A thesis aubmitted for the degree of

Dootor of Philosophy
at the University of Olasgow
by

Gordon H. HoCallum, B. Bo.

Department of Chexistry,
Univermity of Glasgow,
September, 1954 .

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 13838827
Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346
para.
Summery1
Acknowl edrements 3
Introduction:
(1) General 4
(2) Mothods of structure Solution:
(a) Intel and Grror 5
(b) Utilisation of the Patterson Syntheais 6
(o) Relationsinips Eetween Structure Factora 7
(3) Kothode of Refining Atomio Parametera:
(a) The Fo Synthesi: 8
(b) The $\left(F_{0}-F_{0}\right)$ synthesis 9
(4) Sub-Coll Theory: 10
(5) Aocuracy of Crystal Structura Determination 12
The Cryatal and Molecular Struature of Dimethyleortiarooins
15
Introduction
16
16
Experimental
Experimental
17
17
Gryatal Data
Gryatal Data 17
Analyais of the eaxie Projeotion
19
Pigure I. Elaatron Density Projeoted on (001)
Pigure I. Elaatron Density Projeoted on (001)
19
Table I. Atomic Coordinatea 21
Discrasition22
She Grystal and Moleoular Strueture of n-Dodeorlammenium Chloride:
Introduotion 24
Crymtal Data 24
Analyaie of the Structure 25
($F_{0}-F_{0}$) Syntheais on the Projection on (100) 29
Applioation of SubmCell Theory 29
Pigure II. Eleotron Density Projeoted on (010) 32
Pigure III. Diagram of Structurs Projected on (010) 33
Figure IV. Diagram of Structure Projected on (100) 34
Figure V. Diagram Showing the Arrangement of Ionie aroupa 35
Table III. Atomic Coordinates 36
Frrors In Coordinates 37
Interatomic Distaness and Angles 39
Dincussion 41
Table IV. Observed and Ociculated Strueture Factore 43
Studies on the Orystal and Moleoular Strueture of Imerine
Pheuphoric Aotd:
Introduetion 49
Part I - Two Dimensional Work: Kxperimental 49
Cryatal Data 50
Studien on the Crystal and Moleoular Struoture of
L-Serine Fhosphorio Aoids
Part I - Two Dimensional Work:
ittempta at Structure Determination 50
Figure VI A Fourier Syntheais Prejected on (010) 53
Figure VII A Pourior Synthesis Projected on (100) 54
Tabl V. Atomic Coardinaten 55
Pert II - Thrse Dimensicnel Woric:
Introduction 56
Experinental 56
The Three Dimensional Patterson Syntheaie 57
Interpretation of the Patterson Synthesi: 59
Figure VIII. Ssotion of the Three Dimensional
Synthemia at $y=\frac{1}{2}$ 61
Table VI. Observed Struoture Factors 62
Eaforences: 73
Appandix I - Holomiax Oxhital Dogoription of Dimethrioortiorooin:
Introduction 77
Caloulations 80
Table 4 III. Charge Distribution, Free Falence, Bond Orders and Lengtha
Pigure A II. Holeculat Diagraw 86
Discueation 87
Hoferencen 88
Appendix IX - Re-Deternination of the Mila
Aborbtion Leotor: 89

Summary.

The work whioh is described in this thesis is principally oonoernod with X-ray orystallography. Some other work, which involved molecular orbital caloulations, was also carried out and is described in Appendix 1.

Three compounds in all were studied by X-ray diffraotion techniques, and the results of these investigations are summarised below.
(1) Dimethy $\mathrm{CH}_{3} \mathrm{O} . \mathrm{CO}$. (CHI $\left.=\mathrm{CH}\right)_{6} \cdot \mathrm{COOCH}_{3}$, and whioh is the dimethyl ester of an acid isolated from a fungus, orystallises as yellow needles from ohloroforme The orystals are triclinic, space goup $C_{i}^{1}-P 1$ or $C_{i}^{1}-P \bar{I}_{\text {, }}^{*}$ and the unit cell dimensions are $a=9.06, b=7.52,0=6.07 \mathrm{k} ; \alpha=104.8^{\circ}$, $\beta=104.0^{\circ}, \gamma=103.7^{\circ}$. Unfortunately due to all the orystale which could be obtained being twinned, only the projeotion on (001) was studied. However this has been sufficient to show that the oompound adopte the trans configuration throughout the moleoule. (2) A Dodeoylammonium Chiorider The samples of this oompound were prepared, and all the photographs taken, in Sweden. Preliminary work wee carried out on it in this department by C.J. MoCron. The orystals are monoolinic, epace group $\mathrm{C}_{2}^{2}=\mathrm{P2} 2_{1}$, and the unit coll dimensions are $a=5.68, b=7.16, c=17.86$ i: $\beta=92^{\circ} 16$. The projections on (010) and (100) have been studied and subweil theory has been applied to the oalculation of the structure factors. The figures of merit are 15.8% and 21.2% respectively, the higher value being due to difficulties which were encountered in that projection.

* see opposite leat

Summary.

The work whioh is desoribed in this thesis is principally coneerned with X-ray oryatallography. Some other work, which involved molecular orbital caloulations, was also carried out and ia described in Appendiz I.

Three compounds in all were studied by X-ray diffraction teohniques, and the reaults of these investigations are mamarised belew.
(1) Bimothytoertiorooin: This onmone. .. Pormula
$\bar{I}_{\text {, }}$ and the
$\begin{array}{ll}\text { Dhough the resuils of the analysis detinilcly maicaic } & 1, \text { and the } \\ \text { the lation spuce group, } & x=104.8^{\circ},\end{array}$
ADD definitcly madicate
is of an acid on ohloroform.
unfortunately aue to all the oryatals which ceuld be obtained being twinned, only the projeetion on (001) was mtudied. However thim has been sufficient to show that the oompound adopte the trans configuration throughout the molooule.
(2) A- Dodeorlamonium Chlerides The samplea of this compound vere propared, and all the photographa taken, in Sweden. Preliminary work Whe carriod out on it in this departmont by C.J. MoCron. The orystals are monoclinic, space group $C_{2}^{2}-P 2_{1}$, and the unit cell dimensione are $a=5.68, b=7.16,0=17.86$ 2y $\beta=92^{\circ} 16$. The projections on (010) and (100) have been studied and sub-eoll theory has been applied to the calculation of the structure factors. The figures of merit are 15.8% and $21 \cdot 2 \%$ rempectively, the higher value being due to difficulties whioh were encountered in that projection.

The bond leagths eto. have been calculated and no abnormalities discovered. The standard deviations of these bond lengths are also given.
(3) L-Serine Phosphoric scids This oompound is an important aminc aoid which posseases an especially interesting feature in the phoaphate group. The orystals are orthorhombic, apace group $p_{2}^{4}-\operatorname{Pr}_{1} I_{1} I_{1}$, and the unit cell dimensions are $a=7.79, b=10.24$, - 9.09 8. The projections on (010) and (100) have been studied and a variety of methods was amployed in an attempt to affect an analyais of the atructure. Unfortunately none of these was auccesaful. Consequently complete three-dimensional data have been collected and a three-dimensional Patterson ayntheais has been scmputed on X-RAC. It is hoped that this will lead to a complete analysis of the etruoture being poasible.

In Appendix I is an acoount of some molecular orbital caloulations which were perfomed on dimethylcorticrooin. Theae show that the molecule has a large amount of resonanoe energy and that this leads to the formal double bonds being considerable longer, and the formal aingle ones being considerably chorter, than "pure" double or aingle bonds respectively. The bond orders are oompared wh thome in the corresponding conjugated hydrocarbon and a disousaion of probably reactivity is also given.

Appendix II contains a short note on the re-determination of the Ifim absorbtion factor for Ilford Industrial © Pilm with Gu \mathbf{X}_{α} radiation.

Acknowl edgements.

I should like to thank my two supervisors, Professor J.M. Robertson and Dr. V. Vand,* for their generous help and cooperation during the progress of this researoh, and to thank Dr. T.H. Goodwin, who gave me a great deal of useful advice on how to write up the molecular orbital calculations.

My gratitude is due also to Profeasor Ray Popinsky and his staff at the Pennsylvania State University who ovaluated the sections of a three-dimensional Patterson eynthesis on X-RAC, and to the Department of Soiantifio and Industrial Research for thedr maintenance grant, duriag the tenure of which this work was oarrifed out。

- Iow at the Pennayivania State Univeraity, State Cellege, Pao, V.S.A.

Introduction.

1. General:

It is less than fifty years since X -rays were first employed to study matter in the solid state, and during this period our knowledge of the intimate structure of solids has increased enormously. Before the advent of X-ray crystal analysis and other allied teohniques it was not possible to make any direct study of the details of molecular atructure as it exists in the solid state. Chemioal studies could, in general, only be made if the solids were first vapourised, melted, or dissolved in a suitable solvent, and there could be no guarantee that this had not brought about some fundamental change. This position has now been completely changed due to these newer methods and, in cortain instances, our ideas concerning the solid state revolutionised. Also oertain theories, such as that of hydrogen bonding, have been oonfirmed in a way which would not have been possible by any other known method.

The atudy of organic crystals by these methods has canbled us to confirm very nearly all the structural deductions of the organic chemist and to differentiate between structurea of equal ohemical plausibility. ${ }^{1,2 \text {. Further than this, accurate measurements }}$ have been made of a whole range of organic molecules, 3, 4. and attempts are now being made to eluoidate the structures of molecules so complex that they have not yet yielded to the ordinary methods of ohemistry. ${ }^{1,5,6,7 .}$

It is also a consequence of these studies that nowadays
a great deal of attention is being paid to the more theoretical
espects of chenistry, bince the theoretioians have now got a sound basis on which to work. ${ }^{8}$

2. Methods of Structure Solution:

When we record the diffraction pattern of a exystal the knowledge of the relative phases of the reflections is lost. Consequently the process of structure solution oannot in general be direct. Various methods have been devised to assist in overcoming this difficulty, but none of these is infallible. An account of some which found application in the present work is given below.

2 (a). Trial and Error:
This is the simplest and oldest method. It consists of postulating a set of atomic positions which oonform with space group requiremente and which are ohemically plausible. A general marver of the intensities is uaually of great assistance in this. ${ }^{11}$

The structure factors which are calculated on the basis of these positions (F_{0}) are then compared with the observed ones (F_{0}), whioh are obtained From the measured intensities. The overall agreement is tested by means of the discrepancy or figure of merit (R) which is given by,

$$
R=\frac{\sum\left|F_{0}-F_{c}\right|}{\sum\left|F_{c}\right|} \times 100 \%
$$

It is not possible to lay down cast-iron rules about the maximum acceptable value of R. The only reliable guide is individual exporience.

We can only use this method when dealing with fairly simple or regular structures. If it were applied as outlined above
to complex onos it would involve a vast anount of computational work. he method has, however, been used with great success in many instances. ${ }^{3,} 9$.

2 (b) Utilisation of the Patterson Synthesia:
In this treatment we use only the observed data in order to evaluate a function P (UWW) which gives information about interatomic vectors. It is normally called the Patterson ${ }^{12}$ synthesis and can be represented by the Fourier series, 13

$$
P(U V W)=\frac{1}{V_{c}} \sum_{-\infty}^{\infty} h \sum_{-\infty}^{\infty} k \ell|F(h k l)|^{2} \cos 2 \pi(h U+k V+l W)
$$

Evaluation of this function for a unit cell of N atoms leads to N^{2} peaks, which represent weighted interatomic veotors and of which N are at the origin, so that there will norrally be a great deal of overlapping due to the limited resolving power of the wavelengths employed. Consequently various modifying functions 9 have been proposed in attempts to improve the resolution, which will obviously be much poorer if the function is evaluated in only one or two dimensions instead of three.

It is possible in the course of structure analysis to employ the vector map which this method gives, because, as Wrinch first showed, we can always recover the fundemental set of points from its vector set. 9 In theory, therefore, it should always be possible to interpret a Patterson synthesis. Unfortunately, however, due to the complication of non-resolution of peaks, which has al eady been discussed, a Patterson synthesis does not yield a set of points, and a further difficulty arises from the fact that two or more fundemental sets of points, which Patterson has called
homometric, can have the same weighted vector set. This means that we cannot always obtain the vector set of points from the map and, when we can, we cannot distinguish between homometric pairs from the map alone.

When this method is employed in practice our task is somewhat simplified because we can always make use of additional pieces of information, such as bond lengths and known configurations. Nevertheless even with this help success cannot be guaranteed, although it seems probable that trial and er cor methods based on inspection of the Patterson synthesis are the most powerful available at present. The usual application of the method ares 9
(1) to locate a heavy atom, whence the analysis may proceed by Fourier methods if we use the phase constants calculated for this atom as a first approximation. 14, 15 (see Section 3 (a))
(2) to determine the fundemental set of points from superposition methods. 16, 17. This process may be assisted by the presence of a heavy atom. 5
(3) to determine interatomic vectors from known interatomic distances. 18. 2 (0) Relationships Between Structure Factors.

In a crystal the electron density can never be negative and this alone is sufficient to impose limitations on the magnitudes and phases of the structure factors. 9, 19, 20. Hence it is possible to derive relationships between structure factors which are known as Harker-Kasper inequalities. Wen only a centre of armetry is present the most powerful of these is, 23

$$
\left|U_{H} \pm U_{K}\right| \leqslant\left(1 \pm U_{H+K}\right)\left(1 \pm U_{H-K}\right)
$$

Here H and K refer to Miller indices and the U's to the aharpened structure factors on a unitary soale (i.e. $F(000)=1$). When further elements of symetry are present more inequalities can be deduced.9, 13.

Statistical relationships between the signs (s) of the structure factors in centrosymetrical orystals have also been discussed. ${ }^{21,22,23 \text {. If the unitary structure factors involved }}$ are about 1,5 times the root mean square value then the relationship,

$$
S_{H}=\overline{S\left(S_{k_{i}} \cdot S_{H+k_{i}}\right)}
$$

is probably, but not necessarily, true.
Ohfortunately the practical utility of these relations is limited because of their insistance on strong unitary atructure factors. In complicated structures, where the method would be of greatest use, the average value of the structure factors is small and there are few much greater than average. Nevertheless successful use has been made of the method. 23,24 .
3. Methods of Hefining Atomic Parameters:

In this section we shall assume that approximate
atomic coordinates have been arrived at by some means or another and we shall consider how these can be improved.
3. (a) The Fo Synthesis ${ }^{9}$

The olectron density (ρ) in a crystal is periodic and
can be represented by the Fourier series,
$\rho(x y z)=\frac{1}{V_{c}} \sum_{-\infty}^{\infty} h \sum_{-\infty}^{\infty} k \sum_{-\infty}^{\infty} l\left|F_{0}(h k l)\right| \cos 2 \pi\left\{\frac{h x}{\alpha}+\frac{k y}{b}+\frac{l z}{c}-\alpha(h k l)\right\}$ which oan be evaluated in one, two, or three dimensions.

In practice one evaluates the series using observed
coefficients ($F_{\text {(hel })}$), and phase angles $(\alpha$ (hl)) calculated for the postulated structure. If this has not been too wide of the mark a density distribution will be obtained which should enable us to choose improved coordinates. The process is now one of successive approximation to the true structure.

If there is a centre of symmetry present the complexity of the problem is greatly reduced since, if the centre of symmetry is chosen as origin, the phase angles can only have the values 0 or π. In these cases the principal thing is the determination of the correct signs and the refinement dan proceed much more rapidly. Even if all the phase angles included in the synthesis are correct, the coordinates normally obtained from an F_{0} synthesis are not the true ones. This is because the F_{0} values are subject to random errors of measurement as well as to certain systematic ones, and because the series may not contain all terms of appreciable magnitude due to the limitations of the wavelengths employed. It is passible to correct for errors caused by series termination and ab--morion, but not for extinction and random errors, although their effects may be minimised. 3. (b) 9,25,26 3. (b) The $\left(F_{0}-F_{0}\right)$ Synthesises

We compute this synthesis from a Fourier series similar to that given in section 3 . (a), but with ($F_{0}-F_{0}$) replacing F_{0} as its coefficients and normally only in two dimensions. It has properties which make it particularly useful in the final stages of crystal structure analysis as a complete picture of the causer of discrepancies between F_{0} and F_{c} is obtained.

From the reaulting difference raap we are able to decide on the magnitude and direction of the required atomic shifts, which are in the direction of the steepest ascents and which eliminate errors aue to termination of series. Errors due to wrongly assumed atomic scattering factors and anisotropic thermal motion are also deteotable as well as peaks due to hydrogen atoms. In the recent tery acourate study of salicylic acia ${ }^{2}$ the effects of bonding were even allowed for.

It should be emphasised that several ($F_{0}-F_{0}$) syntheses are normally required before all these ocrrections can be properly allowed for, and that fine details will only show up if the initial intensities have been measured with sufficient acouracy. In the most accurate two dimensional work Geiger-oounters are used for this purpose。 $26,27,28$.
4. Sub-Cell Theory: ${ }^{29,} 30$.

