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Abstract 

The location routing problem with multi-compartment and multi-trip is an extension 

to the standard location routing problem. In this problem, depots are used to deliver 

different products using heterogeneous vehicles with several compartments. Each 

compartment has a limited capacity and is dedicated to a single type of product. The 

problem is formulated as a mixed integer program. A constructive heuristic and a 

hybrid genetic algorithm (HGA) are proposed. Numerical experiments show that both 

heuristics can efficiently determine the optimal solutions on small size instances. For 

larger ones, the HGA outperforms the constructive heuristic with relatively more 

computational time. Managerial insights have been obtained from sensitivity analyses 

which would be helpful to improve the performance of the supply network. 
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1. Introduction 

The success of many organizations depends on the location of their facilities (plants, 

warehouses, distribution centers, among others) and their routing plans. These two 

logistical problems constitute crucial choices among strategic, tactical and operational 

decisions (Perl, 1983; Zarandi, 2011; Wang et al., 2013). It has also been shown 

empirically that suboptimal solutions can be obtained if the two levels of decisions are 

tackled separated (Salhi and Rand, 1989). To overcome these drawbacks, the classical 

location routing problem (LRP), a combination of both the depot location and the 

routing decisions, has been well studied in the literature. However, in this study which 

we will define later, we need to relax two assumptions of the LRP which include (i) 

all types of products are loaded in one compartment; and (ii) each vehicle is allowed 

to make at most one trip during its workday. In other words, our problem requires the 

use of more than one compartment and that multiple trips are allowed to be used due 

to the short round trips.    

The problem presented in this paper involves a typical food company that needs to 

use several depots at different locations in a distribution network. Through the depots, 

the company replenishes groceries using heterogeneous vehicles with multiple 

compartments, each of which is exclusive for a specific type of food. This model 

reflects many real food transport networks in which food types are categorized into 

two main groups, frozen and unfrozen, which requires truck compartments dedicated 

to only frozen or only unfrozen products, respectively. In addition, for some cases, 

each truck is equipped with more than two compartments; for example, some 

vegetables, such as onions, should be loaded in a dedicated compartment because the 

odor will taint other deliverables, such as cooked food or prepared snacks. The 

groceries are expected to have less-than-truckload demands, which are replenished 

from routes that involve multiple stops. Given that most of round trips can be 

performed in a short time period, each vehicle can make multiple trips to achieve cost 

savings due to a reduced number of vehicles and drivers. There is also a maximum 

distance allowed for each vehicle during a workday. Hence, the problem addressed in 

this paper is a location routing problem with multi-compartment and multi-trip. To 

minimize the total daily transportation cost, the decision makers need to 

simultaneously determine the number of depots, their respective locations, the 

assignment of customers to these open depots, the deployment of vehicles, the route 

configuration for every vehicle, and the assignment of products to the vehicles. 

The proposed location routing problem can be regarded as the extension to three 

problems which include (i) the classical location routing problem (LRP), (ii) the 

vehicle routing problem with multi-compartment (VRPMC), and (iii) the vehicle 

routing problem with multi-trip (VRPMT). We refer to this LRP with Multiple 

Compartments and Multiple Trips as LRPMCMT for short. Table 1 summarizes the 

main features of the four problems including ours. For clarity of presentation, we 

briefly review (i)-(iii) as their combination makes up this new logistical problem 

which we are aiming to address.  
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[Insert Table 1 about here] 

 

(i) A brief review on the LRP 

If multiple compartments and multiple trips are not considered, then the combined 

problem will be reduced to the classical LRP. Min et al. (1998) provided a survey of 

the literature on location-routing up to the late 1990s; this work explored promising 

research opportunities in terms of the incorporation of more realistic aspects, 

algorithmic design, and model complexity. The paper showed that most early 

published papers did not consider capacitated routes and capacitated depots 

simultaneously. Nagy and Salhi (2007) provided a survey of LRPs, proposed a 

classification scheme, introduced a number of problem variants and provided a 

summary of LRP applications such as those found in the food and drink distribution 

(e.g., Watson-Gandy and Dohrn, 1973) and waste collection (e.g., Kulcar, 1996). 

Since then, interesting studies were produced. For instance, Berger et al. (2007) 

presented a set-partitioning-based formulation for uncapacitated location-routing 

problems with distance constraints. Their model can be applied to perishable goods 

delivery, time critical delivery, and other areas. A branch-and-price algorithm was 

developed to solve the problem. The LRP with both capacitated depots and routes was 

studied by various researchers including Prins et al. (2006, 2007); Duhamel (2010) 

and Yu et al. (2010). The LRP has received relatively less attention when compared to 

other extensions of the VRP, and more specifically only a few extensions to the LRP 

were addressed in the literature. Among these Albareda-Sambola et al. (2007) 

introduced a stochastic location-routing problem in which customer demand was 

stochastic so that only a subset of the customers required service after a decision was 

made. Prodhon (2007) combined the periodic VRP and LRP into an even more 

realistic problem termed the periodic LRP, in which periodic routing decisions were 

considered during a time horizon. A simple iterative heuristic was proposed to tackle 

the problem. Later, the same problem was solved by Prodhon and Prins (2008) using a 

multi-start genetic-based metaheuristic and a hybrid evolutionary algorithm 

respectively. Zarandi et al. (2011) addressed the fuzzy version of the capacitated 

location routing problem, in which the travel time between two nodes is considered as 

a fuzzy variable. They proposed a simulation-embedded simulated annealing 

procedure to solve the problem. Very recently, an interesting and comprehensive 

survey on LRP is given by Prodhon and Prins (2014) who reviewed the new variants 

and techniques developed since the Nagy and Salhi’s last review. The authors also 

highlighted useful suggestions for the future including the design of exact methods 

that incorporate problem structures, realistic problems where customers are not all 

served, among others. Liu et al. (2016) analyzed the dynamic activity-travel 

assignment with transport can location capacity constraints. In that study, the dynamic 

traffic assignment is combined with the activity-based modelling in a unified 

framework. Menezes et al. (2016) developed a model for an LRP that involves 

determining the optimal location of regional distribution centers and designing the 

routes of the trucks that undertake the transportation among such centers and demand 

nodes. Chen et al. (2017) discussed the design of suburban bus routing problem for 
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airport access, in which the pickup locations are selected from candidate stops. That 

study implemented an artificial bee colony approach to obtain solutions of good 

quality.  

To the best of our knowledge, the LRP with multi-compartments with the presence 

of multi-trips has not been studied in the above applications. This variant constitutes 

an important extension to the classical LRP that has not been investigated in the 

literature and for which we believe it is worthwhile exploring. 

