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In this article, we consider the production planning problem in the presence of (dis)economies-of-scale in production costs
on a rolling horizon basis with a fixed forecast horizon. We propose variants of three well-known and commonly used
heuristics (Wagner–Whitin, Silver–Meal and Least Unit Cost) adapted for this particular setting. In an extensive numerical
study with demands exhibiting stationary, increasing and decreasing trends and seasonality, we demonstrate that having
longer forecast horizon is less effective in obtaining more cost effective production plans when the production cost function
is convex and also when fixed setup cost is lower, which both are proxy to lack of economies-of-scale.
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1. Introduction

Dynamic lot-sizing models address the problem of finding an optimal production or procurement plan in such a way that the
total cost that includes fixed setup cost, storing or holding cost over the periods, and the production cost is minimised. This
problem started to receive interest with the early work of Wagner and Whitin (1958) which provides an O(T2) algorithm
for a planning horizon of T periods resulting from the important zero inventory optimality property which indicates that
in an optimal production plan, both the production quantity and the on-hand inventory at the beginning of any period
cannot be positive. Federgruen and Tzur (1991), Aggarwal and Park (1993), Wagelmans, Van Hoesel, and Kolen (1992)
and Van Hoesel et al. (1994) each independently improved the complexity time of the Wagner–Whitin (WW) algorithm to
O(T log T). In the presence of the complete data of the entire horizon, implementing a WW algorithm solves the problem
optimally in less than a second not only in the currently available fast personal computers but also in the relatively slow
computers of the last decade. However, its optimality is not guaranteed in a rolling horizon setting and heuristic algorithms
are extensively used for this class of problems. Chand, Hsu, and Sethi (2002) in their extensive review paper quote from
Hopp and Spearman (2011) that ‘no commercial MRP package actually uses WW algorithm’. and they justify it with
another quotation from the same authors stating that ‘people would rather live with a problem they cannot solve than accept
a solution that they do not understand’. The importance of the heuristic algorithms emerges from knowing that in the
rolling horizon framework, heuristics may outperform the exact WW algorithm. (e.g. see Russell and Urban 1993). There
is a solid body of work providing further evidence in that regard. In an early work of Blackburn and Millen (1980), the
impact of rolling schedule on the performance of three pioneer heuristics has been examined. Their main findings is that
Silver–Meal (SM) heuristic can provide cost performance superior to WW algorithm. Wemmerlöv and Whybark (1984)
conduct a simulation experiment to evaluate 14 different lot-sizing rules and establish the impact of demand uncertainties on
heuristic performances, Stadtler (2000) demonstrate that planning horizon lengths affect the performance, Simpson (2001)
provide an extensive numerical simulation and argue their performance dominance and weaknesses. Other studies on rolling
horizon problems can be found in Chand, Hsu, and Sethi (2002) with a classified review of the literature in the forecast,
solution and rolling horizon problems and Sahin, Narayanan, and Robinson (2013) with a review on the rolling horizon
planning literature. Among recent works, Toy and Berk (2013) examine the performance of the modified counterpart of
the classic lot-sizing heuristics on special kind of lot-sizing problems called warm/cold process both in static and rolling
horizon configuration. They identify operating environment characteristics where each particular heuristic is the best or
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among the best. In another recent work of Baciarello et al. (2013) performances of eight well-known heuristics for the
classical uncapacitated lot-sizing problem are compared with an extensive numerical simulations. Ziarnetzky, Mönch, and
Uzsoy (2018) study a particular case of production planning for semiconductor wafer fabrication facilities both safety stocks
at the finished goods inventory level and workload-dependent lead times. They conclude that considering forecast evolution
in production planning models may improve the solution performance by exploiting the advance demand information. Saif
et al. (2019) consider the mixed model production industries and propose a drum buffer rope-based heuristic algorithm for
multi-level planning considering shifting bottleneck resource to make efficient schedules on a rolling horizon basis. They
have assessed their algorithm with a real industry case.

The difference between the problem investigated in this paper from those in the vast literature of dynamic lot-sizing
and rolling horizon is that here the production cost function is not linear as in the classical version of the problem. A
number of production or procurement settings present such opportunities to exploit scale economies or instances to avoid
scale diseconomies. In both cases, the total cost of producing or procuring a given batch of items is non-decreasing in the
batch size, and the average unit cost is non-increasing for economies-of-scale and it is non-decreasing for diseconomies-of-
scale (Chu, Hsu, and Shen 2005). Economies-of-scale resulting in concave costs arise in procurement settings with quantity
discount schedules. Diseconomies-of-scale resulting in convex costs arise in production settings due to (i) use of overtime or
variable production speeds/rates (Koca, Yaman, and Aktürk 2015), (ii) maintenance and repair activities or undesirable waste
disposal activities (Kian, Gürler, and Berk 2014), (iii) penalties arising from the sustainability and ecological regulations
(Heck and Schmidt 2010) or (iii) the price-dependent supply capacity and re-manufacturing (Teksan and Geunes 2016).
Thus, the setting considered herein is a current and important production/procurement environment which has not been
studied before in the rolling horizon basis wherein the demand forecast plays an important role. Therefore, one might be
interested in comparison of forecast horizon effect in different parameter settings characterising economies-of-scale.

The convex-cost production planning problem is NP-hard (Florian, Lenstra, and Rinnooy Kan 1980; Teksan and
Geunes 2016) and therefore it is believed that no exact polynomial time algorithm exists to solve it. Although a few number
of exact algorithms (see Veinott 1964; Kian, Gürler, and Berk 2014; Teksan and Geunes 2015) for a special case of the
problem with no setup cost, and a few heuristics (see Heck and Schmidt 2010; Kian, Gürler, and Berk 2014) have been
proposed in the literature, they have not been examined in the practical rolling horizon basis. In this paper, we propose an
augmentation method for modifying the classical lot-sizing algorithms to solve the convex-cost instances. Three well-known
heuristics are equipped with that and numerically tested.

The remainder of this paper is organised as follows: in Section 2 we present the mathematical model of our problem
and provide some analytical results. Then we discuss heuristic algorithms in Section 3 and finally in Sections 4 and 5 we
provide numerical results and the conclusion.

