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i

Abstract

Entanglement has been an extremely active field of research both from a theoretical

and an experimental point of view. As the understanding of the phenomena grows,

so does the interest in using it to advance different technological fields: communica-

tion, computing and sensing being just some examples. It is now well known that

entangled photon pairs can be generated through a process known as spontaneous

parametric down-conversion (SPDC). In this thesis I therefore integrate the SPDC

generated photons in a variety of experiments each exploiting a different charac-

teristic of this quantum effect. In particular, both chapter 3 and chapter 4 utilise

the spatial degree of freedom of SPDC generated entangled photons to enhance the

quantity of information that can be transmitted in quantum communication systems.

In particular, in chapter 3 the information capacity of two of the best known spa-

tial modal sets is analysed in the context of real life finite-aperture communication

systems, while chapter 4 proposed a new approach for imparting information onto

photons. On the other hand, both chapters 5, and 6 rely on the ability of SPDC to

generate completely indistinguishable photon pairs, which, when made to interfere,

bunch together in what is known as N00N state. In particular, chapter 5 demon-

strates that the recently discovered “Coherent Perfect Absorption” process (CPA)

can be used to coherently control and absorb two-photon N00N states and therefore

can be employed in the generation of quantum gates, while in chapter 6, the quantum

interference process that produces the N00N states is used to test the role of relativity

in quantum mechanics through the construction of a “quantum gyroscope”.
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Chapter 1

Prelude

1.1 The quantum nature of light

Entanglement has been an extremely active field of research attracting great interest

both for its theoretical implications and for the many applications that it can produce.

This physical phenomena is unique to quantum mechanics as it does not have any

classical equivalent. In particular, entanglement is a property of correlation between

two or more quantum systems i.e. two or more particles are said to be entangled if

the state of one of the particles cannot be described without also describing the state

of the other particles [1].

Entanglement was first described by Albert Einstein together with B. Podolsky and

N. Rosen (EPR) in their seminal 1935 paper, which questioned the completeness of

the quantum-mechanical model due to the existence of these non-factorizable two-

particle states [2]. In particular, they proposed an EPR state composed of two

subsystems that had been made to interact before being spatially separated, while

still individually maintaining correlated properties (such as position and momentum).

They sustained that quantum mechanics was a locally causal theory and in order to

1
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allow for correlations between the two systems, and recover the prediction of stan-

dard quantum mechanics, an introduction of hidden variables was necessary. Shortly

after the publication of the EPR paper, Erwin Schrödinger addressed the paradoxical

nature of the EPR experiment with a three-part letter in which he introduced, for the

first time, the term entanglement to describe the non-local correlations between the

two states [3]. In his letter he suggested that what should be questioned is not the

completeness of quantum mechanics but the assumption that quantum mechanics is

a locally causal theory and descried entanglement as a characteristic trait of quan-

tum mechanics. It wasn’t until the publication of John Bell’s paper in 1964, that the

validity of the EPR arguments, was formally challenged. In this paper, Bell demon-

strated that the principle of locality, an underlying assumption of the EPR argument,

was mathematically inconsistent with the interpretation of quantum theory made in

the EPR paper [4]. Specifically, he demonstrated the existence of an upper bound

for systems exhibiting locality, and showed that quantum theory predicts violations

of this limit for certain non-local systems, which include quantum states, thus ruling

out the possibility of hidden variable theories. Bell’s theorem was then extended by

Clauser, Horne, Shimony, and Holt to cover actual systems and therefore proposing

an inequality to test for all local hidden-variable theories, making it experimentally

possible to prove the validity or not of quantum mechanics and therefore the necessity

of a hidden variable theory [5].

In recent years, a number of novel experiments have been carried out using parametric

down converted photons for the realisation of ideas concerning quantum entanglement

([6–15]). In particular, they have focused on demonstrating the uniqueness of this

effect to the quantum mechanics, and therefore it’s non replicability by means of

a classical formalism. These experiments attracted great interest seeing that they

play an important role in the creation of future quantum applications as well as the

development of new areas of physics, for example quantum information theory [1]. In
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particular, within the UK, new quantum technology hubs have been formed with the

intention of creating new technologies, in the fields of quantum computing devices,

quantum enhanced imaging, quantum secure communications, quantum acceleration

and navigation devices, quantum gravity sensing devices, and quantum timing devices

[16]. With the current improvement of our knowledge in the field of quantum optics

coupled with the growing sophistication and sensitivity of optical equipment, testing

theoretical ideas in connection with the foundations of quantum mechanics is now

becoming a reality; some example being the recent demonstration that the invariance

of the speed of light only applies to plane waves and the recent experiment testing the

effect of a uniform acceleration on photon entanglement [12, 17]. However, quantum

optics is still a very open field of research and the scope of my PhD is to conduct new

experiments in this field, in the hope of gaining a better understanding of entangled

photons and therefore make it more accessible for future applications.

1.2 Walkthrough

While this chapter stands as a general introduction to the thesis, and quantum en-

tanglement, in the following sections I will give a brief introduction to the topics

discussed in the remaining chapters.

Chapter two: As the generation of entangled photons is central to all the exper-

iments I conducted during my PhD, in this chapter a general background to the

spontaneous parametric down conversion process is given.

Chapter three: In this chapter the work of my published paper “Comparing the

information capacity of Laguerre-Gaussian and Hermite-Gaussian modal sets in a

finite-aperture system” is discussed. This work was performed both numerically and

experimentally by me and is now published in Optics Express [18].
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Chapter four: In this chapter the work of my published paper “Spiniform phase-

encoded metagratings entangling arbitrary rational-order orbital angular momen-

tum” is discussed. The work in this chapter was carried out as part of a collabora-

tion with the National University of Singapore of which I was solely responsible for

designing and implementing the experiment for a quantum communication system.

This work is now published in Light: Science & Applications in a research paper of

which I am one of the joint first authors [19].

Chapter five: In this chapter the work of my published paper ‘Coherent absorption

of NOON states” is discussed. This work was carried out as part of a collaborative

effort between members of multiple universities (i.e. University of Glasgow, Heriot-

Watt University, University of Strathclyde). As part of the collaboration, I was

responsible for the design and setting up of the experiment, in addition to running

the experiment and collecting the data. The output of this work is now published in

Physical Review Letters of which I am second author [15].

Chapter six: In this chapter the work currently submitted in the paper “Photon

bunching in a rotating reference frame” is discussed. This work was also carried

out as part of a collaborative effort between my university and the University of

Southampton. This project was proposed by my supervisor, and I was responsible for

the experimental design, the running of the experiment, the collection of data and

the analysis of the results. The theoretical background for the paper was provided by

our collaborators in Southampton. This work is currently under review in Physical

Review Letters.

Chapter seven: In this chapter a summary is given of each of the projects discussed

in the thesis along with a discussion of future work and applications.



Chapter 2

Background

2.1 Introduction

Before proceeding to the main chapters of this thesis, I will first introduce relevant

background theory for the generation of the entangled photons which will be used in

all the subsequent chapters.

2.1.1 Generating Photons: Spontaneous Parametric Down-

Conversion (SPDC)

As previously stated, entangled systems are completely described in quantum me-

chanics and exhibit non-locality, therefore in order to be able to run a quantum ex-

periment it is necessary that the experiment violates Bell’s inequality. Consequently

it is necessary that the photons used in the experiment be entangled and that during

the experiment it must be possible to choose to measure quantities among at least

two non-commuting observables. Nowadays, the most common method of generating

entangled photon pairs is by the use of a nonlinear crystal through a process called

5
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spontaneous parametric-down-conversion (SPDC). This is a quantum-mechanical de-

cay process, in which a pump photon, entering an optically nonlinear medium, decays

into two lower-energy photons, which are commonly known as the signal and idler

photons (fig. 2.1) [20].

The parametric process at the base of SPDC is not a new concept as it was ini-

tially developed as a low noise amplifier for radio waves and microwaves and was first

demonstrated in the optical wave-range in 1965 by Giordmaine and Miller [21]. In

particular, in the optical range there are two basic processes that can lead to para-

metric gain: three-wave mixing (which occurs when a second order non-linear process

takes place), and four-wave mixing (which occurs through a third order non-linear

process) [20]. As the photon pairs in this thesis are generated through SPDC, a

second order non-linear process, only this case will be discussed.

Second Order Nonlinear Process

A second order nonlinear process occurs in a medium in which the second-order

susceptibility tensor χ(2) is nonzero hence the nonlinear polarisation induced inside

the crystal by an applied electric field can be written as: P(t)= ε0χ
(2)E2(t) where E

is the electric field at time, t, and ε0 is the permittivity of free space [22]. This process

is the lowest order nonlinear process that can occur in a nonlinear medium and is

restricted to crystals that are non-centrosymmetric (a more detailed explanation can

be found in Boyd’s book ”Nonlinear Optics” [22]). When the electric field incident

upon a crystal with a substantial χ(2) is composed of two distinct frequencies, the

frequency components of the optical field mix to produce a third component in what

is known as three-wave mixing. In particular, the two frequency components can

induce an oscillation in the polarisation that is the sum of the two frequencies in

a nonlinear process called sum-frequency generation (SFG) or the two frequency
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components can induce an oscillation that is the difference in energy between the

two, in what is known as different-frequency generation (DFG). It is important to

note that, the specific nonlinear process SFG in which the two input field have the

same frequency has its own name: Second Harmonic Generation (SHG). This process,

often also known as frequency doubling, has been found to be very useful in modern

optical laboratories as it takes two input fields and outputs a new field with twice

the energy of the initial ones. This can therefore be used to convert fixed wavelength

lasers to different spectral regions. More importantly for the scope of this thesis,

SHG is the time reversal equivalent of the Parametric Down Conversion Process used

in our experiment to generate the entangled photon pair. As for SHG this nonlinear

process is also a three wave process with the major difference being that, instead of

having two input fields produce a single output field, a single input field produces

a pair of correlated output fields. As previously stated, in the Parametric Down

Conversion Process photons from a high energy pump field propagating through a

crystal possessing a χ(2) nonlinearity will decay into a pair of lower energy photons

(fig. 2.1). It is important to note that in a low-gain regime signal and idler fields

can still be generated without an input in what is known as Spontaneous Parametric

Down Conversion (SPDC) [20]. In this case the process is stimulated by fluctuations

in the quantum vacuum hence any field that is coupled in the process may radiate. It

therefore follows that the photon pairs generated through SPDC are time independent

of each other and generated with any combinations of energy and momentum allowed

by the restrictions imposed by the nonlinear crystal and pump field employed [23].

Phase Matching

Being a parametric process, SPDC leaves the quantum state of the medium un-

changed and therefore the angular frequencies of the pump (wp), signal (ws) and
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Figure 2.1: Spontaneous parametric down conversion (SPDC). A pump photon
entering a non linear crystal probabilistically induces the production of a pair of
phase-matched signal and idler photons. The case illustrated corresponds to the
sub-case of non-collinear SPDC process i.e. the signal and idler photons are emitted

at an angle compared to the direction of the pump.

idler (wi) photons follow the energy conservation.

wp = ws + wi (2.1)

In addition, the efficiency of the emission is greatest when there is conservation of

linear momentum and therefore the sum of the wave vectors of the signal (
−→
ks) and

the idler (
−→
ki ) equals that of the pump (

−→
kp):

−→
kp =

−→
ks +

−→
ki (2.2)

If both relations 2.1 and 2.2 are met, the condition is known as phase-matching

and the pairs of photons created are both phase-matched in the frequency domain

and have correlated polarisations. It is important to note that in order for the

phase matching conditions to be met the generated fields must be in phase with the

pump throughout the length of the crystal. This becomes a problem in the non-

degenerate SPDC process where different optical frequencies are present as different

optical frequencies propagate through a transparent medium with different phase ve-

locities. The most common experimental way of mitigating this chromatic dispersion

is through the use of a birefringent crystal as birefringent mediums have a refractive

indices that varies with the direction of polarisation of the light [22]. It therefore



Chapter 2. Background 9

follows that when using a birefringent crystal, one must pay attention on the orienta-

tion of the crystal and the polarisation of the optical fields as only a certain number

of geometries are allowed. In particular, phase matching in a birefringent crystal

can take place for two possible phase matching conditions: if the signal and idler

photons have the same polarisation which is orthogonal to the pump polarisation or

if the signal and idler have perpendicular polarisation to each other. These two cases

are known as type-I, and type-II down-conversion respectively. It must be pointed

out that conservation of momentum can also be achieve through a process called

quasi-phase matching where a crystal source with periodically poled domains such

as a PPTKP crystal is used. In this case phase matching does not occur, but inside

each domain a certain amount of mismatch takes place which then gets corrected in

the adjoining domain which is set up so as to have a mismatch of equal value but

of opposite sign. As this case does not need to use the birefringence property to

maintain the phase-matching conditions it allows a third alignment geometry, also

known as type-0 SPDC, where the signal, idler and pump photons have the same

polarisation. In the experiments described in this thesis only type-I SPDC is used to

generate the down-converted photons.

Figure 2.2: Illustrated are some different phase-matching scenarios. In particular
(a) illustrated the perfect collinear case in which the two photons are emitted in
the same direction as the pump. On the other hand (b) demonstrates perfect
non-collinear SPDC where the two photons are emitted with opposite transverse

momentum.

Finally as previously pointed out, when using a birefringent crystal to achieve phase

matching, one must not only take in consideration the polarisation of the fields but

also the orientation of the crystal. In particular, in the case of remaining mismatch
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between the pump and the generated fields careful tuning of the angle of the crystal

can be used to alter the path of propagation of the pump, signal and idler photons so

as to compensate the phase mismatch and therefore satisfy equation 2.2. It therefore

follows that the SPDC process can either be collinear (fig. 2.2a) or noncollinear (fig.

2.2b). In the first case the signal and idler photons are emitted in the same direction,

parallel to the direction of the pump, while in the second case the signal and idler

photons are emitted at an angle relative to the direction of the pump (fig. 2.2b).

It is important to note that in the noncollinear case in order for equation 2.2 to be

valid, the transverse momenta of the signal and idler photons must be opposite in

direction. In an experimental set-up, the case of type-I collinear SPDC manifests

itself as a bright on-axis spot in the far-field of the crystal. On the other hand, type-I

noncollinear SPDC appears in the far-field as a bright annulus symmetric about the

pump propagation axis where the generated signal and idler photon pairs appear

in diametrically opposite positions and the width of the ring is determined by the

width of the allowed frequencies i.e. it is directly correlated to the bandwidth of the

generated photons. It is important to point out that the bandwidth of the photons

is directly linked to the length of the crystal i.e. the shorter the crystal the wider the

range of frequencies that can be generated while still maintaining the phase matching

conditions. Similarly the spatial degree of freedom of the correlated photons is also

linked to the length of the crystal. In particular, the longer the crystal the bigger

the degree noncollinearity needed for the phase matching conditions to be meet i.e.

the correlated photons are generated over a narrow range of opening angles limiting

the ambiguity in the direction of traveling of any one photon. A full analysis of the

correlation between spatial bandwidth and length of a BBO type-I crystal can be

found in the Miatto et al. paper [24].



