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PREFACE

The work which forms the subject of this thesis extended over a
period of four years between the autumns of 1953 and 1957.

The problem of the behaviour of the castellated (or "expanded")
beam came to the author's attention whilst working as a student
civil engineer with the Appleby-Frodingham Steel Company between
the years 1944 and 1949 but it was not until four years later that
an opportunity arose to carry out some research on the problem.

After graduating B.Sc., in civil engineering in the Uﬁiversity
of Glasgow in 1953 the author was appointed Assistant in Civil
Engineering in that University and registered in October 1953 as
a research student of the University. The problem selected for
research was the one forming the subject of this thesis.

The work was carried out in Glasgow until September 1955 when
the author was appointed Lecturer in Civil Engineering in the '
University of London, King's College. The Engineering Faculty
in Glasgow then sanctioned the continuation of the work in London.

The author is indebted to his supervisor Professor W.T. Marshall
of the Regius Chair of Civil Engineering in the University of
Glasgow for his helpful criticism and encouragement throughout
the work. The author is also indebted to the United Steel
Structural Company Limited, of Scunthorpe, Lincs., who supplied
all the beams for testing and made available some unpublished test
results. He also wishes to express his gratitude to Dr. J.E.
Gibson formerly Lecturer in Civil Engineering at Glasgow now
Senior Lecturer in Civil Engineering in the University of Manchester

for his help during the first two years of the research.



The help of the technical staffs of the engineering departments of the
University of Glasgow and of King's College London is also gratefully
acknowledged.

Finally the author is indebted to the Faculties of Engineering at
Glasgow and King's College for making available laboratory space and

equipment for carrying out the work.

King's College,
London.

September 1957.
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CHAPTER 1

Method of manufacture of the
Statement of the problem.
Existing design methods.
Proposed investigations.

Previous work.

beams.



hen a rolled steel joist is used as a beam there is a certain
span, for given loading conditions, at which the bending stresses in
the flanges become critical. For shorter spans than the critical
the criterion for design is based on the shearing resistance of the
web, At and above the critical span bending stresses and the
stiffness of the section are the important factors and the maximum
resistance to shear of the Web is no longer fully utilised.

A certain economy could therefore be achieved by reducing the
amount of material in the web by cutting holes and so reducing the
dead weight of the member. Such a system, however, would lead
to wastage of the material cut out, and moreover, the saving in
dead weight of the member would be small due to the thinness of the
web.

achieving

An alternative means ofgsome economy of web material would
be to increase the depth of the beam and hence its stiffness,
without changing its weight and thereby producing no wastage
Such a system has been developed and given various names such as
" castellated beams'", "expanded beams" or "open-web beams'.

The term "expanded bean" is more common in the U.S.A. whereas in this
country the term "castellated beam" is generally adopted.

The idea of increasing the stiffness of a beam by expansion
is not new. It is claimed (1) to have been first used about
1910 by H.E. Horton of the Chicago Bridge and Ironworks. The use
of such beams in this country appears to have been originated by
G.M. Boyd in 1938 and then developed by the Appleby-Frodingham Steel

‘Company under British patent (2).



Short descriptive notes on the method appeared in'the Engineer"
in September 1949 (3) and in "Engineering" in October 1949 (4).

Method of manufacture of the beams.

In making a castellated beam the original rolled steel joist
is cut along the web by an oxy-acetylene cutting machine using a
.templateg The cutting profile is shown by the dotted line in
fig. 1.1 (a). To prevent undue distortion a Jjoist is clamped to
either flange of the beam being cut and a small distance, usually
about 3", is left uncut at intervals along the beam. These
portions are then cut manualiy to allow the two pieces to be
separated, as shown in fig. 1.1 (b). One half of the beam is
~then moved lengthwise relative to the other, or turned end for end,
until the crests of the undulations meet. The Jjunctions of the
two halves of the beam are then deep penetration welded and the
resulting beam is shown in fig. 1.1 (c).

A certain amount of waste material occurs at the ends of the
beam due to the relative displacement of the two parts but this
will be small in long beams.

Fig. 1.2 shows the fihal geometry of the castellated beam and
it will be seen that the process has increased the depth of the
beam by 50%. A row of hexagonal holes is left in the web but
the final overali weight per unit length of the beam isvunchanged.
The chosen profile allows a radius at the top and bottom corners of
the hexagon but this is at the expense of the material at the centre
of the web. This sharp corner is normally filled with weld metal
during the welding process.

The geometry of the expanded beams as used in the U.S.A. (1) is
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somewhat different. The angle of slope of the cut is 45° to the
centre~line of the beam as against 60° in this country. liany
variations are possible in choosing the geometr& of the resulting
beam but only the one shown in fig. 1.2 as used in this country will
be considered in this work although some reference will be made to
the problem of the most economical outline in the discussion in
chapter 6.

The increase in depth of secfion of 50% increases the second
moment of area of the cross-section by approximately 135% (2) and
the stiffness is increased accordingly. Thus it is clear that
the main structural advantage is to be found with light loads on
long spans where the stiffness of the section is the governing
factor and not the shearing resistance of the web.

Statement of the problem. .

In relation to the use of castellated or expanded beams some
of the questions fhat naturally arise are,
1) What are the deflection characteristics of the castellated beam?
2) How is the flange stress distribution affected by castellation?
3) What will be the magnitude of the stresses ocduring in the web?
4) What will be the buckling value of the web undér concentrated
loads or reactions?

1) is important for long spans where deflection is the désign
criterions 2) and 3) are relevant to intermediate spans and 3)
and 4) are of importance for short spans.

The use of the beams necessitates some attempt at a design
procedure which answers some, if not all, of the above queries.

Moreover any proposed analytical approach would be expected to have



support from experimental evidence.

At the outset of the work the author could find no report of
theoretical or experimental investigations into the behaviour of the
beams apart from some unpublished test data communicated to him by
the Appleby-Frodingham Steel Co. There seemed a clear case
therefore of the meed for a fairly thorough investigation into the
behaviour of the beams in order that their design could be given a
rational basis and the above mentioned questions given answers
substantiated by experimental work.

Existing design method.

The present basis of design is given by the Appleby-Frodingham
Steel Co., and the United Steel Structural Co., in their brochure (2)
and handbdok (5) in the form of safe load tables and graphs.
A typical safe load diagram is shown in fig. 1l.3. The safe loads
are quoted as uniformly distributed on simply-supported spans with
the compression flange laterally supported. This eliminates
any considerations of lateral or torsional instability and the design
ig then covefed by three criteria depending on the span required.

Referring to fig. 1.3 curve BD represents the safe distributed
“loads which can be carried by the beam ih question without violating
the maximum deflection of 1/325 span specified by BS 449 (1948) clause
34. On reducing the span when point B is reached the maximum
extreme fibre stress of 10 tons/sq.in. in bending becomes critical
and curve AB represents safe loads based on this criterion. The
maximum value of load carried is taken to be controlled by the
buckling value of the web at a support. The neck ﬁidth of the

castellation is constant for each beam and equal to D/6 where D is the
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overall depth of the finished section. The safe value of reaction
is obtained from BS 449 Cl. 47a using a slenderness ratio of d#ﬁ;

1
where, d = the clear depth of the web and t = the web thickness, as

duTined in the specification, and computing the maximum safe

concentrated load or reaction from,

W= Faotal noonooaouauouo'aovobooo.ovoooclol)
where, W = max. safe reaction,
v Fa = axial stress for a strut of slenderness ratio dJs from
+

fable T of BS 449.
t = web thickness, and,

‘1= D/6.

For a beam with intact web 1 would be equal to the length of the
stiff bearing plus D/2 in accordance with BS 449. - In other Woras
the axial stress Py for a strut of slenderness‘ratio.glg is applied
to a member of cross-sectional area equal to that of tze neck of
the castellation to determine the maximum safe value of reaction.

The safe load corresponding to the value of reaction so found is
indicated by point C on fig. 1.3.

The maximum permissible load may be increased by "filling-in"
the end castellation. This process is adopted when it is
required to carry heavier loads than those given by point C. The
end holes of the beam are filled by welding in a plate cut to the
shape of the hole. The maximum safe reaction in this case is
obtained in a similar way to that used for normal rolled sections.

A stiff bearing length of 1" is adopted for beams over 133" x 4"
x 21 1lb. and %" for other beams. Point A on fig. 1.3 corresponds

to the lesser of the web buckling and web bearing loads. In the



latter case a permissible bearing stress of 12 tons/sq.in. is used
in accordance with clause 21 of BS 449.

In this country the practice of filling in the end castellation
seems to be preferred to the use of stiffeners whereas Altfillisch,
Cooke and Toprac (1) recommend the use of stiffeners and the beams
they tested had orthodox stiffeners at the supports and in some

cases at the loads points as well.

Pro?osed investigations.

It is clear that the existing design methods, whilst given
some basis from BS 449, are inadequate in a number of respects.
The calculations of deflections based on the second moment of area
of the minimum cross-section take account of simple bending only
and neglect the shearing deformations across the panels and the
bending of the web members themselves. These effects will
presumably be small for long spans but some attempt should be made
to take account of them and establish the lower limit of span/depth
ratio at which they can be neglected if at all.

The flange stress criterion (curve AB of fig. 1.3) is also
based on simple beam theory and it may well be that higher stresses
occur along the boundaries of the web members. Moreover the
flange stresses may be underestimated to a considerable extent by
neglecting the secondary bending of the flanges over the holes and
it would seem desirable to obtain some actual distributions of flange
stress in order that this effect may be observed.

The use of the slenderness ratio of d4% £orthe end web member
of a castellated beam is distinctly questio:lableo This ratio is

intended for rolled beams and is based on a strut assumed to have an



effective length equal to one-half the depth of the web and a
thickness edual to the web thickness (6). The action of the

end web member of a castellated beam will clearly be different from
that of the web of a normal rolled beam. In addition to an axial
thrust coming from the bearing the member will be subjected to end
moments in the plane of the web due to the rigidity of its connections
with the flanges. The behaviour of this part of the beam will be
studied in some detail. The proposed investigations can be
summarized as follows;

a) Experimental determination of stress distributions in flanges

and web of simply-supported beams. It was proposed to use

vibrating wire strain gauges for this purpose in order that a more
continuous set of strain readings could be taken. This will be
of importance in regions of high strain gradient and demountable
gauges would have the advantage of enabling a more complete
exploration of the stress distribution to be made in these regions.
This part of the work was to be accompanied by & photo-elastic
investigation designed to give a complete picture of the stress
distribution throughout the beams. The photo-elastic work was
carried out and gave precisely the same kind of distribution as that
obtained from the steel specimens and it is not intended to include

a report of the work in this thesis. No new points of interest

|

were brought to light and in the interests of space it was decided E‘V

to include the test results from the steel beams in some detail
whilst omitting all the photo-elastic work.

b) Experimental determination of the deflection characteristics of

the beanms. These experiments were to be carried out along with

those under a) using standard dial gauges in the usual way.

o,



c) The effect of stiffeners. It was decided to investi%u$e the

effect of stiffeners in a limited way by testing two beams one with
stiffeners and one without, the beams being identical in all other
respects, and comparing the stresses occuring in the two beams at
the same load. The two tests would be continued to ultimate
collapse and the collapse loads compared.

d) Web stability. This investigation was to be conducted mainly

on short lengths of beams having the compression flanges supported
laterally to prevent torsional instability and to induce the web
buckling mode of failure. It was intended to explore the stress
distribution in the end web member and eventually increase the load
until collapse occured.

A1l the investigations were to be accompanied by theoretical
considerations and some attempt made to predict the behaviour of the
beams in theory.

The subject of web stability is dealt with in isolation in
chapter 5. All other experimental work is described in chapter
3 and the results, both theoretical and experimental presented in
chapter 4. Theoretical work on methods of analysis for stress

distribution and deflection is confined to chapter 2.

Previous work.

At the outset of the research very little work could be found
which had any real bearing on thg problem. The case of the
single circular hole in a rectangular beam subjected to pure
bending had been considered by Tuzi (7) using a stress function

analysis to predict the stresses on the boundary of the hole. As a

14
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subsidiary part of the present research, and following along similar
lines to those adopted by Tuzi the author considered the same
problem for a beaﬁ subjected to bending with shear, again using

a stress function analysis, and published the results in The

Structural Engineer in December 1956 (8).