2. The mathematical model

We consider the basic production planning setting with a single item and no capacity constraints over a finite planning
horizon of T periods. Demands quantities, denoted by dt, are forecast and known with certainty for a given forecast horizon
length (FHL) consisting of a number of periods ahead. In any period t, a fixed setup cost is incurred if any production takes
place in the period and ending inventory It in the period incurs a unit cost of ht. Denoting the production quantity in the
period with Xt, it is assumed that the variable production cost incurred in period t is given by the function f (Xt) = wtX r

t
where wt is a scalar coefficient and r is a measure of the economies-of-scale for r ≤ 1, or the diseconomies-of-scale if r > 1.
The former refers to concave production costs, whereas the latter refers to convex production costs. The objective is to
determine the minimum cost production plan for the periods u through v (u ≤ v) over the forecast horizon. The optimisation
problem is formally stated in (1)–(3).

(RPP) min
Xu,...,Xv

Pu,v =
v∑

t=u

[
(kt11{Xt>0} + htIt + f (Xt)

]
(1)

s.t.

It = It−1 + Xt − dt, t ∈ {u, . . . , v} (2)

It, Xt ≥ 0, t ∈ {u, . . . , v} (3)

where 11{A} is the indicator function which returns 1 if A is true; or 0, otherwise. Note that given all demand quantities, by
setting u=1 and v = T , the static version of the problem with entire planning horizon is obtained. However, the demand
quantities are unknown beyond the periods in the FHL at each decision period. That is, at the first period we have only
the demand information of periods {1, . . . , FHL} and the decision on the production quantity of these periods is made.
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Then, implementing and fixing the decision for the first period, in the second period the production quantities for periods
2, . . . , FHL+ 1 is updated as the demand of period FHL+ 1 is revealed.

In a similar manner, the planned productions are amended by solving solve Pt,t+FHL−1 for all t as it is rolled until the
period T − FHL+ 1. At each step, the production quantity of the first period within each sub-problem (over FHL periods)
is retained. This implementation approach is depicted in Algorithm 1.

Algorithm 1 Rolling implementation
Input: Solution algorithm, Forecast Horizon Length
Output: Provide a production plan
1: function Rolling_implementation(solution_algorithm, FHL)
2: for t = 1 to T − FHL+ 1 do
3: Solve Pt,t+FHL−1 for the net demands with the given algorithm
4: Keep the obtained Xt.
5: Update the net demands using Xt.
6: end for
7: end function

2.1. Some analytical results

There are a number of key structural properties for production planning problems with non-convex production costs, which
aid in constructing heuristic solutions. The first is the existence of inventory decomposition property as given below.

Proposition 1 (Florian and Klein 1971) (Inventory Decomposition Property) If the constraint

Ik = 0 for some k ∈ {1, . . . , t − 1}, (4)

is added to problem P1,t, then an optimal solution to the original problem can be found by independently finding solutions
to the problems for the first k periods and for the last t− k periods.

This property implies that a problem horizon can be decomposed into independent sub-problems with zero starting and
ending inventories. Any such sub-plan within two consecutive zero inventory periods is called a generation in the literature.
Another fundamental result, on which the WW algorithm based, is the so-called integrality property of the production
quantities as stated below.

Proposition 2 (Wagner 1960) (Zero Inventory Property) Given a concave production cost function f, there exists an
optimal program such that It Xt = 0 for all t.

Thus, the optimal production quantities can be positive only in the first period of each generation and, therefore, there is
only one production period for each generation for concave production cost functions. The determination of the generation
length (i.e. the number of periods whose demands are covered with the production at the beginning period) basically hinges
on the trade-off between setup and holding costs if the unit product is constant (and is, therefore, ignored).

If the production cost is convex then the Zero Inventory Property does not hold and multiple production periods within
the generations are possible in an optimal solution (Kian, Gürler, and Berk 2014; Teksan and Geunes 2016). Such a structure
is illustrated in Figure 1 wherein the production quantities at each generation are depicted with different colors while the

Figure 1. Illustration of the generation structure for convex production cost functions.
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inventory level indicates the starting and ending periods of the generations. In this situation, the production quantities within
the generations satisfy a fundamental condition given in Proposition 3.

Proposition 3 (Kian, Gürler, and Berk 2014; Teksan and Geunes 2016) In any generation of an optimal production plan
for (RPP), the following holds between each pair of positive production quantities:

f ′(X ∗i )+
j−1∑
t=i

ht = f ′(X ∗j ), i < j (5)

where f ′ denotes the first derivative of the f.

Proof Proof is by contradiction. Suppose that for a generation with an optimal cost this equation does not hold. Then,
either (a): f ′(X ∗i )+∑j−1

t=i ht > f ′(X ∗j ); or (b): f ′(X ∗i )+∑j−1
t=i ht < f ′(X ∗j ). Let ε where 0 < ε < mini≤t≤j(I∗t + X ∗t − dt) be

a positive production quantity. Using asterisk and tilde respectively for denoting the values of all variables corresponding to
the optimal solution and an alternative production plan, a possible improve amount � is calculated as follows.

In case of (a), let X̃i = X ∗i − ε, X̃j = X ∗j + ε and X̃t = X ∗t for t �= i, j. Thus, Ĩt = I∗t − ε, i ≤ t ≤ j and for small ε values
we have,

� = f (X ∗i )+
j∑

t=i

htIt + f (X ∗j )−
[

f (X̃i)+
j∑

t=i

htĨt + f (X̃j)

]

= [
f (X ∗i )− f (X̃i)

]+ ε

j−1∑
t=i

ht +
[
f (X ∗j )− f (X̃j)

]

= ε

[
f (X ∗i )− f (X ∗i − ε)

ε
+

j−1∑
t=i

ht +
f (X ∗j )− f (X ∗j + ε)

ε

]
= ε

[
f ′(X ∗i )+

j−1∑
t=i

ht − f ′(X ∗j )

]
> 0.

The positiveness of � above which implied by assumption (a), indicates that the solution is improved which contradicts
with its optimality assumption. In case of (b), by letting X̃i = X ∗i + ε, X̃j = X ∗j − ε and X̃t = X ∗t for t �= i, j, and following
the similar process, the same contradiction will be carried out. �

Corollary 1 In an optimal plan for non-increasing coefficients parameters wt and positive unit holding costs ht the
followings hold.

(a) The positive production quantities will be increasing in t within a generation.
(b) For non-increasing demand patterns, the production quantity of the last period in the generation equals zero.

Proof Under the positiveness assumption of ht the following arguments hold.