Chapter 2. Background 11

2.1.2 Experimental apparatus

In the following chapters four distinct experiments will be presented, however, while

the quantum effects tested in each experiment are different, all experiments share

some common experimental methods and apparatus. In particular, all experiments

are composed of a source of entangled photons and, at the output of the different

experimental setups, a method of collecting the signal and idler photons in order to

measure their correlation.

For all experiments discussed in this thesis the same SPDC source is used to generate

entangled photons. In particular, the signal and idler source is composed of a 3mm

type-I β-Barium Borate (BBO) crystal pumped either by a 355nm CW (chapter 3,

4, 6) or a quasi-CW (chapter 5) laser source. The use of a BBO crystal for SPDC

is quite common as it not only has a high second order nonlinearity component,

but it is also birefringent hence making it suitable for both type-I and type-II phase

matching [25]. In particular, a 3mm type-I BBO crystal has been a common choice

of crystal for quantum entanglement experiments carried out in my research group

thus the choice of this crystal was made in order to have continuity with previous

work performed in the research group [24, 26–28]. The SPDC source component of

the setups is completed by the presence of a longpass filter. This filter is employed

after the crystal to block the residual pump beam and only enable the entangled

photons to be present in the experimental system. In particular, the longpass filter

chosen for our experimental set-ups has a 93% transmission rate for all wavelengths

between 504.7–900nm while reflecting all wavelengths under 504.7nm.

As well as a source of entangled photons, all our experimental systems necessitate

of a way of collecting the outputted signal and idler photons and measuring their

correlation. Hence, in all our experiments, the signal and idler photons are collected

by fibres connected to silicon single photon avalanche photodiodes (SPADs) which
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transmit their output to a coincidence circuit. In particular the SPADs used in all

the experiments presented in this thesis are designed to have maximum efficiency for

photons with wavelength of 700nm. Similarly, in all experiments, with the exception

of the experiment described in chapter 5, the same coincidence circuit is used com-

posed of an event timing module with a temporal resolution of about 3ps. When

connecting the two detectors to the input channels of the event timing module a

histogram of the relative temporal difference between the arrival of the two photons

can be calculated. It is important to note that for non-classical states, i.e. the ones

generated through SPDC, the events are independent of each other hence they will

follow a Poissonian distribution [29]. It therefore follows that in the case of a CW

laser pumping our 3-mm type-I BBO crystal, the coincidence events will manifest as a

Poissonian peak over a certain number of time bins. It should be mentioned that the

sole presence of single photons on each output can give rise to coincidence events that

are not due to the pair of photons generated through SPDC but simply to chance.

This are known as “accidentals” (Acc) and their probability can be estimated as

Acc = S × I ×∆t (2.3)

where S and I are the photons measured by the detectors on the signal and idler

output of the system and ∆t is the resolving coincidence window of the machinery

(i.e. it is directly related to the number of time beams used to generate the histogram)

[30, 31]. The strength of the correlation in our system can therefore be calculated by

dividing the total number of coincidence events measured by the accidentals. This is

known as quantum contrast (QC) and can be written as:

QC =
MC

Acc
=

MC

S × I ×∆t
. (2.4)
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where MC is the measured coincidence. It is important to note that the use of

coincidence to accidental ratio is quite useful as it is an useful way of characterising

the efficiency of the experimental quantum system. A similar method to quantify

the photon-pair signal to noise ratio is through what is known as coincidence to

accidental-coincidence ratio (CAR) [32, 33]. In this case the purity of the state is

quantified by:

CAR =
MC − Acc

Acc
. (2.5)

It can easily be noted that limiting the time bins used to calculate the coincidence

rates to only the ones in which the Poissonian peak appears is quite beneficial as

the number of accidentals in the system is proportional to the coincidence window

chosen (∆t). In our experimental set-ups we chose to use 500 bins for our histogram

hence all our coincidence rates are calculated in a coincidence window of 1.5ns. As

previously mentioned, the timing module just described is used in all experiments

except the one described in chapter 5. This is because the experiment in chapter 5

is not limited to two output arms, but it contains four. A special time module was

therefore employed which allowed the measurement of coincidence events from four

different detectors. This time module was set to a temporal window of ∆t = 25ns.

2.1.3 Klyshko advanced wave model

In parametric down-conversion, one can define coincidence detection as a simulta-

neous detection of the signal and idler photons. In general, during any experiment

involving entangled states, the probability of detecting both the signal and the idler

photons in their respective states represents the quantum mechanical prediction of

the measurement outcome and is proportional to the coincidence rate. But detecting

coincidences in a photon experiment is not always very easy in that a coincidence



Chapter 2. Background 14

Figure 2.3: Schematic representation of the Klyshko advance wave picture where
(a) represents the basis for all quantum correlation set-ups and (b) shows the

classical counterpart to (a) as defined by Klyshko picture

rate only exists if the detectors are arranged to satisfy energy and momentum conser-

vation and to have equal time delays. In 1988, David Klyshko formulated a different

approach to predicting measurement outcomes through the use of an advanced-wave

retrodiction model [34]. His approach, known as the Klyshko picture, arises from

a rigorous formulation of quantum mechanics and is based on the fact that in a

retrodictive model, a quantum system at any point in time between preparation and

measurement is described in terms of its measured state, evolved backwards in time

[34]. He therefore proposed a “back-propagating” model that allows for the prediction

of the quantum correlations through a classical analogue. In particular, he showed

that the quantum set-up, consisting of two detectors measuring the coincidence rates

of the signal and idler photons generated through SPDC is equivalent to a classical

set-up where one of the detectors is replaced with a light source and the down con-

verted crystal acts as a mirror as above in figure 2.3. It is important to point out
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that this model has now been verified by various experiments, most notably by ghost

imaging experiments [35]. In my thesis I will therefore use this method for the design

of the numerical simulation of my experiments.



Chapter 3

Encoding information in Aperture

Limited Systems

3.1 Introduction to Quantum Communication

Communication is an important part of human society and it is closely linked to

the development of civilisation. With the advancement of technology, new complex

methods of communication have arisen making it possible to send information over

large distances in very little time. This has inspired the development of the area of

research called information theory.

Information theory was established by Claude E. Shannon in 1948 in a seminal paper

called “A Mathematical Theory of Communication” [36], where he laid the basic

elements for a general theory of communication and derived an equation to quantify

the information that can be conveyed by a communication system. He was not

the first to link information and probability, as Boltzmann and his followers had

previously shown that information is the entropy associated with the probability

distribution [1]. Shannon was, on the other hand, able to build upon this work and

16
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link entropy to the quantity of information conveyed in a communication system. In

his seminal paper, he derived two theorems that place upper limits on the ability to

communicate information, and are the foundation of information and communication

theory: the noiseless coding theorem and the noisy channel coding theorem [1].

In particular, the Shannon noiseless coding theorem sets a minimum limit on how

much a message can be compressed whilst still maintaining its information without

error [1]. This limit is shown to be a function of the entropy of the message sent and

of the size of the alphabet used. On the other hand, no matter how large an alphabet

is used, there is still a maximum amount of information that can be sent through a

channel. This is given by the Shannon noisy channel coding theorem, which calculates

the redundancy needed in order to combat noise in the channel used, therefore setting

a theoretical maximum for the information transfer rate of the channel [1].

As communication channels are not limitless, a need arises to find means of commu-

nications that minimise the errors in transmission, while maximising the information

capacity. In communication systems the most common method of maximising the

information of each signal (i.e. increase the alphabet used) is to exploit the degrees

of freedom of light in what is known as multiplexing. In particular there has been

a great development in time, polarisation, and wavelength multiplexing schemes in

order to satisfy the growing need of transmission capacity of current communication

systems [37, 38]. These developments have brought current communication systems

to reach information transfer rates close to the upper limits dictated by the channel’s

capacity [38]. Consequently, in recent years, there has been a growing interest in us-

ing the less developed degree on freedom of light i.e. the transverse or spatial degree

of freedom of light to encode information [39–42]. It must be emphasised that the

development of a new degree of freedom of light for communication channels is not

meant as a simple replacement for previous multiplexing techniques. On the contrary,

different multiplexing techniques can be used in conjunction with previous techniques
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to enhance the channel’s transmission capacity. Some recent examples can be found

in the use of space-division multiplexing and dense wavelength-division multiplexing

to achieve 112 Tb/s over a 76.8-km multicore fibre [43]; the use of spatial modes (in

this case two orbital angular momentum modes) and wavelength-division (in this case

10 wavelengths) to achieve 1.6 Tb/s over a 1.1-km length of a special designed fibre

[44]; and the use of spatial modes (in this case 12 orbital angular momentum modes),

polarisation and wavelength-division multiplexing (in this case 42 wavelengths) in a

free-space data link to achieve an aggregate capacity of 100.8 Tb/s [45].

Recent interest in using the spatial degree of freedom light is not only linked to the

possibility it brings in enhancing the information transfer rates of communication

channels but also for another potential application: cryptography and, in particular,

quantum cryptography [46]. While standard classical methods rely on computational

complexity to generate a secure communication channel, quantum cryptography relies

on the properties of light to create a secure quantum channel [1]. Although the

idea to use quantum systems for information security was originally proposed by S.

Wiesner, the first protocol for quantum key distribution (QKD) was developed by

Bennett and Brassard in 1984 [47]. These early protocols and quantum networks

were based on the use of polarisation as the degree of freedom of light due to the

well established knowledge of using polarisation as a degree of freedom for Bell-

type tests. This had greatly expedited both the development of the theory itself

and the development of optical tools for polarisation control [46]. Consequently,

polarisation based secure quantum networks is a very active research field with cost-

effective portable prototypes being recently developed which enable high secret-key

distribution over a free space link of 145m [48]. It is important to note that the

security of cryptography protocols is directly linked to the dimension of the Hilbert

space or the number of mutual unbiased basis used in the protocol [49], the first

being preferred as it also has the advantage of generating a larger secret key rate
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compared to the latter [50]. In particular it has been shown that accessing high

dimensional Hilbert spaces not only allows for a large encoding alphabet, but it also

makes the communication harder to eavesdrop, as cloning fidelity scales inversely

with dimensions. A high dimensional Hilbert space can also be crucial in certain

QKD protocol as it allows for larger violations of Bell-type inequalities which is

used in certain QKD protocols to reveal the presence of an eavesdropper [46]. In

recent years the development of new techniques to employ spatial modes for quantum

cryptography has therefore grown in popularity due to the fact that compared to some

other degrees of freedom of light (e.g polarisation, time binning), the orthogonal

transverse spatial structure of light is potentially infinite. The exploitation of this

potentially unlimited Hilbert space is of great importance in the development of the

new QKD protocols [9, 39, 50].

In this chapter, the information capacity of the two most known spatial modal sets,

Laguerre-Gaussian and Hermite-Gaussian will be analysed in the context of a finite-

aperture communication system.

3.1.1 Contributions

The study of the LG versus HG modes in a finite aperture system was undertaken

here in Glasgow. This was done both experimentally and through modelling and the

work is now published in Optics Express [18].

3.2 Encoding Information With Spatial Modal Sets

Photons have always been considered optimal for communication as they can trans-

mit over long distances with little loss due to the absence of any known decoherence
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mechanism in free space [51]. Compared to our current communication infrastruc-

tures, photons can not only travel in a confined medium (i.e., optical fibre), but

can also be transmitted in free space, with recent experiments reaching terabyte data

rates [51–55]. Free space optical communication is attractive as, compared to its fibre

counterpart, it is a quick and reliable way to connect end users to their network in a

cost-effective way, therefore being an optimal solution to what is known as the “last

mile bottleneck” problem [56]. The advantage of spatial modes for communication

has been known for some time, with the major limitation being technological [57–59].

With current advances in technology, such as the diode laser and the commercialisa-

tion of Spatial Light Modulators (SLM), being able to create and manipulate spatial

modes of light has become easier and time efficient as compared to diffractive ele-

ments of fixed design, SLMs allow for fast switching between different states which

can be easily implement and optimised [40, 60, 61]. Consequently, the interest of

the research community shifted from finding efficient ways to create and manipulate

spatial modes, to developing strategies to best implement the characteristics of the

modes and maximise the information encoded in each photon [62–64].

As previously mentioned, the use of spatial modal sets to increase information content

is known as spatial division multiplexing. Various proposals have been made to

generate an efficient spatial division multiplexing system. Some examples include

encoding in plane waves i.e encoding by impressing phase information onto a cartesian

coordinate [65]; LG modes; HG modes; more complex patterns for example airy

beams [66]; or using an entirely different strategy in which the available telescope

aperture is simply divided into multiple sub-apertures. All of these different encoding

schemes have been designed to combat noise in the communication channel in order

to try and send information as close as possible to the theoretical maximum transfer

rate of the channel as defined by the Shannon theorem. The choice of encoding

schemes is therefore dictated by the available technology and operating parameters
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of the set-up used, and the circumstances under which the communication link is to

be employed (i.e. the noise present in the system). However, noise is not the only

limitation of a communication system. All real-life optical systems need to transmit

and receive the information sent through the communication channel. It therefore

follows that when setting up any free space communication system, the diffraction

and loss due to the size and shape of the transmitting and receiving apertures must be

considered. Specifically, the number N of low-loss channels that can be implemented

in any given communication system, is given by N ≈ ARAT/(λL)2, where AR and

AT are respectively the area of the receiving and transmitting apertures, λ is the

wavelength of light, and L is the distance between the sender and receiver. This

value is known as the Fresnel number product of the sender and receiver [49, 63].

3.3 LG vs HG in a Finite-Aperture System

When comparing the information capacity of different spatial modes in an aperture

limited system, regardless of what orthogonal base is chosen, the total number of

modes transmitted with low loss should only be limited by the Fresnel number of the

optical system [63]. However, as can be easily seen, this is not always true in practice.

In this chapter, we demonstrate this by comparing the information capacity of the

LG base and the HG base.

