STUDIES ON
THE THERMODYNAMICS OF ION ASSOCIATION
IN AQUEOUS SOLUTIONS

A Thesis
Submitted to the University of Glasgow for the degree of DOCTOR OF PHILOSOPY by

JAMES R. BRANNAN, B.SC.

SUPERVISOR

```
Dr. G.H. NANCOLLAS.

All rights reserved

\section*{INFORMATION TO ALL USERS}

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.


ProQuest 13849314
Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

\section*{PREFACE}

The work described in this thosis was carried out at the Univorsity of Glasgow, in the Chemistry Department which is under the direction of Professor J. Nonteath Robertson, C.E.E., F.R.S. The material of Part I has boen published in the Transactions of the Faraday Society and a reprint is appended at the end of the thesis. I wish to express my sincere gratitude for the encouragement and guidance given by Dr. G.H. Nancollas under whose supervision this work was performed. Thanks are due to Dr. H.S. Dunsmore for her help with the Deuce computer and to Mr . J. Leslie for the construction of glass apparatus.

I also thank the Department of Scientific and Industrial Research for the award of a maintenance grant which made this research possible.
Preface
Summary
Page
GENERAL INTRODUCTION ..... 1
PART I - ASSOCIATION IN NICKEL MALONATE ..... 13
Introduction ..... 14
Preparation of Reagents ..... 18
Apparatus ..... 20
Experimental Technique ..... 21
Standardisation of Electrodes ..... 23
Results ..... 26
Discussion ..... 74
PART II - SOME TRANSTTION METAL GLVCINATES
AND \(\beta\)-ALANINATES ..... 76
Introduction ..... 77
Experimental ..... 80
Apparatus ..... 80
Cell and Electrodes ..... 82
Preparation of Reagents ..... 84
Standardisation of Electrodes ..... 86
CONTERTS (contd.)
E.m.f. Measurements ..... 86
Results ..... 9
Metal Glycinates ..... 91
Motal \(\beta\)-Alaninates ..... 160
Discussion ..... 194
PART III - CALORIMETRIC DETERMINATION OF THE
HEATS OF FORMATION OF TRANSITION
METAL GLYCINATE AND \(\beta\)-ALANINATE COMPLEXES ..... 203
Introduction ..... 20 i
Experimental ..... 206
Apparatus ..... 206
Experimental Procedure ..... 17
Method of Calculation ..... 213
Results and Discussion ..... - 217
PART IV - GENERAL DISCUSSION ..... 22
BIBLIOGRAPHY ..... 238

\section*{}

Studies have been made on the association in aqueous solution between divalont transition metal ions and the anions of monomand dimearboxylic acids. The thesis is divided into four parts. In Part I the association between the nickel ion and the malonate and n-butylmalonate anions has been studied using a cell incorporating a pair of glass electrodes and a pair of silver, silver chloride electrodes. In order to determine the best activity coefficient expression to be used, both systems wore studied at low concentration, activity coefficients being calculated from the Davies equation, and at constant ionic strengths of \(0.03,0.05,0.10,0.15\) and 0.20 M . The stability constants have beon extrapolated to zero ionic strength and the thermodynamic constants are compared with those determined at low concentration.

Part II deals with the study of the association of the divalent nickel, cobalt and nanganese ions with the glycinate and \(\beta\)-alaninate anions over the temperature range of \(0^{\circ}\) to \(45^{\circ} \mathrm{C}\) using the cell
\(\mathrm{H}_{2} / \mathrm{Pt} / \mathrm{HA}\), \(\mathrm{NaOH}, \mathrm{MCI}_{2} / \mathrm{AgCl} / \mathrm{Ag}\).
Activity coefficients were calculated fron the equation
\[
-\log \gamma_{ \pm}=A z^{2}\left(\frac{\sqrt{I}}{1+\sqrt{I}}-\beta I\right)
\]
for various values of \(\beta\). A comparison of the results shows that for low ionic strengths consistent association constants are obtained with \(0 \leqslant \beta \leqslant 1\). The constants determined with \(\beta=0.2\) have been used in the calculation of the thermodynamic properties. The dissociations of \(\beta\)-alanine have been measured over the same temperature range and the results are compared with those in the literature.

Part III describes a calorimetric determination of the heats of formation of the complexes studied in Part II. The heat of solution of potassium chloride has also been determined in order to callbrate the calorimeter.

Part IV consists of a general discussion of the results. The heat and entropy data are discussed in relation to ionic sizes and electronic structure and the entropies of ion-pairs have been calculated.
armetater

\footnotetext{
?
}

In electrolyte solutions the forces of attraction between ions lead to an "ionic atmosphere" of ions of one type around an oppositely charged central ion. The average distribution of negatively charged ions in the vicinity of a positive ion will therefore be greater than in the bulk of the solution.

Bjerrum \({ }^{1}\) considered that if two oppositely charged ions approached so close together that their mutual potential energy was greater than the thermal energy, they should be considered as a separate entity in the solution. He used the Maxwell-Boltamann distribution to calculate the distance, "q" at which there was a minimum probability of there being an Ion of one type on a sphere surrounding an ion of the opposite charge, and suggested that all ions Within this distance should be considered associated in ion-pairs. He suggested that the Debye-Huckel \({ }^{2}\) activity expression should be applied only to unassociated ions.

The value of "q" obtained by Ejerrum was,
\[
\begin{equation*}
q=\frac{z_{1} \cdot z_{2} \cdot e^{2}}{2 \varepsilon k T} \tag{1}
\end{equation*}
\]
where \(z_{1}\) and \(z_{2}\) were the charges on the ions, \(\varepsilon\) was the dielectric constant of the solution and \(k\) was the Boltzmann constant. At \(25^{\circ} \mathrm{C}\) this critical distance, "q", for ions in water becomes, for 1:1 electrolytes \(3.6 \AA, 2: 214 \AA\), and for \(3: 3 \quad 30 \AA\).

Representing this entity, the ion-pair, by \({ }_{\mathrm{MN}}{ }^{(\mathrm{m}-\mathrm{n})+}\) we can write
aq

for which the thermodynamic association constant
\[
\begin{equation*}
K=\frac{\{M N(m-n)+\}}{\left\{M^{m+}\right\}\left\{N^{n-}\right\}}=\frac{[M N(m-n)+]_{0}}{\left[M^{m+}\right]\left[N^{n-}\right]} \frac{f M^{(m-n)+}}{f^{n+}} \tag{3}
\end{equation*}
\]
where the braces enclose activities, the square brackets concentrations and the f's are the corresponding activity coefficients.

It is often impossible, where a number of new species are involved, to calculate the activity coefficients and much work has been done at constant ionic strength \({ }^{3,4}\), in which it is assumed that the activity coefficients are also constant. These coefficients are then included in the equilibrium constant and the derived "stability quotient" is
valid only at the ionic strength at which the experiments are made. Equation (3) may be written
\[
\begin{equation*}
K=K_{c} \times \frac{f_{M N}(m-n)+}{f_{N} m+f_{N} n-} \tag{4}
\end{equation*}
\]
where \(K_{c}\) is the stability quotient or "concentration constant".

The association constant, \(K\), can be calculated efther by measuring \(k_{c}\) at various ionic strengths followed by extrapolation to zero ionic strength, or by direct evaluation of the activity coefficients. Although the former method is prefcrable, a great deal, of work is required for its application, and the calculation of activity coefficients is the method normally adopted.

The first accurate equation for the evaluation of activity coefficients of ions in solution was developed by Debye and Iruckel \({ }^{2}\). To obtain a relationship between the potential, \(\psi\), at any point in the solution, and the charge density, \(\rho\), at that point, they used a combination of the Poisson equation and the Maxwell
- Boltzmann distribution, obtaining
\[
\begin{equation*}
p=-\sum_{i} n_{i} \cdot z_{i} \cdot e \quad \exp \cdot\left(\frac{z_{i} \cdot e \cdot \psi}{k T}\right) \tag{5}
\end{equation*}
\]
where \(n_{i}\) is the number of ions of charge \(z_{i}\) in the solution and \(k\) is the Boltzmann constant. Expansion of the exponential gives
\[
\begin{array}{r}
\rho=\sum_{i} n_{i} \cdot z_{i} \cdot e-\sum_{i} n_{i} \cdot z_{i} \cdot e \quad\left(\frac{z_{i} \cdot e \cdot \psi}{k T}\right) \\
 \tag{6}\\
+\sum_{i} \frac{n_{i} \cdot z_{i} \cdot \theta}{2!}\left(\frac{z_{i} \cdot e \cdot \psi}{k T}\right)^{2}-\ldots
\end{array}
\]

Since the solution must be clectrically neutral
the first term, which is a sumation over all the ions in solution, is zero. Ignoring all terms higher than the second, which is the equivalent to assuming that \(z_{1}: \otimes \ll k T\), they found
\[
\begin{equation*}
\rho=-\sum_{i} n_{i} \cdot z_{i} \cdot \theta\left(\frac{z_{i} \cdot e \cdot \psi}{k T}\right) \tag{7}
\end{equation*}
\]

The final expression for the activity coefficients is
\[
\begin{equation*}
-\log f_{ \pm}=\frac{A z_{1} \cdot z_{2} \cdot \sqrt{I}}{I+B \therefore \sqrt{I}} \tag{3}
\end{equation*}
\]
where \(f_{ \pm}\)is the mean activity coofficient, \(z_{1}\) and \(z_{2}\) are the charges on the ions, \(A\) and \(B\) are constants and \(\stackrel{\circ}{\mathrm{a}}\) is the distance of closest approach of the ions. Although Debye and Huckel considered a to be the mean ionic diameter of two ions, it is really a parameter correcting for a whole variety of theoretical imperfections, such as ion-solvent interactions and
polarisability of ions. Values for a could be chosen such that the mean activity coefficients calculated from equation (8) agreed with experimentally obtained values at low ionic strengths. Mucker \({ }^{5}\) attributed deviations at higher ionic strengths to changes in the dielectric constant with varying concentration, and suggested the addition of a term linear in \(I\).
\[
\begin{equation*}
-\log f_{ \pm}=\frac{A \cdot z_{1} \cdot z_{2} \cdot \sqrt{I}}{1+B a \sqrt{I}}-b I \tag{9}
\end{equation*}
\]

Equation (9) now contains two parameters and can be used for the calculation of activity coefficients over a wide concentration range.

Some workers considered that the assumption made in the derivation of equation (7) was incorrect for small ions, and attributed deviations between activity coefficients obtained from equation (3) and experimental values to this assumption. huller \({ }^{6}\) and Cronvall, La Mer and Sandved \({ }^{7}\) used sone of the higher terms in the expansion of the exponential in the Boltzmann distribution, but Bjerrum \(^{1}\) considered that allowances should be made for ion-association, and that equations (8) and (9) should be applied only to unassociated or charged species in solution.

Guntelberg \({ }^{8}\) put forward an equation containing no parameters,
\[
\begin{equation*}
-\log f_{ \pm}=\frac{A z^{2} \sqrt{I}}{I+\sqrt{I}} \tag{10}
\end{equation*}
\]
which, while not as accurate as those containing parameters, had the advantage that it could be applied to systems of mixed electrolytes \({ }^{9}\). It could not, however, account for the differences found in activity coefficients for ions of the same charge. This difference was attributed by Guggenheim \({ }^{9}\) to specific, short-range interactions, and to allow for these he Introduced a tera linear in I into equation (10). Values for the parameter were obtained irom freezingpoint data.

Davies \({ }^{10}\) inserted a value for the parameter linear in ionic strength and found that activity coefficients calculated from
\[
\begin{equation*}
-\log f_{ \pm}=A z_{ \pm}^{2}\left(\frac{\sqrt{I}}{I+\sqrt{I}}-0.2 I\right) \tag{11}
\end{equation*}
\]
agreed very well with experimental values for 1:l, \(1: 2\) and 2:1 electrolytes. The mean deviation was \(\pm 2 \%\) at \(I=0.1\). Recentiy \({ }^{I 1}\) ho has suggested that a better value for the parameter might be 0.3.

Mayer \({ }^{12}\) developed an activity coefficient expression in the form of an infinite series of integrals, by considering a solution as an imperfect gas. The only arbitrary parameter, \({ }^{\circ}\), could be calculated from experimental values at any ionic strength. Hovever, there is little to choose between this approach and that of Debye and Huckel in that there is little difference in the activity coefficients obtained by the two methods.

Any method which may be used to measure an activity or a concentration in solution is potentially suitable for the study of ion-association. Davies 13,14 and co-workers have made extensive use of conductivity measurements, deviations from the Onsager equation being attributed to ion-association. This method is particularly suited to the study of symetrical charge-type electrolytes, since the ion-pairs formed may be assumed to have no charge and do not contribute to the observed conductivity.

The solubilities of sparingly soluble salts, in the presence of added olectrolytes, have also been used by Davies \({ }^{15}\), Monk \({ }^{16}\) and other workers \({ }^{17,18}\). The enhanced solubility of the salt in the presence of complexing ions could be used to determine the extent of ion-association. Calciun, barium and copper iodates
have been used to study association with carboxylate \({ }^{15}\), 16a and amino-acid \({ }^{16 b}\) anions.

Potentionetry \({ }^{19,20}\) has also been used extensively for lon association studies since very precise e.m.f's are obtainable with well-characterised electrodes, such as the hydrogen and silver, silver chloride -lectrodes. The dissociation of many weak acids has been studied in this way.

In cases where the ion-pair formation is accompanied by a shift in the absorption spectrum of one of the complexing ions, the concentration of the ion-pair can be measured directly by the change in optical density, with and without the addition of the conplexing ion \({ }^{21,22}\). Wavelengths are normally chosen at which one of the ions involved does not absorb, thus facilitating the calculation of both tho extinction coefficient of the ion-pair and \(K\). Although at first sight an almost ideal method for determining association constants, it does suffer from a number of disadvantages.

Polarographic studies \({ }^{23,} 2^{2}\) yield information about the stability and composition of complexes in solution. The disadvantage here howererg is that work must be done in the presence of a relatively large concentration of neutral electrolyte in order to limit the current to one of diffusion. The derived constants are therefore stability constants which are valid only at the ionic
strength at which they are measured.
The free energy change for reactions of the type (2) can be calculated from the thermodynamic association constants. Little information can be gained from a direct correlation of these free energies with properties of the ions involved, however, and it is much more userul to regard changes in the free energy as being due to changes in the heats and entropies of ion association. For instance, endothermic reactions are known which take place because the entropy chance is sufficiently large, and conversely exothermic reactions which do not because of an unfavourable entropy change. It is therefore desirable to obtain the heats and entropies of formation of the ion-pairs. leat changes may be calculated from \(K\) values, obtained over a range of temperature, using the van't lloff isochore, or may be obtained by direct calorimetric measurenents. The latter, direct method is obviously preferable for the determination of accurate heat values, but we consider that the use of teaperature coefficient data is reliable provided that a large range of temperature, such as between \(0^{\circ}\) and \(45^{\circ} \mathrm{C}\), is studied. In the work described in the present thesis it is found that \(\Delta C_{p}\) is not zero, and the advantage of the temperature coefficient method is that an estimate of \(\Delta C_{p}\) can be obtained.

The entropy change acompanying association can be attributed to tro factors. The disappearance of a solute species leads to an entropy decrease, but the freater freedon of water molecules around the ions, due to charge neutralisation, gives an entropy increase. The overall entropy change will depend on the extent of hydration of the ions, and charge neutralisation. The relatively smell \(\Delta s\) values obtained for the formation of sone lanthanur compleres suesests that the lanthanum ion retains its hydration sheath, and this conclusion is also supported by the Djerrum distance calculated from the association constant \({ }^{14}\).

In Part I of the present work, a cell incorporating a pair of glass electrodes and silver, silver chloride electrodes has been used to study the association of nickel ions with malonate and n-butylnalonate ions. In an attempt to determine the best activity coefficient expression to use, the systen was studied, at \(25^{\circ} \mathrm{C}\), both at low concentration and at a series of constant ionic strengths.

In Part II a precision e.m.f. technique has been used to study the association of nickel, cobalt and manganese ions with the anions of the amino-acids glycine and \(\beta\) - alanine. It has also been necessary to determine the
dissociation constants of \(\beta\)-alanine at the temperatures studied. measurements at \(0^{\circ}, 15^{\circ}, 25^{\circ}, 35^{\circ}\) and \(45^{\circ} \mathrm{C}\) have yielded the thermodynamic properties of the association reactions and these are discussed. In Part III the heats of formation have been determined by a direct calorimetric method, and Part IV consists of a general discussion.
PART I
ASSOCIATION IN NICKEL MALONATE
AND n-BUTYLMALONATE SOLUTIOMS

\section*{introduction.}

One of the best methods of obtaining thermodynamic association constants is by extrapolating stability quotients, \(K_{C}\), obtained at various ionic strengths to zero ionic strength. Accurate extrapolations can only be obtained, however, if \(\mathrm{K}_{\mathrm{c}}\) is measured at sufficiently low . ionic strengths.

Assuming that the activity coefficients in equation (4) can be represented by equations (8) or (9),
\[
\begin{equation*}
\log K=\log K_{c}-A \Delta\left(z^{2}\right) \frac{\sqrt{I}}{1+B a} \sqrt{I} \tag{12}
\end{equation*}
\]
or
\[
\begin{equation*}
\log K=\log K_{c}-A \Delta\left(z^{2}\right) \frac{\sqrt{I}}{1+B a \sqrt{I}}+b I \tag{13}
\end{equation*}
\]
where \(\Delta\left(z^{2}\right)=\left(z^{d}(m-n)+-z_{M}^{m+}\right)^{2}-z_{N}^{2} n-\)
Nasanen \({ }^{25}\) has used a least squares treatment to calculate \(\log \mathrm{K}, \dot{\mathrm{a}}\) and b from equation (13), but other workers have obtained \(\log K\) as the intercept of a linear plot. Kraus and Nelson \({ }^{26}\) chose a value for a such that, a plot of \(\log K_{C}\) against \(\frac{\sqrt{I}}{1+B a} \sqrt{I}\) Wees linear, and the slope gave \(A \Delta\left(z^{2}\right)\). Monk \({ }^{27}\) has plotted
\(\log K_{c}-A \Delta\left(Z^{2}\right) \frac{\sqrt{I}}{1+B \dot{Q} \sqrt{I}}\) against I for various values of \({ }^{\circ}\), and has obtained values for \(\log K\) and \(b\).

Although the extrapolation method yields accurate
association constants, experiments are normally done at low concentrations and equation (3), or a similar expression, used to calculate the activity coefficients. There is some uncertainty, hovever, about the equation to be used for this calculation, and it has been supyested that the use of the sinple Debye-Huckel expression, equation (8), is unjustified \({ }^{23}\). The values of the parameters are also uncertain. For instance, if a has its original meaning its value will depend on whether or not the ions retain their hydration sheaths when in the associated form. Kany workers prefer to consider \(\therefore\) as an arbitrary parameter, and Fernelius \({ }^{29}\) has used an a value of \(10 \AA\) for the association of the acetylacetonate ion vith various metal ions.

Guggenheim \({ }^{30}\) has surgested that for \(2: 2\) electrolytes a value of \(\AA_{\text {a }}\) similer to \(q\), the Ejerrum distance, should be used. He considered that \(\stackrel{\circ}{a}\) should be about \(10 \AA^{\circ}\) and, instead of the Davies equation, gave
\[
\begin{equation*}
-\log f_{ \pm}=A z^{2}\left(\frac{\sqrt{I}}{1+\sqrt{I}}-2.0 I\right) \tag{14}
\end{equation*}
\]
which corresponde to a value of \(9 \AA\) in equation (3). When used for calculations with bivalent metal sulphates, however, Nair and Hancollas \({ }^{31}\) found that the \(K\) values were no longer constant, but varied by as much as \(20 \%\).

Prom and True \({ }^{32}\) used freezing point measurements to study association in solutions of bivalent metal sulphates. Using equation (B) with o ranging from 4 to \(14 \AA\), they found that all values fitted the experimental results reasonably well, although the best fit was obtained with the lower values. Prue, however, suggested that the association constant, \(K\), was in fact an arbitrary parameter dependent upon the value of \({ }^{\circ}\) used.

In some cases \(X\)-ray data can be used to justify particular a values. Fevers and Lipson \({ }^{33}\) for instance, In the study of \(\mathrm{Cu}_{\mathrm{SO}}^{4}\). \(5 \mathrm{H}_{2} \mathrm{O}\), found Cu -S distances of 3.5 and \(3.6 \AA\). This appears to support the adoption of small ai values for bivalent metal sulphates, as does some work by Nasanen \({ }^{25}\), who studied spectrophotometrically the association in copper sulphate solutions at various ionic strengths, and using equation (13), obtained an \({ }_{\mathrm{a}}^{\mathrm{a}}\) of \(4.7 \AA\).

Some recent sound-absorption measurements by kigen \({ }^{34}\) have shown kinetically the existance of distinct species erg. \(\mathrm{MOH}_{2} \mathrm{~N}^{(\mathrm{m}-\mathrm{n})+}\) and \(\mathrm{MN}(\mathrm{m}-\mathrm{n})+\), in solutions. Measured \(K\) values contain contributions from both species and, if a sufficiently large \(\circ\) value is chosen, a definite K rather than the arbitrary parameter suggested by true
should be obtained.
The work presented in this part of the thesis was done in order to determine the best expression to be used for calculating activity coefficients in a solution of a \(2: 2\) electrolyte. Nickel malonate solutions have been studied both at low concertration, the activity coefficients being evaluated by means of Davies' equation, and at a series of constent ionic strengths. In order to study the effect of a variation in the size of the anion, nickel-butylmalonate has also been studied. Accurate values for the dissociation constants of n-butylmalonic acid have been obtained and both acids have been studied at constant ionic strengths of \(0.03,0.05,0.10,0.15\) and 0.20.

\section*{EXPLRLEMEAL}

\section*{Preparation of heagents}

MalonicAcid: Hopkins and Williams material was recrystallised three times from a mixture of ether and benzene containing \(5 \%\) petroleun ether \((60-80)^{35}\), and dried in vacuo at \(45^{\circ}\) to \(50^{\circ} \mathrm{C}\). Analysis gave H, 4\%; C, 34.84; ; (calculated: H, 3.87\%; C, 34.62 ). n-Butylmalonic Acid: This was prepared by hydrolysis of the diethyl ester followed by ether extraction, and rearystallised as for malonic acid. Analysis gave H, - 7.70\%; C, 52.55\%; (calculated: H, 7.55\%; C, 52.49\%). Sodium liydroxido: Samples of a saturated solution of sodium hydroxide, which had been prepared by shaking AnalaR pellets vith distilled water for 24 hours and then allowed to stiand for 3 to 4 weoks, were diluted with carbon dioxide free distilled water in a nitrogen atmosphere. Solutions were stored in a container connected to an automatic burette and suitably protected with soda-lime tubes. They were standan敢ad by titrating against veighed samples of potassium hydrogen phthalate and duplicate experiments agreed to \(0.1 \%\). Nickel Chloride: Solutions were prepared fron the AnalaR salt and wore standardised either by eravimetric analysis of the chloride, as silver chloride \({ }^{36}\), or by using an ion-exchange column. In the latter nothod

10 ml . portions were passed through a colum of Amberlite i.R. 120 resin, in the hydrogen form, and the colum washed with distilled water until free fron acid. The eluted hydrochlonic acid was estimated by titration with standard sodium hydroxide. Sodium Porchlorate: Solutions were either prepared by neutralising AnelaR percinloric acia with carbonatefree sodium hydrozide, or were made up from solid sodium perchlorate. The B.D.H. naterial, low in chloride, was found to contain appreciable guantities of chlorate. This was removed by recrystallising three times from absolute alcohol. The concentrations of solutions vere estimated on an ion-exchange column as described above.

Potassium chloride and potassium hydrogen phthalate were of AnalaR grade and were used without further purification.

All volumetric apparatus was of Grade \(A\) quality. Flasks and cells were cleaned with chromic cid and, where possible, were steamed for thirty minutes. Samples of reagents were weighed out from small pyrex weighing bottles using an Oertling single-pan balance.

\section*{APPARATUS}
E.mof. measurements were made using the cell Ag/AgCl, HCI ( 0.2 ) /glass/ solution under study /Ag 1/Ag.

In the early work a pair of silver, silver chloride electrodes and a single glass electrode were used, but In later work a pair of glass electrodes were substituted. These were of a screened type (E.I.L. type G.G.33.) to prevent leakage of current, and when two were used any irregularity in the behaviour of one of them was immediately detectable. The silver, silver chloride electrodes were of the thermal-electrolytic type, described by Harned \({ }^{37}\), set in a stendard, Quickfit E. 19 cone. Platinumspirals, sealed into glass tubes which were curved to fit the cell, were given two coatings of spectroscopically pure silver oxide (Johnston-hatthey and Co., Hatton Garden, London), made into a paste vith conductivity water. The silver oxide was converted to silver by heating at \(450^{\circ} \mathrm{C}\) in a muffle furnace. The electrodes, approximately 100 ugns. in welsht, were chloridised, in the absence of light, by electrolysis in normal hydrochloric acid at a current density of 2 m.amps per sq.cm. They were then conditioned by warming in distilled water at \(50^{\circ} \mathrm{C}\) for two hours \({ }^{38}\),
and stored in the dark, in distilled water containing a little potassium choride.
E.M.f.'s were moasured using a Pye potentioneter. A Vibron electroneter (E.I.L. nodel 33B) was used as a null detector, and readings vere reproducible to \(\pm 0.1\).v. Experimental Technicue.

The cell used is shown in Fig. 1. A known volune of solution was introduced and the electrodes placed in the ground glass sockets. Mitrogen was bubbled through the capillary tube \(A\) to remove carbon dioxide and to stir the solution, and an outlet bubbler, \(B\), prevented diffusion of air back into the cell. A capillary attachment from the automatic burette entered the cell by the socket C . When solution was initially put into the cell one hour was allowed for equilibration, but during a titration 10 to 15 minutes after each addition was all that was necessary.

For the determination of the dissociation constants of the acids, sodium hydroxide was added to a solution containing known weights of acid and potassiuin chloride. When necessary a constant ionic strength was maintained by the addition of the calculated amount of sodium perchlorate. In the calculations, any readings were discarded in which the ionic strength was not within \(1 \%\)

of the required value.
In tie association studies, nickel chloride replaced potassium chloride in the cell, and sodiun hydroxide was added slowly to prevent precipitation of the hydroxide. Occasionally, however, additions of nickel chloride were made during an experiment, or solutions containing all of the necessary electrolytes were introduced into the cell.

\section*{Standardisation of lectrodes.}

The electrodes were standardised before each titration and two methods were employed. 1) Standardisation with Hydrochioric Acid Solutions.

For low concentration studies, standard hydrochloric acid was added, from a burette, to distilled water in the cell, and lincar plots of \(-\log \left[\mathrm{II}^{+}\right]\left[\mathrm{Cl}^{-}\right] \mathrm{f}_{1}{ }^{2}\) against E, the e.m.f., were obtained. \(\mathrm{E}^{\mathrm{E}}\) was given by the intercept and, since \(\left[\mathrm{H}^{+}\right]=\left[\mathrm{CI}^{-}\right]\), the shope of the line was \(\left(k+k^{\prime}\right) / 2\), where \(k=2.303\) RT \(/ F\) and \(k^{\prime}\) is the modified value of k for the glass electrode.

At constent ionic strength, the calculated anount of sodium perchlorate was added to the hydrochloric acid, and additions of this were made to a sodium perchlorate solution in the cell. Plots of \(-\log \left[\mathrm{H}^{+}\right]\left[\mathrm{Cl}^{-}\right]\)against E were again linear, as shown in Fig. 2.


\section*{2) btanducuisation in Situ.}

Additions of sodium hydroxide were made to a solution containing potassium chloride and malonic acid. The dissociation constants of atonic acid \({ }^{39}\) were then used to calculate the hydrogen ion activities from
\[
\begin{align*}
& {\left[\mathrm{H}^{+}\right]^{3}+\frac{\mathrm{k}_{1}}{\mathrm{f}_{1}^{2}}\left\{1+\frac{\left[\mathrm{Na}^{+}\right]^{2} \mathrm{I}_{1}^{2}}{\mathrm{k}_{1}}\right\}\left[\mathrm{H}^{+}\right]^{2}} \\
& +\frac{\mathrm{k}_{1}}{\mathrm{f}_{1}^{2} \mathrm{f}_{2}}\left\{\mathrm{k}_{2}+\left[\mathrm{Na}^{+}\right] \mathrm{f}_{2}-\mathrm{Ta} \mathrm{f}_{2}\right\}\left[\mathrm{H}^{+}\right] \\
&  \tag{15}\\
& \quad+\frac{\mathrm{k}_{2} \mathrm{k}_{2}}{\mathrm{f}_{1}^{2} \mathrm{I}_{2}}\left\{\left[\mathrm{Na}^{+}\right]-2 \mathrm{Ia}^{2}\right\}=0
\end{align*}
\]

Equation (15) was solved, using a highmspeed, electronic Deuce computer, by successive approximations for \(I\), the ionic strength, where
\[
\begin{equation*}
I=\left[\mathrm{H}^{+}\right]+\left[\mathrm{Na}^{+}\right]+\left[\mathrm{CI}^{-}\right]+\left[\mathrm{A}^{=}\right] \tag{16}
\end{equation*}
\]

A linear plot of \(-\log \left[\mathrm{H}^{+}\right] \mathrm{f}_{1}\) against \(E+k \log \left[\mathrm{Cl}^{-}\right] \mathrm{f}_{1}\) yielded \(\mathbb{k}^{\prime}\) and \(\mathrm{E}^{\circ}\), and unknown \(\log \left\{\mathrm{H}^{+}\right\}\)values could be derived from the observed e.m.f.'s to within \(\pm 0.003\).

\section*{RESULTS}

It was necessary to study the dissociation of n-butylmalonic acid at low concentration and of both acids at the ionic strength e to be used.

In solutions containing the acid, potassium chloride and sodium hydroxide, the concentrations of the ionic species were obtained from the equations for total acid,
\[
\begin{equation*}
T a=\left[H_{2} A\right]+\left[A^{-}\right]+\left[A^{=}\right] \tag{17}
\end{equation*}
\]
electroneutrality,
\[
\begin{equation*}
\left[\mathrm{H}^{+}\right]+\left[\mathrm{K}^{+}\right]+\left[\mathrm{Ha}^{+}\right]=\left[\mathrm{CI}^{-}\right]+\left[\mathrm{HA}^{-}\right]+2\left[\mathrm{~A}^{-}\right] . \tag{18}
\end{equation*}
\]
and the ionic strength
\[
\begin{equation*}
I=\left[\mathrm{H}^{+}\right]+\left[\mathrm{Ha}^{+}\right]+[\mathrm{CI}]+\left[\mathrm{A}^{-}\right] \tag{16}
\end{equation*}
\]

A graphical method, suggested by Speakman \({ }^{40}\) for the dissociation of dibasic acids, was used in the determination of
\[
\mathrm{k}_{1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HA}^{-}\right] \mathrm{f}_{1}^{2}}{\left[\mathrm{H}_{2} \mathrm{~A}\right]}
\]
and
\[
k_{2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] \mathrm{I}_{2}}{\left[\mathrm{HA}^{-}\right]}
\]
\[
\begin{equation*}
Y=X k_{1}+k_{1} k_{2} \tag{19}
\end{equation*}
\]
where \(X=\frac{\left[\mathrm{H}^{+}\right]\left\{\mathrm{Ta}-\left[\mathrm{Na}^{+}\right]-\left[\mathrm{H}^{+}\right]\right\} \mathrm{f}_{2}}{2 \mathrm{Ta}-[\mathrm{Na}]-\left[\mathrm{H}^{+}\right]}\)
and
\[
Y=\frac{\left[\mathrm{H}^{+}\right]^{2}\left\{\left[\mathrm{Na}^{+}\right]+\left[\mathrm{H}^{+}\right]\right\} \mathrm{f}_{1}^{2} \mathrm{f}_{2}}{2 \mathrm{Ha}-[\mathrm{Ha}]-\left[\mathrm{H}^{+}\right]}
\]
\(X\) and \(Y\) were calculated by successive approximations using the Deuce computer, and \(\left[A^{=}\right]\)was obtained from the equation
\[
\left[A^{-}\right]=\frac{k_{2} T a}{\left[H^{+}\right] \mathrm{s}_{2}+\frac{\left[H^{*}\right]^{2} f_{1}^{2} f_{2}}{k_{1}}+k_{2}}
\]

An approximate value of \(k_{2}\) was used in the initial calculations.
