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PREFACE

The work which forms the subject of this thesis extended over a 

period of four years between the autumns of 1953 and 1957- 
The problem of the behaviour of the castellated (or "expanded") 

beam came to the author's attention whilst working as a student 

civil engineer with the Appleby-Frodingham Steel Company between 

the years 1944 and 1949 but it was not until four years later that 

an opportunity arose to carry out some research on the problem.

After graduating BoScc, in civil engineering in the University 

of Glasgow in 1953 the author was appointed Assistant in Civil 

Engineering in that University and registered in October 1953 as 

a research student of the University. The problem selected for 

research was the one forming the subject of this thesis.

The work was carried out in Glasgow until September 1955 when 

the author was appointed Lecturer in Civil Engineering in the 

University of London, King's College. The Engineering Faculty

in Glasgow then sanctioned the continuation of the work in London.

The author is indebted to his supervisor Professor W.T. Marshall 

of the Regius Chair of Civil Engineering in the University of 

Glasgow for his helpful criticism and encouragement throughout 

the work. The author is also indebted to the United Steel

Structural Company Limited, of Scunthorpe, Lincs., who supplied 

all the beams for testing and made available some unpublished test 

results. He also wishes to express his gratitude to Dr. J.E. 

Gibson formerly Lecturer in Civil Engineering at Glasgow now 

Senior Lecturer in Civil Engineering in the University of Manchester 

for his help during the first two years of the research.



The help of the technical staffs of the engineering departments of the 

University of Glasgow and of King's College London is also gratefully 

acknowledged.

Finally the author is indebted to the Faculties of Engineering at 

Glasgow and King's College for making available laboratory space and 

equipment for carrying out the work.

King's College,
London.
September 1957°
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CHAPTER 1

Method of manufacture of the beams. 
Statement of the problem.
Existing design methods.
Proposed investigations.
Previous work.



When a rolled steel joist is used as a beam there is a certain 

span, for given loading conditions, at which the bending stresses in 

the flanges become critical. For shorter spans than the critical

the criterion for design is based on the shearing resistance of the 

web. At and above the critical span bending stresses and the

stiffness of the section are the important factors and the maximum 

resistance to shear of the web is no longer fully utilised.
A certain economy could therefore be achieved by reducing the 

amount of material in the web by cutting holes and so reducing the 

dead weight of the member. Such a system, however, would lead

to wastage of the material cut out, and moreover, the saving in 

dead weight of the member would be small due to the thinness of the 

web.
An alternative means of^some economy of web material would 

be to increase the depth of the beam and hence its stiffness, 

without changing its weight and thereby producing no wasta^
Such a system has been developed and given various names such as 

" castellated beams", "expanded beams" or "open-v/eb beams".

The term "expanded beam" is more common in the U.S.A. whereas in this 

country the term "castellated beam" is generally adopted.

The idea of increasing the stiffness of a beam by expansion 

is not new. It is claimed (l) to have been first used about

1910 by H.E. Horton of the Chicago Bridge and Ironworks. The use 

of such beams in this country appears to have been originated by 

G.M. Boyd in 1938 and then developed by the' Appleby-Frodingham Steel 
Company under British patent (2).



Short descriptive notes on the method appeared in"the Engineer" 

in September 1949 (3) and in "Engineering" in October 1949 (4)»

Method of manufacture of the beams.
In making a castellated beam the original rolled steel joist 

is cut along the web by an oxy-acetylene cutting machine using a 

template. The cutting profile is shown by the dotted line in

fig. 1.1 (a). To prevent undue distortion a joist is clamped to

either flange of the beam being cut and a small distance, usually 

about 3"? is left uncut at intervals along the beam. These 

portions are then cut manually to allow the two pieces to be 

separated, as shown in fig. 1.1 (b). One half of the beam is

then moved lengthwise relative to the other, or turned end for end, 

until the crests of the undulations meet. The junctions of the

two halves of the beam are then deep penetration welded and the 

resulting beam is shown in fig. 1.1 (c).

A certain amount of waste material occurs at the ends of the 

beam due to the relative displacement of the two parts but this 
will be small in long beams.

Fig. 1.2 shows the final geometry of the castellated beam and 

it will be seen that the process has increased the depth of the 

beam by 50%. A row of hexagonal holes is left in the web but

the final overall weight per unit length of the beam is unchanged.

The chosen profile allows a radius at the top and bottom corners of 

the hexagon but this is at the expense of the material at the centre 
of the web. This sharp corner is normally filled with weld metal
during the Yielding process.

The geometry of the expanded beams as used in the U.S.A. (l) is
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somewhat different® The angle of slope of the cut is 45° to the

centre-line of the heam as against 60° in this country« Many

variations are possible in choosing the geometry of the resulting 

beam but only the one shown in fig- 1«2 as used in this country will 

be considered in this work although some reference will be made to 

the problem of the most economical outline in the discussion in 

chapter 6-
The increase in depth of section of 50% increases the second 

moment of area of the cross-section by approximately 135% (2) and 

the stiffness is increased accordingly- Thus it is clear that

the main structural advantage is to be found with light loads on 

long spans where the stiffness of the section is the governing 

factor and not the shearing resistance of the web- 

Statement of the problem»

In relation to the use of castellated or expanded beams some 

of the questions that naturally arise are,

1) What are the deflection characteristics of the castellated beam?

2) How is the flange stress distribution affected by castellation?

3) What will be the magnitude of the stresses occuring in the web?
4) What will be the buckling value of the web under concentrated 

loads or reactions?

1) is important for long spans where deflection is the design 

criterion̂  2) and 3) are relevant to intermediate spans and 3) 
and 4) are of importance for short spans -

The use of the beams necessitates some attempt at a design 

procedure which answers some, if not all, of the above queries- 

Moreover any proposed analytical approach would be expected to have



support from experimental evidence-

At the outset of the work the author could find no report of 

theoretical or experimental investigations into the behaviour of the 

beams apart from some unpublished test data communicated to him by 

the Appleby-Frodingham Steel Co« There seemed a clear case

therefore of the tveed for a fairly thorough investigation into the 

behaviour of the beams in order that their design could be given a 

rational basis and the above mentioned questions given answers 

substantiated by experimental work.

Existing design method-

The present basis of design is given by the Appleby-Frodingham 

Steel Co., and the United Steel Structural Co., in their brochure (2) 

and handbook (5) in the form of safe load tables and graphs.

A typical safe load diagram is shown in fig. 1.3° The safe loads

are quoted as uniformly distributed on simply-supported spans with 

the compression flange laterally supported. This eliminates

any considerations of lateral or torsional instability and the design 

is then covered by three criteria depending on the span required.

Referring to fig. 1.3 curve BD represents the safe distributed 
loads which can be carried by the beam in question without violating 

the maximum deflection of 1/325 span specified by BS 449 (1948) clause 

34- On reducing the span when point B is reached the maximum
extreme fibre stress of 10 tons/sq.in. in bending becomes critical 

and curve AB represents safe loads based on this criterion. The
maximum value of load carried is taken to be controlled by the 

buckling value of the web at a support. The neck width of the

castellation is constant for each beam and equal to D/6 where D is the
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overall depth of the finished section. The safe value of reaction 

is obtained from BS 449 Cl. 47a using a slenderness ratio of
t

where, d = the clear depth of the web and t = the web thickness, as 

defined in the specification, and computing the maximum safe 

concentrated load or reaction from,

I  = Faotel . . . . . . . . . . . . . . . . . . . . . . . . . . . . .U . l )
where, W = max. safe reaction,

F = axial stress for a strut of slenderness ratio from
a t

table 7 of BS 449.
t = web thickness, and,

1 = D/6.
For a beam with intact web 1 would' be equal to the length of the

stiff bearing plus D/2 in accordance with BS 449° lu other words

the axial stress Fa for a strut of slenderness ratio is applied
t

to a member of cross-sectional area equal to that of the neck of 

the castellation to determine the maximum safe value of reaction.

The safe load corresponding to the value of reaction so found is 

indicated by point C on fig. 1.3°
The maximum permissible load may be increased by "filling-in" 

the end castellation, This process is adopted when it is

required to carry heavier loads than those given by point C. The

end holes of the beam are filled by welding in a plate cut to the 

shape of the hole. The maximum safe reaction in this case is 

obtained in a similar way to that used for normal rolled sections,
A stiff bearing length of 1" is adopted for beams over 13£" x 4" 

x 21 lb. and for other beams. Point A on fig. 1.3 corresponds
to the lesser of the web buckling and web bearing loads. In the



latter case a permissible bearing stress of 12 tons/sq.in. is used 

in accordance with clause 21 of BS 449•
In this country the practice of filling in the end castellation 

seems to be preferred to the use of stiffeners whereas Altfillisch, 

Cooke and Toprac (l) recommend the use of stiffeners and the beams 

they tested had orthodox stiffeners at the supports and in some 

cases at the loads points as well.
Proposed investigations.

It is clear that the existing design methods, whilst given 

some basis from BS 449? are inadequate in a number of respects.

The calculations of deflections based on the second moment of area 

of the minimum cross-section take account of simple bending only 

and neglect the shearing deformations across the panels and the 

bending of the web members themselves. These effects will

presumably be small for long spans but some attempt should be made 

to take account of them and establish the lower limit of span/depth 
ratio at which they can be neglected if at all.

The flange stress criterion (curve AB of fig. 1.3) is also 

based on simple beam theory and it may well be that higher stresses 
occur along the boundaries of the web members. Moreover the

flange stresses may be underestimated to a considerable extent by 

neglecting the secondary bending of the flanges over the holes and 

it would seem desirable to obtain some actual distributions of flange 
stress in order that this effect may be observed.

The use of the slenderness ratio of d/E forthe end web member
t

of a castellated beam is distinctly questionable. This ratio is
intended for rolled beams and is based on a strut assumed to have an



effective length equal to one-half the depth of the web and a 

thickness equal to the web thickness (6). The action of the

end web member of a castellated beam will clearly be different from 

that of the web of a normal rolled beam. In addition to an axial

thrust coming from the bearing the member will be subjected to end 

moments in the plane of the web due to the rigidity of its connections 

with the flanges. The behaviour of this part of the beam will be

studied in some detail. The proposed investigations can be

summarized as follows;
a) Experimental determination of stress distributions in flanges 

and web of simply-supported beams. It was proposed to use

vibrating wire strain gauges for this purpose in order that a more 

continuous set of strain readings could be taken. This will be 

of importance in regions of high strain gradient and demountable 

gauges would have the advantage of enabling a more complete 

exploration of the stress distribution to be made in these regions.

This part of the work was to be accompanied by a photo-elastic 

investigation designed to give a complete picture of the stress 

distribution throughout the beams. The photo-elastic work was 

carried out and gave precisely the same kind of distribution as that 

obtained from the steel specimens and it is not intended to include 

a report of the work in this thesis. No new points of interest 

were brought to light and in the interests of space it was decided j; 1
i *

to include the test results from the steel beams in some detail i
whilst omitting all the photo-elastic work. , 1i
b) Experimental determination of the deflection characteristics of 

the beams. These experiments v̂ ere to be carried out along with 
those under a) using standard dial gauges in the usual way.



c) The effect of stiffeners, it was decided to investigate the 

effect of stiffeners in a limited way by testing two beams one with 

stiffeners and one without, the beams being identical in all other 
respects, and comparing the stresses occuring in the two beams at 

the same load. The two tests would be continued to ultimate 

collapse and the collapse loads compared.
d) Web stability. This investigation was to be conducted mainly

on short lengths of beams having the compression flanges supported 

laterally to prevent torsional instability and to induce the web 

buckling mode of failure. It was intended to explore the stress 

distribution in the end web member and eventually increase the load 

until collapse occured.
All the investigations were to be accompanied by theoretical 

considerations and some attempt made to predict the behaviour of the 

beams in theory.
The subject of web stability is dealt with in isolation in 

chapter 5° All other experimental work is described in chapter

3 and the results, both theoretical and experimental presented in 

chapter 4« Theoretical work on methods of analysis for stress 
distribution and deflection is confined to chapter 2,

Previous work.