Both LG and HG modal sets are well known solutions to the paraxial wave equation

making them examples of orthogonal bases in which any arbitrary light beam can

be represented. In particular the LG modal set is a discrete cylindrical basis, which

can be factored in an azimuthally only component, with angular dependency given

by exp(−ilθ), where l is known as the azimuthal mode index and determines the

number of wavefront helices for a light beam; and radial only component with mode

index, p, where p represents the number of concentric, high-intensity, rings in the
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transverse cross-section. It is important to note that the azimuthal component of

the LG gaussian beam is what gives rise to the orbital angular momentum (OAM)

of light which will be the topic of discussion of the next chapter. In comparison,

the HG modal set is a discrete rectangular base, described by mode index m and

n, where m and n correspond to the number of zero lines across the field in the y

and x direction, respectively. It is important to note that higher order modes tend

to diverge more quickly [67], therefore to make a fair comparison it is important to

compare modes of the same order N . This is easily achieved when comparing LG

to HG modes as a direct relationship exists between the two bases. In particular any

LG mode of indices l, p, can be easily transformed into an HG mode mode of indices

m,n and vice versa through the use of a pair of suitably spaced cylindrical lenses

[68]. It therefore follows that any LG mode can be expressed as a linear combination

of HG modes where l = m − n and p = min(m,n) [69]. A direct comparison can

therefore be made as long as the same mode order is chosen for both bases where

N = m+ n = |l|+ 2p.

In a classical communication system, modes are generated by the sender, transmitted

through the channel and finally detected by the receiver. Thus in order to assess the

information capacity of the system, a correlation matrix can be constructed where the

correlation between all possible modes in the modal sets can be either theoretically

calculated or experimentally measured. As both HG and LG modes are orthogonal

bases, from a theoretical standpoint there should be no cross-talk between modes

i.e. the modes sent i and the ones received j should be either perfectly correlated

or perfectly anti-correlated. In a communication system this matrix is known as the

probability matrix Pi,j, where each element corresponds to the conditional probability

Pi|j, of a received mode j given the sent mode i. It then follows that the total amount
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of mutual information (MI) that can be carried by the system is given by [36]

MI =
∑

i,j
Pi|j Log (

Pi|j
PiPj

). (3.1)

When calculating the mutual information of a system it can be easily seen that

the choice of logarithm base is completely arbitrary in that changing the base will

simply define the units of information. In particular if the base two is chosen then

the information is defined in “bits”, while if the natural logarithm is chosen the

information is defined in “nats”. As binary systems are prevalent in information

technology it is common practice to use the “bit” as the unit of measurement for

information [1]. For the purpose of this study, the information capacity of the system

is therefore calculated in ‘bits per photon’ (bpp), where

bpp =
∑

i,j
Pi|j Log2 (

Pi|j
PiPj

). (3.2)

It is important to note that what has been discussed so far is not limited to classical

communication systems, but can easily be extended to quantum systems (fig. 3.1).

In particular, in a parametric down-conversion experiment, the probability matrix

Pi,j is simply the joint detection of the spatial mode of the signal photon (i) and idler

photon (j) respectively. Accordingly, each element of the matrix corresponds to the

conditional probability Pi|j, of detection of mode i given the detection of mode j.

Experimental Set-Up

As previously mentioned there is currently a great interest in quantum communica-

tion systems. For the purpose of this study we therefore chose to use a correlated

single photon system to illustrate the effect of modal choice, in an aperture limited

communication system.
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Figure 3.1: Comparison between a classical and a quantum system.

Experimentally, this is achieved by pumping a 3mm long BBO crystal with a 355nm

CW laser to generate down-converted signal and idler beams at 710nm (fig. 3.2)

[18]. The residual pump beam is then blocked through the use of a longpass filter.

The remaining signal and the idler beams are then separated by a beam splitter and

imaged onto two separate SLMs. The plane of the SLMs are themselves imaged to

the entrance facets of single mode optical fibres, that are connected to single-photon

counters. These counters are connected to an electronic coincidence detection circuit

where the photon coincidence rate is recorded as a function of the measurement states

as specified by the SLM.

The use of an SLM to generate and transform optical spatial modes is quite common

in both quantum and classical communication systems as, compared to elements

of fixed design, it allows for convenient switching between different states [40, 60,

61]. In our experimental set up, the SLMs are therefore used to impart the phase

structure of the different modes onto the fundamental modes of the optical fibre.

It can easily be seen (fig. 3.3), when setting up a quantum communication system,

careful consideration must be given to the size of the pump beam used, the fibre waist

and the mode waist as designed by the SLM. In particular, there are two important

ratios to consider: (i) the waist size of the pump beam compared to that of the fibre

and (ii) the waist size of the mode as designed by the SLM compared to that of the
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Figure 3.2: Experimental set-up [18]. A CW UV (355 nm) laser is used to
produce spatially correlated photon pairs at the BBO crystal. The correlated
photons are separated by a beamsplitter and imaged through the use of two lenses
L1=200mm and L2=400mm onto two separate SLMs.The plane of the SLMs are
then themselves imaged through the use of the lenses L3=600mm and L4=2mm
onto the entrance facets of single-mode fibres. These fibres are connected to two
SPAD detectors which are in turn connected to an electronic coincidence machine.

fibre. As demonstrated in previous works, the ratio of the width of the pump beam

Figure 3.3: An example of the SLM phase pattern. The figure represents both
the entangled photons beam (light pink circle), and the fibre waist being imaged
onto the SLM pattern (red circumference). In particular this is for a non optimal

mode to fibre waist ratio.

compared to the detection modes is responsible for the bandwidth of the entangled

states [24]. For the purpose of this experiment, careful attention is taken in setting

up the experiment so that in the plane of the SLM, this ratio is greater than one i.e.

the size of the pump beam as imaged on the SLM is larger than that of the fibre

waist. It therefore follows that, for the limited number of orthogonal modes tested in

our experiment, we expect perfect orthogonality. In particular, we expect to measure
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a high coincident count rate when the SLMs are programmed to detect modes that

are complex conjugates of each other [70–73].

Having chosen a suitable pump beam to fibre waist ratio, so as to not make it a

limiting factor in our experiment, the second ratio, i.e. the mode to fibre waist ratio,

is considered. As previously mentioned, the spatial correlations of our entangled

photons are studied through the use of SLMs that impart the phase structure of

the different modes onto the fundamental mode of the optical fibre. As the optical

fibres have a set aperture, when imaged onto the the plane of the SLM, they will

demarcate a fixed modal waist. Hence, when designing the SLM’s hologram a careful

consideration must be taken in choosing its lateral scaling. In particular, the degree

of orthogonality between the measured modes is directly linked to the proportionality

between the phase term imaged on the SLM and the gaussian mode defined by the

image of the fibre core on the SLM. For the purpose of this experiment we choose to

compare the information capacity of both the LG and HG modal bases at different

mode to fibre ratios in order to assess their resilience to the cross talk imposed on

the system by the fibre aperture.

Modelling

The comparison between the two modal sets was not only performed experimen-

tally but was also numerically simulated using a computer generated model. When

designing the model, two characteristics of the experiment were taken into consider-

ation: (i) the use of phase only SLMs to impart the desired modes onto the signal

and idler beams and (ii) the fact that all components of the experimental set up are

imaged onto each other. The first of these characteristics allows us to generate a

simplified version of a communication system model as only the phase structuring

of the Gaussian beams needs to be considered. Similarly, the later characteristic
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allows us to further simplify the model as the propagation of the beam does not need

to be taken in consideration. The predicted correlation strength between the spatial

modes imparted on the signal and idler photons can therefore be calculated by simply

measuring the overlap integral between the two modes.

Results

The aim of the experiment was that of calculating the information capacity of the LG

and HG modal sets in our aperture restricted system. Hence, the correlation between

all modes within the set was calculated for different mode to fibre ratios (figs. 3.4,

3.5).

As the LG and HG modal sets are infinite, in order to test their information capacity,

a choice had to be made on the number of modes to be tested. For our experiment

we choose to compare all modes with mode order N ≤ 3 (table 3.1). This allowed

us to evaluate enough modes to make an informed conclusion without running into

experimental complications that arise when generating higher order modes [74]. A

range of 10×10 correlation matrices were therefore generated for both the LG and

HG modal sets for different mode to fibre ratios. These matrices were then used

to calculate the corresponding total mutual information through the employment of

equation 3.2. Figure 3.4, displays the resulting data calculated with the model, while

figure 3.5 displays the data measured from the experimental system. For analysis

purposes, a sample of the correlation matrices used to calculate the bpp are also

displayed. In particular, we chose to show the correlation matrices generated for

both the LG and HG modal set when the mode to fibre ratio is both close and far

from optimal. The latter correlation matrices are particularly interesting for our

study as they help us to shed some light on the source of the cross talk and therefore

allows us to postulate conclusions which are independent of the mode order tested.
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Table 3.1: Intensity profile for LG and HG modes with mode order N ≤ 3 [18].
In the case of the LG modes, the direction of rotation of the azimuthal phase term

is indicated with an arrow.

Mode Hermite Gaussian Laguerre-Gaussian
order N (m,n ) (l, p )

0
0,0 0,0

1
1,0 0,1 +1,0 -1,0

2
2,0 1,1 0,2 2,0 0,1 -2,0

3
3,0 2,1 1,2 0,3 3,0 1,1 -1,1 -3,0

As can be seen in figure 3.4, and figure 3.5 respectively, both the modelling data

and experimental data exhibit very similar trends. In particular, there is a striking

visual agreement between the correlation matrices generated through our model and

the ones measured in our experimental system, albeit the latter resulting in lower

bpp. This is not abnormal, rather it is expected as modal impurities are harder

to control in an experimental setting. Despite this we were still able to take steps

to counteract unnecessary noise in our system that can skew our results. One such

step was that of expressing our correlation matrices as a function of the quantum

contrast (QC) measured rather then the coincidence measured where QC is simply

defined as the ratio between the measured coincidences and the expected accidental
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Data from the Simulation

Figure 3.4: Results from the simulation of the experiment [18] This graph shows
the value of bpp generated through the modelling system. In particular, the in-
formation capacity of the LG modal set is shown in blue while the corresponding
values for the HG modal set are represented in orange. Some of the correlation ma-
trices used to calculate the bpp are also displayed. Finally, for analysis purposes,
three value of bpp are also displayed: the bpp corresponding to a system composed
of only four orthogonal modes; the bpp corresponding to a system with 2N + 1
orthogonal modes (i.e. the total subset OAM modes for an N ≤ 3 LG modal set);

the bpp expected if the spatial modes where perfectly correlated (

N∑
n=0

(n+ 1) ).

coincidences (as defined by eq. 2.4 in chapter 2). This is particularly important

for elements with low-count rate where the presence of accidental coincidences can

be mistaken as a weak correlation. Nevertheless, accidentals are not the only cause
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Data from the Experimental Set-Up

Figure 3.5: Experiment Data [18]. This graph shows the experimental set-up for
different mode to fibre ratios. As for the modelling in figure 3.4, the information
capacity of the LG modal set is shown in blue while the corresponding values for
the HG modal set are represented in orange. Some of the correlation matrices
measured in our experiment and used to calculate the bpp are also displayed. As
for fig. 3.4, three value of bpp are displayed: the bpp corresponding to a system
composed of only four orthogonal modes; the bpp corresponding to a system with
2N + 1 orthogonal modes; the bpp expected if the spatial modes where perfectly

correlated (

N∑
n=0

(n+ 1) ).

of noise when calculating correlation matrices. Slight cross-talk can appear from a

series of experimental factors, some examples being modal impurities of the pump

beam or limitations in the generation of the modes due to SLM pixelation. Hence, in
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our experimental data, the non correlated elements, although low in value, are never

perfectly zero (as seen in fig. 3.5). In order to reasonably assess the information

capacity of the modal sets, a background noise subtraction was performed on each

correlation matrix prior to the calculation of its bpp. Finally, it is important to

note that, in contrast to a computer simulated modelling system, an experimental

system result will vary slightly between each run. We therefore choose to perform

the experiment 10 consecutive times plotting the average bpp of the 10 runs, along

with the corresponding error, as a function of the waist ratios, (figure 3.5).

Analysis and Discussion

From figures 3.4, and 3.5 it can be concluded that our modelling system is quite

effective in predicting the features and trends present in the experimental system. In

particular, for both the simulation and experimental data the information capacity of

the LG modes either equals or exceeds that of the HG modes for all aperture ratios.

This result can be understood by looking at the correlation matrices generated for

both the LG and HG modal sets when the aperture ratio is not optimal.

Figure 3.6: Example of the phase fronts for LG modes l = −1, p = 0 and
l = −1, p = 1 at different waist ratios. In the image the blue circle represents the
fixed fibre aperture. As can be seen, for large waist ratio the radial information is

lost and the two modes are therefore no longer distinguishable.
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For an optimal aperture ratio the correlation matrices for both the LG and the HG

modal sets are almost a perfect diagonal. However, as can be seen in figures 3.4,

and 3.5, this no longer holds true for non-optimal aperture ratios. In particular, in

the case of the LG basis, when the aperture ratio is no longer optimal, cross-talk

appears between modes with the same l but different p. This can easily be explained

by the fact that, while the presence of an on-axis circular aperture may restrict the

information carried by the radial component of the modal set (see figure 3.6), it has

no effect on the azimuthal component. In other words, the presence of a limiting

aperture does not alter the helicity of the phase-fronts. It therefore follows that,

irrespective of the mode order N chosen, if the LG modal set is used, there will always

be 2N + 1 orthogonal modes present. Hence, in the case tested in our experiment,

i.e. N = 3, if we consider the number of orthogonal modes alone, we would expect

all values of LG to be greater or equal to 2.8 bits per photon. This is, however, based

on the assumption that all orthogonal modes have the same correlation strength.

This is not true for both the LG and HG modal sets, where the strength of the

correlations between highly correlated modes depends upon the modes itself i.e. the

strength of the correlation decreases as the mode’s order increases. Hence, the mutual

information calculated when running our simulation system is slightly below that

which might have been expected from the number of orthogonal modes alone.

On the other hand, as can easily be seen in figures 3.4, and 3.5, the HG modal base

is more susceptible to cross-talk than the LG modal base for non optimal aperture

ratios. More specifically, in the case of the HG modal base, as the aperture ratio of

the system becomes less optimal, cross-talk appears between modes with the same

parity (see fig. 3.7). In other words, in the presence of a non-optimal aperture ra-

tio, information on the number of horizontal (n) or vertical (m) nodes is lost and

only information on the symmetry of the modes is retained (see fig. 3.8). As HG

is a rectangular modal base, each mode has two axis of symmetry, the vertical and
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Figure 3.7: Simulated correlation matrix for the HG modal set with a non optimal
aperture ratio. In this correlation matrix a red line has been drawn to separate

modes of different orders for analysis purposes.

horizontal axis, and can either be symmetric (EVEN) or antisymmetric (ODD) com-

pared to these two axis. It therefore follows that for non-optimal aperture ratios

only 4 orthogonal states can be distinguished: (i) the mode is symmetric in both the

vertical and horizontal axis i.e. both m and n are even; (ii) the mode is antisym-

metric for both axis i.e. m and n are odd; (iii) the mode is vertically symmetric and

antisymmetric horizontally i.e. m is even and n is odd; (iv) the mode is vertically

antisymmetric and symmetric horizontally i.e. m is odd and n is even. Hence, for

HG modes with a non-optimal aperture ratio, the information capacity of the system

has a limit of 2 bpp irrespective of the modal set used, where this corresponds to the

information capacity of a system with only 4 orthogonal modes (see figs 3.4, 3.5).