\(k_{1}\) was determined, by the method of least squares, from solutions in which \(\mathrm{Ta}>\left[\mathrm{Na}^{+}\right]\)and the plots of \(X\) against \(Y\) are shown in Fig. 3. When Ta \(<\left[\mathrm{Ha}^{*}\right]\) \(\mathrm{k}_{2}\) was obtained by substituting the average \(\mathrm{k}_{1}\) in equation (19). The new value or \(\mathrm{k}_{2}\) was then used in the calculation of \(\left[A^{=}\right]\)and the process repeated until \(k_{1}\) and \(k_{2}\) were constant. These values are given in Table 1 which shows the good agreement between the results of two titrations, and also between the pairs of electrodes. In subsequent experiments, however, where a pair of glass electrodes were employed the mean \(\left[\mathrm{H}^{+}\right]\)value has been used in the calculations. \(k_{1}^{\prime}\), at constant ionic strength, was calculated in
\begin{tabular}{|c|c|c|c|c|c|}
\hline Expt. & 1 & 2 & 3 & 4 & 5 \\
\hline \(10^{3} \mathrm{Ta}\) & 5.479 & 5.458 & 5.436 & \(5 \cdot 416\) & 5.520 \\
\hline \(10^{3} \mathrm{~b}\) & 2.543 & 2.923 & 3.300 & 3.674 & 1.968 \\
\hline Expt. & \[
10^{4}\left[\mathrm{H}^{+}\right]
\] & \(10^{2} \mathrm{I}\) & \(10^{5}\left[\mathrm{~A}^{\text {a }}\right.\) ] & \(10^{5} x\) & \(10^{8} \mathrm{Y}\) \\
\hline & RUN 53 & \multicolumn{4}{|c|}{Electrode 1} \\
\hline 1 & 7.809 & 1.278 & 0.751 & 13.853 & 13.234 \\
\hline 2 & 6.480 & 1.299 & 0.969 & 10.425 & 10.124 \\
\hline 3 & 5.170 & 1.321 & 1.306 & 7.407 & 7.18 .4 \\
\hline 4 & 3.966 & 2.343 & 1.827 & 4.908 & 4.649 \\
\hline & \multicolumn{5}{|c|}{\[
\mathrm{k}_{1}=9.60 \times 10^{-4}
\]} \\
\hline
\end{tabular}

RUN 54 Electrode 1
\begin{tabular}{lrrrrr}
5 & 10.265 & 1.267 & 0.512 & 20.286 & 19.595 \\
6 & 8.643 & 1.286 & 0.655 & 15.911 & 15.364 \\
7 & 7.136 & 1.305 & 0.854 & 12.074 & 11.579 \\
8 & 5.799 & 1.326 & 1.129 & 8.837 & 8.476 \\
9 & 4.513 & 1.348 & 1.561 & 6.055 & 5.677 \\
10 & 3.486 & 1.372 & 2.152 & 3.930 & 3.768 \\
& & & \(\underline{k}_{1}=9.61 \times 10^{-4}\) &
\end{tabular}
\(\mathrm{b}=\) Total Base \(=\left[\mathrm{Na}^{+}\right]\)

\section*{TABLE 1a}
\(k_{1}\) Determination
\begin{tabular}{|c|c|c|c|c|}
\hline 6 & 7 & 8 & 9 & 20 \\
\hline 5.498 & 5.477 & 5.455 & 5.434 & 5.413 \\
\hline 2.352 & 2.734 & 3.112 & 3.488 & 3.860 \\
\hline \(20^{4}\left[\mathrm{H}^{+}\right]\) & \(10^{2} I\) & \(10^{5}\left[\mathrm{~A}^{\text {a }}\right]\) & \(10^{5} \mathrm{x}\) & \(10^{8} \mathrm{Y}\) \\
\hline & \multicolumn{4}{|c|}{Electrode 2} \\
\hline 7.864 & 1. 279 & 0.745 & 13.924 & 13.450 \\
\hline 6.485 & 1.300 & 0.970 & 10.431 & 10.141 \\
\hline 5.143 & 1.321 & 1.316 & 7.379 & 7.054 \\
\hline 3.986 & 1.343 & 1.818 & 4.926 & 4.699 \\
\hline & & \[
\underline{k}_{1}=
\] & \[
64 \times 10^{-7}
\] & \\
\hline
\end{tabular}

Electrode 2
\begin{tabular}{ccccc}
10.227 & 1.267 & 0.514 & 20.234 & 19.420 \\
8.651 & 1.286 & 0.654 & 15.922 & 15.396 \\
7.147 & 1.305 & 0.852 & 12.088 & 11.620 \\
5.813 & 1.326 & 1.125 & 8.852 & 8.519 \\
4.528 & 1.348 & 1.555 & 6.070 & 5.716 \\
3.486 & 1.372 & 2.151 & 3.930 & 3.768 \\
& & \(k_{1}=9.60 \times 10^{-4}\) & \\
& & &
\end{tabular}
\[
\text { Mean } k_{1}=9.61( \pm 0.01) \times 10^{-4}
\]

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Expt. & 1 & 2 & 3 & 4 & 5 & \\
\hline \(10^{3} \mathrm{Ta}\) & 5.244 & 5.224 & 5.205 & 5.186 & 5.167 & \\
\hline \(10^{3} \mathrm{~b}\) & 6.741 & 7.089 & \(7 \cdot 435\) & 7.778 & 8.118 & \\
\hline Expt & \(10^{6}\left[\mathrm{H}^{+}\right]\) & \[
10^{2} I
\] & \[
\left.10^{3-} A^{*}\right]
\] & \[
-10^{6} x
\] & \(10^{12} Y\) & \[
10^{6} \mathrm{k}_{2}
\] \\
\hline & & & Electro & & & \\
\hline 1 & 4.608 & 1.730 & 1.508 & 1.090 & 17.315 & 1.11 \\
\hline 2 & 3.368 & 1.797 & 1.871 & 1.095 & 10.703 & 1.11 \\
\hline 3 & 2.500 & 1.866 & 2.245 & 1.087 & 6.893 & 1.10 \\
\hline 4 & 1.892 & 1.933 & 2.607 & 1.088 & 4.680 & 1.09 \\
\hline 5 & 1.443 & 1.999 & 2.955 & 1.097 & 3.238 & 1.10 \\
\hline 6 & 3.884 & 1.778 & 1.678 & 1.170 & 13.120 & 1.08 \\
\hline 7 & 2.879 & 1.846 & 2.040 & 1.074 & 8.375 & 1.08 \\
\hline 8 & 2.167 & 1.913 & 2.404 & 1.073 & 5.585 & 1.08 \\
\hline \(9{ }^{\text {* }}\) & 1. 570 & 1.978 & 2.743 & 1.092 & 3.959 & 1.10 \\
\hline 10 & 1.219 & 2.048 & 3.143 & 1.056 & 2.576 & 1.06 \\
\hline 11 & 0.889 & 2.115 & 3.511 & 1.042 & 1.714 & 2. 04 \\
\hline
\end{tabular}

\section*{TADLE 10}
\(\mathrm{k}_{2}\) Determination
\begin{tabular}{cccccc}
6 & 7 & 8 & 9 & 10 & 11 \\
5.242 & 5.223 & 5.203 & 5.184 & 5165 & 5.146 \\
6.916 & 7.262 & 7.607 & 7.948 & 8.287 & 8.624 \\
\(10^{6}\left[\mathrm{H}^{+}\right]\) & \(10^{2} I\) & \(\left.10^{3} \mathrm{~A}^{=}\right]\) & \(-10^{6} \mathrm{X}\) & \(10^{12} \mathrm{Y}\) & \(10^{6} \mathrm{k}_{2}\) \\
& & E1ectrode 2 & & \\
4.828 & 1.731 & 1.516 & 1.142 & 19.006 & 1.16 \\
3.551 & 1.798 & 1.871 & 1.155 & 11.902 & 1.17 \\
2.643 & 1.866 & 2.242 & 1.150 & 7.706 & 1.16 \\
2.005 & 1.933 & 2.601 & 1.153 & 5.255 & 1.16 \\
1.521 & 1.999 & 2.957 & 1.157 & 3.652 & 1.16 \\
3.960 & 1.778 & 1.678 & 1.091 & 13.642 & 1.11 \\
2.961 & 1.845 & 2029 & 1.105 & 8.864 & 1.11 \\
2.206 & 1.913 & 2.407 & 1.092 & 5.783 & 1.10 \\
1.682 & 1.979 & 2.760 & 1.099 & 4.011 & 1.10 \\
1.238 & 2.049 & 3.147 & 1.073 & 2.651 & 1.08 \\
0.914 & 2.114 & 3.501 & 1.073 & 1.823 & 1.08 \\
& & & & &
\end{tabular}

Y ordinates displaced for clarity


TABLE _2
\begin{tabular}{lllll}
\multicolumn{2}{c}{\begin{tabular}{llll} 
RUN 25 & & \(I=0.03\) \\
\(10^{3} \mathrm{Ta}\) & \(10^{3} \mathrm{~b}\) & \(10^{3}\left[\mathrm{H}^{+}\right]\) & \(10^{4} \mathrm{X}\)
\end{tabular}} & \(10^{7} \mathrm{Y}\) \\
5.267 & 1.616 & 1.429 & 4.240 & 8.309 \\
5.246 & 1.968 & 1.242 & 3.472 & 6.793 \\
5.236 & 2.143 & 1.155 & 3.120 & 6.126 \\
5.216 & 2.490 & 0.984 & 2.463 & 4.329 \\
5.205 & 2.663 & 0.900 & 2.160 & 4.217 \\
& & Mean \(\mathrm{k}_{1}^{\prime}=1.96 \times 10^{-3}\)
\end{tabular}

RUN 26
\begin{tabular}{lllll}
5.590 & 2.038 & 1.320 & 3.767 & 7.478 \\
5.557 & 2.559 & 1.058 & 2.738 & 5.399 \\
5.547 & 2.731 & 0.973 & 2.425 & 4.741 \\
5.525 & 3.074 & 0.815 & 1.862 & 3.610 \\
5.515 & 3.245 & 0.741 & 1.608 & 3.103
\end{tabular}

Mean \(k_{1}^{\prime}=2.01 \times 10^{-3}\)
Mean \(k_{1}^{\prime}=1.99( \pm 0.03) \times 10^{-3}\)

\section*{TABLE 3}

\begin{tabular}{lllll}
\multicolumn{2}{c}{ RUN_90 } & & \(I=0.10\) \\
\(10^{3} \mathrm{Ta}\) & \(10^{3} \mathrm{~b}\) & \(10^{3}\left[\mathrm{H}^{+}\right]\) & \(10^{4} \mathrm{X}\) & \(10^{7} \mathrm{Y}\) \\
5.586 & 1.970 & 1.430 & 4.021 & 8.944 \\
5.564 & 2.486 & 1.165 & 2.981 & 6.629 \\
5.542 & 2.997 & 0.917 & 2.082 & 4.592 \\
5.520 & 3.505 & 0.700 & 1.347 & 3.012 \\
5.499 & 4.008 & 0.494 & 0.758 & 1.694 \\
& & Mean \(\mathrm{k}_{1}^{\prime}=2.22 \times 10^{-3}\)
\end{tabular}

\section*{RUN 91}
\begin{tabular}{lllll}
5.567 & 1.970 & 1.4 .25 & 3.999 & 8.911 \\
5.550 & 2.357 & 1.223 & 3.203 & 7.113 \\
5.534 & 2.742 & 1.037 & 2.497 & 5.579 \\
5.518 & 3.124 & 0.857 & 1.866 & 4.139 \\
5.486 & 3.883 & 0.540 & 0.877 & 1.971 \\
& & Mean \(k_{1}^{\prime}=2.22 \times 10^{-3}\) \\
& Mean \(k_{1}^{\prime}=2.22 \times 10^{-3}\)
\end{tabular}
\begin{tabular}{lllll}
\multicolumn{2}{c}{ RUN 31 } & & \(I=0.15\) \\
\(10^{3} \mathrm{Ta}\) & \(10^{3} \mathrm{~b}\) & \(10^{3}\left[\mathrm{H}^{+}\right]\) & \(10^{4} \mathrm{X}\) & \(10^{7} \mathrm{Y}\) \\
5.413 & 2.320 & 1.199 & 3.108 & 6.937 \\
5.392 & 2.667 & 1.038 & 2.473 & 5.623 \\
5.371 & 3.011 & 0.873 & 1.894 & 4.319 \\
5.351 & 3.352 & 0.722 & 1.390 & 3.199 \\
5.330 & 3.691 & 0.578 & 0.960 & 2.230 \\
& & Mean \(\mathrm{k}_{1}^{\prime}=2.22 \times 10^{-3}\)
\end{tabular}

\section*{RUN 32}
\begin{tabular}{|c|c|c|c|c|}
\hline 5.371 & 2.494 & 1.201 & 2.736 & 6.100 \\
\hline 5.350 & 2.839 & 0.933 & 2.125 & 4.735 \\
\hline 5*329 & 3.182 & 0.772 & 1.584 & 3.521 \\
\hline 5.309 & 3.522 & 0.631 & 1. 129 & 2.560 \\
\hline 5.289 & 3.859 & 0.487 & 0.737 & 1.657 \\
\hline & \multicolumn{4}{|c|}{\[
\text { Mean } k_{1}^{\prime}=2.22 \times 10^{-3}
\]} \\
\hline
\end{tabular}

\section*{TABIE 6}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{RUN 41} & & & \(I=0.20\) \\
\hline \(10^{3} \mathrm{Ta}\) & \(10^{3} \mathrm{~b}\) & \(10^{3}\left[\mathrm{H}^{+}\right]\) & \(10^{4} x\) & \(10^{7} Y\) \\
\hline 5.355 & 1.968 & 1.424 & 3.819 & 9.396 \\
\hline 5.323 & 2.544 & 1.115 & 2.655 & 6.502 \\
\hline 5.303 & 2.924 & 0.923 & 1.988 & 4.849 \\
\hline 5.282 & 3.301 & 0.747 & 2.415 & 3.465 \\
\hline 5.262 & 3.675 & 0.577 & 0.929 & 2.257 \\
\hline \multicolumn{5}{|c|}{Mean \(k_{1}^{\prime}=2.42 \times 10^{-3}\)} \\
\hline
\end{tabular}

\section*{ROX 42}
\begin{tabular}{|c|c|c|c|c|}
\hline 5.206 & 1.968 & 1.358 & 3.602 & 3.658 \\
\hline 5.185 & 2.353 & 1.152 & 2.820 & 6.779 \\
\hline 5.165 & 2.734 & 0.955 & 2.123 & 5.071 \\
\hline 5.145 & 3.113 & 0.774 & 1.521 & 3.637 \\
\hline 5.106 & 3.861 & 0.450 & 0.606 & 1.478 \\
\hline & \multicolumn{4}{|c|}{Mean \(k_{1}^{\prime}=2.39 \times 10^{-3}\)} \\
\hline
\end{tabular}

\section*{TAELI 7}


ROTN 81
\begin{tabular}{lllll}
5.495 & 2.415 & 0.873 & 2.502 & 3.256 \\
5.434 & 2.639 & 0.787 & 2.147 & 2.313 \\
5.473 & 2.863 & 0.699 & 1.810 & 2.360 \\
5.463 & 3.086 & 0.619 & 1.507 & 1.963 \\
5.452 & 3.308 & 0.543 & 1.232 & 1.609 \\
& & Mean \(k_{1}^{\prime}=1.30 \times 10^{-3}\)
\end{tabular}

Mean \(k_{1}^{\prime}=1.29( \pm 0.02) \times 10^{-3}\)

\section*{TAELE 8}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{RUTH 73} & \(I=0\) \\
\hline \(10^{3} \mathrm{Ta}\) & \(10^{3} \mathrm{~b}\) & \(10^{3}\left[\mathrm{H}^{+}\right]\) & \(10^{4} \mathrm{x}\) & 107 Y \\
\hline 5.521 & 1.849 & 1.173 & 3.655 & 5.183 \\
\hline 5.488 & 2.527 & 0.873 & 2.406 & 3.417 \\
\hline 5.456 & 3.197 & 0.617 & 1.428 & 2.049 \\
\hline 5.435 & 3.640 & 0.468 & 0.919 & 1.333 \\
\hline 5.414 & 4.079 & \[
\begin{aligned}
& 0.334 \\
& \text { Mean } k_{1}^{\prime}
\end{aligned}
\] & \begin{tabular}{l}
\[
0.521
\] \\
1.41 x
\end{tabular} & \[
-0.167
\] \\
\hline \multicolumn{5}{|c|}{RUN 74} \\
\hline 5.533 & 1.621 & 1.295 & 4.158 & 5.999 \\
\hline 5.495 & 2.415 & 0.931 & 2.617 & 3.189 \\
\hline 5.468 & 2.975 & 0.701 & 1.730 & 2.486 \\
\hline 5.447 & 3.419 & 0.552 & 1.176 & 1.147 \\
\hline 5.426 & 3.860 & 0.396 & 0.102 & 1.011 \\
\hline & & \[
\text { Mean } k_{1}^{\prime}
\] & \[
.42 x
\] & \\
\hline \multicolumn{5}{|c|}{Mean \(k_{1}^{\prime}=1.42( \pm 0.01) \times 10^{-3}\)} \\
\hline
\end{tabular}

\section*{TADIE 2}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{RUN 58} & \(I=\) \\
\hline \(10^{3} \mathrm{Ta}\) & \(10^{3} \mathrm{~b}\) & \(10^{3}\left[\mathrm{H}^{+}\right]\) & \(10^{4} \mathrm{x}\) & \(10^{7} Y\) \\
\hline \(5.46 \%\) & 2.161 & 1.075 & 3.116 & \(4.85 \%\) \\
\hline \(5.4+6\) & 2.544 & 0.900 & 2.420 & 3.747 \\
\hline \(5 \cdot 425\) & 2.923 & 0.743 & 1.827 & 2.862 \\
\hline 5.404 & 3.300 & 0.600 & 1.306 & 2.035 \\
\hline 5.373 & 3.860 & 0.410 & 0.693 & 1.203 \\
\hline & & Mean \(\mathrm{k}_{1}^{\prime}\) & 1.55 x & \\
\hline
\end{tabular}

RUH 59
\begin{tabular}{lllll}
5.491 & 1.775 & 1.263 & 3.901 & 6.103 \\
5.459 & 2.352 & 0.985 & 2.756 & 4.260 \\
5.438 & 2.734 & 0.823 & 2.115 & 3.292 \\
5.396 & 3.488 & 0.533 & 1.090 & \(1.72^{\prime}+\) \\
5.375 & 3.300 & 0.410 & 0.699 & 1.107 \\
& & Maan \(k_{1}^{\prime}=1.55 \times 10^{3}\)
\end{tabular}

Mean \(k_{1}^{\prime}=1.55 \times 10^{-3}\)

\section*{TABLE 10}
\begin{tabular}{lllll}
\multicolumn{2}{c}{ RUN 63} & & \multicolumn{2}{c}{\(I=0.15\)} \\
\(10^{3} \mathrm{IIa}\) & \(10^{3} \mathrm{~b}\) & \(10^{3}\left[\mathrm{H}^{+}\right]\) & \(10^{4} \mathrm{X}\) & \(10^{7} \mathrm{Y}\) \\
5.438 & 2.123 & 1.115 & 3.211 & 5.265 \\
5.416 & 2.537 & 0.922 & 2.447 & 3.987 \\
5.395 & 2.948 & 0.754 & 1.800 & 2.965 \\
5.374 & 3.357 & 0.595 & 1.245 & 2.057 \\
5.354 & 3.762 & 0.452 & 0.793 & 1.324 \\
& & Mean \(\mathrm{k}_{1}^{\prime}=1.61 \times 10^{-3}\)
\end{tabular}

RUN 64
\begin{tabular}{lllll}
5.474 & 1.914 & 1.219 & 3.652 & 5.962 \\
5.453 & 2.330 & 1.012 & 2.823 & 4.523 \\
5.431 & 2.743 & 0.833 & 2.121 & 3.405 \\
5.410 & 3.153 & 0.675 & 1.528 & 2.495 \\
5.389 & 3.560 & 0.513 & 1.182 & 1.634 \\
& & Mean \(k_{1}^{\prime}=1.62 \times 10^{-3}\)
\end{tabular}

Mean \(k_{1}^{\prime}=1.62( \pm 0,01) \times 10^{-3}\)

\section*{TABLE II}
\begin{tabular}{lllll}
\multicolumn{2}{c}{ RUN 52} & & \(I=0.20\) \\
\(10^{3} \mathrm{Ta}\) & \(10^{3} \mathrm{~b}\) & \(10^{3}\left[\mathrm{Ei}^{+}\right]\) & \(10^{4} \mathrm{X}\) & \(10^{7 \mathrm{Y}}\) \\
5.390 & 2.161 & 1.106 & 3.126 & 5.317 \\
5.340 & 2.923 & 0.767 & 1.815 & 3.101 \\
5.328 & 3.300 & 0.512 & 1.248 & 2.172 \\
5.307 & 3.674 & 0.479 & 0.855 & 1.472 \\
5.287 & 4.046 & 0.355 & 0.509 & 0.896 \\
& & Mean \(\mathrm{k}_{2}^{\prime}=1.68 \times 10^{-3}\)
\end{tabular}

RUN 56
\begin{tabular}{lllll}
5.194 & 1.968 & 1.120 & 3.232 & 5.310 \\
5.174 & 2.352 & 0.941 & 2.509 & 4.137 \\
5.153 & 2.774 & 0.772 & 1.871 & 3.075 \\
5.133 & 3.112 & 0.614 & 1.321 & 2.149 \\
5.114 & 3.488 & 0.179 & 0.877 & 1.453 \\
& & & Mean \(k_{1}^{\prime}=1.64 \times 10^{-3}\)
\end{tabular}

Mean \(k_{1}^{\prime}=1.66( \pm 0.02) \times 10^{-3}\)





\(10^{3} \mathrm{Ta} \quad 10^{3} \mathrm{~b} \quad 10^{5}\left[\mathrm{H}^{+}\right] \quad 10^{3}\left[\mathrm{HA}^{-}\right] \quad 10^{3}\left[\mathrm{~A}^{=}\right] \quad 10^{6} \mathrm{k}_{2}^{\prime}\) \(\begin{array}{llllll}5.384 & 6.709 & 1.5349 & 3.988 & 1.368 & 5.27\end{array}\)
\begin{tabular}{llllll}
5.364 & 7.188 & 1.0158 & 3.496 & 1.351 & 5.38
\end{tabular}
\(\begin{array}{llllll}5.343 & 7.664 & 0.6822 & 2.998 & 2.336 & 5.32\end{array}\)
\(\begin{array}{llllll}5.323 & 8.136 & 0.4708 & 2.496 & 2.322 & 5.32\end{array}\)
\(\begin{array}{llllll}5.303 & 8.604 & 0.3186 & 1.994 & 3.307 & .5 .28\end{array}\)
\(\begin{array}{llllll}5.361 & 6.829 & 1.3108 & 3.834 & 1.505 & 5.15\end{array}\)
\(\begin{array}{llllll}5.345 & 7.188 & 0.9556 & 3.463 & 1.868 & 5.15\end{array}\)
\begin{tabular}{llllll}
5.330 & 7.545 & 0.7186 & 3.038 & 2.232 & 5.19
\end{tabular}
\(\begin{array}{llllll}5.300 & 8.253 & 0.4080 & 2.335 & 2.961 & 5.17\end{array}\)
\begin{tabular}{llllll}
5.285 & 8.604 & 0.3021 & 1.959 & 3.324 & 5.13
\end{tabular}

Mean \(k_{2}^{\prime}=5.24 \pm 0.08\)

\section*{TABLE \(15 \quad I=0.15\)}
\begin{tabular}{llllll}
\(10^{3} \mathrm{Ta}\) & \(10^{3} \mathrm{~b}\) & \(10^{5}\left[\mathrm{H}^{+}\right]\) & \(10^{3}\left[\mathrm{HA}^{-}\right]\) & \(10^{3}\left[\mathrm{~A}^{-}\right]\) & \(10^{6} \mathrm{k}_{2}^{\prime}\) \\
5.139 & 6.782 & 1.2902 & 3.443 & 1.676 & 6.28 \\
5.120 & 7.095 & 0.9318 & 3.108 & 1.999 & 6.31 \\
5.111 & 7.251 & 0.8516 & 2.940 & 2.160 & 6.26 \\
5.064 & 8.020 & 0.4528 & 2.095 & 2.965 & 6.41 \\
5.046 & 8.324 & 0.3366 & 1.759 & 3.284 & 6.28 \\
5.012 & 6.309 & 1.6683 & 3.644 & 1.341 & 6.14 \\
4.993 & 6.625 & 1.2428 & 3.312 & 1.663 & 624 \\
4.957 & 7.251 & 0.7070 & 2.638 & 2.310 & 6.19 \\
4.938 & 7.560 & 0.5427 & 2.300 & 2.633 & 6.21 \\
4.920 & 7.367 & 0.4037 & 1.962 & 2.955 & 6.16
\end{tabular}

Mean \(k_{2}^{\prime}=6.25 \pm 0.06\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{TABLE 18} & \multicolumn{3}{|c|}{\(I=0.05\)} \\
\hline \(10^{3} \mathrm{Ta}\) & \(10^{3} \mathrm{~b}\) & \(10^{5}\left[\mathrm{H}^{+}\right]\) & \(10^{3}\left[\mathrm{HA}^{-}\right]\) & \(10^{3}[\mathrm{~A}=]\) & \(10^{6} \mathrm{k}_{2}^{\prime}\) \\
\hline 5.208 & \(7 \cdot 474\) & 0.3308 & 2.926 & 2.276 & 2.57 \\
\hline 5.189 & 7.884 & 0.2342 & 2.483 & 2.702 & 2.55 \\
\hline 5.170 & 8.292 & 0.1665 & 2.041 & 3.126 & 2.55 \\
\hline 5.190 & 6.829 & 0.5441 & 3.518 & 1.658 & 2.56 \\
\hline 5.180 & 7.059 & 0.4396 & 3.266 & 1.904 & 2.56 \\
\hline 5.170 & 7.308 & 0.3602 & 3.014 & 2.149 & 2.57 \\
\hline & & LE 19 & \[
\text { Mean } k_{2}^{\prime}
\] & \(2.56 \pm\)
\(I=0.10\) & \\
\hline \(10^{3} \mathrm{Ta}\) & \(10^{3}[\mathrm{Na}\) & \(10^{5}\left[\mathrm{H}^{*}\right]\) & \(10^{3}\left[\mathrm{Ha}^{-}\right]\) & \(10^{3}\left[\mathrm{~A}^{\prime}=\right.\) ] & \(10^{6} \mathrm{k}_{2}^{\prime}\) \\
\hline 5.193 & 7.089 & 0.5645 & 3.267 & 1.914 & 3.31 \\
\hline 5.174 & 7.435 & 0.4143 & 2.893 & 2.273 & 3.26 \\
\hline 5.155 & 7.778 & 0.3113 & 2.518 & 2.631 & 3.25 \\
\hline 5.215 & 6.741 & 0.7213 & 3.647 & 1.551 & 3.07 \\
\hline 5.195 & 7.089 & 0.5285 & 3.274 & 1.911 & 3.08 \\
\hline 5.176 & 7.435 & 0.3903 & 2.899 & 2.270 & 3.06 \\
\hline 5.157 & 7.778 & 0.2929 & 2.524 & 2.629 & 3.05 \\
\hline & & & \multicolumn{3}{|l|}{Mean \(k_{2}^{\prime}=3.15 \pm 0.1\)} \\
\hline
\end{tabular}


TABLE \(21 \quad I=0.20\)
\(10^{3} \mathrm{Ta} \quad 10^{3} \mathrm{~b} \quad 10^{5}\left[\mathrm{H}^{+}\right] \quad 10^{3}\left[\mathrm{Ha}^{-}\right] \quad 10^{3}\left[\mathrm{~A}^{-}\right] \quad 10^{6} \mathrm{k}_{2}^{\prime}\)
\(\begin{array}{llllll}5.148 & 6.566 & 1.0198 & 3.675 & 2.451 & 4.03\end{array}\)
\(\begin{array}{llllll}5.110 & 7.262 & 0.5429 & 2.933 & 2.167 & 4.01\end{array}\)
\(\begin{array}{llllll}5.091 & 7.607 & 0.4130 & 2.559 & 2.526 & 4.08\end{array}\)
\(\begin{array}{llllll}5.077 & 6.566 & 0.9467 & 3.538 & 1.579 & 4.06\end{array}\)
\(\begin{array}{llllll}5.058 & 6.916 & 0.6764 & 3.168 & 1.877 & 4.01\end{array}\)
\(\begin{array}{llllll}5.040 & 7.262 & 0.5026 & 2.795 & 2.236 & 4.02\end{array}\)
\(\begin{array}{llllll}5.021 & 7.607 & 0.3808 & 2.420 & 2.595 & 4.03\end{array}\)
Mean \(k_{2}^{\prime}=4.04 \pm 0.03\)
the same manner, the activity coefficients being omitted from equation (19). The results are given in Tables 2 to 6 for malonic acid and 7 to 11 for n-butylmalonic acid, and the plots of \(X\) against \(Y\) are shown in Figs. 4 to 7. The concentrations of the ionic species required for the calculation of the corresponding \(k_{2}^{\prime}\) values were obtained frown equations (17) and (18). The results of these calculations are given in tables 12 to 21.

Solutions were prepared containing nickel chloride, the required acid and sodium hydroxide in such proportions that only the complex Ni would be expected.
\[
\begin{equation*}
\mathrm{Ni}^{2+}+\mathrm{A}^{=} \rightleftharpoons \mathbb{N i A} \tag{21}
\end{equation*}
\]

The concentrations of the ionic species in such solutions were obtained from the equations for total acid,
\[
\begin{equation*}
T a=\left[H_{2} A\right]+\left[H A^{-}\right]+\left[A^{=}\right]+[N i A], \tag{22}
\end{equation*}
\]
total metal,
\[
\begin{equation*}
\operatorname{Tm}=\left[\mathrm{NL}^{2+}\right]+[\mathrm{MiA}] \tag{25}
\end{equation*}
\]
electroneutrality,
\[
\left[\mathrm{H}^{+}\right]+\left[\mathrm{Na}^{+}\right]+2\left[\mathrm{Ni}^{2+}\right]=\left[\mathrm{Cl}^{-}\right]+\left[\mathrm{HA}^{-}\right]+2\left[\mathrm{~A}^{=}\right] \ldots \ldots\left(2^{+}\right)
\]
and tonic strength
\[
I=\frac{1}{3}\left\{6 \mathrm{ma}-4 \mathrm{~Pa}+\left[\mathrm{Na}^{+}\right]+\left[\mathrm{H}^{+}\right]+4\left[\mathrm{H}_{2} A\right]+5\left[\mathrm{HA}^{-}\right]+8\left[\mathrm{~A}^{-}\right]\right\} \ldots(25)
\]

The association constant
\[
\begin{equation*}
K=\frac{[\text { MiA }]}{\left[i N i^{2+}\right]\left[A^{=}\right] f_{2}^{2}} \tag{26}
\end{equation*}
\]
vas obtained by successive approximations of \(I\), using the Douce cumputer. Results arc given in Table 22 for malonate and in Table 23 for n-butylmalonate. The stability constanting \(K_{c}\), at constant ionic strength, were calculated in a similar manner, and the results are given in Tables 24 to 33. Data for all the experiments are sumarised in Tables 34 and 35 . Writing equation (26) as
\[
K=K_{c} \times \frac{1}{f_{2}^{2}}
\]
and, representing the activity coefficients by the extended Debye-Huckel equation,
\[
\begin{equation*}
\log K=\log _{\substack{K}}+\frac{4.072 \sqrt{I}}{1+B a \sqrt{I}}-2 b I \tag{13}
\end{equation*}
\]
or
\[
\log K=\alpha-2 b I
\]
\(\alpha\) was calculated for various values of \(\dot{A}\), between 0 and 20A, and plotted against \(I\). The choice of the correct activity expression was governed by the fact that the plot was necessarily to be linear and that the curves for values of a close to the correct value should intersect of the \(\alpha\)-axis. Figs. 3 and 9 show such curves for malonates and m-butylmalonates for á from 0 to \(20^{\circ}\).