Regions of structural periodioity are often to be found within a molecule, e. g. hydrocarbon chains and proteins. Thus, in the unit cell (axes a_{k}) of their orystals, there may be one or more regions where the eiectron density is periodic and oan be described by a sub-cell (axes A_{f}). The suffixes mean that the symbols refer to all three axes, k being used for the main-oell and j for the sub-cell.

The equivalent positions in a aub-cell region are
given by,

$$
x_{k}=u_{k}+t_{j} A_{j}+x_{j}
$$

where X and X refer to main and sub-cell parameters respectively,
${ }^{4} \mathrm{j}$ enumaratis the requirsd sub-cell, and u_{k} given the onordinatea of the nearest corner of the block-shaped sub-cell region referred to the main-cell origin. The centre of gravity $\left(x_{m}\right)$ refierred to the main cell origin is given by the similar expression,

$$
x_{m}=u_{k}+\frac{1}{B}<\left(n_{j}-1\right) A_{j_{g}}
$$

where $N_{j}{ }^{A_{j}}$ gives the edges of the sub-cell regione The sub-cell region has finite volume and therefore each of its reciprocai lattice points will be surrounded by an interference fusotion,

$$
I=\prod_{j} \frac{\sin . \pi N_{j} H_{j}}{\sin \pi H_{j}}
$$

where H_{j} refers to the aub-cell Miller indices. To refer the sub-cell diffraction amplitude to the origin of the main-cell, I mast be multiplied by a modulating factor exp. ($2 \pi i x_{m} h_{k}$), where h_{k} refers to the mainmcell Hiller indices. Mhen, since the contribution of the different parta of the main-oell to the structure factors are additive, we can write for F_{h}, the main cell atructure factox, that $F_{h}=F_{h}^{0}+\prod_{j} \frac{\sin \pi N_{j} H_{j}}{\sin \pi H_{j}} F_{H} \cdot \exp \left(2 \pi i x_{m} h_{k}\right)$, where F_{h}^{0} is the contribution of atoms not included in the aub-cell region and $F_{\text {H }}$ is the structure factor of the aub-cell. The main and sub-cell translations, diffraction orders, etc. can be interrelated by the same transformation matrix, 13 e.g.

$$
\left(H_{j}\right)=\left(s_{j}^{k}\right)\left(h_{k}\right)
$$

where ${ }_{j}^{k}$ are the transformation coefficients.
When the number of non-sublattice atoms is amall it is
sometimes possible to use this theory in structure solution, 30,31
and a angegtion has been mace that fits right be posibibie to appiy it to some very lerge mol oculese In our cese, however, it was employed only to simplfy the structure pactor oalculations.
5. Aocuraoy of Grystal Strveture Doterminations 4

In ordar to discuse quantitatively the results of our inveatigations we must have some means of assessing the experimental arrors, and proper aignificance tests to apply before drawing conclusions from comparisons. These errors result ohienly from errora in the F_{0} Values and imperfections in the model used to oalculate the $F_{c}{ }^{\prime} \mathrm{s}^{\circ}$ Prrore in cell dimenaions and approximation exrors in computation are mermally of much less consequence.

Cruickshanis ${ }^{32}$ has studied these errors and has arrived at the fo?lowing formalae for the standard deviation of electron density $6\left(\rho_{0}\right)$ and of the x-coordinate of the n-atom $6\left(x_{n}\right)$,
$G\left(\rho_{0}\right)=\frac{1}{V_{c}}\left\{\sum_{3}\left(F_{0}-F_{c}\right)^{2}\right\}^{\frac{1}{2}}$, and $6\left(x_{n}\right)=\frac{2 \pi\left\{\sum_{3} h^{2}\left(F_{0}-F_{c}\right)^{2}\right\}^{\frac{1}{2}}}{a V_{c} C_{n}}$.
Here C_{n} represents the central ourvature, $\frac{\partial^{2} e}{\partial x^{2}}$, at the oentre of the n-th atom, \sum_{3} meana sumation over all the F_{0}^{\prime} en including $F(h k 1)$ and $F(\overline{h k 1})$, and the other symbols a, ∇_{c}, and h, have their usual signifioance. With regard to reflectiona whioh are accidentally absent, Cruickshank ${ }^{32}$ suggests leaving them out if series termination has been correoted for by an F_{0} (or the equivalont ($F_{0}-F_{0}$)) synthesis.

These standard deviations are liable to be an under--astimats if many of the phases are badly wrong. They also require modification in the following sircumstences:
(1) The structure is non-centrosymmetrical. Each must then be
multiplied by two if the atructure does not have a centrosymmetrical projection ${ }^{33}$ on a plane or line and by a value between one and two if it does. ${ }^{18}$
(2) The number of unknown parameters is not much less than the number of independant F_{0} values 34

The standard deviation of a bond 6 (d_{12}), provided that

$$
\sigma\left(x_{n}\right) \approx \sigma\left(y_{n}\right) \approx \sigma\left(g_{n}\right)
$$

is given by

$$
6^{2}\left(d_{12}\right)=6^{2}\left(x_{1}\right)+6^{2}\left(x_{2}\right)
$$

alince errors at right angles to the bond do not affect its length. The value of $6\left(d_{12}\right)$ will be greater, however, should the atoms concerned be related by symmetry.

It is often desirable to be able to oompare bond lengths, either experimental with theoretical ones or two sets of experimentally derived ones. In the latter case let the determinations be l_{1} and l_{2} with estimated standard deviations $6\left(l_{1}\right)$ and $6\left(l_{2}\right)$ respectively. Then, following the treatment of Cruickshank and Robertson, ${ }^{8}$ we can write that,

$$
t_{0}=\frac{\left(l_{1}-l_{2}\right)}{\left\{\sigma^{2}\left(l_{1}\right)+\sigma^{2}\left(l_{2}\right)\right\}^{\frac{1}{2}}}
$$

The following arbitrary conventions oan now be applied to decide on the significance of any difference,

$t_{0} \leqslant 1,960$	not aignificant,
$\mathbf{1 . 9 6 0}<t_{0} \leqslant 2.576$	possibly aignificant,
$2,576<t_{0} \leqslant 3,291$	significant,
$3.291<t_{0}$	highly aignificant.

When a theoretical bond length is used for comparison the expression

Is modified by conaidering that it has zere mtandard deviation.

The Crystal and Moleouiar Structure of Dimethyleortiorocin.

Introduction.

Cortiorooin, a new pigment, was first isolated by Fratman ${ }^{35}$ from the mycelium of a mycorrhiza fungus. He reported it to be a polyeme diearboxylic acid, of formula $\mathrm{HO} . \mathrm{CO} .(\mathrm{CH}=\mathrm{CH})_{6} \cdot \mathrm{COOH}$, whose role in fungal metabolism is not yet known. Since then, cortisalin, another compound which possesses a polyene ohain without isoprenoid methyl substitution, has been isolated from a fungus by Grippenberg. 36 It has the formula:

and it therefore seers possible that such compounds are of general importance among the fungi.

The acids of general structure HO.CO. $(\mathrm{CH}=\mathrm{CH})_{n} \cdot \mathrm{COOH}$, where $n=3,4,5$, and 7, were prepared by Kuhn and his collaborators. ${ }^{37}$ Corticrocin itself, which is the missing link in this series, has also been synthesised recently. ${ }^{38}$ None of these workers, however, were able to establish the geometrical configuration of the compounds, although it appears very likely from the study of its ultra-violet absorbtion apectra that dimethylcorticrocin is trans throughout. 35 The present work shows that this is indeed the case.

The bond lengthe etc, in corticrocin are also of great interest because of the conjugated chain. Unfortunately, due to the adverse orystal habit, it was only possible to obtain one two dimensional projection of the structure so that no measurements of the molecule could be made. Theoretical bond lengths have howeyer been oalculated, and are to be found in the appendix.

A supgly of corticracin and of its dimethyl ester was obtained from Frdtrane 35 It was decided to work on the dimethyl ester rather than the free acid since the latter was either insoluble or only sparingly soluble in most solvents. ${ }^{35}$ the ester was reerystallised from chloraforin in the form of yellow needles by very slow evaporation. When examined under the polarising mioroscope these showed two extinction positions, with the exception of one part which remained dark all the time, ** maxked diohroiemeThie proved to be due to twinning

A previous investigator (Dr. G. Todd) obtained c-axis rotation and oscillation photographs, as well as the corresponding zero-layer moving film, without interference frow the twin. Unfortunately this has net been possible with the other axes. Accordingly attempts were rade to cut the erystals but the fragments o obtained atill showed evicence of twinning. Different solvente and other cortiorocin derivatives were also investigated but the orystals obtained still *ehowed-propetineod diehrotent This meant that only the projection of the structure on (001) could be examined because of the interference of the twin with the photographs about the other axes, and with the first-layer Weissenberg photographs about the c-axis.

Unit cell dimensions were determined pureiy from photographs
about the o-aris which was itaelf measured from a rotation photograph. The remaining unit cell parameters were determined frcm the superposition of a first-layer precession photograph ${ }^{39}$ on a zero-layer one. The precession photographs were taken using $M_{0} K_{\alpha}$ radiation $(\lambda=0.7 \| \AA)$ * Sec

A supply of cortiorooin and of itf dimethyl ester was obtained from Eratrean. 35 It was decided to work on the dimethyl ester rather than the free acid since the latter was either innoluble or only eparingly moluble in most solveats. ${ }^{35}$ the ester was reorystallised from chloroform in the form of yellow needles by
in line 9 replace the deleted portion By, TiNinning was later found to be the cause of this othe exception difference.
AND IN LINE 17 By, appeared to be fwinned. Hising ined e-axis
artion and oscillation photographs, as well as the corresponding zero-layer moving film, wi thout interferonce from the twin. Unfortunately this ham not been possible with the other axes. Accordingly attempts were made to cut the crystals but the fragments o obtained still showed evicance of twinning- Different solvents and other corticrocin derivatives were also investigated but the orystals obtained still * Thow pronotifica-diohrotern This meant that only the projection of the structure on (001) could be examined because of the interference of the twin with the photographs about the other axes, and with the first-layer Weissenberg photographs about the o-axis.

Unit cell dimensions were determined purely from photographs about the o-axis whioh was itself measured from a rotation photograph. The remaining unit cell parameters were determined from the muperposition of a first-layer precession photograph ${ }^{39}$ on a zero-layer one. The precession photographs were taken using $M_{0} K_{\alpha}$ radiation $(\lambda=0.7 \| \AA)$ * see opposite leaf
and the remainder with cu $\mathrm{K}_{\alpha}(\lambda=1.542 \mathrm{~A})$

Grystal Mata.

mmethyloortiorooin, $\mathrm{CH}_{3} \mathrm{O}_{4} \mathrm{CO}$. (CH: CH) . COOCH_{3}, moleoular
 found $1.237 \mathrm{~g} \cdot \mathrm{~cm}_{n}-3$ Trielinic, elongated in the direction or the omaxie.

$$
\begin{aligned}
& =9.06, b=7.52,0=6.07 \AA_{5} \\
& \alpha=104,3^{\circ}, \beta=1040^{\circ}, y=103.7^{\circ}
\end{aligned}
$$

Ho abaent mpeotra, mpaco group $c_{i}^{2}-p 1$ or $c_{i}^{2}-P_{1}^{*}$ One moleoule per unit eall.

Intensity data for tha (hke) refleotiona were recorded on a moving film photograph using the fobertion maltiple filu swohnique. ${ }^{40}$ Kanurexient was by oy astination and lorenta and polariantion correotion were applind. Shis gave a aet of atructure factors on a relative scalo. The film ued was Ilford Induetrial G which has an abeorbtion Pactor of 3.22 (aeo Appondix II)

Analyais of the opaxi Proteotione

The true unit ooll has projection on (001) mach is not particulariy convenient so that one wan ohnsen wich has the dimandions,

$$
a^{\prime}=16.75, b^{\prime}=7.28 \mathrm{R}, \beta^{\prime}=95.7^{\circ}
$$

The advantage of thie ohoice is that the moleoule now lies along the oentre offtre projection unit, and that the asymetric unit is one quarter of the projected area wioh is froomeantred.

An approximate atructure obtained by trial and orror. Thie wal refinod using $f i r y t F_{0}$, and then $\left(F_{0}-F_{0}\right)$ gynthescs.
and the remainder with Cu $x_{\alpha}\left(\lambda=1.542 \AA^{\circ}\right)$

Gryatal Ditang

 found $1.237 \mathrm{~g} . \mathrm{cm}_{\mathrm{o}}-3$ Trielinic; elongated in the direotion of the o-matia.
in line 9 hiter

$$
\text { space group } E_{1}^{\prime}-p i \text { or } C_{1}^{!}-p \bar{i} \text {, }
$$

A.OD
bleonie
though the latter space group is detinitely indiculat
by the resalts of the analysis.
recorded
-it moving film photograph uoing tho Roberteon maltiple filu technique. ${ }^{40}$ Heamureaent was by oye estimation and Lorents and polariantion correotion ware applimi. This gave a set of etructure factora on a rolative soalo. The film uand was Ifford mudutrial o Whioh hat an abeorbtion factor of 3.22 (wee Appondix II)

Analrata of the gexian Proinetione

The true unit ooll has mprojeotion an (001) which ie not partioularly convenient so that ono was ohonen which bas the atmondiona,

$$
a^{\prime}=16.76, b^{\prime}=7.28 \AA, \beta^{\prime}=95.7^{\circ}
$$

The advantage of thie choioe te that the moleoule now liet along the oentre ofthe projection unit, and that the acymantrie unit is one quarter of the projected area mioh in froeosontred.

An approximate otruature was obtaimed by metal and oxrore
 * see opposite leaf

Eyirogen atons, which wion glaced using a model combined with inspection of a difference mayg were included in the later stages of the rork.

The ohief difficulty associated with this projection was due to the lack of resolution of individual atons. This necessitated the use of $\left(F_{0}-F_{c}\right)$ syntheses from an early stage and probably added to the anount of work necessary for refinement. The discrepancy R stands at 21.1% wen all the observed reflections are taken into account and an F_{0} synthesis using signs calculated Por the final atomic coordinates is given in Figure I. The positions of the carbon and oxysen atoms are indioated on this, while the pogitions chosen for hydrogen atoms are ghown by mall oresses. Tho atomic coordinates are given in Tablo I.

$S_{\text {call }}$
2 ${ }^{2}$ A

Figure I.
Electron density projected on (001). The contour line interval ie one electron \mathbb{R}^{-2}, the one eleotron line being broken.

Table I. Atomic Coordinates.

These are referred to the projection unit origin at
centre of symmetry. Equivalent positions

$$
(x, y) ; \quad(\bar{x}, \bar{y}) ; \quad\left(\frac{1}{y}+x, \frac{z}{z}+y\right) ; \quad\left(\frac{1}{1}-x, \frac{y}{n}-y\right)
$$

Atom	$\frac{\pi}{a}$	$\frac{y}{b}$
C_{2}	0.045	0.016
C_{2}	0.051	0.955
c_{3}	0.138	0.008
C_{4}	0.155	0.942

Atom	$\frac{x}{2}$	$\frac{y}{b}$
c_{5}	0.241	0.998
6_{6}	0.252	0.943
${ }^{6}$	0.340	0.995
c_{8}	0.429	0.012
0_{2}	0.395	0.067
${ }^{0}$	0.344	0.927
H_{2}	0.213	0.093
H_{2}	0.000	0.885
H_{3}	0.195	0.085
H_{4}	0.099	0.868
H_{5}	0.296	0.077
H_{6}	0.192	0.874
H_{7}	0.377	0.070
H_{8}	0.462	0.107
H_{9}	0.416	0.890

The atomic soattering curve used for both carbon and oxygen atom was a MoWeonoy ${ }^{41}$ curve for an isotropic oarbon atom with a temperature factor of exp. $\left[-2 \cdot 5\left(\frac{\sin \theta}{\lambda}\right)^{2}\right]$ - Ho allowances were made for the different seattering powers of oxygen and carbon eto. The curve for hydrogen was also an approximation, being a carbon curve similar to the above with a factor of exp. $\left[-4\left(\frac{\sin \theta}{\lambda}\right)^{2}\right]$ and weighted for hydrogen. All thetse approximations probably contributed to raise the discrepancy, but would be unlikely to change any signs or affect the atomic positions by more than a very small amount. Since no bond lengthe or angles have been measured this will not affect our conclusions.

Discussion.

The electron density map obtained, and the reasonable agreement between observed and calculated struoture factors, show that irdtmen's structural deductions ${ }^{35}$ were correct and that the dimethyl ester does indeed have the trans configuration. It is disappointing, however, that no measurements of the molecule could be made due to all the crystals which oould be obtained being twinned.

The atomic positions and the electron density map seem to indicate that there is a lack of regularity along the chain. Fo definite pronouncements on this are possible though, unless aingle orystals of thia, or a related compound, can be prepared. An accurate study of the molecular configuration would thon be posaible.