At the outset of the research very little work could be found 
which had any real bearing on the problem. The case of the
single circular hole in a rectangular beam subjected to pure 

bending had been considered by Tuzi (7) using a stress function 
analysis to predict the stresses on the boundary of the hole. As a



subsidiary part of the present research, and following along similar 

lines to those adopted by Tuzi the author considered the same 

problem for a beam subjected to bending with shear, again using 

a stress function analysis, and published the results in The 

Structural Engineer in December 195& (8)0
Previously the problem of the beam containing a row of 

circular holes subjected to bending with shear had been tackled by 

R.C.J. Howland (9) using biharmonic analysis. S.R. Heller (10) 
had also considered the problem of a single hole in a beam subjected 

to non-uniform bending. The case he selected for analysis was the

cantilever of rectangular cross-section subjected to a concentrated 

load at the free end and containing a single hole of ovaloid form.

The first paper discovered to have any real bearing on the 

subject was that published by Miss Letitia Chitty (11) dealing with 

the problem of the cantilever composed of parallel beams inter­

connected by cross members. In this paper a solution is

proposed which replaces the discrete cross members by a hypothetical 

continuous web medium. By this means it is possible to write
down expressions for the curvature, slope and deflection of the 

beams in continuous form. This latter work was followed in
1952 by Professor Pippard’s book "Studies in Elastic Structures" (12) 

of which chapter 8 is devoted to the analysis of open-panel strug'tures 

Professor Pippard’s methods follow closely on Miss Chitty’s but 

he develops the analysis to cover a variety of loading and support 
conditions and applies the method to the problems of wind loads on 
building frames and the determination of the critical load for a 
battened column.



On studying these latter works it became clear that in 

modified and extended form they might give a suitable solution 

to the present problems, in particular that of the deflections 

of castellated beams. In chapter 2 a solution ¥d.ll be proposed 
on these lines when more detailed mention will be made of the method.

M. Smolira in his book "Analysis of Structures" 1955 (13) 

gives an example of what is virtually a slope-deflection analysis 

of a castellated beam. He deals with an 8 - panel beam

symmetrically loaded and treats it as a vierendeel girder.

Twelve equations of equilibrium are set out and solved in terms 

of the bending moments acting on the ends of the flanges in each 

panel of the beam. It is seen that points of inflexion occur 

very nearly at the mid-points of the chord members of each panel.

If it is assumed that points of inflexion actually occur at the 
mid-points of the chord members then the girder can be analysed 

by statical principles alone. If this method is applied to

the example cited by Smolira ( fig. 1.4) then the resulting end 

bending moments on the chords are as set out in table 1.1 along 
with those obtained by Smolira.

Wi Wj ^  ^
s '~Thi
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TABLE 1.1.

End moments on chord members (lb.ft)

Panel Smolira Simplified statical analysis assuming 
points of inflexion at mid-points of 
chords.

1 left 27,150 26,200
right 25350 !?

2 left 18,380 18,700
right 19,120 ii

3 left 9,890 11,300
right 12,610 n

4 left 3,360 3,750
right 4,140 ii

It is clear that the differences are not serious but the amount of

work involved in the simplified solution is very much less than that

needed to produce Smolira's figures. This kind of analysis will
be mentioned in more detail in chapter 2.

The work of Altfillisch, Cooke and Toprac at the University

of Texas (l) came to the author's attention when most of the
theoretical work for this thesis was completed. The paper
\
appeared in February 1957 and describes the testing of three 

"expanded" beams all originally 9‘5‘" deep and measuring after 
expansion 13", 14i" and l6i" deep. The different depths were
got by varying the cutting profile although a slope of 45° to the 

longitudinal axis was used throughout. All three beams were

17* - 0" long and were supplied with stiffeners at the supports.
One specimen was fitted with full depth stiffeners at the load 

points, one with short stiffeners just under the compression flange, 
and the third specimen had no stiffeners at the load points.



All tests were carried out under symmetrical two-point loading and 

the beams were laterally supported at intervals along the compression 

flange by means of wire braces and turnbuckles.
The specimens were whitewashed with slaked lime to aid the 

detection of yield.
The stress analysis proposed by Altfillisch, Cooke and Toprac 

follows similar lines to that which will be described in chapter 2.

The normal flexural stresses are considered uniform across the tee 

sections of the panels and the vertical shear is taken to be resisted 

equally by the top and bottom tee sections for any panel. Further, 

secondary bending stresses are taken to be induced by these shears 

acting at assumed points of inflexion at the centres of the chord 

members.
Considerations of buckling and web bearing stresses follow 

identical lines to those used in the existing design method already 

outlined and the same criticisms apply.

The evaluation of deflections is done in stages\

a) Obtain deflection as if beam were solid throughout, ys

b) Increase ys to take account of increased stresses existing at

the tee sections as follows,
y = ys x ( f + f„)

2 f
where, f = max. fibre stress at solid section,

fn = max. fibre stress at the throat section.
c) Add the shearing deflection across each panel. This is done 

taking into account the varying cross section of the chord members 

by a summation process using the Area-Moment theorems.

An example of deflection calculations is given. The process is



fairly lengthy hut gives good agreement with experimental results.

A comparison of the actual and predicted loads to produce 

first signs of yield in the heams does not show good agreement.

The use of a slaked lime coating to aid the observation of yield 

lines would seem to give qualitative rather than quantitative ,J 

information.
As a result of the different geometry of finished beam chosen 

by the authors the holes are more elongated than those in the beams 

tested in this present investigation. The result of this is

to increase the secondary bending stresses in the tee sections 

but make the buckling of the web members less critical. In fact 

web buckling was barely studied by the authors as stiffeners were 
introduced at critical sections.

Further reference will be made to the effect of varying the 

geometry of the castellated beam in chapter 6.
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CHAPTER 2

Methods of analysis :
1) Simple "beam theory.
2) Vierendeel girder theory.
3) Continuous web medium theory.



The type of analysis carried out by the author and Dr. J.E. 

Gibson(5) on the stress distribution in a beam with a single 

circular hole using stress functions is not suitable for 

application to castellated beams. The use of stress functions 

for single internal contours is relatively straight forward but 

their application to a multi-connected region is extremely 

complicated particularly when the internal contours are rectilineal. 

It would appear that a simpler, more approximate, treatment would 

be more suitable in this case.
The structural behaviour of the beams will clearly lie 

somewhere between that of a simple beam with intact web and that of 

an open panel rigid frame. Just where the behaviour will lie

between these two extremes will depend primarily on the span/depth 

ratio r since this will automatically govern the number of panels 

in the beam. It is to be expected that as r increases the

behaviour will tend to that of the simple beam without holes, and 

as r decreases the beam will tend to behave more as a rigid frame. 

This effect is borne out in the results which will be presented 

later.

In seeking an analytical solution for the stresses and 

deflections occuring in the beams the author considered a number of 

methods, adapting them where necessary to the problem in hand.

These methods will now be given, the less successful ones will be 
only briefly outlined.

1) Simple beam theory with relaxation.

In this method the critical stresses are taken to be the



bending stresses given by simple bending theory and the deflections 

found by integration of the M/EI diagram along the beam by a simple 

summation method or by relaxation* The deflections are taken to

be caused by flexure alone and the M/EI diagram taken to be composed 

of straight lines between the centres of the verticals and the centres 

of the holes, sections AA and BB of fig* 2*1 *
Using a simple one-dimensional relaxation method as outlined by 

Allen (14) the deflected form of the beam corresponding to a given 

bending moment diagram can be obtained* The deflections
produced by this method lie between those computed by simple bending 

theory for beams of uniform sections AA and BB of fig* 2*1*

In fact the experimental results have shown that the deflections

are always greater than those computed by simple bending theory based,,

on • the minimum cross-section of the beam BB*

The method does not take into account the shearing deformations 

across the panels and it would seem that it will be necessary to 

take account of these if a more accurate prediction of deflection 
is to be made*

2) Treatment as a vierendeel girder*

Any of the so called "exact" methods of analysis of vierendeel 

girders(l3)? (15) niay be applied to castellated beams but the work 
is laborious and it is difficult to see how a general solution could 

be obtained applicable to all beams and loading arrangements.

In the majority of cases where castellated beams are used the number 
of panels, and hence the number of redundancies to be evaluated, is 

large and the amount of work involved in producing a solution would 
be correspondingly great*
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*3.
Moreover, the usual methods for vierendeel girders take no account 

of deformations due to axial forces and with large numbers of 

panels this effect becomes marked.

In the case of a symmetrical girder with the loads applied 

at the nodes only, the bending moment and shearing force distributions 

are alike in the upper and lower chords and points of inflexion occur 

at the mid-heights of the vertical members. If it is assumed 

that this is so in the case of the castellated beam, whatever the

loading arrangement, then a simple solution can be obtained along

the lines proposed by Salmon (16). Consider a typical panel

ABCD fig. 2.2. AB, BC, etc., representing the centre lines of
J //the members forming the panel. The panel spacing is i^and the <-■'/f

panel depth (between centroids) d» It is assumed that points of 

inflexion occur at E and F the mid-points of the verticals AD and BC.

The loads are taken to be concentrated at the panel points A,B,C 

and D as shown in fig. 2.2. The force actions imposed on the 

panel by the adjacent portions of the beam are shown in fig. 2.3.

Salmon’s method is to equate the distance EF in terms of Eg and Hp 

for the upper and lower halves of the panel and obtain a relationship 

between and Ĥ,. This relationship is applied successively

to each panel until the value of H for each vertical is found.

Other forces and moments then follow from statical considerations.
Bending deformations only are considered and the result can be 
expressed as follows,



where, H = horizontal force at mid-point of nth vertical from one n end of the beam0
H = Ditto of (n+l)th vertical,n+1

I = 2nd moment of area of web members w
I = Ditto of chord members c

M j_ = External applied bending moment midway between the

nth and the (n + l)th verticals.

In the foregoing it is assumed that the members are of uniform 

section and some correction must now be introduced to make 

allowance for the varying cross-section of the verticals.

Referring to fig. 2.4- consider the upper half of a typical web

member and let I represent the 2nd moment of area of the equivalentw /
uniform section. I must be so chosen to make the horizontal;w  j .  ,
deflection at 0 due to H the same for the tapered and uniform j

sections. The geometry of the web member is such that the

width of the member at x = 0 is D/6 where D represents the overall

depth of the section. It will be convenient to take this

dimension as d/6 where d is the distance between the centroids of 

the chords. The loss in accuracy will not be serious being of

the order of t̂  /3 where is the flange thickness.

The 2nd moment of area of the tapered section is,

..(2.2)
where t̂  = web thickness.

The horizontal deflection at x = 0 due to H is,
/̂z.

..(2.3)

Putting d/6 = a and d/~ = b and M = Ex, (2.3) becomes,
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Integrating (2.4) using partial fractions the following expression

t >  \ ••••••••••• "(2.4)

results,

A =
H 2fr fc.b'X

Hence the equivalent 2nd moment of area I of the tapered' section

is given by,

%€ 1 +t ~ 'Ad—    **"W1, £
whence, = ^  f ±  ̂  j ^ b )  - * *  + 3 >

t 1b ,'|_ b  O v a .

This latter expression may be simplified if it is re-written in 

terms of d observing that a = d/6 and b = , the result is,

I '=
W  .  —  . . . o o o « . . . o o . . . ( 2 e 6 )7<?

The 2nd moment of area of the chord I at section BB (fig.2.1)c
can be obtained by assuming that the cross-section is a regular T 

as shown is fig. 2.1. It is found in most cases that the

centroid of.this tee section is located, very nearly, at a depth 

below the outer face of the flange equal to the flange thickness.