Fies. 10 and 11 show a more detejled analysis for å between 0 and \(5 \AA\). It is seen that the required straight lines are only obtained for values between 2 and \(3 \AA\).

\[
\text { Yु: } \text { 展 }
\]
\[
3
\]
\[
\operatorname{se}
\]
\[
\underline{y+}
\]
Y,
\[
+2
\]
变品
\[
3-14 k
\]
T:
\[
\therefore+\tan
\]
x+x.
\[
\therefore \operatorname{stg}^{\frac{t}{4}}
\]
rse
\[
\because \tan +1
\]
\[
=\frac{v_{i}}{4}+3
\]
SO
\[
\mathrm{s}^{5} \mathrm{E} \cdot \frac{1}{3}
\]
\[
\text { Trem } \quad \text { ध्ट }
\]
\[
\begin{aligned}
& \text { w } \\
& \text { सt } \\
& 4 \\
& \therefore \text { 者 } \\
& 3 \text { 多 } \\
& z=\operatorname{tgr} \quad \Rightarrow \operatorname{tax} \\
& \text { sta, }
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline \[
10^{3} \mathrm{Ta}
\] & \(10^{3} \mathrm{Tm}\) & \[
10^{3} \mathrm{~b}
\] \\
\hline 4.269 & 4.428 & 6.026 \\
\hline 4.254 & 4.590 & 6.005 \\
\hline 4.247 & 4.670 & 5.995 \\
\hline 4.240 & 4.750 & 5.985 \\
\hline 3.784 & 4.474 & 5.218 \\
\hline 3.777 & 4.555 & 5.209 \\
\hline 3.771 & 4.637 & 5.200 \\
\hline 3.765 & 4.451 & 5.191 \\
\hline \[
10^{3} \mathrm{~T} a
\] & \[
10^{3} \operatorname{Tm}
\] & \[
10^{3} \mathrm{~b}
\] \\
\hline \(5 \cdot 214\) & 5.177 & 6.916 \\
\hline 5.195 & 5.158 & 7.262 \\
\hline 5.176 & 5.139 & 7.607 \\
\hline 5.157 & 5.120 & 7.948 \\
\hline 5.060 & 4.165 & 6.391 \\
\hline 5.041 & 4.149 & 6.742 \\
\hline 5.022 & 4.134 & 7.089 \\
\hline 4.985 & 4.104 & 7.778 \\
\hline
\end{tabular}
\[
\mathrm{b}=\text { total base }=\left[\mathrm{Na}^{+}\right]
\]

TABLE 22

\section*{Nickel Lalonate Low Concentration}
\begin{tabular}{lllll}
\(10^{5}\left[\mathrm{H}^{+}\right]\) & \(10^{2} \mathrm{I}\) & \(10^{4}\left[\mathrm{~A}^{2=}\right]\) & \(10^{3}[\mathrm{MA}]\) & \(10^{-4} \mathrm{~K}\) \\
5.647 & 1.694 & 1.431 & 1.742 & 1.29 \\
5.904 & 1.737 & 1.367 & 1.748 & 1.30 \\
6.047 & 1.759 & 1.333 & 1.751 & 1.31 \\
6.181 & 1.780 & 1.303 & 1.754 & 1.31 \\
6.634 & 1.710 & 1.124 & 1.465 & 1.24 \\
6.762 & 1.733 & 1.102 & 1.467 & 1.24 \\
6.867 & 1.755 & 1.085 & 1.469 & 1.24 \\
7.002 & 1.778 & 1.063 & 1.471 & 1.24 \\
& & Mean K \(=1.27 \pm 0.03\) &
\end{tabular}


\begin{tabular}{lll}
\(10^{3} \mathrm{Ta}\) & \(10^{3} \mathrm{Tm}\) & \(10^{3} \mathrm{~b}\) \\
5.042 & 4.398 & 7.251 \\
5.032 & 4.389 & 7.406 \\
5.014 & 4.371 & 7.714 \\
5.215 & 3.918 & 7.251 \\
5.206 & 3.911 & 7.406 \\
5.196 & 3.904 & 7.560
\end{tabular}
\begin{tabular}{lll}
\(10^{3} \mathrm{Ta}\) & \(10^{33 \mathrm{Tm}}\) & \(10^{3} \mathrm{~b}\) \\
4.810 & 4.925 & 6.771 \\
4.801 & 4.916 & 6.928 \\
4.793 & 4.907 & 7.084 \\
4.775 & 4.889 & 7.394 \\
4.766 & 4.880 & 7.548 \\
5.294 & 3.925 & 7.084 \\
5.274 & 3.911 & 7.394 \\
5.265 & 3.904 & 7.548 \\
5.246 & 3.889 & 7.855 \\
5.236 & 3.882 & 8.007
\end{tabular}


\begin{tabular}{lll}
\(10^{3} \mathrm{Ta}\) & \(10^{3} \mathrm{Tm}\) & \(10^{3}\left[\mathrm{Na}^{+}\right]\) \\
5.217 & 5.193 & 7.251 \\
5.169 & 5.660 & 7.185 \\
5.123 & 6.119 & 7.120 \\
5.032 & 7.011 & 6.993 \\
5.014 & 6.987 & 7.292 \\
5.202 & 4.162 & 7.095 \\
5.183 & 4.147 & 7.406 \\
5.164 & 4.131 & 7.714 \\
5.117 & 4.606 & 7.644 \\
5.071 & 5.071 & 7.575
\end{tabular}


\begin{tabular}{lll}
\(10^{3} \mathrm{Ta}\) & \(10^{3} \mathrm{Tm}\) & \(10^{3} \mathrm{~b}\) \\
4.967 & 5.231 & 6.625 \\
4.948 & 5.212 & 6.939 \\
4.939 & 5.202 & 7.095 \\
4.912 & 5.174 & 7.560 \\
4.894 & 5.155 & 7.867 \\
5.303 & 4.131 & 7.714 \\
5.274 & 4.109 & 8.172 \\
5.264 & 4.101 & 8.324 \\
5.217 & 4.572 & 8.249 \\
5.170 & 5.035 & 8.175 \\
& & \\
& & \(10^{3} \mathrm{Tm}\) \\
\(10^{3} \mathrm{Tm}\) & \(10^{3} \mathrm{~b}\) \\
5.104 & 5.456 & 6.535 \\
5.085 & 5.435 & 6.868 \\
5.048 & 5.396 & 7.525 \\
5.029 & 5.376 & 7.851 \\
5.237 & 5.461 & 6.452 \\
5.217 & 5.441 & 6.785 \\
5.179 & 5.401 & 7.444 \\
5.160 & 5.381 & 7.770
\end{tabular}

\[
2 \operatorname{sen} \theta+6
\]
yon
\[
\operatorname{sen}^{3} \cdot \operatorname{rta}^{2} \quad \text { पद? }
\]
\[
\begin{array}{r}
4+3
\end{array} \quad+\quad+4 \cdot 2
\]
\[
\begin{aligned}
& \text { a }
\end{aligned}
\]
\begin{tabular}{lll}
103 Ta & \(10^{3} \mathrm{Mm}\) & \(10^{3} \mathrm{~b}\) \\
5.264 & 5.235 & 6.957 \\
5.259 & 5.230 & 7.061 \\
5.254 & 5.225 & 7.165 \\
4.967 & 4.196 & 6.749 \\
4.963 & 4.192 & 6.853 \\
4.958 & 4.138 & 6.967 \\
4.953 & 4.184 & 7.061 \\
& & \\
& & \\
& \\
\(10^{3}{ }^{3} \mathrm{Ta}\) & \(10^{3} \mathrm{Tm}\) & \(10^{3} \mathrm{~b}\) \\
5.122 & 4.134 & 7.061 \\
5.113 & 4.176 & 7.268 \\
5.103 & 4.158 & 7.474 \\
5.094 & 4.150 & 7.680 \\
5.314 & 5.279 & 6.829 \\
5.304 & 5.259 & 7.069 \\
5.284 & 5.249 & 7.545 \\
5.274 & 5.240 & 7.782
\end{tabular}


\begin{tabular}{lll}
\(10^{3} \mathrm{Ta}\) & \(10^{3} \mathrm{Tm}\) & \(10^{3} \mathrm{~b}\) \\
5.207 & 5.313 & 6.511 \\
5.187 & 5.293 & 6.892 \\
5.168 & 5.274 & 7.271 \\
5.149 & 5.254 & 7.646 \\
5.090 & 4.259 & 6.320 \\
5.071 & 4.243 & 6.702 \\
5.052 & 4.227 & 7.082
\end{tabular}
\begin{tabular}{lll}
\(10^{3} \mathrm{Ta}\) & \(10^{3} \mathrm{Tm}\) & \(10^{3} \mathrm{~b}\) \\
5.132 & 5.313 & 6.511 \\
5.113 & 5.293 & 6.892 \\
5.093 & 5.274 & 7.271 \\
5.245 & 5.308 & 6.607 \\
5.226 & 5.289 & 6.987 \\
5.206 & 5.269 & 7.365 \\
5.187 & 5.249 & 7.789
\end{tabular}

\begin{tabular}{lll}
\(10^{3} \mathrm{Ta}\) & \(10^{3} \mathrm{Tm}\) & \(10^{3} \mathrm{~b}\) \\
5.181 & 5.303 & 6.702 \\
5.161 & 5.284 & 7.082 \\
5.142 & 5.264 & 7.459 \\
5.123 & 5.244 & 7.833 \\
5.245 & 5.308 & 6.607 \\
5.231 & 5.293 & 6.892 \\
5.211 & 5.274 & 7.271 \\
5.192 & 5.254 & 7.646
\end{tabular}
\begin{tabular}{lllll} 
& \multicolumn{2}{c}{\(\frac{\text { TABIE } 33}{}\)} & \multicolumn{2}{c}{\(I=0.20\)} \\
\(10^{5}\left[\mathrm{H}^{+}\right]\) & \(10^{3}\left[\mathrm{HA}^{-}\right]\) & \(10^{4}\left[\mathrm{~A}^{=}\right]\) & \(10^{3}[\mathrm{NiA}]\) & \(10^{-2} \mathrm{~K}\) \\
1.829 & 3.562 & 7.865 & 0.792 & 2.23 \\
1.303 & 3.178 & 9.876 & 0.971 & 2.28 \\
0.925 & 2.785 & 12.099 & 1.132 & 2.26 \\
0.667 & 2.387 & 14.396 & 1.286 & 2.26 \\
2.123 & 3.767 & 7.178 & 0.713 & 2.16 \\
1.623 & 3.485 & 8.690 & 0.843 & 2.18 \\
1.151 & 3.097 & 10.881 & 1.004 & 2.16 \\
0.836 & 2.702 & 12.994 & 1.177 & 2.22
\end{tabular}

\section*{野ABLE 34}

Nickel Malonate Equilibrium Constants
\begin{tabular}{lccc}
\(I\) & \(10^{3} \mathrm{k}_{1}\) & \(10^{6} \mathrm{k}_{2}\) & \(10^{-3} \mathrm{~K}\) \\
0 & 1.40 & 2.07 & \(12.7 \pm 0.3\) \\
0.03 & \(1.99 \pm 0.03\) & \(3.70 \pm 0.05\) & \(3.28 \pm 0.07\) \\
0.05 & \(2.04 \pm 0.12\) & \(4.15 \pm 0.05\) & \(2.47 \pm 0.04\) \\
0.10 & \(2.22 \pm 0.01\) & \(5.24 \pm 0.08\) & \(1.57 \pm 0.02\) \\
0.15 & \(2.22 \pm 0.01\) & \(6.25 \pm 0.06\) & \(1.23 \pm 0.01\) \\
0.20 & \(2.41 \pm 0.02\) & \(6.73 \pm 0.03\) & \(1.04 \pm 0.03\)
\end{tabular}

\section*{TABLE 35}

Nickel n-Butyl Malonate Equilibrium Constants
\begin{tabular}{lccc}
1 & \(10^{3} k_{1}\) & \(10^{6} k_{2}\) & \(10^{-2} \mathrm{~K}\) \\
0 & \(0.96 \pm 0.01\) & \(1.11 \pm 0.03\) & \(26.5 \pm 0.2\) \\
0.03 & \(1.29 \pm 0.02\) & \(2.27 \pm 0.04\) & \(6.74 \pm 0.07\) \\
0.05 & \(1.42 \pm 0.01\) & \(2.56 \pm 0.01\) & \(5.11 \pm 0.07\) \\
0.10 & \(1.55 \pm 0.01\) & \(3.15 \pm 0.10\) & \(3.11 \pm 0.08\) \\
0.15 & \(1.62 \pm 0.01\) & \(3.67 \pm 0.02\) & \(2.59 \pm 0.03\) \\
0.20 & \(1.66 \pm 0.03\) & \(4.04 \pm 0.03\) & \(2.22 \pm 0.04\)
\end{tabular}

All the available data have not been given in
Tables 1 to 33. While the constants are the average values of all results the mean deviations differ in some cases from those reported in Trans. Faraday Soc., 1962, 58, 354.





The values of it obeaned for the two systews by extrapolation are \(1.25 \times 10^{\%}\) for mekel malonate, and \(2.53 \times 10^{5}\) for n-butylablonete. These are in excellent agreerent with \(1.27 \times 10^{4}\) and \(2.65 \times 10^{3}\) respectively, obtained oy direct evaluation of the activity cosificients using equation (ii). The niokel malonate value may ve conpared with \(1.26 \times 10^{4}\) given by Davies \({ }^{4 i}\), and also by maix and hancolsas 42 using the cell.
\(\mathrm{H}_{2} / \mathrm{Pt} / \mathrm{H}_{2} \mathrm{Hal}\), NaOH, NiCl \(/ \mathrm{AgCL} / \mathrm{AE}\).
Whe suefestion made by cuggennein that a should, In fact, have a value giallar to a is not supportod by these results. in botis cases \(\AA=2.5\) to \(3 \AA\) and the \(b\) value 0.6 to 0.4 , corresponds clesely to that required by the Dettes guation (0.t). Fon \(2: 2\) - leotrolytes this is ecuivalent to an a of approxinately 4.2 A . Nonk \({ }^{27}\) studied cobalt dicarboxylates at a series of lonie streneths and, using equation (13), oktalned association constants a, and \(b\) values. The best a was constant, \(4.5 \hat{A}\), for most of the systoms stadied, while tho b values variod frow 0.05 to 0.22 . The results ure in reneral agreement with the work of kown end pue wa wo found that gmall values of \(\dot{\circ}\) eave a bettor fite to tic data
for bivalunt metul sumphates.
When augestang the use of equation (1t) for bivalent eloctrontes, ougenmeli assured that the lons which approached wethin a distence of a of one another were not influenced by the otier ions in solution. A consideration of the interactions between the ion-pair and other ions loads to the introduction of an activity coerficiont for the ion-pair. hossiensky \({ }^{43}\) has attributed the sucess of activity coefficient expressions containing low a or \(b\) values to the neglect of this term.
the very close similarity in the o values to be used for the two acids suggests that it is dependent not on the actual sizes of the ions, but on the sizes of the bonding centres. This is supported by the aimost constant values obtained by Monk for the cobalt dicarboxylates. While a may thus appear to have a definite physical meaning, it is better to consider it as an arbitrary parameter.

It would also appear, from the good agrevment between the \(K\) values obtained from direct evaluaition of the activity coofficients and extrapolation, that the Davies equation may be used in the study of divalent metal dicarboxylates. For bhese systems at least, there appears to be less uncertainty about the value of a to be used than was supposed by Prue.

\section*{PART II}

\section*{SCNE TRANSITIOM METAL GLYCINATES AND \(\beta\)-ALANINATES}

\section*{ITTRODUCTION}

In their study of the association betweon various diamines and the divalent ions of the first transition row metals, Irving and Williams \({ }^{44}\) found that the stability constants were in the order,
\(\mathrm{Min}<\mathrm{Fe}<\mathrm{CO}<\mathrm{Ni}<\mathrm{Cu}>\mathrm{Zn}\).
They showed that this order held for a large number of ligands and suggested that it was due to two factors; (i) the decrease in ionic radius along the series, leading to an increase in the electrostatic attraction, and (ii) an increase in the second ionisation potential of the metal, which they assumed to be a measure of the ability of the metal to form covelent bonds.

The decrease in the stability of chelates with increasing ring size has also been studied \({ }^{45}\). The five-membered ring chelates, oxalates, glycinates and ethylenediamines, were found to be more stable then the corresponding six-menbered malonates, \(\beta\)-alaninates and 1:3 diaminopropanes, and this hes been interpretted in terms of heat and entropy offects.

Heat and entropy data have been obtained for the association of diamines with metal ions, both by direct calorimetric measurcments \({ }^{46}\) and by association studies over a large temperature range \({ }^{47}\), and metal dicarboxylatos have also been studied fron \(0^{\circ}\) to \(45^{\circ} \mathrm{C}^{43,42}\).

However, association data for anino acids are only available over a small temperature range \({ }^{49}\), and it was therefore considered desirable to measure the stability of the chelates formed between transition metal ions and the glycinate and \(\beta\)-alaninate anions over a large range of temperature.

The association of the glycinate ion with metal Ions has been extensively studied \({ }^{50}\). Albert 51 and Maley and Mellor 52 have used potentiometric measutements at constant ionic strength, and thermodynamic constants have been obtained by Monk 53. Davies \({ }^{34}\), Monk \({ }^{55}\) and Keefer \({ }^{56}\) also calculated thermodynamic constants by measuring the solubilities of sparingly soluble netal iodates.

Few studies have been made with the \(\beta\)-alaninate anion \({ }^{50}\). Potentiometry has been used by Albert \({ }^{51}\) and Irving et \(a 1^{45}\), and polarographic methods by Li and Doody \({ }^{57}\) : other techniques have been employed in the study of the association with copper ions 53,59 .

The work described in this part of the thesis consists of the study of the association between nickel, cobalt and manganese ions and the glycinate and \(\beta\)-alaninate anions at \(0^{\circ}, 15^{\circ}, 25^{\circ}, 35^{\circ}\) and \(45^{\circ} \mathrm{C}\). For nickel and cobalt glycinates two complexes, \(\mathrm{AA}^{+}\)
and \(\mathrm{MA}_{2}\), have been found to be present, but for the other systems the results are best interpretted in terms of only one complex, \(\mathrm{MA}^{+}\). In the manganese \(\beta\)-alaninate studies, however, accurate results have not been obtained due to the preferential formation of the hydroxide complex.

\section*{GXPERTMETTAL}

\section*{APPARATUS}

\section*{Potentiometer}

A precision Vernier potentiometer (Type P.10, Croydon Precision Co. Croydon, Surrey.) was used. This had an overall range of 1.9 volts to 1 microvolt In two ranges, and the accuracy was 1 part in 100,000 of the 1 volt setting. The coil was of well aged bare Manganin Telcuman wire, of the same guage throughout, thus reducing the temperature coeficicient to a minimum.

All terminals were of copper, tipped with a precious metal alloy to ensure good contact. A five decade system in the battery circuit was used when standardising the potentioweter, and the standard cell voltage was preset with an auxiliary divider, calibrated from 1.01300 to 1.01900 volts in steps of 50 microvolts. The potentioneter rested on a lafge, earthed metal sheet. A multiple switch box was incorporated in the circuit between the colls and the potentioneter terminals in order to select for measurement any pair of electrodes.

Two Weston Standard cells (Combridge Instrument Co. Ltd., London.), riounted in metal cases, were kept in a small oil thermostat, maintained at \(25^{\circ} \pm 0.2^{\circ} \mathrm{C}\) by means of a bimetallic "Sunvic" relay. The standard
cells were compared regulerly and the difference between them was \(50 \pm 10\) miorovolts.

A scnsitive, spot-reflecting, noving coil galvanometer (Cambridge Instrument Co. Led.: London) was used in conjunotion with a scale at a distance of one meter.

\section*{Thermostat}

The thermostat was a large metal tank insulated with cork and containing water and ethyleneglycol. The tenperature was kept constant to within \(\pm 0.005^{\circ} \mathrm{C}\) by means of a mercury-toluens regulator, of large capacity, situated noar the heating unit. This operated a systen of any combination of three bulbs, painted red to roduce the offact on the lisht-sensitive silver, silver chloide electrodes. The relay coil was of hign resistance so that no sparking ocoured in the regulator during make and break. Tomperatures below that of the room were obtainod with a refrigerating unit (Frigidaire Division of Generol Motors Ltd., London, W.9.), and ror large rises in temperature a booster heater, which gave an increase of \(1^{\circ}\) per two minutes, was used. Since the e.m.f. measurements were made to \(\pm 0.01 \mathrm{~m} \cdot \mathrm{v}\). temperature control of the order of \(\pm .0 .005^{\circ} \mathrm{C}\) was necessary. The temperatures \(15^{\circ}, 25^{\circ}\), \(35^{\circ}\) and \(45^{\circ} \mathrm{C}\) were measured using Beckmann thermoncters
which had been calibrated against platinum resistance thermometers. The \(0^{\circ} \mathrm{C}\) thermometer vas standardised using a triple-point cell.

\section*{Cell and Electrodes}

The cell employed was similar to that used by Noyes and Ellis \({ }^{60}\). Two hydrogen presaturators were incorporated as suggested by Harned and Morrison \({ }^{61}\), and the modifications of Ashby, Crook and Datta 38 were also included. The cell was fitted with standard, E29, ground glass sockets, and the electrodes were supported in standard cones. Each cell contained a pair of silver, silver chloride electrodes and a pair of hydrogen clectrodes, so that four estimates of the e.m.f. were possible.

A guard tube was fitted to the hydrogen electrode compartment, and any liquid collecting in it was immediately removed. A diagram of the cell and electrodes is shown in Fig. 12.

\section*{Hydrogen Electrodes}

Pleces of platinum foil were welded to platinum wires which were then sealed into pyrex-glass tubes attached to B29 cones. The electrodes were cleaned with nitric acid, washed, and a little araldite resin cast, at \(120^{\circ} \mathrm{C}\), in the bottom of the tubes, thus ensuring good platinum-pyrex seals. They were then platinised for
three minutes, at a camont density of 0.2 amps per sq.on., in a solution containing \(2.5 \%\) chloroplatinic acid in normal hydrochloric acid, the current being reversed every 25 seconds. the coating, which was not sufficiently thick to ouscure the brightness of the underlying netal, was removed with aqua regia after each alternate run, and a fresh deposit made. The electrodes wero stored in conductivity water saturated with hydrogen.

\section*{Silver, Silver Chloride Electrodes.}

Taniguchi and Janz \({ }^{62}\) used small electrodes and found that they took from a few hours to one week to come to constant potential. Eates \({ }^{63}\) suggested that electrodes should be about 150 to \(200 \mathrm{~m} . \mathrm{gms}\). in weight. The electrodes used in the present work were of the thermal-electrolytic type, described in PartI, set in B29 ground glass cones. They weighed from 200 to \(300 \mathrm{~m} \cdot \mathrm{gms}\). , and were given from 3 to 4 weeks to settle.

\section*{Preparation of Reagents}

AnalaR glycine was used without further purification. The \(\beta\)-elanine, which was B.D. Fi. Laboratory Reagent grade was recrystallised three times from conductivity water and dried, in vacuo, at \(50^{\circ}\) to \(70^{\circ} \mathrm{C}\) (Analysis. Found:

C, 40.55\%; H, 7.71\%; \#, 15.50\%: Theoretical: C, 40.44; H, \(7.86 \%\); 1 , \(15.72 \%\). AnalaR netal chlorides were recrystallised once from conductivity water to remove insoluble matorial. Solutions were analysed by gravimetric analysis for chloride as silver chloride, the agreement being \(\pm 0.02 \%\). Sodium hydroxide solutions were prepared with conductivity water, and standarised as in Part I.

Conductivity vater, which was used for all solutions, was prepared by mixed-bed deionisation \({ }^{64}\). Distilled water vas passed down a colurn consisting of an intimate mixture of one part of the strong acid resin, Amberlite L.R. 120, and two parts of the strong base resin, Amberlite - .R.A. 400.

Constant boiling hydrochloric acid was prepared by the method of Foulk and Hollingworth \({ }^{65}\) and Shaw \({ }^{66}\), using the modifications of Litus and Baith \({ }^{67}\). Determinations of chloride as silver chloride agreed to \(\pm 0.02 \%\) and were in very good agreement with the theoretical values \({ }^{36}\).

Cylindar hydrogen was freed from oxygen by passage through a "Deoxo" purifier (Baker Platinum Division, Engelhard Industrios Ltd., London) and saturated with water vapour by passing through a series of bubblers.

\section*{Calibration of Silver, Silvor Chloride tiectrodes}

Farned and miers \({ }^{63}\) determined the standard potential of the silver, silver chloride electrode over a temperature range of \(0^{\circ}\) to \(60^{\circ} \mathrm{C}\) at \(5^{\circ}\)
intervals using an extrapolation technique, and most subsequent workers have usod their values. More recently it has been shown, however, that there is a difficulty in establishing the \(\mathrm{E}^{\mathrm{D}}\) value better than 0.2 m.v. \({ }^{69}\), and it has been recommended that each worker standerdise his own clectrodes in 0.01 molal hydrochloric acid. It was also suggested that the mean activity coefficient, \(\gamma \pm\), of hydrochloric acid at 0.01 molal be taken as 0.904 at \(25^{\circ} \mathrm{C}\), and 0.903 at \(0^{\circ} \mathrm{C}\). These values were used in the present work, and the activity coefficients of liarned and oven were used for the other temperatures.

\section*{E.m.f. Measurements}

Stock solutions of zlycino and the metal chlorides were prepared by weight in stoppered pyrex flasks. The experimental solutions were prepared by weight dilution of stock solutions in 500 ml. Quickfit flasks. In order to prevent the formation of metal hydroxides, however, it was necessary to use relatively large concentrations of \(\beta\)-alanine. Tuis acid was therefore
welghed directiy into the guictitt ilasks, veouma correations belne applicd to all welghts.

Eto flask tas fitted with a bubler heed, shown In Fie. 13. Erarogen was subbled through the solution for over half an hour and the eloctrodes were washed throe tines with the solition in the \(V\) - shaped vessel shown in Fig. 14.

A coll, previously oven dried at \(120^{\circ}\), was attached to the bubbler heed through a standard n10 joint (Fig. I3), and hydrogen blown whough to penove air. The eiactrodes were then placed in the cell and hydrogen passed for a few more binutes. The taps were adjusted so that the solution was transtoxred from tho thask to the coll ty hydrogen pressure. The illied coll was tion pleced in the thermostat and hydrogen bubbling sontlnuod at a slow rate.

It was possible to nake measurenonts whth four cells at a time. They were allowed to settle for 2 to 3 hours, attor wheh the a.ta.t. "s were measured, four peadings belng obtalned for cach coll. When those had beon constant for hale an hour, baronetric pressuro and roon teaperture vero poocrded and the ev.i.' corrected for pressure. in makink the peossure correction, the afecet of bublow achth of servod by HILs and ives \({ }^{70}\) vas hgnored, since this arountod to only 5 merovolts at \(25^{\circ} \mathrm{C}\). When weasupe onts ad



ELECTRODE-WASHING VESSEL

Fig. 14
been taken at ono temperature, the thermostat was raised to the next and the cells allowed to settle for half an hour.

\section*{Revers}

\section*{MEDAL GLYCTMADE}

Owen \({ }^{71}\) and King \({ }^{72}\) have determined \(k_{1}\) for glycine using the cell
\(\mathrm{H}_{2} / \mathrm{Pt} / \mathrm{HA}\left(\mathrm{m}_{1}\right), \mathrm{H}_{2} \mathrm{ACl}\left(\mathrm{m}_{2}\right) / \mathrm{AgCl} / \mathrm{Ag}\).
The only ionic species in solution were \(\mathrm{H}_{2} \mathrm{~A}^{+}, \mathrm{H}^{+}\) and \(\mathrm{Cl}^{-}\), and the ionic strength \(\mathrm{I}=\mathrm{m}_{2}\). Dissociation constants were obtained at a series of \(m_{2}\) values from the equation
\[
k_{1}^{\prime}=\frac{\left(m_{1}+m_{H}^{+}\right) m_{H}^{+}}{\left(m_{2}-m_{H}^{+}\right)}
\]
where \({\underset{H}{H}}^{+}\), the hydrogen ion concentration, was given by
\[
-\log m_{H^{+}}=\frac{E-E^{0}}{k}+\log m_{2}+2 \log X_{H C 1}
\]
\(\gamma_{\text {HEl }}\) was the mean activity coefficient of hydrochloric acid in water at the concentration \(m_{2}\). The thermodynamic constant \(k_{1}\), was then obtained by plotting log \(k_{1}^{\prime}\) against \(m_{2}\) and extrapolating to \(m_{2}=0\). A similar method was used for the calculation of \(k_{2}\).

Datta and Graybowski \({ }^{73}\) also determined \(k_{2}\) and in order to obtain linear plots of \(-\log k_{2}^{\prime}\) against \(I\), they represented the activity coefficients by an expression containing terms in \(I\) and \(J^{3 / 2}\), obtaining
\(\log k_{2}\) by a Least squades extrapolation. The best \(k_{2}\) vaiues appoar to be those of King and Datta and Graybowski. kgcurate data were therefore available at \(15^{\circ}, 25^{\circ}, 35^{\circ}\) and \(45^{\circ} \mathrm{C}\) and since the temperature coeficients were small it was considered sufficiently reliable to obtain the values at \(0^{\circ} \mathrm{C}\) by extrapolation of a plot of \(\log \mathrm{k}\) against 1/T. The values are summarised in Table 36 which includes King's \(\mathrm{k}_{2}\) values.

\section*{TABLE 36}

\section*{Acid Dissociation Constants}


In the association of the glycinate anion with nickel, cobalt and manganese ions, Monk \({ }^{53}\) found it necessary to assune that two complexes, \(\mathrm{MA}^{+}\)and \(M A_{2}\), were present in solutions of the first two. In manganese solutions, however, it appeared that only one conplex,
\(\mathrm{MA}^{+}\), was present. WIM and Mol \(70 \mathrm{r}^{52}\) and Albert \({ }^{51}\), however, found that an all arstems it was necessary to assume the presence of both complexes. In the present rome two complexes were sufficient in solutions of nickel and cobalt tons, but under the experimental conditions used, only one complex appeared to be formed with manganese ions.