Table II。

Observed and calculated structure Factors; values of $F(h y 0)$. Indexing for projection unit, $F(h k 0)$ absent when $h+k \neq 2 a_{0}$

h. $\mathbf{k} \sin \theta$	Fo	F	h k	$\sin \theta$	F_{0}	F
000	-	292.0	12,2	0.574	6.1	6.7
200.092	24.0	-18.3	10,2	0.489	42.3	-38.0
$40 \quad 0.185$	47.0	-33.8	$\overline{8} 2$	0.408	13.5	12.4
$60 \quad 0.277$	10.5	-10.5	62	0.332	7.3	-11.0
$80 \quad 0.370$	10.9	9.9	$\overline{4} 2$	0.268	33.6	-31.5
10,00.462	40.5	-41.4	$\overline{2}$	0.223	31.9	-28.3
12,0 0.554	14.7	14.5	02	0.213	152.1	159.9
14,0 0.647	3.1	5.3	22	0.240	$4 \cdot 5$	4.0
16,0 0.739	6.7	-6.0	42	0.296	9.4	-5.5
			62	0.367	10.7	-8.8
15,10.689	5.9	$4 \cdot 8$	82^{*}	0.447	6.9	1.2
13,2 0.599	6.3	-11.7	10,2	0.528	25.8	-31.6
$\overline{11,10.509}$	13.8	-18.3	12,2	0.614	15.5	25.4
9,20.419	6.9	-13.7	14,2	0.701	5.2	-4.8
710.330	14.9	-4.9	16,2	0.789	8.1	-6.5
510.243	27.4	26.6	18,2	0.878	<2.5	-3.0
$\overline{3} 20.166$	46.5	36.5	20,2	0.967	7.4	9.5
I 10.112	6.5	-4.7				
110.120	10.6	26. 3	13,3	0.690	6.6	-7.2
310.184	22.5	19.7	11,3	0.574	<2.8	-2.5
5.10 .266	23.8		93	0.489	<2.5	19.2
5.10 .266	23.8	20.9	73	0.431	13.1	-9.0
710.351	5.9	6.0	$\frac{13}{53}$	0.373		10.8
$91^{*} 0.440$	369	-0.5	53	0.373	3.5	10.0
11.10 .531	41.0	-38.7	33	0.334	23.7	25.6
13,1 0.621	7.1	-8.9	13	0.317	8.1	-11.1
			13	0. 327	20.2	28.3
15.10 .712	8.9	6.5	33	0.360	<2.0	-3.4
17,1 0.802	<2.8	3.0	33	0.360	< 2.0	
19,1 0.895	4.0	-3.4	53	0.413	<2.2	3.7
			73	0.477	9.3	12.7

h k	$\sin \theta$	F_{6}	${ }^{1}$	h k	$\sin \theta$	F_{0}	F_{c}
93	0.550	4.6	10.8	13,5	0.841	2.6	-4.4
11,3	0.628	38.7	-39.3				
13,3	0.708	9.0	-6.3	06	0.638	10.1	8.4
15,3	0.790	7.0	3.6	26	0.653	<2.9	-7.6
17,3	0.875	<2.5	2.7	46	0.681	<3.0	7.1
19,3	0.963	2.9	-3.1	86	0.721	<3.0	-2.9
				10,6	0.769	2.9	-3.7
10,4	0.595	13.2	-20.3				
84	0.535	3.7	6.1	97	0.813	6.2	3.4
64	0.483	7.3	-7.7	77	0.782	< 2.9	-2.8
$\overline{4} 4$	0.44 ?	7.9	-12.4	57	0.756	<2.9	3.5
$\overline{2} 4$	0.426	9.8	-12.0	$\overline{3}$	0.743	<3.0	4.6
04	0.425	39.8	38.0	17	0.739	4.7	-0.7
24	0.444	<2.3	7.4	17	0.748	5.1	4.9
44	0.481	6.4	9.0	37	0.770	<2.9	1.6
64	0.531	<2.6	-3.3	57	0.801	<2.8	c
8.4	0.591	8.8	-3.3	71	0.341	<2.6	2.9
10.4.	0.659	6.6	-16.7	97	0.387	7.6	8.8
12,4	0.732	8.4	5.9				
14.4	0.809	2.7	-1.2	080*	0.350	2.3	0
26,4	0.888	2.6	-2.8				
95	0.640	5.1	-7.8	These planes were left out of the Pourier whown in			
75	0.594	<2.8	-3.6				
5.5	0.558	<2.7	-0.4	Figure I on aceount of			
3.5	0.536	<2.6	11.0	uncortain mign. All non-			
15	0.528	6.3	-6.0		exvod	planem	re also
15	0.538	15.5	15.3	10ft out.			
35	0.564	<2.7	-9.7				
55^{*}	0.601	5.1	0				
75	0.650	<2.9	0				
95	0.708	13.3	12.9				
11,5	0.772	22.6	-24.0				

The Crrital and dolecular Structure of n-Dodecylammonizm Chloride. Introduotion.

Some preliminary detaila of this work heve already been puiblished by Gordon, Stembaen, and Vand, 42 who detail the transitions undergone by the chioride on heating it to $75^{\circ} \mathrm{O}$. They also give unit cell data and the results of a preliminary study of the projeetion on (010).

The $X-m o n o-n-a l k y l$ substituted amoniun halides are of intereat because they exhibit surface activity and polymorphism, the lattar property sugeesting that the hydrocarion chaina can paok in different rays. It is also thought thet the lower mambers oxhibit some form of chain retation since theix crystala are tetragonal ${ }^{43,44}$ at normal temperatures. Sher poiatis of Interest concern the fimensions of the hydrocarbon chain and the packing of the chloride lons with the terminal groupd, ionio ammonium and non-ionic methyl.

Cxystal Data.

The sqmples were prepared and all photographs taken in Fwaden using ouk radiation $(\lambda=1.542 \AA)$ - The unit ooli dimbnaions were ootained from rotation, oscillation, and Wolsamberg photographs.
n-Dodeoslamoniux ohloride, noleoular formala $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NH}_{3} \mathrm{Cl}$ molecular weigkt $22 i_{0} 5$, erystalliain as thin yellowish needies which decompose at about $100^{\circ} c^{45}$ The erystals are monoclinio with,

$$
a=5.68, b=7.16,0=17.86 \AA, \beta-92^{\circ} 16
$$

Two moleoulss per unit cell. Caloulated density $1,015 \mathrm{gm.cm} \mathrm{~g}^{-3}$

Absent reflections；（0kO）when k is odd．Space group $C_{2}^{2}-P Z_{1}$ ． The space group $C_{2 h}^{2}-\mathrm{P} 2 / \mathrm{m}$ is also possible，but requires the atoms to lie in apecial positions，and was for this reason rejected． The above data are in good agresent with thooe of clark and Hudgens． 46

The intensities of the（ h 0 l ）and（ Ok l ）railections were estiwated using the Robertion multiple fism technique． 40 The absorbtion factor of the Gevaert Pilm used is 1．93\％Loreats and polarisation factora wore appiied to the observed intensities giving a set of observed siructure factors which wers later sealed by comparison with tine oalculated values．

Analysis of the Structure．

（hol）zone．Approximate g－coordinetes wrre octained by Mecron ${ }^{48}$ who used one－diwensional Fourier ayntheses on the（DOL）planes． Hs also obtained an indicaition of the x－coordinates．Tais structure W⿵人一 modified in the light of the bromide structure，${ }^{42}$ and on remestimbiliact intensitios（iccron had used a wrong film factor）， a discrepanoy of 32% was obtained．An Fosythesia of the eleotron demsity projected on（010）was thon camied out from which it was seen that the hydrocarbon cinain was arranged in a regular faehion． Consequently it was decided to use sub－aell theory in the saloulation of the structure factors for those atoms．The aub－cell dimensions，projectad on（010），were directiy determined from this eleotron density map，and the sub－cell was ohosen so that it contained two CH_{2} groupe relatad by a centre of aymmetry．There were twe such regions，one associated with each chain in the unit
cell, and with their centroded related by normal space group aymetry. puther cuatails of the sub-eell are given in another section.

An ($F_{0}-{ }_{c}$) syntingsis was then carriad out, ever the whole projections, using aub-cell theory to calculste only the carbon atom contributions to the structure facters. The best positions of ths sut-cell atons, including hy trogen, were then found using trial and error systematically, The beat position of the $C \ell^{-}$ion was found aireotly from the diffarance map. Uncortainty existis, however, about the exact pesicion of the nitrocen atom due to the x - and z - coordinutes of it and the $C l^{-}$ion being almost the same. The nitrogen coordinates were ahosen thyrofore Prom consideration or the Fosymesis und tine hydrocarbon chain. The hydrogen atome of the NH group were powitioned from a model and the final figure of merit oviar the obsorved reflections was 15.8%. The final x-and ecoordinates aro given in Table III and the projection of the atructure on (010) is shom in Figurea IX and ITI. The coloulated and observed structure factors are in liable IV.
ine atowic scaitering curves employed were:
(a) carbon and nitrogen (as N^{+}). A Moweenoy ${ }^{41}$ ourve for an isctropic carbon aton with a temperature faitor of expe $\left[-3 \cdot 9\left(\frac{\sin \theta}{\lambda}\right)^{2}\right]$ (b) chlorine (wic $0 \ell^{-}$). A James and Brindley ourve ${ }^{49}$ with a faotor of $\exp \cdot\left[-3 \cdot 9\left(\frac{\sin \theta}{\lambda}\right)^{2}\right]$
(e) bydrogen. A MeiVeeney ${ }^{41}$ mydrogen ourre with a factor of exp. $\left[-4 \cdot 2\left(\frac{\sin \theta}{\lambda}\right)^{2}\right]$
(0 K 1) zone. It was found that $2 l l$ the even and odd $C-C$ bonds as projected on (010) were approximately equal. Since the chain can be assumed rogular and planar, and the plane of the ohain is inclined to the (010) plane, it follows that the long axis of the ohain must ife approximately parallel to (010). The angle between (010) and the plane containing the chain may then be calculated from the expected and the projected bond lengths. This method is very similar to that employed in Pinding the orientsation of many polynuclear hydrocarbons using data derived from a single projection. 50

The projection on (100) has no centre of symmetry and the origin can lie anywhere on the b-axis, ${ }^{13}$ which means that the y-co-ordinate of any one atom can be arbitrarily ohosen, and that the positions of the others are pixed relative to it. As the exact y-separation of the even and odd carbon atoms was not knowa, even though the chain had been assumed planar, it was decided to fix the chloride ion at $y=0$. The problex is now reduced to one of finding the best y-co-ordinates for the other atome.

The dimensions of the aub-cell for this projection were found from the dimensions projected on (010) and space group considerations. There are again two related sub-oell regons, and each sub-cell has a centre of symmetry. The use of this theory meant that it wes much easier to compate structure factors for trial structures involving systematic movement of
the winule chaine The z-cuorainetits usou ware the satu as these determined from the pacoectiun on (010) and the bost y-coordinate s winch coula be found by making use of the akove facts gave an agreo--ment of 21.9名 between observed and calouiatied atructure factors.
an ($F_{0}-F_{c}$) synuthesis then showed that all the oven numbered oarbon atoms required to be slightly mored in the same direction, This was done by trial and error and was found to have very littio effect on the agrecunent between the calculatad and observed structure factors. It was found that shifting all these even numbered atons by 0.06 A gave the best agreanent, reduoing the figure of merit fron 21.9% to 21.2%, but that a further shift of 0.02% only increased it to 21.2%. Sinoe this work indicated that the agreement between the caleulated and observal values for the structure factors was not partioularly sensitive to changes in atomic comrdinates, it was deaided not to proceed ainy further with the refinement.

The reason for the abova facts are uncertain,
erperially as the ($F_{0}-F_{0}$) synthesis did not yield any large peak: or troughs, however they may have their origin int
(a) the number of Ieflections available not being so groat as in the other zone.
(b) the fact that the projection does not possess a ountre of symetry.
(o) a possibla unfavourable orystal forme

The scsttering curvan usod woys the same as in the other

The grojeoted atruoture is mown mohematioally in Figuze IV and the y-ocordinaten are in Table III. The caleulated and observed struature Ibotor: are given in Table TV.
$\left({ }_{p}-F_{f}\right)$ Syntheris on the Projection on (100) ${ }^{25}$

The normal Fourier cooteloiento uwed in our computations
ares

$$
\begin{aligned}
& \text { A texma } \left.-F_{0} \cos \alpha\right\} \text { - where } \alpha \text { ie a caleulated value for } \\
& \text { i terma } \left.-F_{0} \sin \alpha\right) \quad \text { the phase constant. }
\end{aligned}
$$

In the compatation of the difference map, F_{0} mas xoplaoed by ($F_{0}-F_{0}$) whth appropniato sign, after mhioh normal prooedures ware used. The value of α was left unohanged.

Oschrene ${ }^{25}$ gives a foxmula for the mhift required by any atore whiok lien on a elope in the (F_{0} - Fo mathesis. In the projection on (100) the magnitude of the required chift was found, by frial and error, to be 2.5 timee greater than the ohift whioh mould have been requised had the origin been at a oontre of mymotry. This ia due to phase-angle lag and the value of 1.5 mas token to be the eonstant requirod in the exprestion for etandard doviation of coordinatem in the (Okl) sone. ${ }^{13}$

Applioation of Sub-Coll Theory:

There are two hydroearbon ohains in each unit coll, and the aub-cell was ohomen so that is inoluded only one of thame chains, whioh neana that there are two aub-cell regions related by the normal - pace-group aymetry for $\mathrm{O}_{2}^{2}-\mathrm{PR}_{2}$. The only aymotry olement present in the mub-oell is ocentre of symaetry no that the sub-cell mpace group is $C_{i}^{1}-P \bar{I}$, although it containe two right $^{\text {ght }}$
angles. The anb-cell dimensions, which were found as previously dimarsed, ares

$$
A=5.68, \quad B=7.16, \quad G=2.3262, \quad 3_{S}=114^{\circ} 9
$$

(capitals have bon upped to difformatiate these translations from the main coll ono, mimilast β has aubsoript). Two CH $_{2}$ group e per aub-cell. Eec mubeell region contain mix anb-eells, the centroid of one region being at,

$$
\frac{x}{a}-0.296, \frac{t}{b}=0.452, \frac{8}{c}=0.463
$$

while the centroid of the other region is at the equivalent position for $0_{2}^{2}-22_{2}$.

The transformation matrix, ${ }^{23}$ where \mathbf{y}_{y} are the transformation cooficients, was determined by measuring the mab-cell odgeng, in fractional coordinates, as vectors relative to the edges of the main cell. This employs the following relationship

$$
\left(x_{k}\right)=\left(s_{j}^{n}\right)\left(x_{j}\right)
$$

The numerical value of the tranaforamition matrix are,

The min-acll structure factors were oalealated, as set
onus in the introduction, from the relationship,

$$
F_{h}=F_{h}^{0}+\Gamma_{j} \frac{\sin \cdot \pi N_{j} H_{j}}{\sin \pi H_{j}} F_{H} \cdot \exp \left(2 \pi i x_{m} h_{k}\right)
$$

This was used in the two projections as followas (1) (hol) sone. The plane group involved is p 2. F_{i}^{0} was oaloulated normally. $F_{\text {it }}$ valuen were oalculated normally alse after the subwcell indices had been transformed into equivalent main-oell onea by making use of the relationship,

$$
\left(H_{j}\right)=\left(e_{j}^{k}\right)\left(h_{k}\right),
$$

which is disoussed in the introduction. The term exp $\left(2 \pi i x_{m} h_{k}\right)$ was aimplifiad to $2 \cos 2 \pi x_{m} h_{k}$ aince the centroid at x_{m} is swlated by a centre of symmetry to one at \bar{X}_{m}. The value of the intorferance function was found graphidally by ploting it against H_{3} values (whioh corresponds to the norail Miller index l) Hince thim is the only index which varies. The H_{3} value for each plane may be easily found.
(2) (Okl) zone. The plane group here is pg wioh has no oentre of aymetry. Fin oan be found as before, however, ainoe the mub-coll has a contre of symetry. F_{h}^{0} and $\exp \left(2 \pi i x_{m} h_{k}\right)$ wuat be craluated using the structure factor equations for $p_{i j}^{13}$ while the ovaluation of the interference funotion is entirely analasoue with the method used in the (hol) wonc.

The use of this method mastantially shortens the atruature lactor ouloulationa as compared with the orthotox mothods, the only diasdrantage leing that the chain must be asamed etrictiy periodic.

Figure II.
Elactron censity projeoted on (010). Interval of contours, one electron per A^{2}, except round the chloride ions where only every fourth is plotted. The one electron line is dotted.

Higure III.
Diagrem of atruoture projectsa on (010) showing aertain interatomia distancea. The apatial arrangement is indicated.

Migure IV.

Diagram of projeotion of atruoture projected on (100) mhowing oartain intaratomic distances. The apatial arrangenent is indicated.

Figurs \mathbf{V}.
Diagram showing the arrangement of the ionic groups, Niewed perpindioular to the a b orystal face.

Table III. Atomic Coordinates.