Previously the problem of the beam containing a row of

circular holes subjected to bending with shear had been tackled by

R.C.J. Howland (9) using biharmonic analysis. S.,R. Heller (10)
- had also considered the problem of a single hole in a beam subjected
to non-uniform bending. The case he selected for analysis was the
cantilever of rectangular cross-section subjected to a concentrated
load at the free end and containing a single hole of ovaeloid form.,
The first paper discovered to have any real bearing on the
‘subject was thet published by Miss Letitia Chitty (11) dealing with
the problem of the cantilever composed of parallel beams inter-
connected by cross members. In this paper a solution is
proposed which replaces the di;crete cross members by a hypothetical
continuous web medium. By this means it is possible to write
down expressions for the curvature, slope and deflection of the
beams in continuous form. This latter work was followed in
1952 by Professor Pippard's book "Studies in Elastic Structures" (12)
of which chapter 8 is devoted to the analysis of open-panel strugtures
Professor Pippard's methods follow closely on Miss Chitty's but
he develops the analysis to cover a variety of loading and support
conditions and applies the method to the problemsof-wind loads on
building frames and the determination of the critical load for a

battened column.



On studying these latter works it became clear that in
modified and extended form they might give a suitable solution
to the présent problems, in particular that of the deflections
of castellated beams. In chapter 2 a solution will be proposed
on these lines when more detailed mention will be made of the method.
M. Smolira in his book "Analysis of Structures" 1955 (13)
gives an example of what is virtually a slope-deflection analysis
of a castellated beam. He deals with an 8 - panel beam
symmetrically loaded and treats it as a vierendeel girder.
Twelve equations of equilibrium are set out and solved in terms
of the bending moments acting on the ends of the flanges in each
panel of the beanm. It is seen that points of inflexion occur
very nearly at the mid-points of the chord members of each panel.
If it is assumed that points of inflexion actually occur at the
mid-points of the chord members then the girder can be analysed
by statical principles alone. If this method is applied to
the example cited by Smolira ( fig. 1.4) then the resulting end
bending moments on the chords are as set out in table 1.1 along

with those obtained by Smolira.
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TABLE 1.1.

End moments on chord members (1b.ft)

Panel Smolira Simplified statical analysis assuming
points of inflexion at mid-points of
chords.

1 left 27,150 26,200

right 25550 n

2 left 18,380 18,700

right 19,120 "

3 left 9,890 11,300

right 12,610 "

4 left 3,360 | 3,750

right 4,140 "

"It is clear that the differences are not serious but the amount of
work involved in the simplified scolution is very much less than that
needed to produce Smolira'’s figures. This kind of analysis will
be mentioned in more detail in chapter 2.

The work of Altfillisch, Cooke and Toprac at the University
of Texas (1) came to the author's attention when most of the
theoretical work for this thesis was completed. The paper
;ppeared in February 1957 and describes the testing of three
"expandéd” beams all originally 9" deep and measuring after
expansion 13", 142" and 161" deep. The different depths were
got by varying the cutting profile although a slope of 45° to the
longitudinal axis was used throughout. All three beams were
17' - 0" long and were supplied with stiffeners at the supports.
One specimen was fitted with full depth stiffeners at the load
points, one with short stiffeners just under the compression flange,

and the third specimen had no stiffeners at the load points.

,' .
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All tests were carried out under symmetrical two-point loading and
the beams were laterally supported at intervals along the compression
flange by means of wire braces and turnbuckles.

The specimens were whitewashed with slaked lime to aid the
detection of yield.

The stress analysis proposed by Altfillisch, Cooke and Toprac
follows similar lines to that Wh{ch will be described in chapter 2.
The normal flexural stresses are considered uniform across the tee
sections of the pancls and the vertical shear is taken to be resisted
equally by the top and bottom tee sectiohs for any panel.  Further,
secondary bending stresses are taken to be induced by these shears
acting at assumed points of inflexion at the centres of the chord
members.

Considerations of buckling and web bearing sitresses follow
identical lines to those used in the existing design method already
outlined and the same criticisms apply.

The evaluation of deflections is done in stagess
a) Obtain deflection as if beam were solid throughout, yg
b) Increase yg 10 take account of increased stresses existing at

the tee sections as follows,

y = ysx( £+ 15y
2T

where, f = max. fibre stress at solid section,

fn = max. fibre stress at the throat section.
¢) Add the shearing deflection across each panel. This is done
taking into account the varying cross section of the chord members
by a summation process using the Area-lioment theorems.

An example of deflection calculations is given. The process is



fairly lengthy but gives good agreement with experimental results.

A comparison of the actual and predicted loads to produce
first signs of yield in the beams does not show good agreement.
The use of a slaked lime coating to aid the observation of yield
lines would seem to give qualitative rather than quantitative ”u/
information.

As a result of the different geometry of finished beam chosen
by the authors the holes are more elongated than those in the beams
tested in this present investigation. The result of this is
to increase the secondary bending stresses in the tee sections
but make the buckling of the web members less critical. In fact
web buckling was barely studied by the authors as stiffeners were
introduced at critical sections.

Further reference will be made to the effect of varying the

geometry of the castellated beam in chapter 6.

/,
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CHAPTER 2

Methods of analysis :
1) Simple beam theory.
2) Vierendeel girder theory.

3) Continuous web medium theory.



The type of analysis carried out by the author and Dr. J.E.
Gibson(8) on the stress distribution in a beam with a single
circular hole using stress functions is not suitable for
application to castellated beams. The use of stress functions
for single internal contours is relatively straight forward but
their application to a multi-connected region is extremely
complicated particularly when the internal contours are rectilineal.
It would appear that a simpler, more approximate, treatment would
be more suitable in this case.

The structural behaviour of the beams will clearly lie
somewhere between that of a simple beam with intact web and that of
an open panel rigid frame. Just where the behaviour will lie
between these two extremes will depend primarily on the span/depth
ratio r since this will automatically govern the number of panels
in the bean. It is to be expected that as r increases the
behaviour will tend to that of the'simple beam without holes, and
as r decreases the beam will tend to behave more as a rigid frame.
This effect is borne out in the results which will be presented
later.

In seeking an analytical solution for the stresses and
deflections occuring in the beams +the author considered a number of
methods, adapting them where necessary to the problem in hand.
These methods will now be given, the less successful ones will be

only briefly outlined.

1) Simple beam theory with relaxation.

In this method the critical stresses are taken to be the
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bending stresses given by simple bending theory and the deflections
found by integration of the }/EI diagram along the beam by a simple
summation method or by relaxation. The deflections are taken to
be caused by flexure alone and the M/EI diagram teken to be composed
of straight lines between the centreé of the verticals and the centres
of the holes, sections AA and BB of fig. 2.1.
Using a simple one-dimensional relaxation method as outlined by
Allen (14) the deflected form of the beam corresponding to a given
bending moment diagram can be obtained. The deflections
produced by this method lie between those computed by simple bending
theory for beams of uniform sections AA and BB of fig. 2.1.
In fact the experimental results have shown that the deflections
are always greater than those computed by simple bending theory baseda,
on * the minimum cross-section of the beam BB. y
The method does not take into account the shearing deformations v/
across the panels and it would seem that it will be necessary to
take account of these if a more accurate prediction of deflection
is to be made.

2) Treatment as a vierendeel girder.

Any of the so called "exact" methods of analysis of vierendeel
girders(13), (15) may be applied to castellated beams but the work
is laborious and it is difficult to see how a general solution could
be obtained applicable to all beams and loading arrangements.

In the majority of cases where castellated beams are used the number
of panels, and hence the number of redundancies to be evaluated, is
large and the amount of work involved in producing a solution would

be correspondingly great.



Tigs. 2.1 t0 2.7

o7 D;

QN

T

o

- A B . F———ﬁmﬁsSSSSI
Na
— 1 T o q _’“'“
A4
' 3
. IA B ) ’
e T
W W
A A BVB .
A
£ F o3 Fig. 2.2.
|
D |w Yoy ©
V¥ 4 4
< £ >
M
s,\ff:(' . <
He He
" &? e Ve Fl6.2.3,
Mb
S5 T_J\
F_\ Fe



Moreover, the usual methoGs for vierendeel girders take no account
of deformations due to axial forces and with large numbers of
panels this effect becomes marked.

In the case of a symmetrical girder with the loads applied
at the nodes only, the bending moment and shearing force distributions
are alike in the upper and lower chords and points of inflexion occur
at the mid-heights of the vertical members. If it is assumed
that this is so in the case of the castellated beam, whatever the
loading arrangement, then a simple solution can be obtained along
the lines proposed by Salmon (16). .Consider a typical panel
ABCD fig. 2.2. AB, BC, etc., representing the centre lines of

the members forming the panel. The panel spacing is f{and the fo
/
/

panel depth (between centroids) d. It is assumed that points of
inflexion occur at E and F the mid-points of the verticals AD and BC.
The loads are taken to be concentrated at the panel points A,B,C

and D as shown in fig. 2.2 The force actions imposed on the
panel by the adjacent portions of the beam are shown in fig. 2.3.
Salmon’s method is to equate the distance EF in terms of Hp and Hp
for the upper and lower halves of the panel and obtain a relationship
between HE and HFo This relationship is applied successively

to each panel until the value of H for each vertical is found.

Other forces and moments then follow from statical coﬁsidera'l:ions° |
Bending deformations only are ccnsidered and the result can be

expressed as follows,

. m

_I{(O{Z H - MM*‘A,\ ceecanreeennea(2.1)

\

{\H Wi H"") ‘-_}_’1‘ }

23,



24,

horizontal force at mid-point of nth vertical from one
end of the beam.

il

where, H
n

Ditto of (n+l)th vertical,

1]

n+l
Iw = 2nd moment of area of web members
Ic = Ditto of chord members
Mn+l = External applied bending moment midway between the
2 .

nth and the (n + 1)th verticals.
In the foregoing it is assumed that the members are of uniform
section and some correction must now be introduced to make
allowance for the varying cross-section of the verticals.
Referring to fig. 2.4. consider the upper half of a typical web
member and let IW represent the 2nd moment of area of the equivalent
uniform section. IW must be so chosen to make the horizontal;
deflection at O due to H the same for the tapered and uniform ;?l
sections. The geometry of the web member is such that the
width of the member at x = O is D/6 where D represents the overall
depth of the section. It will be convenient to take this
dimension as d/6 where d is the distance between the centroids of
the chords. The loss in accuracy will not be serious being of
the order of t2 /3 where t2 is the flange thickness.

The 2nd moment of area of the tapered section is,

£ (d +7’L32‘

= bt} oul — on.oeoecocooovuao(zoz

1S e REY )
where tl = web thickness.

The horizontal deflection at x = O due to H is,

‘ A
o= L M gl
AH Eg .i« -(203)
a
Putting d4/6 = a and 4/ =b and M = Hx, (2.3) becomes,

3
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Integrating (2.4) using partial fractions the following expression

nt-oaooooooo(2.4)

results,

- IH a+ by - ?a,_t_g_b
Ay= o 51[ fo&e( ) | veeernes(245)

Hence the equivalent 2nd moment of area IW of the tapered section

is given by,

—

(2nY 3

whence, | - _3‘(3 "'_,_ OL"’b _ ‘20@.+§~!7 : |
, fw L bﬁ')_ b’éoée{"aﬂ) 2\51-9 b:)q'

This latter expression may be simplified if it is re-written in

terms of d observing that a = @/6 and b = d<E§ , the result is,

e b
9

The 2nd moment of area of the chord Ic at section BB (fig.2.1)

uoaoooeoaoco-o-(206) ’A’}‘ .

T

cari be obtained by assuming that the cross-section is a regular T
as shown is fig. 2.1. It is found in most cases that the

centroid of .this tee section is located, very nearly, at a depth
below the outer face of the flange equal to the flange thickness.

With this approximation the 2nd moment of area of the chord is,

3 -
.= Bt 4+ £ (o-rm D - t:,)_)” feverenneonneened(2.7)
3

and the cross-sectional area of the chord is,

A = BK«L + t\(@”:jb - t‘&) B - )



Equations (2.1), (2.6) and (2.7) enable the horizontal forces
acting at the mid-points of +the vertical members to be computed.
The forces and bending moments acting in all members can then be
found from statical considerations.

When applying equation (2.1) a good deal of accuracy is
required with the arithmetic since the resulting equations
representing the values of H are ill-conditioned. This
difficulty can be avoided and an approximate answer obtained quickly
if the following procedure is used.