With this approximation the 2nd moment of area of the chord is,

£
lc » 6fc; + t, (c m  6,1 £> - tq\

3 2
and the cross-sectional area of the chord is,

(2.7)

A = + t, (o.iti b - 1,_\ ...............(2.8)



Equations (2.1), (2.6) and (2.7) enable the horizontal forces 

acting at the mid-points of the vertical members to be computed,

The forces and bending moments acting in all members can then be 

found from statical considerations.
When applying equation (2.1) a good deal of accuracy is 

required with the arithmetic since the resulting equations 

representing the values of H are ill-conditioned. This

difficulty can be avoided and an approximate answer obtained quickly 

if the following procedure is used.
In equation (2.1) put the equation then becomes,

d l c/V\
U ^  —  IS, . a ...... o ....... .(2«9)'A  ̂ ^  ^

Now for values of k large enough to make k + 1 £ k it can readily 

be shown that,

- H^4t + 1 $ ~ .........--- o..(2.10)

Further, if the value of k is large enough to make the first term in 

the right hand side of (2.10) negligible in comparison with the second 

then,

” <1 .............(2.11)
Equation (2.11) could also be derived by assuming points of 

inflexion to exist at the mid-points of the chord members.

In the case of castellated beams the value of k will be about 
30 and the approximations mentioned may well be acceptable. ^

Using equation (2.11) a rapid evaluation of the forces and



moments acting in the various members can be made.

Consider a 15" x 6" beam having 7 panels loaded as shown in 

fig. 2#5« This was one of the beams tested and was in fact 

prepared from a 15" x 6" x 45 lh. R.S.J., the holes being flame 
cut out of the web without expanding the original depth. The 

test results relevant to this particular beam will be given later 

but some of the calculations will be considered at this stage in 

order to illustrate the foregoing theory. Values of

horizontal thrust at the mid-points of the verticals 1 to 4 (fig.2.5) 

were calculated using equations(2.9) and(20ll) and are given in 

table 2.1 below.

TABLE 2.1.

Vertical Value of H (tons) by 
Vierendeel eqn. (2.9)

Value of H (tons) by 
approximate relationship 
(2,11).

1 2.5641 2.52
2 4-9978 5.04
3 5.1019 5.04
4 2.3704 2.52

As mentioned before it is necessary to work accurately when 

using equation(2.9) and the values of H quoted were obtained 
using a desk calculating machine to four decimal places.

It is clear that equations(2.9)and(2.11) produce virtually 

the same solution and in view of the substantially greater amount 

of work required in using (2.9) its use for castellated beams
\J

does not appear to be justified.
The stress analysis of a castellated beam on the basis of 

equation (2.11) is very straightforward. Examples are shown

in figs. 2.6 and 2,7 where a five-panel beam is analysed for single
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unsymmetrical one-point loading and symmetrical two-point loading 

respectively. The forces shown are those acting at the assumed

points of contraflexure and it will he noticed that the top and 

bottom chord members share the shear force across each panel equally 

and that a vertical member carries thrust only ±( some external 

applied force acts at its panel points.
Comparisons of the stresses produced by the forces shown in 

figs. 2„6 and 2*7 with those actually occuring will be made later.

The calculation of deflections will be discussed in the 

next method of analysis.

3) Analysis based on the conception of a continuous web medium.

This method of analysis is an adapted form of that used by

Chitty (11) and Pippard (12) for open-panel structures. The 
method follows closely on that of Pippard except in the treatment

of the term covering the bending of the web members and in the

addition of a term to allow for the distortions caused by the 

secondary bending of the chords.
The method is an approximate one and consists in replacing 

the perforated web by a continuous medium which is designed to 

transmit actions to the flanges similar to those of the original 

web. The actions from the perforated web are simplified to 

those of moment and thrust at discrete points in the flanges.

An expression is obtained for the slope of a flange at a typical 

panel point and this is transformed into a continuous expression 
in terms of the actions from the hypothetical web. The solution
proceeds for the hypothetical case and the results are then applied,



in an approximate way, to the actual beam.

As will be seen the solutions are produced in continuous form, 

unlike those of the preceding method, and this is a very desirable 

feature particularly when dealing with long span cases where the 

number of panels is large.

For simplification it is assumed that the upper and lower 

chords take up identical deflected forms. This will imply

points of inflexion at the mid-heights of the web members and also 

that these members do not shorten under axial thrust.

The analysis will be restricted to the purely elastic 

behaviour of the beams.

Referring to fig. 2.8, consider a typical ?/eb member AB and

let the bending moments in this at A and B be M , a point of

inflexion occuring midway between A and B. The corresponding

chord forces will be 2 M where d is the distance between the w
d

centroids of the chords.

If it is assumed that the chord and web members are rigidly 

connected then the slope of the chord at A and at B will be given 

by 0  t  <|) where © represents the rotation of AB due to the 

end moments and <ft represents the slope produced by the changes 

in length of the chords.

If it is further assumed that the moment is shared equally 

by the chord members meeting at A and at B, then the deflection due 

to the bending of the chord members, corresponding to the angle p, 
may also be expressed in terms of M .

Consider now a simply-supported beam of span 2L and take origin
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at the left-hand support with x positive along the beam and y 

positive downwards. The slope of the deflection curve for the

beam is given by,
dfjj 3* 0 + 4* * *|3 o . O 0 O O . 0.0 O 0 . «• o . c ( 2.12)

Suppose a continuous medium to replace the web of the beam applying

continuous actions to the chords as follows °9 a variable moment m

per unit length of the beam and a variable distributed load t per

unit length as shown in fig. 2.9°

Determination of

Now the 4c$al chord force Pc at any point x along the beam

is given by, 2 M w
*C ~ Z  ~ T  0 0 0 0 . 0 . 0 .( 2.13)o

and the total change in length of the chord due to this, u 70

where A = the cross-sectional area of the chord.

In the hypothetical case the total chord force at x is 
X

1 ^ p  (hi ■ (214)I 00006000000l>00000000\C.# )
o &

If the hypothetical web is to transmit actions similar to those of 

the original web then equations (2.13) and (2.14) must give the same
value of P .c L 7c

2** • J j, ? *
{p - J a*v dx ,ol>t, .................... .(2.15)

d. £ I Jox.
Determination of &

It is convenient to express B  in terms of m as,6 a K/t* where 

is a constant which depends on the geometry of the web member.



Referring to equation (2.6) the 2nd moment of area of the equivalent 

uniform section ?/eb member is given by L
A 19Now , and in terms of I ,

1 w  W

©  » ^  W - 
b £ XvV

Further, K yv r. ■o'n ̂
whence, ^ ^  * O'l'L&t / *7

£ I"»a/ ^ y f « fc( c/ ̂

Or , "   ^  — 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0,0 0 0 0 0 0 0 0 0 0 0 0 ( 2 0 ! ^ )

0 0 ( 2 . 1 6 )

ifi £ £*,

Determination of f>

Again it is convenient to write j& - K w  and determine 

having regard to the geometry of the chord. The solution is

greatly simplified if it is assumed that all parts other than those 

of minimum cross-section (i0e0 the "bridge" of the castellation)

have infinite flexural rigidity, and that the moment M is shared* w
equally by the parts of the chord meeting at the panel point 
considered. It is further assumed, for the purposes of obtaining 

an expression for |2> that the moment M does not change appreciably 

from one vertical to the next. The contribution of p to the

slope of the beam will always be small compared with that due to 

Figo 2.10 shows the M/i diagram for a typical chord member subject 

to the foregoing assumptions. Applying the Area-Moment theorem
it is easily seen that, o ~ 0 *000^4 si'Vkp

where I = the 2nd moment of area of the chord at the mi m‘ mum cross- c
section, and whence.
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*C & ^  * lo‘ ^

Now equation (2.12) states that, y/d-jc ~ ^ ^ ^  ̂  ̂
and putting (9 + £ - K-rn where K = + - Kg
and substituting the value of cj> from equation (2.15),

. (2. 18)

ctn/. * K'YK -h ..i
*/l* #'-h £

Wl d-Tt
X a j

£ r'
-

d.y-

Further, d*

dtf-

f +ft m v  d x  
sTv A £ J ^

oooo«oo.(2.19)

\
-- Kcfr

W

>Vv\
d x.

4* -VA.
d^A~e

O O O O O O O ,(2.20)

Now consider elemental lengths of the chords in the hypothetical 

case as shown in fig.. 2.11. The external applied load is denoted 

by w, m and t represent the continuous actions from the hypothetical 

web, ŵ  represents the reactive force from a typical support ( will 

vanish over the greater length of the beam) and the other symbols have 

their usual meanings. With the choice of origin and co-ordinate

axes jpiade M will be positive if acting as shown. The other forces 

will be taken as positive if acting in the directions indicated.

Considering the equilibrium of the elements,

S F, (ytu - (r) i'x ^ O (a) )

£irt 4- [t ~ w-r.U* = ° j
F O  (c) >

o«eo«o«o
i i K

(2.21)
■VW • c> A- i'

£  iH 5 >t "  (t" 3 Q  )

Neglecting infinitesimals of the second order and observing that



F̂  + Fg = F (the total shear force at the section) and that

+ Mg = M (the total tending moment acting at the section)°̂v + ̂JI'7' - - F
d.'fl' ck >c

and? Mi - m2 “ £ % c d. y j^ ̂  

then, I B  tc d|y i " 2 ^  +* F s O 0 0 0 0 0 (2

Substituting for ci )i/ 3 from (2«20), (2*22) becomes
xh

Vy

'A*

7d,

|<( a. — £**/VA _ /YV) 1".
SFaF*" t t c % e t c

1 x  ̂JL  ̂o
fi ̂ 2L fc.. £ (

or’ K d V /  x . ^ | ±
Y d ^ B  *■ Fx, ' +  - h

or.

where.

and.

S' v*= il
yvr., 4- Xa- P = 0 qoooooqooo

I
e t c

\

.'i

2 hT 6 J* c
O0OOO0OOOOO0 (2

The solution of equation (2,23) is.

/YVX - A COob/uX A * + X1 F 0,... 0.0.0 „ 0.(2,

The constants A and B are to be determined from the terminal 

conditions of the beam and at this stage the analysis will be 

restricted to simply-supported spans 2L, symmetrically loaded. 
Central Concentrated load ¥ on simply-supported span 2L
For this case,

s O  when x = L

J' > when x = 0
.(

then.

.22)

.23)

.24)

25)

2.26)



II

Applying these conditions to equations (2.19), 

m = 0S when x = L )
)  o . c o o e o o o . o . o o c o o o o . o o o o o o . . .  0 0 .( 2.27)

^ when x = 0 )

Applying conditions (2a27) to equation (2,25),
vV iB = 0, and A = '* -l

C'C^o4xL

whence, m = W A ^  ( I __ \ ..............(2.28)
2y* C^iyiAU /

Differentiating this last expression tv/ice with respect to x,
*'ri .1*, ;(A — — W  A K
^ ^ yt* br

i'tand substituting this value of and the value of m from (2.28)

in (2.20)• \ — v — v / > >■
■ 3 - _ W A 1' > d . + (i< - .iL—  \ w o A / a x  1

v x ^ i A f w ^ r r “ j

4*Now put, Q a—  -vv’7!1"1: and integrate this latter equation having regard « At
to conditions (2.26),
d \ ,  = - Q x  f  lK-3) J- c.)

% ( * ’• z ? A  '5
and this vanishes for x = 0, hence = 0,

Again, {Jm / r W  A SQ>< -f (K"— \ ̂ £<K>̂ yu*)i 4 C  ^
Z ( *£- ^  L ^ )

and this vanishes for x = L, hence CL = ~~ ~
/*•

Therefore 4 /  - ' - U * -  L*) * (K^U'fSfsiS* -,))-L \-T~ &Arfy.L /_)

w  A A  ^  f A x ' )  ^ ^ - * A  + cand y = ~  ̂ ^  \ 3 f t. âa. 60* ^  I ' ■>

= 0 for x = 0 - hence CL = 0,0



whence, tl * > f  ( C  X- \ +• U  - xzzhZ-t )}.......(2.29)

Equation (2.29) gives the deflected form of the beam for o ̂  x ^ L. 