(1) Sub-Cell Courdinates:
$\frac{X}{A} \quad \frac{X}{B} \quad \frac{Z}{C}$

C	0.930	0.965	0.188
H_{1}	0.927	0.817	0.172
H_{2}	0.735	0.025	0.015

(2) Main-Cell Coordinateg: The aub-cell coordinates were converted into main-cell ones, as eet out in the introduction, uaing the relationship,

$$
x_{k}=u_{k}+t_{j} A_{j}+X_{j}
$$

The coordinates of u_{k} are $\frac{x}{a}=0.714, \frac{y}{b}=0.452, \frac{g}{0}=0.141 ;$ and the sub-cell ocordinates can be converted to equivalent main--oell ones by the use of the transformation matrix. The cooridinates of all the atoms, excepting sub-cell hydrogen are then as followss

	$\frac{x}{a}$	$\frac{y}{b}$	$\frac{2}{0}$
c	0.736	0.000	0.034
c	0.778	0.425	0.038
c_{1}	0.815	0.487	0.117
c_{2}	0.513	0.417	0.165
c_{3}	0.648	0.487	0.246
c_{4}	0.446	0.417	0.294
c_{5}	0.481	0.487	0.375
c_{6}	0.279	0.417	0.423
c_{7}	0.314	0.487	0.504
c_{8}	0.112	0.417	0.552

	$\frac{x}{2}$	$\frac{y}{b}$	$\frac{8}{0}$
${ }^{6}$	0.147	0.487	0.633
${ }^{10}$	-0.055	0.417	0.681
c_{11}	-0.020	0.487	0.762
c_{12}	-0.222	0.417	0.810
CH_{2}	0.761	0.273	0.036
	0.612	0.481	0.015
$\left(\mathrm{H}_{3}\right.$	0.112	0.520	0.007
H	0.193	0.515	0.130

(at end of ehain)

These oourdinates were roferred to orthogonal coordinates (in i) in order to caloulate interatomio distances. These are referred to axes a, b, and \bullet^{\prime} mere b^{\prime} ie-eholemennomal to-in-the b-piane-ant O^{\prime} is matually perpindicular to a and b. The relationahips are,

$$
\begin{aligned}
& x^{\prime}=x+z \cos \beta \\
& y^{\prime}=y \\
& z^{\prime}=z \sin \beta
\end{aligned}
$$

where x^{\prime}, y^{\prime}, and Σ^{\prime} are the orthogonal coorainates in \AA and x, y, and are the unit cell ocordinates alse in i.

Erroxs in Coordinates.

The obsexved electron density (ρ_{0}) near the oentre of an atcin oan be closely approximated to by the relation ${ }^{9}$,

$$
e_{0}=Z\left(\frac{p}{\pi}\right)^{\frac{3}{2}} \exp \cdot\left[p r^{2}\right]
$$

where Z is the atomic number of the atom in question, x is the distance from its contre in \AA, and p is a constant for that
particular atom. Te can thus calculete a value for p from measurement on an slpctron density map and the value so obtained for earbon from the (010) projection is 3.2

It is also posafble to obtain a value for the curvature at the centre of the nth atom $\left\{\left(\frac{\partial^{2} e_{0}}{\partial x^{2}}\right)_{n}\right\}$ by the use of this relationship, i.e.

$$
\left(\frac{\partial^{2} e_{0}}{\partial x^{2}}\right)_{n}=2 p Z\left(\frac{p}{\pi}\right)^{\frac{3}{2}}
$$

We can now utilise the formula for standard deviation of a coordinate which is discussed in the introduction. This gives us for carbon,

$$
\begin{aligned}
& 6\left(x_{n}\right)=6\left(z_{n}\right)= \pm 0.045 \AA \\
& 6\left(y_{n}\right)= \pm 0.049 \AA
\end{aligned}
$$

all the carbon atcus havine the same standard deviation. The poaition of the nitrogen atom is much less certain due to overlap, however it will not bsve amaller atandard devistion than the oarbon values. For ohlorine the values are much maller,

$$
6\left(x_{\mathrm{ce}}\right)=6\left(y_{\mathrm{C} e^{-}}\right)=6\left(z_{\mathrm{ce}^{-}}\right)= \pm 0.003 \AA
$$

The standard deviations of bond lengths and angles can now be calculated. We use the root mean square value for the standard deviation of carbon coordinates for this purpose, 51 since the value for the y coordinate diffors from those for the x - and z - ocordinates.

$$
\begin{array}{ccc}
\text { atoms. } & \begin{array}{c}
\text { standard deriation of bond. } \\
\text { length. }
\end{array} & \begin{array}{c}
\text { angle. }
\end{array} \\
C-C \text { and } C-N & \pm 0.065 \AA & \pm 4^{\circ} \\
C l^{-}-C \text { and } N-C l^{-} & \pm 0.049 \AA & \pm 1^{\circ} \\
C l^{-}-C l^{-} & \pm 0.004 \AA & -
\end{array}
$$

This mothod of ealculation negieots tho fact that the carkon nositions were obtained from a sub-cell, i.e. treated colleotively, and it therefore refers to individual distances. The averaged distances, ss such, ars probebir mors acourate. Indeed it is possible that the standard devietion for the averaged bond length is lass, by a factor of the square root of the number of bonds over which averaging has taken plece, than the standard deriation of any one bond. This means that, if we average all aix carbon-carbon bonds, the standard deviation of the average value $i s \pm 0.027$ A, with $\pm 0.03 \%$ being acceptable as a maximua value for the average atandard deviation.

Interatomio Distanoes and Anslos.
(1) Hydrocarbon chain. Mis must be very regular as shown by a. low figure of mosit being ohtained upon application of sub-eall theaxy which gives only any variation in altemate bonds and all the angles equal, i.e. no fine detaila (if any) along the ohain are bown up. The actual distances and angles are:

$$
\begin{array}{ll}
C_{1}-N & 1.48 \pm 0.065 \AA \\
C_{n}-C_{n \pm 1} & 1.54 \pm 0.03 \AA \\
\text { all angles } & 110^{\circ} \pm 2.5^{\circ} \\
C_{n}-C_{n \pm 2} & 2.526 \pm 0.030 \AA
\end{array}
$$

These bond I angthe and angles were obtained by the use of gub-coll theory and are averaged over the whole chain. They agree well with the normally accepted values. 31,57 .

The interchain distances of elesest approach have also been calculated and are shown in Figure III. The ohains are about
4.2 apart, whioh eeparation is in good agreement with the valuen found in n-hexatriacontane ${ }^{32}$ and polythene. ${ }^{52}$ the packing is in the manner most economioal nes ragarde epace, the ohains boing intorlooked, as oan be sesen upon inapootion of Figurea INI and IV. This type of arrangenent is typical of hydrocarion ohaing in feneral and aceounts for the faot that there is a certain oonstanoy about their angles of tilt to (OOi2). For our coupound the tilt is 66° (doduoed from the sub-ooll angle $/ \beta_{\mathrm{g}}$). Phis value is exaotly the same as that for the hydrobromide, ${ }^{42}$ though in the opponite
 Valuee about 70° have also baen founá for a sorien of ailver aalts of fatty aciac, ${ }^{58}$ although other angles of till are posaible if the ohaine silip over one another mo that different aig-zage are inter--lookeci. Such angles have been measured. $57,59,60$.

The diatancen between the terwinal methyl groups of the hydrooarbon ohain and the ohloride ione are also show in Pigure III. The oloseat approaih ia 3.88 ± 0.058 mhich is in good agreament with the 3.81l, the sum of their van der maale radii. ${ }^{53}$ * (2) Lonic groups. The $C i$ and BL_{3}^{+}iona form a layer between the some of hydrooaribou chaing. The arrangement oan beat be esen Tiowod perpinaioular to the ab oryatal faoc as in Figure V. In ewoh vertical row the $0 \ell^{-}$and HH_{3}^{+}iona have approximatoly the namo s-cooprdinates and the rowe are related by sorow axaa, so thest they are alternately above and below the ab face.
sack nitrogen atom in surrounded by three ehloride ions at 3.05, 3.13, and 3.188 (average 3.12母) and by one at $4.12 \AA$ which * see leaf oppostle
4.2R apart, whioh separation is in good agreanent win the valuea found in n-hexatriacontane ${ }^{32}$ and polytheme. 52 the packing is in the manner mont oconomioal as regards apace, the ohains being intarlocked, as oan be aem upon insteotion of Figurea ML and TV. This type of arrangement is typical of hydrocarion ohaina in fonoral and accounts for the fact that there is a certatn oonstancy about thedr ang?es of tilt to (002). for our corpound the tilt is 66° (doduepd from the mub-eoll angle $\beta_{\text {g }}$). This value is expotly the ame as that for the hydrobromide, ${ }^{42}$ though in the opponite direotion, and is closely mimilar to the 622^{6} tilt in n-hexatriacontano 31 Velues about 70° heve also bean found for a seriet of ailyer malts of fatty maide, 58 although other anglea of tilt ax. pomaible if the chaine milp over one anothor mo that different sig-zugs are inter--loakea. Such angles have been memsured. 57 s 59, 60.

LINE I\& AFTER
van der Waal radii.
ABD
(This term is used since the coniact is between an ionis and a non-ionic grouping)
mainel methyl froups of the wre aleo mom in Figure if which is in good tr van der Maala radi.。 53 * form a layer between the

Fiowed perpindioular to the ab aryotal face as in Figure V. In eah vertical row the $0 l^{-}$and Ht_{3}^{+}iong have approximately the samo y-coerdinates and the rows are related by sorew axom, so the they are altomatoly above and below the ab face.

Mach nitrogen atom in aurrounded by three ohloride ions at 3.05, 3.13, and 3.18\% (average 3.12 $\%$) and by one at 4.12 A wich * See leaf opposte

Le a highly aignificant difference (see introduction section 5). The fourth chloride ion can therefore exert only a very weak attraction on the substituted amonium ion. However the diatance of 3.05 A is significantly shorter than 3.21 \& the aum of the radia, 53 but the other two distances do not differ significantly. This mems to indiaate that at least one hydrogen bond is formed between the ammonium group and the ohloride ion. Binnie and Robertson found evidence of aimilar behaviour in hexamethylene diamine dihydrochloride 54 where the interionic distances of $3.01,3.07,3.15$, and 3.24i.55* comperpome vaxy well to those found in oup oompound

Dhscussion.

The saot that we have been able to apply sub-eell theory shows that the hydrocarbon ohains, al though occupying genersl positions in the space group, are built up of a meriea of regular repetitions. This has been called hyperaymmetry, 56 and it has been shown that where this is present the figure of mertt for a trial mtrueture is likely to be higher and probably will mot drop quite so low on refinement. It is possible, therefore, that some of the present disagreement between ealoulated and observed etructure factors is due to this.

The interatomic distances and angles have already been disoussed. These are shown not to differ appreciably frow the expeoted values. As regards the general packing of the moleoules two arrangements appear possible, the one actually adoped and one with two ohains between successive ionic layers, as for example * see luaf opponte
is a highly aignificant difference (see introduction section 5). The fourth chloride ion can therefore exert only a very weak attraction on the substituted amonium ion. However the diatance of 3.05 \& is significantly shorter than $3.21 \AA$, the aum of the radis, ${ }^{53}$ but the other two distances do not differ significantly. This meems to indicate that at

- anmonive group
found evidence of hydrochloride 54 3.15, and 3.242. 55 * mpound.

The faot that we have been able to apply ublecell theory shows that the hydrocarbon ahaine, although ocoupying cemeral positions in the space group, are built up of a seriea of regular repetitions. This has been called hypersymmetry; 56 and it has been shown that where this is present the figure of merit for a trial etructure is likely to be higher and probably will not drop quite so low on refinement. It is possible, therefore, that some of the present disagresment between ealoulated and observed structure factors is dus to this.

The interatomic distances and angles have already been disoussed. These are shown not to differ appreciably from the expeoted values. As regards the general paoking of the moleoules two arrangements appear possible, the one aotually adoged and one with two ohains between successive ionic layers, as for example * see laf oppuate

In the fatty aoids. $57,59,60$. The favoured arrengement, however, ellown more room for the chloride ion and thia is probably the reason for its adoption.

TABLE IV.

Observed and caloulated Structure factors.
(1) Values of $\mathrm{F}(\mathrm{hOl})$.

$\mathrm{h} \ell$	$2 \sin \theta$	F_{0}	F_{c}	h 1	$2 \sin \theta$	${ }^{\circ}$ 。	F。
00	0	-	248.0	1,15	1.313	5.7	7.8
01	0.086	*	2.8	1,14	1.230	4.5	-8.7
02	0.172	11.8	11.0	1, $\overline{13}$	1.146	3.4	-3.1
03	0.258	19.3	18.2	1, $\overline{12}$	1.061	7.0	-7.0
04	0.344	22.0	22.0	1,11	0.980	3.2	-11.7
05	0.430	19.7	20.0	1, $\overline{ \pm 0}$	0.898	13.3	-15.4
06	0.516	13.4	12.6	$1 \overline{9}$	0.817	16.3	-17.9
07	0.602	2.7	1.8	18	0.738	18.4	-19.1
08	0.688	2.7	6.7	17	0.658	19.3	-27.5
09	0.774	9.6	-7.6	$1 \overline{6}$	0.580	26.8	-27.4
0,10	0.860	10.4	-11.2	$1 \overline{5}$	0.507	29.8	-27.4
0,11	0.946	11.1	-11.8	14	0.437	32.5	-25.6
0,12	1.032	13.0	-11.7	$1 \overline{3}$	0.373	29.5	-30.1
0,13	1.118	10.2	-11.6	$1 \overline{2}$	0.321	27.1	-24.8
0,14	1.204	9.9	-12.6	11	0.284	13.3	-14:8
0,15	1.290	18.6	-18.2	10	0.271	<1.1	1.3
0,16	1.376	2.7	1.3	11	0.288	13.5	15.5
0,17	1.462	3.4	-4.9	12	0.326	28.2	27.2
0,18	1.548	3.6	-5.0	13	0.379	37.9	31.6
0,19	1.634	3.4	-3.6	14	0.443	30.7	29.0
				15	0.513	24.9	22.7
1, $\overline{22}$	1.907	4.2	7.8	16	0.588	15.3	17.8
1,21	1.823	<2.0	1.7	17	0.667	10.9	10.5
1,20	1.738	<2.3	2.2	18	0.743	8.4	9.1
1, $\overline{19}$	1,653	3.0	3.1	19	0.828	59.9	59.2
1,78	1.570	3.7	4.1	1,20	0.908	3.6	4.8
1,17	1.486	5.7	5.3	1,11	0.990	5.5	6.9
1, $\overline{16}$	1.400	6.5	6.5	1,12	1.073	5.6	6.0

* not observed due to the oonstruction of the camera.

h l	$2 \sin \theta$	${ }^{5}$	${ }^{\text {F }}$ 。	h ℓ	$2 \sin \theta$	F_{0}	F_{0}
1,13	1.153	3.1	4.2	26	0.753	8.5	-11.9
1,14	1.240	<2.6	1.3	27	0.818	2.7	-6.5
1,15	1.322	<2.7	1.4	23	0.883	<2.0	-0.2
1,16	1.408	3.1	-2.0	29	0.953	3.7	4.4
1,17	1.491	4.6	-6.2	2,10	1.024	3.1	1.6
1,18	1.576	3.6	-3.7	2,11	1.099	12.3	15.5
1,19	1.661	3.0	-3.2	2,12	2.173	11.5	11.9
1,20	1.747	2.5	-2.9	2,13	1.249	8.6	9.6
				2,14	1.331	6.2	7.4
2,78	1.632	2.9	3.6	2,15	1.408	4.7	6.0
2,17	1.552	3.9	5.1	2,16	1.488	3.6	5.2
2,76	1.470	3.7	6.1	2,17	1.568	3.8	4.5
2, $\overline{15}$	1.390	4.6	5.9	2,18	1.648	3.0	5.6
2,14	1.311	7.0	6.3				
2, $\overline{13}$	1.233	32.1	34.5	3,79	1.815	3.4	-3.6
$2, \overline{12}{ }^{\text {§ }}$	2.158	4.0	-0.3	3,18	1.740	2.8	-3.6
2, $\overline{11}$	1.082	2.9	2.6	3,17	1.662	3.4	-3.7
2,70	2.009	6.1	4.9	3,76	1.587	3.6	-3.6
$2 \overline{9}$	0.939	7.1	6.9	3,15	1.513	<2.7	-2,8
28	0.870	6.7	8.2	3,74	1.442	<2.8	-1.0
27	0.803	4.5	6.8	3,13	1. 371	<2.8	2,3
26	0.774	<1.8	3.5	3,12	1.303	12.3	11.9
25	0.688	15.4	-15.5	3,11	1.239	6.2	1.9
$2 \overline{4}$	0.639	16.7	-14.6	3,10	1.174	11.6	8.1
$2 \overline{3}$	0.598	27.3	-20.3	39	1.115	21.6	10.7
$2 \overline{2}$	0.568	29.3	-24.8	38	1.059	21.6	21.6
2 I	0.549	31.2	-27.6	37	1.005	21.5	10.7
20	0.542	33.4	-29.4	36	0.958	23.0	9.5
21	0.551	36.0	-34.0	35	0.915	28.3	10.5
22	0.572	51.3	-53.7	34	0.879	54.1	51.5
23	0.607	19.8	19.0	33	0.850	6.6	-2.3
24	0.648	14.9	-11.7	32	0.830	3.4	4.4
25	0.698	15.0	-14.6	35	0.818	3.4	2.5