(a) Equation (5) implies that f ′(X ∗i ) < f ′(X ∗j ). Since f is a convex function, f ′ is increasing which implies that X ∗i < X ∗j .
(b) Suppose to the contrary that Xtf > 0. According to the balance Equation (2), we have Xtf + Itf−1 − dtf = Itf = 0

which implies that Xtf < dtf due to the positivity of Itf−1. Further, part (a) implies that Xi < Xtf < dtf for i < tf
which contradicts with feasibility of solution as

∑t
s=tf

Xs ≥
∑t

s=tf
ds >

∑t
s=tf

dtf should hold.

�

Remark Under the assumptions of the corollary above, for non-increasing demand patterns, a myopic production planning
approach will be optimal over the entire horizon indicating that further precise demand forecast for the periods ahead, does
not have any value-added to the solution quality.

3. Heuristic algorithms

We consider variants of three heuristics originally developed for the classical production planning problem – the WW, SM
and Least Unit Cost (LUC). The rationale for selecting these heuristics is that they are simple to construct (thereby, to train
practitioners to use them on the shopfloor) and that they are known to perform moderately well in the classical setting. Let
gi,t denote the total cost of setup, holding and production activities of a sub-production plan corresponding to a generation



International Journal of Production Research 5

Table 1. Lot-sizing stopping rules at the first step.

Heuristic Stopping rule

WW recursion (6)
SM

gu,u+l

l
<

gu,u+l+1

l + 1
LUC

gu,u+l∑u+l
i=u di

<
gu,u+l+1∑u+l+1

i=u di

starting from period i and ending with period t. Moreover, let Ft denote the total production cost from the beginning period
until period t of the entire planning horizon. Then the WW dynamic programming recursion can be written as

F0 := 0, Ft = min
1≤i<t
{Fi−1 + gi,t}, 1 ≤ t ≤ T . (6)

Under each heuristic, the schedule (timing) of production instances is determined by applying the corresponding classical
heuristics whose constructions rest on setting consecutive sub-plans like [u, u+ l] which forms a generation with cost gu,u+l.
The starting and ending periods of these generations are determined based on the biggest l allowed by the stopping rules
given in Table 1.

The production periods and quantities obtained hitherto the current period are prone to change as (6) iterates over t during
the implementation of the WW algorithm. In contrast, SM and LUC algorithms have a pure forward structure in which the
determined production quantities are fixed without further changes over the time periods. The demand integrality property
is subsumed in both of them, and they are constructed based on stopping rules to decide on the number of periods whose
demands being covered with the single production at the beginning of the generation. In the SM heuristic, the stopping rule
for identifying generations’ ending period is the per-period averaged cost whereas in the LUC heuristic this criterion is
based on per-unit averaged cost. That is, git/(t − i+ 1) is non-increasing in t within any generation constructed by SM, and
similarly git/

∑t
s=i ds is non-increasing in t for any production plan within the generations constructed by LUC.

The calculation of git differs depending of whether economies or diseconomies-of-scale is present in production. Accord-
ing to the demand integrality property which holds for concave cost functions, imposed by Proposition 2, the calculation of
git is straightforward as,

git = Ki +
t∑

s=i

hs

⎡
⎣ t∑

j=s+1

dj

⎤
⎦+ wi

[
t∑

s=i

ds

]r

(7)

wherein inventory levels and the single production quantity are written in terms of demand amounts. However, in the
presence of convex production costs, optimal production plans may result in multiple production periods within a generation
as illustrated in Figure 1. In general, determination of the optimal schedule of production periods for a finite planning
horizon problem with convex production costs has been shown to be an NP-hard combinatorial problem (Florian, Lenstra,
and Rinnooy Kan 1980; Teksan and Geunes 2016). Therefore, for identifying the production periods, we propose a simple
rule based on which productions are allowed to be done in a block of consecutive periods at the beginning of a generation
as illustrated in Figure 2.

Thus, this class of heuristics (which we call augmented heuristics) spread production over a block of consecutive periods
within a generation while production quantities meet the property given in (5). The heuristics are constructed as follows. The
production periods are not predetermined but, rather, they are determined dynamically as the algorithm proceeds. To form a
sub-plan within [i, j], period i is designated as the sole production period and the cost of the sub-plan is calculated as g(1)

i,j =
K +∑j

t=i hÎt + f (
∑j

t=i dt). Then, production is assumed to be spread over periods i and i+ 1 and the corresponding cost is

Figure 2. Lumped structure.
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Table 2. Illustrative example for heuristics output (Kt = 800, ht = 1, f (Xt) = 0.01X 2).

calculated as g(2)
i,j = 2K +∑j

t=i hĨt + f (X̃i)+ f (X̃i+1), where f ′(X̃i)+ h = f ′(X̃i+1). If g(1)
i,j > g(2)

i,j production is assumed to

be spread over periods i, i+1 and i+ 2, and costs g(2)
i,j and g(3)

i,j are compared. Thus, starting with a single production period
for the entire net demand of the generation, additional productions are successively added and production quantities are
spread over the consecutive production periods according to Equation (5) as long as generation cost is decreasing by doing
so. The procedure continues until no further cost improvement is observed (g(n)

i,j < g(n+1)
i,j ) and the sub-plan corresponding

to last solution, g(n), is retained as the best. This procedure results in a production plan consisting of production sub-plans –
separated with regeneration points – in which the first or more consecutive beginning periods are production periods.

One may view the construction of the production plans as production splitting; hence, we denote these augmented
production-splitting heuristics with the prefix ‘ps’. Algorithm 2 summarises this construction procedure.

Algorithm 2 Production splitting within generations
Input: Demands and problem parameters of a generation including periods u, u+ 1, . . . , v
Output: A consecutive production periods and quantities
1: Xu ←

∑v
t=u dt, τ ← u

2: guv ←calculate the generation cost
3: repeat
4: τ ← τ + 1
5: split production quantities from period u to τ such that (5) holds.
6: g̃uv ←calculate cost of the augmented plan
7: if (the split production plan is feasible) and (g̃uv ≤ guv) then
8: retain the modified plan
9: guv ← g̃uv

10: else
11: STOP← True
12: end if
13: until STOP = True

With the proposed construction, we developed three heuristics: psSM where the stopping rule is based on the SM
criterion, psLUC where the stopping rule is based on the Least Unit Cost criterion and psWW where the stopping rule is
based on the WW criterion (Kian 2016) all summarised in Table 1.

An illustrative example of these algorithms are provided in Table 2 for a 10-period fixed horizon (i.e. FHL = T =
10) with the optimal solution provided by CPLEX. Clearly, the production-splitting heuristics outperform the generalised
versions with a single production period. Interestingly, psWW is able to produce the optimal production plan while WW is
incapable due to a single demand integrality structure imposed on it. Sub-plans are highlighted with different colours in this
table.