 

(ii) A brief review on the VRPMC 

The vehicle routing problem with multi-compartment (VRPMC) is a special case 

of the LRPMTMC in that the depot locations have been determined and a vehicle can 

make at most one trip during one workday. There are a few papers dealing with this 

particular routing problem. This kind of studies focuses on two different categories 

based on whether the compartment is dedicated to the product or not. Fuel distribution 

is a well-known application of the latter category, in which one compartment can load 

any single type of fuel. Interesting practical applications can be found in Brown and 

Graves (1981) and Bruggen et al. (1995). Our study focuses on the former strategy 

where one compartment is dedicated to one product only which is applicable to food 

distribution and waste collection. Chajakis and Guignard (2003) introduced logical 

constraints to tighten their two integer programming models when scheduling food 

deliveries to convenience stores. Fallahi et al. (2008) studied the distribution of cattle 

food to farms in the West of France. A constructed heuristic, a memetic algorithm, and 

a tabu search were proposed to solve the problem. Muyldermans and Pang (2010) 

studied the benefits of co-collection using vehicles with multiple compartments 

through a comparison with separate collections using traditional vehicles. A 

competitive local search procedure was proposed to solve the problem and sensitivity 

analysis was conducted to consider different factors. Silvestrin and Ritt (2017) 

proposed an efficient tabu search algorithm to solve the problem. Mendoza et al. 

(2010) proposed a new memetic algorithm to solve the VRPMC with stochastic 

demands. Later, Mendoza et al. (2011) introduced three new constructive heuristics to 

expand the existing tool box that is used for solving the problem. Various applications 

on the VRPMC are provided by Derigs et al. (2011) who also presented a portfolio of 

the competitive components that were found to be competitive for solving the routing 

part of the combined problem.  

    

(iii) A brief review on the VRPMT 

When depot locations have been determined and multiple compartments are not 

considered, the problem becomes the vehicle routing problem with multi-trip 

(VRPMT). This logistical problem commonly exists in practice as vehicles are used to 

make multiple trips during one workday. The first study involving this problem is 

presented by Fleischmann (1990). In his paper, a bin packing heuristic was used to 

assign routes to vehicles. To solve the problem, Taillard et al. (1996) proposed a 

three-phase approach where a bin packing algorithm was used for the assignment of 

routes to vehicles in the second phase. Brandao and Mercer (1998) proposed a tabu 
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search heuristic without resorting to a multi-phase methodology. Prins (2002) studied 

the VRPMT with the presence of limited heterogeneous fleet. Later, Petch and Salhi 

(2004) developed a multi-phase constructive heuristic whereas Salhi and Petch (2007) 

designed a GA. Olivera and Viera (2007) provided an adaptive memory approach. 

Battarra et al. (2009) and Azi et al. (2010) analyzed the VRPMT with time windows.  

The contribution of this study is threefold. (i) we aim to address for the first time 

in the literature the logistical problem namely the LRPMCMT problem, (ii) we 

present a comprehensive mixed integer formulation which can be used as a basis for 

further tightening if necessary as well as one of the performance measures for the 

assessment of the heuristics on small size instances, and finally (iii) we design a 

constructive heuristic and a hybrid genetic algorithm to efficiently solve large size 

instances. 

The rest of the paper is organized as follows. Section 2 presents the mathematical 

model. Sections 3 and 4 provide a constructive heuristic and a hybrid genetic 

algorithm respectively. Computational experiments are given in Section 5. The final 

section summarizes our findings and provides some highlights for future research.  

 

2. Mathematical Model 

The location routing problem with multi-compartment and multi-trip is defined as 

follows: In the distribution network, there is a supplier and a set of customers that 

order multiple types of products from the supplier. The supplier can divide all types of 

products into some main types, according to the exclusive use of certain types of food 

(e.g., frozen and non-frozen). Without loss of generality, in this model, we consider 

vehicles with the same number of compartments but with different capacities and 

travelling distance limitations. Each type of product has a one-to-one correspondence 

with each type of compartment. The supplier needs to select a number of 

uncapacitated depots from the set of potential locations. In the problem, the following 

exogenous parameters are given: 

• The location and demand of every customer. 

• The location and the fixed cost of each potential depot. 

• The capacity of every compartment of the heterogeneous vehicles.  

• The fixed deployment cost and the maximum distance allowed for every 

vehicle. 

• The unit running cost per kilometer for every vehicle. 

To minimize the total daily transportation cost, the problem simultaneously 

involves determining the number of depots and their locations, the assignment of 

customers to these open depots, the deployment of vehicles, the routes for every 

vehicle, and the assignment of products to the vehicles. The assumptions used in this 

study include: 

⚫ Each customer has a non-zero demand for at least one type of product. 

⚫ All demands should be satisfied. 

⚫ The vehicles are initially located at the depots. 

⚫ Each vehicle must return to the same depot from which it departs. 
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⚫ Each compartment is dedicated to one type of product. 

⚫ Each vehicle can make multiple trips if necessary. 

⚫ Each type of product of each customer is delivered on one trip by one 

vehicle. 

⚫ Each depot is large enough to cater for all products. 

⚫ There is an unlimited number of vehicles available to deliver the products. 

The following notation is used in the model. 

 

Sets (Indices) 

I= set of potential depots (i∈I). 

J= set of customers (j∈J). 

U= I∪J = set of all nodes in the network (customers and potential sites) 

T= set of trips, where |T| is large enough to accommodate the maximal number of 

   trips that the fleet can possibly make, (t∈T). 

V= set of vehicles (v∈V). 

P= set of products (p∈P). 

 

Parameters 

Lij= distance (in kilometers) between nodes i and j (i, j∈U).  

Djp= demand of customer j for product p (p∈P, j∈J). 

Qvp= capacity of compartment p in vehicle v (v∈V, p∈P). 

Fv= fixed cost (in $) of using vehicle v (v∈V). 

Cv= transportation cost (in $) per kilometer for vehicle v (v∈V). 

Gi= amortized fixed cost (in $) of establishing a depot at site i (i∈I). 

MLv= maximum distance that could be travelled by vehicle v (v∈V). 

N= |J|, number of customers. 

M= a very large number (say M=N2). 

 

Decision variables 

1 if vehicle v travels from node i to node j during trip t. 

xijtv=      

0 otherwise. 
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1 if vehicle v delivers product p to customer j during trip t 

yjptv=      

0 otherwise 

 

1 if vehicle v is used 

lv=      

0 otherwise 

 

1  if depot i is used 

wi=      

0 otherwise 

 

1 if customer j is assigned to depot i 

sij=      

0 Otherwise 

 

1 if vehicle v is assigned to depot i. 

zvi=      

0 otherwise 

 

Amtv is the auxiliary variable for sub-tour elimination constraints for trip t of vehicle v 

visiting customer m. 