In measurements using the cell
\[
\mathrm{H}_{2} / \mathrm{P}+/ \mathrm{HA}\left(\mathrm{~m}_{2}\right), \mathrm{HaOH}\left(\mathrm{~m}_{2}\right), \mathrm{HCl} \mathrm{H}_{2}\left(\mathrm{~m}_{3}\right) / \mathrm{AgCl} / \mathrm{Ag}
\]
where \(m_{1}, m_{2}\) and \(m_{3}\) are the molal concentrations of glycine, sodium hydroxide and metal chloride respectively, the concentration of hydrogen ion is given by
\[
\begin{equation*}
-\log \left[\mathrm{H}^{+}\right]=\frac{\mathrm{E}-\mathrm{E}^{\circ}}{\mathrm{k}}+2 \log \mathrm{~m}_{3}+2 \log \gamma_{1} \tag{27}
\end{equation*}
\]

Where \(E\) is the corrected \(\theta \cdot m . f ., E^{\circ}\) the standard potential of the silver, silver chloride electrode, \(\mathrm{k}=2.303 \mathrm{RT} / \mathrm{F}\) and \(\gamma\), the activity coefficient of the univalent ions.

In the general case the concentrations of the ionic species were obtained from the equations,
\[
\begin{align*}
& m_{1}=\left[\mathrm{H}_{2} \mathrm{~A}^{+}\right]+[\mathrm{MA}]+\left[\mathrm{A}^{-}\right] \div\left[\mathrm{MA}^{+}\right]+2\left[\mathrm{MA}_{2}\right],  \tag{23}\\
& m_{3}=\left[\mathrm{M}^{2+}\right]+\left[\mathrm{MA}^{+}\right] \neq\left[\mathrm{MA}_{2}\right], \tag{29}
\end{align*}
\]
electroneutrality
\[
\begin{equation*}
\left[\mathrm{H}^{+}\right]+2\left[\mathrm{M}^{2+}\right]+\left[\mathrm{HA}^{+}\right]+\mathrm{m}_{2}+\left[\mathrm{H}_{2} \mathrm{~A}^{+}\right]=\left[\mathrm{A}^{-}\right]+2 \mathrm{~m}_{3} \tag{30}
\end{equation*}
\]
the ionic strength
\(I=\frac{1}{2}\left\{\left[\mathrm{H}^{+}\right]+\left[\mathrm{MA}^{+}\right]+\left[\mathrm{H}_{2} \mathrm{~A}^{+}\right]+\left[\mathrm{A}^{-}\right]+\mathrm{m}_{2}+2 \mathrm{~m}_{3}+4\left[\mathrm{M}^{2+}\right]\right\}, \ldots\) (3I)
and the dissociation constants of the acid,
\[
\begin{equation*}
\mathbf{k}_{1}=\frac{\left[\mathrm{H}^{+}\right][\mathrm{HA}]}{\left[\mathrm{H}_{2} \mathrm{~A}^{+}\right]} \tag{32}
\end{equation*}
\]
and
\[
\begin{equation*}
k_{2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] \gamma_{1}^{2}}{[\mathrm{HA}]} \tag{33}
\end{equation*}
\]

Where only one complex, MA \({ }^{+}\), was formed
\[
\begin{equation*}
m_{1}=\left[H_{2} A^{+}\right]+[H A]+\left[A^{-}\right]+\left[\mathrm{MA}^{+}\right] \tag{34}
\end{equation*}
\]
and
\[
\begin{equation*}
m_{3}=\left[\mathrm{M}^{2+}\right]+\left[\mathrm{MA}^{+}\right] . \tag{35}
\end{equation*}
\]

In all solutions studied [OF] was negligibly small.
The association constants
\[
\begin{equation*}
\mathrm{K}_{1}=\frac{\left[\mathrm{MA}^{+}\right]}{\left[\mathrm{M}^{2+}\right]\left[\mathrm{A}^{-}\right] \gamma_{2}} \tag{36}
\end{equation*}
\]
and
\[
\begin{equation*}
K_{2}=\frac{\left[\mathrm{HA}_{2}\right]}{\left[\mathrm{MA}^{+}\right]\left[\mathrm{A}^{-}\right] \mathrm{X}_{1}^{2}} \tag{37}
\end{equation*}
\]
were obtained by succesive approximations for I, using the Deuce computer. For nickel and cobalt an approximate value of \(\mathrm{K}_{2}\) was used in the initial
calculation of \(K_{1}\). \(\quad\) rose acerate value of \(K_{2}\)
was then obtained, ord the process repeated until
\(K_{1}\) and \(K_{c}\) were constant.
The activity coefficients were celoulated from
the expression.
\(-\log \gamma_{ \pm}=A Z^{2}\left(\frac{\sqrt{I}}{I+\sqrt{I}}-\beta I\right)\),
and in order to determine the best value of \(\beta\) to be used, calculations were made with \(\beta=0.0,0.1,0.2,0.3,0.4\), 0.5 and 1.0 .

The values of the constants used in the calculations are given in Table 37.

\section*{TABLE 37}

Values of Constants used in Calculations
\begin{tabular}{ccc} 
Temp. \({ }^{\circ} \mathrm{C}\) & A & k \\
0 & 0.4383 & 0.054197 \\
15 & 0.5000 & 0.057173 \\
25 & 0.5085 & 0.059158 \\
35 & 0.5175 & 0.061141 \\
45 & 0.5270 & 0.063126
\end{tabular}

The results of \(K_{1}\) and \(K_{2}\) determinations with \(\beta=0.2\) in equation (38) are given in Tables 38, 39, 40, 41 and 42. Calculations with other \(\beta\) values are summarised in tables \(43,44,45,46\) and 47 .

Tunx 39

\section*{TABLE 33}

Molal Concentrations in Yokel Glycinate Experiments
\begin{tabular}{cccccc}
2 & 3 & 4 & 5 & 6 & 7 \\
6.2971 & 6.9927 & 5.3195 & 5.5262 & 6.3292 & 5.9371 \\
1.8722 & 2.2291 & 1.0678 & 0.9334 & 1.0590 & 3.3055 \\
0.1272 & 0.8316 & 0.9347 & 0.7359 & 0.6374 & 2.9797 \\
9 & 10 & 11 & 12 & 13 & 14
\end{tabular}
\(\begin{array}{lllllll}5.5410 & 6.0667 & 5.1350 & 5.4071 & 5.6186 & 6.3358\end{array}\)
\(\begin{array}{lllllll}2.7295 & 4.9962 & 2.6031 & 3.0623 & 3.1015 & 3.4016\end{array}\)
\(3.1635 \quad 5.3758 \quad 6.7398 \quad 5.4922 \quad 5.7036 \quad 5.9861\) Results on Nickel Glycinate
\(10^{3}[\mathrm{HA}] \quad 10^{7}\left[\mathrm{~A}^{+}\right] \quad 10^{4}\left[\mathrm{MA}^{+}\right] \quad 10^{6}\left[\mathrm{MA}_{2}\right] \quad 10^{-6} \mathrm{~K}_{1}\) Temp \(=0^{\circ} \mathrm{C}\).
\begin{tabular}{lllll}
6.058 & 0.211 & 2.180 & 0.69 & 2.93 \\
6.752 & 1.449 & 2.166 & 5.48 & 3.00 \\
5.416 & 0.646 & 1.034 & 1.16 & 2.87 \\
6.212 & 0.854 & 1.095 & 1.65 & 2.92 \\
5.545 & 0.725 & 3.792 & 4.41 & 2.93 \\
5.725 & 0.575 & 3.966 & 3.56 & 2.89 \\
5.551 & 0.572 & 5.010 & 4.34 & 2.92 \\
4.845 & 0.251 & 2.774 & 1.01 & 2.93 \\
5.078 & 0.346 & 3.175 & 1.66 & 2.90 \\
5.283 & 0.342 & 3.226 & 1.66 & 2.89 \\
5.966 & 0.359 & 3.547 & 1.91 & 2.92 \\
& & Mean \(\mathrm{K}_{1}=2.92 \pm 0.02\)
\end{tabular}


Expt. \(\mathrm{F}-\mathrm{E}^{0} \quad 30^{3} \mathrm{I} \quad 20^{6}\left[\mathrm{H}^{+}\right]\)
\begin{tabular}{rrrr}
2 & 0.39435 & 13.146 & 20.147 \\
5 & 0.40454 & 2.249 & 5.286 \\
6 & 0.47368 & 1.797 & 4.465 \\
7 & 0.43338 & 9.551 & 5.340 \\
8 & 0.41914 & 11.789 & 7.151 \\
10 & 0.41205 & 15.615 & 7.168 \\
11 & 0.39089 & 19.930 & 14.231 \\
12 & 0.40247 & 16.148 & 10.698 \\
13 & 0.40033 & 16.777 & 11.275 \\
14 & 0.39710 & 17.591 & 12.151
\end{tabular}
\begin{tabular}{rrrr}
2 & 0.38978 & 18.131 & 27.530 \\
3 & 0.48555 & 2.266 & 4.140 \\
5 & 0.47259 & 2.245 & 7.231 \\
6 & 0.48155 & 1.793 & 6.244 \\
7 & 0.43920 & 3.546 & 7.672 \\
8 & 0.42451 & 11.792 & 10.260 \\
10 & 0.41807 & 15.609 & 10.265 \\
11 & 0.39583 & 19.919 & 19.961 \\
12 & 0.40757 & 16.140 & 15.173 \\
13 & 0.40540 & 16.768 & 15.962 \\
14 & 0.4 .0251 & 17.580 & 17.113
\end{tabular}
\(10^{3}[\mathrm{HA}] \quad 10^{7}\left[\mathrm{~A}^{-}\right] \quad 10^{\frac{1}{2}}\left[\mathrm{IA}^{+}\right] \quad 10^{6}[3 \mathrm{AA}] \quad 10^{-6} \cdot \mathrm{~K}_{1}\) Tomp. \(=15^{\circ} \mathrm{C}\)

\[
\begin{aligned}
& \text { + }
\end{aligned}
\]
\[
\begin{aligned}
& \text { "asen }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Ge, }
\end{aligned}
\]
\[
\begin{aligned}
& \text { 展 }
\end{aligned}
\]

Expt. \(\mathrm{E}-\mathrm{E}^{\circ} \quad 10^{3} \mathrm{I} \quad 10^{6}\left[\mathrm{H}^{+}\right]\)
\begin{tabular}{rrrr}
1 & 0.50666 & 2.693 & 4.332 \\
2 & 0.39559 & 10.113 & 36,360 \\
3 & 0.49317 & 2.264 & 5.748 \\
4 & 0.46977 & 2.323 & 11.854 \\
5 & 0.48035 & 2.240 & 9.851 \\
6 & 0.48964 & 1.789 & 8.469 \\
7 & 0.44509 & 8.540 & 10.737 \\
8 & 0.43005 & 11.774 & 14.288 \\
9 & 0.43549 & 9.190 & 14.612
\end{tabular}
\(10.51587 \quad 1.691 \quad 5.648\)
\(2 \quad 0.40168 \quad 18.091 \quad 46,732\)
\(3 \quad 0.50078 \quad 2.260 \quad 7.822\)
\(4 \quad 0.47750 \quad 2.815 \quad 15.0629\)
\(5 \quad 0.48831 \quad 2.234 \quad 13,035\)
\(6 \quad 0.49798 \quad 1.783 \quad 11.173\)
\(7 \quad 0.45108 \quad 8.532 \quad 14.669\)
\(8 \quad 0.43571 \quad 11.763 \quad 19.420\)
\(\begin{array}{llll}9 & 0.4450 & 9.179 & 19.723\end{array}\)
\(10^{3}[\mathrm{HA}] \quad 10^{7}\left[\mathrm{~A}^{-}\right] \quad 10^{4}\left[\mathrm{HA}^{+}\right] \quad 10^{6}\left[\mathrm{~A}_{2}\right] \quad 10^{-6} \cdot \mathrm{~K}_{1}\) Temp. \(=35^{\circ} \mathrm{C}\).
\begin{tabular}{lllll}
8.945 & 6.727 & 2.615 & 10.94 & 1.23 \\
5.980 & 0.641 & 2.684 & 0.90 & 1.24 \\
6.747 & 3.373 & 2.259 & 5.37 & 1.20 \\
5.672 & 1.599 & 1.304 & 1.26 & 1.21 \\
5.395 & 1.308 & 1.168 & 1.30 & 1.20 \\
6.192 & 2.388 & 1.218 & 1.80 & 1.20 \\
5.521 & 1.859 & 3.956 & 4.12 & 1.22 \\
5.692 & 1.434 & 4.183 & 3.38 & 1.22 \\
5.221 & 1.300 & 2.995 & 2.17 & 1.21 \\
& & Mean \(K_{1}=1.21 \pm 0.01\)
\end{tabular}
\begin{tabular}{lllll}
8.940 & 8.312 & 2.631 & 11.83 & 0.95 \\
5.947 & 0.852 & 2.900 & 1.05 & 1.02 \\
6.740 & 4.865 & 2.300 & 5.63 & 0.99 \\
5.660 & 2.070 & 1.379 & 1.42 & 1.00 \\
5.385 & 2.331 & 1.230 & 1.44 & 0.99 \\
6.183 & 3.039 & 1.272 & 2.00 & 0.99 \\
5.508 & 2.325 & 4.033 & 4.30 & 1.01 \\
5.676 & 1.366 & 4.237 & 3.56 & 1.01 \\
5.205 & 1.645 & 3.094 & 2.32 & 1.00 \\
& & Lean \(K_{1}=1.00 \pm 0.02\)
\end{tabular}

\[
\text { Expt. } \quad E-\mathbf{E}^{0} \quad 10^{3} . I
\]
\begin{tabular}{rll}
1 & 0.47819 & 5.756 \\
2 & 0.47478 & 6.812 \\
3 & 0.47293 & 6.400 \\
4 & 0.46676 & 7.502 \\
5 & 0.51680 & 2.207 \\
6 & 0.53051 & 1.626 \\
7 & 0.52851 & 1.737 \\
8 & 0.55118 & 1.519 \\
9 & 0.46937 & 6.239 \\
10 & 0.46691 & 6.933
\end{tabular}

Molal Concentrations in Gobalt Glycinate Experinents
\begin{tabular}{cccccc} 
Expt. & 1 & 2 & 3 & 4 & 5 \\
\(10^{3} \mathrm{~m}_{1}\) & 7.4284 & 7.3796 & 3.2576 & 3.2049 & 7.5728 \\
\(10^{4} \mathrm{~m}_{2}\) & 1.5516 & 1.8040 & 1.6441 & 1.7241 & 1.3634 \\
\(10^{3} \mathrm{~m}_{3}\) & 1.9699 & 2.3304 & 2.1385 & 2.5591 & 0.7795 \\
& 6 & 7 & 8 & 9 & 10 \\
\(10^{3} \mathrm{~m}_{1}\) & 6.4364 & 7.0639 & 6.6283 & 7.1659 & 5.8391 \\
\(10^{4} \mathrm{~m}_{2}\) & 1.1744 & 1.3466 & 2.2921 & 1.2526 & 1.1185 \\
\(10^{3} \mathrm{~m}_{3}\) & 0.5796 & 0.6220 & 0.5767 & 2.1214 & 2.3652
\end{tabular}

Results on Cobalt Glycinate
\(10^{7}\left[\mathrm{H}^{+}\right] \quad 10^{3}[\mathrm{HA}] \quad 10^{6}\left[\mathrm{~A}^{-}\right] \quad 10^{4}\left[\mathrm{MA}^{+}\right] \quad 10^{-5} \cdot \mathrm{~K}_{1}\) Temp. \(=0^{\circ} \mathrm{C}\).
\begin{tabular}{lllll}
4.458 & 7.271 & 6.227 & 1.531 & 1.85 \\
4.409 & 7.197 & 6.310 & 1.779 & 1.84 \\
5.054 & 3.038 & 6.156 & 1.645 & 1.83 \\
5.691 & 8.029 & 5.494 & 1.710 & 1.85 \\
2.065 & 7.435 & 1.299 & 1.305 & 1.90 \\
1.530 & 6.318 & 1.470 & 1.113 & 1.93 \\
1.557 & 6.929 & 1.589 & 1.273 & 1.95 \\
0.637 & 6.399 & 3.565 & 2.034 & 1.86 \\
6.054 & 7.038 & 0.446 & 1.250 & 1.94 \\
6.081 & 5.725 & 0.365 & 1.119 & 1.92 \\
& & Mean \(\mathrm{K}_{1}\) & \(1.89 \pm 0.04\)
\end{tabular}


ENT. E-N \(\quad 10^{3} .1\)
\begin{tabular}{lll}
1 & 0.43695 & 5.755 \\
2 & 0.48325 & 6.012 \\
3 & 0.43149 & 6.399 \\
4 & 0.47515 & 7.501 \\
5 & 0.52772 & 2.207 \\
6 & 0.54230 & 1.627 \\
7 & 0.54037 & 1.238 \\
8 & 0.56383 & 1.521 \\
9 & 0.47942 & 6.238 \\
10 & 0.47611 & 6.982
\end{tabular}
\begin{tabular}{lll}
1 & 0.49238 & 5.754 \\
2 & 0.48854 & 6.811 \\
3 & 0.48678 & 6.398 \\
4 & 0.48036 & 7.500 \\
5 & 0.53448 & 2.207 \\
6 & 0.54955 & 1.627 \\
7 & 0.54777 & 1.738 \\
8 & 0.57173 & 1.522 \\
9 & 0.48439 & 6.237 \\
10 & 0.48156 & 6.981
\end{tabular}

\begin{tabular}{lllll}
1.419 & 7.267 & 10.050 & 1.554 & 1.18 \\
1.410 & 7.193 & 10.137 & 1.802 & 1.17 \\
1.601 & 8.084 & 9.988 & 1.672 & 1.17 \\
1.781 & 3.024 & 9.027 & 1.740 & 1.17 \\
0.657 & 7.434 & 2.095 & 1.313 & 1.20 \\
0.485 & 6.317 & 2.380 & 1.116 & 1.21 \\
0.485 & 6.927 & 2.612 & 1.275 & 1.20 \\
0.205 & 6.398 & 5.685 & 2.039 & 1.18 \\
1.774 & 7.033 & 0.783 & 1.275 & 1.14 \\
1.328 & 5.721 & 0.623 & 1.143 & 1.16 \\
& & \(M 802 \mathrm{~K}\) & \(=1.18 \pm 0.02\) &
\end{tabular}
\[
\text { ac, } \quad \text { tua, }
\]
\[
\begin{aligned}
& \text { Q. hert. } \\
& \text { sty b+e. }
\end{aligned}
\]
\[
\begin{aligned}
& \text { एक. } \mathrm{BCH}
\end{aligned}
\]
\[
\begin{aligned}
& \text { पan, Pratat }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Pater pate. } \\
& \text { 4. } 4 \text { ISE }
\end{aligned}
\]

Expt. \(\mathrm{E}-\mathrm{E}^{\mathrm{O}} \quad 10^{3} . \mathrm{I}\)
\begin{tabular}{ccc}
1 & 0.49787 & 5.753 \\
2 & 0.49391 & 6.809 \\
3 & 0.49226 & 6.396 \\
4 & 0.48564 & 7.498 \\
5 & \(0.54+119\) & 2.207 \\
6 & 0.55676 & 1.627 \\
7 & 0.55500 & 1.738 \\
8 & 0.57952 & 1.523 \\
9 & 0.49029 & 6.235 \\
10 & 0.48687 & 6.980
\end{tabular}
\begin{tabular}{ccc}
1 & 0.50341 & 5.751 \\
2 & 0.49926 & 6.807 \\
3 & 0.49764 & 6.394 \\
4 & 0.49098 & 7.495 \\
5 & 0.54789 & 2.206 \\
6 & 0.56387 & 1.627 \\
7 & 0.56221 & 1.738 \\
8 & 0.58718 & 1.524 \\
9 & 0.49575 & 6.232 \\
10 & 0.49220 & 6.977
\end{tabular}
\[
\begin{aligned}
& \left.26^{+}\right] \quad 40^{3}[A] \quad 4\left[A^{-}\right] \quad 4^{2}\left[A^{+}\right] \quad 20^{-5} \cdot A_{2}
\end{aligned}
\]


TABLE 40
\begin{tabular}{|c|c|c|}
\hline Hxyt. & 1 & 2 \\
\hline \(10^{22^{2}}\) & 9.703 & 9.42he \\
\hline \(10^{4} \mathrm{~m}_{2}\) & 50.5234 & 5.7366 \\
\hline \(10^{2} \mathrm{~m}_{3}\) & 3.7329 & 3.3796 \\
\hline  & \(5-\mathbf{x}^{\circ}\) & \(10^{2} \cdot 1\) \\
\hline 1 & 0.43695 & 12.142 \\
\hline 2 & 0.44316 & 10.007 \\
\hline 3 & 0.44799 & 9.245 \\
\hline 4 & 0.45492 & 5.332 \\
\hline 5 & 0.45102 & 6.632 \\
\hline 6 & \(0.4+670\) & 8.702 \\
\hline 7 & 0.45122 & 10.237 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 1 & ce43794 & 11.142 \\
\hline 2 & 0.41435 & 10.087 \\
\hline 3 & 0.44942 & 3.245 \\
\hline 4 & 0.45630 & 5.382 \\
\hline 5 & . 45893 & 6. 31 \\
\hline 6 & :44047 & 3.7 CL \\
\hline 7 & 0.55281 & 1).237 \\
\hline
\end{tabular}

\section*{TABLE 40}

Molal Concentrations in Nancanese Cigcinate Experinents


\[
\text { Expt. } \quad E-E^{0} \quad 10^{2} . I
\]
\begin{tabular}{lrr}
1 & 0.43852 & 11.142 \\
2 & 0.44500 & 10.086 \\
3 & 0.45020 & 8.245 \\
5 & 0.45367 & 6.631 \\
6 & 0.44888 & 8.701 \\
7 & 0.45360 & 10.237
\end{tabular}
\begin{tabular}{llr}
1 & 0.43916 & 11.141 \\
2 & 0.44573 & 10.086 \\
3 & 0.45120 & 8.244 \\
5 & 0.45475 & 6.630 \\
6 & 0.44971 & 8.701 \\
7 & 0.45449 & 10.237
\end{tabular}
\begin{tabular}{lrr}
1 & 0.44020 & 11.139 \\
2 & 0.44686 & 10.085 \\
3 & 0.45254 & 8.243 \\
5 & 0.45627 & 6.629 \\
6 & 0.45093 & 3.700 \\
7 & 0.45553 & 10.236
\end{tabular}
\[
\begin{array}{cl}
10^{6}\left[\mathrm{H}^{+}\right] \quad 10^{2}[1 \mathrm{AA}] \quad 10^{5}\left[\mathrm{~A}^{-}\right] \quad 10^{4}\left[\mathrm{MA}^{+}\right] \quad 10^{-3} \cdot \mathrm{~K}_{1} \\
& \text { Temp. }=25^{\circ} \mathrm{C}
\end{array}
\]

\begin{tabular}{lllll}
1.514 & 9.641 & 3.253 & 5.822 & 1.44 \\
1.284 & 8.564 & 3.351 & 5.644 & 1.45 \\
1.235 & 7.919 & 3.112 & 4.582 & 1.45 \\
1.297 & 7.923 & 2.861 & 3.564 & 1.42 \\
1.250 & 7.083 & 2.775 & 4.236 & 1.45 \\
0.913 & 4.029 & 2.222 & 3.921 & 1.50 \\
& \multicolumn{4}{c}{ Mean K \(\mathrm{K}_{1}=1.45 \pm 0.02\)}
\end{tabular}
\begin{tabular}{lllll}
2.477 & 9.637 & 3.426 & 6.001 & 1.44 \\
2.109 & 8.561 & 3.518 & 5.779 & 1.45 \\
2.026 & 7.916 & 3.266 & 4.701 & 1.44 \\
2.120 & 7.920 & 3.011 & 3.689 & 1.42 \\
2.055 & 7.081 & 2.906 & 4.346 & 1.45 \\
1.521 & 4.028 & 2.298 & 3.969 & 1.50 \\
& & & lean \(K_{1}=\) & \(1.45 \pm 0.02\)
\end{tabular}
\(4 \operatorname{arcta}\)

84.2

4-4 64
TABLE 42
ctace 6ten.

ar.
4. 5 sex.
\(1800.8+y^{2}\)


a 6 mb
sab axatopy
8
\begin{tabular}{|c|c|c|}
\hline Expt . & 1 & 2 \\
\hline \(10^{2} \mathrm{~m}\) & 3.7992 & 3.2694 \\
\hline \(10^{3} \mathrm{~m}_{2}\) & 0.9139 & 1.0490 \\
\hline \[
10^{3} \mathrm{~m}_{3}
\] & 0.7927 & 0.9694 \\
\hline Expt. & \(E-E^{\circ}\) & \(10^{3} .1\) \\
\hline 1 & 0.49267 & 1.673 \\
\hline 2 & 0.48782 & 2.071 \\
\hline 3 & 0.46943 & 2.298 \\
\hline 4 & 0.48047 & 1.896 \\
\hline 5 & 0.47343 & 2.343 \\
\hline 6 & 0.47172 & 2.424 \\
\hline 7 & 0.46117 & 3.059 \\
\hline 8 & 0.47532 & 2.278 \\
\hline 1 & 0.50671 & 1.671 \\
\hline 2 & 0.50075 & 2.069 \\
\hline 3 & 0.49252 & 2.292 \\
\hline 4 & 0.49361 & 1.891 \\
\hline 5 & 0.43640 & 2.336 \\
\hline 6 & 0.48426 & 2.420 \\
\hline 7 & 0.47301 & 3.051 \\
\hline 8 & 0.43809 & 2.273 \\
\hline
\end{tabular}

\section*{TADS 41}

\section*{Molal Concentrations in Michel Glycinate Experiments}
\begin{tabular}{lllllll}
3 & 4 & 5 & 6 & 7 & 3
\end{tabular}
\(\begin{array}{llllll}3.6302 & 3.8354 & 4.5332 & 6.2537 & 5.4038 & 4.4374\end{array}\)
\(1.0942 \quad 0.3727 \quad 2.1191 \quad 1.23471 .3672 \quad 1.1023\)
\(\begin{array}{llllll}1.0637 & 0.8726 & 1.0845 & 1.1448 & 1.4018 & 1.0580\end{array}\)
Results on Nickel GIycinate
\[
\begin{array}{ll}
10^{6}\left[\mathrm{H}^{+}\right] \quad 10^{6}\left[\mathrm{~A}^{-}\right] \quad 10^{4}\left[\mathrm{MA}^{+}\right] \quad 10^{4}\left[\mathrm{MA}_{2}\right] \quad 10^{-5} \mathrm{~K}_{2} \\
\text { Temp. }=0^{\circ} \mathrm{C}
\end{array}
\]
\[
0.559 \quad 2.363 \quad 4.962 \quad 2.108 \quad 1.96
\]
\begin{tabular}{lllll}
0.567 & 2.007 & 6.267 & 2.129 & 1.87 \\
0.742 & 1.716 & 6.896 & 2.054 & 1.92
\end{tabular}
\begin{tabular}{lllll}
0.857 & 1.566 & 5.562 & 1.573 & 1.95 \\
0.940 & 1.704 & 6.959 & 2.169 & 2.03 \\
0.959 & 2.315 & 7.256 & 2.869 & 1.90 \\
1.241 & 1.556 & 9.122 & 2.362 & 1.87 \\
0.888 & 1.782 & 6.823 & 2.151 & 1.96
\end{tabular}
\[
\text { Mean } K_{2}=1.93 \pm 0.04
\]

Temp. \(=15^{\circ} \mathrm{C}\)
\begin{tabular}{lllll}
0.946 & 3.838 & 5.031 & 2.081 & 1.18 \\
0.993 & 3.150 & 6.309 & 2.117 & 1.18 \\
1.267 & 2.761 & 7.000 & 2.017 & 1.16 \\
1.465 & 2.519 & 5.743 & 1.552 & 1.18 \\
1.592 & 2.765 & 7.069 & 2.139 & 1.22 \\
1.647 & 3.705 & 7.297 & 2.886 & 1.19 \\
2.141 & 2.480 & 9.208 & 2.365 & 1.17 \\
1.522 & 2.355 & 6.900 & 2.137 & 1.20 \\
& & Mean \(K=1.19 \pm 0.02\) &
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Expt. & \(E-E^{\circ}\) & \(10^{3} .1\) \\
\hline & - & \\
\hline 1 & 0.51547 & 1.670 \\
\hline 2 & 0.50905 & 2.067 \\
\hline 3 & 0.50065 & 2.290 \\
\hline 4 & 0.50172 & 1.889 \\
\hline 5 & 0.49476 & 2.331 \\
\hline 6 & 0.49248 & 2.416 \\
\hline 7 & 0.48081 & 3.044 \\
\hline 8 & 0.49628 & 2.270 \\
\hline 1 & 0.52437 & 1.669 \\
\hline 2 & 0.51770 & 2.065 \\
\hline 3 & 0.50910 & 2.286 \\
\hline 4 & 0.51078 & 1.883 \\
\hline 5 & 0.50290 & 2.327 \\
\hline 6 & 0.50082 & 2.413 \\
\hline 7 & 0.48864 & 3.037 \\
\hline 8 & \(0.504+6\) & 2.266 \\
\hline
\end{tabular}
\[
\begin{array}{ll}
10^{6}\left[\mathrm{IH}^{+}\right] \quad 10^{6}\left[\mathrm{~A}^{-}\right] \quad 10^{4}\left[\mathrm{MA}^{+}\right] \quad 10^{4}\left[\mathrm{VA}_{2}\right] \quad 10^{-4} \cdot \mathrm{~K}_{2} \\
& \text { Temp. }=25^{\circ} \mathrm{C}
\end{array}
\]
\begin{tabular}{lllll}
1.336 & 5.067 & 5.057 & 2.073 & 3.89 \\
1.417 & 4.119 & 6.335 & 2.115 & 8.97 \\
1.800 & 3.625 & 7.036 & 2.015 & 3.78 \\
2.085 & 3.300 & 5.760 & 1.565 & 9.07 \\
2.222 & 3.694 & 7.132 & 2.132 & 9.01 \\
2.304 & 4.938 & 7.322 & 2.908 & 0.96 \\
3.000 & 3.300 & 9.277 & 2.373 & 3.75 \\
2.143 & 3.781 & 6.941 & 2.140 & 9.06 \\
& & Mean \(K_{2}=8.94 \pm 0.10\)
\end{tabular}
\begin{tabular}{lllll}
1.835 & 6.571 & 5.082 & 2.078 & 6.83 \\
1.948 & 5.335 & 6.380 & 2.104 & 6.35 \\
2.467 & 4.711 & 7.092 & 2.007 & 6.69 \\
2.796 & 4.382 & 5.843 & 1.546 & 6.66 \\
3.058 & 4.780 & 7.160 & 2.152 & 7.01 \\
3.139 & 6.456 & 7.335 & 2.946 & 6.95 \\
4.107 & 4.295 & 9.327 & 2.403 & 6.78 \\
2.952 & 4.891 & 6.967 & 2.159 & 7.06 \\
& & Mean \(K_{2}=6.85 \pm 0.11\)
\end{tabular}

\begin{tabular}{lll} 
Expt. & \(\mathrm{E}-\mathrm{E}^{0}\) & \(10^{3} . I\) \\
1 & 0.53323 & 1.668 \\
2 & 0.52619 & 2.064 \\
3 & 0.51742 & 2.283 \\
5 & 0.51063 & 2.325 \\
6 & 0.50872 & 2.411 \\
7 & 0.49601 & 3.032 \\
8 & 0.51216 & 2.265
\end{tabular}

\[
\%
\]
-
\[
\mathrm{o}
\]
\[
+\infty, b \quad r, t
\]
aiver More.