4. Numerical study

To evaluate the performance of our proposed heuristics, we use the deviation percentage of their cost from the objec-
tive value of the static solution obtained via ILOG CPLEX 12.8 with full demand information of the entire horizon,
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Table 3. Random demand realisation for T = 100 periods.

Demand Construction formula Parameters

Stationary truncated normal N(μ, σ 2) μ = 100, σ ∈ {0, 10, 22, 43}
Increasing dt = μ+ σ + τ(t − 1) μ = 100, σ = 10, τ ∈ {1, 10, 20, 40}
Decreasing dT−t+1 = μ+ σ + τ(t − 1) μ = 100, σ = 10, τ ∈ {1, 10, 20, 40}
Seasonal dt = μ+ σεt + a sin[2π/c(t + c/4)] μ = 100, σ = 10, c = 12, a ∈ {20, 40, 60, 80}

Table 4. The algorithm with minimum average optimality deviation.

d FHL (0,0.5) (0,1) (0,2) (400,0.5) (400,1) (400,2) (800,0.5) (800,1) (800,2)

STAT. 2 psWW psWW,psLUC psWW – – psWW – – psWW
4 psWW psWW,psLUC psWW psSM psSM psWW psSM psSM psLUC
6 psWW psWW,psLUC psWW psWW psWW psWW psSM psSM psWW

DEC. 2 psWW,psLUC – – psWW psLUC psWW psWW psWW psWW
4 psWW,psLUC – – psSM psSM psWW psLUC psSM psWW
6 psWW,psLUC – – psWW psWW psWW psSM psSM psWW

IIN. 2 – – psWW psWW psWW psWW psWW psWW psWW
4 – – psWW psSM psSM psWW psSM psSM psWW
6 – – psWW psWW psSM psWW psSM psSM psWW

SEAS. 2 psWW psWW,psLUC psWW – – psLUC – – psLUC
4 psWW psWW,psLUC psWW psSM psLUC psWW psWW psWW psLUC
6 psWW psWW,psLUC psWW psWW psWW psWW psSM psSM psLUC

calculated as

�FHL
i = TCFHL

i − TC∗

TC∗
× 100 (8)

where TCFHL
i denotes the total cost obtained from the rolling implementation of algorithm i with a forecast horizon length of

FHL periods, while TC∗ denotes the optimal total cost. We have obtained the optimal costs by employing the WW algorithm
for r ≤ 1, and by solving the conic quadratic reformulation of the model via CPLEX solver for r > 1 (see Kian, Berk, and
Gürler 2019).

Following Van Den Heuvel and Wagelmans (2005), we have considered four different demand patterns: (i) stationary
(as a base case), (ii) with a decreasing trend, (iii) with an increasing trend and (iv) with a seasonality component. The
parameters corresponding to each of these demand groups are given in Table 3.

To compare the effect of fixed setup cost, three levels are used, i.e. Kt ∈ {0, 400, 800}. The economies-of-scale is tested in
three levels, r ∈ {0.5, 1, 2} and the coefficient of the production cost function has been set as wt = μ1−r to roughly make the
same magnitude of production costs in each group (with or without economies-of-scale). For convenience, the unit holding
cost is set as ht = 1 and the algorithms are examined in rolling basis with FHL ∈ {2, 4, 6, 8, 10, 100}. All computations were
implemented on a personal computer equipped with Intel(R) Core(TM) i5-7200U, 2.50 GHz and 8GB of RAM.

The computation times of the heuristics for all problem instances are very short in the order of milliseconds and, hence,
not reported here. Also the execution time of CPLEX solver was set to 1 h which was sufficient enough to optimally solve
the convex-cost instances (r=2).

The numerical results of the heuristics are presented in Tables A1–A4 in Appendix for each demand pattern separately.
The outputs are classified based on the parameters Kt, r and FHL in row blocks; and based on the demand parameters in
column blocks. In the following, we briefly discuss the main observations.

4.1. Demand pattern and parameter

Although the proposed heuristics behave consistently against the setup and production costs according the examined demand
patterns, the superiority of them may change in different circumstances of demand. For instance, psSM outperforms psLUC
for the increasing and decreasing demand patterns (see Tables A2 and A3 in Appendix) while it is defeated against psLUC
for the stationary and seasonal demand patterns particularly when there is no economies-of-scale for the production cost
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(r > 1). On the other hand a better performance of pdSM compared to psLUC is observed generally when economies-of-
scale holds (see Tables A1 and A4 in Appendix). Despite the general superiority of psWW to the others, its defeat is also
observed as well (for the concave production function see Table A2, τ = 1, r= 0.5, FHL = 4, K= 400,800; and for the
convex cost see Table A4, a=20, r=2, FHL = 4, K= 800).

4.2. Set-up cost (K)

Comparing optimality deviation of heuristics for different demand patterns and for their different parameters we observe
that it generally deteriorates for higher setup cost. However, this sensitivity is more significant for shorter forecast horizons
(up to 6 periods), and when economies-of-scale holds (concave).

4.2.1. Economies-of-scale (r)

With the higher values of r, the performance of the heuristics are slightly improved based on the augmentation procedure
they are equipped with. However, for the case of zero setup cost they all show an insensitive behaviour against the existence
or lack of economies-of-scale. Both psSM and psLUC heuristics perform more steadily and less sensitively to the length
of the forecast horizon as they might produce more myopic solution with less use of the future data ahead. However, the
quality of the solutions they generate are slightly better when the production cost function is convex. It may be due to the

Figure 3. The trend of optimality deviation over different forecast horizon lengths for the stationary and seasonal demand patterns.
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myopic manner they have, which is more appropriate when economies-of-scale does not exist because the more periods
ahead to consider and the more quantities to produce, the higher cost it will incur in this case.

4.2.2. Forecast horizon (FHL)

For all the demand patterns and algorithms, an insensitive performance against the forecast horizon is observed for the
case in which the setup cost is zero. Among the other configurations, psWW algorithm performs more sensitively to the
horizon length while psSM and psLUC are stabilised within short forecast horizons. Despite having the same trend, their
performances are deteriorating for higher demand fluctuations or variance. Also, the intensity of their performance change
is more significant for the cases in which setup costs are high and/or the variable production cost benefits from economies-
of-scale. Another interesting observation is that, for the increasing and decreasing demand patterns, the performance of the
algorithms are more insensitive to the forecast data, even less than the case of stationary demand.