The advantage of the LG over the HG measurement set for an aperture restricted

system is therefore readily understood as, irrespective of the aperture ratio the infor-

mation capacity of the LG modal set will always exceed or be equal to the HG set.

It is important to note that, while all our analysis has been done using a modal set

of 10 modes, i.e. N ≤ 3, our conclusions are general and can be extended to a modal

set of any mode order. Moreover, as the size of the modal set increases so does the

advantage of using a LG modal set compared to the HG modal set. This can easily
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Figure 3.8: Example of the phase fronts for HG modes m = 1, n = 0 and
m = 2, n = 1 at different waist ratios.

be deduced from our analysis as the information capacity of the HG modal base for

a non-optimal aperture is a set value irrespective of the size of modal set while in the

case of the LG modal base the number of modes that are not effected by the aperture

restriction of the system increases with the mode size used (see figure 3.9).

Figure 3.9: Bpp for different N calculated using the modelling system. In par-
ticular, we chose to compare the information capacity of the LG and HG modes

for N=2,3 and 4 [18].
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3.4 Conclusion

It is important to note that the conclusion reached in this chapter is simply based

on the boundary conditions of the system. In particular, for this experiment careful

consideration was taken in making the circular aperture size of our detecting fibres

the only limiting factor of the system. For example, these results are only calculated

for the specific case of all the apertures being co-axial and the advantage of the

LG set does not necessarily extend to an axis displacement. In particular it has

recently been shown that, in a system in which the aperture is not a limiting factor,

when the modal bases are laterally displaced along a symmetry axis, the information

capacity of the HG modal base can exceed the LG base [75]. Furthermore, another

factor not considered in our analysis is the losses associated with the two sets. In

particular, due to their helical phase fronts LG modes exhibit zero on-axis intensity:

hence, a restricted aperture may introduce additional loss compared to the HG. As a

quantum communication system is already a signal-starved environment, a reduction

in photon flux may effect the ability to distinguish real coincidences from accidentals,

hence reducing the information capacity of the modal set.

In this chapter we were able to demonstrate, from both a theoretical and experi-

mental perspective, that for a restricted and/or measurement aperture in an optimal

communication system, the information capacity of the LG model set possesses the

capability of exceeding, or at minimal equalising the HG set. Furthermore, even

though both model sets are affected by cross talk imposed by the aperture restric-

tion, the LG model set has shown much greater resilience to cross talk than the HG

set. This is of high importance as this conclusion is not limited to just quantum

systems, but it also has validity for classical systems, where the two modes are the

transmitted and received modes in a communication link.



Chapter 4

OAM in a Communication System

4.1 Introduction

Ever since the discovery by Allen, Woerdman and associates [57] that light beams

with helical phase-fronts carry orbital momentum there has been a great interest in

using this property of light in developing new optical applications. The idea that light

not only carries energy but can also carry momentum is not a new one in physics as it

is a property embedded in Maxwell’s equations. Nevertheless, the first derivation of

angular momentum from Maxwell equations didn’t appear until 1909 when Poynting

was able to show, through mechanical analogies, the existence of angular momentum

in circularly polarised light [76]. This angular momentum is known as spin angular

momentum (SAM) and it arises from the individual photons of the light beam either

spinning in the left handed direction, with SAM=−~, or right handed direction,

with SAM=~, when viewed from the direction of propagation. In 1936 Beth was

able to measure this effect for the first time by showing that by allowing polarised

light to pass through a half waveplate, a rotation can be induced in the latter [77].

It is important to note that any polarisation state of light can be expressed as a

superposition of left or right circular polarisation and therefore SAM can be any

36
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value between −~ and ~. However, SAM is not the only momentum that a light

beam can carry. In 1932 Darwin, grandson of the famous naturalist, demonstrated

the existence of an additional momentum of light not bounded by the light beam’s

polarisation [78]. In his study of atoms he observed that when photons were emitted

at short radius away from the centre of mass of the atom, the linear momentum

of the emitted photon would lead to an additional torque acting on the centre of

mass. This momentum is known as orbital angular momentum (OAM) and it can

potentially have values many times larger than SAM. However, until the discovery by

Allen and associates, it was believed that OAM was a rare phenomena, only present in

high order atom transitions. In particular, in their groundbreaking paper, Allen et al.

showed that any beams with an azimuthal phase dependence of exp(−ilθ) carry OAM

of l~, where l is the azimuthal index and θ is the azimuthal angle [57]. An important

note to make is that the presence of helical phase fronts require a phase singularity

running along the beam axis, resulting in an area of zero intensity and therefore

creating what is known as an ‘optical vortex’ [79]. The presence of this ‘optical

vortex’ makes OAM very important also for applications outside of entanglement,

notable examples being its use in optical manipulation, imaging and the most relevant

for this work, its application in optical communications systems [80]. In particular,

OAM has been shown to have advantages not only for its potential possibility to

encode an arbitrary large amount of information but also for its robustness against

eavesdropping, quantum cloning and maintaining a secure transmission in a highly

noisy channel [59]. Hence, following Gibson et al. demonstration of a free-space

communication system using OAM in 2004 [61], there has been a great interest in the

development of OAM communication systems with recent experiments being able to

achieve TeraBit rates of data transfer [53]. In addition, the feasibility of using OAM

for communication over large distances has also been shown, with OAM carrying

photons being received as far as 143 km from the sender [81]. This is in no means an

exhausted field of research, as new ways of generating and controlling OAM are being
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proposed every year and experimental communication systems are rapidly advancing

toward becoming viable commercial applications [80, 81]. In particular, with the

advance of technology, especially in the field of nanofabrications, new techniques for

the creation of optical vortex beams are being implemented [82]. One such new

proposal is that of an analog OAM generator [19]. This new technique allows for

control over the OAM of light continuously, including all rational states, all integer

orders and fractional orders between them.

4.1.1 Contributions

The work in this chapter was carried out as part of a collaboration with the National

University of Singapore on a project involving continuous shaping of photons with

arbitrary rational orbital angular momentum (OAM). In particular, our collaborators

in Singapore proposed the project and designed the grating discussed in this chapter.

As part of the collaboration I was responsible for implementing the grating in a

quantum communication system in order to test the feasibility of using the designed

vortex beam for quantum communication systems. This work is now published in

Light: Science & Applications in a research paper of which I am one of the joint first

authors [19].

4.2 Generation of Continuous OAM beams

The study of optical vortices precedes the discovery of OAM [83]. In particular, this

phenomena attracted great interest as it was shown not to be limited to light but

to also originate in acoustic waves, electrons and neutrons [82]. It wasn’t until the

discovery that this phase singularity with a spiral wavefront carried quantised OAM
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that the potential for communication became evident. Since then, a great deal of

work has gone into devising new methods of generating optical vortices[82].

The first experiments following Allen et al.’s discovery were based on OAM beams

generated by converting HG beams into LG beams using cylindrical lenses [69]. This

was swiftly followed by a more direct method of generation where the light beam

picked up the integer phase step along the azimuthal angle by interacting with a

phaseplate that had a spiral inhomogeneity in the longitudinal direction [84]. With

the invention and commercialisation of computer interfaced diffractive optical ele-

ments, SLMs and DMDs being some examples, the generation of OAM through the

use of fork gratings became widespread. This is not a new technique as it was first

implemented in 1990, when it was shown that a fixed diffraction grating containing

a fork dislocation centered on the beam axis generated a first-order diffraction beam

with a helical phase front [85]. It also must be pointed out that, compared to the

cylindrical lens technique, this is a phase-only approach, and therefore creates only

approximations of the desired modes. This loss in modal fidelity can often be tol-

erated when considering the unprecedented level of control over the generation of

holograms that SLMs allow. In the case of modern communication experiments this

transpires in the ability to rapidly generate and switch between different holograms,

and consequently OAM states, without the need to physically modify the system.

The generation of these digital holograms has been the centre of many subsequent

studies with different techniques now existing for optimising the generated holograms

in order to both create purer modes and correct for any aberrations arising from the

optical elements, transmission medium or the hologram itself [86–88]. To generate

OAM all of the mentioned techniques imprint a 2πl step in the phase of the propagat-

ing field where l is an integer. It is possible, however, to generate phase jumps that

are not multiples of 2π [89]. This is known as non-integer, or fractional OAM and

contrarily to the perfect helical structure of integer OAM these structures comprise
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of many vortices at differing positions within the beam cross-section [90]. Interest

in generating non integer OAM for quantum communication systems became very

compelling when it was shown that conservation of OAM does not apply to only

integer OAM but also pertain to superposition of OAM states [91] and to fractional

OAM [71].

As the field of quantum communication briskly advances towards the commercial

arena, there is an increased need for new techniques that allow for flexible and fast

control of beams carrying OAM. It is in this context that our collaborators from

the National University of Singapore designed and developed a new technique for

the generation of beams carrying fractional OAM [19]. In particular, they designed

a bilaterally symmetric grating which allows for the generation of beams with a

phase profile containing regularly distributed singularities. When this grating is

encoded into a beam generator, it generates optical vortices which can be tuned by

allowing a gradually varying aperture to control the number of singularities present

in the beam. A greater control is therefore gained in the generation of OAM as

theoretically any arbitrary rational-order vortex beam can be generated by smoothly

varying the limiting aperture, including all rational states, all integer orders and

any fractional orders between them. It is important to point out that this is the

first analog generator proposed for the generation of OAM states as, contrary to all

previous methods, it allows for continuous generation of multiple OAM states in a

single device. The possible applications for analog OAM generators are therefore still

to be fully explored.

One area, pertinent to my studies, that can benefit from a device that is able to manip-

ulate the OAM state of light in a continuous basis is that of quantum communication.

Two experiments were therefore performed, using the quantum communication set-

up described in chapter 3, to test the feasibility of this OAM generator for quantum

communication systems. In the first experiment, the quantum spiral spectrum of the
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OAM was measured. More specifically, we use entangled photon pairs to characterise

the ability of this new technique to generate OAM states. This is done by studying

the correlations between photons that have been converted into OAM states through

the use of the new proposed hologram and photons projected into integer OAM states

by the more traditional fork grating hologram. Having established that the proposed

mechanism is valid for the generation and manipulation of OAM modes at a single-

photon level, a second experiment was carried out to study the correlation strength

of the modes. By tuning the OAM generators on both the signal and idler beams we

were able to show a smooth diagonal correlation matrix, therefore demonstrating the

applicability of this method for quantum communications.

4.3 Experimental Set-Up and Data Analysis

As previously mentioned, the system configuration used in this experiment is similar

to the one described in the previous chapter, as both projects are interested in the

study and development of techniques to encode and transfer information through

a quantum channel. In particular, our photon pairs are generated through SPDC,

separated by a beam splitter and imaged onto two individual SLMs. The resulting

signal and idler beams are then imaged onto the facets of single-mode fibres connected

to two separated SPAD detectors and the coincidence rates are recorded as a function

of the states specified by the SLMs (see fig. 4.1).

A unique feature of this experiment is the design of the hologram used to impart

the desired phase onto the beams. As explained in the premises of this chapter,

our Singapore collaborators have designed (and tested in a classical communication

system) a bilaterally symmetric metagrating capable of generating continuous OAM

which can be tuned to any desired value by varying the size of the aperture conve-

niently placed in front of the hologram (see reference [19] supplementary materials).
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Figure 4.1: Experimental set-up [19]. As for the set-up in chapter 3, the entan-
gled photons where generated using SPDC, separated by a BS and imaged (with
L1=200mm and L2=400mm) onto two separate SLMs which are in turn imaged
through the use of the lenses (L3=600mm and L4=2mm) onto the single-mode
fibres. The fibres are then connected to two SPAD detectors. In this set-up the
SLMs are used to generate the required phase profiles as designed by the hologram
we designed. A pinhole, with a diameter 0.6mm, is also designed directly on the
SLM to approximate the 2 mm gaussian idler and signal beams into flat-topped

illumination beams.

In particular, the metagrating was designed as a vortex transmitter composed of two

gratings (with grating period Λ) which were arranged symmetric along the y-axis

and tilted away from each other by an angle γ (as schematically displayed in figure

4.2(a)). When this grating interacts with a normal incident plane wave, the resulting

first-order diffracting beam carries a linearly y-dependent phase function given by:

χ(x, y) = esgn(x)iβy (4.1)

where sgn(x) refers to the sign function of the variable x and β is a constant phase

gradient along the y-axis that depends on both the grating period Λ and inclination

angle γ. In particular

β =
2π tan γ

Λ
√

1 + tan2 γ
. (4.2)

As can be noted in fig. 4.2 (b), the phase function generated presents equally spaced-

out phase singularities along the y axis, where the distance τ between two consecutive

singularities is given by τ = π/β. A pinhole placed between the plane wave and the
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Figure 4.2: Vortex beam generator (images where published in the supplement
materials of [19]). (a) Sketch of the bilaterally symmetric grating, with grating
period Λ, used to generate the desired vortices. In the image the black and white
bars represent opaque and transparent areas of the transmitter. (b) Phase profile

encoded in the vortex transmitter as given by equation 4.1.

hologram can therefore act as a vortex regulator. In particular, by varying the diam-

eter size d along the y-axis of symmetry one can control the number of singularities

present in the phase of the transmitted beam i.e. the average OAM imparted on the

beam by our transmitter (fig. 4.3 (a)). It is important to note that by smoothly

varying d, the number of singularities present in the phase front is given by q = d/τ

where q is not always an integer but can be any fractional value. However, as can

easily be seen from our work in chapter 3 our quantum communication system is

already an aperture limited system, where the aperture size is fixed and dictated by

the size of the core of the optical fibres. Hence, for our quantum experiments, we

choose to control the singularities present in the beam (q) not by varying the aper-

ture size, but by smoothly varying the phase gradient (β) of the hologram along the

y-axis, i.e. in our quantum experiment, for different singularity strengths (q), d is a

fixed value set by the communication system, and τ is smoothly controlled (see fig.

4.3). This is of course, not very practical with a fixed metagrating transmitter where

β, and consequently τ , are set at the manufacturing level. Hence, for the quantum

experiments, we choose to create and control the vortex generating grating through
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the use of SLMs (see 4.1). It must be noted that, contrarily to the metagrating trans-

mitters, as SLMs have a pixel resolution limit, they cannot, in principle, generate a

rigorously continuous OAM. This nevertheless does not impede the use of SLMs for

this experiment as this effect is negligible for smaller values of OAM.