The maximum deflection occurs at x = L,and, noting that tanh/<L tends 

to unity and that J- is small in comparison with L, this is given by,

U = WAl ($jJ + ^K=S) L. ...............(2.30)
-2. I 3 ^  1

Referring again to fig. 2.11.

or, ■= (/W,-tr)
* _

Also, S'A - Fz x
or, dftj. - ^

d *

whence, (A —  (a ,̂ - (t)

or , ( ~yWj jA-C. ^ £ {5̂ W. — ooooooo«oooooooooooooo(2o3l)
1 7 *

Now, differentiating (2.20) and substituting for a  in (2.31),
(t ) - £ -£4 I K ^ A — \ a  chyxs*

whence, on substitution from (2.23),

(t -A-dJ - - K E X C k Vd£'/<d'fi

or, t - /frO, -  i ..........................(2.32)It d. %
Thus in the case of a concentrated load system t = 0 everywhere 

providing the loads are "point" loads. If on the other hand the 
loads and reactions are taken to be uniformly distributed over short 

lengths equal to the width of the web member, then the shear force 
diagram will be typified by that shown in fig. 2.12. It is easily 

seen that the thrust T in a web member is then one-half of the forceil

(R) applied at its panel point, this result being in agreement with



that obtained by method 2.
i.e., ^ 0 o o . . . .  o o o . .  o . . . . . . . .  0 . o . o ( 2 . 32a)

Now the chord force at any point x is given by (2.14) as, 
f" A .

ft ~ dx
c Jo *

and substituting for m from (2.28), 
x.p _ 2 f ^  \ cl*.

Y c ' l \ 9 y ? K C ^ J

i.e., Pc « * £  ( * -  ̂ ....................(2.33)
^  \ (,J?aXyvi. L 1

and, since can be neglected in comparisoh with x in

the range 0 5* x $L,
p ~ w  A Vrc - -^rzr 

&

Now, from (2.24), b. ~ — ---- 7-2-------- ;---TirTTZr 7 jl \
\d^At f l , ;

and j£_ is small in comparison with l/l so P is given
g 0

approximately by,

pc  -  t h  . . . . . . . . . . . . . . . . . . . ( 2 . 3 4 )

If it is further assumed that the value of M at any panel point

is given by the integral of m between the adjacent mid-panel points
va/A'1 !" Xthen, a  -  f  l i t  -  I" V* L A c'ast~(- Jx.^

i.e., Mw» ^  \P -  ...(2.35)

Equation (2.35) holds for 0 $ x ^ (L - £ ) since the range of
%

validity of (2.28) is 0 ^ x < L„ An examination of equation

(2.35) shows that * for all values of x until x approaches
2/4.



L when M quickly reduces to zero. This is more readily seen w
from equation (2.28)s from (2.28), 

dft sr - W A a /a. n
d yL L

Since for castellated heamŝ M, always takes a value of the order 

of unity then can he taken as zero until x is very nearly

equal to L the half-span.
Hence in the case of the simply-supported hearn with central 

concentrated load the following holds approximately,
. w i

^  o o  o o o o o o o o o  o o  o o  o  o  o o o o  « o  (  2 * 3 6 )

(since A 1 k. — ) and again it may he noted that this corresponds 

to the solution given hy method 2„

For convenience the equations needed to analyse a heam with 

central concentrated load will now he summarized!

the central deflection is given hy

0 ” ** z  1 3 V -  5 . . . . . . . . ( 2 . 3 0 )

where,
)

^ )  o o o o o o o o e » » « o o c ( 2 . 2 4 )

)
s' aK = K + K = + S'4- d ..(2.17)&(2.18)
g Xt

Q =
/u x-at%A2

The thrust in a weh member is given by, ,
fat

T W  Ẑm • o o o o o o o o o e o e o o » » « e e « ( 2 .  J 2 a )

The chord force is,



43,
and the end moments acting on the web members are,

\A - \N.£ ( o -zf.)P \ ̂  ■■ IP- oooocoooooooooo*c«0«00090««\<--*.yĥy
A

Consider now the case of a simply-supported span carrying a 

uniformly distributed load0
Simply-supported span 2L with uniformly distributed load w.

The solution continues from equation (2,25)

✓ V Y \,  ”  | \  C 1,5 ^ -  +  IS  y l A  H  +  X f "  o o o o o o o o o o , o ( 2 , 2 5 )

The terminal conditions are still given by (2,26) and (2.27)o 

Applying conditions (2,27) to equation (2,25) and observing that 

F = 0 for x = L and dF/dx = -w for x = 0,

YA - /W  A /̂O'VVvAi'̂  ^ I. H  ̂ 00,00(2*
x - " ” ”

37)

Now adopting a similar procedure to that used for the beam with 

concentrated load the following expression can be deduced for the 

central deflection,

u s \ (2 w)Pf :V' ***■ } <i a \ ,,0000000000 v2, po J
J 1 2s* J

Further, t " Atf. - -
‘ 1 <**

Hence the thrust in each web member other than those over the 

supports is and again it is seen that this thrust is to

all intents and purposes one-half of the total concentrated force

applied at its panel point if the distributed load is applied as 

uniform concentrated loads at the panel points,
Thus for the intermediate web members,

To/ ' ‘<MJ . . . . . . . . . . . . . . . . . . . . . . ( 2 . 3 9 )
1

and for the end web members,

TP = If (2t +" ^  . . . . . . . . . . . . . . ( 2 . 4 0 )



The value of M _ will he given very nearly by,w
f\A y/ - /V\A £ \

“ A V  \ + i {
lU y/tA. ^l̂'1. f yiA.

In the range 0 ^  x -4* L (sinl̂ M*. - cosh/**-) varies from -unity

to zero and can thus he neglected, whence,

M W - ......................(2.41)A
This result can he expressed more conveniently in terms of the

moment M acting at the ends of the nth vertical as, wn

 ̂ L - ..................(2.42)
4- L 3

The chord force P in the nth panel is given hy, cn
^  kk

o c *5 ^
*C aa AQ

whence, 153 -t] „ 0 „ 0,.. 0.. .. .. „«. .(2.43)
7.<?i  ̂ ^

The deflection equation (2,38) could also he obtained hy 

observing that equation (2.29) with W = unity represents the 

influence line for central deflection. If this equation is 
integrated from 0 to L and the result multiplied hy 2w equation 

(2.38) results.
When dealing with other loading systems it would seem 

convenient to use (2.29) as the expression for the influence line 
for central deflection and obtain the central deflection due to 
other loading systems from it.

i.e., central- deflection y for a load system is,GHe- Iw ? 5i iA~4)+ K-̂i* )} ,?



Before leaving this method of analysis it is interesting to

examine the variation of maximum deflection with changing span/depth

ratio (r) in the two cases of central concentrated load and

uniformly distributed loado

Variation of y with span/depth ratio (r)_______   max___________________

a) Central concentrated load W

y =  ̂̂  I 4- CK " tj?) I— ̂  OOOO.OOO«OOo(2.30)
max 2 ( 1  ^  3

NOW \  %  X^
and Q  _ 4

whence (2,30) becomes,

ym = y a l  + W ( l c _ a ')L  (2.45)
2 e&Vtfc 4

%
= j-\amin.putting i .  = <\d; 5 (2.45) becomesj° min. L

ym = +  W  ( K - S )  L  ............(2.46)
fe e 4

and the first term of (2*46) represents the deflection given by
simple bending theory based on the 2nd moment of area of the

minimum cross-section of the beam ( I . )«m m3Putting y = W L , y is shown plotted against r inc r '-n -r max6 E I .--- ---m m  y

f i g o  (2* l3) for the case of a 15" x 4k" castellated beam.
b) Uniformly distributed loado

In a similar way it can be shown that,
_ i Lf.

yma„ = ^  (k -Q) . o . . . . . . . . . . *(2.47)max 2 +  t J. W w  4
Now the first term of (2*47) represents the central deflection

given by simple bending theory, and with y = 5 w , y
c . 24 E I . — SSLm m  yQ

is shown plotted against r in fig (2* i3), again for the case of
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a 15" x 4-g-'1 castellated beam It is seen immediately that

as the span of a particular "beam increases the error involved in 

taking the deflection as that given by simple bending theory 
becomes lesso For example if r is of the order of 20 (represent­

ing a span of 25 ft») the error involved is somewhat less than

5





CHAPTER 3

Description of experimental work 
and equipment.



The hulk of the experimental work on stress distribution and 

deflection was carried out in the engineering laboratories of the 

University of Glasgow. A beam testing frame was already

available in the laboratory and this was modified and added to 

in order to make it more suitable for testing castellated beams.

The testing frame was basically an 18" x 6" R.S.J. supported at the 

ends through mild steel rounds bearing on latticed columns and 

equipped with adjustable hangers for testing simply-supported beams. 

The method of loading a test beam was to insert a screw jack between 

the 18" x 6" beam and the test beam and register the load on a 

pressure capsule of suitable capacity. Thus the live load was 

carried by the test beam, the 18" x 6" beam and the hangers only, 

and only dead load was transmitted to the floor of the laboratory.
No provision was made in the basic frame for giving lateral support 

to the test beam.

In order to make the frame suitable for testing castellated 

beams the height of the 18" x 6" beam above floor level was increased 

by extending the latticed columns and new hangers were designed which 

would give lateral support to the test beams at their ends.

The modified testing frame is shown, with a beam under test, 

in fig. 3.1. The overall length of the testing frame was 22 ft.,

and the frame was capable of accepting spans up to 16 ft.
For the purpose of testing castellated beams the frame was equipped 

with two 25 tons capacity Tangye hydraulic jacks and two 20 tons 

Macklow-Smith pressure capsules. As the jacks were to be used in

the inverted position they were fitted by the makers with helical 
springs which would return the ram on release of the load.
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The arrangement and details of the hangers for the jacks and 

pressure capsules are shown in fig. 3«>2 and again in fig. 3.1.

The load was transmitted to the test beam through a 2" dia. 

half round of mild steel countersunk to fit over the ram of the jack. 

On tightening the hangers shown in fig. 3«2 some load was registered 

by the pressure capsule. This was kept to a round figure of 

ton throughout the tests and used as a datum from which actual 

loads were measured.

On receipt from the makers the calibration of the pressure 

capsules was compared with that of a 30 tons Avery machine and 

found to be satisfactory. The dial gauges used with the

capsules were calibrated from 0 to 20 tons in 0.1 ton intervals.

"The combined hanger and lateral supporting device is shown 

in detail in fig. 3° 3 and again in fig. 3«1® It was composed

of vertical 8" x R.S. channels arranged to straddle another 

8" x 3w !'- channel bolted to the concrete floor of the laboratory.

The bolted coonections of the hanger were designed to transmit 

safely a maximum load of 25 tons. The channel fixed to the

floor gave no restraint in the longitudinal direction of the 

beam under test but provided lateral restraint at the supports.

.When it was desired to load a beam to collapse steel wedges 

were inserted between the top flange of the test beam and the 

inside faces of the vertical channels? the dimensions of the wedges 

depending on the flange width under test. The device vfas found
to work well in practice but of course lateral restraint was 

effective only at the supports. The jacks gave some lateral

restraint at the load points due to the nature of their connection 
with the
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testing frame but this was inadequate and in cases where lateral 

instability occured the beams were seen to have rotated considerably 

at the load points carrying the jacks with them.

As seen in fig. 3*1 hand pumps for the hydraulic jacks 

were located at either end of the testing frame. These pumps

were equipped with 25 tons pressure gauges of doubtful accuraoy.
The pressure gauge readings were not used except in cases where 

it was desired to take the jack loads above 20 tons when the 

pressure capsules were isolated and the pump pressure gauge readings 

used.