The deviation of our heuristics from optimality averaged over the instances, is plotted with respect to the forecast
horizon length in Figures 3 and 4 for (K, r) pairs. We observe that the peak deviations correspond to those instances where
unit setup cost is high and r ≤ 1. This combination leads to high economies-of-scale: The higher unit setup cost is, the
bigger batch size is desirable to amortise it; and the more concave the production cost function is, the smaller the cost
margin is for bigger batch sizes. Thus, it is more likely in these combinations to cover the demand of several periods via
each individual production and consequently have longer generations in the optimal solution. Therefore, myopic forecast

Figure 4. The trend of optimality deviation over different forecast horizon lengths for the decreasing and increasing demand patterns.
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horizons in the rolling horizon settings are prone to significantly deviate from the optimal production plan. On the other
hand, a lower setup cost and a more convex production cost function induce the production lots to cover the demand of
fewer periods (and possibly producing lot-for-lot) in an optimal production plan. Therefore, a short forecast horizon might
provide sufficient information to achieve a satisfactory production plan on a rolling basis without further investment on
forecasting future demand. The winner algorithms with minimum average deviation for each (K, r) combination and FHL
are given in Table 4. The equally performed cases are specified by dashes; and as the winners do not change after FHL = 6,
the longer forecast horizons dropped from the table.

5. Conclusion and future directions

In this paper, using the solution optimality structure of the convex-cost production planning problem, we have proposed an
augmentation method for the lot-sizing heuristics in the presence of diseconomies-of-scale. Then, modifying the three well-
known lot-sizing algorithms with our augmentation method for solving convex-cost production planning problems which
lack the economies-of-scale property, we have examined their performance with different demand patterns and parameters
in the rolling horizon schema to see the importance of demand forecasts as well.

Our numerical study suggests that even though the length of forecast horizon does not change the dominance order of the
algorithms, the performance of algorithms appear with different magnitudes and they converge after a quite short forecast
horizon (4–6 periods), which entails that excess of information about the future demands does not necessarily result in a
better production plan. This threshold after which the deviation percentages are stabilised, are shorter when the problem
lacks economies-of-scale, suggesting more myopic actions and less investments on the precisely forecasting later future
demands.

In addition, our numerical tests demonstrated that the for the convex-cost production planning problems per-unit-based
algorithms (LUC) perform better than per-period-based ones (SM). Because the per-unit stopping rule can capture the
diseconomies-of-scale when the total cost is dividend by the total units. Nevertheless, for the concave-cost production costs
this is the opposite way around and SM has the superior performance.

All of the algorithms on average perform better for the monotone demand patterns either increasing or decreasing.
However, the seasonal and stationary demand patterns may lead to significantly poorer performance of the heuristics with
short forecast horizon lengths.

Another interesting observation within our study is that irrespective of the algorithm we use, the forecast horizon is
more important when the objective function benefits from economies-of-scale. That is, when the production cost function is
more concave or the setup cost is high. As an example, the concave instances for which all the algorithms have resulted in
almost 40% of optimality deviation, are solved with 11% deviation for their convex counterparts.

Although the investigation of lot-sizing algorithms is a classical topic in the production planning, in this study we
revisited it from a different aspect which has not been addressed before. Our managerial insight in investigating the effect of
economies-of-scale with considering convex or concave cost function in the rolling horizon framework might be of interest
in practice as the manufacturing sector faces new paradigms under sustainability, workers’ rights or any other legislation
which might change the production margin.

We have not been able to obtain worst case performance bounds similar to the linear cost cases (Axsäter 1982, 1985) and
conjecture that the worst case performance is unbounded for convex production costs. Development of performance bounds
for the proposed heuristics would be an area for future study. In this work, we focused on a single item setting. However,
many of our motivating particulars apply to production environments with multiple items. Another very interesting area of
future study is to consider multi-item production planning.
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Appendix

Table A1. Stationary demand.

σ = 0 σ = 10 σ = 22 σ = 43

K r FHL psWW psSM psLUC psWW psSM psLUC psWW psSM psLUC psWW psSM psLUC

0 0.5 2 0.000 0.018 0.000 0.000 0.018 0.000 0.000 1.307 0.405 0.013 2.057 6.915
4 0.000 0.018 0.000 0.000 0.018 0.000 0.000 1.307 0.405 0.000 2.396 6.915
6 0.000 0.018 0.000 0.000 0.018 0.000 0.000 1.307 0.405 0.000 2.396 6.915
8 0.000 0.018 0.000 0.000 0.018 0.000 0.000 1.307 0.405 0.000 2.396 6.915

10 0.000 0.018 0.000 0.000 0.018 0.000 0.000 1.307 0.405 0.000 2.396 6.915
100 0.000 0.018 0.000 0.000 0.018 0.000 0.000 1.307 0.405 0.000 2.396 6.915

1 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.302 0.000 0.000 5.673 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.302 0.000 0.000 6.251 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.302 0.000 0.000 6.251 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.302 0.000 0.000 6.251 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.302 0.000 0.000 6.251 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.302 0.000 0.000 6.251 0.000

2 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.090 0.090 0.019 7.433 1.639
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.090 0.090 0.000 7.588 1.639
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.090 0.090 0.000 7.588 1.639
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.090 0.090 0.000 7.588 1.639

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.090 0.090 0.000 7.588 1.639
100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.090 0.090 0.000 7.588 1.639

400 0.5 2 10.747 10.747 10.747 10.747 10.747 10.747 12.686 12.686 12.686 15.453 15.453 15.453
4 3.739 0.647 1.195 3.739 0.647 1.195 4.496 1.721 2.820 6.225 2.501 6.809
6 0.599 0.647 1.195 0.599 0.647 1.195 1.080 1.714 2.820 1.578 1.837 6.861
8 1.042 0.647 1.195 1.042 0.647 1.195 0.903 1.714 2.820 0.571 1.837 6.861

10 0.403 0.647 1.195 0.403 0.647 1.195 0.572 1.714 2.820 0.192 1.837 6.861
100 0.000 0.647 1.195 0.000 0.647 1.195 0.000 1.714 2.820 0.000 1.837 6.861

1 2 5.421 5.421 5.421 5.421 5.421 5.421 6.756 6.756 6.756 9.246 9.246 9.246
4 4.382 0.687 0.870 4.382 0.687 0.870 4.125 1.048 2.188 3.570 1.586 5.414
6 0.558 0.687 0.870 0.558 0.687 0.870 0.741 1.005 2.188 0.930 1.237 5.414
8 0.533 0.687 0.870 0.533 0.687 0.870 0.421 1.005 2.188 0.258 1.237 5.414