 

Formulation 

 

Minimize 

 

i i v ij ijtv v v

i I i U j U t T v V v V

G w C L x F l
     

+ +                                   (1) 

 

Subject to 

1, , ,jptv

t T v V

y j J p P
 

=                                            (2) 

, , , ,jptv jp vp

j J

y D Q p P t T v V


                                      (3) 

, , , , ,jptv ijtv

i U

y x j J p P t T v V


                                    (4) 

0, , , ,  ijtv jitv

j U j U

x x i U t T v V
 

− =                                   (5) 

,ij i

j J

s Mw i I


   ，                                              (6) 

( ) 1, , , , ,ij iutv ujtv

u U

s x x i I j J t T v V


− + +         
                      

(7)
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i I

z l v V
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                                          (9) 
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i I j J

x v V t T
 

                                             (10) 

1, , , , ,  mtv jtv mjtvA A Nx N m j J t T v V− +  −                           (11) 

, ,ijtv ij v

i U j U t T

x L ML v V
  

                                    (12) 
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ijtv

jptv

i

v

ij

vi

x i U j U t T v V

y j J p P t T v V

w i I

l v V

s i I j J
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                           (13) 

0, , ,mtvA m J t T v V                                            (14) 

 

The objective function (1) is to minimize the summation of the fixed costs of 

using the depots (the first term), the transportation costs (the second term), and the 

fixed charges of using the vehicles (the third term). We developed the decision 

variable yjptv and Constraints (2) to (4) to incorporate multi-compartment and 

multi-trip simultaneously in the LRP model. Constraint (2) guarantees that each 

product ordered by a customer is delivered by one vehicle during one trip and 

Constraint (3) is a capacity constraint that is set for the compartments. Constraint (2) 

does not imply that each customer must order all types of products. Because we 

assume that each customer has a non-zero demand for at least one type of product, in 

any feasible solution, at least one yjptv is equal to 1 for all {j,p,t,v}. For instance, 

D21=10 and D22=0 means that Customer 2 has ordered 10 units of Type 1 products and 

has no demand for any Type 2 products. In this case, the constraint ensures that 

21 1tv

t T v V

y
 

= ; i.e., in one trip, Type 2 products must be delivered to Customer 1. We 

also set y2111=1 in the optimal solution, which means that Vehicle 1 delivers Type 1 

products to Customer 2 on the first trip of one day. Then, we set y2211=1 in the optimal 

solution without increasing the value of the objective function from that found when 

y2211=0. In this case, Constraints (2) and (3) are also satisfied when j=2 and p=2, even 

though D22=0. Therefore, we found that Constraint (2) does not require non-zero 

demand for all types of product by each customer. Constraint (4) ensures that vehicle 

v can deliver product p to customer j during trip t only if customer j is visited by 

vehicle v during trip t. This constraint links the multi-compartment consideration with 

the multi-trip route construction issue. The involvement of yjptv is associated with the 
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|J|∙|P|∙|T|∙|V| decision variables, and taking multiple compartments into account, we 

obtained |P|∙[(1+|T|∙|V|)(1+|J|)−1] constraints.  

Constraint (5) guarantees that if one node is visited by one vehicle in one trip, that 

vehicle should depart from this node. Meanwhile, if one node is not visited by any 

vehicle in any trip, no trip can start from that node. This constraint is also known as 

flow conservation. Constraint (6) specifies that customers can be assigned to a depot 

only if the depot is used. For Constraint (7), ( )iutv ujtv

u U

x x


+  should be no greater than 

1 for any trip t of vehicle v if sij=0. In this case, customer j and depot i should not be 

on the same route at the same time. Hence, this constraint guarantees that a depot can 

serve a customer via a trip only if that customer is assigned to that depot. Using the 

same idea, we can obtain the following two constraints: Constraint (8) specifies that 

each vehicle can be assigned to, at most, one depot, and Constraint (9) ensures that 

vehicle v can depart from depot i only if vehicle v is assigned to depot i. Because 

Constraint (9) cannot avoid the infeasible case in which one vehicle directly visits 

more than one customer from one depot during one trip, we propose Constraint (10) 

to ensure that any trip for each vehicle can directly connect no more than one pair 

consisting of a depot and a customer. Constraint (11) features a set of sub-tour 

elimination constraints that make all trips without any depots unsatisfactory for use. 

In conjunction with Constraint (5), these three constraints guarantee that any trip of 

any vehicle must lead to a feasible solution of a TSP problem with one depot and 

assigned customers. Fig. 1 illustrates the idea of Constraint (11) with an example such 

that Customers 2 - 5 are assigned to Depot 1. As Fig. 1 shows, one trip for one vehicle 

(e.g., vehicle v and trip t) covers two routes. Then, we obtained x12tv=x21tv=1, and 

x34tv=x45tv=x53tv=1. This solution satisfies Constraints (5), (9), and (10), but it is not a 

feasible solution in the real world. Likewise, it will not be obtained in our model 

because of Constraint (11). From this constraint, we have  

 

3 4 34

4 5 45

5 3 53

1                                          (15)

1                                          (16)

1                                          (17)

tv tv tv

tv tv tv

tv tv tv

A A Nx N

A A Nx N

A A Nx N

− +  −

− +  −

− +  −






 

By summing Inequalities (15) - (17), we can obtain 3N≤3N−1, which implies that 

no {A3tv, A4tv, A5tv} can make x34tv=x45tv=x53tv=1 feasible. We can also easily show that 

Constraint (11) is always satisfied if a solution does not contain any sub-tour. 

Constraint (12) offers the distance constraint set for each vehicle. Constraint (13) 

includes the binary requirements for the variables, and Constraint (14) features 

non-negative auxiliary variables. In our model, any customer’s demand for one type 

of product should be satisfied by one vehicle during one trip. In addition, this model 

allows different vehicles to satisfy one customer’s demand for different types of 

products, which provides greater flexibility in routing for the multi-product case.  

This problem is a mixed 0-1 linear programming problem that contains |J|∙|T|∙|V| 

continuous variables, |T|∙|V|(|U|2+|J|∙|P|)+|V|(1+|I|)+|I|(1+|J|) binary variables, and 

|J|∙|T|∙|V|(|J|+|I|+|P|)+|V|[2+|I|+|T|(1+|P|+|U|)]+|I|+|P|∙|J| constraints without considering 

Constraints (13) and (14). The consideration of multiple trips influences the 
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complexity of the model in terms of decision variables and constraints. First, the 

decision variable, yjptv is involved, and the number of xijtv and Amtv are also influenced. 

Second, the number of constraints related to the LRP is multiplied by |T|. In addition, 

Constraint (4) is specified for this consideration. 

 

[Insert Figure 1 about here] 

 

As explained, the problem addressed here is NP hard because it can be regarded as an 

extension to the following three problems: an LRP, VRPMC, and VRPMT, which are 

all known to be NP hard. The mathematical formulation, therefore, is appropriate to 

use for small instances in which the results are used only for evaluating the 

performance of the heuristics. The only way to address instances of moderate size is 

to use heuristics and meta-heuristics.  

The LRP with the limitation in travelling distances and capacitated vehicles may 

involve a balance between the transportation cost and the fixed cost of vehicles. For 

example, the transportation cost presented in Figure 2(a) is lower than that shown in 

Figure 2(b). However, the vehicle cannot visit Customers 3 - 6 in one trip because of 

the compartment capacity or maximum travelling distance limitation. For either of 

these two reasons, two routes are required: {Depot 2→Cutomer 4→Customer 

3→Depot 2} and {Depot 2→Cutomer 6→Customer 5→Depot 2}. If the total 

travelling distance extends beyond the limitation of a vehicle, an extra vehicle is 

employed to finish one of the trips, which leads to a higher fixed cost. In the scenario 

featured in Figure 2(b), Customer 3 receives delivery from Depot 1, and then, one 

vehicle can visit Customers 4 - 6 in one trip. In this case, the fixed cost of the vehicle 

is decreased, while the transportation cost is increased. This trade-off could be more 

significant if each customer demands multiple types of products, which is a novel 

characteristic of the LRPMCMT. In this study, we propose a constructive heuristic 

followed by a hybrid genetic algorithm, both of which are described further in the 

following sections. 