The measurement of deflections was carried out using Mercer 

dial gauges reading to OoOOOl". The gauges were clamped to

a horizontal channel supported on angle brackets attached to the 

floor channels already mentioned. The arrangement is shown in

fig. 3.1o In all cases dial gauges were positioned immediately

under the hangers so that the deflections of the hangers could be 

ascertained and subtracted from the other readings.
Strain measurements were made with Mai-hak vibrating wire

strain 'gauges. A gauge length of 20 mm. (the smallest gauge

made by Mai-hak) was adopted for 'all the web stress readings and 

all flange stress readings except for the flange stresses of the

15" x 4'!" beams where a 50 mm. gauge length was employed.

The gauges behaved extremely well after the author had become 

familiar with their use. The 20 mm. gauges were a little

troublesome at the outset as they are small and require delicate 

handling. The following procedure was found to work reasonably



well and produce fairly rapid results.

1) Prepare the surface on which strain readings are to he made by 

removing all mill scale and loose material. If the surface is

badly pitted a grinder should be used. The amount of work

expended on the surface need not be excessive but the surface should 

be reasonably smooth and free from pits.

2) Ensure that the screw controlling the tension in the gauge wire

is slack. This is important for the wire may be broken if the

gauge is clamped to the specimen with it tight.

3) Position the gauges carefully ensuring as far as possible that 

all knife edges bear with equal pressure on the surface of the 

specimen. The gauges are equipped with a pair of knife edges

at the fixed end and a single knife edge at the hinged end. The 

importance of a smooth surface is now apparent. If one of the

knife edges is located over a pit in the surface difficulty will 

be experienced in getting the gauge to function correctly.

4) Tighten the gauge wire until a suitable initial reading is

obtained at the receiver.
5) If it is found difficult to get a reading from the gauge, 

taking' off and re-setting in a slightly different position 

usually succeeds. It was thought that surface pits were 

responsible for this phenomenen.

The major difficulty in using Mai-hak gauges is in the 

designing of a suitable clamp for holding the gauge on to the 

specimen. For the readings of strain in the web it was

desirable to have a clamp which would hold two gauges, one on



either side of the web, in order that transverse bending strains 

could be eliminated. After some experimenting with various

forms of clamp the one shown in fig. 3«4 was adopted and proved 

very satisfactory. The clamp holds two 20 mm. gauges each free to

slide in a slot machined in the body of the clamp. The gauges

are held in position in the clamp by means of the springs shown.

A threaded screw is used to tighten the gauges on to the specimen, 

the head of the screw being located on the pressure cap on the 

top of the nearer gauge. A steel centre at the other end of

the clamp located the second gauge. With this type of clamp

the clamp'and gauges could be held in place with one hand whilst 

using the other for tightening the screw.

The hard steel pins which can be seen projecting from either 

gauge in fig. 3<>4 are used to locate the movable knife edge in the 

body of the gauge. These pins are removed once the gauges

are secured in position and before any readings are taken.

The clamp holding the gauges can be seen positioned on a

specimen in fig. 3°5 along with another, less successful,form of 
clamp.

Strain readings were also taken on the outer faces of the 

flanges, the gauges being located in the centre of the flanges.

The vibrating wire strain gauges are supplied by the makers 

with a calibration constant for each gauge. The measuring

range of the gauges in conjunction with the receiver varies 

slightly from one gauge to the next but is generally of the order 

of 10 to 11 tons/sqoin. for mild steel. This range is generally
adequate when dealing with strains in steel specimens but it can be



Fig. 3.4

Clamp holding two 20 mm. gauge 
length Mai-hak vibrating wire 
strain gauges.



» I,
Fig. 3.5

Figure 3*3
Showing strain gauges in position. 
The local crippling of the top 
flange at the centre hole can also 
he seen.



! <extended if required by a procedure y/hich will be outline. ’in 

chapter 5°
All the tests on stress distribution in the beams except 

the one on the 7t" x 3" beam (fig. 4.14) were carried out in 
the Civil Engineering laboratory in Glasgowi The deflection 

tests on 15" x 4 and 9" x 3" beams for deflected form (figo 4*7) 

were also carried out in C-lasgoWo The remainder of the deflection 

tests were carried out in London.

Of. the tests on web buckling the ones on the 15" x 6" beams

were carried out in Glasgow and the remainder in London.

The work in London was conducted in much the same way as

that already described. In this case the testing frame used

was the space frame in the structures laboratory in King1s College. 

This frame is shown in chapter 5 figo 5»l6 and- is described there 

in connection with its use for web buckling tests.

Throughout the tests advantage was taken of symmetrical 

conditions wherever possible but in all cases sufficient readings 

were taken on both halves of the beam to justify the assumption. 

Values of Young*s Modulus and yield stress for the beams.

A value of E of 13,400 tons/sq.in. v/as used throughout in 

converting the strain readings and in evaluating theoretical 

deflections. Tensile stress-strain tests were conducted on

two specimens cut from the flanges of two of the beams tested.

The specimens were taken from the flanges of beams which had been 
subjected to low loads only and were cut from low-strain regions 

of these beams. The results of the tests are shown in
table 3»1 below.



TABLE 3.1. Stress-strain tensile tests.

Specimen Young’s Modulus tensile yield stress
tons/s q. in. tons/sq. in.

1 13, ?oo I'M

2 l3f boo n - 8



CHAPTER 4

Calculations and results. Comparisons 
of experimental and theoretical results.



For convenience the theoretical and experimental results 

will he considered under two headings, deflections and stress 

distributions.

Deflections.

In order to facilitate the calculations the constants 

associated with each section tested are listed in table 4»1°

The constants for any other section could readily be obtained 

using the expressions given in chapter 2.

Using the relevant equation of (2.29), (2«30) or (2*44) 

an expression for the deflected form or the central deflection 

of any castellated beam can easily be deduced. To take an 

example, consider a 4irn x l-̂-” beam with 28 castellations, 

centrally loaded. The half-span L = 0»72 x x 14 = 45•36".

Using the values of the relevant constants from table 4*1 and 

substituting in equation (2.30) the following expression results 

for the central deflection y ,

y = 0.314 W ins. where W = central load (tons), c
In a similar way the deflected form of a 9M x 3" hearn with 

15 castellations carrying a central load of 1 ton is obtained from 
equation (2„29) as,

y = 10 8.90 x - 0.00129 x5) ins. ( x in inch units from
nearest support)

A summary of the tests on deflection with references to the 

figures in which the results appear, along with theoretical results, 
is given in table 4.2 below.
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TABLE 4«2q Summary of deflection tests.

Section Span/depth 
ratio (r)

Results shown 
in fig.

Test carried out.

7t" x 3” x 5 
castellations.

3.6 4.1 Central deflection, 
Concentrated load 
not at centre.

9"x 3"x 14 
castellations 0 10.1 4.2 Central deflection, 

central load.

7iMx 3"x 18 
castellations

13.0 4.3 Do.

6"x 3"x 22 
castellations

15.8 4.4 Do.

4ir"x ljr"x 28 
castellations

20.1 4.5 Do.

9"x 3"x 5 
castellations

3.6 4.6 Central deflection. 
Two-point loading 
to collapse.

15"x 4i"x 12 
castellations

8.6 )
j 4.7
)
)

Deflected form. 
Central load.

9"x 3"x 15 
castellations

10 c 8 Do.
.... --r.4

In each case the theoretical curve shown is that ©b1?£ined 

from the relevant expression in the continuous web medium theory 

of chapter 2. In the case of the deflected forms of fig* 4.7

those obtained using simple bending theory are plotted also for 
purposes of comparison,.

An examination of the results shows that the theory under- 1 

estimates the deflections for lov/ span/depth ratios but when the 

span/depth ratio is increased to 2001 (fig. 4.5) the actual 
deflections are slightly less than the theoretical. For the 

particular case of r = 20,1 (beam 4ir" x 1-g-" x 28 castellations) the
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expression for central deflection "based on simple bending* theory

is easily shown to be, y = 0.300 W ins0 (W = central load in tons)c
and if this is plotted on fig. 4*5 "the result is indistinguishable 

from the curve of measured deflections«

It would appear that at a span/depth ratio of the order of 

20 the simple bending theory gives good results, but for ratios 

of the order of 10 (fig. 4° 7) the simple theory underestimates the 

deflections by about 15% 0

Some variation- is apparent in the measured deflections 

for span/depth ratios of the order of 10 as shown by figs» 4*2,

4o3 and 4° 7° Fig. 4°2 shows a difference of about 16% between

theoretical and measured deflections ( r = 10.1) whereas figs. 4«3 

and 4«7 show better agreement (5% for r = 13 and 7% for r = 10.8).

One of the deflection tests was continued until web buckling 

occured at one end of the beam. This test was part of the

web buckling test 9" x 3" No. 1 of table 5*1 chapter 5°

The measured central deflections for this test are plotted in 

fig. 4*6 which also shows the loading arrangement adopted.

Stress distribution

A summary of the tests conducted on stress distribution 

appears in table 4«3 below along with references to the figures 
in which the results appear.



TABLE 4*5° Tests on stress distribution0

Section Results shown 
in figure,

tests carried out

15"x 4i"x 12 
castellations, 
Test I

4.8, 4*9 and 
4.10

Web and flange 
stresses

15"x 4i"x 12 
castellations. 
Test II

4.11 and 4.12 Web and flange 
stresses.

9"x 3"x 14 
castellations,

4ol3 Flange stresses.

7i"x 3"x 5 
castellations,

4.14 Flange stresses.

15"x 6"x 7
castellations, 
With and without 
Stiffeners,

4.15 Web and stiffener 
stresses.

Readings of strain along the Boundaries of the holes in the 

weh were taken -with the gauges positioned as near as their width 

would allow to the edge of the hole0 As a result the stresses

measured are applicable to points some -g" away from the boundary 

but it is not thought that this will involve serious differences, 

Theoretical results are also shown in the figures, generally 

as a series of curves, whilst the experimental results are plotted 
as point readings.

The theoretical results are all based on the simple analysis 

which assumes points of inflexion at the mid-points of both the 

chord and web members, Ofi this basis the stress analysis of

any beam is relatively straight forward involving statical 

principles alone. Two examples will suffice to show this.



”72,
Fig. 4.8
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Example lo Consider the case of the 7i?" x 3" x 5 castellations

hearn (fig. 4.14) with concentrated load not at the centre. The

force analysis for the members of this beam is as shown in fig. 2.6.

Referring to fig. 4*14? for a load of 3 tons positioned as shown,

the left hand reaction is 1.8 tons and the right hand 1,2 tons.

The direct stress in the chord to the left of the load is given

by, equation (2034)?

I/i = x = + 0.182 x tons/sq.in. (x inches) 
d A

Similarly to the right of the load,

f.. "= 1.2 x = + 0.121 x tons/sq.in. 
d A

The bending moments in the chords at the critical points

(the top and bottom corners of the holes) are,

M = Shear at panel centre x D/12

= 0o9 x 7°5 = 0.5^3 ton.inso
12

The corresponding outer fibre bending stress is,

f,-, = 0.563 x 0.376 = + 2.08 tons/sq.in.
0.102

(using tg and I from table 4.1)

Similarly, M = 0.6 x 7°5 = 0.375 ton#in.
12

and, f = 0.375 x 0.376 = 1.38 tons/sq.in.
0.102

These stresses, when appropriately combined, are shown 

plotted in fig. 4.14 along with those obtained by experiment.

Example 2. Consider now the case of the 15" x 4-g-" x 12 castellations
beam (test I) shown in figs. 4.8, 4*9 and 4.10,



So.

The direct stress in the chord is (eqn. 2.34)>

f = W x = 4 x - 0.0935 x tons/sq.in.
d 2 d A 15 0 2o85

The vertical shear at the centre of each chord member is

W/4 hence the bending moment at the critical sections in the chords is,

W/4 o D/12 = 2,5 tons.ins.

The bending stress at the outer face of the flange is, 

f̂  = 2.3 x 0.505 = + lo26 tons/sq.ino.
1

and the bending stress at the inner face of the chord (the top 

and bottom edges of the holes) is,

f. . = 2.5 x 1.991 = + 4.97 tons/sq.in.Di 1

The web stresses are best obtained in tabular form,

a) end members.