10 0.614 0.687 0.870 0.614 0.687 0.870 0.177 1.005 2.188 0.008 1.237 5.414
100 0.000 0.687 0.870 0.000 0.687 0.870 0.000 1.005 2.188 0.000 1.237 5.414

2 2 0.176 0.262 0.229 0.176 0.262 0.229 0.854 1.032 1.166 1.656 3.427 2.219
4 0.162 0.713 0.167 0.162 0.713 0.167 0.464 1.398 0.614 0.416 2.278 2.301
6 0.120 0.723 0.167 0.120 0.723 0.167 0.231 1.355 0.614 0.133 2.089 2.296
8 0.102 0.733 0.167 0.102 0.733 0.167 0.103 1.428 0.614 0.005 2.108 2.296

10 0.094 0.733 0.167 0.094 0.733 0.167 0.051 1.489 0.614 0.001 2.108 2.329
100 0.000 0.775 0.167 0.000 0.775 0.167 0.000 1.595 0.551 0.001 2.409 2.388

800 0.5 2 30.872 30.872 30.872 30.872 30.872 30.872 33.445 33.445 33.445 35.552 35.552 35.552
4 0.653 0.653 0.653 0.653 0.653 0.653 2.574 2.999 2.574 5.260 4.457 5.675
6 5.800 0.687 0.737 5.800 0.687 0.737 6.128 1.333 3.004 4.801 2.028 6.306
8 0.676 0.687 0.737 0.676 0.687 0.737 1.224 1.399 3.004 1.015 1.825 6.306

10 1.453 0.687 0.737 1.453 0.687 0.737 1.161 1.399 3.004 0.768 1.825 6.306
100 0.000 0.687 0.737 0.000 0.687 0.737 0.000 1.399 3.004 0.000 1.825 6.306

1 2 22.543 22.543 22.543 22.543 22.543 22.543 24.520 24.520 24.520 26.147 26.147 26.147
4 0.376 0.826 0.376 0.376 0.826 0.376 1.906 1.721 2.111 4.291 3.137 5.019
6 3.930 0.645 0.376 3.930 0.645 0.376 3.999 1.305 1.855 3.244 1.719 5.542
8 0.399 0.645 0.376 0.399 0.645 0.376 0.749 1.347 1.855 0.852 1.719 5.542

10 1.269 0.645 0.376 1.269 0.645 0.376 0.650 1.347 1.855 0.417 1.719 5.542
100 0.000 0.645 0.376 0.000 0.645 0.376 0.000 1.347 1.855 0.000 1.719 5.542

2 2 0.292 0.292 0.292 0.292 0.292 0.292 1.491 1.491 1.491 3.541 3.882 3.541
4 0.292 0.815 0.449 0.292 0.815 0.449 1.225 1.266 0.842 1.692 1.683 1.617
6 0.255 0.822 0.449 0.255 0.822 0.449 0.658 1.288 0.842 0.624 1.824 1.665
8 0.211 0.822 0.449 0.211 0.822 0.449 0.419 1.275 0.842 0.256 1.867 1.665

10 0.160 0.822 0.449 0.160 0.822 0.449 0.314 1.429 0.842 0.125 1.867 1.665
100 0.000 0.826 0.449 0.000 0.826 0.449 0.001 1.487 0.842 0.011 1.810 1.716
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Table A2. Decreasing demand.

τ = 1 τ = 10 τ = 20 τ = 40

K r FHL psWW psSM psLUC psWW psSM psLUC psWW psSM psLUC psWW psSM psLUC

0 0.5 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.012 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.012 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.012 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.012 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.012 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.012 0.000

1 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

400 0.5 2 3.442 3.442 3.442 0.427 0.430 0.424 0.225 0.195 0.250 0.201 0.307 0.236
4 2.696 0.273 0.696 0.387 0.104 0.205 0.042 0.047 0.231 0.024 0.061 0.189
6 0.368 0.273 0.696 0.043 0.104 0.205 0.051 0.047 0.231 0.018 0.061 0.189
8 0.391 0.273 0.696 0.064 0.104 0.205 0.013 0.047 0.231 0.018 0.061 0.189

10 0.316 0.273 0.696 0.037 0.104 0.205 0.013 0.047 0.231 0.035 0.061 0.189
100 0.000 0.273 0.696 0.000 0.104 0.205 0.000 0.047 0.231 0.000 0.061 0.189

1 2 0.997 0.997 0.997 0.216 0.179 0.066 0.091 0.089 0.071 0.082 0.049 0.016
4 0.976 0.273 0.567 0.034 0.103 0.089 0.011 0.051 0.018 0.001 0.044 0.016
6 0.157 0.273 0.567 0.054 0.103 0.089 0.008 0.051 0.018 0.001 0.044 0.016
8 0.122 0.273 0.567 0.019 0.103 0.089 0.008 0.051 0.018 0.002 0.044 0.016

10 0.138 0.273 0.567 0.019 0.103 0.089 0.008 0.051 0.018 0.000 0.044 0.016
100 0.000 0.273 0.567 0.000 0.103 0.089 0.000 0.051 0.018 0.000 0.044 0.016

2 2 0.168 0.352 0.194 0.011 0.010 0.007 0.000 0.003 0.001 0.000 0.000 0.000
4 0.037 0.205 0.154 0.000 0.005 0.003 0.000 0.000 0.001 0.000 0.000 0.000
6 0.012 0.205 0.154 0.000 0.005 0.003 0.000 0.000 0.001 0.000 0.000 0.000
8 0.007 0.193 0.154 0.000 0.005 0.003 0.000 0.000 0.001 0.000 0.000 0.000

10 0.000 0.193 0.154 0.000 0.005 0.003 0.000 0.000 0.001 0.000 0.000 0.000
100 0.000 0.114 0.154 0.000 0.005 0.003 0.000 0.000 0.001 0.000 0.000 0.000

800 0.5 2 17.471 17.471 17.471 1.774 1.809 1.832 0.895 0.951 0.978 0.480 0.395 0.647
4 1.522 0.527 0.516 0.452 0.332 0.370 0.462 0.270 0.241 0.252 0.508 0.192
6 1.567 0.337 0.516 0.157 0.274 0.370 0.075 0.258 0.241 0.097 0.098 0.192
8 0.981 0.337 0.516 0.360 0.274 0.370 0.140 0.258 0.241 0.030 0.098 0.192