In equation (2.1) put éﬁg{lv . kR the equation then becomes,

41, |
m

SH - R N ¢
T H’A’ RZ(H C,i. MM""I’:;_ (2 9)

o

Now for values of k large enough to make k + 1 k it can readily

o tjo

be shown that,

H - HM“" + 1 'M-'\'.\*‘V'z.‘—MM"hl cecoscoscsssssoel2e10)

K 3

R

Further, if the value of k is large enough to make the first term in
the right hand side of (2,10) negligible in comparison with the second

then,

| _
HM = T (Mmu/?_ - MM,»/,L) versnocnosees(2411)

Equation (2.11) could also be derived by assuming points of
inflexion to exist at the mid-points of +the shord members.

In the case of castellated beams the value of k will be about
30 and the approximations mentioned may well be acceptable.

Using equation (2,11) a rapid evaluation of the forces and



moments acting in the various members can be made.

Congsider a 15" x 6" beam having T panels loaded as shown in
fig. 245, This was one of the beams tested and was in fact
prepared from a 15" x 6" x 45 1b. R.3.J., the holesvbeing flame
cut out of the web without expanding the original depth. The
test results relevant to this particular beam will be given later
but some of the calculations will be considered at this stage in
order to illustréte the foregoing theory. Values of
horizontal thrust at the wid-points of the verticals 1 to 4 (fig.2.5)
were calculated using equations(2.9) and(2.11) and are given in

table 2.1 below,

TABLE 2.1.
Vertical Value of H (tons) by | Value of H (tons) by
Vierendeel eqn. (2,9) approximate relationship
(2,11). A :
1 2.5641 | 2,52
2 4.9978 ‘ 5.04
3 5.1019 5.04
4 2.5704 2.52

As mentioned before it is necessary té wdrk accurately when
using equation(2.9) and the values of H quoted were obtained
using a desk calculating machine to four decimal places.

It is clear that equations(2.9)and(2,11) produce virtually

the same solution and in view of the substantially greater amount

of work required in using (2.9) its use for castellated beams /

does not appear to be justified.

The stress analysis of a castellated beam on the basis of
equation (2.11) is very straightforward. Examples are shown

in figs. 2.6 and 2.7 where a five-panel beam is analysed for gingle
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unsymmetrical one-point loading and symmetrical two-point loading
respectively. The forces shown are those acting at the assumed
points of contraflexure and it will be noticed that the top and -
bottom chord members share the shear force across each panel equally
and that a vertical member carries thrust only if some external
applied force acts at its panel points.

Comparisons of the stresses produced by the forces shown in
figs. 2.6 and 2,7 with those actually occuring will be made later.

The calculation of deflections will be discussed in the

next method of analysis.

3) Analysis based on the conception of a continuous web medium.

This method of analysis is an adapted form of that used by
Chitty (11) and Pippard (12) for open-panel structures. The
method follows closely on that of Pippard except in the treatment
of the term covering the bending of the web nembers and in the
addition of a term to allow for the distortions caused by the
secondary bending of the chords.

The method is an approximate one and consists in replacing
the perforated web by a continuous medium which is designed to
transmit actions to the flanges similar to those of the orig;nal
web. The actions from the perforated web are simplified to
those of moment and thrust at discrete points in the flanges.

An expression is obtained for the slope of a flange at a typical
panel point and this is transformed into a continuous expression
in terms of the actions from the hypothetical web. The solution

proceeds for the hypothetical case and the results are then applied,



in an approximate way, to the actual beam.

As will be seen the solutions are produced in continuous form,
unlike those of the preceding method, and this is a very desirable
feature particularly when dealing with long span cases where the
number of panels is large.

Por simplification it is assumed that the upper and lower
chords take up identical deflected forms. This will imply
points of inflexion at the mid-heights of the web members and also
that these members do not shorten under axial thrust.

The analysis will be restricted to the purely elastic
behaviour of the beams.

Referring to fig. 2.5, consider a typical web member AB and
let the bending moments in this at A and B be MW, a point of
inflexion occuring midway between A and B. The corresponding

chord forces will be 2 MW where d is the distance between the

d
centroids of the chords.

If it is assumed that the chord and web nembers are rigidly
connected then the slope of the chord at A and at B will be given
by © + ¢  where © represents the rotation of AB due to the
end moments Mw and qp represents the slope produced by the changes
in length of the chords.

If it is further assumed that the moment MW is shared equally
by the chord members meeting at A and at B, then the deflection due
to the bending of the chord members, corresponding to the angle f&
may also be expressed in terms of MW.

Consider now a simply-supported beam of span 2L and take origin
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at the left-hand support with x positive along the beam and y

positive downwards. The slope of the deflection curve for the

bean is given by,

: | PN -2 -9
dj/dx: O+ ¢+ B

Suppose a continuous medium to replace the web of the beam applying
~ continuous aétiohs to the chords as follows; a variable moment m
per unit length of the beam and a variable distributed load t per
unit length as shown in fig. 2.9.

Determination of ¢>

Now the tcitad chord force Pc at any point x along the beam

is given by, 2 W\w
Z 000000000(2013)

and the total change 1n leng;th of the chord due to this,
" pas
X o P‘

where A = the cross-sectional area of the chord.

In the hypothetical case the total chord force at x is
X

= [ 20 dy S
P& fc d 0DOQ'°°§°°°°°°°°°Q900(2.14)

If the hypothetical web is to transmit actions similar to those of
the original web then equations (2.13) and (2.14) must give the same

value ofP .
2 Mw
Now, ¢ = "fz dA“F dl
Hence, - de o N - Y|
Fae T

Determination of ‘9

It is convenient to express ©® in terms of m as, &= K,’?h where

Kl is a constant which depends on the geometry of the web member.



Referring to equation (2.6) the 2nd moment of area of the equivalent

3
uniform section web member is given by L = t”.jf\
| 19
Now K, = & , and in terms of I_,
1 ! w
m
Q = M.%'A‘":d:; 00000000000000009000000(2Il6)
bt lw

Further, My = o
whence, K, = Al N = dx o12d x 19

1 =
&€ Tw b xExt d?
Or, Kl= _&i oooucnoo‘onouonnoaoooauoou.vﬂooanooeaon(2017)
- dEF,

Determination of IS

Again it is convenient to write B: Kgn and determine K,
having regard to the geometry of the chord. The solution is
greatly simplified if it is assumed that all parts other than those
of minimum cross-section (i.e. the "bridge" of the castellation)

have infinite flexural rigidity, and that the moment MW is shared
equally by the parts of the chord meeting at the panel point
considered. It is further assumed, for the purposes of obtaining

an expression for ﬁ that the moment MW does not change appreciably
from one vertical to the next. The contribution of IB to the
slope of the beam will always be small compared with that due to 844}
Fig. 2.10 shows the M/I diagram for a typical chord membex: subject

to the foregoing assumptions. Applying the Area-Moment theorem

. 2,
it is easily seen that, g = ©-000%4 d A
£ I,

where Ic = the 2nd moment of area of the chord at the minimum cross-

section, and - X, = fJ s whence
2 9
—n
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K = s.}{" la.bd oooonnan-oouauuoonoae(ZQlB)
+ € L,
Now equation (2.12) states that, d%/dwt = 8+ b+

and putting G+ B = Kan, where K = Kl + K2

and substituting the value of CP from equation (2.15),

e
] P ‘4 B AT d
d‘y/d,x" Ko + & j ffw Ay, cda

gred d 3
N PRPIRERE)
dy, = Kdm _ 4 gfm‘dx )
(ﬁ 9{“1 A d”'“ﬂE . g
Furth ,di cim _ Aoan
e %ﬁ o{x' a"-j,:‘""E cossccocosscessl2e20)

Now consider eleamental lengthe of the chords in the hypothetical
case as shown in fig. 2.11. The external applied load is denoted
by w, m and t represent the continuous actions from the hypothetical
web, Wy represents the reactive force from a typical support ( Wy will
vanish over the greater length of the beam) and the other symbols have
their usual meanings. With théhbhoice of origin and co-ordinate
axes ffade M will be positive if acting as shown. The other forces

will be taken as positive if acting in the directions indicated.

Considering the equilibrium of the elements,

$F, + w-t)Sx -0 (a) g
SE -cw S = (b))
§F, v lE-wi)dn =0 TR ) eeeoeerena(2421)
SR~ dn v B3 "(W"]lx zTO (0);
SM, -+ Fy B L—w&)iwt) ‘9

Negle_c"bing infinitesimals of the second order and observing that
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F (the total shear force at the section) and that

i
+
&3]
]

M (the total bending moment acting at the section) then,
C*bk\ + djﬂ“' = 2m - F
e ol %

—_ -t "L .-
and, U =M, = ET_ &?'/dx“

=
+
=
i

% ‘
‘then,lEr—gda-/dxg “2am 2 F 20 i (2.22)

3
Substituting for o % 3 from (2.20), (2.22) becomes,
4

!

=

KC’{1/;"’/‘/ n = M . m -
i GTRE eic 2€Te
F
o

or,

m’?;vynm - (d,% . L } =0

o(m e i F XY 20 iiiinneereeea(2.23)
dx /A ‘

el (e )
TheTe, At K(d%‘—‘ ELec

1. OvOOOGDOOOO000000000(2.24)
and, %

2I‘<Elc

e e et e

The solution of equation (2.23) is,

Az A cooh use + Basnhoaou + ATF Ll (2025)

1

M

The constants A and B are to be determined from the terminal
conditions of the beam and at this stage the analysis will be

restricted to simply-supported spans 2L, éymmetrically loaded.

Central Concentrated load W on simply-supported span 2L

For this case,
cﬁ%/ = O when X =L
ok

4 =0
ﬁ%TI = d 5/1x = f

Ooooooeacocoeoooboo(2q26)

when x = Q

N’ e e e



Applying these conditions to equations (2.19),

n =0, when x = L )
dA ) ©© 0000000000 0OCO0OO0CCCOTGOCO DOHDUOGQQQGOOB(Z'Z?)
MW = O when x =0 )

Ux

Applying conditions (2,27) to equation (2.25),

WA |

B=0, and A= = = e
’ ' Z/A‘L C~OO’L\/AAL

1

Whence,ﬂl: M’L (\_. w"{ﬂ' Ax) ooeoooooaooen.lo(2q28)
M zooh b

Differentiating this last expression twice with respect to x, -

0(}“"" - — V_\:—I\L I;@ﬂf{'v ﬁ‘ .4

- ", -
Ax T pond L
and substituting this value of d}gﬂm and the value of m from (2.28)
odr
in (2.20),
PEDRRE} o SR S (1 )b |
a%/bf.-g 2 !/M Ad"AE mrd ot L j
Now put, Q =“‘*‘—,-4":rwaﬂd integrate this latter equation having regard
AN TNE
to conditions (2.26),
L7 ‘
aﬁg/ = - WA 3 Qx + (K-R) L puxbar CR
d:ﬂl "z /A W;M'L S

and this venishes for x = 0, hence C 0,

17V

el

Again, ()y/ = *\rﬁ_!_{\lst?fl 4 (K—Q)}_ Carhan C"L}
y Z { = ,//‘1- /‘,.f‘/:n"yw'-

2
and this vanishes for x = L, hence 02 = Qﬁ'— - (fiﬁ}

2 /M_'L
e (o2 - () (e )
Therefore dg’éa" = iq_ (){" v /v\"‘ (c\%ﬂt ‘)j
WA E X (‘{S - L?‘x> + kK"QXf""‘”‘&c‘::“ —x} t+
and y= ~ Y 2.\ 3 S /v\.w‘»/ul.
=0 for x = 0. hence ¢_ =0

39,



whence, ‘(j * ""_’_2:' %% ((:L?( ’:):- )“l" f; Q(x -‘% %.oooo.o(2.29)

Equation (2.29) gives the deflected form of the beam for o & x £ L.

The maximum deflection occurs at x = L,and, noting that tanhsl tends

to unity and that L is small in comparison with L, this is given by,

4 A
W)_\?'{@_‘:} +\‘<:-‘§)L? cevenenaneenes(2430)
2 3 el

Referring again to fig. 2.11.