= 1008 tons. ins.

Measuring x (ins) from the mid-height of the vertical the direct 

stress is,

2

m =
2*4

= W/^4
x t, (D/6 + x )

X:.'
and the bending stress is.

f , = 12 M xxb w
t-. d ( D/6 + x )

0o3 (2.5 + X  ) 
//A

28 08 x 
(2.5 + X  )

>a .

Thus table 4«4 can be written down, 
TABLE 4.4

x inches f  ̂tons/sq.in. f  ̂tons/sq.in.
0 2.68 0
1 2d7 3c03
2 1.83 4.30
3 1.58 4o85
4 1 = 39 5o02
5 1.24 4.97



I d )  Intermediate members (other than central member)

$ n = 0 ands = wi/M xd w
In a similar way to that above.

'xb 57° 6 x hence table 4«5 below,
(205 + 2x )

TABLE 4e5

x inches 0 1 2 3 4 5

f xb
tons/sqcino 0 4°30 5°00 4.88 

. _____

4.56
______

4*24
„ i

c) Central vertical

Hence, 'xd

= 0 (by symmetry) and T = 4  tons,w
  ? hence table 4»6 below,

t̂ (D/6 + 2x ) 
a/3

TABLE 4.6,

x inches 0 1 2 i 3 4

xd 5.35 | 3.66 (\) o 00 I 2o24 lo90

5

1,62

Again the above stresses, v/hen appropriately combined̂  are shown 

plotted in figs., 4©8, 4°9 and 4°10 along with those obtained by 
experiment.

Test 15" x 4i‘n x 12 castellations No„ II was designed to 
wvlh

be compared^test I on the same beam to show the differences in 

stress distribution obtained by loading and supporting the beam 
at the centres of the holes instead of at the centres of the 
verticalso The results show the purely local nature of
this effect»

The tests on the 15:? x 4irM beams were the first to be 
carried out and it is evident that the critical stresses in the



flanges have been missed by the practice of taking r eadings at 

the mid-points of each panel. This omission was rectified

when the Ti-" x 3" beam was tested (fig. 4.14) and it is clear 
that these critical stresses do in fact occur as anticipated,,

In general the agreement between actual and predicted stresses 

in the flanges is good. The differences are never serious

and the agreement shown in figo 4°14 is particularly good0

The same cannot be said for the web stresses however.

Although the general distribution of stress is as anticipated 

there are some serious differences in the magnitudes of the 

stresseso This is generally most evident at the top and

bottom corners of the holes where the theory completely fails to 

predict the stress concentrations occuring there» It should

be borne in mind that a radius is left in these corners (in the 

case of the 15" deep bean the radius is and that the strain 

readings were taken with the gauges located, as nearly as possible, 

parallel to the boundary. No doubt these stress concentrations

could be reduced if this radius were increased but it should be 

remembered that this would mean a sacrifice of some material 

at the mid-heights of the verticals.

Away from the top and bottom corners of the holes the 

agreement between measured and predicted stresses is better 

except in regions near concentrated loads where local disturbances 
of the stress distributions are evident.

The 15" x 4ir" x 12 castellations beam, loaded as for test II, 

was taken up to collapse load after the elastic tests had been 
carried out and at a central load of 15.7 tons local crushing of 

the top flange under the load was evident accompanied by



pronounced lateral instability.. Figure 4*16 shows the local

crushing’ in the top flange at the load point as does fig. 3*5 

also. Fig 4.17 shows the permanent set of the beam due to

lateral buckling. ‘This measured 0.35” the centre of the

beam on removal of the load.
The 9" x 3" x 14 castellations beam was also loaded to 

collapse. In this case lateral instability was evident at

a central load of 7«9 tons and again a permanent set remained on 

removal of the load. Fig. 4° 18 shows this beam after test.

It is not intended to pursue the matter of lateral |/'/
// ;/ /instability of the beams in this thesis. The testing frame !/ J j

used would have required further modification if such an

investigation was required and it was felt that the problem 
was big enough to warrant a separate investigation.

Web stiffeners.

Two beams were tested in an attempt to assess the efficiency 

of stiffeners for castellated beams. Both beams were made of 

15" x 6" x 45 lb. R.S.Js. the holes being flame-cut in the web 

without expanding the beams. One beam had welded i3' plate

stiffeners at the supports and under the loads. This beam is 

shown in fig. 4.15 (and later in fig. 5ol9)° The other beam
was identical except for the lack of stiffeners.

Both beams were subjected to two-point symmetrical loading 

of 20 tons total on a span of 75•6" and strain readings were taken 

at intervals along the outside edges of the stiffeners and at points 

on the boundaries of the holes. The results are shown in fig. 4,15. 

The stiffener stresses were measured on both sides of each stiffener



Fig. 4.16

Figure 4*16

Showing local crippling of top 
flange at load point.



Fig. 4.17

Figure 4.17

15" x 4in beam after test showing 
permanent set due to lateral buckling.



w .
Pig. 4.18

9" x 3" beam after test showing 
permanent set due to lateral buckling.



and both back and front and to left and right of the centre of 

the beam. Thus the stresses shown are in each case the mean 

of eight readings. The points on the boundaries of the holes

at which stress readings were made are also shown in figo 4*15 

and the values of stress recorded are given in the table in the 

same figure.

It is seen that the presence of the stiffeners makes very 

little difference to the stresses in the web of the beam.

Furtherj the stresses in the stiffeners themselves are relatively 

small. These two beams were later tested to collapse and

the results of these tests will be given in chapter 5 when dealing 
with the subject , of v/eb stability.



CHAPTER 5

Web stability. Analytical and experimental 
treatment of the web problem.



The problem of web stability comes into prominence when 

comparatively heavy loads are applied to short spans. In order 

to be able to assess the behaviour of the beams over the whole

working range of span/depth ratios it is necessary to be able to

predict the critical loading condition which vd.ll produce instability 

or plastic deformation in the web.

Consider a simply-supported beam. The geometry of the beam

at one of the supports is shown in fig. 5°1°? in general this will

be the critical portion of the web (the beams being supported at

their ends) and the considerations of this chapter will be restricted 

to the behaviour of this part of the beam.

It is proposed to reduce the problem of web stability to that 

of a member subjected to axial thrust and major axis bending moments.

* The work of chapter 2 has shown that points of inflexion may be taken 

to occur at the mid-points of the members forming each panel.

This being so the force actions on the portion of the v;eb at a support 

can be resolved into a thrust of W/2 and equal major axis, double 

curvature, bending moments of Wl/4 at the ends of the member, where 

W is the reaction due to the imposed loading on the beam and 1 the 

spacing of the panels. These typical force actions are shown in
fig. 5.2.

The shape of the member will be approximated to that shown in 
fig. 5°3 in order to give a condition of symmetry about the 
longitudinal axis.

The problem is complicated by,
a) the varying breadth of section.

b) The fact that the end moments are applied about the major axis (in 

the plane of the web) since this will produce torsional effects.



Figs, 5.1 to 5.4
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c) The uncertain nature of the support provided by the flanges.,

d) The possibility of plasticity developing before the critical

load for elastic instability is reached,

e) The presence of initial lack of straightness. Owing to the
method of manufacture of the beams it would appear that some 

unavoidable lack of straightness will result,

f) The presence of residual stresses from rolling and particularly 

from the welding process.

In view of the foregoing complications it would be difficult 

to obtain a rigorous solution of the problem. The experimental

results, which will be presented and discussed at a later stage, have 

all shown evidence of yield occuring at loads less than half the 

ultimate buckling loads. An elastic stability analysis would

thus seem to be inappropriate and, bearing in mind the difficulties 

already mentioned, an elastic-plastic stability treatment would be 

intractable. The elastic behaviour only of the web will be

considered here and an attempt will be made to find a simple 

approximate answer which can be compared with the experimental 

results. As far as possible the solution will be kept within

the scope of B,S. 449 (1948) "The use of Structural Steel in 

Building", Referring to clause 22(a) of this specification

it is stated that members subjected to both axial compression and 
bending stresses shall be so proportioned that the following 
condition is satisfied,

..(5.1)
where, | = the axial compressive stress,&



jFv̂ - the permissible axial compressive stress in the absence 

of applied bending moments5 

= the sum of the compressive stresses due to bending about 

both rectangular axes? and,,
. = the permissible compressive bending stress in the absence 

of thrusto
For members of uniform section values of F are given in the£L
specification in terms of the slenderness ratio of the member*

These values are based on the Perry-Robertson strut formula (17)

which gives the mean axial stress at which the yield point is

jiist reached in a pin-ended strut with an initial lack of

straightness* The value of F.̂ to be used is also prescribed

in the specification as the lesser of9
\COO y

f ,- g ----* 'h &«*/*-•*;..............(5.2)
* - / f
where? L = length between effective lateral restraints 

which will be taken as d in this case* ) 

r = radius of gyration of the section perpendicular 

to the plane of bending*

== a factor varying from 1*00 to 1.50 which is 
related to the shape of the cross-section 

and will always take the value 1*00 for 
castellated beams* 

and? F^o = 10 tons/sq. in* **.*o****...*..**.*..(5.3)

Equation (5*3) gives the upper limit on the allowable 

compressive bending stress and equation (5.2) relates to lateral 

instability and is based 011 the critical stress for a beam subjected 

to a uniform bending moment * In the case of a member of varying



cross-section such as the web member of a castellated beam the value 

of F given in the specification (if based on the minimum cross-section)
cl

would err on the safe side almost to the point of being unrealistic 

and in order to obtain a more rational value for this particular 

problem the behaviour of the member will be investigated in a little 

more detail0 Consider first the action of the axial thrust alone„

Effect of axial thrust in the absence of applied bending moments?

The following assumptions or sinrplifications are made,

1) Full lateral restraint is provided to the compression flange of 

the beam, This would seem a reasonable assumption since it is 

generally made when dealing with the other criteria of design i.e,, 

limiting stress and deflection..

2) The ends of the web member are fully fixed in direction0 The 

extent of direction fixing in an actual beam will be difficult to 

assess, it will depend on, among other things, the torsional rigidity 

of the flanges, In the short span cases where the subject of

web stability is of importance it is probable that the extent of 
direction fixing will be considerable.

3) The applied thrust is given by W/2 at all stages of loading,

4) The initial deviations from straightness can be adequately 
represented by a cosine curve,

5) The additional deflections caused by the application of the axial 
thrust can also be represented by a cosine curve.

The initial lack of straightness is taken to be given by,
H. / I t" C

2- d ' oooooo«o»,oeooo(5o4)
with co-ordinate axes directed as shown in fig. 5.3, and the 
additional deflections take the form,



n.

The strain energy stored in the member will be taken as that due 

to bending alone and̂ is given by,

U  5 k I Et(%Ad>L ................(5.6)
vL^T.

where , £. z. i f  ji t  xA from * o aooo®osooooeoooo(5*7)
~  to

anrl I : ^CLliU. o *** £& ooooooeooooooooooooooooooooooooooooaoV^#^/
I'l

the second moment of area of the cross-section at the centre®

The work done by the axial load in the case of a member with 

initial curvature is derived by Hoff (18) as,
( A * h  ■>

Y = |  Il£W ' %  + .........(5.9)L i j 0 $  Vft*

where P represents the axial thrust, in this case equal to 1/2® 

Carrying out the necessary integrations,

(J - ^ P e  (,i b1,■+ c b _ d  ) ..........(5.10)

P  tr- pi. ^where , J g — i i.. & o o o o o o o o o o o s a o o o a o o o o o e o o o d o o c o o ( 5 o 11 )

i®e* the first Euler load for the minimum cross-section
qy)H C k fi 3 i c i o

9 V- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 « 0 0 0 « 0 0 0 0 0 0 0 0 0 0 \ ^ / © J L i i y

d

Also, V  - ■+ ® ®............... .(5.13)

The condition of equilibrium is represented by,

U  -  V  . . . . . . . . . . . . . . ( 5 . 1 4 )

whence, p̂ . p* j *+■ AC. hL<?() ® ® ®.. ® ® ® ® ®. ® ® ®(5,15)
/ I  b  b  a  +  b " 1"  )

In the case of an initially straight member the load
producing elastic instability becomes,

P  m ”V (7£ ® ®. ® ®. ® ® ® ®. ®. ® 0... ®.(5.I6)



This is to Tog compared with P = 4 PQ for a member of uniform crobs- 

section equal to the minimum section at the centre of the web member 

and gives an indication of the extra strength available.

