  

             random = list(froom=~1),data = dframe1 ) 

summary(n.gam) 

Family: gaussian  
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Link function: identity  

 

Formula: 

Activity ~ s(Temp) + Humidity 

 

Parametric coefficients: 

                          Estimate       Std. Error          t value               Pr(>|t|)   

(Intercept)         -24.9982        24.8499            -1.006               0.3207   

Humidity              0.4985          0.2768             1.801               0.0796  

 

Approximate significance of smooth terms: 

                  edf          Ref.df              F                p-value     

s(Temp)    7.346       8.305             33.81           <2e-16 *** 

 

 

R-sq.(adj) =   0.86   Deviance explained = 88.4% 

GCV = 26.358  Scale est. = 21.226    n = 48 

 

plot(n.gam) 

 

Figure 2: Estimated smoother for the additive mixed model. The solid line is the estimated 

smoother and the dotted lines are 95% point wise confidence bands. The x axis shows 

temperature in Celsius; y axis shows the contribution of the smoother to the fitted values, the 

smoother is centred around 0. 

anova(n.gam) 

Family: gaussian  
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Link function: identity  

 

Formula: 

Activity ~ s(Temp) + Humidity 

 

Parametric Terms: 

                 df       F          p-value 

Humidity  1      3.242      0.0796 

 

Approximate significance of smooth terms: 

                 edf      Ref.df        F          p-value 

s(Temp)   7.346   8.305       33.81      <2e-16 

 

b) Smoothing term on Humidity GAM and output 

 

n.gam <- gam(Activity~ s(Humidity)+Temp,  

             random = list(froom=~1),data = dframe1 ) 

summary(n.gam) 

Family: gaussian  

Link function: identity  

 

Formula: 

Activity ~ s(Humidity) + Temp 

 

Parametric coefficients: 

                     Estimate    Std. Error       t value       Pr(>|t|)     

(Intercept)     -58.8652     6.6357         -8.871        3.49e-11 *** 

Temp                3.7635     0.3158        11.919        4.53e-15 *** 

 

Approximate significance of smooth terms: 

                      edf       Ref.df     F        p-value     

s(Humidity) 3.945    4.885     8.86     5.59e-06 *** 
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R-sq.(adj) =  0.825   Deviance explained = 84.3% 

GCV = 30.215  Scale est. = 26.473    n = 48 

 

plot(n.gam) 

 

 

 

Figure 3: Estimated smoother for the additive mixed model. The solid line is the estimated 

smoother and the dotted lines are 95% point wise confidence bands. The x axis shows 

temperature in Celsius; y axis shows the contribution of the smoother to the fitted values, the 

smoother is centered around 0. 

 

anova(n.gam) 

Family: gaussian  

Link function: identity  

 

Formula: 

Activity ~ s(Humidity) + Temp 

 

Parametric Terms: 

              df           F           p-value 

Temp     1        142.1         4.53e-15 

 

Approximate significance of smooth terms: 

                        edf        Ref.df             F           p-value 

s(Humidity)   3.945      4.885           8.86         5.59e-06 
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7.2  Appendix 2 

 Supplementary results to chapter 5 

Appendix 2 outlines the steps taken and outcomes during Maxent modelling i.e. Step 1: We 

used a regularization multiplier, Prior to running final models, we adjusted the regularization 

multiplier and selected the most appropriate model from Akaike Information Criteria (AIC) 

(Table 1). Step 2: To determine drivers of distribution, we jack-knifed environmental data. 

Step 3: maximum test sensitivity plus specificity logistic threshold for all distributions to 

identify areas of highly suitable habitat. Step 4: Habitat suitability and validation of variable 

contribution. The Habitat Suitability Index e.g. how suitable an area is for a species based upon 

the variables entered into the model was calculated.  Step 5: To describe the current golden 

mantella area of occurrence we developed a Minimum Convex Polygon (MCP) based on the 

raw data for M. aurantiaca occurrences and then added a 10 km buffer to create an over-

estimate of current area.  

Step 1: Regularization multiplier 

We ran 3  models each time changing the regularization multiplier, i.e. we  varied the amount 

of noise (error) in the model. Because data were collected by Madagasikara Voakajy and are 

verified from surveys, we would expect that the default value in maxent for the reg multi 

regularization multiplier (rm =1) would be appropriate, but to be sure, we ran three models 

(Rm=1, Rm=2, Rm=3).  if the AIC score had become more favourable for rm = 3, i.e. AIC had 

decreased, we would have run more models until the lowest AIC was reached.   

Table.1: We ran 3 models, each time changing the  regularization multiplier, this produced an 

AIC value for each model. The model with the lowest AIC value is Rm = 1. 