 

[Insert Figure 2 about here] 

 

3. A Constructive-Based Heuristic  

For this heuristic algorithm, we first selected depots and construct routes by tailored 

algorithms. In particular, we considered the utilization ratios of compartment 

capacities and the maximum travelling distances of the vehicles. Then, we developed 

a Packing-Strategy-based-Local-Search Procedure that reconstructs obtained routes 

after an “insertion” or “exchange” to see any improvement in the total cost. According 

to how the solution algorithms model the relationship between the locational and the 

routing sub-problems, Nagy and Salhi (2007) classified the heuristics as sequential, 

clustering, iterative, and hierarchical heuristics. The heuristic algorithm proposed here 

is a hierarchical heuristic in which the location problem is resolved as the main 

algorithm and the routing problem is solved as a subroutine in each step. The 
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proposed heuristic, which is made up of the drop, add and the swap mechanisms, is 

used at the location stage, and the sweep-based algorithm is applied at the routing 

stage (see Fig. 3). An improvement phase which includes a local search and a packing 

algorithm is used as a post-optimizer. 

 

[Insert Figure 3 about here] 

 

3.1 Add/Drop/Swap Algorithm 

The add algorithm, initially proposed by Kuhn and Hamburger (1963), is a greedy 

heuristic algorithm which enlarges the set of used depots one by one through using the 

depot that yields the largest decrease in the objective function value. The algorithm 

stops when there is an increase in the total cost and the best solution is recorded. The 

Drop heuristic is then activated and attempts to drop one facility at a time until the 

cost starts rising. This is originally given by Feldman et al. (1966). Once the solution 

cannot be improved by dropping any of the facility, the add call is then applied and 

the shifting between the two schemes continues until there is no improvement. A 

swap-based move that attempts to simultaneously close and open a facility is then 

activated to see whether there is a better solution. This is achieved by using the fast 

interchange heuristic by Whitaker (1983). An even more efficient implementation that 

is useful for larger instances is presented by Resende and Werneck (2007). This 

incorporates data structure which records intermediate solutions and avoids 

re-computing unnecessary calculations.  

The determination of a good solution at the initial location stage is important as it 

identifies a good set of open facilities without recourse to the routing elements. In 

other words, the problem reduces initially to solving the uncapacitated location 

problem. Once the routing component in subsection stages or iterations is integrated a 

limited call to the location stage will be sufficient.  In this implementation the use of 

the swap move is restricted to a limited number of calls only to speed up the process. 

It was also observed that the add and the drop moves are used relatively less 

frequently. 

 

The main steps of the algorithm are given below: 

 

Step 1: Put all of the potential depots in List A, empty List B, and assign a big number 

as the initial total cost. 

Step 2: Consider the depots in List B and the next potential depot in List A, assign the 

customers to their respective nearest depots, and calculate the total 

transportation cost based on the routes from the route construction. Repeat this 

step until all depots in List A have been tested. 

Step 3: Obtain the potential depot that leads to the largest decrease in the total cost. If 

the largest decrease is positive, then move the corresponding potential depot 

which yields the minimum total cost from List A to List B and go to Step 2; 

otherwise go to Step 4. 

Step 4: If the solution is not improved with the ‘add’ move go to Step 8; otherwise go 
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to Step 5.  

Step 5: Drop the next depot in List B and consider the remaining ones. Calculate the 

total cost with the same approach in Step 2 and add the dropped depot in List 

B. Repeat this step until all depots in List B have been tested. 

Step 6: Obtain the potential depot that leads to the largest decrease in the total cost. If 

the largest decrease is positive, then move the corresponding depot that yields 

the minimum total cost from List B to List A and go to Step 5; otherwise go to 

Step 7. 

Step 7: If the solution is not improved with the ‘drop’ move go to Step 8; otherwise go 

to Step 2. 

Step 8: Simultaneously open a closed depot and close an open depot to find the best 

combination yielding the cheapest total cost. If there is an improvement, 

update Lists A and B, and go to Step 2. If there is no improvement after k 

successive calls to the swap operator (in Fig. 3, we set k=5 as an example), 

record the solution and the search terminates.   

 

3.2. Route Construction 

Based on the pre-used depots and the assignment of customers to each depot, the 

sub-problem for each depot is reduced to a single depot vehicle routing problem with 

multi-compartment and multi-trip. The sweep algorithm, presented by Gillett and 

Miller (1974), is a simple but efficient heuristic to solve the routing problem. The 

simple implementation of the algorithm is described by Laporte et al. (2000). We 

propose a sweep-based algorithm by modifying the classical sweep method with the 

considerations of multiple compartments, multiple trips, and heterogeneous fleet.  

In the sweep-based algorithm, note that each customer is a vertex and the depot is 

the square that is centered in the polar coordinate system. Assume that vertex j can be 

represented by its polar coordinates (θj,ρj) in which θj and ρj represent the angle and 

the ray length, respectively. Assign θj
*=0 to an arbitrary vertex j* and compute the 

remaining angles, which are centered at 0 from the initial ray (0,j*). For a selected 

depot (e.g., depot i), we run the sweep method ni times starting from ni starting points 

where ni∈[1,|Ji|] in which Ji is the set of customers assigned to depot i, i=1,2,…, |I|. 

We then implement this algorithm on a depot by depot basis. The flowchart of our 

route construction is given in Fig. 4. 

 

[Insert Figure 4 about here] 

 

Rank the vehicles in a non-increasing order according to their fixed costs and test 

all of the vehicles as follows: first, if the type of vehicle v is the same as the previous 

vehicle, we skip vehicle v and test the next vehicle; second, we construct routes for 

the vehicle according to the sweep-based algorithm and calculate the following cost 

efficiency measure αv=Fv(1−uv
cuv

l) where uv
c and uv

l refer to the capacity and distance 

utilization of vehicle v, respectively. These are defined in (18) where lvt and nv
t are the 

total distance of trip t and the number of trips travelled by vehicle v, respectively. In 
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Equation (18), jp

j p

D  represents the total demand for all types of products by the 

costumers served with vehicle v.  
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The vehicle with the lowest value for αv is chosen to construct the route based on 

the sweep-based algorithm. This vehicle and its allocated customers are removed, and 

the process is repeated until there is no customer left to be served. 

 

3.3. Packing-Strategy-based Local Search Procedure 

An improvement procedure that combines a local search with a packing algorithm 

was applied to improve the best solution found thus far while the novel characteristics 

of multiple compartments and multiple trips are considered. 