The value of P given by equation (5*16) was checked using

the Lagrangian Multiplier method (19) and virtually the same result 

was obtained.

Now A  = the total central displacement = b + bQ 

whence from (5*15)?
o / A ■* b* \

p ~  7 ^ ................(5*17)

ory f\ ■= j ̂ * S'P(c ^ ̂  \ p, ................(5.18)
\ 7  ̂ P € - P . /  *

Now the critical stresses will occur at the central section (in the

absence of applied bending moment) where the bending moment M isc
given by, . = ft f 1 blO-\ , ,c c ,

v'dv'- 7  ~J=i j from (5-5)

Hence the maximum compressive stress is?

f J“ ( ft - where t = web thickness.
max d t gL v °/

Substituting for A from (5*18),

^  - P

A simplification may be made at this stage if it is observed that 

7*5 Pe.will always be considerably greater than P, and fmax then 
becomes9

t = r b.,W , .max -------- - eoooeooooooo.«\,̂ 0 J-7 y
«tt W-flC pe 

The mean value of all the measurements of b made (see results

later) can be taken as b = 0„003 d and giving f the usual value ofv max
yield stress for mild steel i.e. 15.25 tons/sq.in. the following results



The value of p in equation (5®20) is the mean intensity of longitudinal 

stress which produces yifcld in compression at the centre of the 

membero Applying a load factor of 2 to this,

“} ■ I V 0 O O O O © 0 (5.21)

This is the value of F which, will be used in equation (5*1)•ct
The value of f the actual longitudinal stress is given by,a

fa = i_I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 0 0 .0 0 0 0 0 .0 0 0 0 0 (5 .2 2 )
d t

Effect of applied bending moments in the absence of axial thrust.

A separate investigation of the critical stresses occuring under 

the actions of the applied bending moments alone would be much more 

complex and is hardly justified in view of the previous simplifications 

and the fact that a simple, practical solution is sought»

The provisions of B.S. 449 will therefore be followed as closely
p-jjr
ft2 = t_ 
Jl2 3o46
p-jjras possibleo Using equation (5»2) with r = /t = t

where t is the web thickness, F̂  = 289 t/d, with the
provision that, F^ ^  10 tons /sqoin.

Whence for values of d/t ^ 28*9 
F, = 289
b0 -d7r

0 0 0 0 0 « 0 0 0 0 0 0 0 « 0 0 0 0 0 9

and for values of d/t ^  28*9

Fbc = 10 tons/sq.in.

Mow referring to fig* 5,4 the bending moment at point x is,
M s 0.36 W x x

-(5.23)

and the outer fibre bending stress is
f. = 2.16 W x _
° • t( d/6 + x^g )



The maximum value of is given by df̂  / dx = 0 

i.e., x — + d/24^ 

whence, f, = 5.6 W? be maxo  ̂ t tdt
000000 .o(5.24)

Substituting the values of F̂ , f , F.̂ and from (5.21),(5.22), 

(5.23) and (5«24) in equation (5®1) maximum safe values of W (the 

reaction at the support) are given by, 

for d/t 28 o 9 f

000000(5.25)3U * d t(r̂ i- Q'Sb

for d/t •> 28,9 .
   _

O c'jt/b } V $*< (0 ̂ t
'I' fc 'i< % Sf *?Alternatively the maximum safe values of mean longitudinal stress

are given by,

for d/t 28 S
tOO ̂3

51S + t - ' L i o  d / t

for d/t »  28.9
f

tooO

o o o O o o(5.26)

I3 i +  1' V  d j t

The relationships given hy equations (5.26) are plotted in
fig. 5*6 along with the expression for P fron equation (5.21) anda
values of F obtained from table 7 pf B0S0 449° In using table 7a
BoS* 449 the effective length of the member was taken as 0*7 d and 

the radius of gyration as Vjy^ *
This concludes the theoretical treatment of the problem but before 

proceeding to the experimental work the shear stresses existing in the 

weld at the mid-height of the member will be considered briefly <>



Shear stress at welcL
Referring to fig. 5*2 the horizontal shear force acting on the

weld at the centre of the weh member is equal to W 1 0 Providing
2 d

complete penetration of the weld is achieved in accordance with 

33.S0 449 clause 44 (c) the area resisting shear is dt/60 

In addition the weld is subjected to a thrust of W/2 and the resultant 

stress is given by.

The allowable maximum shearing stress is obtained from B.So 449

and the maximum permissible value of mean longitudinal stress is,

The welds in the intermediate members (other than under load points) 

carry no axial thrust but a value of horizontal shear of Wl/d<>

By a similar reasoning to that used above it is readily shown that 

the maximum permissible value of mean longitudinal stress is

and hence the more critical of the t?ro? however, the values of 

p given by equation (5*26) are seen to be less than this for all

weld is not critical and it is significant that of all the tests 

conducted by the author in no case did any sign of weld failure

six, weld failure occured at a load approaching the buckling load 
but later examination showed the weld to be faulty»

clause 20 as 6„5 tons/sq0in<> Whence the maximum shearing stress 

limit on the value of W is given by, W  ^  h d t

P = 3°53 tons/sq0 in« which is less than that above

values of d/to It may be concluded that shear stress at the

occuro In one test carried out by the makers, in a series of



Experimental work on web stability.

The tests were all conducted on beams in the "as received" 

condition supplied by the makers, the beams being cut to length by 

sawing as required <>
Figure 5*5 shows diagrammatically the test arrangement, The 

beams were simply-supported and loaded in all cases with two 

concentrated loads from hydraulic jacks measured by means, of 

pressure capsules, The disposition of the loads and the span 

for each test are shown in table 5«1 along with other experimental 

data0 In cases where it was intended to examine the web

continuously throughout the loading process up to buckling the 

loads were asymmetrically disposed about the centre of the span.

The two loads were maintained equal for all the measurements and 

the end of the beam Yrhere the reaction was greatest was the end 
examined,

The two hydraulic jacks were completely independent each having 

its own pump and pressure capsule.

The tests on the 15" x 6" beams were carried out in the 

University of Glasgow, in the testing frame already described, and 

were in the nature of preliminary tests as far as web buckling was 

concerned. Numbers 1 and 2 of these tests were designed to

show the difference, if any, between a welded and an unwelded beam. 

Both these beams had holes flame cut in the web according to the 

standard pattern, beam 1 was tested in this condition whilst beam 2 

was cut and welded along the centre-line for the whole of its length. 
The welded beam required a higher load to produce buckling (table 5,1) 

but it is not intended to attach any significance to this as the



Fig. 5.5
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difference in load between the two tests is not greater than that

found in other tests on supposedly identical beans.
out*

The remainder of the tests were carried^at King’s College in 

the structural testing space frame shown in fig. 5°l6° These tests

ii ere more exhaustive in that the behaviour of the web member was 

observed at all loads up to buckling and in each case an attempt 

was made to record the load at which yield first developed.

Deflections were measured with Mercer dial gauges reading to 

OoOOOl" and strains with the 20 mm. gauge length Mai-hak vibrating 

wire gauges already mentioned. Again the clamp shown in fig. 3»4

was used to hold two gauges in position on the specimen.
The Mai-hak equipment permitted a continuous exploration of 

strain that v/ould not have been possible with fixed resistance gauges.

A few readings sufficed to.show the region of maximum strain and this 

could then be studied in more detail.

The lateral restraining device used in the space frame is also 

shown in fig.5«5 and again in fig. 5»17° At each end of the beam 

under test a 2" x 2" M.S. angle was fixed in the frame at right-angles 

to the beam and on this 7/ere bolted, in suitable positions depending on 

the flange width under test, two short lengths of 2” x 2" angle.

These were drilled and tapped to take -§■" diac bolts 'which were 

arranged to bear on the top flange of the beam under test. This

device provided lateral support and enabled the top flange to be 
returned to its original position after each load increment so that 

the position fixing would be virtually 100%. In order to achieve 

the latter a dial gauge wa® positioned on the top flange and a 

constant reading maintained using the half-inch dia, bolts as the



test proceeded.. The arrangement can he seen in fig* 5*1?

which also shows the buckled form of a beam after test.
The following is an outline of a typical test procedure,

1) Check dimensions of beam, i.e. depth, web thickness, dimension 

d/6 at mid-height of web etc•,
2) Measure lack of straightness at centre with 0*001" depth gauge*

3) Arrange beam in frame and check dimensions a, b and L (fig*5*5)

4) Attach dial gauges, strain gauges etc*,

5) Apply a small load a number of times until uniformity of readings 

with load is achieved.

6) Carry out the test removing strain gauges before taking beam up 

to ultimate load*

One difficulty in using the Mai-hak gauges lies in the limitation

on the total strain that can be recorded for a single setting of the

gauge* This varies from gauge to gauge but for the 20 mm. gauges

is always of the order of 7°5 x 10*"̂ , and with E s 13,400 tons/sq.in.

this represents a stress of approximately 10 tons/sq*in. If it is

required to measure strains larger than this the zero reading of the

gauge has to be changed during the test and this introduces a source
is changed

of possible error* However, if the setting of* the gaugeĵ well

within the limit of elasticity some check is obtained from the 

continuity of the readings* This method was found to work quite

satisfactorily providing reasonable care was taken with the gauges*

The experimental results are summarized in table 5«1 which gives 

the reactions W at which first yield and buckling occured with the 

corresponding values of mean longitudinal stress. These results
are also shown plotted in fig. 5*

A selection of the results of strain and deflection readings is



shown in figs. 5°7 "to 5»15° These are sufficient to give a

fairly complete picture of the behaviour of the beams. Figs. 5*7 

and 5*13 show the variation in longitudinal stress along the length 

of the web member and the maximum mean compressive stress is seen to 

occur at a depth below the centre approximately equal to 0.25 d which 
agrees fairly well with the theoretical value of 0.29 d.

Fig. 5*10 shows the variation in longitudinal stress at the 

mid-height of the member for test 6" x 3" No.l showing reasonable 

agreement between theoretical and actual values. The agreement

is better in the case of test x 1-g-" No. 1 shown in fig. 5® 12.

In the first case the effect of bending in a plane normal to that 

of the web has been overestimated and in the second case it is seen 

to be underestimated.

In studying the buckled form of the web it.was observed that 

in all cases the centre of the node occured at a point about 0.16 d 

below mid-height. In testing 6" x 3" No. 3 strains were measured

at this point and the results are plotted in fig. 5 *>10 so that a 

comparison may be made with stresses occuring at the centre of the 

member in a similar beam.

A typical buckled form is shown by fig. 5°17 and fig* 5*18.
In all cases the strain measurements were made at points as 

near as the width of the gauges allowed to the straight boundary of 

the member. In fact these measurements were made at points

distant approximately -g-" from the boundary. In consequence the

actual boundary stresses will be generally somewhat higher than those 

recorded but it is not thought that the differences will be serious.

Agreement between predicted and measured stresses is generally
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Fig. 5-16

Space frame, Structures Laboratory, 
Kingfs College.
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Fig. 5*17

Figure 5*17
Showing space frame, lateral restraining 
device and beam after test.
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Fig. 5.18

Figure 5*18 

A typical web buckling failure.



good5 in fact better than would be expected in view' of the far 

reaching simplifications made in the theory. The approximation

in the shape of the member to that of fig. 5*3 does not seem to have 

invalidated the theory and would thus appear to be acceptable.