\[
\begin{aligned}
& \cdots-\frac{6}{4} \\
& \text { 为 }
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline Expt. & 1 & 2 \\
\hline \(10^{2} \mathrm{~m}_{1}\) & 3.4170 & 6.4753 \\
\hline \(10^{3} \mathrm{~m} 2\) & 1.3904 & 1.1048 \\
\hline \[
10^{3} \mathrm{~m}_{3}
\] & 1.3658 & 0.9961 \\
\hline Expt. & \(E-\mathrm{E}^{\circ}\) & \(10^{3} .1\) \\
\hline 1 & 0.51238 & 3.017 \\
\hline 2 & 0.53026 & 2.172 \\
\hline 3 & 0.52006 & 2.556 \\
\hline 4 & 0.53005 & 2.152 \\
\hline 5 & 0.51185 & 2.800 \\
\hline 6 & 0.50915 & 3.002 \\
\hline 7 & 0.51279 & 2.484 \\
\hline 1 & 0.52369 & 3.022 \\
\hline 2 & 0.54201 & 2.182 \\
\hline 3 & 0.53141 & 2.566 \\
\hline 4 & 0.54196 & 2.161 \\
\hline 5 & 0.52321 & . 2.808 \\
\hline 6 & 0.52001 & 3.011 \\
\hline 7 & 0.52409 & 2.494 \\
\hline
\end{tabular}

\section*{SALE 42}

Molal Concentrations in Cobalt Glycinate Experiments
\begin{tabular}{ccccc}
3 & 4 & 5 & 6 & 7 \\
9.2361 & 6.5973 & 12.1177 & 12.6328 & 14.1035 \\
1.3370 & 1.1019 & 1.4619 & 1.5339 & 1.3279 \\
1.1797 & 0.9372 & 1.2936 & 1.3856 & 1.1513 \\
& \multicolumn{4}{c}{\(\left[\mathrm{H}^{+}\right]\)}
\end{tabular}

Temp. \(=0^{\circ} \mathrm{C}\).
\begin{tabular}{lllll}
1.445 & 2.101 & 8.295 & 2.716 & 1.75 \\
0.911 & 2.518 & 6.013 & 2.400 & 1.75 \\
1.197 & 2.765 & 7.091 & 3.016 & 1.71 \\
0.928 & 2.521 & 5.919 & 2.433 & 1.80 \\
1.554 & 2.814 & 7.797 & 3.296 & 1.68 \\
1.633 & 2.801 & 8.487 & 3.339 & 1.58 \\
1.667 & 3.043 & 6.975 & 3.032 & 1.59 \\
& \multicolumn{4}{c}{\begin{tabular}{lll} 
Mean \(K_{2}\) & \(=1.69, \pm 0.07\) \\
& Temp. \(=15^{\circ} \mathrm{C}\)
\end{tabular}}
\end{tabular}
\begin{tabular}{lllll}
2.853 & 2.926 & 8.420 & 2.625 & 1.20 \\
1.839 & 3.432 & 6.078 & 2.329 & 1.24 \\
2.399 & 3.798 & 7.173 & 2.936 & 1.20 \\
1.358 & 3.460 & 5.099 & 2.352 & 1.25 \\
3.059 & 3.931 & 7.924 & 3.197 & 1.15 \\
3.261 & 3.858 & 3.574 & 3.265 & 1.11 \\
3.297 & 4.232 & 7.080 & 2.945 & 1.10 \\
& & Mean \(K_{2}=1.18 \pm 0.05\)
\end{tabular}


Eapt. E m \(\mathrm{E}^{0} \quad 10^{3} .1\)
\begin{tabular}{lll}
1 & 0.53113 & 3.024 \\
2 & 0.54951 & 2.189 \\
3 & 0.53882 & 2.573 \\
4 & 0.54960 & 2.168 \\
5 & 0.53055 & 2.814 \\
6 & 0.52705 & 3.017 \\
7 & 0.53112 & 2.501
\end{tabular}
\begin{tabular}{lll}
1 & 0.53789 & 3.030 \\
2 & 0.55666 & 2.196 \\
3 & 0.54581 & 2.580 \\
4 & 0.55684 & 2.175 \\
5 & 0.53737 & 2.821 \\
6 & 0.53373 & 3.024 \\
7 & 0.53808 & 2.509
\end{tabular}

Temp. \(=25^{\circ} \mathrm{C}\)
\begin{tabular}{llllr}
4.342 & 3.587 & 8.551 & 2.539 & 9.34 \\
2.862 & 4.114 & 6.136 & 2.272 & 9.98 \\
3.694 & 4.596 & 7.261 & 2.864 & 9.60 \\
2.876 & 4.170 & 6.071 & 2.288 & 10.02 \\
4.671 & 4.802 & 3.030 & 3.119 & 9.09 \\
5.017 & 4.679 & 8.660 & 3.203 & 8.92 \\
5.102 & 5.101 & 7.139 & 2.897 & 8.88 \\
& & Mean \(\mathrm{K}_{2}=9.40 \pm 0.40\)
\end{tabular}
\begin{tabular}{lllll}
6.597 & 4.209 & 3.592 & 2.507 & 7.84 \\
4.384 & 4.736 & 6.167 & 2.233 & 8.41 \\
5.618 & 5.387 & 7.307 & 2.820 & 8.03 \\
4.393 & 4.867 & 6.109 & 2.244 & 8.39 \\
7.073 & 5.654 & 8.077 & 3.083 & 7.60 \\
7.604 & 5.504 & 8.700 & 3.175 & 7.50 \\
7.690 & 6.032 & 7.187 & 2.864 & 7.39 \\
& & Mean \(K_{2}=7.88 \pm 0.34\)
\end{tabular}

\begin{tabular}{lll} 
Eat. & \(E-E^{C}\) & \(10^{3} . I\) \\
2 & 0.54485 & 3.033 \\
2 & 0.56392 & 2.203 \\
3 & 0.55235 & 2.587 \\
4 & 0.56429 & 2.182 \\
5 & 0.54438 & 2.828 \\
6 & 0.54055 & 3.030 \\
7 & 0.54530 & 2.516
\end{tabular}
\begin{tabular}{lllll}
\(10^{7}\left[\mathrm{H}^{+}\right]\) & \(10^{5}\left[\mathrm{~A}^{-}\right]\) & \(10^{4}\left[\mathrm{IA}^{+}\right]\) & \(10^{4}\left[\mathrm{MA}_{2}\right]\) & \(10^{-3} \cdot \mathrm{~K}_{2}\) \\
& Temp. \(=45^{\circ} \mathrm{C}\) \\
9.700 & 4.315 & 8.673 & 2.460 & 6.57 \\
6.517 & 5.505 & 6.221 & 2.185 & 7.11 \\
8.311 & 6.226 & 7.367 & 2.773 & 6.79 \\
6.486 & 5.636 & 6.179 & 2.185 & 6.99 \\
10.376 & 6.591 & 8.146 & 3.042 & 6.40 \\
11.186 & 6.398 & 8.757 & 3.148 & 6.37 \\
11.202 & 7.081 & 7.256 & 2.827 & 6.17 \\
& \multicolumn{4}{c}{} \\
& Mean \(K_{2}=6.63 \pm 0.29\)
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \(\beta\) & 0.2 & 0.2 \\
\hline \multicolumn{3}{|l|}{tsut.} \\
\hline 2 & 2.89 & 206 \\
\hline 3 & 3.01 & 3.02 \\
\hline 5 & 2.88 & 2.88 \\
\hline 6 & 2.93 & 2.92 \\
\hline 7 & 2.95 & 2.g. \\
\hline 8 & 2.92 & 2.92 \\
\hline 10 & 2.97 & 3.94 \\
\hline 12 & 2.99 & 2.56 \\
\hline 12 & 2.95 & 2.92 \\
\hline 13 & 2.94 & 2.92 \\
\hline \% & 2.97 & 2.95 \\
\hline -uean \(\mathbf{H}_{1}\) & \[
2_{4} 85
\] & \[
2.04
\] \\
\hline
\end{tabular}

\section*{TABLE 43}
\(\frac{\text { Nickel Glycinate Results Varying } \beta}{0.2} 0.3 \quad 0.4 \quad 1.0\)
\begin{tabular}{lllll}
2.93 & 2.91 & 2.88 & 2.86 & 2.73 \\
3.00 & 3.00 & 3.00 & 2.99 & 2.98 \\
2.88 & 2.87 & 2.87 & 2.87 & 2.85 \\
2.92 & 2.92 & 2.92 & 2.91 & 2.90 \\
2.93 & 2.92 & 2.90 & 2.89 & 2.84 \\
2.89 & 2.88 & 2.86 & 2.85 & 2.77 \\
2.92 & 2.90 & 2.88 & 2.86 & 2.76 \\
2.93 & 2.90 & 2.88 & 2.85 & 2.72 \\
2.90 & 2.88 & 2.86 & 2.84 & 2.73 \\
2.89 & 2.87 & 2.85 & 2.82 & 2.71 \\
2.92 & 2.90 & 2.88 & 2.85 & 2.74
\end{tabular}
\(\begin{array}{r}2.92 \\ \pm 0.02\end{array}{ }^{2.90} \quad \begin{gathered}2.89\end{gathered} \quad 2.87 \pm 2.79\)
\[
\begin{aligned}
& \text { E. E E } \\
& \text { 8. \% \% \% \% }
\end{aligned}
\]
\[
\begin{aligned}
& \text { P... P. P. } \\
& \text { + } 18 .
\end{aligned}
\]
\[
\begin{aligned}
& \text { Eet } \quad \text { te. }
\end{aligned}
\]
\[
\begin{aligned}
& \text { H.E. Wht. } \\
& \text { 最 } x \text { and }
\end{aligned}
\]
\[
\beta \quad 0.0 \quad 0.1
\]

Expt.
\begin{tabular}{lll}
2 & 1.97 & 1.96 \\
. & 1.93 & 1.93 \\
6 & 1.92 & 1.92 \\
7 & 1.95 & 1.94 \\
8 & 1.94 & 1.93 \\
10 & 1.96 & 1.95 \\
11 & 1.98 & 1.96 \\
12 & 1.95 & 1.93 \\
13 & 1.94 & 1.93 \\
14 & 1.96 & 1.94
\end{tabular}
\(\operatorname{Moan} K_{1} \times 10^{6} \quad \pm 0.01 \quad \pm 0.01\)


\[
\begin{array}{lll}
\beta & 0.0 & 0.1
\end{array}
\]

Expt.
\begin{tabular}{|c|c|c|}
\hline 2 & 2.56 & 1.55 \\
\hline 3 & 1.51 & 1.50 \\
\hline 5 & 2.49 & 1.49 \\
\hline 6 & 1. 50 & 1.50 \\
\hline 7 & 1. 53 & 1.53 \\
\hline 8 & L. 53 & 1.52 \\
\hline 19 & 2.54 & 1.53 \\
\hline 11 & 1.56 & 1.55 \\
\hline 12 & 1.54 & 1.53 \\
\hline 13 & 1.53 & 1.52 \\
\hline 14. & 1.54 & 1.53 \\
\hline \[
\operatorname{mean} \mathrm{K}_{2} \geq 10^{6}
\] & \[
\begin{array}{r}
1.53 \\
\pm 0.02
\end{array}
\] & \[
\begin{array}{r}
1.52 \\
\pm 0.02
\end{array}
\] \\
\hline
\end{tabular}


\[
\begin{array}{lll}
\beta & 0.0 & 0.1
\end{array}
\]

Expt.
\begin{tabular}{lll}
1 & 1.23 & 1.23 \\
2 & 1.26 & 1.25 \\
3 & 1.20 & 1.20 \\
4 & 1.22 & 1.21 \\
5 & 1.20 & 1.20 \\
6 & 1.20 & 1.20 \\
7 & 1.24 & 1.23 \\
8 & 1.23 & 1.23 \\
9 & 1.22 & 1.21
\end{tabular}
\(\operatorname{Mean} K_{1} \times 10^{6} \quad \pm 0.02 \quad \pm .02\)
\begin{tabular}{lll}
1 & 0.95 & 0.95 \\
2 & 1.04 & 1.03 \\
3 & 0.99 & 0.99 \\
4 & 1.01 & 1.01 \\
5 & 0.99 & 0.99 \\
6 & 0.99 & 0.99 \\
7 & 1.02 & 1.01 \\
8 & 1.02 & 1.01 \\
9 & 1.01 & 1.00 \\
& 1.00 & 1.00 \\
Mean K & & \(\pm 10^{6}\)
\end{tabular}


\(\begin{array}{llll} & \beta & 0.0 & 0.1\end{array}\)
\begin{tabular}{lll}
1 & 1.86 & 1.86 \\
2 & 1.85 & 1.84 \\
3 & 1.84 & 1.84 \\
4 & 1.87 & 1.86 \\
5 & 1.90 & 1.90 \\
6 & 1.94 & 1.93 \\
7 & 1.95 & 1.95 \\
8 & 1.87 & 1.86 \\
9 & 1.95 & 1.95 \\
10 & 1.93 & 1.92
\end{tabular}
\(\operatorname{Mean} K_{1} \times 10^{5} \pm 0.90 \quad \begin{aligned} & 1.90 \\ & \pm 0.04\end{aligned}\)

\section*{TLELE 4}

\[
\begin{aligned}
& \text { 㡷. - } \\
& \text { W.S } \mathrm{Ct} \\
& \text { 䊾, } \mathrm{E} \text {. }
\end{aligned}
\]
\[
\begin{aligned}
& \text { St-1 }+4 \\
& \text { Ettr } \mathrm{Et}, \mathrm{~B} \\
& \text { SC. } \mathrm{E} \text {. } \\
& \text { 粠. } \\
& \text { Qeb }
\end{aligned}
\]
\[
\beta \quad 0.0 \quad 10.1
\]
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Expt*} \\
\hline 1 & 1.39 & 2.39 \\
\hline 2 & 2.39 & 1.38 \\
\hline 3 & 1.38 & 1.37 \\
\hline 4 & 1.39 & 1.38 \\
\hline 5 & \(1.2+1\) & 1.' 11 \\
\hline 6 & 2.43 & 1. \({ }^{2}+2\) \\
\hline 7 & 1.43 & 1.42 \\
\hline 8 & 1.39 & 1.39 \\
\hline 9 & 1.36 & 1.36 \\
\hline 10 & 1.39 & 1.38 \\
\hline \(\operatorname{Man} \mathrm{K}_{1} \times 10^{5}\) & \[
\begin{array}{r}
1.40 \\
+0.02
\end{array}
\] & 1.39
\(\pm 0.02\) \\
\hline
\end{tabular}
\begin{tabular}{lllll}
0.0 & 0.3 & 0.4 & 0.5 & 1.0 \\
& Temp. & \(=15^{\circ} \mathrm{C}\) & & \\
1.39 & 1.38 & 1.38 & 1.37 & 1.36 \\
1.38 & 1.38 & 1.37 & 1.37 & 1.35 \\
1.37 & 1.37 & 1.36 & 1.36 & 1.34 \\
1.38 & 1.37 & 1.37 & 1.36 & 1.34 \\
1.40 & 1.41 & 1.40 & 1.41 & 1.40 \\
1.42 & 1.42 & 1.42 & 1.42 & 1.41 \\
1.42 & 1.42 & 1.42 & 1.42 & 1.41 \\
1.38 & 1.38 & 1.38 & 1.38 & 1.38 \\
1.35 & 1.35 & 1.35 & 1.34 & 1.32 \\
1.38 & 1.37 & 1.37 & 1.37 & 1.34 \\
& & & 1.39 & 1.39 \\
\(\pm 0.39\) & \(\pm 0.02\) & \(\pm 0.02\) & \(\pm 0.02\) & \(\pm .37\)
\end{tabular}
\[
136
\]

tan med
\(\mathrm{Ma} \mathrm{H}^{2} \mathrm{Ca} \cdot \mathrm{B}^{2}\)




\[
\begin{array}{lll}
\beta & 0.0 & 0.1
\end{array}
\]
\begin{tabular}{|c|c|c|}
\hline sxpt & & \\
\hline 1 & 1.19 & 1.18 \\
\hline 2 & 1.18 & 1.18 \\
\hline 3 & 1.17 & 2.17 \\
\hline 4 & 1.18 & 1.17 \\
\hline 5 & L. 20 & 1.20 \\
\hline 6 & 2.21 & 1. 21 \\
\hline 7 & 1.20 & 1. 20 \\
\hline 8 & 1.18 & 2.18 \\
\hline 9 & 1.15 & 1.15 \\
\hline 10 & 1.17 & 1.17 \\
\hline Mean \(K_{1} \times 10^{5}\) & 1.18
\(\pm 0.01\) & 2.18
\(\pm 0.01\) \\
\hline
\end{tabular}
\begin{tabular}{lllll}
0.2 & 0.3 & 0.4 & 0.5 & 1.0 \\
& Temp. & \(=25^{0} \mathrm{C}\) & & \\
1.18 & 1.18 & 1.17 & 1.17 & 1.15 \\
1.17 & 1.17 & 1.18 & 1.16 & 1.14 \\
1.17 & 1.16 & 1.16 & 1.16 & 1.14 \\
1.17 & 1.16 & 1.16 & 1.15 & 1.13 \\
1.20 & 1.19 & 1.19 & 1.19 & 1.18 \\
1.21 & 1.21 & 1.20 & 1.20 & 1.20 \\
1.20 & 1.20 & 1.19 & 1.19 & 1.19 \\
1.18 & 1.18 & 1.18 & 1.17 & 1.17 \\
1.14 & 1.14 & 1.14 & 1.14 & 1.14 \\
1.16 & 1.16 & 1.15 & 1.15 & 1.13 \\
1.18 & 1.18 & 1.17 & 1.17 & 1.16 \\
\(\pm 0.02\) & \(\pm 0.02\) & \(\pm 0.02\) & \(\pm 0.02\) & \(\pm 0.02\)
\end{tabular}










\begin{tabular}{|c|c|c|c|}
\hline & \(\beta\) & 0.0 & 0.1 \\
\hline \multicolumn{4}{|l|}{Expt.} \\
\hline 1 & & 1.03 & 1.02 \\
\hline 2 & & 2.02 & 1.02 \\
\hline 3 & & 2.01 & 1.01 \\
\hline 4 & & 2.01 & 1.01 \\
\hline 5 & & 1. \(0_{4}\) & 1.04 \\
\hline 6 & & 1.04 & 2.04 \\
\hline 7 & & 1.03 & 1.03 \\
\hline 8 & & 1.03 & 1.02 \\
\hline 9 & & 2.00 & 0.99 \\
\hline 10 & & 1.01 & 1.01 \\
\hline Mean & \(\times 10^{5}\) & 1.02
\(\pm 0.01\) & \[
\begin{array}{r}
1.02 \\
\pm 0.02
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{ccccc}
0.2 & 0.3 & 0.4 & 0.5 & 1.0 \\
& \(T 0 m p\). & \(35^{\circ} \mathrm{C}\) & & \\
1.02 & 1.02 & 1.02 & 1.01 & 1.00 \\
1.02 & 1.01 & 1.01 & 1.01 & 0.99 \\
1.00 & 1.00 & 1.00 & 0.99 & 0.98 \\
1.01 & 1.00 & 1.00 & 1.00 & 0.98 \\
1.03 & 1.03 & 1.03 & 1.03 & 1.03 \\
1.04 & 1.04 & 1.04 & 1.04 & 1.03 \\
1.03 & 1.03 & 1.03 & 1.03 & 1.02 \\
1.02 & 1.02 & 1.02 & 1.02 & 1.01 \\
0.99 & 0.99 & 0.98 & 0.98 & 0.97 \\
1.01 & 1.00 & 1.00 & 0.99 & 0.98 \\
1.02 & 1.01 & 1.01 & 1.01 & 1.00 \\
\(\pm 0.01\) & \(\pm 0.01\) & \(\pm 0.02\) & \(\pm 0.02\) & \(\pm 0.02\)
\end{tabular}

\[
\begin{array}{lll}
\beta & 0.0 & 0.1
\end{array}
\]

Expt.
\begin{tabular}{|c|c|c|}
\hline 1 & 9.08 & 9.05 \\
\hline 2 & 9.04 & 9.01 \\
\hline 3 & 8.94 & 8.91 \\
\hline 4 & 8.92 & 8.89 \\
\hline 5 & 9.15 & 9.14 \\
\hline 6 & 9.21 & 9.20 \\
\hline 7 & 9.04 & 9.03 \\
\hline 8 & 9.02 & 9.02 \\
\hline 9 & 8.82 & 8.79 \\
\hline 10 & 8.97 & 8.93 \\
\hline \[
\operatorname{Mean} K_{1} \times 10^{4}
\] & \[
\begin{array}{r}
9.02 \\
\mathbf{+ 0 . 0 9}
\end{array}
\] & \[
\begin{array}{r}
9.00 \\
\pm 0.09
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{lllll}
0.2 & 0.3 & 0.4 & 0.5 & 1.0 \\
& TGmp. & \(=45^{\circ} \mathrm{C}\) & & \\
9.03 & 9.00 & 3.98 & 8.95 & 8.82 \\
8.98 & 8.95 & 8.92 & 8.89 & 8.74 \\
8.88 & 8.85 & 8.83 & 8.80 & 8.66 \\
8.85 & 8.82 & 8.79 & 8.75 & 8.59 \\
9.13 & 9.12 & 9.11 & 9.10 & 9.04 \\
9.19 & 9.19 & 9.18 & 9.17 & 9.13 \\
9.02 & 9.02 & 9.01 & 9.00 & 8.96 \\
9.01 & 9.00 & 9.00 & 8.99 & 8.95 \\
8.76 & 8.73 & 8.71 & 8.68 & 8.54 \\
8.90 & 8.87 & 8.84 & 8.81 & 8.65 \\
8.98 & 8.96 & 8.94 & 8.91 & 8.81 \\
\(\pm 0.10\) & \(\pm 0.11\) & \(\pm 0.12\) & \(\pm 0.13\) & \(\pm 0.17\)
\end{tabular}

\[
\begin{array}{lll}
\beta & 0.0 & 0.1
\end{array}
\]

Expt.
\begin{tabular}{lll}
1 & 1.73 & 1.65 \\
2 & 1.72 & 1.64 \\
3 & 1.69 & 1.63 \\
4 & 1.71 & 1.67 \\
5 & 1.63 & 1.58 \\
6 & 1.69 & 1.63 \\
7 & 1.79 & 1.71 \\
\hdashline & & \\
Mean \(\mathrm{K}_{1} \times 10^{3}\) & \(\pm 0.01\) & \(\pm .64\)
\end{tabular}
\begin{tabular}{lll}
1 & 1.65 & 1.57 \\
2 & 1.64 & 1.57 \\
3 & 1.62 & 1.55 \\
4 & 1.67 & 1.63 \\
5 & 1.55 & 1.51 \\
6 & 1.62 & 1.55 \\
7 & 1.70 & 1.62 \\
& & 1.64 \\
Mean K & 1.57 \\
& & \(\pm 0.04\)
\end{tabular}

\section*{TABLE 45}

Manganese Glycinate Results Varying \(\beta\)
\begin{tabular}{lllll}
0.2 & 0.3 & 0.4 & 0.5 & 1.0 \\
& Temp. \(=0{ }^{0} \mathrm{C}\) & & \\
1.56 & 1.49 & 1.41 & 1.35 & 1.05 \\
1.57 & 1.50 & 1.43 & 1.37 & 1.09 \\
1.57 & 1.51 & 1.46 & 1.40 & 1.17 \\
1.63 & 1.59 & 1.55 & 1.52 & 1.34 \\
1.53 & 1.49 & 1.44 & 1.40 & 1.20 \\
1.56 & 1.50 & 1.45 & 1.39 & 1.14 \\
1.63 & 1.56 & 1.49 & 1.42 & 1.13
\end{tabular}
\[
\begin{array}{cccc}
1.58 \\
\pm 0.03 & \pm 0.52 & \pm .46 & 1.41 \\
& \pm 0.03 & \pm 0.04 & \pm 0.16 \\
& 10010 . & =15^{\circ} \mathrm{C}
\end{array}
\]
\[
\begin{array}{lllll}
1.49 & 1.42 & 1.34 & 1.27 & 0.98
\end{array}
\]
\[
\begin{array}{lllll}
1.49 & 1.43 & 1.36 & 1.30 & 1.03
\end{array}
\]
\[
\begin{array}{lllll}
1.50 & 1.44 & 1.39 & 1.33 & 1.10
\end{array}
\]
\[
\begin{array}{lllll}
1.59 & 1.55 & 1.51 & 1.47 & 1.30
\end{array}
\]
\[
\begin{array}{lllll}
1.46 & 1.42 & 1.37 & 1.33 & 1.14
\end{array}
\]
\[
1.49 \quad 1.43 \quad 1.37 \quad 1.32 \quad 1.08
\]
\[
1.55 \quad 1.48 \quad 1.41 \quad 1.34 \quad 1.06
\]
\[
\begin{array}{r}
1.51 \\
\pm 0.03
\end{array} \pm 0.45 \quad \pm .39 \quad 1.34 \quad 1.10
\]
\[
\begin{aligned}
& \text { 4.... } t \text {. } \\
& \text { Q. } 18+0
\end{aligned}
\]
\[
\begin{aligned}
& \text { sertro. }
\end{aligned}
\]
\[
\begin{aligned}
& \text { P. TV. } \\
& \text { 2. } 4 \text {. } \\
& \text { s. } 18 \text { 友) }
\end{aligned}
\]
\[
\begin{array}{lll}
\beta & 0.0 & 0.1
\end{array}
\]

Expt.
\begin{tabular}{|c|c|c|}
\hline 1 & 1.62 & 1.53 \\
\hline 2 & 2.61 & 1.54 \\
\hline 3 & 2. 59 & 1.53 \\
\hline 5 & 2.52 & 2.47 \\
\hline 6 & 1.58 & 1.52 \\
\hline 7 & 1.67 & 1.59 \\
\hline \(\operatorname{Man} \mathrm{E}_{1} \times 10^{3}\) & \[
\begin{array}{r}
1.60 \\
\pm 0.04
\end{array}
\] & \[
\begin{array}{r}
1.53 \\
\pm 0.02
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{lll}
1 & 1.61 & 1.53 \\
2 & 1.60 & 1.53 \\
3 & 1.57 & 1.51 \\
5 & 1.52 & 1.47 \\
6 & 1.58 & 1.51 \\
7 & 1.66 & 1.58 \\
& & \\
Mean K & & 1.59 \\
\hline
\end{tabular}

\[
\begin{aligned}
& \text { - }-2+5 \\
& \text { 9.E. }
\end{aligned}
\]
\[
\begin{array}{lll}
\beta & 0.0 & 0.1
\end{array}
\]

Enpt.
\begin{tabular}{lll}
1 & 1.51 & 1.53 \\
2 & 1.60 & 1.52 \\
3 & 1.37 & 1.51 \\
5 & 1.52 & 1.47 \\
6 & 1.58 & 1.51 \\
7 & 1.66 & 1.58
\end{tabular}

Mean \(K_{1} \times 10^{3} \quad \pm \begin{aligned} & 1.59 \\ & 0.03\end{aligned} \pm .52\)
\begin{tabular}{lllll}
0.2 & 0.3 & 0.4 & 0.5 & 1.0 \\
& T.np \(=45^{0} \mathrm{C}\) & & \\
1.44 & 1.30 & 1.29 & 1.22 & 0.92 \\
1.45 & 1.37 & 1.31 & 1.24 & 0.97 \\
1.44 & 1.39 & 1.33 & 1.28 & 1.04 \\
1.42 & 1.37 & 1.33 & 1.28 & 1.08 \\
1.45 & 1.38 & 1.33 & 1.27 & 1.02 \\
1.50 & 1.42 & 1.35 & 1.29 & 1.00 \\
1.45 & 1.38 & 1.32 & 1.26 & 1.01 \\
\(\pm 0.02\) & \(\pm 0.02\) & \(\pm 0.02\) & \(\pm 0.02\) & \(\pm 0.04\)
\end{tabular}


\(48.5-2\)




\[
\beta \quad 0.0,0.1
\]

Expt.
\begin{tabular}{|c|c|c|}
\hline 1 & 1.96 & 1.96 \\
\hline 2 & 1.87 & 1.87 \\
\hline 3 & 1.93 & 1. 92 \\
\hline 4 & 1.95 & L. 95 \\
\hline 5 & 2.03 & 2.03 \\
\hline 6 & 1.90 & 1.90 \\
\hline 7 & 1.88 & 1.87 \\
\hline 8 & 1.96 & 1.96 \\
\hline \(\operatorname{Mean} \mathrm{K}_{2} \times 10^{5}\) & \[
\begin{array}{r}
1.94 \\
\pm 0.04
\end{array}
\] & \[
\begin{array}{r}
1.93 \\
\pm 0.04
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{lll}
1 & 1.18 & 1.18 \\
2 & 1.18 & 1.18 \\
3 & 1.16 & 1.16 \\
4 & 1.28 & 1.18 \\
5 & 1.22 & 1.22 \\
6 & 1.19 & 1.19 \\
7 & 1.17 & 1.17 \\
8 & 1.21 & 1.20
\end{tabular}

Mean \(K_{2} \times 10^{5} \quad \begin{aligned} & 1.19 \\ & \pm 0.02\end{aligned} \begin{array}{r}1.19 \\ \pm 0.02\end{array}\)

\section*{TABLE 46}

Wichel Glycinate Results Varying \(\beta\)
\[
\begin{array}{llll}
0.2 & 0.3 & 0.4 & 0.5 \\
& \text { Teap. } & =0^{\circ} \mathrm{C}
\end{array}
\]
\(1.96 \quad 1.96 \quad 1.96 \quad 1.96 \quad 1.95\)
\(1.86 \quad 1.36 \quad 1.86 \quad 1.86 \quad 1.85\)
\(1.92 \quad 1.92 \quad 1.92 \quad 1.91 \quad 1.90\)
\(1.95 \quad 1.94 \quad 1.94 \quad 1.94 \quad 1.93\)
\(2.03 \quad 2.02 \quad 2.02 \quad 2.02 \quad 2.00\)
\(\begin{array}{lllll}1.90 & 1.89 & 1.89 & 1.89 & 1.88\end{array}\)
\(1.87 \quad 1.86 \quad 1.86 \quad 1,86 \quad 1.84\)
\(1.96 \quad 1.96 \quad 1.95 \quad 1.95 \quad 1.94\)
\(\pm 0.93 \pm 1.93 \pm 1.93 \quad 1.92 \quad 1.91\)
Temp. \(=15^{\circ} \mathrm{C}\)
\(1.18 \quad 1.18 \quad 1.18 \quad 1.18 \quad 1.17\)
\(1.18 \quad 1.18 \quad 1.17 \quad 1.17 \quad 1.17\)
\(1.16 \quad 1.16 \quad 1.15 \quad 1.15 \quad 1.14\)
\(1.18 \quad 1.18 \quad 1.18 \quad 1.18 \quad 1.17\)
1.22 1.21 1.21 1.21 1.20
\(1.19 \quad 1.19 \quad 1.18 \quad 1.18 \quad 1.18\)
1.171 .16 . 1.16 1.16 1.15
\(1.20 \quad 1.20 \quad 1.20 \quad 1.20 \quad 1.19\)


\[
\begin{array}{lll}
\beta & 0.0 & 0.1
\end{array}
\]
\begin{tabular}{ccc} 
Expt. & \\
1 & 8.90 & 8.89 \\
2 & 8.99 & 8.98 \\
3 & 8.81 & 8.80 \\
4 & 9.09 & 9.08 \\
5 & 9.03 & 9.02 \\
6 & 8.99 & 8.98 \\
7 & 8.78 & 8.76 \\
8 & 9.09 & 9.07
\end{tabular}

Mean \(\mathrm{K}_{2} \times 10^{4 .} \begin{array}{rr}8.96 & 8.95 \\ \pm 0.10 & \pm 0.10\end{array}\)
\begin{tabular}{lll}
1 & 6.84 & 6.83 \\
2 & 6.87 & 6.86 \\
3 & 6.71 & 6.70 \\
4 & 6.68 & 6.67 \\
5 & 7.03 & 7.02 \\
6 & 6.96 & 6.96 \\
7 & 6.81 & 6.80 \\
8 & 7.08 & 7.07
\end{tabular}

Mean \(K_{2} \times 10^{4} \quad \begin{array}{rrr}6.87 & 6.86 \\ & \pm 0.11 & \pm 0.11\end{array}\)


\[
\begin{array}{lll}
\beta & 0.0 & 0.1
\end{array}
\]

Expt.