SF1 = {“"‘J'\"‘ t)Si'f— or, 0”'; = (/lN'. '-*C’)

s

P

d’rmaxv.‘ -

Also, M, = mdn - F, Sx
AW,
A )
; e = dm [, =&
hence, =
whence d’(j;"- = L i
or, { - -4 €L, d% A eooosoceacescescscssas(2e3l)
(Gom) = Edcdlly - dlae

Now, differentiating (2. 20) and substituting for d_,j- 4 in (2 31),
fj ‘A’J' - I:'.' I f\ d Y e 4
(&) o [ a2 A~AE dx\

= —KEL (uider "d’"‘/dﬁ)

whence, on substitution from (2.23),
. oL -
(& n/l.f\l‘) - ..KEAMC .X di“/dﬁ
A

- onoqouaoeooaoocnoonaoeeoan(2032)

i
e dx

= /PV\ - FI‘L

OI‘, t = /b\)!'"‘

Thus in the case of a concentrated load system t = O everywhere
providing the loads are "point" loads. If on the other hand the
loads and reactions are taken to Be uniformnly distributed over short
lengths equal to the width of the web member, then the shear force
diagram will be typified by that shown in fig. 2.12. It is easily
seen that the thrust Tw in a web member is then one-half of the force

(R) applied at its panel point, this result being in agreement with

40
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that obtained by method 2.
i.ee, TN = E./": occo0oee©o000000 oeoooo-oonoaaua(2.32a)

Now the chord force at any point x is given by (2.14) as,
\x .
P = j L dx
< o
O .
and substituting for m from (2.28),
P o 2 ST W (1 - Ciodyan )d,,‘
.; e

4 - e e sa

¢ . o 77,1,4 W\/\L‘v

ie., P \{V_LZ (x L mahart N (239)
- (Ot b
Va SN BBEAN

and, since /b_d_‘-’::ff‘:f«m can be neglected in comparisoh with x in

the range 0% x £ I,

P = W ?\Lﬁ
« /t"‘l.d
Now, from (2.24), A i ‘
ow, from (2, N =
9 9 e QEICI{L +,_‘... )
: kd"ﬁaft . EXL.
and ,f:. is small in comparison with 1/I  so P is given
dfbA [¢] [¢]
approximately by,
C‘ = M oooeoooouaa00000000(2034)
d

If it is further assumed that the value of IVIW at any panel point

is given by the integral of m between the adjacent mid-panel points

£ = . - XA
r R 2 / 2
then, M = § Pdo = YAk - Wm_...z_":‘_z.‘_\

24" costoa b |
,)‘.._,e{l - L /J\ P )L./QIFL

L
Tredeeeecnosee(2:35)

-

o o WIS [ Rasmban s
Leey w 7::"‘ L A M'»al./M L
i

Equation (2.35) holds for 0% x &£ (L - é ) since the range of

validity of (2.28) is 0 < x £ L. An examination of equation

24

(2.35) shows that M, = WLZ

27u

for all values of x until x approaches



L when MW quickly reduces 1o zero. This is more readily seen

from equation (2.28), from (2,28),

dy = Wk gk

Pres - o
dn ’% A ’:M\//h. L
Since for castellated beams A always takes a value of the order
of unity then dﬂ can be taken as zero until x is very nearly
. i
equal to L the half-span.

Hence in the case of the simply-supported beam with central

concentrated load the following holds approximately,

w dr oo6o00co9oo0 aaoaooooeoacoa(2036)

31, :
(since 2\,_&;" "!i ) and again it may be noted that this corresponds
/M
to the solution given by method 2.
For convenience the equations needed to analyse a beam with

central concentrated load will now be summarizeds

the central deflection is given by,

. qﬂiqf*(&ﬁ)u}
.L 3 A

w.(# - ouoooob0(2¢30)
v L[4 e L
Wherez/,, 2 K(Q?:AF EE.'_) ?
}",.L - _MJJ"-‘“ ) eoooonaao."ooa(2.24)
IKE I, g
Vie » o e A
K=K +kK, = T8 +64,107d eo(2:17)&(2418)
dE t.| gr(
. 4
/'A..Ld‘LAE
The thrust in a web member is given by, ’
4 _
T\N’ = /2. . -aeooooaoe.eaooo.oooo<2032a)

The chord force is,

= Wx v
PC— ?jd" ouoooooacocoovov(2034)
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ané the end moments acting on the web members are,

M, = wi PPN ¢~ 2% 1)
4

Consider now the case of a simply-supported span carrying a

uniformly distributed load.

Simply-supported span 2L with uniformly distributed load w.

The solution continues from equation (2,25)
AV T P\cc—"‘k/o.yn + g,o&-«/n/t«x +)£_g: cevccccscnsc(2e25)
The terminal conditions are still giveﬁ/;} (2,26) and (2.27).
Applying conditions (2;27) to equation (2¢25) and observing that

F=0for x =L and dF/dx = -w for x = O,

= %L (!04;“1’\’/““ _— tl':\ML/V‘L L'i-:?/,v[‘\./v\.}()-l- /E;EGO'DQ(ZQB'])-
M -

Now adopting a similar procedure to that used for the beam with
concentrated load the following expression can be deduced for the

central deflection,

[N AN

8" < 4 " %
%wm"f wA Q—QQ L+ Ui:l/i{“ 3 eecosacscscc(2438)

=
Tt

Further, ¢ = A, i

{

.

12

Hence the thrust in each web member other than those over the
supports is ﬁ@%{ and again it is seen that this thrust is to
all intents and purposes one-half of the total concentrated force
applied at its panel point if the distributed load is applied as
uniform concentrated loads at the panel points.
Thus for the intermediate web members,

T = wd e eeerrae e (2039)

r
and for the end web members,

T = 2 (28 +4) ceereenesennee(2440)



The value of MW will be given very nearly by,

N\“{ A /g )‘
< kb et (Lo ]

In the range 0 x <L (sing.wt- coshu *x.) varies from ~unity

to zero and can fhus be neglected, whence,
Py -
I\“w t (M)‘; kL n) oanoooaoﬂﬂ0009Q060000(2.41)
4

This result can be expressed more conveniently in terms of the

moment MWn acting at the ends of the nth vertical as,

4 ,.. b
MWM :"/‘li_[g L. - KM”1>/€; oaoenoaoaoooooooo.(2¢42)
4

The chord force P in the nth panel is given by,

.

M
B ~ 2 ;tdw

whence, P{‘,m = "ﬁ’} iML *@~(M~l]fg seooasscoecccecosol2ed3)
24 L )

The deflection equation (2438) could also be obtained by
observing that equation (2,29) with W = unity represents the
influence line for central deflection. If this equation is
integrated from O to L and the result multiplied by 2w equation
(2.38) results.

When dealing with other loading systems it would seem
convenient to use (2.29) as the expression for the influence line
for central deflection and obtain the centrai deflection due to
other loading systems from it.

i.€., central deflection Y, for a load system is,

Jem ZWERG W) s SRlniban)l

/V“ /\A’W‘/’\L

44,



4S.
Before leaving this method of analysis it is interesting to
examine the variation of maximum deflection with changing span/depth
ratio (r) in the two cases of central concentrated load and
uniformly distributed load.

Veriation of y _  with span/depth ratio (r)

a) Central concentrated load W

y o= wAY Qt’ + (@) PN €% 1¢)

’1&4
NCIW/A =, 'L}\ﬁ"

and Q = 4
/demAg
whence (2,30) becomes,
3 | '
- WL W k-a) L oo (2445)
Y. i + — k L)l . 9900000000 l45
max 2@1}4{;-&. 4 \
Putting Lin, = AOQ;. , (2445) becomes,
3 . \
v = wi + W (K-Q)L veeoossoaese(2.46)
max LET &
o

and the first term of (2.46) represents the deflection given by
simple bending theory based on the 2nd moment of area of the

minimum cross-section of the beam ( Imin)°

Putting Y, = g L3 v Vpax is shown plotted against r in
B I

min Vo

fig. (2.13) for the case of a 15" x 43" castellated beam.

b) Uniformly distributed load.

In a similar way it can be shown that,

- % . @
= "é N—-—-—‘l:" + ML k"Q cecoo0e0o ° cee 2
Ynox = 24 Elgeim (k-@) ... (2447)

Now the first term of (2.47) represents the central deflection

given by simple bending theory, and with Vo = > W L4 s ¥

24 E Imin

max

c
is shomn plotted against r in fig (2.13), again for the case of
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a 15" x 43" castellated beam. It is seen immediately that

as the span of a particular beam increases the error involved in
taking the deflection as that given by simple bending theory

becomes less. For example if r is of the order of 20 (represent-

ing a span of 25 ft.) the error involved is somewhat less than

5 %e






CHAPTER 3

" Description of experimental work

and equipment.



The bulk of the experimental work on stress distribution and
deflection was carried out in the engineering laboratories of the
University of Glasgow. A beam testing frame was already
available in the laboratory and this was modified and added to
in order to make it more suitable for testing castellated beams.

The testing frame was basically an 18" x 6" R.S5.J. supported at the
ends through mild steel rounds bearing on latticed columns and
equipped with adjustable hangers for testing simply-supported beams.
The method of loading a test beam was to insert a screw jack between
the 18" x 6" beam and the test beam and register the load on a
pressure capsgle of suitable capacity. Thus the live load was
carried by the test beam, the 18" x 6" beam and the hangers only,
and only dead load was transmitted to the floor of the laboratory.
No provision was made in the basic frame for giving lateral support
to the test bean.

In order to make the frame suitable for testing castellated
beams the height of the 18" x 6" beam above floor level was increased
by extending the latticed columns and new hangers were designed which
would give lateral support to the test beams at their ends.

The modified testing frame is shown, with a beam under test,
in fig. 3.1, The overall length of the testing frame was 22 ft.,
and the frame was capable of accepting spans up to 16 f%.

For the purpose of testing castellated beams the frame was equipped
with two 25 tons capacity Tangye hydraulic jacks and two 20 tons
Macklow-Smith pressure capsules. As the jacks were to be used in
the inverted position they were fitted by the makers with helical

springs which would return the ram on release of the load.
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The arrangement and details of the hangers for the jacks and
pressure capsules are shown in fig. 3.2 and again in fig. 3.l.

The load was transmitted to the test beam through a 2" dia.

half round of mild steel countersunk to fit over the ram of the jack.

On tightening the hangers shown in fig. 3.2 some load was registered
by the pressure capsule. This was kept to a round figure of

+ ton throughout the tests and used as a datum from which actual
loaris were measured.

On receipt from the makers the calibration of the pressure
capsules was conpared with that of a 30 tons Avery machine and
found to be satisfactory. The dial gauges used with the
capsules were calibrated from O to 20 tons in O.1 ton intervals.

"The combined hanger and latéral supporting device is shown
in detail in fig. 3.3 and again in fig. 3.1, It was composed
of vertical 8" x 34" R.S. channels arranged té straddle another
8" x 33" channel bolted to the concrete floor of the laboratory.
The bolted coonections of the hanger were designed to transmit
safely a maximum load of 25 tons. The channel fixed to the
floor gave no restraint in the longitudinal direction of the
beam under test but provided lateral restraint at the supports.

JWhen it was desired to léad a beam to collapse steel wedges
were inserted between the top flange of the test beam and the
inside faces of the vertical channels, the dimensions of the wedges
depending on the flange width under test. The device was found
to work well in practice but of course lateral restraint was
effective only at the supporits. The jacks gave some lateral
restraint at the load points due to the nature of their comnection

with the
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testing frame but this was inadequate and in cases where lateral
instability occured the beams were seen to have rotated considerably
at the load points carrying the jacks with them.

As seen in fig. 3.1 the hand pumps for the hydraulic jacks
were located at either end of the testing frame. These pumps
were eguipped with 25 tons pressure gauges of doubtful accuragy.
The pressure gauge readings were not used except in cases where
it was desired to ‘take the jack loads above 20 tons when the
pressure capsules were isolated and the pump pressure gauge readings
used.

The measurement of deflections was carried out using Mercer
dial gapges reading to 0,0001". The gauges were clamped o
a horizontal channel supported on angle brackets attached to the
floor channels already mentioned. The arrangement is shown in
fig. 3.1, In all cases dial gadges were positioned immediately
under the hangers so that the deflections of the hangers could be
ascertained and subtracted from the other readings.

Strain measurements were made with Mai-hak vibrating wire
strain ‘gauges. A gauge length of 20 mm. (the smallest gauge
nade by Mai-hak) was adopted for ‘all the web stress readihgs and
all flaﬁge stress readings except for the flange stresses of the
15" x 4%" beans where a 50 mm. gauge length was employed.