3.3.1. Packing Algorithm 

The number of used vehicles in each depot could be reduced by using a packing 

algorithm with respect to pre-defined routes in the feasible solution. In this study, we 

propose a maximum remaining distance strategy in the packing algorithm to reduce 

the number of used vehicles in each depot. This procedure is similar to the one for the 

three-dimensional multi-container packing problem, the aim of which is to minimize 

the number of containers used to load all selected items (Feng et al. 2015). In the 

packing strategy, the feasible vehicles are firstly selected with respect to the capacity 

constraints and the longest remaining route is packed to the feasible vehicle with the 

maximum remaining distance. This procedure is as follows: 

Step 1: Calculate the total distance of each route and rank the routes in decreasing 

order according to the corresponding distances. 

Step 2: Rank the used vehicles in decreasing order according to the fixed costs. 

Step 3: Remove the first vehicle that can both reduce the total cost and keep the 

solution feasible based on the packing strategy. If such a vehicle exists, 

remove the vehicle and repeat Step 3; otherwise stop. 

 

3.3.2. The Local Search based on the Packing Strategy 

The ‘exchange’ and ‘insertion’ operators are applied to both intra- and inter-routes, 

which are described as follows: 

Insert: Within each route, move each customer to another position and calculate the 

savings. For inter-routes, move each customer from a route to another route 

while satisfying the capacities of the compartments and the maximum distance. 

Note that the two routes may depart from different depots yielding an 

inter-depot improvement. 

Exchange: Within each route, swap two customers and calculate the new cost. For 
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inter-routes, exchange each customer from a route with a customer in the other 

route while considering the capacities of the compartments and the maximum 

travel distance. The inter-depot improvement, in which the latter route belongs 

to another depot, is also applied in this procedure. 

The local search is run for a number of iterations and stops when no positive 

improvement is obtained. The algorithm adopts the first improvement strategy 

by accepting whichever operator yields such an improvement. 

 

One disadvantage of the heuristic algorithm is that one customer’s demands of all 

types of products are satisfied by one depot, which may limit the solution space. We 

develop an HGA that allows more flexible assignment of customers’ demands of 

different types of products. 

4. A Hybrid Genetic Algorithm 

In recent years, the genetic algorithm (GA) that was developed by Holland in the 

1960s has proved efficient in solving difficult optimization problems. In this paper, a 

hybrid genetic algorithm (HGA) is developed to solve the problem. In contrast to the 

constructive heuristic algorithm, the decisions of the depot selection and the 

assignment of the customers are obtained from the chromosomes in the HGA. A 

slightly different sweep-based algorithm is applied to construct the routes, and the 

same local search is embedded to improve the solutions obtained from the genetic 

operators. Moreover, the chromosomes allow the demands for different types of 

products by one customer to be assigned to different depots, which offers a wider 

space for route construction compared with that of the heuristic algorithm. This 

situation means that the solution obtained from the HGA may enable vehicles from 

depots in one area to finish the delivery task for vehicles with idle compartment 

capacities. The flowchart of the proposed HGA is shown in Fig. 5. 

 

[Insert Figure 5 about here] 

 

4.1. Chromosome Representation  

In this paper, we encode the depot selection and the customer assignment into a single 

genetic code with two strings. In the chromosome, the first |I| genes (depot genes) 

show the statement of the potential depots, and the remaining |J|×|P| genes (product 

genes) show the sequence of the products. The two strings for depot genes are the 

same, and the two strings for the product genes together imply the products ordered 

by the customers. If the position under product i is occupied by customer j, then the 

gene means that the type of the product is i and it is ordered by customer j. The largest 

positive number among the depot genes means that the product genes from the 

position to the end are assigned to the depot. The other positive numbers among the 

depot genes indicates that the product genes from the positive number to (the next 

larger number−1) are assigned to the depot. If there is only one remaining positive 

number, the remaining product genes are assigned to the depot. A depot will not be 
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used if the number occupying the depot is zero. Hence, the selection of the depot has 

also been obtained from the chromosome. Additionally, the arbitrary vertex i* in the 

route construction for that depot is the starting vertex assigned to the depot. For 

example, a chromosome for a 4-depot, 8-customer and 2-product problem could be 

configured, as shown in Fig. 6. 

 

[Insert Figure 6 about here] 

 

   From this chromosome, we can find that Depots 1, 3, and 4 are used. The largest 

positive number in the depot genes is 7, which means that the product genes from the 

7th position to the end are assigned to Depot 3. The second largest positive number in 

the depot genes is 5, which means that the product genes from 5th position to the 6th 

(=7−1) position are assigned to Depot 1. The next largest positive number in the depot 

genes is 3 and it is the only remaining positive number, which means that the 

remaining product genes are assigned to Depot 4. In the route construction, the 

starting customer is 4 for Depot 1, 1 for Depot 3, and 5 for Depot 4. Note that one 

chromosome cannot present a complete solution. For a depot selection and customer 

assignment scenario determined by a chromosome, we use the route construction 

explained in the above section to obtain the routing solution. 

 

4.2. Population Initialization  

We generate an initial solution by using a heuristic method in the initialization process. 

The initialization mechanism is as follows: 

Step 1: Randomly generate a subset of potential depots. 

Step 2: Randomly generate a sequence of customers and assign each customer to the 

nearest depot in the subset. 

Step 3: Assign the products to the customers in increasing order. 

Step 4: Construct the chromosome based on the results from the first three steps. 

4.3. Fitness function 

The fitness function is used to evaluate the quality of a chromosome. Because the 

proposed mathematical model aims to minimize the total cost, we use the reciprocal 

of the objective function as the fitness function. Therefore, a chromosome is 

considered as a good one if it has a high fitness value.  

4.4. Reproduction 

In this paper, chromosomes with higher fitness values will be involved in the 

reproduction process with a higher probability. The Tournament Selection is used as 

the primary selection mechanism. First, we calculate the fitness value of each 

chromosome in the population. Then, two chromosomes are randomly selected from 

the population with replacement, and we sent the fitter one to the new population. The 

above two steps are repeated until the number of selected chromosomes is equal to the 

population size.  

4.5. Crossover and mutation 
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In this paper, we use the two-cut-point method to obtain new sequences of products in 

the product genes, and use the one-cut-point method to the depot selection in the 

depot genes. We set a possibility, (i.e., crossover rate) to decide whether to conduct 

the crossover operator. If the crossover operator should be applied, then it is 

conducted with the following steps.  

Step 1: Randomly select two different genes within the range of [1, length of the 

product genes] as crossing points, and exchange the product information 

presented by the two points. 

Step 2: Move the product information of Parent 1 that are not selected from Parent 2 

to Child 1 in the originating sequence. 

Step 3: Apply the one-cut-point method to the depot genes. 

   Fig. 7 illustrates an example of crossover when |I|=4, |J|=8, and |P|=2. 

 

[Insert Figure 7 about here] 

 

We set a possibility, (i.e., mutation rate) to decide whether to conduct the mutation 

operator. We use different mechanisms for the depot genes and product genes. For the 

former part, we randomly select a position within the range of [1, length of the depot 

genes], and replace the position with a randomly generated number within the range 

of [0, length of the product genes]. For the latter part, we randomly select two 

different positions within the range of [1, length of the product genes] and reverse the 

products information between the two points (see Fig. 8).  