\begin{tabular}{lrr}
1 & 5.43 & 5.42 \\
2 & 5.47 & 5.46 \\
3 & 5.34 & 5.33 \\
5 & 5.85 & 5.84 \\
6 & 5.77 & 5.76 \\
7 & 5.72 & 5.71 \\
8 & 5.91 & 5.90 \\
& & 5.64 \\
Mean K & & 5.63 \\
& & \(\pm 0^{4}\) \\
& & \(\pm 0.20\)
\end{tabular}
\begin{tabular}{lllll}
0.2 & 0.3 & 0.4 & 0.5 & 2.0 \\
& Temp. \(=45^{\circ} \mathrm{C}\) & & \\
5.42 & 5.41 & 5.41 & 5.40 & 5.38 \\
5.45 & 5.44 & 5.44 & 5.43 & 5.40 \\
5.32 & 5.31 & 5.30 & 5.29 & 5.25 \\
5.83 & 5.82 & 5.81 & 5.80 & 5.76 \\
5.75 & 5.74 & 5.73 & 5.73 & 5.69 \\
5.69 & 5.68 & 5.67 & 5.66 & 5.59 \\
5.89 & 5.89 & 5.88 & 5.87 & 5.82 \\
& & 5.61 & 5.61 & 5.60 \\
5.62 & \(\pm 0.18\) & \(\pm 0.18\) & \(\pm 0.18\) & \(\pm 0.18\)
\end{tabular}

\[
\begin{array}{lll}
\beta & 0.0 & 0.1
\end{array}
\]

Expt.
\begin{tabular}{lll}
1 & 1.76 & 1.75 \\
2 & 1.75 & 1.75 \\
3 & 1.72 & 1.71 \\
4 & 1.80 & 1.80 \\
5 & 1.69 & 1.68 \\
6 & 1.58 & 1.58 \\
7 & 1.59 & 1.59
\end{tabular}
moan K \(\times 10^{4} \quad \begin{aligned} & 1.70 \\ & \pm 0.07\end{aligned} \quad \pm .69\)
\begin{tabular}{lll}
1 & 1.20 & 1.20 \\
2 & 1.24 & 1.24 \\
3 & 1.21 & 1.21 \\
4 & 1.26 & 1.26 \\
5 & 1.15 & 1.15 \\
6 & 1.11 & 1.11 \\
7 & 1.10 & 1.10
\end{tabular}

Mean \(K_{2} \times 10^{4} \quad \begin{aligned} & 1.18 \\ & \pm 0.05\end{aligned} \begin{array}{r}1.18 \\ \end{array}\)

\section*{TABLE 47}

\begin{tabular}{ccrr}
1.69 & 1.70 & 1.69 & 1.69 \\
\(\pm 0.07\) & \(\pm 0.07\) & \(\pm .07\) & \(\pm 0.07\) \\
Temp. & \(=1.67\) \\
\hline 0.07
\end{tabular}
\(1.20 \quad 1.20 \quad 1.19 \quad 1.19 \quad 1.18\)
1.24 1.23 1.23 1.23 1.22
\(1.20 \quad 1.20 \quad 1.20 \quad 1.20 \quad 1.19\)
\[
\begin{array}{lllll}
1.25 & 1.25 & 1.25 & 1.25 & 1.24
\end{array}
\]
\[
1.15 \quad 1.15 \quad 1.25 \quad 1.15 \quad 1.14
\]
\[
1.11 \quad 1.11 \quad 1.11 \quad 1.11 \quad 2.10
\]
\[
1.10 \quad 1.09 \quad 1.09 \quad 1.09 \quad 1.08
\]
\[
\begin{array}{rrrrr}
1.18 & 1.18 & 1.17 & 1.17 & 1.16 \\
\pm 0.05 & \pm 0.05 & \pm 0.05 & \pm 0.05 & \pm 0.05
\end{array}
\]

\[
\begin{array}{lll}
\beta & 0.0 & 0.1
\end{array}
\]

Expt.
\begin{tabular}{rrr}
1 & 9.38 & 9.34 \\
2 & 10.01 & 10.00 \\
3 & 9.63 & 9.61 \\
4 & 10.05 & 10.03 \\
5 & 9.12 & 9.10 \\
6 & 8.95 & 8.93 \\
7 & 8.91 & 8.89
\end{tabular}

Mean \(\mathrm{K}_{2} \times 10^{4} \quad \begin{array}{r}9.44 \\ \pm 0.40\end{array} \pm \begin{aligned} & 9.42 \\ & \pm 0.40\end{aligned}\)
\begin{tabular}{lll}
1 & 7.88 & 7,86 \\
2 & 8.43 & 8.42 \\
3 & 8.05 & 8.04 \\
4 & 8.41 & 8.40 \\
5 & 7.63 & 762 \\
6 & 7.53 & 7.51 \\
7 & 7.42 & 7.40
\end{tabular}

Mean \(K_{2} \times 10^{4} \quad \begin{array}{r}7.91 \\ \pm 0.34\end{array} \begin{array}{r}7.89 \\ \pm 0.34\end{array}\)

\[
\begin{aligned}
& \text { 4t E8, 草, }
\end{aligned}
\]
\[
\begin{aligned}
& \text { SQ*F }
\end{aligned}
\]
\[
\beta \quad 0.0 \quad 0.2
\]

Expt.
\begin{tabular}{|c|c|c|}
\hline 1 & 6.60 & 6.58 \\
\hline 2 & 7.13 & 7.12 \\
\hline 3 & 6.81 & 6.80 \\
\hline 4 & 7.01 & 7.00 \\
\hline 5 & 6.42 & 6.41 \\
\hline 6 & 6.39 & 6838 \\
\hline 7 & 6.29 & 6.18 \\
\hline \[
\operatorname{Men} x_{2}=10^{4}
\] & \[
\begin{array}{r}
6.65 \\
\pm 0.30
\end{array}
\] & \[
\begin{array}{r}
6.64 \\
6.29
\end{array}
\] \\
\hline
\end{tabular}


\section*{ITAL \(\beta\)-ALALMATMS}

The dissociation of \(\beta\)-alanine has been studied by May and Felsing \({ }^{74}\) who determined \(k_{1}\) with the cell \(\mathrm{H}_{2} / \mathrm{Pt} / \mathrm{MA}\left(\mathrm{m}_{1}\right), \mathrm{H}_{2} \mathrm{ACl}\left(\mathrm{m}_{2}\right) / \mathrm{AgCl} / \mathrm{Ag}\).
The calculation was similar to that of Gwen \({ }^{71}\) and King \({ }^{72}\) for glycine, but \(k_{1}\) was also obtained from the equation
\(-\log k=\frac{E-E^{\circ}}{k}+\log \frac{m_{H_{2} A^{+m_{C l}}}}{m_{H A}}+\log \frac{\gamma_{H_{2} A^{+}} \gamma_{C l}-}{\gamma_{H A}}\),
where \(m_{\mathrm{H}_{2}+}=\mathrm{m}_{2}^{-m_{\mathrm{H}^{+}}}, \mathrm{m}_{\mathrm{HA}}=\mathrm{m}_{1^{+}}+\mathrm{m}_{\mathrm{H}^{+}}, \mathrm{m}_{\mathrm{Cl}}-=m_{2}=\). The activity coefficients were represented by the Debyo-Huckel limiting law, and a quantity - log \(k_{1}^{\prime}\) was defined as
\(-\log k_{1}=\frac{E-E^{0}}{k}+\log \frac{m_{H_{2} A+{ }_{C l}}}{m_{H A}}-2 S \sqrt{I}\).
An approximate value of \(\mathrm{m}_{\mathrm{H}^{+}}\)was obtained from
\(-\log m_{H^{+}}=\frac{E-E^{0}}{k}+\log m_{2}-2 S \sqrt{I_{3}}\)
and \(\log k_{1}^{\prime}\) calculated. Log \(k_{1}\) was then determined by extrapolation and used in the calculation of a more accurate \(\mathrm{m}_{\mathrm{H}^{+}}\)- The process was repeated until \(\mathrm{k}_{1}\) was constant.

May and Felsing determined \(k_{2}\), for the equilibrium
\[
\mathrm{HAOH}^{*} \rightleftharpoons \mathrm{HA}+\mathrm{OH}^{-},
\]

In a similar manner from the equation
\(-\log k_{2}^{\prime}=-\log K_{W}-\frac{\pi-\operatorname{mog}^{\circ}}{k}-\log \frac{m_{H A} \mathrm{HI}^{m}}{\mathrm{~m}_{\mathrm{HAOH}}}\)
Experimental solutions were prepared by dilution of
four stock solutions, and four separate plots of
- \(\log k_{2}^{\prime}\) against I were obtained. These all showed distinct curvature, and there was therefore considerable doubt about the derived \(k_{2}\) values.

Since no other data were available for comparison With those of May and Felsing, it was necessary to determine \(k_{1}\) and \(k_{2}\)

Using the cell
\(\mathrm{H}_{2} / \mathrm{Pt} / \mathrm{HA}\left(\mathrm{m}_{1}\right)\), MCI \(\left(\mathrm{m}_{2}\right) / \mathrm{AgCl} / \mathrm{Ag}\),
the concentration of the anion, \(A^{\prime \prime}\), was negligible, and the concentrations of the ionic species were obtained from
\[
\begin{align*}
& -\log \left[\mathrm{H}^{+}\right]=\frac{E-\mathrm{E}^{0}}{k}+\log \mathrm{m}_{2}+\log X_{\mathrm{H}^{+}} X_{\mathrm{CI}}=9  \tag{39}\\
& m_{1}=\left[\mathrm{H}_{2} A^{+}\right] \\
& m_{1}=\left[\mathrm{H}_{2} A^{-}\right]+[\mathrm{HA}] \\
& {\left[\mathrm{H}^{+}\right]+\left[\mathrm{H}_{2} \mathrm{~A}^{+}\right]=[\mathrm{CI}]}
\end{align*}
\]
and the ionic strength \(I=m_{2}\)
Activity coefficients were calculated from equation (38) using \(\beta=0.2\), and the results are given in table 43.
\(k_{2}=\frac{\left[H^{+}\right]\left[A^{-}\right] \gamma_{1}{ }^{2}}{[H A]}\) was obtained using the cell
\(\mathrm{H}_{2} / \mathrm{Pt} / \mathrm{HA}\left(\mathrm{m}_{1}\right), \mathrm{NaOH}\left(\mathrm{m}_{2}\right), \mathrm{KCl}\left(\mathrm{m}_{3}\right) / \mathrm{AgCl} / \mathrm{Ag} \cdot\)
\(\mathrm{H}_{2} \mathrm{~A}^{+}\)could be neglected, and the concentrations of ionic species were given by
\[
\begin{align*}
& -\log \left[H^{+}\right] \gamma_{1}^{2}=\frac{E-E^{0}}{k}+\log m_{3}  \tag{42}\\
& m_{1}=[H A]+\left[A^{-}\right] \tag{43}
\end{align*}
\]
and
\[
\begin{align*}
& {\left[\mathrm{H}^{+}\right]+\left[\mathrm{Na}^{+}\right]+\left[\mathrm{K}^{+}\right]=\left[\mathrm{Cl}^{-}\right]+\left[\mathrm{OH}^{-}\right]+\left[\mathrm{A}^{-}\right] . }  \tag{44}\\
& \mathrm{K}_{\mathrm{W}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \gamma_{1}^{2} \tag{45}
\end{align*}
\]
was obtained from Robinson and Stokes \({ }^{75}\), and the results are given in Table 49, and summarised in Table 50. The agreement between the \(k_{1}\) values and those of May and Felsing is seen to be good, but there is considerable deviation in the \(k_{2}\) values. The \(k_{2}\) data at \(25^{\circ} \mathrm{C}\) in the present work have therefore been recalculated in the manner of May and Felting, and Fig. 15 shows the plot obtained. This appears to be as reliable as the plot given by the others and the intercept obtained, 3.705 , corresponds to \(k_{2}=5.11 \times 10^{-11}\).

The association constants for the nickel and cobalt \(\beta\)-alaninate systems wore studied using a cell similar to that for the glycinates. To determine the complex species, the nickel \(\beta\)-alaninate results at \(25^{\circ} \mathrm{C}\) were

Table 48
Molal Conoontrations in \(\beta\)-Alanine Solutions


Expos. \(\begin{aligned} & \mathrm{E}-\mathrm{E}^{\circ} \quad 10^{4}[\mathrm{Hi} \\ & \text { Temp. }=15^{\circ} \mathrm{C}\end{aligned}\)
\[
1
\]

2
3
4
5
6
7
8
\(\begin{array}{ll}0.34666 & 1.995 \\ 0.36914 & 1.013 \\ 0.37114 & 1.114 \\ 0.38792 & 0.883 \\ 0.32880 & 4.001 \\ 0.32309 & 4.197 \\ 0.34584 & 2.246 \\ 0.35137 & 1.984 \\ & \\ \text { Temp. } & =25^{\circ} \mathrm{C}\end{array}\)
\(0.35697 \quad 2.139\)
0.380161 .094
0.382221 .197
\(0.39957 \quad 0.949\)
\(0.33869 \quad 4.256\)
\(0.33804 \quad 4.150\)
\(0.35616 \quad 2.406\)
0.361832 .127
\(10^{3}\left[\mathrm{H}_{2} \mathrm{~A}^{+}\right] \quad 10^{3}[\mathrm{HA}] \quad 10^{4} \cdot \mathrm{k}_{1}\)
\begin{tabular}{llllll}
1 & 0.35697 & 2.139 & 4.820 & 6.325 & 2.81 \\
2 & 0.38016 & 1.094 & 3.815 & 9.722 & 2.79 \\
3 & 0.38222 & 1.197 & 3.154 & 7.367 & 2.80 \\
4 & 0.39957 & 0.949 & 1.956 & 5.783 & 2.81 \\
5 & 0.33869 & 4.256 & 4.738 & 3.156 & 2.34 \\
6 & 0.33804 & 4.450 & 4.612 & 2.916 & 2.81 \\
7 & 0.35616 & 2.406 & 4.374 & 5.065 & 2.79 \\
8 & 0.36183 & 2.127 & 3.921 & 5.166 & 2.80
\end{tabular}


\section*{TABLS 49}
\begin{tabular}{lcccc} 
Molel Concentretionsin \(\beta=\)-Alanine & Solutions \\
Expt. & 1 & 2 & 3 & 4 \\
\(10^{3} \mathrm{~m}_{1}\) & 5.1640 & 5.4704 & 4.3634 & 7.3054 \\
\(10^{3} \mathrm{~m}_{2}\) & 1.5290 & 1.3377 & 0.9654 & 0.9955 \\
\(10^{3} \mathrm{~m}_{3}\) & 2.7297 & 2.8025 & 2.7709 & 3.0129 \\
& 5 & 6 & 7 & 8
\end{tabular}
\begin{tabular}{lllll}
\(10^{3} \mathrm{~m}_{2}\) & 2.4697 & 1.0338 & 1.8575 & 2.8135 \\
\(10^{3} \mathrm{~m}_{3}\) & 6.4307 & 6.6041 & 5.7960 & 6.3115
\end{tabular}
Expt. E-E \(\quad 10^{11}\left[\mathrm{H}^{7}\right] \gamma_{1}^{2} 10^{3}\left[\mathrm{~A}^{-}\right] \quad 10^{3}[\mathrm{HA}] \quad 10^{11} \cdot \mathrm{k}_{2}\) Temp. \(=0^{\circ} \mathrm{C}\).
\begin{tabular}{lrrrrr}
1 & 0.71605 & 2.248 & 1.478 & 3.686 & 0.902 \\
2 & 0.70963 & 2.377 & 1.298 & 4.172 & 0.895 \\
3 & 0.70677 & 3.276 & 0.931 & 3.433 & 0.383 \\
4 & 0.69141 & 5.803 & 0.976 & 6.330 & 0.395 \\
5 & 0.68102 & 4.227 & 2.443 & 11.614 & 0.889 \\
6 & 0.65876 & 10.060 & 1.023 & 12.289 & 0.882 \\
7 & 0.67946 & 5.012 & 1.835 & 10.441 & 0.881 \\
8 & 0.68649 & 3.414 & 2.780 & 10.634 & 0.893 \\
& & & Mean \(\mathrm{k}_{2}=0.891 \pm 0.06\)
\end{tabular}
\[
\begin{aligned}
& \text { Expt. E-E } \quad 10^{10}\left[\mathrm{H}^{+}\right] \gamma_{i}^{2} \quad 10^{3}\left[\mathrm{~A}^{-}\right] \quad 10^{3}\left[\mathrm{HA}^{2}\right] \quad 10^{11} \mathrm{k}_{2} \\
& \text { Temp. }=15^{2} \mathrm{C}
\end{aligned}
\]
\begin{tabular}{llllll}
1 & 0.72215 & 0.673 & 1.1 .62 & 3.702 & 2.66 \\
2 & 0.72147 & 0.850 & 1.285 & 4.135 & 2.63 \\
3 & 0.71344 & 0.977 & 0.319 & 3.444 & 2.61 \\
4 & 0.70251 & 1.713 & 0.969 & 6.336 & 2.62 \\
5 & 0.69149 & 1.250 & 2.4 .34 & 11.623 & 2.62 \\
6 & 0.66301 & 3.131 & 1.019 & 12.293 & 2.60 \\
7 & 0.68971 & 1.4 .91 & 1.827 & 10.448 & 2.61 \\
8 & 0.69731 & 1.003 & 2.769 & 10.645 & 2.62
\end{tabular}

Temp. \(=25^{\circ} \mathrm{C}\)
\begin{tabular}{llllll}
1 & 0.73614 & 1.319 & 1.453 & 3.711 & 5.16 \\
2 & 0.72929 & 1.677 & 1.278 & 4.193 & 5.19 \\
3 & 0.72612 & 1.913 & 0.913 & 3.451 & 5.06 \\
4 & 0.70973 & 3.340 & 0.065 & 6.340 & 5.09 \\
5 & 0.69859 & 2.415 & 2.428 & 11.628 & 5.04 \\
6 & \(0.671+29\) & 6.055 & 1.017 & 12.295 & 5.01 \\
7 & 0.69692 & 2.859 & 1.822 & 10.454 & 4.98 \\
8 & 0.70459 & 1.948 & 2.762 & 10.652 & 5.05 \\
& & & Mean \(\mathrm{k}_{2}=5.06 \pm 0.04\)
\end{tabular}
\(\begin{array}{llll}\text { Sxpt. E-E } & 10^{10}\left[1^{+}\right] \gamma_{1}^{2} \quad 10^{3}[\mathrm{~A}] \quad 10^{3}[\mathrm{HA}] \quad 10^{11} \mathrm{k}_{2} \\ \text { Terap. }=35^{\circ} \mathrm{C}\end{array}\)
\begin{tabular}{llllll}
1 & 0.7426 & 2.461 & 2.444 & 3.720 & 9.55 \\
2 & 0.73723 & 3.123 & 1.271 & 4.200 & 9.45 \\
3 & 0.73293 & 3.567 & 0.907 & 3.457 & 9.36 \\
4 & 0.71708 & 6.204 & 0.962 & 6.344 & 9.41 \\
5 & 0.70572 & 4.459 & 2.423 & 11.633 & 9.29 \\
6 & 0.68050 & 11.292 & 1.015 & 12.297 & 9.24 \\
7 & 0.70395 & 5.283 & 1.818 & 10.453 & 9.19 \\
8 & 0.71198 & 3.589 & 2.755 & 10.659 & 9.28 \\
& & & Nean \(k_{2}=9.35 \pm 0.10\)
\end{tabular}

Temp. \(=45^{\circ} \mathrm{C}\)
\begin{tabular}{rrrrrr}
1 & 0.75245 & 4.2 .06 & 1.438 & 3.726 & 17.0 \\
2 & 0.74526 & 5.579 & 1.266 & 4.205 & 16.8 \\
3 & 0.74181 & 6.382 & 0.902 & 3.461 & 16.6 \\
4 & 0.72447 & 11.079 & 0.959 & 6.346 & 16.8 \\
5 & 0.71235 & 7.930 & 2.419 & 11.637 & 16.5 \\
6 & 0.68710 & 19.819 & 1.014 & 12.298 & 16.3 \\
7 & 0.71104 & 9.399 & 1.815 & 10.461 & 16.3 \\
8 & 0.71933 & 6.378 & 2.751 & 10.663 & 16.5 \\
& & & Mean \(k_{2}\) & \(=16.6 \pm 0.2\)
\end{tabular}

SALE 50
Dissociation Constants of \(\beta\)-Alanine.


calculated using \(K_{2}\) values of 0 and \(1 \times 10^{3}\). It is seen in Table 51 that there is very little difference in the derived \(K_{1}\) so that it is permissible to assume that only one complex, \(\mathrm{MA}^{+}\), is present. The equations from which the concentrations of the ionic species were determined were therefore similar to those used in the manganese glycinate system. Activity coefficients were again calculated from equation (38), and the results for \(\beta=0.2\) are given in Tables 52 and 53 . \(K_{1}\) values for \(\beta=0\) to l. 0 are given in Tables 54 and 55 .

\section*{TABLE 51}

Nickel \(\beta\)-Alaninate \(\mathrm{K}_{\mathrm{t}}\) Values at \(25^{\circ} \mathrm{C}\)
\begin{tabular}{crcccccc}
\(10^{3} \mathrm{~K}_{2}\) & 1. & 2. & 3. & 4. & 5. & 6. & 7. \\
0 & 9.39 & 9.61 & 9.88 & 10.37 & 10.17 & 9.96 & 9.83 \\
1 & 9.32 & 9.54 & 9.82 & 10.30 & 10.11 & 9.90 & 9.77
\end{tabular}

\(\square\)
Y\&
\[
\mathrm{x}=
\]
\[
4 \operatorname{ctg}_{4} \quad 4+4 \theta
\]
\[
\begin{aligned}
& \text { 40315 } \\
& \text { Pthe } A^{2} \\
& \text { M, 度 }
\end{aligned}
\]
\[
\begin{aligned}
& \text { 4 ? }
\end{aligned}
\]
\[
\begin{aligned}
& x+\frac{4}{4} \\
& \text { Gy, Bentr Bug }
\end{aligned}
\]
\[
\begin{aligned}
& \text {. . AR. }
\end{aligned}
\]
\begin{tabular}{ccc} 
Expt. & 1 & 2 \\
\(10^{2} \mathrm{~m}_{1}\) & 1.6932 & 2.0039 \\
\(10^{4} \mathrm{~m}_{2}\) & 4.3522 & 4.0373 \\
\(10^{3} \mathrm{~m}_{3}\) & 1.8946 & 1.7210
\end{tabular}
Expt. E \(-\mathbf{E}^{\mathbf{O}} \quad 10^{3} . \mathrm{I}\)
\begin{tabular}{lll}
1 & 0.52310 & 5.249 \\
2 & 0.52211 & 4.757 \\
3 & 0.52163 & 4.623 \\
4 & 0.53236 & 2.661 \\
5 & 0.52278 & 3.507 \\
6 & 0.51936 & 3.948 \\
7 & 0.50610 & 4.917
\end{tabular}
\begin{tabular}{lll}
1 & 0.53352 & 5.246 \\
2 & 0.53200 & 4.754 \\
3 & 0.53362 & 4.621 \\
4 & 0.54383 & 2.657 \\
5 & 0.53374 & 3.502 \\
6 & 0.53026 & 3.941 \\
7 & 0.51638 & 4.905
\end{tabular}

\section*{}

\[
174
\]
\[
\begin{array}{cc}
\text { UA }
\end{array}
\]
\begin{tabular}{lll} 
Expt. & \(E-E^{0}\) & \(10^{3} . I\) \\
& & \\
1 & 0.54121 & 5.245 \\
2 & 0.53943 & 4.750 \\
3 & 0.54033 & 4.617 \\
4 & 0.55133 & 2.653 \\
5 & 0.54094 & 3.496 \\
6 & 0.53740 & 3.934 \\
7 & 0.52396 & 4.893 \\
& & \\
& & \\
1 & 0.54788 & 5.240 \\
2 & 0.54621 & 4.743 \\
3 & 0.54720 & 4.611 \\
4 & 0.55871 & 2.645 \\
5 & 0.54825 & 3.487 \\
6 & 0.54456 & 3.924 \\
7 & 0.53115 & 4.075
\end{tabular}

\(\operatorname{Tomp}=35^{\circ} \mathrm{C}\)
\begin{tabular}{lllll}
3.383 & 1.646 & 5.323 & 4.491 & 3.00 \\
3.937 & 1.953 & 5.408 & 4.249 & 3.20 \\
3.921 & 1.703 & 4.713 & 3.773 & 3.41 \\
4.227 & 2.054 & 5.097 & 2.571 & 3.96 \\
4.893 & 2.048 & 4.460 & 2.889 & 3.70 \\
5.000 & 2.377 & 5.105 & 3.531 & 3.52 \\
6.839 & 2.814 & 4.433 & 3.808 & 3.43 \\
& & Mean \(\mathrm{K}_{1}=8.45 \pm 0.23\)
\end{tabular}
\[
\begin{aligned}
& \because+4 \text { 莫 }
\end{aligned}
\]
\[
\begin{aligned}
& \text { 为里 }
\end{aligned}
\]
Expt. E-E \(\quad 10^{3} . I\)
\begin{tabular}{lll}
1 & 0.55431 & 5.233 \\
2 & 0.55296 & 4.734 \\
3 & 0.55336 & 4.602 \\
4 & 0.56656 & 2.635 \\
5 & 0.55584 & 3.475 \\
6 & 0.55201 & 3.909 \\
7 & 0.53878 & 4.852
\end{tabular}
\[
\begin{array}{lllll}
10^{7}\left[\mathrm{H}^{+}\right] & 10^{2}[\mathrm{HA}] & 10^{6}\left[\mathrm{~A}^{-}\right] & 10^{4}\left[\mathrm{MA}^{+}\right] & 10^{-4} \cdot \mathrm{~K}_{1} \\
& 1 \mathrm{emp}=45^{\circ} \mathrm{C} \\
5.133 & 1.6 .4 & 6.244 & 4.573 & 7.03 \\
5.394 & 1.256 & 6.422 & 4.359 & 7.19 \\
6.004 & 1.701 & 5.471 & 3.877 & 7.54 \\
6.165 & 2.052 & 6.208 & 2.684 & 7.34 \\
7.117 & 2.045 & 5.447 & 3.021 & 7.58 \\
7.278 & 2.374 & 6.230 & 3.687 & 7.44 \\
9.735 & 2.869 & 5.594 & 4.048 & 7.34
\end{array}
\]


4xat. 2却 \(\mathrm{m}_{2} \quad 3.575\) \(10^{4}=2.3642\)
\(10^{2} u_{3} \quad 0.3292\)
\begin{tabular}{|c|c|c|}
\hline & crat & y- \(\mathbf{y}^{0}\) \\
\hline
\end{tabular}

1
0.44023 2.438
\(20.44863 \quad 2.051\)
2.

5
\(*\)
045061 3.072
\begin{tabular}{|c|c|}
\hline 1 & -1970\% \\
\hline 2 &  \\
\hline 4 & 0.45377 \\
\hline 3 & 9.5,43g0 \\
\hline 6 & \(0.4+\cos\) \\
\hline
\end{tabular}


\[
6 \cdot 6
\]
\[
x_{t h}=x^{4}
\]
fset exta. Y,
- . Whed.
mos bot.
sch. xefa.