Figure 4.3: Comparison between classical and quantum hologram generation
(original images can be found in the supplement materials of [19]).] The images
show the profile encoded in the vortex transmitter as given by equation 4.1 for
different singularity strengths. In particular, in (a) the singularity strength (q) is
controlled by varying the diameter of the aperture while in (b) q is controlled by

varying the phase gradient (β) of the hologram.

Quantum Spiral Spectrum

As the premise of our vortex generator is that it can impart on a light beam any

value of OAM (including non integer values), it is important to demonstrate that

this is also valid for entangled photons. This can be achieved by measuring the OAM

spectrum of the correlated photon pairs. Experimentally, this is done by analysing

the correlations between the signal and idler photon beams where one is made to

interact with the proposed grating, while the phase of the other is modified with a

more traditional fork grating.
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Figure 4.4: Spiral spectrum calculated for different aperture sizes. The spiral
spectrum of the hologram is calculated at different aperture restrictions, where
the 2mm aperture is equivalent to the beam size. All correlation matrices were
generated by displaying a fork grating, for different values of l, on SLM2 and
the proposed grating, with grating period 1/Λ on SLM1 (where Λ is measured
in pixels). For the SLMs used in this experiment, the pixel pitch is 15µm. It is
important to note that by varying the grating period we are simply varying the
phase gradient β which is responsible for the distance between two consecutive
singularities (eq. 4.2). From the correlation matrices, it can be noticed that as the
aperture gets smaller (i.e. the beam profile becomes more top-hat) the crosstalk

between modes diminishes and the correlations become weaker.

It is important to highlight that the continuous OAM hologram used in this experi-

ment was designed to be illuminated uniformly. However, the quantum experiment

inherently uses Gaussian beams as the photons are collected by single mode fibres

before reaching the coincidence system. It is possible, however, to approximate the

Gaussian beam interacting with the hologram into a flat-topped illumination beam

by introducing a restrictive aperture on the SLM (figure 4.1). The presence of the

aperture will greatly decrease the cross-talk created when a non uniform beam in-

teracts with our proposed hologram, albeit at the expense of the systems detection

efficiency as fewer photons will reach the detectors (see figure 4.4). This reduction of

photon flux can be problematic especially in the measurement of higher OAM modes

where the correlation strength is weaker and therefore may not be distinguishable

from background noise present in the system. For the quantum implementation of

the vortex generator we therefore chose to encode the aperture on the spiniform phase
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with a diameter of 0.6 mm. Furthermore, similarly to the experiment described in

chapter 3, we also chose to express our correlation matrices as a function of the

quantum contrast (QC) measured in order to reduce the effects of accidentals in our

system.

Figure 4.5: Quantum spiral spectrum of the spiniform phase [19]. We tested the
spiniform phase with the set-up shown in figure 4.1. In particular, the correlation
matrix was generated by displaying a fork grating, for different values of l, on SLM2

and the proposed grating, with grating period 1/Λ, on SLM1. The singularity
strength (q) corresponding to the different values of 1/Λ is also shown.

We therefore calculated the correlation matrix between the entangled photons that

have interacted with the two SLMs (see fig. 4.5). This was done by displaying a fork

grating with OAM value l on SLM2 and the grating of the proposed vortex gener-

ator, with singularity strength q, on SLM1. As mentioned above, for this quantum

experiment we choose to control the value of q generated by our proposed hologram

by gradually varying the phase gradient (β) of the hologram. In particular, as β is

directly proportional to the inverse value of the grating period Λ (see eq. 4.2), we

choose to test the correlation between values of −3 ≤ l ≤ 3 and −100 ≤ 1/Λ ≤ 100

where Λ is the pitch of the grating on the SLM (in pixels). In our experimental

system the SLM has a pixel pitch of 15µm.
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Furthermore, similarly to the quantum communication experiment described in the

previous chapter, the feasibility of using the proposed vortex generator to manipu-

late OAM is also tested numerically. In particular, as the experimental set-up used

is similar to that of chapter 3, all considerations previously made when designing the

numerical model are equally valid, hence the same numerical model can also be im-

plemented to calculate the quantum spiral spectra of the proposed vortex generator.

Thus, the predicted correlation strength between a signal beam carrying a helical

phase of l and an idler beam whose phase component is generated using the same

hologram encoded on SLM1, can be calculated (see figure 4.6).

Figure 4.6: Simulated quantum spiral spectrum of the spiniform phase. A cor-
relation matrix was generated by studying the overlap integral between the signal
and idler beams where the signal beam is encoded with an OAM phase of l and

the idler beam is encoded with a the spiniform phase singularity q.

As can easily be seen, both the measured (fig 4.5) and the simulated (fig. 4.6)

results are in good agreement with each other with the measured correlation matrix

displaying slightly more crosstalk than its counterpart. The presence of the added

crosstalk is nevertheless consistent with our expectations as it can easily be explained

by the limitations of the system as mentioned above. What is consistent in both the
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experimental and simulated result is the presence of a smooth spiral spectrum, hence

demonstrating that our proposed vortex generator, when used together with a more

traditional fork grating, is still able to measure the anti-correlated diagonal consistent

with OAM conservation both for integer and non integer values of q. This result thus

allows us to concluded that our proposed vortex generator can be used at a quantum

level to generate and manipulate OAM modes in the single-photon level.

Quantum Correlation

Figure 4.7: Quantum correlation matrix for the proposed vortex generator [19].
In order to test the feasibility of using the proposed vortex beam for a quantum
communication system both SLM1 and SLM2 are used to impart phase singular-
ities of qA and qB on the signal and idler beam accordingly. The joint detection of
the vortex carrying signal and idler photons is therefore calculated and a correla-
tion matrix constructed. As can be seen from the image above, a strong correlation
is exhibited between the diagonal elements of the matrix with little to no crosstalk

being exhibited for non diagonal elements.

Having shown that the spinform hologram is capable of imparting OAM on the

correlated photons, the quantum coincidence between our vortex beams is also in-

vestigated. As for the quantum spiral spectrum, this is done both experimentally

and numerically. In particular, similarly to the calculation of the vortex generator’s

spiral spectrum, the proposed hologram capacity to generate quantum coincidences is

measured by calculating the correlation matrix between the entangled photons that
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have interacted with the two SLMs. In this second experiment however, the grating

displayed on both SLMs is the proposed vortex generator (fig. 4.1). This therefore

allows for the measurement of the joint detection of the idler and signal photons

carrying phase singularities of qA and qB respectively (fig. 4.7a). It is important to

note that, as for the previous test, we choose to control the value of q generated by

our proposed hologram by gradually varying 1/Λ, hence measuring the joint detection

of not only integer values of q but also non integer values inbetween. Furthermore,

as previously mentioned, the quantum coincidence between the vortex beams is also

numerically calculated. In particular, similarly to the numerical calculation of the

quantum spiral spectrum, the predicted correlation strength between the vortex beam

qA and qB is calculated by simply measuring the overlap integral between the two

modes (fig. 4.7b).

Figure 4.7 displays the results for both the numerical and experimental measure-

ments. As can be easily seen from fig 4.7, both the modelling data and experimental

data exhibit very similar trends. In particular, in both cases, a strong correlation

is exhibited between the diagonal elements of the matrix, correlation that rapidly

dissipates the further the measurement is from the matrix diagonal. The presence of

this clear diagonal correlation between the two photons, with little to no crosstalk

being exhibited for non diagonal elements demonstrated the feasibility of using the

proposed vortex beam for a quantum communication system.

It is important to note that, while a clear diagonal is present in the correlation

matrix, this “correlation diagonal” has a full width at half maximum (FWHM) of

about 0.9. This therefore implies that, when the vortex generator is applied in a

quantum communication system, vortex beams with discrete q are preferred to avoid

the strong crosstalk between two neighbouring states. The presence of this crosstalk

can be easily understood as neighbouring non integer q possess a significant overlap

in their spiral spectra.
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4.4 Conclusion

In this chapter we have demonstrated for the first time a technique capable of gen-

erating optical beams that possess continuous OAM. In particular we have shown

that the proposed mechanism is valid for the generation and manipulation of OAM

modes at a single-photon level. The unique ability of the proposed vortex generator

to smoothly transition from one OAM value to the next, can be therefore applied in

the investigation of super-position states of OAM in quantum physics.

Furthermore, we have also shown that when applied to a quantum communication

system, the proposed vortex is able to generate a smooth diagonal correlation matrix,

therefore demonstrating the applicability of this method for quantum communica-

tions.

Finally, it is important to point out that this is the first analog method proposed for

the generation of OAM states and therefore possible applications for this mechanism

are still to be fully explored.



Chapter 5

Coherent Absorption of N00N

States

5.1 Introduction

So far we have discussed different techniques to enhance the quantity of information

that can be transmitted in a quantum communication system. In particular, we have

both, compared the stability of modal bases in the presence of a non-ideal commu-

nication system (chapter 3), and proposed new techniques of imparting information

on photons (chapter 4). However, even though we have demonstrated through our

quantum correlation set-up that the methods proposed can be used for quantum

communication, it is important to note that they are not exclusive to the quantum

world but can also be applied to all classical communication (albeit without the added

benefits that come when utilising entangled photons). On the other hand, an effect

unique to the quantum world that is both the basis for many quantum protocols and

fundamental in the creation of quantum logical gates is the Hong-Ou-Mandel (HOM)

effect [59, 92–94].

51
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The HOM experiment represents one of the simplest ways to test the degree of indis-

tinguishability of two photons. This two-photon interference effect is unique in both

the straightforwardness of its physics and geometry, and for the variety of quan-

tum applications it is employed in, some examples being: phase metrology, quan-

tum lithography, quantum state preparation, and as previously mentioned, quantum

computing and quantum communication [23, 59, 95–97]. In particular, most of the

quantum applications mentioned rely on the ability of HOM interferometers to gen-

erate maximally entangled two-photon quantum states known as N00N states [97].

These two-photon superposition states have a high phase sensitivity which makes

them ideal for applications in super-resolution experiments. More importantly for

the scope of this chapter, the ability to generate multi-photon quantum-states is cru-

cial for the generation of quantum computing schemes as a large number of quantum

gates require the interaction between two or more qubits, where we use the term

‘qubits’ to distinguish the quantum bit from its classical counterpart. The different

nomenclature is necessary as the classical basic information unit ‘bit’ can only have

the discrete values of zero or one, while its quantum equivalent can have the discrete

values of zero, one, or any superposition of the two. One such category of two-qubit

gates is the controlled-unitary (CU ) gates where one of the photons in the superpo-

sition is known as the control bit and the second photon is known as the target bit.

In particular, in a CU gate, the state of the control bit is used to determine if the

unitary operator in question should be applied on the target bit or if the target bit

should be left unchanged [1]. A quite useful example of a CU gate is the CNOT of

which the output state is similar to that of the classical XOR gate. In particular, in a

CNOT gate if the state of the control bit (C) is |0〉 the outputted state of the target

bit (T) is left unchanged, while, if the state of the control bit is |1〉, the outputted

state of the target bit (T) is flipped i.e. from |0〉 to |1〉 or from |1〉 to |0〉 (fig. 5.1).

The importance of being able to generate CU gates for quantum computing becomes
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Before After
C T C T

|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉

Figure 5.1: CNOT gate. The effect of the CNOT gate on the computational
basis states is illustrated above, where C is the control bit and T is the target bit.

A schematic representation of the gate is also shown [1].

apparent when one considers that any multi-qubit unitary transformation can be per-

formed by simply combining single-qubit gates and a combination of universal two-

qubit gates, the CNOT gate being a prominent example of such gates [1]. Equally

important to the generation of multi-photon superposition states for the future of

quantum computing with linear quantum optics, is the deterministic control of the

multi-photons i.e. finding ways to implement the unitary transformations on the pho-

tons. Experimentally this is not trivial as photons are known to act as non-interactive

particles, a condition that has great advantages (i.e. photons are potentially free from

decoherence), however, this creates major problems in the application of quantum

gates where interaction between the photons is essential. Different techniques have

been proposed to overcome this difficulty, the most common being the use of nonlin-

ear effects, like the optical Kerr-effect, to alter the environment in which the photons

are propagating and induce a photon-photon interaction. Nevertheless all techniques

considered for the implementation of linear optical quantum computers bring their

own challenges, the presence of high losses and the hardship in scalability of the

techniques being some examples. An extensive review of the different techniques

and their limitations can be found in Kok et al.’s review: Linear optical quantum

computing [98].

A promising field of research that could bring a solution to this problem is the newly

discovered process of Coherent Perfect Absorption (CPA), first proposed in 2010 by

Chang et al. [99]. CPA was proposed as the time-reversal counterpart to the laser
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emission process, the set-up being similar to that of a laser optical cavity. Hence,

in order to turn the classical laser into the proposed anti-laser, two things were

necessary: that the gain medium inside the resonator cavity absorbs light at specific

frequencies instead of emitting it and, that two counter-propagating coherent light

beams are injected into the cavity. The feasibility of this process was demonstrated

experimentally by the same group a year after its proposal by using a silicon wafer

as the absorbing medium [100]. In this experiment, they were able to show that, by

controlling the relative phase between the two counter-propagating beams entering

the cavity, it was possible to either transmit or coherently absorb all of the incoming

light as a result of the coherent interaction of the two light fields. More interesting for

future applications in quantum optics was the realisation in 2012 that CPA can also

occur in structures that have subwavelength thickness, as long as careful attention

is placed on the position of the structure [101]. In particular, light will either be

strongly absorbed or pass without loss depending if the film structure is placed on

the antinode or node of the standing wave [101]. It is important to point out that the

proportion of light absorbed by the thin film in a single pass is directly linked to the

absorption property of the material used i.e. 100% coherent absorption can only be

achieved if the thin film is 50% absorbant [102]. An example of a material that can be

employed to generate this kind of thin film structure due to its absorption properties

is graphene. In particular, it was shown that an unstructured multilayer graphene

film could be used to modulate the imputed light with 80% efficiency [103]. Most

recently, a major step towards the implementation of CPA for quantum systems was

made when the applicability of this method was demonstrated at the single photon

regime. In their experiment, Rogers et al. demonstrated that a single photon can

be deterministically coupled to a plasmonic mode of a metamaterial [104]. They also

showed that this conclusion is not unique to metamaterials but can also be achieved

with a multilayer graphene sample.
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In this chapter we discuss an experiment which builds on this work, and investigates

two-photon N00N state coherent absorption in a multilayer graphene film. We show

that by controlling the input phase of the photons, we can selectively choose if a

single photon is deterministically absorbed or if the photon number is conserved in a

combination of 2-photon output states [15]. Importantly, this is the first experiment

that demonstrates how CPA can be used to deterministically control two-photon

superposition states and consequently be a good asset in the generation of quantum

gates.