bl 30	$2 \sin \theta$ 0.813	5 <2.0	\%	h 6 41	$2 \sin \theta$ $\mathbf{1 . 0 8 9}$	$\begin{gathered} T_{0} \\ 10.9 \end{gathered}$	$\begin{gathered} P_{0} \\ 10.3 \end{gathered}$
31	0.820	3.3	-1.9	42	1.100	8.3	8.6
32	0.833	8.5	-5.9	43	1.119	8.4	8.4
33	0.858	11.1	-9.5	4.4	1.143	8.2	7.0
34	0.890	12.5	-12.1	45	1.173	$4 \cdot 3$	10.9
35	0.928	13.6	-12.2	46	1.209	3.6	3.4
36	0.970	11.7	- 9.9	47	1.250	<2.6	2.5
37	1.020.	10.3	-10.8	48	1.295	<2.7	0.3
38	1.073	10.6	-10.6	49	1.340	3.0	-2.0
39	0.132	11.0	-11.8	4,10	1.397	4.0	-3.5
3,10	1.194	11.7	-14.2	4,11	1.451	4.6	-4.9
3,11	1.259	16.8	-21.4	4,12	1.512	5.0	-4.0
3,12	1. 327	12.4	12.5	4.13	2.570	6.2	-8.4
				4,14	1.635	3.7	-3.4
4,78	1.873	3.0	2.5				
4,17	2.804	2.7	-2.8	5,76	1.912	2.6	-4.8
4.76	1.735	3.6	-4.1	5,15	1.852	<1.8	-0.3
4,15	1.670	5.8	-5.2	5,14	1.796	<2.1	-0.1
4,74	1.606	6.0	-5.7	5,13	1.740	<2.3	-0.3
4,13	1.541	5.9	-6.3	5,72	1.689	<2.4	-1.2
4,12	1.482	7.0	-7.4	5,11	1.639	2.6	-2.5
4, 11	1.427	12.5	-12.4	5,10	1.591	4.4	-3.9
4,10	1.370	3.8	5.2	$5 \overline{9}$	1.548	6.3	-3.9
45	1.320	6.6	-4.2	58	1.509	7.6	-6.1
48	1.272	6.3	-5.4	$5 \overline{7}$	1.472	7.1	-6.5
47	1.230	3.0	-4.4	$5 \overline{6}$	1.441	7.8	-6.7
46	1.191	<2.6	-1.0	$5 \overline{5}$	1.414	9.0	-6.6
45	1.159	4.1	2.1	$5 \frac{4}{4}$	1.392	9.5	-5.7
$4 \overline{4}$	1.130	6.4	7.2	$5 \overline{3}$	1.375	11.1	-9.3
43	1.120	12.3	24.7	$5 \overline{2}$	1.361	12.6	-15.0
$4 \overline{2}$	1.095	12.8	8.1	$5 \overline{2}$	1.357	16.4	15.1
4 I	1.085	13.0	11.3	50	1.355	3.8	- 1.9
40	1.084	12.8	11.8	51	2.360	<2.8	-2.7

\S Thie plane was left out of the pinal po synthemin on mesount of uncertain sign.
(2) Velues of $F(0 k \ell)$.

$\mathbf{k} \ell$	$2 \sin \theta$	4^{\prime}	B^{\prime}	$\|5\|$.	$\left\|F_{0}\right\|$
11	0.233	-4.5	-6.8	5.5	8.2
12	0.280	-7.2	-8.8	6.3	11.4
13	0.338	-7.8	-3.8	5.1	8.7
14	0.409	-5.8	7.1	0.0	9.2

31	0.656	-4.8	0.3	<7.6	4.8
32	0.672	-8.3	1.6	<7.8	8.5
33	0.700	-8.8	4.9	<7.9	20.2
34	0.734	-5.7	20.4	20.8	12.8
35	0.780	-1.2	15.7	13.4	15.7
36	0.830	4.7	20.9	16.1	21.4
37	0.880	14.3	27.2	23.5	30.7

$k \ell$	$2 \sin \theta$	A^{\prime}	\mathbf{n}^{\prime}	$\left\|F_{0}\right\|$	$\left\|F_{0}\right\|$
40	0.860	26.9	-29.9	44.5	40.1
41	0.868	8.9	7.4	<9.0	11.6
42	0.880	9.7	4.7	<9.2	10.8
4.3	0.900	8.8	2.1	<9.4	9.0
44	0.929	7.9	-0.6	<9.6	7.9
45	0.965	6.4	-2.0	<9.8	6.7
46	1.008	4.8	-1.5	<10.3	5.0
47	1.054	1.4	1.2	11.2	1.8
48	1.106	5.4	-6.0	17.2	8.1
51	1.080	-1.9	3.6	<10.8	4.1
52	1.090	-3.4	4.5	<9.6	5.6
53	1.207	-3.9	7.7	<10.9	8.6
54	1.130	-2.7	8.8	<11.1	9.2
55	1.260	0.1	9.4	<11.2	9.4
56	1.193	4.2	10.6	12.1	11.4

Studies on the Cxystal and Molecular Struoture of

I-Serino Phosphoris Acid.

Introduction.

Of recent years a grest deal of work has been oarried out on the etructural analysis of the individual amino acids whioh go to make up the polypeptide chains of the protelns. The information thus gained has enabled model structures of the proteins themselves to be proposed. ${ }^{6 l}$ However there still remains muoh work to be done in order to determine fully the nature of all the individual amino acide which are associated with the polgpeptide ehains. ImSerine phosphoric acia, which occurs naturally in ailk fibroin, vitellin (from egg-yolk), and oasein, is an important oompound to study by X-ray diffraction methods not only for this reason, but also beoause it contains an orthophosphate group directly attaohed to an organic residue. So far no X-ray work on this type of linkage has been reported.

Part Io Two-Diraenaional Work.

Bxporimental.

Crystala of the compound were obtained from Agren, de Verdier, and alomset, ${ }^{62}$ and take the form of flettened needles showing extinctions under the polariaing mieroscope in direotions parallel to, and perpindioular to, the needle axis. The orystal data were obtained from rotation, oscillation, and Weissonberg photegraphs taken about all three axes using $C u \mathbf{K}_{\alpha}$ radiation ($\lambda=1.542 \AA$)

Cxystal Data.

Imeerine phosphoric acid, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{6} \mathrm{NP}$, structural
Pormula, $\mathrm{NH}_{2}-\mathrm{CH}-\mathrm{COOH}$

$$
\mathrm{CH}-0_{0} P O_{3} H_{2}
$$

Observed density $1.707 \mathrm{ge} \mathrm{cm}^{-3}$, oaloulatod $1.712 \mathrm{~g} \cdot \mathrm{om}^{-3}$, m. pt. $167^{\circ} \mathrm{C}$ (with ceoomposition). The orystals are orthorhombic with

$$
=7.79 \pm 0.01, \xi=10.24 \pm 0.04,=9.09 \pm 0.028
$$

Absent spectra, (h00) whon h is odd, (OkO) when k is odd, (00 l) when 14 odd. Space group $D_{2}^{4}-P 2_{2} 2_{2}{ }_{2}$. Four moleoules per uait cel2.

Intensity data for the (hkol) (hol), and (okl) reflections were reoorded using the Fobertson multiple film teohnique ${ }^{40}$, and were estimatod by eye. The noxmel Lorents and polaribation factors were applied and atructure factors on a relative scale obtained. The film used was Ilford Industrial G which has an obsorbtion factor of 3.22 (3ee Appendix II).

Attempta at Structure Determination.

The projection on (010). A sharpened Patterson synthesis with the origin removed ${ }^{12}$ was carried out and the highost peaks assumed to correspend to phesphorus-phosphorus vectors. After the position of the phosphorus had been determined in this way the origin was ahifted from the one given in International Tablea, ${ }^{13}$ which ia not at a centre of symmetry, to one at $\frac{1}{3}$ of the way along one axim which is at a centre of mymetry in projoction. This is bsoause although the three sorew axes axe not concurrent, in the three main projections any two whll appear concurrent.

An F_{0} ynthesis was then carried out using only planes where the phosphorus contribution was more than one quarter of the possible value. It proved to be impossible to pit a model onto the peaks which appeared, although the phosphorus atom was clearly defined, and another F_{0} synthesis, which used signs derived from the peaks which appeared, gave an electron density map worse than the first one. A new line of attack using Karker-Kasper inequalities and etatistieal relationships between signs was then tried. The phosphorus position was assumed to be correot and signs were allotted to the four planes to which it made the greatest contribtion. Nineteen further algns of strong reflecticns were then determined and all twenty--three were used in another F_{0} synthesis.

Positions for all the atoms were then chosen in regions which appeared positive in both sets of olectron density maps, although only the phosphorus atom was positively identified. Structure factors calculated from these gave a disorepancy of 43% and another F_{0} synthesis unting the new signs gave well defined peaks except in one instance. The map is shown in Figure VI. Unfortunately it was again impossible to ift a model onto the peaks, even the position of the oxygen atoms in the PO_{4} group being uncertain. The coordinates of the peake which wore obtained are given in Table V.

At this point it was decided to investigate the a-axia projection in order to see if the two could be correlated. The profection on (200). Here again the origin was shifted in order that it might be at a centre of symmetry.

The first method of analysis tried involved the use of
inequality and etatistical relationships as before, two of the (00 l) planes being sufficiently strong to be included with known sign (allowing for the change in origin). Only the signs of reflections with $(k+l)$ oven could be determined in this way, although the odd ones could be interyelated. An F_{0} synthesis was then caxried out using only refleotions with $(k+\ell)$ even and thus introducing Palse aymetry. A large peak appeared for phosphorus at $\bar{j}=\frac{1}{3}$, and an attempt was made, using the map, to determine some of the signs of the odd plangs with the aid of atructure Lactor graphs. Another . synthesis was then done whioh gave reasonably resolved peaks.

A model was then used in an attempt to interrelate the two projections. Only one plausible structure could be found by this method and ($O k l$) structure factors calculated for it bore no resemblance to the F_{0} values so that this line of attack was abendoned.

A chorpened Patterson synthesis with the origin removed ${ }^{12}$ was then computed and interpreted by superposition methode. 9 This gave meven atoms only, one of which appeared to be phosphorus, and an F_{0} gnthesis using 40 out of 119 possible terms was then oarried out. This gave a large peak, at the position chosen for the phosphorus atom surrounded by four smaller ones which were taken to be the oxygens of the PO_{4} group.

Using signs determined by these five atoms another F_{0} aynthesia gave peaks onto which it proved possible to fit a molecular mode2. On caloviating struature factors a discrepanoy of 40% was obtained but it did not prove possible to improve the agreement
uaing either fognthesis or trial and srror methods.
The best Fourier aynthesis obtained is shown in
Figure VII and the last set of atomic coordinates obtained are in tahle V .

$$
\frac{1}{2} a
$$

Pigure VI.

Fourier map projected on (010). Conteur soale arbitrary, the lowest ilne being dotted. In the region of the phosphorus peak. only every second contour is plotted.

Paruxe VIIE

Fourier map on (100). Arbitrary contour coale, lowest line dotted, and with oniy every mooond line plotted in neighbeurhood of the phomphorus peak.

SABL\% V.

Atomic Coordinates. Since the structure could not be refined these will, at best, be very approximate if not completely wronge The origin is that given in International Tables. ${ }^{13}$
(1) Prejeotion on (010).

Peak	$\frac{x}{a}$	$\frac{8}{0}$
p	0.191	0.179
1	0.105	-0.202
2	0.245	-0.217
3	0.370	-0.215
4	0.102	-0.086
5	0.403	-0.083
6	0.250	0.066
7	0.378	0.079
8	0.049	0.199
9	0.388	0.188

(2) Prefection on (100). The atome are in pontulated poaitione whioh cerrempond to poaks on the Fourier map.

Part II. Three-Dimensional Woza.

Introduction。

The reaulta which are given in Part I led us to the bolief that it would be excoedingly difficult and laborieus to solve the structure of serine phosphoric acid by two-dimensional methods. Consequently it was decided to oolloct threemimensional data with a view to getting a threcodimensional Pattesson gynthesis dome, as it appeared to be the most promising method of approach. ${ }^{17,18 .}$

Experimental.

The unit cell data stc. is given in Part I. Three-dimen--aional intemsity data were obtained from equi-inclination Weissenberg photographs taken with unfiltered CuK ${ }_{\alpha}$ radiation about each of the thre prinetpal axes for all equi-inclination angles less than 30°. Only three reflections, the (676), (686) and (677), all of which are very high order, ware outwith the range of thil method. Altigether ningteen different photographs were taken and the intensitios were estimated by eye using the multiple film teohnique, 40 aftorficioh Tune11, ${ }^{63}$ Lorentz, and polarisation factors were applied in the usual manner. The structure Pactors derived from the different photographs were all put on the same scale by utilising the fact that separate photographs of layers of the raoiprocal lattice at right angles to one another have certain spots in common which onables an avarage aualing factor for each photograph to be found. The soaling was made approximately absolute by reforance to a set of $P(h O l)$ values calculatel during the two dimenaional work and where more than one observed value was available an average was takon after
the soaling had been completed.
The film used wan Ilford Industrial 0 which has an absorbtion factor of 3.22 (see Appendix II) when the X-Fay beam is
 90° thin faotor a in inereaned 64 Is 0 a ie the faeter for 90° inetdenoe and a^{\prime} that for inoidene at angle ω then,

$$
\log G^{\prime}=\sec \omega \log a_{0}
$$

It can also be shown that in equi-inclination work $\omega=\mu$ whare μ is the equi-inolination angle.

The sizes of the erystals used in this werk wers:
(2) for photographs taken about the a-axis

$$
(0.24 \times 0.27) \times 0.55 \mathrm{mom}
$$

(2) about the b-axis

$$
(0.38 \times 0.43) \times 1.24 \mathrm{mom}
$$

(3) about the e-axcis

$$
(0.64 \times 0.58) \times 0.30 \mathrm{~m}+\mathrm{m}
$$

In each case the axis of rotation was the one not inciuded in the brackets.

The values of F (hkl) which were obtained are given in Table V.

The Throe-pimonsional Patterson Syathasif.

It was intended that this should be computed on X-RAC,
consequently ascheme had to be woriced out for presenting the data in a suitable form. Fhis was done as followes * see opposite leaf
the scaling had been completed.
The fila used was Ilford Industrial o which has an

$$
\text { . .an (man Ammonite IT) when the } X \text {-ray beam is }
$$

IN live 4 REPLAGE The Deleted portioiv $3 y$, to the then However vine rae x-ray dam is not normal is the film this factor G is iniruxsea ${ }^{64}$ if 0 oral is the 90° when the bean is socialise us tine factor whentine ${ }^{\prime}$ and G^{\prime} that my when the angle burmese the normal and the beam is ω then,

$$
\omega=\mu \quad \text { ware }
$$

μ is the equi-inolination angle.
The sizes of the crystals used in this wert were:
(2) for photographs taken about the a-axia

$$
(0.24 \times 0.27) \times 0.55 \mathrm{mom}
$$

(2) about the b-axis

$$
(0.38 \times 0.43) \times 1.24 \mathrm{mom}
$$

(3) about the o-axtis

$$
(0.64 \times 0.58) \times 0.30 \mathrm{~m} . \mathrm{m}_{\mathrm{c}}
$$

In each case the axis of rotation was the one not included in the brackets.

The values of F (bk) which were obtained are given in Table II.

The Threo-pimensional Patterson Synthesis.

It was intended that this should be computed on X-RAC,
consequently scheme had to be worked out for presenting the data in a suitable form. This was done as follower

* see opposite leaf

X-RAC computes twomimenaional functiona direotly

from the series ${ }^{10}$

$$
\sum_{1}^{20} H_{1}^{20} \sum_{-20}^{20} H_{2} A_{H_{1} H_{2}} \cos 2 \pi\left(H_{1} x_{1}+H_{2} x_{2}\right)+\sum_{1}^{20} H_{1}^{20} \sum_{-20}^{20} H_{2} B_{H_{1} H_{2}} \sin 2 \pi\left(H_{1} x_{1}+H_{2} x_{2}\right)
$$

Threemimensional functions are computed from the same sexies in the form of sections at diserete levels of the third coordinete so that the three-dimenaional Fatterson function must be put in this formo

The Pattexson funetion for orthorhombic aryatala is, ${ }^{13}$
$P(U V W)=\frac{8}{V_{c}} \sum_{0}^{\infty} h \sum_{0}^{\infty} k \sum_{0}^{\infty} l|F(h k l)|^{2} \cos 2 \pi h U \cos 2 \pi k V \cos 2 \pi l W$
$=2 \sum_{0}^{\infty} h \sum_{0}^{\infty} l\left\{\frac{4}{V_{c}} \sum_{0}^{\infty} k|F(h k l)|^{2} \cos 2 \pi k V\right\} \cos 2 \pi h U \cos 2 \pi l W$
The part within tho curiy brackets nay be written as $C_{\text {hy }}$ in shorthand and ean be evaluated by summing cnemdimensicnal Pourier soxies at aufficiently cmall intexvals of yo In the present instance intervals of $\frac{y}{60}$ were used and $C_{\text {hy }} l$ was summed from $\frac{0}{60}$ to $\frac{30}{60}$ y. The three dimensional function oan now be ovaluated iri the Lorm of sections nt interval: of 60 aince the Patterson flunotion oan be writton as,

$$
P(U V W)=\sum_{0}^{\infty} h \sum_{0}^{\infty} l C_{h y l} \cos 2 \pi(h U+l W)+\sum_{0}^{\infty} h \sum_{0}^{\infty} l C_{h y l} \cos 2 \pi(\bar{h} U+l W)
$$

whith is a Pown auitable for X-RAC (since the cxystal is orthorhombic Chyl Chyl and oniy one oighth of the total call volume noed be covered by the summation)。

In the actual Patterson synthesis the coefficienta mployed were the $F(h i k l)^{2}$ values A thout modification since it was felt that the presence of the phosphorus aton would 1 ead to undenizable diffraction effectio were wy of the usual shaspeming funstions employed. 9 The oxigin was not removed since this is
undoemeary in three-dimensional work and the terms were all multiplied by a factor of $\frac{14}{V_{c}}$, where V_{c} is the volume of the unit cell in \AA^{-3}, so that the terme for sumation by $X \sim$ RAC would not excesd 100^{10}.