The gauges behaved extremely well after the author had become
familiar with their use. The 20 mm. gauges were a little
troublesome at the oubset és they are small and require delicate

handling. The following procedure was found to work reasonably



well and produce fairly rapid results.
1) Prepare the surface on which strain readings are to be made by
removing all mill scale and loose material. If the surface is
badly pitted a grinder should be used. The amount of work
expended on the surface need not be excessive but the surface should
be reasonably smooth and free from pits.
2) Ensure that the screw controlling the tension in the gauge wire
is slack. This is important for the wire may be broken if the
gauge 1s clamped to the specimen with it tight.
%) Position the gauges carefully ensuring as far as possible that
all knife edges bear with equal pressure on the surface of the
specim:en° The gauges are equipped with a pair of knife edges
at the fixed end and a single knife edge at the hinged end. The
importance of a smooth surface is now apparent. If one of the
knife edges is located over a pit in the surface difficulty will
be experienced in getting the gauge to function correctly.
4) Tighten the gauge wire until a suitable initial reading is
obtained at the receiver.
5) If it is found difficult to get a reading from the gauge,
Yaking off and re~setting in a slightly different position
usually succeeds. It was thought that surface pits were
responsible for this phenomenen.

The major difficulty in using Mai-hak gauges is in the
designing of a suitable clamp for holding the gauge on to the
specimen. For the readings of strain in the web it was

desirable to have a clamp which would hold two gauges, one on

v,



either side of the web, in order that transverse bending strains
could be eliminated. After some experimenting with various
forms of clamp the one shown in fig. 3.4 was adopted and proved
very satisfactory. The clamp holds two 20 mm. gauges each freefo
slide in a slot machined in the body of the clamp. The gauges
are held in position in the clamp by means of the springs shown.

A threaded screw is used to tighten the gauges on to the specimen,
the head of the screw being located on the pressure cap on the

top of the nearer gauge. A steel centre at the other end of
the clamp located the second gange. With this type of clamp
the clamp and gauges could be held in place with one hand whilst
using the other for tightening the screw.

The hard steel pins which can be seen projecting from either
gauge in fig. 3.4 are used +to locate the movable knife edge in the
body of the gauge. These pins are removed once the gauges
are secured in position and before any readings aré taken.

The clamp holding the gauges can be seen positioned on a
specimen in fig. 3.5 along with another, less successful,form of
clamp.

Strain readings were also faken on the outer faces of the
flanges, the gauges being located in the centre of the flanges.

The vibrating wire strain gauges are supplied by the makers
with a calibration constant for each.gaugeo The measuring
range of the gauges in conjunction with the receiver varies
slightly from one gauge to the next but is generally of the order
of 10 to 11 tons/sq.in. for mild steel. This range is generally

adequate when dealing with strains in steel specimens but it can be



Fig. 3.4

Clamp holding two 20 mm. gauge
length Mai-hak vibrating wire
strain gauges.



Figure 3*3

Showing strain gauges in position.
The local crippling of the top
flange at the centre hole can also

he seen.

Fig. 3.5
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extended if required by a procedure which will be outlinefin
chapter 5.

All the tests on stress distribution in the beams except
the one on the 73" x 3" beam (fig. 4.14) were carried out in
the Civil Engineering laboratory in Glasgow: The deflection
tests on 15" x 4%" and 9" x 3" beams for deflected form (fige 4e7)
were also carried out in Glasgow. The remainder of the deflection
tests were carried out in London.

Of the tests on web buckling the ones on the 15" x 6" beams
were carried out in Glasgow and the remainder in London.

The work in London was conducted in much the same way as
that already described. In this case the testing frame used
was the space frame in the structures laboratory in King's College.
This frame is shown in chapter 5 fig. 5.16 and is described there
in connection with its use for web buckling tests.

Throughout the teshs advantage was taken of symmetrical
conditions wherever possible but in all cases sufficient readings
were taken on both halves of the beam to justify the assumption.

. Values of Young's Modulus and yield stress for the beaums.

A value of E of 13,400 tons/sq.in. was used throughout in
converting the strain‘féadiﬁgs and in evaluating theoretical
deflections. Tengile stress-strain tests were conducted on
two specimens cuvt from ths flanges of two of the beams tested.
The specimens were tcken from the flanges of beams which had been
subjected to low loads only and were cut from low-strain regions
of these beans. The results of the tests are shown in

table 3,1 below.

;



TABLE

3.1, Stress~-strain tensile tests.

Specimen

e e,

Young's Modulus
tons/sq. in.

tensile yield stress
tons/sq. in.

13, 800

-2

13, boo

M-8




CHAPTER 4

Calculations and results. Comparisons

of experimental and theoretical results.



6o

For convenience the theoretical and experimental results
will be considered under two headings, deflections gnd stress
distributions.

Deflections.

In order to facilitate the calculations the constants
associated with each section tested are listed in table 4.l.

The constants for any other section could readily be obtained
using thé expressions given in chapter 2.

| Using the relevant equation of (2.29), (2.30) or (2.44)
an exgression for the deflected form or the central deflection
of any castellated beam can easily be deduced. To take an
example, consider a 43" x 13" beam with 28 castellations,
centrally loaded. The half-span L = 0,72 x 4% x 14 = 45.36".
Using the values of the relevant constants from table 4.1 and
substituting in equation (2.30) the following expression results
for the central deflection Yoo

Y, = 0,314 W ins. where W = central load (tons).

In a similar way the deflected form of a 9" x B"Ibeam with
15 castellations carrying a central load of 1 ton is obtained from
equation (2.29) ag,

y = 10"4( 8.90 x =~ 0.00129 x3) ins. ( % in inch units from
' nearest support)

A summary of the tests on deflection with references to the
figures in which the results appear, along with theoretical results,

is given in table 4.2 below.



Table 4.1
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TABLE 4.2. Summary of deflection tests.
Section Span/depth Results showm Test carried out.
ratio (r) in fig. )
T x 3" x 5 3.6 4.1 Central deflection,
castellations. Concentrated load
not at centre.
9"X 5"X 14
castellations. 10.1 4.2 Central deflection,
central load.
+'x 3"x 18 13.0 4.3 Do.
castellations
6"x 3'"x 22 15.8 4.4 Do.
castellations
4+"x 12"x 28 20,1 4.5 Do,
castellations
gux 3Ty 5 3.6 4.6 Central deflection.
castellations Two~-point loading
to collapse.
15"x 4%"x 12 8.6 ) Deflected form.
castellations ) 4.7 Central load.
e y Ge -
9"x 3"y 15 10,8 ) Do.
castellations )

In each cage the theoretical curve shown

is that ebtgined

from the relevant expression in the continuous web medium theory

of chapter 2.

In the case of the deflected forms of fig. 4.7

those obtained using simple bending theory are plotted also for

purposes of comparison.

An examination of the results shows that the theory under- ]

estimates the deflections for low span/depth ratios but when the [{

|

span/depth ratio is increased to 20,1 (fig. 4+5) the actual

deflections are slightly less than the theoretical.

For the

perticular case of r = 20,1 (beam 43" x 13" x 28 castellations) the
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expression for central deflection based on simple bending theory
is easily shown to be, yc = 0.300 W ins. (W = central load in tons)
and if this is plotted on fig. 4.5 the result is indistinguishable
from the curve of measured deflections.

It would appear that at a span/depth ratio ofbthe order of
20 the simple bending theory gives good results, but for ratios
of the order of 10 (fig. 4.7) the simple theory underestimates the
deflections by about 15%.

Some variation is apparent in the measured deflections
for span/depth ratios of the order of 10 as shown by figs. 4.2,
4.3 and 4.7 Fig. 4.2 shows a difference of about 16% between
theoretical and measured deflections ( r = 10.1) whereas figs. 4.3
and 4.7 show better agreement (5% for r = 13 and 7% for r = 10.8).

One of the deflection tests Wasvcontinued until web buckling
occured at one end of the beam. This test was part of the
web buckling test 9" x 3" No. 1 of table 5.1 chapter 5.
The measured central deflections for this test are plotted in

fig. 4.6 which also shows the loading arrangement adopted.

Stress distribution

A sumary of the tests conducted on stress disthibution
appears in table 4.3 below along with references to the figures

in which the resulfs appear.



TABLE 4.3. Tests on stress distribution.

Section Results shown ‘ tests carried out.
in figure,

15"x 4%"x 12 448, 4.9 and Web and flange
castellations. 4,10 stresses
Test I
15"x 43"x 12 4,11 and 4.12 Web and flange
castellations. ; stresses.
Test II
9'"x 3"x 14 4,13 Ilange stresses.
castellations. o
T&"x 3"x 5 T 4014 Flange stresses.
castellations.
15"x 6"x 7 4.15 Web and stiffener
castellations. stresses.
With and without
Stiffeners.

Readings of strain along the boundaries of the holes in the
web were taken with the gauges positioned as near as their width
would allow to the edge of the hole. As a result the stresses
measured are applicable to points some " away from the boundary

.%ut it is not thought that this will involve serious differences.

Theoretical results are also shown in the figures, generally
as a series of curves, whilst the experimental results are plotted
as point readings.

The theoretical results are all based on the simple analysis
which assumes points of inflexion at the mid-points of both the
chord and web ﬁemberse On this basis the stress analysis of
any beam is relatively straight forward involving statical

principles alone. Two examples will suffice to show this.

e,



Fig. 4.8
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Example 1. Congider the case of the 72" x 3" x 5 castellations
beam (fig. 4.14) with concentrated load not at the centre. The
force analysis for the members of this beam is as shown in fig. 2.6.
Referring to fig. 4.14, for a load of 3 tons positioned as shown,
the left hand reaction is 1.8 tons and the right hand 1.2 tons.

The direct stress in the chord to the left of the load is given

by, equation (2.34),

.. =1.8 % =+ 0,182 x tons/sq.in. (x inches)

dl A
Similarly to the right of the load,

£y, =12 =+0.121 x tons/sq.in.
' OTdA -

The bending moments in the chords at the critical points
(the top and bottom corners of the holes) are,

’ M, = Shear at panel centre x D/12

1

0.9 x 7.5 = 0,563 ton.ins.
12

The corresponding outer fibre bending stress is,

i, = 0563 x 0.376 = + 2.08 tons/sq.in.
0.102 -
(using t, and I from table 4.1)

Similarly, Mcr = 0.6 x %52 = 0,375 tone.in.

and, fbr = 06375 x 0,376 = 1.38 tons/sqe.in.
0.102

These stresses, when appropriately combined, are shown

plotted in fig. 4.14 along with those obtained by experiment.

Example 2. Consider now the case of the 15" x 4%" x 12 castellations

beam (test I) showm in figs. 4.8, 4.9 and 4.10.



The direct stress in the chord is (egn. 2.34),

f.o=Wx = 4 x = 0.0935 x tons/sq.in.

ad B

da 15 . 2.85
The vertical shear at the centre of each chord member is
W/4 hence the bending moment at the critical sections in the chords is,
W/4 . D/12 = 2.5 tons.ins.

The bending stress at the outer face of the flange is,

f = 205 X 00502 = + 1026 'tOl’lS/Sq_oil’lo,
bo T -

and the bending stress at the imner face of the chord (ﬁhe top
and bottom edges of the holes) is,

“fb‘ = 2,5 x 1,991 = + 4.97 tons/sq.in.
T -

The web stresses are best obtained in tabular form,

a) end members.

M: = Wz = 1008 'tOI’lSa inSo
T 2l
Measuring x (ins) from the mid-height of the vertical the direct
stress is,
£ro0= /%4 = 2
tlZD76 + X ) 0.3 (2.5 + x )
f:fg': N’g- ’
and the bending stress is,
fxb = 12 MW b = 28,8 x )
2 (205 + X )
tld(D/6+_ﬁ>§) 3
A
Thus table 4.4 can be written down,
TABLE 4.4
x inches fa tons/sq.in. T tons/sq.in.
0 2,68 0
1 2,17 3,03
2 1.8% 4430
p) 1.58 485
4 1.39 5,02
i 5 1.24 4-97




b) Intermediate members (other than central member)

- M o=V
€,=0 end, I = W1/24

In a similar way to that above,

f . = 57:6 % hence table 4.5 below,
xb 5
(2.5 +_ 2% )
ey
TABLE 4.5
x inches 0 1 2 3 4 % 5
- .
fzb ) ' | i
tons/sq.in. 0 4:30 | 5.00 14488 | 4.56 [ 4e24 |
i t 1

c) Céntral vertical Mﬁ_: 0 (by symmetry) and Tw = 4 %ons.