SECE Hotes aby
\[
\text { Exas. } 5
\]
H.s reot.
\[
\text { Hxpt. } \quad E-E^{0} \cdot 10^{2} . I
\]
\begin{tabular}{lll}
1 & 0.47798 & 2.429 \\
2 & 0.48245 & 2.042 \\
3 & 0.46130 & 4.170 \\
4 & 0.46624 & 3.328 \\
5 & 0.47608 & 2.456 \\
6 & 0.46821 & 3.062
\end{tabular}
\begin{tabular}{lll}
1 & \(0.4+3575\) & 2.423 \\
2 & 0.49061 & 2.036 \\
3 & 0.46816 & 4.163 \\
4 & 0.47393 & 3.321 \\
5 & 0.48398 & 2.450 \\
6 & 0.47594 & 3.056
\end{tabular}
\begin{tabular}{lll}
1 & 0.49365 & 2.416 \\
2 & 0.49905 & 2.029 \\
3 & 0.47488 & 4.152 \\
4 & 0.48191 & 3.312 \\
5 & 0.49221 & 2.444 \\
6 & 0.48402 & 3.048
\end{tabular}
\(10^{7}\left[\mathrm{H}^{+}\right] \quad 10^{2}[\mathrm{IHA}] \quad 10^{6}\left[\mathrm{~A}^{-}\right] \quad 10^{4}\left[\mathrm{HA}^{+}\right] \quad 10^{-4} \cdot \mathrm{~K}_{1}\)
Temp. \(=25^{\circ} \mathrm{C}\)
\begin{tabular}{lllll}
6.805 & 8.406 & 8.569 & 5.946 & 1.66 \\
6.62 .1 & 9.097 & 9.207 & 5.618 & 1.67 \\
8.210 & 8.857 & 7.968 & 7.639 & 1.52 \\
8.206 & 9.356 & 8.157 & 6.756 & 1.55 \\
7.273 & 8.066 & 7.623 & 5.394 & 1.67 \\
8.186 & 7.815 & 6.753 & 5.477 & 1.61 \\
& & & Mean \(K_{1}=\) & \(1.61 \pm 0.05\)
\end{tabular}

Temp. \(=35^{\circ} \mathrm{C}\)
\begin{tabular}{rrrrr}
9.332 & 8.483 & 11.577 & 6.544 & 1.37 \\
9.019 & 9.085 & 12.555 & 6.213 & 1.38 \\
11.423 & 8.840 & 10.619 & 8.450 & 1.29 \\
11.127 & 9.340 & 11.150 & 7.519 & 1.29 \\
9.900 & 8.053 & 10.375 & 5.993 & 1.38 \\
11.114 & 7.801 & 9.218 & 6.116 & 1.34
\end{tabular}

\(11.214 \quad 9.069 \quad 16.925 \quad 6.950 \quad 1.17\)
\(\begin{array}{lllll}15.668 & 8.817 & 13.799 & 9.545 & 1.14\end{array}\)
\(14.667 \quad 9.321 \quad 15.075 \quad 8.458 \quad 1.10\)
\(\begin{array}{lllll}13.079 & 8.038 & 13.989 & 6.706 & 1.17\end{array}\)
\(14.628 \quad 7.785 \quad 12.479 \quad 6.895 \quad 1.14\)
mean \(K_{1}=1.15 \pm 0.02\)

\begin{tabular}{|c|c|c|}
\hline \(\beta\) & 0.0 & 0.1 \\
\hline \multicolumn{3}{|l|}{Exyt.} \\
\hline 1 & 1.63 & 1.63 \\
\hline 2 & 2.61 & 1.60 \\
\hline 3 & 1.75 & 1.75 \\
\hline 4 & 1.73 & 1.73 \\
\hline 5 & 2.70 & 2.70 \\
\hline 6 & 1.68 & 1.67 \\
\hline 7 & 2.67 & 1.66 \\
\hline \[
\cdots \quad \operatorname{man} K_{1} \times 10^{5}
\] & 1.68
\(\pm 0.04\) & \[
\begin{array}{r}
1.68 \\
\pm 0.04
\end{array}
\] \\
\hline 1 & 1.13 & 2.18 \\
\hline 2 & 1.15 & 2.15 \\
\hline 3 & 1.19 & 1.18 \\
\hline 4 & 1.25 & 1. 24 \\
\hline 5 & 1.22 & 1.22 \\
\hline 6 & 2.20 & 2.20 \\
\hline 7 & 1.19 & 1.18 \\
\hline Mean \(K_{2} \times 10^{5}\) & \[
\begin{array}{r}
1.20 \\
\pm 0.02
\end{array}
\] & 2.19
\(\pm 0.82\) \\
\hline
\end{tabular}

\section*{TaEIE 54}
\(\frac{\text { Mickel }}{0.2} \begin{array}{llll}\beta & \text {-Alaninate Results Varying } \beta \\ 0.3 & 0.4 & 0.5 & 1.0\end{array}\)


\[
\begin{array}{lll}
\beta & 0.0 & 0.1
\end{array}
\]

Expt.
\begin{tabular}{|c|c|c|}
\hline 1 & 9.43 & 9.42 \\
\hline 2 & 9.66 & 9.63 \\
\hline 3 & 9.93 & 9.91 \\
\hline 4 & 10.40 & 10.38 \\
\hline 5 & 10. 21 & 10.19 \\
\hline 6 & 9.99 & 9.98 \\
\hline 7 & 9.87 & 9.85 \\
\hline Mean \(\mathrm{K}_{1} \times 10^{4}\) & \[
\begin{array}{r}
9.93 \\
\pm 0.23
\end{array}
\] & \[
\begin{array}{r}
9.92 \\
\pm 0.24
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{lll}
1 & 8.05 & 8.03 \\
2 & 8.24 & 8.22 \\
3 & 8.44 & 8.43 \\
4 & 8.99 & 8.98 \\
5 & 8.73 & 8.71 \\
6 & 8.56 & 8.54 \\
7 & 8.47 & 8.45 \\
mean & & \\
& & 8.50 \\
\hline
\end{tabular}

\[
\begin{aligned}
& \text { 青筫 }
\end{aligned}
\]
\[
\begin{aligned}
& \therefore \quad \text { be. .s. }
\end{aligned}
\]
\[
\begin{array}{lll}
\beta & 0.0 & 0.1
\end{array}
\]

Expt.
\begin{tabular}{lll}
1 & 7.07 & 7.05 \\
2 & 7.22 & 7.20 \\
3 & 7.58 & 7.56 \\
4 & 7.86 & 7.85 \\
5 & 7.61 & 7.60 \\
6 & 7.47 & 7.45 \\
7 & 7.38 & 7.36
\end{tabular}
\(\operatorname{Man} K_{1} \times 10^{4} \quad \pm .46 .20 \quad \pm 0.20\)
\[
\begin{array}{lllll}
0.2 & 0.3 & 0.4 & 0.5 & 1.0 \\
& \text { remp. }=450 & & \\
7.03 & 7.02 & 7.00 & 6.98 & 6.39 \\
7.19 & 7.17 & 7.15 & 7.23 & 7.05 \\
7.54 & 7.52 & 7.51 & 7.49 & 7.40 \\
7.84 & 7.83 & 7.81 & 7.80 & 7.75 \\
7.58 & 7.57 & 7.55 & 7.54 & 7.47 \\
7.44 & 7.42 & 7.41 & 7.39 & 7.31 \\
7.34 & 7.32 & 7.30 & 7.28 & 7.18 \\
& & & & \\
7.42 & 7.41 & 7.39 & 7.37 & 7.29 \\
\pm 0.20 & \pm 0.20 \rightarrow \pm 0.21 & \pm 0.21 & \pm 0.21
\end{array}
\]

H，务 教，

2＋ 3




\[
\begin{array}{lll}
\beta & 0.0 & 0.1
\end{array}
\]

Expt.
\begin{tabular}{|c|c|c|}
\hline 2 & 2.97 & 2.94 \\
\hline 2 & 3.20 & 3.17 \\
\hline 4 & 2.96 & 2.91 \\
\hline 5 & 3.22 & 3.17 \\
\hline 6 & 2.92 & 2.88 \\
\hline Mean \(\mathrm{K}_{2} \times 10^{4}\) & \[
\begin{array}{r}
3.05 \\
50.12
\end{array}
\] & \[
\begin{array}{r}
3.01 \\
\pm 0.12
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{lll}
1 & 2.08 & 2.05 \\
2 & 2.15 & 2.12 \\
4 & 2.00 & 1.97 \\
5 & 2.15 & 2.12 \\
6 & 2.08 & 2.04
\end{tabular}

Mean \(\mathrm{K}_{1} \times 10^{4} \cdot \begin{array}{r}2.09 \\ \mathbf{2} .05 \\ =0.05\end{array}\)

\[
\begin{aligned}
& \text { W. } 1 \text { L㙋. }
\end{aligned}
\]
\[
\begin{array}{lll}
\beta & 0.0 & 0.1
\end{array}
\]

Expt.
\begin{tabular}{lll}
1 & 1.70 & 1.68 \\
2 & 1.71 & 1.69 \\
3 & 1.60 & 1.56 \\
4 & 1.61 & 1.58 \\
5 & 1.71 & 1.69 \\
6 & 1.67 & 1.64
\end{tabular}

Mean \(\mathrm{K}_{1} \times 10^{4} \pm 0.04 \quad \pm \begin{aligned} & 1.67 \\ & \pm 0.05\end{aligned}\)
\begin{tabular}{llll}
1 & 1.41 & 1.39 \\
2 & 1.42 & 1.40 \\
3 & 1.35 & 1.32 \\
4 & 1.34 & 1.32 \\
5 & 1.42 & 1.40 \\
6 & 1.39 & 1.36 \\
& & 1.39 & 1.37 \\
mean K & & \(10^{4}\) & \(\pm 0.03\)
\end{tabular}

\[
\begin{array}{lll}
\beta & 0.0 & 0.1
\end{array}
\]

Expt.
\begin{tabular}{lll}
1 & 1.21 & 1.20 \\
2 & 1.20 & 1.19 \\
3 & 1.20 & 1.17 \\
4 & 1.14 & 1.22 \\
5 & 1.21 & 1.19 \\
5 & 1.18 & 1.16
\end{tabular}

Mean \(\mathrm{K}_{1} \times 10^{4} \pm 0.02 \quad \begin{aligned} & 119\end{aligned}\)\begin{tabular}{l}
1.17 \\
\hline 0.02
\end{tabular}
\begin{tabular}{lllll}
0.2 & 0.3 & 0.4 & 0.5 & 1.0 \\
& IGnf. & \(=45^{\circ} \mathrm{C}\) & & \\
1.18 & 1.16 & 1.14 & 1.13 & 1.05 \\
1.17 & 1.16 & 1.14 & 1.13 & 1.06 \\
1.14 & 1.12 & 1.09 & 1.06 & 0.94 \\
1.10 & 1.07 & 1.05 & 1.03 & 0.93 \\
1.17 & 1.16 & 1.14 & 1.12 & 1.04 \\
1.14 & 1.12 & 1.10 & 1.07 & 0.98 \\
& & & & \\
1.15 & 1.13. & 1.11 & 1.09 & 1.00 \\
\(\pm 0.02\) & \(\pm 0.03\) & \(\pm 0.03\) & \(\pm 0.04\) & \(\pm 0.05\)
\end{tabular}

\section*{DISCUSSLOM}

In his studies on the solubility of cupric dodate in glycine solutions, Kecter \({ }^{56}\) showed the existence of a cation-zwitterion complex, Culia \({ }^{2+}\). Curchod 76 suggested that in solutions of cupric \(\alpha\)-alaninate five complexes, CuHA \({ }^{2+}, \mathrm{CuA}^{+}, \mathrm{Cu}(\mathrm{HA})_{2}^{2+}, \mathrm{CuA}_{2}\) and CuHA \(A^{+}\), were formed, but at pll \(>4.75\) only the anion, \(\mathrm{A}^{-}\), appeared to give complexes. The corresponding pli livit for cupric \(\beta\)-alaninates was \(6.26^{590}\). Curchod and Pelletier \({ }^{77}\) have made no mention of zwitterion complexes in solutions containing nickel ion and amino acids, and it was therefore considered that these would bo absent in the present work.

When amino acids are dissolved in water, the dielectric constant is greater than that of pure water. In order to determine what effect this would have on the activity coefficients, the Debyomiuckel constant, \(A\), was recalculated for various values of \(\mathcal{E}\). In the nickel and cobalt glycinate \(K_{1}\) studies, the increase in \(\boldsymbol{~} 78^{8}\) is approximately 0.2 and the effect on \(\gamma_{1}\) and \(\gamma_{2}\) is negligible. For \(K_{2}, I \approx 2 \times 10^{-3}\) and the small increase in \(\varepsilon\) has virtually no effect on the activity coefficients. This is also found with nickel \(\beta\)-alaninate, but for manganese glycinato and cobalt \(\beta\)-alaninate increases
in \(\gamma_{2}\) from 0.5 to \(2.0 \%\) are obtained. The variation is, however, within the experimental error and can be ignored.
\(K_{1}\) and \(K_{2}\) for the nickel glycinate are in very good agreement with \(1.51 \times 10^{6}\) and \(9.33 \times 10^{4}\) respectively, calculated by Monk \({ }^{53}\) from potentiometric measurements at \(25^{\circ} \mathrm{C}\). Albert \({ }^{51}\), at \(20^{\circ} \mathrm{C}\) with \(I \approx 0.01\) obtained a \(K_{1}\), of \(1.26 \times 10^{6}\). After correcting to \(I=0, K_{1}=1.9 \times 10^{6}\), in good agreement with the value at \(15^{\circ} \mathrm{C}\) obtained in the present work. Irvine et aI \({ }^{45}\) measured \(K_{I}(N i \beta A)\) at \(20^{\circ} \mathrm{C}\) and \(I=0.1\) which corresponds to \(1.20 \times 20^{5}\) at \(I=0\). No data are available with which to compare cobalt \(\beta\)-alaninate but the glycinate results, \(\mathrm{K}_{1}=1.05 \times 10^{5}\) and \(\mathrm{K}_{2}=9.33 \times 10^{3}\) by Evans and Monk \({ }^{79}\) at \(25^{\circ} \mathrm{C}\) are in good agreement with those in Tables 39 and 42 . There is a much larger discrepancy in the values of \(K_{1}\) (MuG). Monk \({ }^{53}\) obtained \(2.3 \times 10^{3}\) at \(I=0\), Malay and Hello \({ }^{52} 4.6 \times 10^{3}\) at \(25^{\circ}\) with \(I \approx 0.01\) and Albert \({ }^{51} 1.6 \times 10^{3}\) at \(20^{\circ}\) with \(I \approx 0.01\).

Plots of \(\log K_{1}\) and \(\log K_{2}\) against \(1 / T\) in Figs. 16 , 17 and 18 are all curved indicating a nonzero \(\Delta \mathrm{Cp}\).

A number of equations are available to describe this variation with temperature \({ }^{80}\), and the one used was
\[
\begin{equation*}
\log K=a+b T+C T^{2} \tag{46}
\end{equation*}
\]
\(a, b\). and \(c\) were calculated by substituting log \(K\) values at \(0^{\circ}, 25^{\circ}\) and \(45^{\circ}\) and solving the similtaneous



equations. The difference between calculated and observed values at the other temperatures was as much as 2 for \(K_{2}\), but was never more than \(I /{ }^{*}\) for \(K_{1}\). The values of the parameters are given in Table 56. Differentiation of equation (46) at constant pressure gives
\[
\left(\frac{\partial \log K}{\partial T}\right)_{p}=\frac{\Delta H}{2.303 \mathrm{RT}^{2}}=\mathrm{b}+2 \mathrm{cT}
\]
from which
\[
\begin{equation*}
\Delta H=2.303 \mathrm{RT}^{2}(\mathrm{~b}+2 \mathrm{cT}) \tag{47}
\end{equation*}
\]

The other thermodynamic properties were obtained from
\[
\begin{equation*}
-\Delta G=2.303 \mathrm{RT} \log \mathrm{~K} \tag{4+3}
\end{equation*}
\]
\[
\begin{equation*}
\Delta S=\frac{\Delta H-\Delta G}{T} \tag{49}
\end{equation*}
\]
and \(\Delta C_{p}=\frac{d \Delta H}{d T}=4.606 \mathrm{RT}(b+3 \mathrm{cT})\).

Thermodynamic data have been calculated at \(25^{\circ} \mathrm{C}\) and are given in Table 57. The mean deviations were estimated by using different combinations of experimental values to calculate \(a, b\), and \(c\), and the deviation in \(\Delta G\) was taken to be the average of the mean deviations of individual \(\log _{\mathrm{g}} \mathrm{K}\) values at \(25^{\circ} \mathrm{C}\).

It is seen that the association constants follow the Irving-Williams order, as expected. The five-nembered

\section*{TABLE 56}

Parameters for Tenperature Dependence of Log K
\begin{tabular}{lccc} 
Reaction & a & \(-10^{2} \mathrm{~b}\) & \(10^{5} \mathrm{c}\) \\
\(\mathrm{Ni}^{2+}+\mathrm{G}^{-}\) & 14.0904 & 4.305 & 5.547 \\
\(\mathrm{CO}^{2+}+\mathrm{G}^{-}\) & 11.584 & 3.675 & 5.000 \\
\(\mathrm{Mn}^{2+}+\mathrm{G}^{-}\) & 5.316 & 1.370 & 2.178 \\
\(\mathrm{NiG}^{+}+\mathrm{G}^{-}\) & 14.889 & 5.515 & 7.316 \\
\(\mathrm{CG}^{+}+\mathrm{G}^{-}\) & 11.810 & 4.385 & 5.889 \\
\(\mathrm{Ni}^{2+}+\mathrm{A}^{-}\) & 12.988 & 4.612 & 6.475 \\
\(\mathrm{CO}^{2+}+\mathrm{A}^{-}\) & 13.242 & 5.183 & 7.218
\end{tabular}

\section*{TPABLE 57}

Thermodynamic Properties
\begin{tabular}{|c|c|c|c|c|}
\hline Reaction & －\(\Delta \mathrm{G}\) & －\(\Delta \mathrm{H}\) & \(\Delta s\) & \(\triangle \mathrm{Cp}\) \\
\hline \(\mathrm{Ni}^{2+}+\mathrm{G}^{-}\) & \(8.43 \pm 0.01\) & 4．09士0．03 & 14．5士0．1 & \(18 \pm 2\) \\
\hline \(\mathrm{Co}^{2+}+\mathrm{G}^{-}\) & \(6.29 \pm 0.01\) & \(2.32 \pm 0.12\) & 13．750．5 & \(22 \pm 14\) \\
\hline \(\mathrm{Mn}^{2+}+\mathrm{G}^{-}\) & \(4.32 \pm 0.01\) & \(0.29 \pm 0.03\) & 13．5士 0.3 & \(16 \pm 10\) \\
\hline \(\mathrm{NiG}{ }^{+}+\mathrm{G}^{-}\) & \(6.75 \pm 0.01\) & \(4.69 \pm 0.30\) & \(6.9 \pm 0.8\) & \(28 \pm 25\) \\
\hline \(\mathrm{CoG}^{+}+\mathrm{G}^{-}\) & \(5.42 \pm 0.02\) & \(3.55 \pm 0.20\) & \(6.3 \pm 0.6\) & \(24 \pm 20\) \\
\hline \(\mathrm{Ni}^{2+}+\mathrm{A}^{-}\) & \(6.81 \pm 0.02\) & \(3.06 \pm 0.10\) & \(12.6 \pm 0.2\) & \(31 \pm 6\) \\
\hline \(\mathrm{Co}^{2+}+\mathrm{A}^{-}\) & \(5.74 \pm 0.02\) & \(3.60 \pm 0.10\) & \(7.2 \pm 0.5\) & \(35 \pm 13\) \\
\hline ， & \multicolumn{4}{|l|}{－\(\Delta G\) and \(-\Delta H\) in \(\mathrm{k} . \mathrm{cal}\)／mole．} \\
\hline \multicolumn{5}{|c|}{\(\Delta s\) in cal．／deg．mole．} \\
\hline \multicolumn{5}{|c|}{\(\Delta \mathrm{cp}\) in cal．／deg．} \\
\hline
\end{tabular}
ring glycinates are also more stable than the corresponding \(\beta\)-alaninates. Of interest in this connection is some recent work which has shown that for the uranyl ion in its association with glycine and \(\beta\)-alanine, this order of stability is reversed \({ }^{81}\).
\(\Delta H_{1}\) is more negative for nickel than for cobalt or manganese glycinates, as has been found for various dicarboxylate complexes and also for the argininates \({ }^{49}\). For the \(\beta\)-alaninates, however, the cobalt association is more exothermic than that of the nickel. \(-\Delta H_{2}\) is slightly larger than \(-\Delta H_{l}\), as has peen found for a number of nitrogen-type chelates \({ }^{49}\). The low \(\Delta S_{1}\) values are similar to those found by Pelletier \({ }^{49}\) and are probably due to the positively charged complex which is formed. \(\Delta S_{2}\), as expected, is lower than \(\Delta S_{1}\), due to the decrease in the charges of the ions associatine.

The unusual feature of the results is the non-zero \(\Delta C_{p}\). Although this has been found for chelates which complex through oxygen atoms it is uniknown for nitrogen-type chelates. Pelletier \({ }^{49}\) found a linear relationship between \(\log K\) and \(I / T\), but the temperature range covered was relatively small and a slight scatter of points was put down to experinental error. The \(\Delta C_{p}\) values are smaller than those for the
corresponding oxalates \({ }^{43}\) and meionetcos \({ }^{42}\), and also for a number of reactions of the hydrogen ion with univalent anions \({ }^{32}\).

Tables \(43,44,45,46,47,54\) and 55 show the effect of varying \(\beta\) in equation (33). Only with manganese glycinate was the ionic strength much greater than \(10^{-2}\), and it was only with this complex that an appreciable variation in \(K\) resulted. The range of ionic strength covered was too small to show which value of \(\beta\) gave the best results, but it appears that any value between \(\beta=0.1\) and \(\beta=0.5\) may be used. For \(I \leqslant 10^{-2}\) any of the low values can be used without a serious error in \(K\); in nickel glycinate, where \(1 \times 10^{-3} \leqslant I \leqslant 2 \times 10^{-2}\), the difference in \(K\) values with \(\beta^{\prime} s\) of 0 and 0.5 is only \(3 \%\).

\section*{PART III}

CALORTMETRIC DETERMINATION OF TEE HEATS OF
FORMATIGN OF TRANSITION METAL GLYCINATE AND
\(\beta\)-ALANINATE COMPLEXES

\section*{I. TRODUCTION}

In order to understand the processes acconpanying complex formation in solution, it is necessary to determine the heats and entropies of formation. In most cases where the heats are known they have beon calculated from stability constant measurenents at more than one temperature. While we consider that this method can yield reliable values if a large temperature range is covered, it is undoubtedly better to meusure the heats of formation directly. In some cases where data are availablo by both methods, good agreement is obtained; for the first stage of the dissociation of sulphuric acid, \(\Delta \mathrm{H}=-5.2 \mathrm{k}\). cal./mole by calorimetry 32 and \(-5.6 \mathrm{k} . \mathrm{cal}\). mole by temporature cofficients \({ }^{33}\). Both methods have also been used in the study of ethylenediamine complexes \(34,35,36\).

Lange \({ }^{37}\) studied heats of dilution with a system of twin adiabatic calorimeters, one of which mas used as a constant temperature reference. Each calorimeter contained a section of a 1,500 junction thermopile, and the calorimeter used in the present work was of a similar design.

Pitzer \({ }^{82}\), who measured the \(\Delta H\) value for the bisulphate ion, used a non-isothermic calorineter,
and modifications of this have been used by Staveley 85,38 and others \({ }^{39}\), for studies with amine and ethylenediamine tetraacetate complexes.

Where the amount of material available is extremely small, such as the transuranium elements; microoalorimeters have been used in the study of the heats of solution. Westrum and Eyring \({ }^{90}\) studied the dissolution of neptunium in hydrochloric acid, using a resistance thermometer to measure temperature changes of approximately \(2 \times 10^{-5} \mathrm{C}\). Use of thermistors, in place of the resistance thermometer, enabled \(\operatorname{cobble}{ }^{91}\), with a similar calorimeter, to measure changes of \(10^{-5} \mathrm{C}\). Mian-Calret 92 calorimeters have also been used to study smell samples 93.

The sensitivity of a calorimeter is normally examined by measuring the heat change in a system which is well characterised. The methods used include the neutralisation of sodium hydroxide by hydrochloric acid \({ }^{85}\), the dissolution of magnesium metal in hydrochloric acid \({ }^{90,91}\), and the dissolution of potassium nitrate in water \({ }^{90}\). The most common method, however, is to measure the heat of solution of potassium chloride in water, and this is the one which has been employed in the present work.

The calorimeters consisted of two silvered Dewar flasks, of over one litre capacity, set into brass containers (Fig.19). A water-tight seal was obtained by inserting rubber rings between the flanges and the lids, which were then screwed down with six thumb screws. Perspex discs, of a half inch thickness, were cemented to the underside of the lids. Four holes in the lid of the first Dewar accommodated the heater, the stirrer diaphragm, a B24 socket for the thermopile and the mixing device. Two holes in the lid of the second Dewar held the stirrer diaphragm and a B24 socket for the constant temperature end of the thermopile. The containers were attached rigidly to a central brass rod and were completely immersed in the thermostat.

In order to reduce to a minimum the effects due to unequal stirring of the two calorimeters, both stirrers were driven by the same motor using a special stirring head. A vibro-rotary motor was used (Vibromischer, Messes. Shandon and Co. Ltd. England).

The thermopile consisted of sixty junctions of 20 S.W.G. constantan wire and 34 S.W.G. enamelled copper wire. The constantan wires were insulated to within \(x^{4}\) an inch of their ends with P.V.C. slaving, and the copper wires were wound on these. The junctions were made by soft soldering the ends of the wires and were arranged to be at \(\frac{\mathrm{cm}}{\mathrm{w}}\). Intervals when

placed in the Dewar. Araldite cement was used to insulate the junctions and after ensuring that they were on the outer surface of the thermopile it was bound with nylon thread. Two B24 cones completed the thermopile. When the cones were fitted to the lids of the calorinetors the thermopile was at the correct height inside the Dewars.

The miring device is shown in Fig. 20. It consisted of a B24 cone, of 15 mls. capacity, ground at each end and closed by perspex discs which were sealed on with silicone grease. This was supported in a Be4 socket stuck to a glass tube with Araldite cement, and nylon threads, which were attached to the perspex discs, passed up the tube. During an experiment the contents of the mixing device were emptied into the Dewar by pulling on the nylon threads.

The heater was of nichrome wire wound on a glass frame which was attached to a glass tube. The ends of the wire were spot-welded to platinum loops sealed, by means of Araldite cenent, into the tube. Inside the tube, the loops were soldered to copper lead wires and the heater was insulated by dipping in a solution of formvar in ethylene dichloride.

The heating circuit was similar to that of Pitzer and is shown in Fig. 2l. A variable resistance, \(A\),

\[
F_{1 G .} 20
\]

was used to regulate the current in the circuit, and the voltage drop across the standard 1 ohm resistance, B, was measured using a Cambridge slide-wire potentioneter. By means of a dummy resistance, equal to that of the heater, the 12 volt battery was allowed to settle down before being used in the heating circuit. The thermopile e.m.i.'s were measured using a Pye Precision Decade potentiometer, which had an overall range of 2.0 volts to 0.1 microvolts in six ranges. It was standardised using a 5 dial decade systen in the battery circuit, and the standard cell voltage was preset with a divider calibrated from 1.01800 to 1.01900 volts in steps of 10 microvolts. A switch incorporated in the circuit enabled internal checking of the voltage of the standard cell. Any spurious thermoelectric e.m.f.'s could be detected, and oliminated, by means of a reversing switch. A Scalamp galvanometer was used as a null detector in conjunction with a Pye galvanometer preamplifier, and changes of 0.05 microvolts were easily detected.

The thermostat was maintained at \(25^{\circ} \pm 0.01^{\circ} \mathrm{C}\) using a mercury-toluene regulator, of large capacity, fitted with a sunvic proportioning head (Type rol 3B,) and an A.E.I. electronic rolay (Type mati).

\section*{Experimental Procedure}

The sensitivity of the calorimeter was tested by determining the heat of solution of potassium chloride in water. Distilled water, which had been brought to \(25^{\circ} \mathrm{C}\), was weighed into the calorimeters and two to four grams of potassium chloride were weighed into the mixing device, which was then sealed. The lids were screwed down and the thermopile inserted into the E24 sockets, which had been well greased to ensure a water-tight seal. The calorimeters were then placed in the thermostat.

After stirring for at least an hour, and sometimes overnight, readings were taken every minute. When a steady change of e.m.f. had been obtained, the water equivalent of the calorimeter was determined by switching the heater into the circuit. The voltage-drop across the 1 ohm standard resistance was measured every minute to ensure a steady heating current, and the time of heating was obtained using a stopwatch accurate to 0.1 of a second. After the heater had been turned off and the e.m.f. had settled down to a steady change with time, the mixing device was opened and three to four minutes were usually necessary for the potassium chloride to dissolve completely. When the change in e.m.f. had
once more become steady the water equivaient was again determined.

In order to determine the heats of complex formation, 10 to 14 gms . of metal chloride solution were weighed into the mixing device and added to the amino acid, sodium hydroxide buffer in the Dewar. Following Sacconi ot a. 86 the heat of dilution of the buffer was assumed to be zero, but it was necessary to determine the heat of dilution of the metal chloride solution.

Preautions were taken in these experiments to exclude carbon dioxide from all solutions. Solid amino acid was weighed into the calorimeter and nitrogen blown in to remove the air. Distilled water, from which carbon dioxide had been removed, and sodium hydroxide were then added. The thernovile was then insetted and the calorimeter placed in the thermostat. The dissolution of the amino acid lovered the temperature of the solution and the heater was therefore switched on until the temperature difference between the two calorimeters was less than \(0.1^{\circ} \mathrm{C}\). The calorimeter was then allowed to equilibrate for at least thirty minutes before mixing. Wethod of Calculation

The method used for the evaluation of water equivalents and the heats of solution and formation was
that of Eitel \({ }^{94}\). In Fig.22, which is a graphical reproduction of part of one of the experiments, e.th.f. is plotted against time. this is divided into three periods, the Anterior, the Experimental and the Rating periods. The first reading is designated \(\theta_{0}\) at time \(T_{0}\), and at \(T_{i}\), where the reading is \(\theta_{i}\), the heater is switched on or mixing is effected. The rate oi change, \(\mathrm{v}_{\mathrm{a}}\) is given by \(\frac{\theta_{0}-\theta_{i}}{\rho_{a}}\), and the average reading in this period is \(\theta_{a}=\frac{1}{2}\left(\theta_{0}+\theta_{i}\right)\).

The experimental period stretches from \(T_{i}\) to \(T_{e}\), the corresponding readings being \(\theta_{1}\) and \(\theta_{0}\). The heat effect has been exhausted by \(T_{e}\) and the curve now enters the rating period.

The rating period is treated in the same way as the anterior and the rate of change and average reading are given by \(\frac{\theta_{e}-\theta_{1}}{I_{1}}\) and \(\frac{1}{2}\left(\theta_{e}+\theta_{1}\right)\) respectively.

We may now apply the Hegnault-Pfaunder formula to correct for the variation in readings. The correction to be applied to \(\theta_{e}-\theta_{\mathrm{i}}\) is
\[
\begin{align*}
\partial \theta & =T_{x} v_{a}+\frac{\left(v_{r}-v_{a}\right)}{\left(\theta_{r}-\theta_{a}\right)} \frac{1}{2}\left(\theta_{\theta}+\theta_{1}\right)+\sum_{1}^{T_{x-1}}-T_{x} \theta_{a} \\
& =T_{x} v_{a}+\frac{\left(v_{r}-v_{a}\right)}{\left(\theta_{r}-\theta_{a}\right)} \quad \ldots \ldots \cdot \tag{51}
\end{align*}
\]

and the corrected heat change is given by \(\Delta \theta^{\prime}=\partial \theta+\theta_{\theta}-\theta_{i}\). Anterior and rating periods were of the order of 10 minutes and the experimental period was from 5 minutes for the dissolution of potassium chloride to 2 minutes for mixing.

\section*{RESULTS AUD DISCUSSION}

Data available for the heat of solution of potassium chloride have been reviewed by Mishchenko and Kaganovich \({ }^{95}\) and Rossini \({ }^{96}\). Staveley \({ }^{35}\) has corrected the results given by these authors to an arbitrarily fixed dilution of 1 mole of potassium chloride to 167 moles of water and found his values to be comparable.

The heats of solution obtained in the present work have been corrected to the same arbitrary dilution and the results are given in Table 58.

\section*{TABLE 53}

Heat of Solution of Potassium Chloride
\begin{tabular}{lllll} 
Gas. MCI & Hms. \(\mathrm{H}_{2} \mathrm{O}\) & H.E. (Ave) & \begin{tabular}{c} 
Deflection \\
(cali)
\end{tabular} & \begin{tabular}{c}
\(\Delta \mathrm{H}_{\text {SOl }}\) \\
K cals.7mole
\end{tabular} \\
4.218 & 1197.8 & 1.035 & 242.7 & 4.29 \\
4.843 & 1197.7 & 0.946 & 265.5 & 4.10 \\
3.503 & 1160.7 & 1.459 & 198.8 & 4.21 \\
3.257 & 1166.6 & 1.415 & 176.8 & 4.05 \\
& & Mean \(\Delta H=4.16 \pm 0.09\) &
\end{tabular}

The calculated \(\Delta H_{s o l}\) is in good agreement with 4.18 given by staveley.

In the association experiments the concentrations of the ionic species were calculated from the equations
\[
\begin{gather*}
\mathrm{m}_{1}=\left[\mathrm{H}_{2} \mathrm{~A}^{+}\right]+[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]+\left[\mathrm{MA}^{+}\right],  \tag{34}\\
\mathrm{m}_{3}=\left[\mathrm{M}^{2+}\right]+\left[\mathrm{MA}^{+}\right],  \tag{35}\\
{\left[\mathrm{H}^{+}\right]+2\left[\mathrm{H}^{2+}\right]+\left[\mathrm{MA}^{+}\right]+\mathrm{m}_{2}+\left[\mathrm{H}_{2} \mathrm{~A}^{+}\right]} \\
=\left[\mathrm{A}^{-}\right]+2 \mathrm{~m}_{3}, \tag{30}
\end{gather*}
\]
the ionic strength,
\(I=\frac{1}{2}\left\{\left[\mathrm{H}^{+}\right]+\left[\mathrm{MA}^{+}\right]+\left[\mathrm{H}_{2} \mathrm{~A}^{+}\right]+\left[\mathrm{A}^{-}\right]+\mathrm{m}_{2}+2 \mathrm{~m}_{3}+4\left[\mathrm{M}^{2+}\right]\right\}\)
and the dissociation constants of the acid. Activity coefficients were obtained from the Davies' equation, (12), and \(\left[\mathrm{H}^{+}\right]\)was varied, using the Douce computer, until i the calculated \(\mathrm{K}_{1}\) was within \(1 \%\) of the value given in Part II. In the calculation of \(\Delta\) in \(^{0}\) the wats of formation of \(A^{-}\)and \(\mathrm{H}_{2} A^{+}\)were taken into consideration, and also the heat of dilution of the metal chloride solution, \(4.39 \mathrm{k} . c a l . /\) mole for nickel chloride and \(2.77 \mathrm{k} . \mathrm{cal} . / \mathrm{mole}\) for cobalt chloride. Results are given in table 5 for nickel and cobalt glycinates and nickel \(\beta\)-alaninate。

The values shown are in reasonable agreement with \(4.09 \pm 0.03,2.32 \pm 0.12\) and \(3.06 \pm 0.1\) obtained from emf. measurements. The results, however, are
 small concentration of complex and the very high heats of dilution.