 

[Insert Figure 8 about here] 

 

4.6. Route Construction 

The gene in our GA can tell the depot selection, the assignment of the customers to 

the depots, and the starting customer for each depot by using two strings. According 

to the information, we need to decide the route construction for one used depot and 

the customers assigned to it. We explore a sweep-based algorithm to determine the 

routes based on the chromosome obtained from the GA operators. The algorithm is 

similar to our constructive heuristic except the starting customer is selected by the 

chromosome and need not be generated. For cases in which some types of products 

for one customer are assigned to different depots, we considered the demands for the 

remaining types of products as zero to avoid the waste of compartment space during 

the vehicle selection process.  

 

4.7. Mini Local Search based on the Packing Strategy 

The HGA can generate a large number of customer assignment scenarios. On the 

other hand, however, the route construction might be relatively limited compared with 

the heuristic, because the starting customer is decided in each chromosome. Therefore, 

we design a mini local search to improve the best solution obtained in each generation 

to improve the effectiveness of the HGA. In the mini local search based on the 
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packing strategy, we focus on the intra-route exchanges and the ‘insert’ and ‘exchange’ 

moves are the same as those discussed in Section 3.3.  

 

5. Computational Experiments 

In this section, several numerical experiments are conducted to evaluate the 

performance and the efficiency of the proposed algorithms. The presented mixed 

integer program is implemented and solved by CPLEX (Version 12.1). All of the 

experiments are run on a personal computer with Intel (R) Core (TM) i3-2100 CPU at 

3.10GHz, 4 G of RAM and Windows 7. 

5.1 Experimental data design 

In the problem, several parameters are given as input data, as mentioned in Section 2. 

In the experiments, we deal with two compartments in each vehicle because it is 

practical to classify the food as frozen and non-frozen. We consider four types of 

potential depots, the fixed costs of which are $300, $350, $400, and $500, respectively. 

Three types of vehicles are used in the experiments. From Type 1 to Type 3 of 

vehicles, (Fv, Cv, MLv, Qvp) are ($50, 2$/km, 300km, (100,100)), ($70, 3$/km, 270km, 

(200,200)), and ($100, 4$/km, 250km, (300,300)). The coordinates of the customers 

and potential depots are randomly generated in U (0, 100), respectively. The demands 

of the two types of products are randomly generated in U (50, 100).  

 

5.2 Parameter setting 

Four parameters are involved in the GA: the number of generations, the population 

size, the crossover rate, and the mutation rate. We conducted pilot tests to find the 

suitable values for these parameters. The 50-customer problem is used to achieve the 

effective tests, as shown in Experiment 3. We empirically set the initial values for 

each test prior to conducting rigorous testing. For the method of fine-tuning the 

population size, crossover rate, and mutation rate, refer to Moon et al. (2015). 

Populations of 100, 200, 300, and 400 are tested as the potential population sizes. 

According to the results, we select 300 as the population size because of its high 

performance in the objective function value, computational time, and convergence 

rate. As Figs. 9 and 10 show, 0.7 and 0.2 are the best crossover and mutation rates to 

achieve a good objective function value, respectively.  

 

[Insert Figures 9 and 10 about here] 

 

5.3 Experiment 1 (optimal solution guaranteed) 

In Experiment 1, small problems, including 8 customers, 2 potential depots, and 4 

vehicles, are tested by using the mixed integer program and the proposed algorithms. 

The types of the two potential depots are Type 1 and Type 3. The numbers of each 

type of used vehicles in the experiments are 0, 2, and 2. Vehicles 1 and 2 belong to 
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Type 2 and Vehicles 3 and 4 belong to Type 3. All other information, including the 

demands and locations of customers and depots, is available on the website of the 

authors which will be notified later due to blind reviewing.  

We first test one problem instance in order to observe the feasibility of each 

solution and compare the solutions obtained with the three approaches. In this 

instance, the randomly generated distance between the nodes and the demand of the 

customers are shown in Table 2. Pilot experiments using the VRP with Multiple 

Compartments (VRPMC) were conducted to verify the quality of the heuristic 

algorithm and the HGA. Each tested instance using the VRPMC involved 8 customers, 

one depot with a fixed cost of $300, and 4 vehicles. The vehicles are of the same 

types as those used in Experiment 1 except that each vehicle can travel in only one 

trip. From Table 3, we can see that the two algorithms are efficient for the VRPMC.  

In Table 4, the solutions including the objective function value, computational 

time, used depots, used vehicles, and the routes of each vehicle have been compared. 

We could observe that the results are the same except for the computation time. 

 

[Insert Tables 2-4 about here] 

 

Ten problem instances of the same characteristics as above are randomly 

generated and the objective function values compared in Table 5. In this particular 

experiment, both the constructive heuristic and the HGA obtain the optimal solutions 

which show their efficiency on these small size instances. 

 

[Insert Table 5 about here] 

 

5.4 Experiment 2 (optimal solution not guaranteed) 

Four larger size problem instances are tested in which CPLEX failed to solve the 

mathematical model to optimality due to an out of memory error. We used instances 

with 20, 50, 75, and 100 customers. Therefore, the heuristic and the HGA are 

compared with each other. For each size of problems, ten instances with randomly 

generated distances and demands are used to conduct the experiments. Table 6 

summarizes the results of these problems. The results of all of the ten instances for 

Experiments 2 are shown in the Appendix but a brief discussion on the results is given 

here for each of the four sizes which we refer to them as cases for simplicity. 

 

[Insert Table 6 about here] 

 

5.4.1. Case 1 (20 customers and 4 depots) 

This experiment involves 20 customers, 4 depots, and 10 vehicles, the information 

of which are randomly generated. The numbers of each type of potential depot are 2, 0, 

1, and 1 and the numbers of each type of available vehicles are 4, 3, and 3. Vehicles 

1-4 belong to Type 1, Vehicles 5-7 belong to Type 2, and Vehicles 8-10 belong to Type 

3.  
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The constructive heuristic obtained better solutions for 4 instances among the 10 

instances, while the HGA found the best solution in 2 instances, and a tie was 

observed in the remaining 4 instances. On average the constructive heuristic produced 

a slightly smaller objective function value in a shorter average computation time 

amounting for about 60% of the HGA time.  

5.4.2. Case 2 (50 customers and 4 depots) 

Large problem instances containing 4 potential depots and 50 customers are 

randomly generated. The potential depots are the same as in Case 1. The numbers of 

each type of available vehicles are 10, 15, and 5 (a total of 30 vehicles). Vehicles 1-10 

belong to Type 1, Vehicles 11-25 belong to Type 2, and Vehicles 25-30 belong to Type 

3. The constructive heuristic obtained better solutions for 3 instances among the 10 

instances, while the HGA found the best solution in 7 instances. On average the HGA 

produced a slightly smaller objective function value but required a longer 

computation time with an average of 1964.0 seconds compared to 924.0 seconds 

needed by its counterpart.  