10 0.770 0.337 0.516 0.116 0.274 0.370 0.053 0.258 0.241 0.030 0.098 0.192
100 0.000 0.337 0.516 0.000 0.274 0.370 0.000 0.258 0.241 0.000 0.098 0.192

1 2 11.357 11.357 11.357 0.739 0.877 1.014 0.359 0.451 0.414 0.230 0.154 0.129
4 2.330 0.399 0.604 0.285 0.188 0.234 0.073 0.168 0.094 0.174 0.105 0.173
6 0.705 0.301 0.604 0.063 0.188 0.234 0.041 0.111 0.094 0.024 0.057 0.173
8 1.158 0.301 0.604 0.247 0.188 0.234 0.041 0.111 0.094 0.011 0.057 0.173

10 0.538 0.301 0.604 0.050 0.188 0.234 0.022 0.111 0.094 0.012 0.057 0.173
100 0.000 0.301 0.604 0.000 0.188 0.234 0.000 0.111 0.094 0.000 0.057 0.173

2 2 0.565 0.720 0.619 0.044 0.055 0.022 0.016 0.011 0.013 0.005 0.005 0.003
4 0.214 0.666 0.371 0.015 0.023 0.038 0.009 0.005 0.003 0.000 0.004 0.001
6 0.051 0.666 0.371 0.013 0.021 0.038 0.000 0.007 0.003 0.000 0.004 0.001
8 0.054 0.666 0.371 0.006 0.021 0.038 0.000 0.007 0.003 0.000 0.004 0.001

10 0.050 0.666 0.371 0.000 0.021 0.038 0.000 0.007 0.003 0.000 0.004 0.001
100 0.000 0.529 0.371 0.000 0.021 0.038 0.000 0.007 0.003 0.000 0.004 0.001
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Table A3. Increasing demand.

τ = 1 τ = 10 τ = 20 τ = 40

K r FHL psWW psSM psLUC psWW psSM psLUC psWW psSM psLUC psWW psSM psLUC

0 0.5 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

400 0.5 2 3.249 3.249 3.249 0.172 0.172 0.197 0.041 0.041 0.054 0.021 0.022 0.033
4 2.554 0.644 0.789 0.149 0.041 0.056 0.040 0.005 0.046 0.021 0.022 0.047
6 0.374 0.644 0.789 0.016 0.041 0.056 0.020 0.005 0.046 0.021 0.022 0.047
8 0.316 0.644 0.789 0.016 0.041 0.056 0.020 0.005 0.046 0.021 0.022 0.047

10 0.402 0.644 0.789 0.016 0.041 0.056 0.020 0.005 0.046 0.001 0.022 0.047
100 0.000 0.644 0.789 0.000 0.041 0.056 0.000 0.005 0.046 0.000 0.022 0.047

1 2 0.913 0.913 0.913 0.034 0.036 0.036 0.003 0.004 0.006 0.000 0.005 0.000
4 0.872 0.234 0.375 0.029 0.033 0.027 0.003 0.004 0.018 0.000 0.005 0.036
6 0.272 0.234 0.375 0.010 0.033 0.027 0.003 0.004 0.018 0.000 0.005 0.036
8 0.162 0.234 0.375 0.010 0.033 0.027 0.003 0.004 0.018 0.000 0.005 0.036

10 0.147 0.234 0.375 0.010 0.033 0.027 0.003 0.004 0.018 0.000 0.005 0.036
100 0.000 0.234 0.375 0.000 0.033 0.027 0.000 0.004 0.018 0.000 0.005 0.036

2 2 0.150 0.331 0.200 0.002 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000
4 0.030 0.241 0.106 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.009 0.241 0.106 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.001 0.241 0.106 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 0.001 0.241 0.106 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
100 0.000 0.135 0.118 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000

800 0.5 2 17.049 17.049 17.049 1.252 1.253 1.266 0.473 0.474 0.480 0.190 0.190 0.214
4 1.319 0.560 0.703 0.385 0.060 0.135 0.171 0.034 0.054 0.091 0.017 0.135
6 1.785 0.513 0.703 0.130 0.060 0.135 0.034 0.034 0.054 0.037 0.017 0.135
8 0.854 0.513 0.703 0.095 0.060 0.135 0.034 0.034 0.054 0.037 0.017 0.135

10 0.896 0.513 0.703 0.070 0.060 0.135 0.047 0.034 0.054 0.037 0.017 0.135
100 0.000 0.513 0.703 0.000 0.060 0.135 0.000 0.034 0.054 0.000 0.017 0.135

1 2 11.059 11.059 11.059 0.572 0.574 0.579 0.171 0.172 0.177 0.055 0.062 0.055
4 2.121 0.498 0.574 0.210 0.039 0.057 0.057 0.006 0.037 0.047 0.005 0.055
6 0.976 0.479 0.574 0.051 0.039 0.057 0.005 0.006 0.037 0.001 0.005 0.055
8 0.787 0.479 0.574 0.012 0.039 0.057 0.005 0.006 0.037 0.001 0.005 0.055

10 0.735 0.479 0.574 0.058 0.039 0.057 0.005 0.006 0.037 0.001 0.005 0.055
100 0.000 0.479 0.574 0.000 0.039 0.057 0.000 0.006 0.037 0.000 0.005 0.055

2 2 0.470 0.605 0.493 0.004 0.006 0.004 0.000 0.000 0.000 0.000 0.000 0.000
4 0.085 0.397 0.224 0.000 0.003 0.003 0.000 0.000 0.002 0.000 0.000 0.000
6 0.034 0.397 0.202 0.000 0.003 0.003 0.000 0.000 0.002 0.000 0.000 0.000
8 0.000 0.350 0.217 0.000 0.003 0.003 0.000 0.000 0.002 0.000 0.000 0.000

10 0.000 0.350 0.217 0.000 0.003 0.003 0.000 0.000 0.002 0.000 0.000 0.000
100 0.000 0.244 0.217 0.000 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000
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Table A4. Seasonal demand.

a= 20 a= 40 a= 60 a= 80

K r FHL psWW psSM psLUC psWW psSM psLUC psWW psSM psLUC psWW psSM psLUC

0 0.5 2 0.000 0.210 0.000 0.000 0.531 0.008 0.017 0.797 1.265 0.212 0.998 2.328
4 0.000 0.210 0.000 0.000 0.531 0.008 0.000 1.283 1.265 0.000 2.895 2.545
6 0.000 0.210 0.000 0.000 0.531 0.008 0.000 1.283 1.265 0.000 2.983 2.545
8 0.000 0.210 0.000 0.000 0.531 0.008 0.000 1.283 1.265 0.000 2.983 2.545