Hence, f = 4 , hence table 4.6 below,

xd
5, (D/6 + 2x )
. NE

TABLE 4.6.

x inches 0 1 2 3 | 4 5 |
fxa 5.35 13,66 |2.78 | 2.24 | 1.90 | 1.62
tons/sq.in. ' i [ i

hgain the above stresses, when appropriately combined are shown

plotted in figs. 4.8, 4.9 and 4,10 along with those obtained by
experiment.

Test 15" x 43" x 12 castellations No. II was designed to
bé comparegtzgst I on the same beam to ghow the differences in
stress distribution obtained by loading and supporting the beam
at the centres of the holes instead of at the centres of the
verticals, The results show the purely local nature of
this effect.

The tests on the 157 =z 43" beanms were the first to be

carried out and it is evident that the critical stresses in the

-]



flanges have been nissed by the practice of taking r eadings at
the nid-points of cach panel. This omission was rectified
when the T&" x 3" bean was tested (fig. 4.14) and it is clear
that these critical stresses do in fact occur as anticipated.

In general the agrecmcnt between actual and predicted stresses
in the flanges is good. The differences arc never serious
and the agreement shown in fig. 4.14 is particularly good.

The same cannot be saild for the web stresses however,
Although the general distribution of stress is as anticipated
there are some serious differences in the magnitudes of the
stresses. © This is generally most evident at the top and
botton corncrs of the holes where the theory completely fails to
predict the stress concentrations occuring there. It should
be gorne in mind that a radius is left in these corncrs (in the
case of the 15" deep bean the radius is +") and that_the strain
readings were taken with the gauges located,; as nearly as possible,
parallel to the boundary. No doubt these stress concentrations
could be reduced if this radius were increased but it should be
renenbered that this would mean a sacrifice of some material
at the mid-heights of the verticals.

Away ffom the top and bottom corners of the holes the
agreement between measured and predicted stresses is better
except in regions near concentrated loads where local disturbances
of the stress distributions are evident.

The 15" x 43" x 12 castellations beam, loaded as for test II,
WasAtaken up to collapse load after the elastic tests had been
carried out and at a central load of 15.7 tons local crushing of

the top flange under the load was evident accompanied by



pronounced lateral instability. Figurc 4.16 shows the local
crushing in the top flange at the load point as does fig. 35
also. Tig 4017 shows the permanent set of the bean due to
lateral buckling. This measured 0.35" at the centre of the
beam on removal of the load.
The 9" x 3" x 14 castellations beam was also loaded to
collapse. In this case lateral instability was evident at
a central load of 7.9 tons and again a permanent set remained on
removal of the load. Tig. 4.18 ghows this beam after test.
It is not intended to pursue the matter of lateral
instability of the beams in this thesis. The testing frame gyJ}
used would have required further modification if such an
'investigation wags required and it was felt that the problem
was big enough to warrant a separate investigation.

Web stiffeners.

Two beanms were tested in an attempt to assess the efficiency
of stiffeners for castellated beams, Both beams were made of

15" x 6" x 45 1b. R.S.Js. the holes being flame-cut in the ﬁeb

without expanding the beanms., One beam had welded 7" plate
stiffeners at the supvorts and under the loads. This beam is
shown in fig. 4.15 (and later in fig. 5.19). The other beam

was identical except for the lack of stiffeners.
Both beans were subjected to two-point symmetrical loading
of 20 tons total on a span of 75.6" and strain readings were taken
at intervals along the outside edges of the stiffeners and at points
on the boundaries of the holes. The results are showm in fig. 4.15.

The stiffener stresses were measured on both sides of each stiffener



Fig. 4.16

Figure 4*16

Showing local crippling of top
flange at load point.



Fig. 4.17

Figure 4.17

15" x 4in beam after test showing
permanent set due to lateral buckling.



Pig. 4.18

9" x 3" beam after test showing
permanent set due to lateral buckling.
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and both back and front and to left and right of the centre of
the beam. Thus the stresses shown are in each case the mean
of eight readings. The points on the boundaries of the holes
at which stress readings were made are also shown in fig. 4.15
and the values of stress recorded are given in the table in the
same figure.

It is seen that the presence of the stiffeners makes very
little difference to the stresses in the web of the beam.
Further, the stresses in the stiffeners themselves are relatively
smﬁll° These two heams were later tested to collapse and
the results of these tests will be given in chapter 5 when dealing

» with the subject of web stability.



CHAPTER 5

-

' Web stability. Analytical and experimental
treatment of the web problem.



The problen of web stability comes into prominence when
comparatively heavy loads arc applied to short spans. In order
to be able to assess the behaviour of the beans over the whole
working range of span/depth ratios it is necessary to be able to
predict the critical loading condition which will Produce instability
or plastic deformation in the web.

Consider a simply-supported beam. The geometry of the beanm
at one of the supports is shown in fig. 5.1., in géneral this will
be the critical portion pf the web (the beams being supported at
their ends) and the considerations of this chapter will be restricted
to the behaviour of this part of the bean.

" It is proposed to reduce the problem of web stability to that
of a member subjected to axial thrust and major axis bending moments.
»The work of chapter 2 has shown that points of inflexion ﬁay be taken
to occur at the mid-points of the members forming each panel.
This being so the force actions on the portion of the web at a'support
can be resolved into a thrust of W/2 and equal major axis, double
curvature, bending moments of W1/4 at the ends of the member, where
W is‘the reaction due to the imposed loading on the beam and 1 the
spacing of the panelsei These typical force actions are shown in
fig. 5.2,

The shape of the member will be approximated to that shown in
fig. 5.3 in order to give a condition of symmetry about the
longitudinal axis.

The problem is complicated by,

a) the varying breadth of section.
b) The fact that the end moments are applied about the major axis (in

the plane of the web) since this will produce torsional effects.

gs.
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Figs. 5.1 to 5.4
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¢) The uncertain nature of the support provided by the flanges.
d) The possibility of plasticity developing before the critical
load for elastic instability is reached.
e) The presence of initial lack of straightness. Owing to the
nethod of manufacture of the beams it would appear that some
unavoidable lack of straightness will result.
f) The presence of residual stresses from rolling and particularly
from the welding process.

In view of the foregoing complications it would be difficult
%o obtain a rigorous solution of the problem. The experimental
results, which will be presented and discussed at a later stage, have
all shown evidence of yield occuring at loads less than half the
ultimate buckling loads. An elastic stability analysis would
thus seem to be inappropriate and, bearing in mind the difficulties
already mentioned, an elastic-plastic stability treatment Wouid be
intractable. The elastic behaviour only of the web will be
considered here and an attempt will be made to find a simple
approximate answer which can be compared with the experimental
results. As far as possible the solution will be kept within
the scope of B.S. 449 (1948) "The use of Structural Steel in
- Building". Referriﬁg to clause 22(a) of this specification
it is stated that members subjected to both axial compression and
bending stresses shall be so proportioned that the following

condition is satisfied,

-

I (
fov tie P
F.{‘J_‘ ?’:‘Qr. cnoocnoooooooooo(5.l)

where, éa = the axial compressive stress,



Fr. = the permissible axial compressive stress in the absence
of applied bending monents,

FL, = the sum of the compressive stresses due to bending about
both rectangular axes, and,

the permissible compressive bending stress in the absence

i

-

ERY
1}

of thrust.
For members of unifcrm section values of Fa are given in the
gpecification in terms of the slenderness ratio of the member.
These values are based on the Perry-Robertson strut formula (17)
which gives the mean axial stress at which the yield point is

just reached in a pin-ended strut with an initial lack of

straightness. The value of Ebc to be used is also prescribed
in the specification as the lesser of,
» oo
= e o Coavif sa. e
Fi‘.’»‘:i - L/‘T X (‘ W\] cuuoeoouuueooocuo(502)

where, L = length between effective lateral restraints
vhich will be taken as d in this case. {15 B

1

radius of gyration of the section perpendicular

1l

to the plane of bending. (%%}

Kl = & Tactor varying from 1.00 to 1.50 which is
related to the shape of the cross-section
and will always take the value 1.00 for
castellated beams.

and, Fb0= lO 'bOI’lS/Sq. ine eunooooouoo.oeooecooo(5¢3)

Equation (5.3) gives thie upper limit on the allowable
compressive bending stress and equation (5.2) relates to lateral
instability and is based on the critical stress for a beam subjected

to a uniform bending moment. In the case of a member of varying

i
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cross-section such as the web member of a castellated beam the value

of Fa given in the specification (if based on the minimum cross-section)
would err on the safe side almost to the point of being unrealistic

and in order to obtain a more raticnal wvalue for this particular
problem the behaviour of the member will be investigated in a little
more detail. Consider first the action of the axial thrust alone.

Effect of axial thrust in the absence of applied bending moments,

The following assumptions or simplifications are made,

1) Full lateral restraint is provided to the compression flange of
the bean. This would séem a reasonable assumption since it is
generally nade when dealing with the other criteria of design i.e.,
limiting stress and deflection.

2) The ends of the web member are fully fixed in direction. The
gxtent of direction fixing in an actual beam will be difficult to
assess, it will depend on, among other things, the torsional rigidity
of the flanges. In the short span cases where the subject of
web stability is of importance it is probable that the extent of
direction fixing will be considerable.

3) The applied thrust is given by W/2 at all stages of loading.

4) The initial deviations from straightness can be adeguately
represented by a cosine curve.

5) The additional deflections caused by the application of the axial
fhrust can also be represented by a cosine curve.

The initial lack of straightness is taken to be given by,

o = L:i"(‘ ¥ ‘g—*) cecvocncassosoo(5ad)

with co~-ordinate axes directed as shown in fig. 5.3, and the

additional deflections take the form,

g = b (1 cen LXK
] zm( 3 ceccnccsanscess(5e5)
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The strain energy stored in the member will be taken as that due

1o bending alone and is given by,

f‘?ﬂilq,
i1os L T d ) Jﬂ.‘,
E\) A t { a/f,( oonuoouooeoovooo(506)
- A
Where;z:l:é‘zd(l.’—zh{éx) fron oD 0090000900000000(5'7)
o +o a-:‘tat/'l
and I ‘/{L onaoeoceuuo-oqooowooooeooeoooaooooenoo(S 8)

the second moment of area of the croso—sectlon at the centre.
The work done by the axial load in the case of a member with

1n1t1al curvature is derived by Hoff (18) as,
' st Al

" } il CHl ’lé“ + (d’é/o{-,f)?)} Ax veeoosssa(549)

where P represents the axial thrust, in this case equal to W/2.

»

Carrying out the necessary integrations,

U = f;k 2"+ C%’J) vererneren(5410)
ET,

oonoeooeooeeceooooeooeoooodooaoo(5oll)

o
where, [ ~

d’l—

i.e. the first Euler load for the minimum oross-seétion,

and, C ’; 2’;3} ceoooocno’oooooocooooaooooo'eonuvuooa(5012)
= T
AlSO, V = T- \ { bbé *’b) ooooaooooc’ooqueaoo(solB)
| &4 .
‘The condition of equilibrium is represented by,
‘\J : V 0005000000000.(5014)
Whence, P Pﬁ LLL'L.L "* C‘b d> caonooooocuooo(SolB)
(Llbb, + o> )

In the case of an initially straight member the load

producing elastic instability becomes,

. - W )
‘:),“ t"* {‘2 euoeoooeoueoooaoouo°(5.l6)
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Thig ig to be compared with P = 4 Pe for a member of uniform crods-
section equal o the minimum section at the cenitre of the web member
and gives an indication of the extra strength available.