 

5.4.3. Case 3 (75 customers and 6 depots) 

To further test the proposed algorithms, large problem instances containing 6 

potential depots and 75 customers are randomly generated. The numbers of each type 

of potential depots are 2, 1, 2, and 1. Compared with Case 2, additional 5 vehicles of 

Type 3 are added. As shown in Table 6, neither of the two algorithms is dominated by 

the other. The HGA could obtain better solutions with a higher probability, i.e., the 

HGA could obtain better solutions for 8 instances among the 10 instances. The 

average computation time of the constructive heuristic is 1971.8 seconds whereas 

HGA averagely requires 2701.5 seconds.  

 

5.4.4. Case 4 (100 customers and 8 depots) 

To assess in more details case 3, we tested larger instances. Here, instances 

containing 8 potential depots and 100 customers are randomly generated. The 

numbers of each type of potential depots are 2, 2, 2, and 2. The vehicles are the same 

with those in Case 3. As shown in Table 6, the HGA could obtain better solutions for 9 

instances among the 10 instances. For problems of this size, the average computation 

time of the constructive heuristic is 5524.8 seconds whereas the HGA consumes 

5636.7 seconds.  

 

From the above experiments, we can see that the HGA is the best performer when 

the number of customers is large and the performance gap between the two algorithms 

gets more significant when the problem size increases. Because the HGA can generate 

solutions in a wider space, the solution quality should be better than the heuristic 

algorithm at a cost of a longer computation time. For instance, for 100 customers, the 

HGA is able to outperform the counterpart algorithms in 90% of the time, but this 
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success comes with a much greater computational burden. Managers may select an 

algorithm according to the specific decision needed or their preference for a better 

solution or a shorter computational time. 

 

5.5 Sensitivity Experiment 

To obtain more managerial insights into the development of an efficient distribution 

system, we conducted sensitivity experiments on the density of node locations and the 

number of compartments. We set α as a coefficient to adjust the distances between 

nodes. We denoted the fixed cost of depots, fixed cost of vehicles, and transportation 

cost under α as FCD(α), FCV(α), and TC(α), respectively. We ran the HGA using an 

instance generated from Case 1, Experiment 2 by making more vehicles available. For 

a few fixed depots, a larger α means that the vehicles must travel longer distances 

between the depots and customers, which may be inefficient. Therefore, from the 

solutions, we found that more depots are used and the fixed cost of vehicles was also 

higher with a larger α (see Fig. 11). For example, when α is increased from 1.25 to 

1.50, the fixed cost of the depots is increased from $600 to $1100. Consider αTC(1.00) 

as benchmarks and we can see that TC(α) is lower than αTC(1.00) when α is greater 

than 1.00, which implies a shorter traveling distance. Then, we conjectured that a 

trade-off characterizes the transportation cost with the fixed cost of the depots and the 

vehicles. For the Eastern Asian cities in China, Korea, and Japan with dense customer 

locations, a distribution system with a few big distribution centers (depot) might be 

efficient. In contrast, for European cities, such as those in the UK and France, more 

centers that cover a wide area might be more appropriate.  

 

[Insert Figure 11 about here] 

 

   We conducted new experiments on five instances generated from Case 1, 

Experiment 2 by setting the number of compartments as 3, 4, and 5. Table 7 presents a 

summary of the total costs obtained from the heuristic algorithm and the HGA. 

Without a doubt, more compartments on one vehicle make the system more complex. 

In most cases, more compartments were associated with a higher total cost. In a few 

cases, however, more compartments may not lead to a higher system cost, such as 

when the existing solutions of depot location and vehicle management (including 

vehicle and route selection) can also satisfy the delivery demand for items in the new 

compartment(s). The heuristic algorithm and HGA may vary in terms of algorithm 

complexity and solution quality. Because the HGA has a greater flexibility for 

assigning demands for different types of products (i.e., different compartment 

requirement) to multiple vehicles, the quality of solutions obtained from the HGA is 

higher than those from the heuristics. However, the complexity of the HGA may also 

be higher than the heuristic algorithm because the HGA searches a wider solution 

space because of crossover and other mutation mechanisms.  
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  [Insert Table 7 about here] 

 

6. Conclusions and Suggestions 

In this study, a location routing problem with multi-compartment and multi-trip 

(LRPMCMT) is investigated. This problem involves the selection of potential depots, 

the assignment of customers to depots, and the deployment of vehicles and routes for 

every vehicle as well as the assignment of products to the vehicles. The combined 

problem has never been addressed before, even though it is practical in real situations. 

To solve the small problems to optimality, a mixed integer program is presented. 

Because the problem is NP-hard, a heuristic and a hybrid genetic algorithm are also 

proposed to solve large problems. To evaluate the performance, the proposed 

algorithms are tested on randomly generated instances. Through a comparison with 

the optimal solutions from the mixed integer program, we demonstrated the efficiency 

of the algorithms. We could observe that neither of the proposed algorithms is 

dominated by the other when tested on the medium size problems (Case 2), however, 

the HGA obtains better solutions especially in larger instances though it needs a 

relatively longer computation time.  

In future research, the mathematical formulation could be tightened by 

introducing valid inequalities as well as the lifting of some of the constraints. Note 

that in our packing heuristic, the possibility of customer reshuffling between the 

routes could lead to a better solution though this approach could be too time 

consuming given it is called several times within the search. However, its complexity, 

this is a challenging implementation that could be worth exploring further in the 

future.  

From a practical view point, other extensions such as the inclusion of capacitated 

potential depots, the presence of time-window constraints and the need for both the 

delivery and the pickup considerations may be worth investigating. As this is an 

integrated problem spanning over different time scale which is made up of a strategic 

one (location decision) and tactical/operational (fleet size/ routing decision) a study 

that examines the robustness issue is in our view most exciting and very practical. In 

addition, because we allow each vehicle to conduct more than one trip in each day, the 

consideration of driver behaviors could be a fruitful direction. The uncertainty in the 

customer set could also be taken into account, making the optimization of the problem 

more complicated and challenging yet practically useful. 
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Fig. 1. An example of an infeasible solution due to subtour 

 

 
Fig. 2. Comparison of different customer assignments and route constructions 
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Fig. 3. Flowchart of the add/drop/swap heuristic 
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Fig. 4. Flowchart of the route construction 
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Fig. 5. Flowchart of the HGA 
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Fig. 6. A possible chromosome for a sample problem 

 

 

Fig. 7. Procedure for crossover 

 

 

Fig. 8. Procedure for mutation 

 

 

Fig. 9. Test results for crossover rates 
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Fig. 10. Test results for mutation rates 

 

 

Fig. 11. Comparison of costs under different values of α 
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Table 1. Comparison of the problems 

 

 LRP VRPMC VRPMT This study 

Depot Multiple Single Single Multiple 

Compartment Single Multiple Single Multiple 

Trip Single Single Multiple Multiple 

Vehicle 
Heterogeneous/ 

Homogeneous 
Homogeneous 

Heterogeneous/ 

Homogeneous 
Heterogeneous 

 

Table 2. Distance between nodes (km) and demand of customers (units) 

 

 1 2 3 4 5 6 7 8 9 10 

From  

1 0 78 26 78 57 37 60 29 89 58 

2 78 0 58 23 28 44 56 79 44 53 

3 26 58 0 66 46 14 62 47 82 58 

4 78 23 66 0 21 54 38 71 21 37 

5 57 28 46 21 0 36 29 51 35 26 

6 37 44 14 54 36 0 58 52 72 54 

7 60 56 62 38 29 58 0 40 36 4 

8 29 79 47 71 51 52 40 0 75 39 

9 89 44 82 21 35 72 36 75 0 36 

10 58 53 58 37 26 54 4 39 36 0 

Demand 
Product 1 58 97 69 66 74 65 76 87   

Product 2 65 65 93 89 56 50 87 56   

Note: Nodes 1 to 8 are the customers, while the other two nodes are potential depots. 