Interaretation of the Patterson Synthesia. 9

The equivalent positions in the space group
$D_{2}^{4}-P Z_{2} I_{1} I^{2}$ are $(x, y, z),\left(\frac{1}{Z_{2}}-x, \bar{y}, \frac{1}{2}+z\right),\left(\frac{1}{Z}+x, \frac{1}{3}-y, \bar{x}\right)$, ($\mathrm{X}, \mathrm{i}+\mathrm{F}+\mathrm{y}, \frac{1}{\mathbf{1}}-\mathrm{s}$) 。 There are only three essontially distinct vectors between these positions and they give rise to peaks in the Patterson qynthesis at ($\left.\frac{1}{2}+2 x, 2 \mathrm{~J}, \frac{1}{2}\right)$, ($\frac{1}{2} \frac{1}{8}+2 \mathrm{y}, 2 \mathrm{z}$), and ($2 x$, $\frac{1}{\text { B }} \frac{1}{2}+2$), all of which axe in the Harker sections. The phomphorus-phosphorus vectors ought to atand out clearly against the vectors between the lighter atome, consequently an investigation of the Harker sections was made. When the largest peaks were chosen in these sections the following coordinates were obtained for the phosphorus atoms

$$
\frac{x}{a}=0.285, \frac{\pi}{b}=0.025, \frac{g}{c}=-0.172
$$

These coordinates differ somewhat from the ones previously given and are likely to be nearer the truth.

At the moment these atomic coordinates for the phosphorus atom are being aployed in an atteapt to solve the structure by the method of Beevers and Robertson. 65 This method depends on the presence of a heavy atom and they omployed it succeasfully in the case of etiryehnine hydrobromide.

As an approximation the Patterson synthesis, when a heavy
atom (W) is present, may be considered as consisting solely of veotors

 coordinates may be readily oalculated from the equivalent positions, the first of them being $\left(x_{w}-x_{w}, y_{w}-y_{w}, w_{w} \|_{x}\right)$ The position of (in this case phosphorus) has been found, hence F oan be leosted directly from the Petterson ayntbesis peaks by four tranaoriptions of the anthesis, with its origin transferred to the four equivalent pomitions of the heavy atom. This will give rise to $16 n$ possible atemic positions, of whioh $12 n$ will be randomly spaced, and the remaining 4 n wil show fourfold coincidences on n points in space. (Here n is the number of light atoms). These fourfold coincidences ahould allow the positions of the lighter atoms to be recognisad. Thin method is very similax to that epployed in the struetural analyaie of DL-gerine. ${ }^{17}$

In Figure VIII the X-RAC plotegraph ahowing the seotion aty 童 for tho Patterson myntheals is given. The large peak, which wes taken to regresent phosphorun-phomphorus vector, an be elamis seone

Figure VIII。
Section of the threerdinensional Patterson gynthesis
at $y=\frac{3}{B}$. Whole coll shown. The contours are at arbitrary intervals and go from 0 - 10. The mesh is at intervals of $\frac{1}{20}$ of the unit cell edge.

Table VA.

Observed structure Pactors, values of $P(h k l)$

hk l	$2 \sin \theta$	$F_{0} 1$	hak ℓ	$2 \sin \theta$	${ }^{\circ}$ 。	hk ℓ	$2 \sin \theta$	$\mathrm{F}_{0} 1$
200	0.398	63.3	012	0.373	15.6	064	1.129	5.0
400	0.796	15.9	022	0.455	24.6	074	1.252	16.3
600	1.194	20.0	032	0.565	27.9	084	1.380	16.4
800	1.592	10.8	042	0.691	9.6	094	1.514	3.2
			052	0.826	23.4	0,10,4	1.649	. 7
002	0.340	67.0	062	0.964	4.3	0,17,4	2.787	2.6
004	0.680	6.8	072	1.105	5.6	0,12,4	1,927	4.4
006	1.020	38.8	082	1.249	7.5			
008	1.360	29.8	092	1.395	8.6	015	0.864	6.8
0,9,10	1.700	9.5	0,10,2	1.541	1.9	025	0.902	25.1
			0,11,2	1,687	<1.7	035	0.962	6.3
020	0.301	59.4	0,12,2	1.836	4.0	045	1.041	17.4
040	0.601	34.4				055	1.135	17.9
060	0.902	11.1	013	0.532	25.5	065	1.239	5.2
080	1.202	5.6	023	0.592	24.6	075	1.352	24.1
$0,10,0$	1.503	9.3	033	0.680	30.7	085	1.462	9.5
9,12,0	2.804	5.9	043	0.789	11.3	095	1.598	5.3
1	0.228	14.5	053	0.909	26.2	0,10,5	1.726	11.2
	0.228	14.5	063	1.036	4.0			
021	0.346	31.1	073	1.169	39.9	016	1.031	18.8
032	0.482	1.4	083	1.305	6.6	026	1.064	28.4
042	0.625	20.8	093	1.446	22.7	036	1.115	<2.6
051	0.771	13.0	0,10,3	1.587	6.0	046	1.184	5.2
061	0.918	2.1	0,11,3	1.730	2.6	056	1.267	<1.5
071	1.066	6.7	0,12,3	1. 874	3.7	066	2.361	1.4
081	1.214	20.8				076	1.470	<3.0
091	1.364	13.4	014	0.696	29.1	086	1.586	<2.8
0,10,1	1.513	16.7	024	0.744	4.7	096	1.702	<2.6
0,11, 1	1.662	4.9	034	0.815	5.1	0,10,6	1.824	<2.1
0,12,1	1.812	26.4	044	0.907	14.1	0,11,6	1.856	3.1
0,13,1	1.961	4.2	054	1.014	10.1			

017	1.200	9.1	0,1,21	1.876	1.9	102	0.394	45.1
027	1.227	12.3	0,2,11	1.894	7.9	112'	0.422	6.8
037	2.272	9.6	0,3,11	1.924	5.3	122	0.491	27.3
047	$1.333<2.8$		0,4,11	1.964	6.3	132	0.598	13.3
057	1.409	4.8				142	0.718	36.1
067	1.493	4.2	120	0.250	16.7	152	0.849	19.0
077	1.594	<2.7	120	0.360	21.3	162	0.984	14.3
087	1.702.	8.4	130	0.492	47.9	172	1.123	12.6
097	1.810	2.8	140	0.632	33.4	182	1.266	18.1
0,10,7	1.926	14.1	150	0.780	26.6	192	1.411	5.9
			160	0.927	5.1	1,10,2	1.556	5.0
018	1.369	13.8	170	1.071	5.2	1,11,2	1.702	4.2
028	1.393	18.6	180	1.220	5.6	1,12,2	1.849	11.3
038	1.433	10.2	190	1.370	9.2	1,13,2	1.995	6.3
048	1.487	3.6	$1,10,0$	1.519	4.9			
058	1.554	3.5	$1,11,0$	1.668	11.6	103	0.548	8.3
068	1.632	2.0	1,12,0	1.818	4.4	113	0.568	15.7
078	1.724	<2.5.				123	0.625	38.9
088	1.824	3.2	101	0.263	12.5	133	0.709	21.1
098	1.926	3.6	111	0.303	9.8	143	0.813	37.9
			121	0.400	23.3	153	0.931	18.4
019	1.538	4.1	131	0.522	23.1	163	1.055	12.9
029	1.559	<2.2	141	0.656	7.6	173	1.186	5.7
039	1.595	<2.7	151	0.797	7.3	183	1.322	10.7
049	1.644	2.5	161	0.939	4.5	193	1.462	1.4
059	1.705	6.2	171	1.085	12.3	1,10,3	1.602	21.7
069	1.776	6.3	181	1.231	4.4	1,21,3	1.744	<1.2
079	1.864	10.7	191	2.381	27.1	1,12,3	1.888	4.3
089	2.956	4.5	1,10,2	2.528	3.1			
			1,11,1	2.677	12.6	104	0.710	4.2
0,1,10	2.707	5.1	$\begin{aligned} & 1,12,1 \\ & 0,13,1 \end{aligned}$	1.826	6.3	114	0.726	10.8
0,2,10	2.727	4.7		1.973	4.7	124	0.772	13.8
0,3,10	1.759	8.8				134	0.841	28.7
0,4,10	1.803	1.8				144	0.897	14.1
0,5,10	1.859	5.7				154	1.034	27.3
0,6,10	1.924	2.9				164	1.148	18.8

174	1.267	6.0	107	1.208	8.2	1,0,10	2.711	22.0
184	1.396	9.6	117	1.217	2.5	1,1,10	2.718	2.0
194	1.532	3.7	127	1.245	10.2	1,2,10	2.738	6.8
1,10,4	1.664	1.6	137	1.289	2. 9	1,3,10	1.770	3.7
1,11,4	1.801	<1.4	147	1.349	6.2	1,4,10	2.814	4.8
1,12,4	1.941	5.8	157	1.423	8.1	1,5,10	1.869	4.1
			167	1.507	2.7	1,6,10	2.934	4.6
105	0.873	6.8	177	1.607	11.8			
125	0.886	13.7	187	1.714	3.6	1,0,21	1.883	1.8
125	0.924	23.5	197	1.821	8.0	1,1,11	1.888	2.8
135	0.982	16.5	1,10,7	1.936	2. 8	1,2,11	1.907	3.1
145	1.059	16.8				1,3,11	1.936	2.4
255	1.152	7.7	108	1.375	19.2	1,4,21	1.977	4.1
265	1.255	4.6	118	1.383	9.2	1,4,21	2.97	.
275	1.366	16.1	128	1.408	21.3	210	0.426	11.8
185	1.486	2.9	138	1.447	9.0	220	0. 500	28.9
195	1.612	11.0	148	1.501	9.0	230	0.602	33.5
1,10,5	1.740	8.6	158	1.567	5.8	240	c. 721	4.5
1,11,5	1.872	4.0	168	1.644	3.8	250	c. 852	9.0
			178	1.735	5.4	260	0.988	10.8
106	1.040	5.0	188	1.835	3.5	270	1.127	17.9
116	1.051	21.7				280	2.268	5.0
226	1.083	13.5	109	1.542	3.4	290	1.411	10.9
136	1.133	12.6	119	1.550	3.1	2,10,0	1.558	9.3
146	1.201	16.4	129	1.572	13.5	2,11,0	1.701	13,7
256	1.284	12.9	139	1.607	7.3	2,12,0	1.850	. 6.4
166	1.377	4.8	149	1.655	3.3			
176	1.484	21.0	159	1.716	6.7	201	0.437	27.6
186	1.599	2.1	169	1.786	<1.2	212	0.463	41.3
196	1.714	2.6	179	1.875	2.8	221	0.532	26.9
1,10,6	1.835	3.9	189	1.966	5.2	231	0.628	23.9
1,11,6	1.867	8.6				241	0.743	22.8

251	0.870	18.2	204	0.790	12.1	296	1.748	5.5
261	1.002	1.5	214	0.804	8.0	2,10,6	1.867	3.2
271	1.140	9.6	224	0.846	9.7			
281	1.279	14.3	234	0.909	13.8	207	1.257	<1.7
291	1.421	16.5	244	0.992	12.8	217	1.266	29.4
2,10,2	1.567	10.0	254	1.091	23.4	227	1.293	11.1
$2,11,1$	1.709	7.5	2.64	1. 199	20.3	237	1.335	17.8
2,12,2	1.882	10.0	274	1. 316	28.8	247	1.393	4.2
			284	1.438	21.0	257	1.465	7.4
202	0.526	12.6	294	1.566	6.9	267	1.547	3.6
212	0.548	8.9	2,10,4	1.700	10.0	277	1.643	3.0
222	0.607	9.2	2,11,4	1.831	$4 \cdot 3$	287	1.748	7.1
232	0.693	10.6	2,12,4	1.971	$4 \cdot 6$	297	1.853	3.8
242	0.799	13.9				2,10,7	1.967	7.5
252	0.918	18.8	205	0.940	20.0	2,20,		
262	1.044	17.5	215	0.952	1.4	208	1.419	9.9
272	1.277	27.3	225	0. 987	14:9	218	1.427	17.2
282	1.31 .3	11.7	235	1.043	14.4	228	1.451	12.9
292	1.451	9.2	245	2.116	10.1	238	1.489	3.0
2,10,2	1.594	9.1	255	1.204	13.1	248	2.541	6.1
2,21,2	2.734	8.5	265	1. 303	6.1	258	1.606	3.7
2,12,2	1.881	8.0	275	1.411	16.8	268	1.681	3.3
			285	1.526	7.4	278	1.769	8.2
203	0.649	17.0	295	1.647	6.8	288	1.867	<1.2
213	0.666	24:6	2,10,5	1.774	5.6	298	1.967	5.5
223	0.716	8.0	2,11,5	1.901	4.1			
233	0.790	16.2				209	1.582	6.4
243	0.884	11.2	206	1.098	14.2	219	1.589	5.6
253	0.993	7.9	216	2.109	11.7	229	1.611	10.7
263	1.111	11.9	226	1.139	14.3	239	2.645	1.6
273	1.237	20.6	236	1.18\%	4.5	249	1.692	6.6
283	1.366	7.9	246	1.252	12.2	259	1.752	1.5
293	1.466	21.1	256	1.331	14.3	269	1.821	1.5
2,10,3	1.669	10.5	266	1.420	5.6	279	1.906	5.9
2,11,3	1.775	5.2	276	1.523	14.3			
2,12,3	1.919	2.5	286	1.635	$7 \cdot 3$			

$2,0,10$	1.748	2.0	391	1.491	16.7	304	0.908	9.7
$2,1,10$	1.755	4.2	$3,10,1$	1.629	2.6	314	0.920	7.6
$2,2,10$	1.772	2.4	$3,11,1$	1.768	8.6	324	0.997	7.9
$2,3,10$	1.805	4.6	$3,12,1$	1.912	5.5	334	1.013	10.4
$2,4,10$	1.851	5.9				344	1.089	9.4
$2,5,10$	1.914	5.2	302	0.690	25.5	354	1.179	21.9
$2,6,10$	1.967	4.7	312	0.706	26.2	364	1.279	12.7
		322	0.753	8.0	374	1.388	8.1	
$2,0,11$	1.913	4.3	332	0.824	6.9	384	1.507	5.2
$2,1,11$	1.919	2.4	342	0.915	20.9	394	1.629	9.8
$2,2,11$	1.937	8.0	352	1.021	15.5	$3,10,4$	1.756	1.5
$2,3,11$	1.966	3.3	362	1.135	16.7	$3,11,4$	1.887	9.1
			372	1.258	5.4			
310	0.618	24.2	382	1.387	13.0	305	1.040	<1.3
320	0.670	32.1	392	1.519	6.9	315	1.051	7.4
330	0.750	3.0	$3,10,2$	1.655	12.4	325	1.082	14.2
340	0.850	10.6	$3,11,2$	1.792	10.2	335	1.134	20.6
350	0.961	2.6	$3,12,2$	1.934	4.1	345	1.201	14.1
360	1.084	18.5				355	1.284	14.0
370	1.211	5.7	303	0.789	16.5	365	1.376	8.4
380	1.345	12.3	313	0.804	12.1	375	1.479	8.0
390	1.481	7.2	323	0.845	6.5	385	1.591	3.3
$3,10,0$	1.620	17.1	333	0.909	31.5	395	1.707	4.5
$3,11,0$	1.760	<1.5	343	0.974	5.9	$3,10,5$	1.829	3.2
$3,12,0$	1.904	9.9	353	1.085	22.5	$3,11,5$	1.954	6.4
301	0.625	23.7	373	1.314	14.6	306	1.182	1.7
311	0.643	18.4	383	1.438	7.9	316	1.192	13.4
321	0.694	20.4	393	1.566	8.5	326	1.220	5.3
331	0.771	24.6	$3,10,3$	1.698	2.4	336	1.265	4.5
341	0.867	30.6	$3,11,3$	1.832	2.4	346	1.326	7.0
351	0.978	20.3				356	1.401	1.9
361	1.096	12.7				366	1.487	13.0
371	1.223	6.4				376	1.567	7.5
381	1.356	8.7				386	1.694	9.5