The value of P given by equation (5.16) was checked using
the Lagrangian Multiplier method (19) and virtually the same result
was obtained,

Now A\ = the total central displacement = b + D

whence from (5.15),

A # ('A"‘bﬂ
P, 705‘9{1 !\ A-l'b;.} qoeeoaooovovoocu(5017)
Ory A ot (7‘6"“9@ *f) ba oooooneeeooooaoo(S.lB)
T8 e - P

Now the critical stresses will occur at the central section (in the

absence of applied bending moment) where the bending moment Mc is

>

given by, At g PR
M = wtl a/ iy ( j;'?' ) from (5e5)
Hence the maximum compressive stress is,
= 3W F T bt()} b, > where t = web thickness.
o

Substituting for N from (5.18),

£ = 3w zrv"‘Et'b-a’K ° )
nax T - et
Al i i -5, -

A simplification may be made at this stage if it is observed that
7¢5 Pe,will always be considerably greater than P, and fmax then

becones,

£ = 3 oW H *’» W ceeeossconnnee(5019)
Al T PQ

The mean value of all the measurements of bO made (see results
later) can be taken as bo= 0,003 d and giving fmax the uaual value of

yield stress for mild steel i.e. 15.25 tons/sq.in. the following results
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(A2 Y
. o= ! oaoocoooaoeooao(5o20)
F / o+ 000k (05/35)

The value of p in equation (50,20) is the mean intensity of longitudinal
stress which produces y&@ld in compression at the centre of the

member. Applying a load factor of 2 to this,

Foe by creeeevenenseea(5421)
"o i+ O«Ch:?@ 04/&)

This is the value of F_ which will be used in equation (5.1).

The value of fa the actual longitudinal stress is given by,

fa = 3 W
dt

ooooooeoooaooooaoooooeoaaaaoaoo(5Q22)

Effect of applied bending moments in the absence of axial thrust.

A separate investigation of the critical stresses occuring under
the actions of the applied bending moments alone would be much more
complex and is hardly justified in view of the previous simplifications

and the fact that a simple, practical solution is sought.

- The provisions of B.S. 449 will therefore be followed as closely

as possible, Using equation (5.2) with r = {1 = t_
12 3246
where t is the web thickness, B, = 289 t/d, with the

provision that, 128 ‘#> 10 tons /sq.in.

Whence for values of 4/t 2 28,9

Fbc = 289
a/

nooenooonoounenononoao(5.23)
and for values of A/t K  28.9

P, = 10 tons/sq.in.

Now referring to fig. 5.4 +the bending moment at point x is,

N e e N e S e

MX = 0.36 W x
and the outer fibre bending stress is,

fbc = 2,16 W x 5
t(d/6 + xéﬁé )
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The maximm value of f, is given by dfbc /dx =0
ieee, X =+ 4/243%

Whence, f = 506 ‘W coasnoooooooooonaeovooaeoooo(5o24)
bc max. T

Substituting the values of F_, f_, T, and f, from (5621),(5622),

(5623) and (5.24) in equation (5.1) maximum safe values of W (+the

reaction at the support) are given by,

for a/t % 28,9 :
' Ak )
5(!+u-oa¢l‘odlb) v 056 ) ieeea(5425)

rs )

for 4/t 2 8.9 i

PRe )

W = 31 +o0 029k die) & ﬁgd/f )
Fien T 2x4

Alternatively the mammuri safe values of mean long:\.mdlnal stress
are given by,

for d/t < 28,9

toov
1; =

3 + 1L ¢ coscoo(5e26)

e e e e Nt e

fo‘r ad/t 2 28.9 - {lcoQ
P= e die

The relationships given by equations (5426) are plotted in
fig. 5.6 along with the expression for F, from equation (5,21) and
values of Fa obtained from table 7 pf B.S. 449. In using table 7
B.S. 449 the effective length of the member was taken as 0.7 d and
the radius of gyration as “b{ﬂ'-l .

This concludes the theoretical treatment of the problem but before
proceeding to the experimental work the shear stresses existing in the

weld at the mid-height of the member will be considered briefly.



Shiear stress at weld.

Referring to fig. 5.2 the horizontal shear force acting on the
weld at the centre of the web menmber is equal to g_% o Providing
complete penetration of the weld is achicved in accordance with
B.S. 449 clause 44 (c) the area resisting shear is dt/6.

In addition the weld is subjected to a thrust of W/2 and the resultant

stress is given by,

o \F '1*2 = :{ (_"-i V\[/
1L J M{'ﬁ} * av) ) at

The allowable maximum shearing stress is obtained from B.S. 449
clause 20 ag 6.5 tons/sg.in. Whence the maximum shearing stress
limit on the value of W is given by, WY < {1k gy
and the maximum permissible value of mean longitudinal stress is,
] /{) = 3% e = § 2K ta'\'w//..\f: A
The welds in the intermecdiate meubers (other than under load points)
carry no axial thrust but a value of horizontal shear of Wl/d.
By a similar reasoning to that used above it is readily shown that
the maximum permissible value of mean longitudinal stress is

P = 3.53 tons/sq. in. which is less than that above
and hence the more critical of the two, however, the values of
P given by equation (5.26) are seen to be less than this for all
values of d/%. It may be concluded that shear stress at the
weld is not critical and it is significant that of all the tests
conducted by the author in no case did any sign of weld failure
occur. In one test carried out by the makers, in a series of
six, weld failure occured at a load approaching the buckling load

but later examination showed the weld tc be faulty-.
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Experimental work on web stability.

The tests were all conducted on beams in the "as received"
condition supplied by the mekers, the beams being cut to length by
sawing as required.

Figure 5.5 shows diagrammatically the test arrangement. The
beams were simply-supported and loaded in all cases with two
concentrated loads from hydraulic jacks measured by means of
pressure capsules. The disposition of the loads and the span
for each test are shown in table 5.1 along with other experimental
data. In cases where it was intended to examine the web
continuously throughout the loading process up to buckling the
loads were asymmetrically disposed about the centre of the span.

The two loads were maintained equal for all the measurements and
’the end of the beam where the reaction was greatest was the end
examined.

The two hydraulic jacks were completely independent each having
its own pump and pressure capsule.

The tests on the 15" x 6" beams were carried out in the
University of Glasgow, in the tésting frame already described, and
were in the nature of preliminary tests as far as web buckling was
concerned. Numbers 1 and 2 of these tests were designed to
show the difference, if any, between a welded and an unwelded beam.
Both these beanms had holes flame cut in the web according to the
standard pattern, beam 1 was tested in this condition whilst beam 2
was cut and welded along the centre-line for the whole of its length.
The welded beam required a higher load to produce buckling (table 5.1)

but it is not intended to attach any significance to this as the



71.

5 'S 94

g, Heb

T82IA3T YNINIVYLSIAY WYILVYN

YNIMOKS  IN3WIINYIIY YNIdyOT)

2 wut | J TNAOY -3T1UH f, | L,
‘Lsal !

J3ANN WY3E > « |

s1109 ¢ WU .
R 20 N W\ =
- === TNCOY-3TYH X
—a {77 r oM L
s108 ¢ W NT \ -
$39NVY 'S'W Tr Y q e
TR

‘$3INSOYD IYNSSIVY  sMoL Ol
"SMIVE 211apWIMIRH  Shol N\o



Ve

5.1

Table.



SUMMRRV OF TESTS ON WEB STABILITY

TABLE S.1.

- - MEAN
Srin|ves |“ORL ] neviutes | neen (o woe ot Mo i
a | b | L | s or 8. e | ¢
. I 6" | b | 29.2| ©-200" 0022 o | No Resut “w:8° No RESULT TS 92-8°
4%'1 ‘s 2 . " “ 0.203" .0033 d | No Regut “-s No RESULT -8 |21.2
3 | v | w | o.148" 002w d 3.4 - e o | | T et eemaian
. I + |7.0" |30 o0-210" .00bo d | No ResuLT §.0 No RESULT | /2.0 |2%-6
b x3 2 ] " " 0.210" 0033 d NoRESULT 5.0 No RESuLT 3.3 28.6
3 “ " " 0.0 ooso d 2.6 §.0 b2 12.0 |28.-6
AN I « | 4" | 21"| o.210" oouy d 3.6 7.9 b9 o |38
2 “ . . 0- 220" 0013 d 2:3 6-s” ¢ e |deu
P, 1| 10.4" 324" 633" o-380" - No RESULT 8-8 No R ESuLT 975 | 39.57 | HoLeS FLAME CUT OUT OF I5X0" x v5 & &.5.T,
1$x b N . . " 0.380" _ NO RESULT 20.0 No R ESULT "1 19,47 |PTTO BVT cuT ALoNG & OF BEAM AND WELDED
3 |6-3%| » [1-83"| e.360" - No RESULT 22.0 NORESULT | 2.2 |4/
o, 3" | 135" 6257324 0.22%" 0000 d 2:9 19 43 11 | %o ]
2 ol ] 0.228" 0029 d | NORESULT 82§ NoRESULT| 2.2 |«o
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difference in load between the two tests is not greater than that
found in other tests on supposedly identical b?gmso

The remainder of the tests were carriézrét King's College in
the structural testing space frame showm in fig. 5.16. These tests
were more exhaustive in that the behaviour of the web member was
observed at all loads up to buckling and in each case an attempt
was made to record the load at which yield first developed.

Deflections were measured with Mercer dial gauges reading to
0.0001" and strains with the 20 mm. gauge length Mai-hak vibrating
wire gauges already mentioned. Aéain the clamp shown in fig. 3.4
was used to hold two gauges in position on the specimen.

The Mai-hak equipment permitted a continuous exploration of
strain that would not have been possible with fixed resistance gauges.
A few readings sufficed to . show the region of maximum strain and this
could then be studied in more detail.

The lateral restraining device used in the sgpace frame is also
shown in fig.5.5 and again in fig. 5.17. At each end of the bean
under test a 2" x 2" M.S. angle was fixed in the frame at right-angles
to the beam and on this were bolted, in suitable positions depending on
the flange width under test, two short lengths of 2" x 2" angle.

These were drilled and tapped to take +" dia. bolts which were
arranged to bear on the top flange of the bean under test. This
device provided lateral support and enabled the top flange to be
returned to its original position after each load increment so that
the position fixing would be virtually 100%. In order to achieve
the latter a dial gauge was positioned on the top flange and a

constant reading maintained using the half-inch dia. bolts as the
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test proceeded. The arrangenent can be seen in fig. 5.17
which also shows the buckled form of a beam after test.

The following is an outline of a typical test procedure,

1) Check dimensions of beam, i.e. depth, web thickness, dimension
d/6 at mid-height of web etc.,

2) Measure lack of straightness at centre with 0.001" depth gauge.

3) Arrange beam in frame and check dimensions a, b and L (fige.5.5)

4) Attach dial gauges, strain gauges etc.,

5) Apply a small load a number of times until uniformity of readings
with load is achieved.

6) Carry out the test removing strain gauges before taking beam up
to ultimate load.

One difficulty in using the Mai-hak gauges lies in the limitation
on the total strain that can be recorded for a single setting of the
gauge. This varies from gauge to gauge but for the 20 mm. gauges
is always of the order of 7.5 x 10"4, and with E = 13,400 tons/sq.in.
this represents a stress of approximately 10 tons/sq.in. If it is
required to measure strains larger than this the zero reading of the
gauge has to be changed during the test and this introduces a source

‘ s changed
of possible error. However, if the setting of 4to gaugekwell
within the limit of elasticity some check is obtained from the j
continuity of the readings. This method was found to work quite
satisfactorily providing reasonable care was taken with the gauges.

The experimental results are summarized in table 5.1 which gives
the reactions W at which first yield and buckling occured with the
corresponding values of mean longitudinal stress. These results
are also shown plotted in fig. 5.6.

A selection of the results of strain and deflection readings is



shown in figs. 5.7 to 5.15. These are sufficient to give a
fairly complete picture of the behaviour of the beans. Figs. 5e7
and 5.13% show the variation in longitudinal stress along the length

of the web member and +the maxinum mean compressive stress is seen to

occur at a depth below the centre approximatelg‘equal to 0.25 d which

agrees fairly well with the theoretical value of 0.29 d.

Fig. 5.10 shows the variation in longitudinal stress at the
mid-height of the member for test 6" x 3" No.l showing reasonable
agreement between theorctical and actual values. The agreement
is better in the case of test 43" x 13" No. 1 shown in fig. 5.12.
In the first case the effect of bending in a plane normal to that
of the web has been overestimated and in the second case it is seen
to be underestimated.

In studying the buckled form of the web it,was observed that
in all cases the centre of the node occured at a point about 0.16 d
below mid-height. In testing 6" x 3" No. 3 strains were measured
at this point and the results are plotted in fig. 5.10 so that a
comparison may be made with stresses occuring at the centre of the
member in a similar beam.

A typical buckled form is shown by fig. 5.17 and fig. 5.18,

In all cases the strain measurements were made at points as
near as the width of the gauges allowed to the straight boundary of
the member. In fact these measurecments were made at points
distant approximately 3" from the boundary. In consequence the
actual boundary stresses will be generally somewhat higher than those
recorded but it is not thought that the differences will be serious.