5.1.1 Contributions

The work discussed in this chapter was carried out as part of a collaborative effort

between members of multiple universities. In particular, the experimental set-up and

data collection was performed by myself in the research lab at the University of Glas-

gow. The performed analysis was done by our collaborators in Prof. Faccio’s group

at Heriot-Watt University and the theoretical background for the paper was provided

by Prof. Jeffers at the University of Strathclyde. As part of the collaboration, I was

therefore responsible for setting up the HOM interferometer used as the source of the

N00N states, which I did under the supervision of Dr Romero, postdoc in the group

where I worked. I was also responsible for setting up, optimising and collecting data

from the full Mach-Zehnder interferometer used in the experiment. This was done

with the help of Drs Rogers and Lyons from Prof. Faccio’s group. The output of this

work is now published in Physical Review Letters [15].
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5.2 The Hong-Ou-Mandel experiment

The goal of the experiment discussed in this chapter is to demonstrate that CPA can

be used to coherently absorb a two-photon N00N state. This is achieved through

the use of a Mach-Zehnder interferometer (MZI) where the first beam splitter (BS1)

generates the two-photon N00N states, and the second beam splitter (BS2) performs

the coherent absorption (fig. 5.7). More specifically, the N00N states used in this

experiment are generated through a HOM interference effect.

(a) (b)

Figure 5.2: HOM interferometer. a) Schematic set up for a HOM experiment.
The signal (s) and idler (i) photons are made to converge onto the input ports of the
beam splitter and then collected by the detectors A and B at each of the outputs
of the beam splitter. The two detectors are then checked for coincidences. b)
Experimental HOM dip data taken for the N00N experiment [15]. The graph shows
the relationship linking the coincidence counts between the detectors measured in a
1 second time period (i.e. the coincidence rate) and the path length delay controlled
using a translation stage. By moving the stage the path length, ∆x of one of the
photons changes in correlation to the other. When the optical path difference

between the photons is zero, a dip in the coincidence rate occurs.

Proposed for the first time by Chung Ki Hong, Zhe Yu Ou & Leonard Mandel the

HOM interferometer is simply based on the physical principle of two-photon interfer-

ence [105]. This was accomplished using a simple layout consisting of very few com-

ponents: a pump laser and nonlinear crystal for generating entangled-photon pairs
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by SPDC, a lossless beam splitter and two photon detectors which are connected to

a coincidence circuit. In this set-up, the two identical photons are separately (i.e.

at different times) made to converge onto opposite input ports of the beam splitter

and the resulting reflected and transmitted photons are collected by detectors placed

at the two outputs (fig. 5.2a). It can easily be shown that, when two photons in-

teract with a lossless 50:50 beam splitter, four equally probable outcomes exists for

the imputed photons (fig. 5.3): 1) both are transmitted, 2) both are reflected, 3)

the first is reflected while the other is transmitted, 4) the first one is transmitted

while the other is reflected [20]. Hence, the total two-photon quantum state (|Ψtotal〉)

at the detectors is the superposition of all four possible outcomes, half of which will

generate coincidence counts as one of the photons will reach detector A and the other

detector B.

Figure 5.3: Outputs of a HOM interferometer. In this figure, the four outputs
that are generated when two photons enter a beam splitter are depicted. In par-
ticular 1) shows both photons being transmitted, i.e. |Ψ1〉 = |1a, 1b〉. 2) shows
both photons being reflected, i.e. |Ψ2〉 = |1a, 1b〉. 3) shows the first photon being
reflected while the other photon being transmitted, |Ψ3〉 = |2a, 0b〉. Finally, 4)
shows the first photon being transmitted while the second photon being reflected,

i.e |Ψ4〉 = |0a, 2b〉.

On the other hand, if we consider the case in which the two photons are completely

indistinguishable (i.e. photons that have the same path length, polarisation, spatial

and momentum modes) the outcome of the interference is no longer the one described

above. This is due to the fact that the outcomes that allow for photons to reach both

the detectors at the output ports (i.e. parts 1 and 2 of fig. 5.3) become indistin-

guishable and undergo destructive interference [20]. This equates experimentally to
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a disappearance of coincidence counts as both photons will reach either one of the

two detectors but never both (i.e. parts 3 and 4 of fig. 5.3). The experiment car-

ried out by Hong, Ou, and Mandel demonstrated this effect for the first time. In

particular, they chose to consider the relative path delays between the two photons

as the distinguishable property (fig. 5.2). It must also be noted that around the

time that the HOM paper was published a separate independent experiment by Shih

and Alley also demonstrated this same effect but instead of showing the effect in the

temporal domain, they controlled the distinguishability of the photons by controlling

the relative polarisation of the photon pair [106].

From a mathematical perspective this effect can be explained by calculating the total

two-photon quantum state (|Ψtotal〉) at the detectors. As we have previously noted,

the resulting quantum state generated by two entangled photons interacting with a

50:50 beam splitter can be written as the superposition of all four equally probable

outcomes, i.e.:

|Ψ〉 = p(eφ1 |Ψ1〉+ eφ2 |Ψ2〉+ eφ3 |Ψ3〉+ eφ4 |Ψ4〉), (5.1)

where p is the probability of the outcome (in the case of a 50% transmissive/reflective

beam splitter, this value is equal to 25%), and the |Ψi〉 are the wave-functions for

the four outcomes. In particular, if we adopt the convention |Ψi〉 = |Na,Mb〉 where

Na represents the number of photons exiting the beam splitter toward the output

with detector A and Mb the number of photons at the output with detector B, we

can write the four superposition states in fig. 5.3 as: |Ψ1〉 = |1a, 1b〉, |Ψ2〉 = |1a, 1b〉,

|Ψ3〉 = |2a, 0b〉 and |Ψ4〉 = |0a, 2b〉. Furthermore, in the analysis, we have to consider

the convention that exists by which any photon that gets reflected by the bottom

half of a beam splitter acquires a π-phase shift [20]. This effect is a characteristic of
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all beam splitters indiscriminately as it guarantees the conservation of energy of the

system. We can therefore rewrite equation 5.1 as:

|Ψtotal〉 = p(|2a, 0b〉 − |0a, 2b〉+ |1a, 1b〉 − |1a, 1b〉). (5.2)

Hence, if the two photons are indistinguishable then |Ψ1〉 and |Ψ2〉 will be equal

to each other and therefore cancel out. Consequently, the equation for the total

two-photon quantum state at the detectors can be simply rewritten as:

|Ψtotal〉 =
1√
2

(|2a, 0b〉 − |0a, 2b〉). (5.3)

This two-photon quantum state output is known as N00N state where N is used to

represent the number of photons in the output superposition state of the interference

-i.e. |N, 0〉 − |0, N〉.

5.3 Graphene as a lossy beam splitter

Having described the process behind the creation of the N00N states, I will give a

brief summery on the mechanism behind the second half of our experimental set-up,

i.e the use of graphene as a coherent perfect absorber (CPA). It is important to note,

that this section is based on the work of our collaborator Prof. Jeffers who provided

the theoretical background for the paper. This summary is hence in no way meant

to be extensive. A more in-depth analysis of the working of a lossy beam splitter

on superposition states can be found in “Interference and the lossless lossy beam

splitter” by Jeffers [107]. Furthermore a good summary of the history, mathematical

background and application of coherent perfect absorbers can also be found in Dr

Lyons’s dissertation work [23].
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To apply a thin layer coherent perfect absorber in an interferometer (in our case of our

experiment a 50% absorbing graphene sample) it is first essential to understand how

light interacts with the sample. It is therefore worth noting that a thin layer CPA is

not very dissimilar from a traditional beam splitter like the one whose properties are

described in the previous section. In particular, a lossless beam splitter is defined as

a four-port device that superposes two incident or input fields to produce two output

fields. This can be in the form of a cube beam splitter, where the two incident beams

are at right angles to each other (see fig 5.4(1)) or it can be in the form of a partially

reflecting film where the two beams are incident on the film at normal angles (fig

5.4(2)) [108]. Nevertheless, the geometry of the beam splitter does not effect the

properties of the device and both a cube beam splitter and the thin film version can

be represented by the same mathematical equations.

Figure 5.4: Schematic representations of beam splitters [108]. In both the dia-
grams two independent incident modes, mode ain and bin, are made to converge
onto opposite input ports of the beam splitters. In the device they will either be
reflected or transmitted and will exit the device as modes aout or bout as seen in
figure 5.3. Hence, both the (1) cube beam splitter and the (2) partially reflecting

film can be described by the same mathematical model.

The similarities between a thin layer CPA and a partially reflecting film beam splitter

are quite evident. In particular, both partially absorbing devices operate with light

incident normally on both sides. Furthermore, they both relate two input ports to

two output ports with the crucial difference that, while the thin film beam splitters

are designed to conserve energy and therefore have no loss, a thin film CPA is by

design chosen to absorb energy and thus have loss (fig. 5.5). Hence, the thin film
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CPA can be considered a “lossy beam splitter” and be represented by the same

mathematical equations which describe a lossless beam splitter with the addition of

two noise operators which are required to compensate for the presence of absorbing

forces (fig. 5.5.i ) [107].

Figure 5.5: Schematic representation of a thin layer CPA (adapted from [104]). A
thin layer coherent absorber can be modelled as a lossy beam splitter. In particular,
similarly to the thin film beam splitter it has two input channels (ain and bin)
and two output channels ( aout and bout). On the other hand, it also posses two
extra internal noise input and output channels (fb and fa) which are linked to the
absorption process. When placed in a standing wave composed of two counter-
propagating coherent beams the light will either be strongly absorbed or pass
without loss depending if the film structure is placed on the antinode or node
of the standing wave. Similarly, the insert shows the equivalent beam splitter

representation as defined by Jeffers [107].

It is important to point out that, in order for the ‘lossy beam splitter’ to act as a

coherent absorber it must be placed in a standing wave composed of two counter-

propagating coherent beams. This is because, similarly to the HOM effect described

above, the ability of a CPA to deterministically control the absorption of photons is

directly linked to the interference of the photon wavefunctions inside the lossy beam

splitter. This was mathematically demonstrated in Jeffers’ study of ‘lossy beam

splitters’ for both the single photon regime and the multi-photon regime [107]. In
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particular, in the case of a single photon regime, the coherent superposition of the

single photon at the beam splitter can be defined as:

|1〉 =
1√
2

(|1a, 0b〉) + eiφ |0a, 1b〉), (5.4)

where a and b denote the input channels of the beam splitter and φ is the phase shift

between them (fig. 5.5). From Jeffers’ mathematical analysis it can easily be seen

that, when studying the interaction between any coherent superposition state and

a beam splitter device, there are two important cases to consider: φ = 0 and φ=

π. The importance of these two cases becomes evident if one considers that, when

imparted on a lossless beam splitter, these are the only cases that will pass through

the device with no change to the number of photons in each mode. Hence, Jeffers

choose to study the resulting interaction of this two single photon superposition

with an ideal 50% absorbing, 25% reflective and 25% transmissive lossy beam spitter

[107]. He therefore demonstrates that, in the case of φ = 0 the lossy beam splitter

will act in a similar way to its lossless counterpart and the superposition state will be

transmitted through the device unchanged. More interestingly, is the case in which

φ = π, where the presence of the additional noise modes results in the coherent

state being deterministically absorbed by the lossy beam beam splittersplitter. As

previously mentioned, this result was experimentally demonstrated for the first time

by Rogers et al. in his 2015 Nature Communication article [104].

Table 5.1: Quantum states for a lossless beam splitter. This table is based on an
original table shown in our paper [15]. The table summarises the output photon

states for various two-photon input states for a 50:50 beam splitter.

Input Output
relation (θ)

|2+〉 |1a, 1b〉
|2−〉 ∓|2±〉
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Furthermore, in his study, Jeffers didn’t limit himself to the single-photon regime

but also explored coherent absorption in the case of a two photon interference -i.e.

the N00N states mentioned in the previous section. This interaction can either be

composed of two separate single states, hence producing the HOM effect previously

mentioned, or more interestingly be composed of a superposition of two photons in

one arm of the interferometer and zero in the other. Mathematically, this second

case can be written as a coherent superposition of the two photon states at the beam

splitter, defined as:

|2〉 =
1√
2

(|2a, 0b〉) + e2iφ |0a, 2b〉). (5.5)

As for the single photon regime, it can easily be shown that for this coherent super-

position state, two important cases exist: φ = 0 and φ= π/2. Similarly to the single

photon regime, when the superposition mode with φ= π/2 interacts with a lossless

beam splitter it will simply acquire a phase shift but otherwise transit through the

device unchanged. On the other hand, the case in which φ = 0 corresponds to the

time reversal process of the HOM interference. In other words, the interaction of

this two photon superposition state with a 50:50 beam splitter will result in the two

bunched photons being deterministically split back into the two separate distinguish-

able photons. These results are summerized in the Table 5.1.

Table 5.2: Quantum states for a lossy beam splitter. This table is based on an
original table shown in [107] and displays the output photon states generated when
a two-photon input states interacts with a 50:25:25 lossy beam splitter. For the

purpose of this table, |ψ2〉 is defined as: |ψ2〉 = (|1a, 1b〉 ± |2+〉)/
√

2

.

Input Output
|2+〉 1

2
|0a, 0b〉〈0a, 0b| ± 1

2
|ψ2〉〈ψ2|

|2−〉 ∓|1±〉
|1a, 1b〉 1

2
|0a, 0b〉〈0a, 0b|+ 1

2
|ψ2〉〈ψ2|
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More interestingly for our experiment is the interaction of these two photon coher-

ent superpositions with a 50:25:25 lossy beam splitter. Similarly to the case 50:50

lossless beam splitter the interaction can either be composed of two separate sin-

gle states (|1a, 1b〉) or be composed of a superposition of two photons in one arm

of the interferometer and zero in the other (as defined by equation 5.5). However,

the resulting output is no longer as simple as the lossless case but can be composed

of a single photon state or a mixture of zero and two-photon states. These output

states, derived in Prof. Jeffers 2000 article Interference and the lossless lossy beam

splitter are summarised in Table 5.2 where for convenience the superposition state

with φ = 0 case is represented as |2+〉 and the state with φ= π/2 as |2−〉 [107].

In particular, it was found that if the input state is |2+〉, then either both photons

survive interaction with the sample or both photons are absorbed. For the case in

which there is no absorption, the output state (|ψ2〉) can be described as an even

superposition of a |1a, 1b〉 and a |2+〉 state. Hence the total output of a |2+〉 can be

mathematically described as a statistical ensemble of the two photon state |ψ2〉 and

a state with no photons in the output ports. Interestingly, the same output can be

achieved if two separate single photons interact with the lossy beam splitter (i.e. the

case corresponding to the HOM interference in a lossless beam splitter) with the only

difference that in this case the output photons have one less phase dependency [107].