396	1.804	3.4	3,0,20	1.802	4.1	402	0.867	6.4
3,10,6	1.945	5.9	3,1,10	1.803	2.4	412	0.882	18.7
307	2. 332	9.3	3,2,10	1.827	3.5	422	0.920	13.6
			3,3,10	1.857	5.7	432	0.979	6.1
317	1.342	7.7	3,4,10	1.857	1.8	442	$1.05 i$	15.6
327	3. 366	14.5	3,5,10	1.953	5.4	452	1.147	9.9
337	1.406	3.2				462	1.252	27.0
347	.1.461	17.3	3,0,11	1.964	1.5	472	1.364	7.9
357	1.531	<1.5	3,2,11	1.970	3.1	482	1.488	11.6
367	1.608	8.5				492	1.609	$5 \cdot 3$
377	1.702	8.1	410	0.810	5.1	4,10,2	1.730	4.7
387	1.804	<1.4	420	0.852	5.7	4,11,2	1.872	. 4
397	1.906	6.4	430	0.918	8.3			
			440	1.000	14.9	403	0.950	8.0
308	1.488	<1.8	450	1.098	2.9	413	0.962	11.3
318	$2+496$	8.5	460	1.205	11.8	423	0.997	11.4
328	2.518	3.2	470	1.321	5.5	433	1.051	13.2
338	1.555	<1.8	480	1.443	4.0	443	2.124	24.9
348	1.605	6.4	490	1.573	8.4	453	1.212	4.2
358	1.667	2.9	4,10,0	1.702	<2.3	463	1.310	15.4
368	1.740	8.4	4,21,0	1.880	14.5	473	1.416	5.8
378	1.824	5.6				483	1.530	5.3
388	1.919	6.9	401	0.819	7.6 39.6	493	1.653	3.8
			412	0.833	39.6	$4,10,3$	1.777	5.7
309	1.642	3.1	421	0.873	14.1		1.909	4.6
319	1.649	9.8	431	0.935	27.5	4,21,3	1.908	4.6
329	1.669	2.1	441	1.016	19.2	404	1.050	10.5
339	1.703	6.9	451	1.117	8.9	414	1.061	4.8
349	1.748	400	461	1.218	5.7	424	1.093	8.3
359	1.806	5,6	471	1.332	4.5	434	1.143	9.2
369	2.873	5.0	481	1.453	10.6	444	1.209	25.3
379	1.957	1.5	491	1.582	3.0	454	1.292	9.2
			4,10,1	2.711	3.9	464	2.384	30.6
			4,11,1	1.848	<1.5	474	1.485	8.2

484	1. 595	9.1	447	2.553	6.7	530	1.095	9.0
494	1.713	4.1	457	1.618	7.0	540	1.167	10.4
4,10,4	2.833	2.8	457	1.692	4.7	550	1.250	3.5
4,11.,4	1.951	4.1	477	1.782	3.3	560	1.347	23.3
			487	1.852	4.2	570	1.450	7.2
405	1. 268	$5 \cdot 3$	497	1.977	1.7	580	1.562	10.9
415	2.178	9.1				590	1.682	9.4
425	1.206	8.0	408	1.579	3.1	5,10,0	1.806	9.4
435	1.252	16.3	413	1.536	<1.7	5,11,0	1.932	6.5
445	1.313	14.5	428	1.596	8.4			
455	1.389	13.3	438	1.542	5.8	501	1.012	16.5
465	1.476	10.4	448	1.639	3.3	511	1.023	13.2
475	1.570	2.2	458	1.752	4.8	521	1.055	21.3
485	1.674	3.5	468	1.818	4.6	531	1.108	21.5
495	1.787	7.0	478	1.899	4.6	541	1.177	13.5
4,10,5	1.902	2.8	488	1.990	2.2	551	1.261	16.3
						561	1.355	5.3
406	1,295	2.9	409	1.728	5.1	571	1.460	3.6
416	1,300	5.2	419	1.735	6.0	581	1.571	5.6
426	2,330	8,7	429	1.754	10.5	591	1.691	2.0
436	1.407	5.6	439	1.736	5.7	5,10,1	1.814	5.2
446	1.427	4.5	449	1.830	9.0	5,12,1	1.940	4.5
456	1.498	10.1	459	1.885	3.2			
466	1.578	6.3				502	1.055	4.2
476	1. 672	6.8	4,0,1	1.830	3.8	512	1.065	4.6
486	2.775	3.9	4,1,	1.836	<1.1	522	1.097	3.8
496	1.879	8.4	4,2,1	1.904	1.8	532	1.147	9.8
			4,3,	1.933	<1.4	542	1.214	19.6
407	2.432	<2.0	4,4,10	1.974	5.0	552	1.338	10.4
427	1.440	23.9				562	1.388	15.2
427	2.463	21.5	510	1.010	19.7	572	1.489	5.5
437	2.501	17.0	520	1.041	14.4	582	1.598	11.2

592	1.716	8.2	555	1.512	5.1	509	1.829	6.9
5,10,2	1.838	7.8	565	1.591	5.8	529	1.835	8.5
5,11,2	1.962	9.2	575	1.682	3.4	523	1.854	5.2
			555	1.778	1.5	539	1.884	7.7
503	1.121	7.3	595	1.884	2.2	549	1.925	<1.2
513	1.131	23.2				553	1.978	4.5
523	1.162:	5.8	506	1.430	9.2			
533	1.208	22.8	516	2.438	9.5	610	1.206	6.2
543	1.272	11.4	526	1.462	11.1	620	1.232	18.9
553	1.350	6.2	536	1.499	6.7	630	1.280	2.8
563	1.439	12.0	546	1.554	7.5	640	1.340	18.9
573	1.537	3.5	556.	1.616	2.9	650	1.414	5.4
533	1.645	8.6	556	1.691	13.6	560	1.500	12.4
593	1.757	4.9	576	1.775	<2.6	670	1.595	<2.8
5,10,3	1.377	5.1	506	1.872	6.9	680	1.698	6.9
						690	1.810	2.6
504	1.210	3.4	507	1.555	11.0	6,1ư,0	1.922	7.1
514	1.220	7.9	517	1.562	7.2			
524	1.247	21.5	527	1.584	13.\%	601	1.210	4.1
534	1.291	24.7	537	2.619	10.0	611	1.220	5.9
544	2.352	10.5	547	2.667	11.6	621	1.247	2,309
554	1.425	25.5	557	1.728	2.5	631	1.291	18.3
504	2.509	9.3	557	1.798	2.8	641	1.351	9.5
574	1.601	6.6	577	1.879	1.9	651	1.425	6.0
534	1.703	2.2	587	1.972	4.3	661	1.509	12.1
594	1.814	3.1				671	1.604	3.8
5,10,4	1.930	3.0	508	1.689	4.4	681	1.707	3.6
			518	1.696	2.9	691	1.818	2.4
505	1.312	< 1.7	528	1.716	2.1	6,10,1	1.930	3.5
515	1.321	23.9	538	1.748	3.7			
525	1.346	11.4	548	1.800	6.4	602	1.246	9.3
535	1.387	16.2	558	1.847	3.9	612	1.255	23.7
545	1,4.43	15.4	568	1.915	6.2	622	1.282	3.9

632	1.325	2.8	625	1.500	2.1	609	2.943	2.4
642	1.383	12.1	635	1.537	11.4	619	1.949	2.8
652	1.459	3.5	645	1.587	9.6	629	1.966	5.4
652	1.538	14.3	655	1.650	5.5			
672	1.631	$40 ?$	665	2.724	11.3	710	1.402	22.0
692	1.732	3.1	675	1.807	2.6	720	1.430	6.8
692	1.842	3.0	635	1.398	8.1	730	1.468	9.2
$6.10,2$	1.952	3.0				740	2.520	6.9
			606	1.572	11.2	750	1.588	3.1
693	2.300	11.9	616	1.579	6.9	760	1.662	5.8
613	1.309	13.4	626	1.600	12.5	770	1.750	9.6
623	1.334	4.1	636	2.635	3.1	780	1.842	5.8
633	1.376	20.2	646	1.685	9.2	790	2.948	6.3
643	1.432	23.6	656	1.741	5.5			
653	1.502	10.2	666	1.812	4.9	701	1.408	<2.0
653	2.582	31.3	676	1.894	*	711	1.416	3.7
673	2.674	20.2	686	1.985	*	721	2.439	3.1
633	1.773	8.2				731	2.478	7.4
693	2.880	7.3	607	2.690	6.2	741	2.531	2.3
			617	1.700	6.2	751	1,608	8.6
604	1.379	6.7	627	1.717	3.4	761	1.672	4.0
614	2.387	19.3	637	1.749	6.6	771	1.758	10.8
624	1.412	3.5	647	1.794	3.6	781	1.850	5.8
634	1.451	5.2	657	1.850	3.2	791	1.956	11.8
644	2.504	15.1	667	2.93 .5	4.7			
654	2.571	4.6	677	2.992	*	702	1.439	11.7
654	1.648	10.6				712	1.447	5.3
674	1.734	3.3	608	1.812	6.5	722	1.470	24.4
634	1.829	3.5	618	1.818	2.4	732	2.499	6.2
694	2.933	1.6	628	2.837	6.9	742	1.559	12.4
			638	1.867	6.1	752	1.624	$4 \cdot 5$
605	1.469	10.8	648	1.909	5.0	762	1.698	6.5
615	1.477	9.6				772	1.783	6.2
						782	1.873	3.4
						792	1.977	5.2

703	1.488	2.0	707	1.836	2.5	803	1.676	6.8
713	1.496	1.6	717	1.842	2.3	813	1.683	4.2
723	1.518	<1.4	727	1.860	2.7	823	1.702	2.3
733	1.555	6.7	737	1.891	5.8	833	1.735	7.2
743	1.605	1.8	747	1.932	2.5	843	1.780	1.5
753	1.667	6.1				853	1.837	9.4
763	1.740	8.4	708	1.950	4.5	863	1.903	3.1
773	1.823	2.6	718	1.956	5.1	873	1.977	9.1
783	1.911	13.6	810	1.600	4.5			
			820	1.620	11.6	804	1.736	3.4
704	1.555	14.3	830	1.655	<2.6	814	1.743	4.2
714	1.562	7.0	840	1.65	10.2	824	1.762	2.1
724	1.584	14.5	850	1.761	<1.3	834	1.794	7.7
734	1.619	3.4	850	1.8	11.1	844	1.837	2.8
744	1.667	8.6	870	1.831	8.0	854	$1.89{ }^{\text {a }}$	8.6
754	1.728	1.5				864	1.956	2.5
764	1.798	6.0	801	1.603	6.3			
774	1.877	4.4	811	1.610	<1.6	805	1.809	8.2
784	1.963	3.6	821 \%	1.631	6.0	815	1.815	2.1
705	1.637	<1.7	831	1.665	4.6	825	1.834	5.1
715	1.644	6.2	841	1.712	2.5	835	1.864	3.5
725	1.665	7.1	851	1.771	7.4	845	1.934	2.1
735	1.698	6.7	861	1.839	<1.1	855	1.959	3.3
745	1.744	2.5	871	1.918	10.1			
755	1.802	5.4	80			806	1.897	9.5
765	1.869	3.0	80	1.630	6.2	816	1.903	2.0
775	1.945	5.2	822	1.637	8.4	826	1.921	6.8
			822	1.657	5.9	836	1.950	1.6
706	1.730	6.2	832	1.691	5.7			
716	1.737	10.1	842	1.737	5.3	910	1.798	11.4
			852	1.795	5.7	920	2.816	3.1
726	1.756	7.9	862	1.863	6.9	930	1.847	<2.0
736	1.786	6.4	872	1.940	8.9	940	1.889	3.8
746	1.831	3.1				950	1.943	2.9
756	1.887	4.6						
766	1.951	0.7						

901	1.800	5.1
911	1.806	6.4
921	1.825	7.4
931	1.855	8.1
941	1.898	3.0
951	1.951	6.4
902	1.827	14.7
912	1.833	5.8
922	1.852	6.7
932	1.882	3.7
942	1.923	4.7
952	1.976	3.6

$903 \quad 1.865 \quad 1.7$
913 2.872 4.5
9231.8896 .4
$933 \quad 2.9196 .8$

904	1.920	14.6
914	1.926	4.5
924	1.943	8.3

905	1.986	3.7
915	1.992	1.3

- Reflection not reoorded.

References.

(1) Crowfoot, D., Bunn, C.W., Rogers-Low, B.W. ${ }_{c}$, and Turner-Jones, A。(1949). The X-Ray Crystallographic Investigation of the Structure of Penicillin. Princetown University Press.
(2) Purberg, S., and Hassel, O., (1950). Acta Chome Soand., 4, 1584.
(3) Robertson, Jom. (1953). Oxganic Crystals and Molecules, Cornell University Press.
(4) Jeffrey, G.A., and Crviokehank, D.W.J. (1953). Quart. Revso, VIII, 334.
(5) Robertson, J.F. and Beovers, GoA., (1951). Acta Cryst., 4, 270.
(6) Bokhoven, C., Schoone, J.Co, and Bijvoet, J.M. (1951). Acta Cxyst., 4, 279.
(7) King, M.V., de Vries, J.Lo, and Pepinsky, Ro, (1952). Acta Cryst., 2, 437.
(8) Gruiokshank, Do WoJo, and Kobertson, A.P., (1953). Acta Crysto, 6, 698.
(9) Lipson, H., and Cochrone, Wo, (1953). The Determination of Crystal Structures (The Crystalline State - Vol. III). Dell, London.
(10) Computing Methods and the Phase Proklem in X-Ray Crystal Analysia, Editor R. Pepinsky, Pennaylvanie State College.
(11) Lonsdale, K., (1929). Trans. Faraday Soco, 25, 352.
(12) Pattorson, A.L., (1935). Z. Kristos 90, 517.
(13) Int. Tab., Vol I, (2nd Ed. 1952). The Kynooh Prese, Birmingham.
(14) Carlisle, C.H., and Crawfoot, D. (1945). Proc. Roy. Soo., ㄴ284, 64.
(15) Crowioot, De, and Dunita. 1. Do, (1948). Nature, 162, 608.
(16) Buerger, M.J., (1951). Acta Cryst., 4, 531.
 (1953). Aota Cryste, 6, 241.
(18) Shomaker, D.Po, Donohue, J., Sohomaker, Y., and Corey, R.B., (1950). J. Amer. Chem. Sce., 72, 2328.
(29) Harker, $D_{\text {a }}$ and Kasper, J.S. (1948). Aeta Cxyste, 2, 70.
(20) Karle, Jo, and Hauptman, H. (1950). Aota Cryst., 3, 181.
(21) Sayre, D., (1952). Acta Cryst., 2, 60.
(22) Coohrane, พ. (1952). Acta Crymt., 5, 65.
(23) Zachariasen, WoH., (1952). Acta Cryst., 5, 68.
(24) Cochrane, W. and Penfold, BoR. (195z). Acta Crysto, 21 644.
(25) Coohrane, W. (1951). Acta Cryst., 4, 408.
(26) Cochrane, W. (1951). AOta Cryst., 4, 81.
(27) Cochrana, W. (1953). Acta Crysto, 6, 260.
(28) Penfold, BoR. (1953). Aota Crysto, 2, 591.
(29) Vand, V. (1951). Acta Cryat., 4, 404.
(30) Vand, V. and Boll, I.F. (1951). Acta Cryst., 4, 465.
(31) Shearar, H.M.M. (1954). Ph. D. Thesis, Univ. of Glasgow.
(32) Cruickshank, D.W.J. (1949). Aota Cryst., 2, 65.
(33) Gruickshank, D.W.J. (1950). Acta Cryste. 3, 12.
(34) Cruiakshank D. W.J. (1949). Acta Cryst., 2, 154.
(35) Frdtman, H. (1948). Acta Chem. Scand., 2, 209.
(36) Grippenberg, J. (1952). Acta Chee. Scande, 6, 500.
(37) Kuhn, R. and Grundman, Ch. (1936). Ber., 69, 1557, 19793 (1936). Anenew. Chem., 42, 928; (1937). Ber.s 70, 1318; Chem. Ztg., 61, 17.
（38）Shaw，BoI．and whiting，M．C．（1953）．Chem．and Ind．，409．
（39）Buerger，M．J．（1944）．The Photography of the Reoiprocal Inttice．Asxped Monograph No． 1.
（40）de Lange，J．J．，Robertson，J．䲞．，and Woodward，I．（1939）． Proc．Hoy．Soc．，Al71．398．
（41）MoWeeney，I．（1951）．Acta Crysto，A， 513.
（42）Gordon， m_{0}, Stenhagen，Eog and Vand，V．（1953）．Acta Cryato， 6．739．
（43）King，w．V．and Lipacomb，WoN．（1950）．Acta Gyymto，3，222．
（44）King，M．V．and Lipscomb，Wo．（1950）．Aeta Crysto，3，227．
（45）Jatz，E．（1886）．Ber．，12，1440。
（46）Clark，G．L．and Hudgen，C．R．（1950）．Science（U．S．A．）．， 112，309．
（47）Von Sydow，E。（1953）。 Private communicationo
（48）MeCron，C．J．，（1952）．BoSco，Thesig，Univ．of Glasgow．
（49）Int．Tab．（1935）．1st Ed．，Vol．II．Borntraeger，Berlin．
（50）Robertson，J．M．and White，J．G．（1945）．J．Chem．Soe．，607．
（51）Cochrane，W．and Penfold，B．R．（1952）．Aotu Cxyst．，5，644．
（52）Buan，C．W．（1939）．Trans．Faraday Soc．，35， 482.
（53）Pauling，L．（1939）．The Nature of the Chemical Bond，Cornell University Press．
（54）Binnie，W．P．，and Robertson，JoM．（1949）．Acta Crysto，2，180．
（55）Structure Reports Por 1949，Oosthoek，Utrecht．
（56）Rogers，D．and Wileon，AoJ．C．（1953）．Aota Grymto，6，439．
（57）Vand，Vo，Morley，险M，and Lomer，ToR．（1951）．Aota Cryst． 4． 324 ．
(58) Vand, V., Aitken, Ao, and Campbell, R.K. (1949). Aota Crysto, 2, 398.
(59) Vand, Vo, Lomer, Ti.R., and Lang; A. (1949). Aota Crysto, 2, 214.
(60) Vend, V., and Sim, G.A. (1952). Acta Cryst., 5, 695.
(61) Criok, FoH.C. (1953). Aota Cryøt., 6, 689。
(62) IGren, G_{0}, de Verdier, C., and Glomset, J. (1951). Aota Chem. Soand, 5, 199.
(63) Tunell, O. (2939). Amer: Min., 24, 448.
(64) Balien, G.J. (1953). Aota Cryot., 6, 825.
(65) Deevers, C.A. and Robertmon, J.H. (1950). Acta Crysto, 3, 164-

Appendix I.