Agreement between predicted and measured stresses is generally

/o3
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Fig. 5-16

Space frame, Structures Laboratory,
Kingfs College.



Figure 5*17

Showing space frame, lateral restraining
device and beam after test.
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Fig. 5.18

Figure 5*18

A typical web buckling failure.
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good, in Tact better than would be expected in view of the far
reaching simplifications made in the theory. The approximation
in the shape of the member to that of fig. 5.3 does not seem to have
invalidated the theory and would thus appear to be acceptable.

The theoretical deflection at the centre of the member as
obtained from equation (5.18) is sustantially below that obtained
by experimtat, see fig. 5,11, This is probably due to relative
rotation of the flanges. An attenpt was made in developing the
theory to take some account of this but the solution rapidly became
difficult to manipulate and, in view of the difficulty in assigning
a suitable value to the torsional stiffness of the flanges, it was
discaréed. The comparison between the actual and predicted
stresses is somewhat better, figs. 5.10, 5,12 and 5.14.

Referring now to the results shown in fig. 5.6 and using safe
values of mean longitudinal stress as given by equations(5.26)

the following table of load factors (table 5.2) can be deduced.

TABLE 5,2

Test Load factor based on Load factor based on
forst yield. collapse.
45 x 13" 1 No result 5.17
2 Do. 5011

3 5.87 no result

6" x 34 1 no result 4,28
2 Do 4.75
3 2422 4428
7" x 3" 1 2.76 6.00
2 1.68 ' 472
gn x 3" 1 1.87 5610
2 no result 530
" x 6 1 no result 4424
2 Do. 4.83
3 Do. 5:54




ng

The lowest load factor based on first yield is 1.68 and the
highest»5°87 the average being 2.48. The theory is thus
conservative since it is based on yield occuring at a load factor
of 2,00,

The lowest load factor based on collapse is 4.24 and the
highest 6.00 the average being 4.9 which shows the high reserve
of strength possessed by tlie beams.

All the"first yield" load factors in table 5.2 are based on
the load at which a stress of 15.25 tons/sqe.in. was recorded.
In some of the cases where "no result" is quoted‘central deflection
curves were constructed for the end web members and if load factors
are based on the departure of this curve from the straight line
the following table (5.3) results.

TABLE 5.3

Test load factor based on sudden
change in curvature of load-
deflection diagram.

A%H x l’%‘" 1 3.45

2082
611 x 3n 2 2.89
9" X 31! l : 3.48

-

These load factors are generally higher than those from
table 5.2 based on a yield stress of 15.25 tons/sq.in. which might
indicate that the use of this value of yield stress tends to be
rather cautious.

It was observed that some of the beams had an initial twist
in the flanges and in testing them no attempt was made o eliminate

this by packing either under the jacks or over the supports it being
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felt that the beams should be tested as near the "as reccived"
condition as possible. It was necessary however to file off
the proud weld at the centre in order 1o be able to take strain
measurenents there. Beam 73" x 3" No.2 had a marked twist in
the flanges prior to testing and this probably accounts for the low
loads carried by this specimen at failure.

In spite of the high load factors obtained it is necessary
to proceed with caution when the theory is extended to beams with
a d/t ratio greater than 40, Beanms within this category could
not be tested in the frame available as the loads would have exceeded
the capacity of the frame., For a more complete investigation it
woﬁld be necessary to test some of these deeper beams.

A yield stress of 15.25 tons/sq.in has been used throughout
as this is the generally accepted value for mild steel. It is
knowm however that mild steel exhibits a yield stress in compression
somewhat higher than this, whilst there is a tendency for the stress
to rise continuously during plastic deformation (20). This would
appear to be borne out in some of the tests conducted particularly
the 9" x 3" No 1. Referring to fig. 514 it is seen that stresses
of up to 20 tons/sq.in are recorded at a load of 4 tons and fig. 5.15
shows no sign of distress in the member at this load.

The work of this chapter concludes with some notes and test
results on the use of web stiffeners.

Web stiffeners.

The two beans tested in the web stiffener investigation of
chapter 4 (see fig. 4.15) were loaded to collapse after the elastic

neasuremehts had been made, These resulis are given in table 5.4 below.
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TABLE 5.4

Test ax. load carried Mode of
collapse.

Beam with stiffeners 2 x 20 = 40 tons local buckling in
the web between

loads and supporis
away from stiffeners.
Test discontinued when
this became evident.
Beam without stiffeners 2 x 18% = 37 tons Web buckling at one
end.

One further beamrtested having the same section as those
above, loaded in the same way, and having no stiffeners sustained
a load of 2 x 21 = 42 tons before web buckling occured at cne end.

A more thorough investigation of the use of stiffeners would
be needed before any conclusions could be definitely drawn but the
above, along with the corresponding results from chapter 4, would
seem to indicate that stiffeners are not of very great utility in
these beamsg.

The stiffened beam is shown in fig. 5.19 and again after test
in fige. 5.20. The latter shows the permanent set due to vertical
bending. A string line was stretched tightly between the ends
of the top flange and this is seen clearly in the figure.

Two further tests were carried out on 15" x 6" beams on
the subject of stiffened webs. Each beam was of 11' 83" span
and carried two-point loading symmetrically placed at 6' 33" centres
about the centre of the beam. One beam had the end castellations
open and the other had the end holes filled in with welded plate.

The results of testing these beams to collapse are shown in table 5.5.



The 15"

X

o" beam with welded stiffeners.

Fig.

5.19
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The stiffened beam after test showing
permanent set due to vertical bending.

Fig. 5.20
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TABLE 5.5

123

e vcamd

Test

max. load carried

Mode of collapé%“'

s A e

Beam,open end

cagtellations

2 x 22

44 tons

Web buckling at one end
over support.

Beam with end
castellations
filled-in

2 x 24 = 48 tons

Some sign of local
crippling in top flange
under one load. No
visible signs of buckling
in the beam.

Again these results could not be taken as conclusive without

a more thorough investigation but the indication is that the filling-

in of the end castellations increases the ultimate strength of the

beams by a small, but measurable,margin.



CHAPTER 6

Discussion. Recommendations for design.

Méntion of related problems not investigated.

Bibliography and references.




It has been the purpose of this work to attempt to give a
fairly complete picture of the behaviour of castellated beams over
a range of spans and loading conditions wide enough to cover the more
critical casecs. The cgntral concentrated load has been
extensively cmployed as it:;ossibly the most critical loading
condition of all and is the one most easily manipulated in the
theoretical work. The alternative two-point loading condition
was adopted where it was desired to produce high shears at the ends
of the beams and a region of uniform bending between the loads.
Other loading arrangements may be desirable in order to illustrate
other features but it was felt that these were of a secondary
nature,

Throughout the work on stress distribution‘the emphasis has
been on the determination of boundary stresses. In this
connection it is felt that the vibrating wire strain gauge was the
best gauge to use. Once a suitable clamp was designed to hold
the gauges the measuring of strains was both quickly and easily
accomplished. The gauges have the distinct advantage of
permitting a less extensive preparation of the surface than with
other gauges, and a freedom for the operator to explore the stress
distribution at will. An equivalent exploration using electrical
resistance gauges would have been much more time consuming.

The use of the gauges to measure internal stress distributions
is not so convenient however. An attempt was made to design a
clamp which would enable internal strains to be measured but this

was not successful. Some neasurenents of this kind were made
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with electrical resistance strain gauge rosettes but the results
were not very illuminating and have not been included in this thesis.

Some discussion of the test results and their relation to
theoretical values has already been included at the ends of
chapters 4 and 5, but it would seci convenient to restate some of
these‘remarks herc in order that an overall impression of the
results may be obtained. |

The subject of deflection, an important one from the point
of view of design, has been treated in a fairly comprehensive way.
As expected the deflections of the beams for short and intermediate
spans are considerably greater than those predicted by simple
bending theory. This is due to two main factors; the deformation
of the chords due to secondary bending and that due to the bending
of the web members. These factors are taken into account in
the deflection theory based on the concept of a continuous web
medium‘and the result is that deflections for intermediate and
long spans can be more closely predicted using this theory.

For short spans even this theory is inadequate but deflections in
these cases are generally unimportant, considerations of maximum
stress and buckling coming into prominence.

It is seen that the simple vierendeel theory based on the
assumed location of points of inflexion is adequate for the
determination of flange stresses. The disturbances of the
flange stress distribution due to secondary bending of the chords
,is seen to be small for intermediate and long spans. In these
cases the simple bending theory gives flange stresses comparable

with the vierendeel theory. For shorter spans it would seenm
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neccessary to take account of these secondary stresses.

In the case of the web the vierendeel theory is scen to
predict the type of stress distribution which occurs but it is
inadequate in a number of respects. The magnitudes of the
stresses are usually somewhat greater than those anticipated,
particularly at the top and bottom corners of the holes and in
regions near concentrated loads or reactions. Over the greater
part of the web however, away from the corners and the immediate
influence of concentrated loads, the differences are not nearly
soAseriouso Generally the measured stresses are of the order
of 10 to 15 % higher than the theoretical values.

Further it is seen that the stress concentrations at the top
and bottom coiners of the holes are of a purely local nature and
for this reason may not necessarily be critical.

The theory of the behaviour of the end web member at a support
is shown to be conservative although the variation in experimental
results is such that some of the load factors obtained are less than
the one adopted in the development of the theory.

The experimental work on web stability was limited to beans

with a 4/t ratio of 41.7 or less. lMany castellated sections
have d/% ratios greater than this, for example a 36" x T&" beam
has a d/t ratio of 63 and a 30" x 62" beam a ratio of 67.
The testing of these deeper beams would have required a rmuch larger
capacity testing frame than the one used. Although the results
show a certain unifornity throughout the tests the extension of the
theory to deeper beams should be practised with caution.

The ratio of the average load factors based on collapse and
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first yield of the end web member is seen to be of the order of two.
It may be possible to utilise some of this reserve of strength but it
is thought that this matter warrants further investigation before
this is done.

The subject of the most economical profile for castellation
has not been dealt with but is naturally an interesting one in the
light of the results obtained and will be briefly mentioned here.

The major variables in the selection of the profile are: a,

b and @ of figure 6.l.

@

2 w

The dimension g;contréls the éain in depth by expansion from
the original section,; a and @ control the geometry of the resulting
hole. An incrsase in b for a given driginal section produces
a deeper beam but weakens the section of the chord. An increase
iﬁ‘g gives more material at the mid-hcight of the web member but
lengthens the "bridge" of the castellation and would tend to increase
the secondary bending stresses there and produce larger deflections.

It is clear that the variables must be handled jointly and
a compromise must be made. If the value of b is chosen such
that the increase in depth is 50 % (as for the beams tested in this

work) then a and © can be fixed from considerations of deflection,



stress and web buckling. If it is cdecided that the extra work
involved in stiffening the web is Justified then a can be kept
short and the deflections reduced.

Referring back to chapter 1. fig. 1.3 it is clear that,
for the unstiffened bean, the important criteria are deflection
and web buckling as defined by point C and curve B D of the figure.
An increase in the dimension a gives a higher load at point C
but lower loads along the deflection curve BD,

For a given span it would not be difficult to choose the
nost economical profile but for a general profile to cover all
spans for a given initial section a decision has to be made first
of all on the question of whether +to stiffen the web.

Clearly an answer is not immediately available as to the best
profile. The only statement which can be made in this respect
" in the light of the present experimental evidence, is that for
beams with stiffcned webs (where necessary) the existing profile

as used in this country is perhaps as good as any.

Related problems not investigated.

Apart from the question of the most economical profile
certain related problems not investigated in the present work
will be briefly mentioned.

The lateral stability of the beams probably deserves a
separate investigation. The torsional rigidity of the
castellated beam will be reduced by the presence of the holes.
Generally the design is based on lateral support being provided

to the compression flange of the beam and in these cases lateral



instability need not be considered.

The use of cestellated sections as columns is another topic
of lesser importance. The advantages of expanding rolled sections
are less in evidence for columns than for beams and this probably
accounts for the tendency to restrict their use almost exclusively
10 beanms.

In a work of this kind many results both theoretical and
experinental are naturally ercluded in order to keep the presentation

as concise ag possible. The author hopes that by so doing

nothing of importance has been omitted.
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