In solutions containing amino-acid and sodium hydroxide [ \(\mathrm{A}^{-}\)] was taken as being approximately [ \(\mathrm{Na}^{+}\)], and additional [A"] produced by further dissociation of the amino acid on addition of metal ion was therefore \(\left[\mathrm{MA}^{+}\right]-\left[\mathrm{Na}^{+}\right]\). The contribution to the total heat change due to its formation, and also to that of \(\mathrm{H}_{2} \mathrm{~A}^{+}\), was calculated from the appropriate heats of dissociation of the amino acids. For glycine \(\Delta H_{1}=0.95 \mathrm{k}\), cal/mole and \(\Delta H_{2}=10.8 \mathrm{k} . \mathrm{cal} / \mathrm{mole}\) were obtained from refs (73) and (74) and for Balamins \(\Delta H_{1}=1.09\) k.cal/mole and \(\Delta H_{2}=11.27 \mathrm{k} \cdot \mathrm{cal} / \mathrm{mole}\) were calculated from the dissociation constants in fart ry Having obtained the
heat change for the formation of the studied, the themmodymamie value, \(\Delta H^{\circ}\), was derived using
\[
\Delta H^{\circ}=\Delta H_{i}+2 \cdot 303 \times \frac{3 M T^{2}}{2}\left(\frac{1}{D} \cdot \frac{d D}{d T}+\frac{1}{T}\right) \log \gamma_{2}
\]
(Austin, Matheson and Parton, "The Structure of Electrolyte Solutions \({ }^{\prime \prime}\). Ed. Lamer (Wiley, 1959)). The values of \(D_{\text {. }}\) the dielectric constant, were those of Akerlof (J.A.C.S.e 1932, 54, 4130) and
\[
2 \cdot 303 \times \frac{3 R x^{2}}{2}\left(\frac{1}{D} \cdot \frac{d D}{d T}+\frac{1}{T}\right)=-7 \cdot 57 \times 10^{-4}
\]
\(\gamma_{2}\), the activity coefficient of the metal ion, was obtained using Davies' equation.

\[
\mathrm{A}_{\mathrm{t}}^{\mathrm{t}} \mathrm{x}
\]
\[
\operatorname{sen} 14 t+1+447 \pi
\]


\section*{TABLE 59}
\begin{tabular}{lllll}
\multicolumn{1}{c}{2} & \multicolumn{1}{c}{3} & \multicolumn{1}{c}{4} & 5 & 6 \\
1.2700 & 1.4761 & 1.3258 & 1.4176 & 1.2617 \\
3.1498 & 1.9629 & 1.6794 & 1.6354 & 1.6044 \\
3.4753 & 2.1156 & 2.1179 & 3.4880 & 3.4874 \\
1178.4 & 1175.7 & 1174.4 & 1174.1 & 1174.3 \\
0.958 & 0.984 & 0.993 & 0.949 & 0.958 \\
174.0 & 73.8 & 69.6 & 166.4 & 166.4 \\
179.8 & 68.9 & 68.9 & 180.0 & 179.8 \\
\(10^{3}\left[\mathrm{H}_{2} \mathrm{~A}^{+}\right]\) & \(10^{6}\left[\mathrm{~A}^{-}\right]\) & \(10^{3}\left[\mathrm{MA}^{+}\right]\) & \(\Delta \mathrm{HI}^{0}\)
\end{tabular}

Nickel Glycinate
\begin{tabular}{llll}
2.041 & 0.320 & 5.071 & 4.40 \\
2.406 & 0.368 & 5.646 & 3.88
\end{tabular}

Mean \(\Delta H^{\circ}=4.14 \pm 0.26 \mathrm{k} \cdot \mathrm{cal}\)./mole
Cobalt Glycinate
\begin{tabular}{llll}
0.464 & 2.612 & 2.433 & 4.03 \\
0.432 & 2.266 & 2.116 & 2.65
\end{tabular}

Mean \(\Delta H^{\circ}=3.34 \pm 0.69 \mathrm{kecal} / \mathrm{mole}\)
Nicks \(1 \beta\)-Alaninate


\section*{PART IV}

GENERAL DISCUSSIOT

Although it is generally accepted thet a comparison of association reactions should not be based on free energy data alone, a number of workers have attenpted to correlate log \(K\) values with properties of the metal ion involved. Duncan and Kepert 97 found two types of relationship between \(\Delta G^{\circ}\), and \(G^{\circ}\left(M^{m+}\right)_{a g}\), the free onergy of the metal ion, for a series of bivalent metal oxines. In those cases in which \(-\triangle G^{\circ}\) Increased with increasing \({ }^{0}\left(\begin{array}{l}\text { in }\end{array}\right.\) ) aq they assumed that the ions were in contact. They suggested that such entities should be called complezes, and that where one or two water nolecules vere interposed between the ions the new entity should be called an ion-pair or ion-associate. The second type of relationship,
 assumed to be due to ion-pair formation. Since the hydration radius of similarly charged ions does not vary appreciably, they assumed that the energy betweon the ions would be fairly constant. A distinction between complexes and jon-pairs was also proposed by Smithson and Williams 98 who suggested that anions would only affect the absorption of transition metals in the visible setrum if the ions were in contact. Hence where a change in the absorption spectrun was obtained
complexing was assumed and if there was no change in the spectrum, an ion-pair was formed.

Williams \({ }^{99}\) predicted that for association reactions where the only attrective force was electrostatic, there should be a relationship between \(\log K\) and the ionic potential of the retal ion. He showed that a Iinear relationship existed between \(\log K\) and \(z / r\) for a limited number of complexes of the alkaline earth metals. Where reactions involved transition metal ions, in which covalent bonds were possible, Irving and Williams \({ }^{44}\) found that \(\log K\) increased as the ionisation potential of the metal ion increased. These workers assumed that the ionisation potential was a measure of tho ability of the ion to form covalent bonds. Others 100,101 102 however, have sugesested that the order of stability is due to the polarisation of the cation d-electrons by the ligand. This ligand field theory predicts that ions whose d shells contaln either 0,5 or 10 electrons will have no additional stabilisation. The divalent ions of the first transition series corresponding to this condition are \(\mathrm{Ca}^{2+}, \mathrm{Mn}^{2+}\) and \(\mathrm{Zn}^{2+}\), and the additional stability of \(\mathrm{Zn}^{2+}\) complexes compared with \(\mathrm{Ca}^{2+}\) and \(\mathrm{hn}^{2+}\) is considered
to be due to the contraction in the radius of the ions. Plots of \(\log \mathrm{K}\) against atomic number for complexes of the divalent ions show an increase from calcium, through manganese, to zinc with, however, maxima at chromium and copper and a minimum at manganese. Williams \({ }^{103}\) has argued that, while the ligand field theory predicts this behaviour it is only a qualitative picture. The stability of complexes is really due to the acceptor properties of the ground and excited states, and hence to the ionisation potential of the metal.

It has been shown by Duncan \({ }^{204}\) that under certain circumstances a linear relationship will exist between \(\log K\) and the reciprocal of the radius of the metal ion, and he has attributed the success of other relationships to the dependence of the property concerned on \(1 / r_{W_{1}}{ }^{m+}\). It should be noted, however, that the properties discussed above are related to the heats of complex formation, and correlations with the free energy depend on the entropy change for a series of similar reactions being almost constant.

Gurney \({ }^{105}\) has suggested that the work done, \(W\), in forming an lon -pair from the separate ions in solution should be written
\[
\begin{equation*}
W=\frac{\Delta G^{0}}{N}-k I \ln 55.5 \tag{52}
\end{equation*}
\]

Where \(N\) is Avogadro's number and the tern -kT In 55.5 is a characteristic of reactions in aqueous solution in which the number of solute particles decreases by unity, 55.5 being the number of moles in 1000 gas. of water. The forces between two oppositely charged ions in solution can be considered as being made up of long-range, or electrostatic, and short-range, or quantum mechanical, terms. While the electrostatic force will be one of attraction, the quantum mechanical force may be repulsive or attractive depending upon Whether or not the ions have the electronic configuration of the inert gases. We may therefore consider \(W\) to be composed of two parts, Went, sensitive to environment and temperature, and \(W_{n o n}\), insensitive to environment and independent of temperature.
\[
\begin{aligned}
& W=W_{\text {env }}+W_{\text {non }}=-k T(\operatorname{lnK}+\ln 55.5)=-k T \operatorname{lnK} K_{x} \\
& \text { Since } W_{\text {end }} \text { is almost entirely electrostatic in origin }
\end{aligned}
\]

It will vary with temperature in the same way as the reciprocal of the dielectric constant of the solution and hence will have a minimum value at a certain temperature. Near room temperature this variation can be expressed as
\[
\frac{1}{\varepsilon}=\frac{e^{T / \theta}}{\varepsilon_{0}}
\]
where \(\theta\) is a temperature characteristic of the solvent. We may then write
\[
\begin{equation*}
\ln K_{X}=-C\left(\frac{a+e^{T / \theta}}{T}\right) \tag{53}
\end{equation*}
\]
where \(C_{a}=\frac{W_{\text {non }}}{k}\) and \(C_{a}^{T / Q}=\frac{W_{\text {end }}}{k}\)
The temperature, \(T^{*}\), at which the association constant passes through a minimum is obtained by differentiation of equation (53) with respect to \(T\), and equating to zero.
\[
\begin{equation*}
T^{*}=\theta\left(1+\frac{a}{e^{T / \theta}}\right)=\theta\left(1+\frac{W_{\text {non }}}{W_{\text {end }}}\right) \tag{54}
\end{equation*}
\]
where \(W_{\text {env }}{ }^{*}\) is the value of \(W_{\text {en }}\) at \(T\).
It is seen from equation (54) that \(\mathrm{T}^{*}\) is dependent on the ratio \(W_{\text {non }} / W_{\text {inv. At temperatures below } T, ~}\), \(K\) values will decrease with increasing temperature due to the tendency for thermal agitation to cause dissociation of the ion-pairs. When \(T>T^{*}, K\) values will increase with temperature due to the decrease in mutual potential energy.

It has been suggested by Charles \({ }^{106}\) that heats of formation of complexes are related to metal-ligand bond strengths, and by Orge1 107 and George 100 that bond strengths are increased by increasing \(W_{\text {non }}\). Therefore the higher the value of \(\mathrm{T}^{*}\) for a reaction the more
exothermic it should be. It is seen from Table 60 that this is the case for various malonates, oxalates, glycinates and \(\beta\)-alaninates. In complex formation the nitrogen atom donates its lone pair of electrons more readily than does the oxygen atom and hence forms more covalent bonds. This leads to a greater W hon and higher \(\mathrm{T}_{\text {, }}^{*}\) and K values which decrease with increasing temperature. Uusitalo 103 has shown that when the donor atom is oxygen the entropy form is important, but with nitrogen the heat term determines the stability. When both nitrogen and oxygen are present \(T \Delta S\) and \(\Delta H\) are comparable for strong complexes, but \(T \Delta S\) increases in importance as the stability of the complex decreases. It is seen in Table 60 that this holds for the glycinates but not for the \(\beta\)-alaninates where \(-\Delta H\) (CO) \(>-\Delta I f\) (Ni). With the introduction of the second glycinate anion \(-\Delta H_{2}>-\Delta H_{1}\) and \(\Delta S\) is very small, as expected for complexes of \(1: 1\) electrolytes.

The entropy change accompanying reactions of type (2) may be considered as being made up of two parts. A decrease in entropy due to the reduction in the number of solute particles in solution, and an increase due to the partial neutralisation of charge which leads to a decrease

\section*{TABLE 60}

\section*{Thermodynamic Properties}

in the ordering of solvent molecules. Frank and Evans 109 have suggested that ions in solution orientate the weter molecules around them so as to form an effective "iceberg", the process being similar to a partial freezing of the liquid. Thus the removal of ions from the solution, as in the process of complex formation, will lead to the breakdown of this structure and a resulting entropy change favouring conplex formation. Since the entropy effect will be related to the charge of the ions a large \(\Delta S\) will be expected in reactions accompanied by considerable charge neutralisation and a low \(\triangle S\) in reactions for which there is little charge neutralisation. This explains Uusitalo's observation that the entropy change is greater for ligands involving oxygen rather than nitrogen co-ordination and why for oxalates and malonates \(\Delta S\) z 20 cal/deg.mole. while for glycinates and \(\beta\)-alaninates \(\Delta S \geqslant 10\) cal/deg. mole.

Gurney \({ }^{105}\) has suggested that when comparing the entropies of reactions the equation
\[
\begin{equation*}
s^{0^{\prime}}=s^{\circ}-R \ln 55.5=s^{\circ}-8 \Delta n \tag{55}
\end{equation*}
\]
where \(\Delta \mathrm{n}\) is the change in the number of solute particles, should be used. This gives an entropy independent of the concentration. Bent \({ }^{110}\) considered a number of
reactions, for many of which negative entropies had been obtained \({ }^{111}\), and, using equation (55), found that only in the case of silver thiosulphate was the entropy change negative. He assured this to be due to the loss of configurational and librational entropy of the thiosulphate ion on complex formation. Writing \({ }^{112}\),

where \(-\Delta S_{\text {had }}\) (1) is the entropy change accompanying the hydration of the gas phase cation, \(-\Delta S_{h y d}(2)\) and \(+\Delta S_{\text {hod }}{ }^{(4)}\) are the corresponding values for the anion and the ion-pair respectively, and \(\Delta S g\) (3) is the change on asscciation in the gas phase,
\[
\begin{aligned}
\Delta S_{\text {assoc. }}=\Delta S_{\text {hyd }}(1) & +\Delta S_{\text {had }}(2)+\Delta S_{g}(3) \\
& +\Delta S_{\text {had }}(4) .
\end{aligned}
\]
\(\Delta S_{h y d}(1)\) and \(\Delta S_{\text {had }}\) (2) may bs obtained from the difference in standard entropy of the ions in the gas and aqueous phases. While these are known for a large number of
ions \({ }^{113}\), they are not known for glycinate or \(\beta\)-alaninate. The aqueous phase entropies of the anions were obtained from the crystal entropies, entropies of hydration and entropies of dissociation of the acids. The crystal entropy of \(\beta\)-alanine has not been determined, but Huffman \({ }^{114}\) has shown that no change occurs when a hydrogen atom is replaced by an amino group. \(\beta\)-Alanine was therefore assumed to have the same entropy as \(\alpha\)-alanine, for which \(s^{\circ}=31.6\) cal/deg.nole. \(\Delta S_{\text {had }}\) for glycine was obtained iron solubility measurements at a number of temperatures \({ }^{115}\), but data was not available for \(\beta\)-alanine. Knowing the value at \(25^{\circ} \mathrm{C}\) only, it was necessary to measure the heat of solution before \(\triangle S\) could be calculated. \(S_{A^{-}}^{0}\) vas then determined from the dissociation
\[
H A \rightleftharpoons H^{+}+A^{-}
\]
and the values are shown in Table 61.

\section*{TABLE 61}

\section*{Thermodynamic Properties}
\begin{tabular}{llcll} 
& \(S_{\text {cryst. }}^{0}\) & \(\Delta S_{\text {had. }}\) & \(-\Delta S_{\text {assoc. }}\) & \(S_{A^{-}}^{0}\) \\
Glycine & 26.1116 & 14.4 & -8.873 & 31.7 \\
\(\beta\)-Alanine & 31.6 & 10.4 & -9.3 & 32.7
\end{tabular}

All entropies in cal/deg.mole.

Where crystal entropies and solubility data are not available, aqueous phase entropies may be calculated from a number of empirical relationships. Powell and Latimer \({ }^{117}\) suggested an equation for the entropy of monatiomic ions, (based on the standard \(\mathrm{S}_{\mathrm{H}^{+}}^{\mathbf{+}}=0\) )
\[
\begin{equation*}
s^{\circ}=3 / 2 R \ln M+37-270 z / \mathrm{r}_{\mathrm{e}}^{2} \tag{56}
\end{equation*}
\]
where \(M\) is the atomic wt., \(z\) the charge and \(r_{e}\) the effective ionic radii of the ions, with corrections for hydration. These corrections were for cations, +2 A , and for anions +1 A .
\[
\text { Laider }{ }^{118} \text {, using the value of } \mathrm{S}_{\mathrm{H}^{+}}^{0}=-505 \mathrm{cal} / \mathrm{dog}
\]
mole. suggested by Gurney, proposed for monatomic cations the equation
\[
\begin{equation*}
s_{(a b s)}^{0}=3 / 2 R \ln M+10.2-116 \frac{2^{2}}{r^{+}} \tag{57}
\end{equation*}
\]
which he considered to be theoretically more justified In conforming to the simple Born relationship. Equations have been developed by Cobble \({ }^{119}\) for the calculation of
the entropies of complex cxyanions and simple complexes, and he has extended the method to aqueous organic solutes, complexes and chelates. Connick and Powell \({ }^{120}\) have also given an equation for oxyanions.

For monatomic ions in the gas phase only the translational entropy term will be involved. This may be calculated from the Sackur-Tetrode equation which, at \(25^{\circ} \mathrm{C}\), has the form
\[
S_{\text {trans }}=1.5 \mathrm{R} \ln \mathrm{M} \neq 26.03
\]
where \(M\) is the atomic weight of the ion. The entropy of lon-pairs includes both translational and rotational terms and for rigid linear molecules may be obtained from \({ }^{121}\)
\[
\begin{aligned}
S_{\text {trans }}+S_{\text {rot }}=2.2868(7 \log T & +3 \log M+2 \log I_{B} \\
& -2 \log \sigma)-6.661
\end{aligned}
\]
where \(I_{B}\) is the moment of inertia about the axis and \(\sigma\) Is the symmetry number. To deal with rigid, non-linear ion -pairs, however, it is necessary to introduce the moments of inertia about the principal axes, \(S_{\text {trans }}+S_{\text {rot }}=2.2868\left(8 \log T+3 \log 7+\log I_{A} I_{B} I_{C}\right.\) \(-2 \log \sigma)-7.697 \ldots . .(53)\)

The products of the moments of inertia may be obtained quite simply by means of the determinant
\[
I_{A} I_{B} I_{C}=\left|\begin{array}{lll}
+I_{x x} & -I_{x y} & -I_{x z} \\
-I_{x y} & +I_{y z} & -I_{y z} \\
-I_{x z} & -I_{y z} & +I_{z z}
\end{array}\right|
\]
where \(I_{z x}\) and \(I_{x y}\) are the moments and products of inertia with respect to a coordinate system having the centre of mass as origin, ie.
\[
\begin{aligned}
& I_{x x}=\sum m_{i}\left(y_{i}^{2}+z_{i}^{2}\right) \\
& I_{x y}=\sum m_{i} \quad x_{i} \cdot y_{i} \ldots
\end{aligned}
\]
where \(m_{i}\) is the mass of the atom 1 whose coordinates are \(x_{i}, y_{i}, z_{i}\) and \(\sum m_{i}=M\).

Equation (58) was used in the calculation of the
gas entropy of the ion-pair. X-ray determination 122 has shown that nickel glycinate is almost planar and It was assumed to be so in the calculation. The \(\beta\)-alaninates were also assumed planar, and the entropies are shown in Table 62. The entropies of the metal ions were those of Staveley and Randall \({ }^{38}\) and it is seen that \(S_{g}(M N)\) is similar for all of the reactions and could therefore be considered constant for a series of similar reactions. \(\Delta S_{\text {assoc }}\). will therefore

TABLE 62

\section*{Thermodynamic Properties}


Entropies in cals./deg.mole.
be largely determined by differences in hydration. Staveley and Randall studied the reactions of ethylonediaminetetracetate with a number of petal ions and assumed \(\Delta S_{2}\) and \(\Delta S_{4}\) to be constant. When, however,
 were obtained. Those for divalent ions with inert gas structures and transition metal ions were linear, but in the case of tervalent ions a curve was obtained.
Nancollas 123 has shown, however, that if \(\Delta S_{\text {assoc. }}\). is plotted against \(\Delta S_{I}\) a single straight line is obtained for all ion-pairs.

A number of relationships between entropies and the properties of ions have been demonstrated. Latimer \({ }^{124}\) found that \(\Delta S_{\text {hyde }}\). values, based on \(\mathrm{S}_{\mathrm{H}^{+}}=-2.1\), were proportional to \(z / r\), where \(z\) is the charge on the ion and \(r^{\prime}\) the effective radius (ie. \(r_{-}+0.1 A\) and \(r_{+}+0.85 \mathrm{~A}\) ). Nair and Mancollas \({ }^{18}\) have shown that \(\Delta S_{\text {loyd }}\) (4) varies linearly with \(\left(r_{+}+r_{-}\right)^{-1}\) for uncharged ion-pairs of \(I: I\) electrolytes. In the present work neither \(\Delta S_{\text {hid }}\) nor \(\Delta S_{\text {assoc }}\). varies linearly with \(1 / r_{m^{+}}\)for the metal glycinates. George \({ }^{125}\), however, has found relationships of the type
\(\Delta S_{\text {assoc. }}=\Delta S_{\text {had }}\)
(2) + constant.

Different values for the constant are reguired for different systems, and Davies \({ }^{11}\) has shown that this value is apparently dependent upon the entropy of hydration of the variable ion.

\author{
BIBLIGGAPHY
}

\section*{BIDLITOGRAPHY}
1. Bjerrum, Kgl. Danske Videnskab. Selskal, Math.-fys. Medd., 1926, Z2 No. 9.
2. Debye and Huckel, Phys. Z., 1923, 24, 135. Schwarzenbach and Gut, Helv. Chim. Acta, 1956, 32. 1589.

Sillen, Quart.Rev., 1959, 13, 146.
5. Huckel, Phys. Z., 1925, 26, 93.
6. Muller, Phys. Z., 1927, 28, 324.
7. Gronwall, La Mer and Sandved, Phys. Z., 1928, 29, 358.
8. Guntelberg, Z. Phys. Chem., 1926, 123, 243.
9. Guggenheim, Philovag., 1935, 12, 583.
10. Davies, J.Chem. Soc., 1938, 2093
11. Davies, Ion Association, (Butterworths,London, 1962).
12. Mayer, J. Chem. Phys., 1950, 18, 1426.
13. Davies, Trans. Faraday Soc., 1927, 23, 351; Money and Davies, ibid., 1932, 23, 609.
14. Davies and James, Proc. Roy. Soc., 1948, A, 125, 116. 15. Blayden and Davies, J. Cher. Soc., 1930, 949 Davies, ibid., 1938, 277.

16a. Monk, Trans. Faraday Soc., 1951, 47, 235.
16b. Lloyd, Wycherley and Monk, J.Chem.Soc., 1951, 1736.
17. Bell and George, Trans. Faraday Soc., 1953, 49, 619.
18. Mair and mancolles, J.Chen.Soc., 1957, 313.
19. Jones and Monk, Trans. Faraday Soc., 1952, 48, 929.
20.
21.
22.
23.
24.

25
26
27
28
29.
30.
31.

32
33.
34.

35
36.
37. Wcauley and Nancollas, J.Chera.Soc., 1961, 4458. Bale, Davies, Morgans and Monk, Disc. Faraday Soc., 1957, 24, 94.

Davies, Otter, Prue, Disc. Faraday Soc., 1957, 24, 103. Lingane, Chera. Rev., 1941, 22, 1. Gelles and Hancollas, J.C.S., 1956, 4347. Nasanen, Acta. Chem. Scand, 1949, 32 959. Kraus and Melson, J. Amer. Cham. Soc.,1950, 22, 3901. Monk, Trans. Faraday Soc., 1961, 57, 1996. McKay, Disc. Faraday Soc., 1957, 24, 30. Izatt, Has, Block and Fernelius, J. Phys. Chen., 1954, 58, 1133.
Guggenhein, Disc. Faraday Soc., 1957, 24, 53;
"An International Electrolytes Symposium",
ed. Pesce, (Pergamon Press, 1962).
Mair and Mancollas, J. Chem. Soc., 1958, 3706.
Brown and Prue, Proc. Roy. Soc., 1955, A, 232, 320. Beevers and Lipson, Proc. Roy. Soc., 1934, A, 146,570. Eigen, Disc. Faraday Soc., 1957, 24, 25. Voge1, J. Chem. Soc., 1929, 1476. Voge1, "Textbook of Quantitative Inorganic Analysis", 2nd Ed. (Longmans, Green and Co., London, 1951). Harned, J. Amer. Chem. Soc., 1929, 51, 416.
38. Ashby, Crook and Datta, Biocher.J., 1954, 56, 190.
47. Cotton and Harris, J. Phys. Chom., 1955, 59, 1203.
54. Davies and waind, J. Chem. Soc., 1950, 301.

55a. Monk, Trans. Faraday Soc., 1951, 47, 1233.
55b. Colman-Porter and honk, J. Chen Soc., 1952, 4363.
56. Keefer, J. Amer. Chem. Soc., 1948, 20, 476.
57. Li and Doody, J. Amer. Chem. Soc., 1954, 76, 221.

58 Curchod and Quintin, Compt.rendu, 1951, 232, 1662.

59w. Curchod, Compt. rendu, 1951, 232, 2210.
59b.
60.
61. Harned and Morrison, Amer. J. Science, 1937, 33, 161
62. Taniguchi and Janz, J. Electrochem. Soc.,
\[
1957,104,123
\]
63.
66. Shaw, Ind. Eng. Chem., 1926, 18, 1065. 1350; ibid., 1933, 55, 2179.

Bates, Guggenheim, Harned, lves, Janz, Honk,
\[
1956,25,361 .
\]

Hills and Ives, J. Chern. Soc., 1951, 305.

Titus and Swith, J. Amer. Chen. Soc., 1941, 63,3266. Harned and Ehlers, J. Amer. Chem. Soc., 1932, 54, Robinson, Stokes and Wynne-Jones, J. Chem. Fays.,
71. Owen, J. Aner. Chem. Soc., 1934, 56, 24.
72. King, J. Amsr. Chem. Soc., 1951, 23, 155.
73. Datta and Grzybowski, Trans. Faraday Soc., 1958, 54, 11.79.
74.
75. Robinson and Stokes, "Electrolyte Solutions"
(Butterworths, Lond on, 1959).
75. Curchod, J. Chim. Phys., 1956, 53, 125.
77. Curchod and Pelletier, Compt. rendu, 1955, 242, 361. 78. Wyman and hoMeokin, J. Amer. Chem. Soc., 1933,55,903

79
Evans and Monk, Trans. Faraday Soc., 1955, 51, 124..

81 Cefola, Taylor, Gentile and Celiano, J. Phys. Chem.,
\[
1962,66,790 .
\]
82. Pitzer, J. Amer. Chem. Soc., 1937, 52, 2365. 83. Nair and Nancollas, J. Chem. Soc., 1953, 4144.
84. Cotton and Harris, J. Phys. Chem., 1955, 52, 1203.
85. Davies, Singer and Staveley, J. Chem, Soc., 1954, 2304. Feates and Ives, J. Chen. Soc., 1956, 2793.

Spike and Parry, J. Amer. Chem. Soc., 1953, 25, 2726. Lange and Monheim, Z. Phys. Chem., 1930, 149A, 51; Lange and Robinson, Chem.Rev., 1931, 2, 39. Care and Staveley, J. Chem. Soc., 1956, 4571. Staveley and Randall, Disc. Faraday Soc.
\[
1358,26,157 .
\]
89. Ciampolini, Paoletti and Sacconi, J. Chem. Soc., 1961, 2994.
90. Westrum and Eyring, J. Amer.Chera.Soc., 1952, 24, 2045.
91. Argue, Mercer and Cobble, J. Phys. Chen., 1961
\[
65,2041
\]
92. Tian, Bull. Soc. Chim. Belges, 1923, 33, 427. Calvet and Prat, Microcalorimetric (Masson et Cie
93. Attree, Cushing, Ladd and Pieroni, Rev. Sci. Instr., 1953, 22, 491.
94. Eitel, "Thermochemical Methods in Silicate Investigation", (Rutgers University Press, New Brunswick, New Jersey, 1952).
95. Mishchenko and Kaganovich, J. Appl. Chem. U.S.S.R., 1949, 22, 1078.
96a. Bichowski and Rossini, "The Thermochenistry of Chemical Substances" (Reinhold Puilishing Corporation, New Zork, 1936).

96b. Rossini, "Selected Values of Chemical Thermodynamic Peoperties", (Nat. Bur. Standards, Washington, 1952.
97. Duncan and Kepert, "The Structure of Electrolytic Solutions". Ed. Hamer (Wiley, 1959).
98. Smithson and Williens, J. Chern. Soc., 1958, +57.
99. Willians, J. Chem. Soc., 1952, 3770.
100. George, Rec. Trav. Chit., 1956, 25, 671.
101. Griffith, Rec. Trav. Chim., 1956, 25, 676; J. Inorg. iluc. Chem., 1956, 2, 1.
102. Griffith and Orgel, quart Reviows, 1957, 11, 331.
103. Williams, Disc. Faraday Soc., 1950, 26, 123.
104. Duncan, Aust. J. Chem., 1959, 12, 356.
105. Gurney, Monic Processes in Solution" (McGraw-Hill, How York, 1953).

Charles, J. Amer. Chem. Soc., 1954, 26, 585.. 107. Orgel, J. Chen. Soc., 1952, 4756.
103.
109.
110.
111.
112.
113.
124.
115.
116.
117.
118.
119. Uusitalo, Finska Kemistsanfundets Meda,
\[
1953,61,101 .
\]

Frank and Evans, J. Chem. Phys., 1945, 23, 507.
Bent, J. Phys. Chem., 1956, 60, 123.
Williams, J. Fhys. Chem., 195it, 58, 121.
Evans and Nancollas, Trans. Faraday Soc.,
1953, 49, 363.
Latimer, "Oxidation Potentials", Prentice-ilall, New Yorks 1952.

Huffman and Borsook, J. Ainer. Chem. Soc., 1932, 54. Seidell, "Solubilities of Organic Compounds" (Van Nostrand Co., New York, 1941).

Parks, Huffman and Barmore, J. Aner. Chem. Soc., 1333, 55, 2736.

Powell and Latimer, J. Chem. Phys., 1951, 12, 1139. Laidler, Canad. J. Chom., 1956, 34, 1107. Cobble, J. Chem. Phys., 1953, 21, 1443, 1446, 1451.
120. Comick and Powell, J. Chtm. Phys., 1953, 21, 2206.
121. Herzberg, "Infra-red and Raman spoctra" (Van Mostrand, Hew York, 1955).
122. Stosick, J. Amer. Chem. Soc., 1945, 6', 365.
123. Wancollas, quart. Reviews, 1960, 14, 402.

1:24. Latimer, J. Chem. Phys., 1955, 23, 90.
125. George, J. Amer. Chem. Boc., 1959, 31, 5530.
126. Harned and \(O_{w e n, ~ " P h y s i c a l ~ C h e m i s t r y ~ o f ~}^{\text {of }}\)

Electrolyte Solutions", (Reinhold Publishing Corporation, New York, 1943).```