Molecuiar Orbital Description of Dimethyteortiorooin.
 Introductiono

It ia now well knovin that the intimate description of a chemical bond is essentially electronic, but Heiaenberg has ahom that our knowledge of so minute a particie ean never be as precise as alaseical treatment requires. Wave mechanios, which is based on Sohrödinger ' m^{2} wave equation, provides a solution to this problem. The equation itself oan only be completely solved for some rather special cases, so that when dealing with molemies we must use approximations. Of these the two chief ones are the Falence bond and molecular orbital (uaually abbreviated to meo.) methode. We shall deal with the latter exclusivaly.

In the ac o. treatmont we consider that each electron moves in an orbital which is ossentially polyoentrio and wioh is governed by a set of quantum numbers. Molecules can thus he built up by feeding electrons into the allowed orbitals. Kost of these lectrons can be localised but somey which are called mobile or π, and whioh oosur in conjugated and aromatio systeas, have oxbital extending over several atoms.

When we deal with conjugated compounds it is utrual to congider only the π electrons and the simplest way to obtain their m. Oo's in by taking Inear combinations of the contributing atonic orbitals. 3 , 4. Hence the complete π electron wave-function for a chain containing r atoms, each contributing one T electron from an atomic oxbital $\psi_{r}, i s$,

$$
\psi=\sum_{T} c_{+} \psi_{T},
$$

where the ooefficients C_{γ} are ckoesn so as to mininise the onorgy.
We now introduce an approximate Hamiltonian H for each π eleotron which noglects all the other π electrons. whe wave equation for one π eleatron then beeamen,

$$
\mathbf{E} \psi-\mathbf{E} \psi
$$

Tho Fariation Principle 5 an now be applied to give us r seoular equations, each of whioh has the form,

$$
\sum_{S}\left(H_{r-s}-S_{r s} E\right) c_{S}=0
$$

where S also enumerates the atoms in the chain, and where

$$
H_{r s}=\int \psi_{\lambda} H \psi_{s} d \tau \text { and } S_{r s}=\int \psi_{\lambda} \psi_{s} d \tau
$$

We can mimplify these equations by assuming thati
(1) $H_{r a}-0$ when $x f$ and x and are not inmediate neighbours.
(2) for the same kinds of atoms all the $H_{\text {rF }}$ and all the $H_{\text {ma }}$ are equal.
(3) S_{y} owhen F and that all tho atomic orbitals are separately normalised, $i . e S_{T r}=1$.

When the mecular equations are aolved we obtain relues for the energy f whioh repreaent the 1 possible energy lerols of a π eleotron in the moleoule. Similarly there are r sets of values of C_{r} Which eorrespond to these energy levels and each set mast be normelised no that:

$$
\sum_{r} c_{r}^{2}=1
$$

The oocficients also have the property of orthogonality, ine.

$$
\sum_{i} c_{i j} c_{i k}=0
$$

where j and k are different energy levels.
Using these $C_{\text {, }}$ Falues we can ohtain impartant information about the molecule and for this we consider all the cocupied orbitals. The familiar interpretation of ψ^{2} is electron density, so that we
define the T electron charge on the fth atom by,

$$
q_{i}=\sum_{i=1}^{j} n_{i}\left(c_{i}^{i}\right)^{2}
$$

where n_{i} number of electrons in orbital i and there are j energy Levels. Similar reasoning leads to the mobile bond order being defined as,

$$
\mu_{t+s}=\sum_{i=1}^{j} n_{i} c_{i}^{i} c_{s}^{i}
$$

The total bond order is $1+p_{r g}$ mince there is always a 6 bond whish is supposed to be of order 1.

Bond lengths can be implied from bond orders if we use an empirical curve for correlation with certain standard compounds. The curve used in this work for carbon-earbonk bonds is due to Coulson ${ }^{6}$ and is given in Figure AI. The accuracy is about $\pm 0,03 \AA^{7}$. No equally satisfactory cruse extern for oxygen-aarbon bonds, but one can be constructed ${ }^{8}$ and is also given in Figure AI. these bond orders cen also be used to deduce the free valence (H_{r}) of the Fth atom from,

$$
N_{N}=N_{\text {max. }}-\sum_{s} f_{r s}
$$

For trigonally hybridised carbon $\mathrm{N}_{\text {max }}$ is given by the square root of the number of similarly hybridised carbons to which it is attached.

Lankly it can be maid that from calculations made along
these general lines the beginning of a theory of chemical reactivity are appearing. ${ }^{10,11,12,13 .}$

Cslculations.

This work is based on the theories set out by Coulson in his book "Valence", ${ }^{14}$ and by B. and A. Pullman ${ }^{15}$ in "Les Théories mieatronique de la Chimie Organique". The mathematical treatment of the determinants was developed by Goodwin and Vand. ${ }^{16}$

The Kekulé atructure of dimethylcortiorocin ins

In the calculations the lone pair ci electrons on the methoxy oxygen has beon neglscted since, from chemieal propertien, thoy are Ieas mobile than the other π electrons.

It is clear that we may now danl with the molecule ascording to the methods set out in the introduction. For carbon we put all the $H_{r x}=E_{0}$ and all the $H_{7, ~}=\beta$, but since oxygen ia more oleotronegative it mill olaim a greater mhare of the π eloctrone, * that we put $H_{11}=H_{16,16}=E_{0}+\beta$ and $E_{12}=H_{15,26}=2 \beta$. We now have for the mixteen seculare equations,

$$
\begin{aligned}
c_{1}\left(\overline{E_{0}+\beta}-E\right) & +2 c_{2} \beta \\
2 c_{1} \beta & +c_{2}\left(E_{0}-E\right)+c_{3} \beta \\
& c_{2} \beta+c_{3}\left(E_{0}-E\right)+c_{4} \beta
\end{aligned}
$$

If the o's are to be non-trivial the determinant of their coefficiente mat be soro. This gives us,

$$
\begin{array}{ccccccc}
x+1 & 2 & \cdots & & & & \\
2 & x & 1 & \cdots & & & \\
& & 1 & x & 1 & & \\
& & & \\
& & & 1 & x & 1 & \\
& & & & & \\
& & & & 1 & x & 1 \\
& & & & & 1 & x \\
& & & & & & 1
\end{array}
$$

$$
=0-I I
$$

By the well known property determinants, that it is permismable to add any incour combination of ilnes or celumas to any other without altering the value, II is oonvertible to III.

$$
\begin{aligned}
& \begin{array}{ccc}
x+1 & 2 & \\
2 & x & 1
\end{array} \\
& \begin{array}{rrrrr}
-2 P_{2} & -P_{2} & 1 & & \\
2 P_{2} & P_{3} & & 1 & \\
-2 P_{3} & -P_{4} & & & 2
\end{array} \\
& 2
\end{aligned}
$$

F reperesents a oontinuant of the nth order. This is a special form of determinant, e.g.

The valuel of these continuants are giva by,

$$
P_{n}=P_{1} P_{n-1}-P_{n-2}
$$

If we now use the oentral aymetry of the deterninant
III we can immediately factorise it into two eighth order determinante, of of mioh (S) will give, on solution, values of C so that $C_{r}=C_{27}-r^{\prime}$ and the other (A) will give C_{r} values where $c_{5}=-C_{27}-x^{\circ}$ These two determinants can be finally reducell to,

$$
S=P_{8}+2 P_{7}-2 P_{6}-3 P_{5}=0, \text { and }
$$

$$
A=P_{8}+P_{7}-3 P_{6}=0
$$

The roots of A and S which lie between ± 2 can be
readily found if we employ the relationship,

$$
\begin{aligned}
& P_{n}=\frac{\sin (n+1) \alpha}{\sin \alpha} \\
& \text { where } x=2 \cos \alpha .
\end{aligned}
$$

This expression oan be ovaluated using normal Fourior methods. The remaining roots were found by aystematic trial and orror since it is
unusual for the roots to exceed ± 3 when this type of oompound is being dealt with. All the roots were refined using Taylor's theorem. Their values are given in Table AI.

Table AT.

Humber of Root.	Value $(=x)$	Factor used.	Number of Root.	Value $(=x)$	Paotor used.
26	2.427	A	8	-0.293	A
25	2.060	S	7	-0.727	8
24	1.884	A	6	-1.129	4
13	1.662	s	5	-1.480	8
12	1.366	4	4	-1.755	4
11	1.000	s	3	-2.935	s
10	0.593	A	2	-2.737	A
9	0.158	S	1	-2.737	s

These values, when we apply the normalisation and orthogmality oonditions, lead in tum to the values of canch are in Table A II. The values for only one half the moletule are given, the others being related as atated proviously. Only the coefficients for the aight lowest levels have been ovaluated aince, in the ground mtate, the reat will be unoccuplod.

Table A II.

Atoms.

Root	Fegr.	1	2	3	4	5	6	1	8
1	S	0.509	0.442	0.192	0.083	0.037	0.015	0.006	0
2	A	0.509	0.442	0.192	0.083	0.037	0.025	0.006	0
3	8	0.065	0.030	-0.070	-0.167	-0.253	-0.322	-0.372	-0.396
4	A	0.112	0.042	-0.150	-0.305	-0.386	-0.372	-0.267	-0.097
5	S	0.1 .42	0.034	-0.234	-0.380	-0.323	-0.106	0.172	0.352
6	A	0.161	0.010	-0.310	-0.361	-0.097	0.251	0.382	0.179
1	S	0.172	-0.024	-0.361	-0.239	0.187	0.375	0.085	-0.313
8	A	0.180	-0.064	-0.379	-0.047	0.365	0.154	-0.320	-0.247

We may also use the roots to calculate the total energy of the π electrons whion is $16 \mathrm{E}_{0}+25.586 \beta^{3}$. The difference betweon this energey and the energy of the Eskule structure is $5.586 \beta^{\beta}$, whioh represents the resonance onergy of the molecule and is comparable with the raluee for pheaanthrene or anthracane. 10.

The bond orders eto. which ware caleulated using the coefticienta or Table AII are given in Table A III. In Figure A II the gane valuen are given in tha form of a conventional moleoular

A4agram.

TabIe A III。

(1) charge distribution and free valence.

	1	2	3		5	6	1	8
charges	1.286	0.798	1.054	0.936	1.000	0.962	0.984	0.972
reaultant charges	-0.286	+0.202	-0.0.54	+0.064	0	+0.038	+0.016	+9.028
frete valunce	0.286	-	0.256	0.096	0.158	0.128	0.148	0.142

Table A IIE。
(2) hond orders and lengths.

	1-2	Bond.						
		2-3	3-4	4-5	5-6	$6-7$	7-8	8-9
boad order	1.896	1.386	1.790	1.528	1.728	1.558	1.708	1.564
bend 1 ength	2.22	1.45	2.37	1.42	1.38	2.42	2.39	1.42

Mgure 4 I.
Oxder-Leagth eurven wed for ourbon-earbon and carbon-oxygen boads.

PGure A IT.

Molecular Diagran for Dimothyleortiorooin.

Disousaion.

It is unfertunate that no experimental bond lengths are are available for comparison with our caloulations. However the boad ordsres can be compared with those of the corresponding hydrocarbon as Couleon ${ }^{6}$ has obtained a general formula for these compounds. ${ }^{*}$ Our cempound shows a greater degree of altemation between the "single" and "double" bonds but the differenced ase only large for the 2-3 and-g-g-bende- where ther amounts to about $\frac{1}{3}$ and $\frac{1}{8}$ of the mobile oxder. 208pootivoly

Predictions of reactivity can also be made which show the oarben (3) to be the most reactive except tumards anionie radieals which will favour the central atoms. Ho reactiong have fot been reportel for dimethyleorticrocin, but this in in Ine with general chersteal considerations.

* see leaf opposite
in LINE S After
for rinese compounds.
ADD
nether are
Couison's formula is,
ever the bond
$p_{t}=\frac{1}{2 n+1}\left\{\operatorname{cosec} \frac{\pi}{4 n+2}+(-1)^{+-1} \operatorname{cosec}(2++i) \frac{\pi}{4 n+2}\right\}$
Axocarbon
randi * ${ }^{*}$ Or
where pr is the' mobile bond order of the isth bond
 and n is the number of carbon atoms.
, the 2-3
The total bond orders which are calculated by this method are:-
roble oxime.
$1.851,1.476,1.730,1.564,1.697,1.585,1.683$, and 1.595
where the sequence is the same as that given in the molecular diagram.

Hon mow the - cations

Abstract

witch will favour the contra atoms. Io reaction have ret been oncuneat oonstiaxations.

* see leaf opposite

Referenoes for Appendix I.

(1) Heisenberg, W. (1930). Physical Prinoiples of the Quantum Theory, University of Chioago Press.
(2) Sohrodinger, fo (1926). Ann. der Physik, 72, 361.
(3) Kulliken, KoS. (1932). Phys. Rev., 41, 49.
(4) Mullikon, RoSo (1935). Jo Chem. Phywo, 3, 375。
(5) Pauling, I. and Wilson, E.B. (1935). Introduction to quantum Meahanins, HeGew-Hill Co., New York.
(6) Couleon, CoA. (1959). Proo. Koy. Sou., A169, 413.
(7) Goodwin, T.H. (1954). Private commuieation.
(8) Cox, E.G. and Jeffrey, G.A. (1951). Proc. Roy. Soc., A207, 110.
(9) Coulson, C.A., Daudel R. and P. (1947). Rev. Sei., 85, 29.
(10) Wheland, G.t. and Pauling, Lo (1935). Jo Amer. Chom. Soo., 57, 286.
(11) Wheland, G.W. (1942). Jo Amer. Chem. Soc., 64, 900.
(12) Coulson, G.A. and Longuet-Higgins, H.C. (1947). Proo. Roy. Soc., A 292, 16.
(13) Coulson, C.A. (1951). Research, 4, 307.
(14) Coulson, C.A., (1952). Valence, Clarandon Press.
(25) Pullman, R. and A. (1952). Lee Théories Eleotronique de le Chimie Organique, Masson of $c^{i e}{ }^{\text {e }}$, Paris.
(16) Goodwin, T.I. and Vand, F. (1952). Private commanication.

Appendix II.

Re-Determination of the Film Absorbtion Faotor. ${ }^{1}$

Previous workers in this department have found that this Pactor doea not ohange appreciably for different batches of any one make of filmo However it was decided to oheck up on this by redetermining the Paotur for CuK α radiation (the fuctor varying with the wavelongth).

Monochromatic radiation was obtained by reflecting Mi filtered Cuk from a large eaidite eryatal, which gives a very intonse (200) rellection, and a short exposure oseillation photograph was taken with a paok of four Pilas. A enies of wedges of lnown intensity eradetion were also exposed on a separate film and all the films were developed togethex. The relative intensities of the spots on the different films were then found using a photometer calibrated by means of the wedges.

The film employed was Ilford Induatrial $C_{\text {, each sheet }}$ of which was kept wrapped in $14 s$ black paper covering, and whioh was Fonad to have an absorbtion factor of 3.22. This vaiue agrees, within the limita of the probably experimontal errorg with the value of 3.3 which had beon employed previously.

This work was carried out in collaboration with G.A. Sim and we are indebted to Dr. S. H_{A} R.S. Mitchell for the use of his photometer.

Reference:

(1) Robertson, J.M. (1943). J. Sei. Instrum., 20, 175.