In contrast, when the superposition state interacting with the lossy beam splitter is

a |2−〉 input state, then one photon of the pair is always absorbed while the other is

transmitted. The output can therefore be described as superposition of one-photon

states.
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5.4 Coherent Absorption of N00N states

As described in the introduction, it has now been demonstrated both in the classical

wave regime and in the single photon regime, that a thin multilayer graphene sample

can be used efficiently as a coherent perfect absorber (CPA) [103, 104]. The experi-

ment described in this chapter expands on this work and tests the ability of graphene

to deterministically control photons in the multi-photon regime. It is important to

point out that, despite the multi-photon case being theoretically demonstrated by

Jeffers [107] this is the first known experimental demonstration of coherent perfect

absorption for N=2 N00N states.

As previously mentioned, our experimental set-up is a MZI (shown in fig. 5.7) as-

sembled by combining a HOM interferometer (schematically represented in 5.2) and

a 50% absorbing multilayer graphene film (schematically represented in 5.5). In par-

ticular, as for the experiments in the previous chapters, the photons used in our

experiment are generated through the SPDC process in which a 355 nm Nd:YAG

laser is used to pump a type I BBO crystal. The residual pump beam from the

SPDC process is then blocked through the use of a longpass filter, allowing only the

710nm down-converted signal and idler beams in the system. These two beams are

then further filtered by a 10nm bandpass filter. The presence of this filter has a

twofold purpose: it reduces the presence of unwanted noise photons in the system

and it determines the width of the HOM dip as bandwidth and coherence length

are inversely proportional to each other (see fig. 5.6). In particular, by filtering the

entangled photons with the 10nm bandpass filter we increase the width of the HOM

Dip from 0.02mm to 0.08mm therefore making the generation of N00N states by the

HOM interferometer easier, and less susceptible to misalignment and temperature

fluctuation.

The resulting filtered signal and idler photons are thus separated in the far field by
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Figure 5.6: HOM Dips at different bandwidth. The two graphs show the HOM
dip of coincidence counts measured by the detectors in a 1 second time period
versus the relative delay between single-photons in our system. In particular the
graph on the left shows different HOM dips calculated when no filter is inserted
in the system, while the graph on the right shows different HOM dips calculated
when a 10nm wide bandwidth filter is inserted in the system. As bandwidth and
coherence length are Fourier counterparts, by filtering the entangled photons with
a small transmission window bandpass filter, the width of the Dip can be increased
i.e the Dip goes from being 0.02mm wide (with no filters) to 0.08 mm (with the
10nm filter present). The presence of the filters also determines the shape of the
Dip. In particular, as the Fourier transfer of a top hat function is a sinc function,
the presence of a sharp top hat filter generate the well define“bumps” artefacts

that can be noticed on the side of the DIP generated with the 10nm filter.

a knife-edge prism mirror and coupled into single-mode polarisation-maintaining fi-

bres which act as input ports to the HOM beam splitter (BS1). As for the presence

of the bandwidth filter, coupling into single-mode polarisation-maintaining fibres is

also chosen to facilitate the experimental set-up, as it constrains the entangled pho-

tons which will interact with the HOM beam splitter to a single spatial mode, hence

making the relative path delay between the two entangled photons their only distin-

guishable property. This delay can then be controlled by adjusting the position of

one of the fibre couplers through the use of a computer activated stage, making it

possible to measure the HOM interference dip (as previously shown in figure 5.2).

In particular, in our experiment, we were able to measure a HOM dip with a depth

of 89% (fig. 5.2 b). By carefully choosing the position of the motorised stage so as
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Figure 5.7: Experimental set-up [15]. Our experimental is a MZI assembled by
combining a HOM interferometer and a 50% absorbing multilayer graphene film.
The entangled photons are generated using SPDC, separated by a knife-edge prism
(KEP) and coupled into the two single-mode polarisation-maintaining fibres which
act as input ports to the HOM beam splitter (BS1). In order to control the relative
delay between the two photons (∆x1), and consequently control the generation of
the bunched photons states, one of the fibre couplers is placed on a motorised linear
stage. The superposition state resulting from the HOM interference is then coupled
out of the fibre beam splitter and directed to recombine at the second beam splitter
(BS2) through the use of an optical mirror in one of the interferometer arms. In
the experiment, BS2 can be a multilayer graphene film or a lossless 50:50 beam
splitter. The phase φ of the superposition state in the MZI is controlled by using a
piezo stage to vary the position of the mirror (∆x2 in the figure). The output states
from this interference are then split through the use of two 50:50 beam splitters
(BS3 and BS4) and distributed over 4 single photon avalanche detectors (SPADs)
connected to a PicoQuant Hydra Harp 400 with a temporal window of ∆τ = 25ns

allowing time-tagged events to be recorded.

to be at the minimum of the HOM interference dip we can therefore generate the

bunched N00N state required for this experiment and defined by equation 5.5. This

superposition state is coupled out of the fibre beam splitter and into the second, open

optical path, section of the MZI.

In this open path section of the MZI, the bunched photons are directed towards a

beam splitter (BS2) placed at the end of the interferometer at a 45°angle, though

in this case the beam splitter is either a multilayer graphene film or a lossless 50:50
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beam splitter film. As shown in the previous section, the relative phase delay (φ)

between the incident beams at BS2 plays an important role in determining the output

of the device. We therefore choose to control this phase delay in the experiment by

varying the position of the mirror present in one of the MZI arms with a piezo stage

(∆x2 in fig. 5.7). The output states from BS2 are then themselves made to interact

with two 50:50 lossless beam splitters, BS3 and BS4, placed at the two output ports

of the interferometer resulting in four detection ports (A, B, C and D in fig. 5.7).

The photons at these detection ports are subsequently collected by multimode fibres

and directed toward four single photon avalanche detectors (SPADs). Finally the

SPADs are themselves connected to a PicoQuant Hydra Harp 400 detection card,

with a temporal window of ∆τ = 25ns, allowing time-tagged events to be recorded,

therefore allowing us to measure coincidences across all four detection ports as a

function of the interferometer phase. It is important to note that SPAD detectors

are not able to distinguish between a single photon or a two photon state, hence

the importance of BS3 and BS4. Any resulting two photon state output from BS2

will probabilistically split at these beam splitters giving a coincidence count between

AB or CD, and therefore providing us with an experimental way of measuring the

presence of N00N state at the output of the interferometer.

5.5 Data Collection

As previously stated, the goal of this experiment is to demonstrate that a multi-

layer graphene sample can be used to coherently absorb N00N states. Hence, after

positioning the HOM delay stage (∆x1) so as to be inside the HOM dip, a time

tag measurement (∆τ=25ns) of the single photons at the four detectors is taken as a

function of the interferometer phase (∆φ), where each time tag measurement is taken

over an integration time of 1.2s. The coincidence counts for the detectors multiple
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Figure 5.8: Experimental data from a lossy beamsplitter (figure from [15]). (a)
Raw data showing the coincidence counts per second measured between detectors
A and B as a function of MZI piezzo stage. (b) Blue curve, Fourier transform of
the single detector counts showing an oscillation at k1 = 1/λ. Green shaded curve,
Fourier transform of the coincidence counts showing a peak at frequency k2 = 2/λ.
Dashed black curve, gaussian fit to the peak at k2 used to filter the raw data. (c)
Fourier-filtered data for all six detection pairs as a function of mirror position. Due
to the asymmetry of the sample, some of the output have lower visibility. In order
to present the data on the same vertical scale, we multiplied AB by 10 and AC,

AD, BC and BD by 3.

configurations (i.e. AB, AC, AD, BC, BD, CD) can therefore be calculated as a func-

tion of the position of the MZI piezo stage (∆x2). An example of this coincidence

measurement can be found in figure 5.8a.

Before discussing the data measured it must be noted that not all photons going

through the HOM beam splitter will bunch. In particular, as our HOM has a depth

of 89% (fig. 5.2), 11% of the entangled photons will not bunch and therefore will

travel through the MZI and arrive at the graphene BS as two single states (i.e. in

the form of |1a, 1b〉). Nevertheless, it is well known that a N00N state will oscillate at

twice the frequency of single photons. Hence the Fourier transformation of the data
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Figure 5.9: Fourier transform of RAW data. The graph shows in red, the coinci-
dences counts vs interferometer mirror position for the graphene sample. Fourier
filtering is then used to find the total coincidence rate at both λ/2 and λ/4 (figure

originally generated by Dr. Roger.)

(fig. 5.8b) can be performed in order to distinguish the coincidence contributed by

single photons and those contributed by N00N states. In particular, in the frequency

domain, the single photons will appear as a first harmonic frequency, while the N00N

states as a second harmonic frequency. A Gaussian-shaped filter (represented in fig.

5.8(b) by a black line) is then used to isolate the single photons and the N00N photons,

before Fourier transforming the data back into the plane of the stage position (see

fig. 5.9). As we are interested in the interaction between N00N photons and the

lossy beam splitter, the N00N component of the raw data is extracted for all the

coincidence count detector pairing and plotted in figure (5.8c).

Finally, the graphene sample is then removed from the system and a glass 50:50

lossless beam splitter is inserted as the second beam splitter of the MZI (BS2 in fig.

5.7). The full experiment is therefore repeated and the results are shown in fig. 5.10.
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Figure 5.10: Lossless 50:50 beamsplitter (figure from [15]). (a) Raw experimental
data showing the coincidence counts per second measured between detectors A
and B as a function of interferometer mirror position. (b) Blue curve, Fourier
transform of the single detector counts showing an oscillation peak at k1 = 1/λ.
Green shaded area curve, Fourier transform of the coincidence counts, showing a
peak at frequency k2 = 2/λ. Dashed black curve - gaussian fit to the peak at k2

used to filter the raw data. (c) Fourier-filtered data for all six detection pairs as a
function of mirror position.

5.6 Analysis of the results

As previously mentioned, BS3 and BS4 are inserted into the system to provide an

experimental way to measure the presence of bunched photons at the output of the

MZI. Hence, only the presence of coincidence between AB and CD will represent the

presence of N00N state at the output of the interferometer (i.e. the |2〉 term in tables

5.1 and 5.2). Accordingly, coincidence counts between detectors that are located at

opposite output ports of the interferometer (AC, AD, BC, BD) will measure anti-

bunched photon pairs (i.e. the |1a, 1b〉 term in tables 5.1 and 5.2).

Furthermore, the phase between these two categories of detection pairing (i.e. AB/CD

and AC/AD/BC/BD) also plays an important role in the analysis of the interaction
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of the N00N states with the lossy/lossless beam splitters. In particular, as can be

seen from figure 5.8c and figure 5.10c, while in the lossy case there is near to no phase

difference between coincidence counts of these detection pairings, in the case of the

lossless beam splitter, the coincidence counts measured for the detector pairings are

out of phase with each other. This is in agreement with the theoretical predictions

discussed in section 5.3.

In particular, it can be seen from table 5.2, that for a lossy beam splitter, both the |2〉

and |1a, 1b〉 are outputs of the interaction of the graphene sample with the two-photon

superposition state |2+〉, while when a |2−〉 N00N superposition state interacts with

the lossy beamsplitter, only a single photon is outputted (hence no coincidence will

be detected as only one detector will be hit). The slight phase mismatch between

the coincidence counts measured by the detectors can be attributed to the imperfect

phase between the two output fields of the graphene sample caused by the presence

on one side of the sample of a very thin glass slide on which the graphene is layered.

Similarly, the outputs for the 50:50 lossless beam splitter case ( figure 5.10c) are in

agreement with the theory in section 5.3. In particular, it can be seen from table 5.1,

that depending on whether the N00N superposition state arrive at the beam splitter

in phase (|2+〉 ) or out of phase (|2−〉 ) the output will ether be |1a, 1b〉 or |2±〉. As

we have previously mentioned |1a, 1b〉 corresponds to coincidence counts between the

beam splitters AC/AD/BC/BD and |2±〉 corresponds to coincidences between the

AB/CD, hence a phase shift in the interferometer will simply translate to a π phase

shift between the coincidence count rates at these detection pairs.

Finally, to reiterate the fact that in the case of a lossy beam splitter a coherent

absorption of N00N states has taken place, the total number of coincidences mea-

sured by all detection pairs as a function of the interferometer path delay (∆x2 ) is

calculated.
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Figure 5.11: Comparison between the total measured two photon states (figure
from [15]). The sum of coincidence counts for all six detection pairs as a function
of interferometer mirror position is shown for (i) no sample, (ii) 50:50 lossless

beamsplitter (dielectric BS) (iii) lossy graphene beamsplitter.

In summing the coincidence counts, it is important to take into consideration that

50% of the time two photons interact with BS3 or BS4 they will bunch together

and therefore be recorded as a single coincidence by the detector. We take this into

account in our sum by multiplying the coincidence detected by AB and CD by a factor

of 2 (i.e. the total coincidence is given by 2AB+AC+AD+BC+BD+2CD). This

calculation is conducted for the case in which: (i) no sample is present in the system;

(ii) a 50:50 lossless beamsplitter is placed as BS2; (iii) a lossy graphene sample is

placed as BS2(fig. 5.11). From fig. 5.11, we can therefore conclude that while,

as expected, there is no substantial difference in total coincidence counts between

the case with no sample and a lossless beamsplitter present at BS2, when a lossy

beamsplitter is placed as the second beam splitter of the MZI, the total number of

coincidence rates oscillates as a function of the interferometer phase. This result is

consistent with both the theory in 5.3 and with our previous analysis.
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5.7 Conclusions

In this chapter we were therefore able to demonstrate the coherent absorption of

NOON states through the use of a lossy beam splitter. This was performed by using a

multilayer graphene sample as a CPA. Furthermore, since N00N states exhibit half of

the period of a single photon state, by demonstrating the coherent absorption of N00N

states, we have also demonstrated a potential way of isolating single and two-photon

processes. As previously mentioned, the coherent control and absorption of qubits is

essential for the generation of quantum gates. By demonstrating the ability of the

CPA process to coherently control and absorb two-photon N00N states we therefore

open the possibility for future applications in the field of quantum computing.



Chapter 6

Quantum Gyroscope

6.1 Introduction

The use of laser interferometers to study the Sagnac effect can be traced back to

the Macek and Davis experiment in early 1963 [109]. In their experiment, they

constructed the first ever ring laser gyroscope to detect the earth’s rotation. It is

important to point out that the sensitivity of optical gyroscopes is directly related

to the cavity length of the system [110]. With the development of single-mode fibres,

the opportunity therefore arose to significantly increase the sensitivity of optical

gyroscopes by using these fibres as the propagating medium. In 1976 the first fibre

optic gyroscopes (FOG) was therefore proposed by Vali and Shorthill [111]. Since

then, both ring laser gyroscopes (RLG) and FOG have been used to study a variety

of phenomena including acoustic fields [112], magnetic fields [113], as well as being

proposed for the measurement of gravitational waves [114].