10 0.000 0.210 0.000 0.000 0.531 0.008 0.000 1.283 1.265 0.000 2.983 2.545
100 0.000 0.210 0.000 0.000 0.531 0.008 0.000 1.283 1.265 0.000 2.983 2.545

1 2 0.000 0.000 0.000 0.000 0.109 0.000 0.000 0.516 0.000 0.000 1.866 0.000
4 0.000 0.000 0.000 0.000 0.109 0.000 0.000 0.516 0.000 0.000 2.874 0.000
6 0.000 0.000 0.000 0.000 0.109 0.000 0.000 0.516 0.000 0.000 2.874 0.000
8 0.000 0.000 0.000 0.000 0.109 0.000 0.000 0.516 0.000 0.000 2.874 0.000

10 0.000 0.000 0.000 0.000 0.109 0.000 0.000 0.516 0.000 0.000 2.874 0.000
100 0.000 0.000 0.000 0.000 0.109 0.000 0.000 0.516 0.000 0.000 2.874 0.000

2 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.008 0.000 0.140 0.020
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.008 0.000 0.140 0.020
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.008 0.000 0.140 0.020
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.008 0.000 0.140 0.020

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.008 0.000 0.140 0.020
100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.008 0.000 0.140 0.020

400 0.5 2 11.039 11.039 11.039 12.112 12.112 12.112 13.952 13.952 13.952 17.380 17.380 17.380
4 3.676 0.679 0.897 3.330 1.321 2.021 2.736 2.517 2.926 4.143 6.005 6.004
6 0.407 0.729 0.897 1.426 1.420 2.021 1.864 2.966 3.166 2.046 4.358 8.363
8 1.589 0.729 0.897 1.055 1.503 2.021 0.569 3.345 3.166 0.678 4.200 8.363

10 0.539 0.729 0.897 0.403 1.503 2.021 0.262 3.345 3.166 0.399 4.200 8.363
100 0.000 0.729 0.897 0.000 1.503 2.021 0.000 3.345 3.166 0.000 4.200 8.363

1 2 5.580 5.580 5.580 6.333 6.333 6.333 8.074 8.074 8.074 10.931 10.931 10.931
4 3.437 0.719 0.894 2.545 1.537 1.881 2.105 3.173 2.282 3.230 5.266 4.632
6 0.349 0.719 0.894 0.906 2.031 1.881 1.040 4.241 2.437 1.332 3.996 7.294
8 0.665 0.719 0.894 0.798 2.031 1.881 0.466 5.029 2.437 0.671 5.576 7.294

10 0.452 0.719 0.894 0.202 2.031 1.881 0.185 5.029 2.437 0.074 5.494 7.294
100 0.000 0.719 0.894 0.000 2.031 1.881 0.000 5.029 2.437 0.000 5.494 7.294

2 2 0.547 0.875 0.575 0.700 1.160 0.678 2.027 2.338 1.822 4.074 4.592 4.177
4 0.311 0.929 0.434 0.464 1.264 0.697 1.307 2.059 0.666 0.883 4.675 2.444
6 0.254 0.892 0.434 0.217 1.456 0.697 0.734 2.128 0.613 0.362 1.345 2.342
8 0.191 0.888 0.434 0.131 1.416 0.730 0.146 2.128 0.662 0.012 1.353 2.416

10 0.114 0.888 0.434 0.002 1.416 0.730 0.000 2.128 0.662 0.000 1.353 2.486
100 0.000 0.895 0.450 0.000 2.024 0.958 0.000 2.734 0.828 0.000 1.505 3.009

800 0.5 2 31.736 31.736 31.736 33.095 33.095 33.095 36.308 36.308 36.308 40.999 40.999 40.999
4 1.017 1.452 1.017 2.258 2.443 2.258 4.449 5.213 4.449 8.394 9.243 9.399
6 4.255 0.665 1.588 2.152 1.449 2.124 2.055 3.312 6.285 2.786 3.869 11.044
8 0.938 0.665 1.588 1.172 2.304 2.124 2.188 3.745 6.285 1.643 3.543 11.715

10 1.532 0.665 1.588 1.131 2.304 2.124 1.057 4.801 6.285 1.266 4.287 11.715
100 0.000 0.665 1.588 0.000 2.304 2.124 0.000 4.801 6.285 0.000 4.287 11.715

1 2 23.198 23.198 23.198 24.308 24.308 24.308 26.887 26.887 26.887 30.531 30.531 30.531
4 0.618 1.245 0.618 1.693 2.278 1.963 3.522 4.000 4.209 6.773 6.514 7.138
6 3.212 0.861 1.404 1.563 2.183 2.632 1.392 2.351 4.867 1.662 1.607 8.003
8 0.496 0.861 1.404 0.724 2.667 2.632 1.970 3.408 4.867 2.153 3.060 8.119

10 1.322 0.861 1.404 1.087 2.667 2.632 0.681 5.299 4.867 0.667 4.392 8.119
100 0.000 0.861 1.404 0.000 2.667 2.632 0.000 5.299 4.867 0.000 4.392 8.119

2 2 1.287 1.287 1.287 3.259 3.259 3.259 5.658 5.871 5.658 9.499 10.058 9.385
4 1.235 1.124 0.475 1.624 2.245 0.398 1.680 2.730 1.366 2.630 2.964 1.710
6 0.861 1.171 0.475 1.211 2.361 0.398 1.101 3.557 1.358 1.445 3.486 1.633
8 0.484 1.174 0.475 0.632 2.309 0.398 0.470 3.117 1.358 0.511 3.146 1.633

10 0.395 1.174 0.475 0.414 2.294 0.398 0.285 3.097 1.358 0.202 2.998 1.633
100 0.000 1.398 0.475 0.000 4.289 0.398 0.005 5.322 1.358 0.050 3.527 1.633


	1. Introduction
	2. The mathematical model
	2.1. Some analytical results

	3. Heuristic algorithms
	4. Numerical study
	4.1. Demand pattern and parameter
	4.2. Set-up cost (K)
	4.2.1. Economies-of-scale (r)
	4.2.2. Forecast horizon (FHL)


	5. Conclusion and future directions
	Disclosure statement
	ORCID
	Funding
	References