 

Table 3. Results of pilot experiments for the MCVRP 

 

Dataset 
Objective 

value ($) 

MIP Heuristic HGA 

Time 

(seconds) 

Time 

(seconds) 

Time 

(seconds) 

1 1427 1550.69 0.03 3.30 

2 2131 1038.17 0.03 4.50 

3 1912 441.67 0.02 4.00 
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4 1560 1791.36 0.02 3.80 

5 2034 2785.34 0.04 4.20 

6 1744 1360.33 0.01 3.90 

7 2080 1703.05 0.03 3.70 

8 1838 735.77 0.03 4.50 

9 1710 527.63 0.03 4.40 

10 1804 956.31 0.04 3.90 

 

Table 4. Solutions obtained with the three approaches 

 

 MIP Heuristic HGA 

Objective function value ($) 1734 1734 1734 

Computation time (seconds) 8604 0.05  8.40  

Used depots 10 10 10 

Used vehicles 1,3 1,3 1,3 

Vehicle 1 

Trip 1 10-2-4-10 10-2-4-10 10-2-4-10 

Trip 2 10-7-5-10 10-7-5-10 10-7-5-10 

Vehicle 2 Trip 1 10-6-3-1-8-10 10-6-3-1-8-10 10-6-3-1-8-10 

 

Table 5. Comparison of the results obtained with the MIP and the proposed algorithms 

 

Dataset 
Objective 

value ($) 

MIP Heuristic HGA 

Time (hours) 
Time 

(seconds) 

Time 

(seconds) 

1 1734 3.49 0.05 8.40 

2 1566 2.18 0.07 8.30 

3 1874 4.26 0.08 8.60 

4 1704 3.15 0.05 8.90 

5 1803 5.27 0.08 9.10 

6 1941 4.94 0.06 8.90 

7 1815 3.64 0.07 7.80 

8 1438 3.11 0.07 9.60 

9 1793 3.29 0.06 8.30 

10 2240 4.78 0.07 8.60 
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Table 6. Results of Experiment 2  

Problem  
Objective value ($) 

Heuristic HGA 

20 customers 

and 4 depots 

Average 3350 3350 

Average deviation 1.000 1.000 

Max deviation 1.042 1.014 

Best deviation 0.985 0.959 

# best 4 2 

50 customers 

and 4 depots 

Average 6065 6032 

Average deviation 1.005 0.995 

Max deviation 1.026 1.014 

Best deviation 0.986 0.975 

# best 3 7 

75 customers 

and 6 depots 

Average 7569 7493 

Average deviation 1.011 0.990 

Max deviation 1.029 1.015 

Best deviation 0.990 0.971 

# best 2 8 

100 customers 

and 8 depots 

Average 10131 9752 

Average deviation 1.039 0.963 

Max deviation 1.101 1.000 

Best deviation 1.000 0.909 

# best 0 9 

Note: deviation=objective value of heuristic (HGA) /objective value of HGA (heuristic) 

 

Table 7. Comparison of the results obtained with the proposed algorithms under different 

numbers of compartments 

 

Dataset 
2 compartments 3 compartments 4 compartments 5 compartments 

Heu. HGA Heu. HGA Heu. HGA Heu. HGA 

1 3270 3021 3270 3021 3333 3119 3333 3119 

2 3325 3257 3363 3339 3380 3344 3405 3353 

3 3356 3344 3475 3449 3540 3449 3645 3604 

4 3249 3258 3332 3301 3506 3489 3577 3525 

5 3373 3237 3497 3497 3594 3501 3790 3578 

Note: Heu. Represents Heuristic Algorithm and the unit of objective values is $. 

 

Appendix 
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See Tables 8 to 11. 

 

Table 8. Detailed results of Experiment 2 with 20 customers and 4 depots 

 

Dataset 

Heuristic HGA 

Objective 

value ($) 

Time 

(seconds) 

Objective 

value ($) 

Time 

(seconds) 

1 3973 90.5 3973 125.1 

2 3177 87.0 3190 141.4 

3 3328 79.3 3369 147.7 

4 3116 100.8 3115 139.0 

5 3064 95.4 3064 142.2 

6 3822 91.1 3878 145.4 

7 3301 90.3 3301 150.0 

8 3165 97.2 3201 139.4 

9 3403 89.0 3265 147.0 

10 3146 96.3 3146 146.4 

 

 

Table 9. Detailed results of Experiment 2 with 50 customers and 4 depots 

 

Dataset 

Heuristic HGA 

Objective 

value ($) 

Time 

(seconds) 

Objective 

value ($) 

Time 

(seconds) 

1 5391 864.2 5337 1991.0 

2 5885 928.5 5884 2189.5 

3 6494 914.7 6353 1987.1 

4 5722 1009.2 5702 1834.9 

5 6437 934.0 6320 1877.3 

6 6885 811.4 6712 2090.2 

7 5559 872.4 5621 2053.6 

8 6166 868.4 6143 1810.1 

9 5863 1136.5 5919 1801.7 

10 6243 900.6 6331 2004.2 

 

 

 

 



33 
 

Table 10. Detailed results of Experiment 2 with 75 customers and 6 depots  

 

Dataset 

Heuristic HGA 

Objective 

value ($) 

Time 

(seconds) 

Objective 

value ($) 

Time 

(seconds) 

1 7118 1850.9 7039 2661.0 

2 6999 2050.1 6994 2770.1 

3 7725 2110.4 7508 2597.8 

4 6971 2023.6 6845 2800.7 

5 7840 1829.4 7617 2455.2 

6 7558 1986.9 7520 2666.6 

7 7374 1997.6 7446 2709.1 

8 8321 2167.6 8202 2871.0 

9 7182 2045.3 7029 2588.1 

10 8601 1656.6 8726 2895.6 

 

Table 11. Detailed results of Experiment 2 with 100 customers and 8 depots  

 

Dataset 

Heuristic HGA 

Objective 

value ($) 

Time 

(seconds) 

Objective 

value ($) 

Time 

(seconds) 

1 10211 4501.2 10155 8333.1 

2 9809 5112.0 9809 8090.0 

3 10025 5765.4 9780 9263.4 

4 9974 4879.1 9185 10010.5 

5 10017 5381.5 9881 9989.7 

6 10441 4793.2 9487 8762.3 

7 10657 6166.7 10123 9776.8 

8 10207 5083.9 9716 9015.5 

9 9797 4987.6 9583 8224.3 

10 10169 5577.8 9801 9003.0 

 

 