 

Regularization 

multiplier (Rm) 

Log Likelihood AIC BIC 

=1 -6152.711308 12435.42262 12698.65529 

=2 -6227.322903 12514.64581 1263613781 

=3 -6254.776772 12547.55354 12624.49848 
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Step 2: Jack-knife tests 

 

 

Figure 1: Results of the jack-knife test of variable importance. The environmental variable with 

highest gain when used in isolation is wd_250m, which therefore appears to have the most 

useful information by itself. The environmental variable that decreases the gain the most when 

it is omitted is wd_250m, which therefore appears to have the most information that isn't 

present in the other variables.  Values shown are averages over replicate runs. 

 

 

Figure 2:  Shows the jack-knife test using test gain instead of training gain. Note that 

conclusions about which variables are most important can change when using test data.  
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Figure 3:   Shows the jack-knife test using AUC on test data. 

 

In the analysis of variable contributions, wd is very clearly the most important variable in the 

model, if it is removed, the model suffers, if it is the only variable, the model is still good. 

Together, lc (Landcover) and wd (Water Deficit) are the most important variables influencing 

the model (Table 2), and of the two, WD is perhaps the most important (Figs. 1, 2 and 3). 

 

Table 2:  Gives estimates of relative contributions of the environmental variables to the Maxent 

model (Variable code descriptions can be found in table 1 chapter 5). To determine the first 

estimate, in each iteration of the training algorithm, the increase in regularized gain is added to 

the contribution of the corresponding variable or subtracted from it (if the change to the 

absolute value of lambda is negative). For the second estimate, for each environmental variable 

in turn, the values of that variable on training presence and background data are randomly 

permuted. The model is re-evaluated on the permuted data, and the resulting drop in training 

AUC is shown in the table, normalized to percentages. Values shown are averages over 

replicate runs. 

 

Variable % Contribution Permutation importance 

Lc 300m 32.1 3.1 

Wd_250 31.2 3.1 

bio16_250m 8.6 16.6 
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bio10_250m 24.3 2.7 

bio4_250m 2.2 73.7 

canopy_hght 1.5 0.6 

top_wet 0.1 0.1 

en_veg_ind 0 0 

 

Step 3: Maximum Test Sensitivity plus Specificity Logistic Threshold (MTSST) 

We used Maximum Test Sensitivity plus Specificity Logistic Threshold (MTSST) for all 

distributions to identify areas of highly suitable habitat (Fig.4 ). MTSST is the most balanced 

choice according Liu et al. (2005) and minimises error between specificity and sensitivity (false 

positives and false negatives). The MTSST gives a threshold value which is specific to the 

model being run only – there is no ‘universal’ value. To get the value, open the maxent results 

CSV file and select the average value given at the  bottom of each specific column. The value 

changes for each climate scenario, i.e. current climate = 0.2724, rcp45 = 0.2711, rcp85 = 

0.2574.  Each MTSST value is used to  omit completely unsuitable habitat from the species 

average distribution  map (See: Fig. 5).  
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Figure 4:  Receiver operating characteristic (ROC) curve  averaged over the replicate runs. 

Note that the specificity is defined using predicted area, rather than true commission. The 

average test AUC for the replicate runs is 0.994, and the standard deviation is 0.002.  

 

Step 4:  Habitat Suitability 

 

We then used a threshold value to create areas of high likelihood of occupancy within the 

buffered MCP and the area of potential climate space was assessed (km2).  Maxent produces 

the Habitat Suitability Index as a logistic output (probability of presence). So 1 = highly 

suitable habitat, 0 = unsuitable habitat. This is where MTSST cuts all values below the 

threshold value out of the map. An example is given in fig.5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: An example of how a Habitat Suitability Index is used to predict species distribution. 

The grey line is a hypothetical  map outline, each grid square has a suitability value produced 

by maxent. It could be that the maxent html file indicates that water deficit contributes 88% to 

the final model driving observed distribution i.e. how a species responds to water deficit across 

its range. The values on the map are then transferred onto a graph for the main driving variable 

(See:  fig 1, Chapter 5). 

 

 

0.234 0.234 0.01 0.01 

0.234 0.67 0.890 0.01 

0.44 0.456 0.568 0.01 

0.759 0.135 0.234 0.34 

0.344 0.02 0.234 0.234 
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Step 5: Minimum Convex Polygon (MCP) 

 

To describe the current golden mantella area of occurrence we developed a Minimum Convex 

Polygon (MCP) based on the raw data for M. aurantiaca occurrences and then added a 10 km 

buffer to create an over-estimate of current area (Fig.6).  

 

 

 

Figure  6:  Shows the geographic position of the district (red) and both larger maps are zoomed 

in. The left-hand large map shows the data (black dots) with the MCP as light blue. The right-

hand large map shows the buffered MCP (green) and black dots show original data. 

 