The theoretical deflection at the centre of the member as 

obtained from equation (5*18) is sustantially below that obtained 

by experjmtnt, see fig. 5* 11° This is probably due to relative

rotation of the flanges. An attempt was made in developing the

theory to take some account of this but the solution rapidly became 

difficult to manipulate and, in view of the difficulty in assigning 

a suitable value to the torsional stiffness of the flanges, it was 

discarded. The comparison between the actual and predicted

stresses is somewhat better, figs. 5*10, 5*12 and 5*14°
Referring now to the results shown in fig. 5*6 and using safe 

values of mean longitudinal stress as given by equations!5®26) 

the following table of load factors (table 5°2) can be deduced.
TABLE 5®2

Test Load factor based on 
first yield.

Load factor based on 
collapse.

x l£M 1 No result 5*17
2 Do. 5*11
3 3c87 no result

6" x 3" 1 no result 4*28
2 Do 4*75
3 2.22 4.28

7i" x 3" 1 2.76 6.00
2 1.68 4.72

9" x 3" 1 1.87 5.10
2 no result 5.30

13" x 6" 1 no result 4.242 Do. 4.83
3 Do. 5®54



The lowest load factor based on first yield is 1,68 and the 

highest 3<>87 the average “being 2,480 The theory is thus

conservative since it is tased on yield occuring at a load factor 

of 2o00o
The lowest load factor “based on collapse is 4*24 and. the 

highest 6000 the average “being 4*9 which shows the high reserve 

of strength possessed “by the “beams.
All the"'first yield" load factors in table 5*2 are based on 

the load at which a stress of 15*25 tons/sq0in. was recorded.

In some of the cases where "no result" is quoted central deflection 

curves were constructed for the end web members and if load factors 

are based on the departure of this curve from the straight line 

the following table (5*3) results.

TABLE 5.3
Test load factor based on sudden 

change in curvature of load- 
deflection diagram.

4i" x li" 1 3*45
2 2082

6" x 3" 2 2.89
9" x 3" 1 3*48

These load factors are generally higher than those from 

table 5.2 based on a yield stress of 15*25 tons/sq.in. which might 
indicate that the use of this value of yield stress tends to be 
rather cautious.

It was observed that some of the beams had an initial twist 
in the flanges and in testing them no attempt was made io eliminate 

this by packing either under the jacks or over the supports it being
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felt that the beams should be tested as near the "as received" 

condition as possible. It was necessary however to file off

the proud weld at the centre in order to be able to take strain 

measurements there. Beam 7t" x  3" No.2 had a marked twist in

the flanges prior to testing and this probably accounts for the low 

loads carried by this specimen at failure.

In spite of the high load factors obtained it is necessary 

to proceed with caution when the theory is extended to beams with 

a d/t ratio greater than 40. Beams within this category could

not be tested in the frame available as the loads would have exceeded 

the capacity of the frame. For a more complete investigation it 

would be necessary to test some of these deeper beams.

A yield stress of 15»25 tons/sq.in has been used throughout 

as this is the generally accepted value for mild steel. It is

known however that mild steel exhibits a yield stress in compression 

somewhat higher than this, whilst there is a tendency for the stress 

to rise continuously during plastic deformation (20). This would

appear to be borne out in some of the tests conducted particularly 
the 9" x 3" No 1. Referring to fig. 5«14 it is seen that stresses 

of up to 20 tons/sq.in are recorded at a load of 4 tons and fig. 5«15 

shows no sign of distress in the member at this load.

The work of this chapter concludes with some notes and test 
results on the use of web stiffeners.
Web stiffeners.

The two beams tested in the web stiffener investigation of 

chapter 4 (see fig. 4*15) were loaded to collapse after the elastic 

measurements had been made. These results are given in table 5.4 below.



no.

TABLE 5.4

Test
.....-.— ...... .....
Max. load carried Mode of 

collapse.

Beam with stiffeners 2 x 20 = 40 tons local buckling in 
the web between 
loads and supports 
away from stiffeners. 
Test discontinued when 
this became evident.

Beam without stiffeners 2 x 18̂ - = 57 tons Web buckling at one 
end.

One further beam tested having the same section as those 

above, loaded in the same way, and having no stiffeners sustained 

a load of 2 x 21 = 42 tons before web buckling occured at one end,

A more thorough investigation of the use of stiffeners would 

be needed before any conclusions could be definitely drawn but the 

above, along with the corresponding results from chapter 4? would 

seem to indicate that stiffeners are not of very great utility in  ̂1 

these beamso

The stiffened beam is shown in fig. 5*19 and again after test 

in fig. 5«20o The latter shows the permanent set due to vertical 

bending. A string line was stretched tightly between the ends 

of the top flange and this is seen clearly in the figure.

Two further tests were carried out on 15” x 6" beams on 

the subject of stiffened webs. Each beam was of 11 * 8-g-” span

and carried two-point loading symmetrically placed at 6’ 3t m centres 

about the centre of the beam. One beam had the end castellations

open and the other had the end holes filled in with welded plate.

The results of testing these beams to collapse are shown in table 5*5°



2/.
Fig. 5.19

The 15" x 6" beam with welded stiffeners.

*
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Fig. 5.20

The stiffened beam after test showing 
permanent set due to vertical bending.
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TABLE 5»5

Test max. load carried Mode of collapdb

Beam,open end 
castellations

2 x 22 = 44 tons Web buckling at one end 
over support.

Beam with end 
castellations 
filled-in

2 x 24 = 48 tons Some sign of local 
crippling in top flange 
under one load. No 
visible signs of buckling
in the beam.

............ - .... - ... -  ..........

Again these results could not be taken as conclusive without

a more thorough investigation but the indication is that the filling- 

in of the end castellations increases the ultimate strength of the 

beams by a small, but measurable?margin•



CHAPTER 6

Discussion. Recommendations for design. 
Mention of related problems not investigated.

Bibliography and references.

\



It has been the purpose of this work to attempt to give a 

fairly complete picture of the behaviour of castellated beams over 

a range of spans and loading conditions wide enough to cover the more 

critical cases. The central concentrated load has been

extensively employed as it^possibly the most critical loading 

condition of all and is the one most easily manipulated in the 

theoretical work. The alternative two-point loading condition

was adopted where it was desired to produce high shears at the ends 

of the beams and a region of uniform bending between the loads.

Other loading arrangements may be desirable in order to illustrate 

other features but it was felt that these were of a secondary 

nature.

Throughout the work on stress distribution the emphasis has 

been on the determination of boundary stresses. In this

connection it is felt that the vibrating wire strain gauge was the 

best gauge to use. Once a suitable clamp was designed to hold

the gauges the measuring of strains was both quickly and easily 

accomplished. The gauges have the distinct advantage of

permitting a less extensive preparation of the surface than with 

other gauges, and a freedom for the operator to explore the stress 

distribution at will. An equivalent exploration using electrical

resistance gauges would have been much more time consuming.

The use of the gauges to measure internal stress distributions 
is not so convenient however. An attempt was made to design a

clamp which would enable internal strains to be measured but this 

was not successful. Some measurements of this kind were made



with electrical resistance strain gauge rosettes hut the results 

were not very illuminating and have not been included in this thesis.

Some discussion of the test results and their relation to 

theoretical values has already been included at the ends of 

chapters 4 and 5? "but it would seem convenient to restate some of 

these remarks here in order that an overall impression of the 

results may be obtained.
The subject of deflection, an important one from the point 

of view of design, has been treated in a fairly comprehensive way.

As expected the deflections of the beams for short and intermediate 

spans are considerably greater than those predicted by simple 

bending theory. This is due to two main factors| the deformation

of the chords due to secondary bending and that due to the bending 

of the web members. These factors are taken into account in

the deflection theory based on the concept of a continuous web 

medium and the result is that deflections for intermediate and 

long spans can be more closely predicted using this theory.

For short spans even this theory is inadequate but deflections in 

these cases are generally unimportant, considerations of maximum 

stress and buckling coming into prominence.

It is seen that the simple vierendeel theory based on the 

assumed location of points of inflexion is adequate for the 

determination of flange stresses. The disturbances of the

flange stress distribution due to secondary bending of the chords 

is seen to be small for intermediate and long spans. In these

cases the simple bending theory gives flange stresses comparable 
with the vierendeel theory. For shorter spans it 'would seem



necessary to take account of these secondary stresses.

In the case of the web the vierendeel theory is seen to 

predict the type of stress distribution v/hich occurs but it is 

inadequate in a number of respects. The magnitudes of the

stresses are usually somewhat greater than those anticipated, 

particularly at the top and bottom corners of the holes and in 

regions near concentrated loads or reactions. Over the greater

part of the web however, away from the corners and the immediate 

influence of concentrated loads, the differences are not nearly 

so serious. G-enerally the measured stresses are of the order

of 10 to 15 % higher than the theoretical values.

Further it is seen that the stress concentrations at the top 

and bottom corners of the holes are of a purely local nature and 

for this reason may not necessarily be critical.

The theory of the behaviour of the end web member at a support 

is shown to be conservative although the variation in experimental 

results is such that some of the load factors obtained are less than 

the one adopted in the development of the theory.

The experimental work on v/eb stability was limited to beams 

with a d/t ratio of 41»7 or less. Many castellated sections

have d/t ratios greater than this, for example a 36" x Yt" beam 

has a d/t ratio of 63 and a 30" x 6ir" beam a ratio of 67.

The testing of these deeper beams \70uld have required a much larger 

capacity testing frame than the one used. Although the results

show a certain uniformity throughout the tests the extension of the 

theory to deeper beams should be practised with caution.

The ratio of the average load factors based on collapse and



first yield of the end web member is seen to be of the order of two. 

It may be possible to utilise some of this reserve of strength but it 

is thought that this matter warrants further investigation before 

this is done.
The subject of the most economical profile for castellation 

has not been dealt with but is naturally an interesting one in the 

light of the results obtained and will be briefly mentioned here0

The major variables in the selection of the profile ares a_, 

b_ and 9 of figure 60lo

The dimension Id controls the gain in depth by expansion from 

the original section, a and 0 control the geometry of the resulting 

hole. An increase in b for a given original section produces

a deeper beam but weakens the section of the chord. An increase 

in a, gives more material at the mid-height of the web member but 

lengthens the "bridge" of the castellation and would tend to increase 

the secondary bending stresses there and produce larger deflections.

It is clear that the variables must be handled jointly and 

a compromise must be made. If the value of ̂b is chosen such

that the increase in depth is 50 % (as for the beams tested in this 

work) then a and 9 can be fixed from considerations of deflection,



stress and web buckling. If it is decided that the extra work 

involved in stiffening the web is justified then a can be kept 

short and the deflections reduced.

Referring back to chapter 1. fig. 1«3 it is clear that, 

for the unstiffened beam, the important criteria are deflection 

and web buckling as defined by point C and curve B D of the figure. 

An increase in the dimension a gives a higher load at point C 

but lower loads along the deflection curve BD.

For a given span it would not be difficult to choose the 

most economical profile but for a general profile to cover all 

spans for a given initial section a decision has to be made first 

of all on the question of whether to stiffen the web„

Clearly an answer is not immediately available as to the best 

profile. The only statement 7/hich can be made in this respect

in the light of the present experimental evidence, is that for 

beams with stiffened webs (where necessary) the existing profile 

as used in this country is perhaps as good as any.

Related problems not investigated.

Apart from the question of the most economical profile 

certain related problems not investigated in the present work 
will be briefly mentioned.

The lateral stability of the beams probably deserves a 
separate investigation. The torsional rigidity of the

castellated beam will be reduced by the presence of the holes. 

Generally the design is based on lateral support being provided 

to the compression flange of the beam and in these cases lateral



instability need not be considered.

The use of castellated sections as columns is another topic 

of lesser importance. The advantages of expanding rolled sections

are less in evidence for columns than for beams and this probably 

accounts for the tendency to restrict their use almost exclusively 

to beams.

In a work of this kind many results both theoretical and 

experimental are naturally excluded in order to keep the presentation 

as concise as possible. The author hopes that by so doing

nothing of importance has been omitted.
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