With the growing sophistication of the optical components the sensitivity and dy-

namic range of both RLG and FOG has greatly increased and gyroscopes are now

found in a variety of fields and applications (see fig. 6.1); airplanes, space navigation

75
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Figure 6.1: Dynamic range and sensitivity of the different types of gyroscope
currently presented in the market (original image can be found in [110]).

and oil drilling being a few examples [110]. It must be pointed out that, the initial

goal of FOG to create a system more sensitive then the RLG gyroscope did not come

true as modern RLG can reach sensitivities of 0.001°/hour vs the 0.1°/hour of the

FOG. Nevertheless, this sensitivity comes at the price of size and manufacturing cost.

In particular, the sensitivity of RLG increases quadratically with the size of the cav-

ity hence attempting to miniaturise the system simply leads to a loss in reliability of

the apparatus [115]. In order to surpass the sensitivity of other forms of gyroscopes,

RLG are constructed on large scales with a recent set-up covering an area of 834

m2 [116]. On the other hand, due to the presence of very few optical components,

the FOG gyroscope is not only cheaper to build but can easily be miniaturised, with

recent prototypes being as small as 11.5 cubic inches [117]. It is important to note

that the research in the development of new, more sensitive, gyroscope designs has

also not deemed with time, with novel research being published as recently as May

2016 [118].
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In any event, no matter if it is a RLG or FOG, all optical gyroscopes operate by

measuring what is known as the Sagnac-effect. This relativistic effect relies on the

interference of two counter-propagating waves traveling around a rotating platform.

In particular, the rotation of the platform induces a change in path lengths between

the counter-propagating light beams which will manifest as a phase difference between

the two waves. By measuring this phase shift, optical gyroscopes are therefore able

to measure the angular speed of the system in relation to the inertial system.

It is important to note the similarities between the configuration of the HOM inter-

ference (as described in section 5.2) and the Sagnac interference effect. In particular,

both effects rely on the presence of a path difference between two interfering light

beams. In the Sagnac interferometer this relativistic delay manifests itself as a phase

shift (∆φ) of the interference pattern at the detector plane. Similarly, in a HOM

interferometer two indistinguishable entangled photons are made to interfere at a

beam splitter resulting in destructive interference when the path length of the two

photons are matched. Hence by controlling the path delay between the two entan-

gled photons, a dip in coincidence can be measured at the detectors, resulting in

scanning of what is known as the HOM dip. But while similar in configuration, the

physics behind the working of these two experiment is quite different, the first being

a well established special relativistic effect while the second being a well known test

of quantum mechanics [105].

Interestingly, while both the fields of quantum mechanics and relativity are separately

well established, the unification of the two is one of modern physics open problems.

Traditionally, this problem has been approached by proposing theories that quantised

gravity while retaining the foundational principles of quantum mechanics [119]. While

an abundance of quantum gravity theories have now been proposed (string theory

being one such example), being able to experimentally demonstrate the validity of

one over the other has been challenging. In particular, in conventional quantum
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gravity theories general relativistic effects are predicted to occur at the Plank scale

which is tens of orders of magnitude away from current measurement sensitivities.

The lack of experimental confirmation for any particular quantum gravity theory

has lead to a recent theoretical shift in the way the unification of these two theories

is tackled. In particular, an alternative approach has been suggested where the

need to quantise gravity is called into question, but instead suggests that a unified

theory should require the current framework of quantum theory to be modified i.e.

suggesting that the unified theory be a “gravitize quantum theory” [119]. Quantum

mechanical experiments that probe gravity can be divided into two categories, local

and nonlocal. In particular, quantum mechanics experiments that are in the local

category are proposed as a way to test special relativistic effects and noninertial effects

in Minkowski spacetime, where the Riemann tensor corrections can be neglected. On

the other hand nonlocal quantum mechanics experiments are proposed as a way

to test probe general relativistic effects, where the result is directly related to the

curvature of spacetime. It is important to note that, while very few experiments have

been performed in the local category [17, 120], no nonlocal experiment has currently

been experimentally realised. It is in this context that the experiment in this chapter

is proposed. In particular, in this chapter, we performed a novel experiment in which

we combine, in a single experiment, the relativistic Sagnac effect with a quantum

mechanical HOM effect. This “quantum gyroscope” is a local quantum mechanic

experiment where the behaviour of entangled photons in a noninertial reference frame

is probed. As very few experiments exists testing quantum effects in non-inertial

frame we proposed this experiment as a way to increase the general understanding

of the interface between quantum mechanics and general relativity.
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6.1.1 Contributions

The work discussed in this chapter was carried out as part of a collaborative effort

between members of different research groups. In particular, the experiment was

proposed by my supervisor Prof. Padgett. The design and construction of the ex-

perimental set-up was performed by myself with the help of my postdoc Dr. Gibson

in the research lab at the University of Glasgow. The experiment’s data collection

and data analysis was also perform by myself. The output of this work has been sub-

mitted to Physical Review Letters and includes an extensive theoretical background

provided by Dr. Toroš from the University of Southampton and Prof. Faccio formally

from Herriot Watt University now at the University of Glasgow.

6.2 Sagnac effect

As mentioned in the introduction, the principle of a FOG gyroscope is based on

the relativistic Sagnac effect [121]. The basic principles of this effect are therefore

discussed in this section.

In particular, in the FOG interferometer, a laser generated light beam is split, through

the use of a beam splitter, into two identical beams. These two beams are then

coupled into opposite ends of single mode optical fibre, coiled in loops of radius R.

After traveling through the fibre in counter-propagating directions, the two beams

are then coupled out of the fibre and recombined at a detection plane, through the

same beam splitter used to separate them (fig. 6.2). The whole system is itself

mounted on a movable platform. This platform, is therefore made to rotate about

an axis perpendicular to its surface, at an angular velocity of Ω radians per second.

It is important to point out that, as can be seen from figure 6.3, this rotation plays

an important role in the functionality of the system. In particular, during the time
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Figure 6.2: Classical design of a fibre Sagnac interferometer (original image can
be found in [121]). A light source (S) generates a light beam is split through the
use of a beam splitter, into two identical beams. These two beams are then coupled
into opposite ends of single mode optical fibre. After traveling through the fibre
in counter-propagating directions, the two beams are coupled out of the fibre and
recombined at a detection plane, through the use of the original beam splitter. The

whole system is then rotated at an angular velocity of Ω.

it takes for the two counter-propagating light beams to travel along the fibre path

(∆t) the position of the input/output of the fibre will no longer be the same. In

fact, one input coupler will have moved ∆l+ = (Ω ∗R ∗∆t+) toward the propagating

beam and the other coupler will have moved ∆l− = (Ω ∗ R ∗ ∆t−) away from the

propagating beam. The overall path difference ∆l induced by the rotation of the

set-up can therefore be defined as:

∆l = ∆l+ + ∆l− = ΩR(∆t+ −∆t−).

As previously mentioned, ∆t is simply the time it takes for the light beams to travel

along the fibre path L, which in the case of photons traveling in a vacuum is equal

to: ∆t = L/c. It is important to point out that the medium in which the photons
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Figure 6.3: Principle of the Sagnac effect (original image can be found in [121]).
The phase shifts between two counter-propagating waves

travel is irrelevant to the derivation of the Sagnac equation, as any relative drag

effect produced by the presence of a dielectric medium would be equally present in

the clockwise and anticlockwise beams. Hence, it has been well documented in the

literature that, modifying the equations to consider the drag effect will simply yield

the same Sagnac expression that is calculated for photons traveling in a vacuum

[121]. Also, since both counter-propagating light beams are identical, the fact that

∆t+ must be equal to −∆t− can easily be inferred. The overall path difference ∆l

can therefore be written as:

∆l = 2ΩR∆t =
2ΩRL

c
. (6.2)

But, as described in the introduction to the chapter, the Sagnac interferometer mea-

sures the relativistic delay induced by the rotation through the measurement of the

phase shift (∆φ) of the counter-propagating waves at the detector plane. Hence, by
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considering that the path and phase difference in an interferometer are related by the

equation ∆x/∆φ = λ/2π, we can therefore rewrite equation 6.2 as:

∆ϕ =
4πΩRL

λc
. (6.3)

Equation 6.3 is therefore the Sagnac effect measured with a circular shape FOG

interferometer of radius R and fibre length L.

It is important to note that the area inclosed inside the Sagnac interferometer loop

does not necessarily need to be circular but can be any generic geometric form. In

order to generalise equation 6.3 to an expression valid for any geometric form, we

first point out that in the circular case, the length of the fibre can be re-expressed as

a function of the number of turns needed to coil the full fibre path around the system

i.e. L = 2πRN . Equation 6.3 therefore becomes:

∆ϕ =
8π2R2ΩN

λc
. (6.4)

It is important to note that πR2 in equation 6.4 is simply the circular area enclosed

by the coiled fibres. Therefore, by replacing this part of the expression with a more

general variable A we can obtain an expression of the phase shift which is independent

of the geometric form of the system:

∆ϕ =
8πΩNA

λc
. (6.5)

Equation 6.5 is the standard formula for Sagnac effect and hence it is the one most

commonly found in the literature.
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6.3 HOM as a Sagnac interferometer

Figure 6.4: 3D representation of the HOM gyroscope. The experimental set-up is
built on a circular rotating platform, of radius R = 0.454m, which can be made to
rotate at a constant angular velocity Ω. On this set-up SPDC generated entangled
photons are split at a KEP and coupled into single mode fibres. The photons are
directed by BS α (in the case of the idler photon) and β (in the case of the signal
photon) towards an L=100m single mode fibre coiled in a loop around the outside
of the table. After traveling through the fibre the photons will be redirected by
the BS α and β towards the final beam splitter. The outputs of this beam splitter

are then connected to SPAD detectors A and B.

As mentioned in the introduction, the goal of this experiment is that of testing,

through a HOM interferometer in a non inertial frame, the role of relativity in quan-

tum mechanics. A Sagnac interferometer is therefore built on a rotating platform,

where the light traveling in the two arms of the interferometer are SPDC generated

entangled photons (fig. 6.4). More specifically, a CW UV (355 nm) laser is used to

pump a type I BBO crystal and generate the two correlated photons. The residual

pump beam from the SPDC process is then reflected toward a beam blocker by a

dichroic mirror allowing only the 710nm photons in the system. These entangled

photons are directed toward a knife-edge prism (KEP) placed at the far field of the

crystal, where the signal and idler beams are separated and coupled into single mode
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polarisation maintaining fibres. Inside this fibre component of the interferometer, the

signal and idler photons are made to travel clockwise and anticlockwise respectively

through a 100m looped fibre located at the perimeter of the circular platform of ra-

dius R = 0.454m (figures 6.4 and 6.5). After traveling through this fibre the photons

are then recombined at a fibre beam splitter and the outputs from the beam splitter

are collected by two single photon avalanche detectors (SPADs A and B) which are

connected to a coincidence machine (a schematic representation of this can be seen

in fig. 6.5).
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Figure 6.5: Schematic representation of the HOM interferometer on the rotating
platform [122]. The generation of the signal and idler photons is shown together
with the path they follow through the interferometer before interfering at the HOM

beam splitter.

As comprehensively described in section 5.2, whenever two indistinguishable pho-

tons combine at the HOM beamsplitter, quantum interference dictates that they will

bunch and therefore always exit from the same output port in an effect known as

the HOM interference effect. This will manifest itself as a drop in coincidence counts

detected by the system compared to the case in which the photons are distinguish-

able and therefore do not bunch. Its important to highlight that, similarly to the
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experiment in chapter 5, careful consideration is taken to make the photons in the

system completely indistinguishable therefore making the measurement of a HOM

dip possible. For example, as for the NOON experiment, in the current set-up the

choice of using single-mode polarisation-maintaining fibres is made as it constrains

the entangled photons that will interact with the HOM beam-splitter to one sin-

gle mode while also ensuring that their polarisation does not change while traveling

through the fibre. Hence, similarly to the NOON experiment the only distinguishable

property in this HOM set-up is the time of arrival of the photons at the beam-splitter.

In the case of a non rotating system, this time delay can be controlled by generating

a path difference between the signal and idler and photons through the use of a delay

stage placed at one of the fibre couplers (fig. 6.5).

Finally, it must be noted that, as for all the sensitive experiments I undertook during

my PhD, controlling the noise in the system plays an important role in being able

to successfully operate the experiment. In particular, as we are interested in testing

if a rotation of the experimental system induces a relative delay in the photons

arrival, any noise effect that will create a change in path length in the system has

to be suppressed. Different precautions were therefore taken in the construction and

running of the experiment to control these noises. Specifically, as we are using pure

silica fibres, these fibres can be susceptible to drift due to unwanted path-length

variations caused by effects generated by the rotation of the system. Such effects

may include temperature variations caused by air movement or the stretching of the

fibres caused by the rotation generated centrifugal force. Hence, instead of using

separate fibres for the clockwise and anticlockwise loops we set-up the experiment so

both photons would travel through the same fibre. In order to do so, two additional

beamsplitters were added to the system after the coupling optics (labeled α and β in

figure 6.4). In particular the beam-splitter labeled α allows for the signal photons to

enter the 100m long coiled fibre and travel through it in an anticlockwise direction
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while, at the same time, redirecting the idler photons, having traveled in the clockwise

direction, towards the HOM beam-splitter. Equally, the beam-splitter β sends the

idler photons through the fibre towards beam-splitter α while redirecting the arriving

signal photons to the HOM beam-splitter. It must be noted that while allowing us

to only use one fibre for both the clockwise and anticlockwise paths this comes with

a reduction in optical coupling efficiency.

As previously mentioned, the rotating set-up will be subjected to a noise component

due to the presence of a centrifugal acceleration. It is important to note that this

phenomena does not only affect the fibre, but also all mechanical components present

on the system. However, while the Sagnac effect is sensitive to change in rotation (i.e.

clockwise and anticlockwise will generate a result with opposite signs) the centrifugal

force is not sensitive to the direction of rotation. We therefore can by-pass the

existence of this noise by calculating our measurements as an average (in absolute

value) between clockwise and anticlockwise rotation measurements (see fig. 6.6).

Experimental results and analysis

As mentioned above, in a classical Sagnac interferometer, rotation induces a phase

shift between the clockwise and anticlockwise beams that is observed at the output of

the interferometer. The question is whether the HOM dip undergoes a corresponding

change. In particular, as the Sagnac effect is linearly dependent on the rotation speed

(as demonstrated in section 6.2) we therefore performed our experiment for a range

of rotation speeds of the system.

This can be done by performing a series of repetitive measurements for each speed

in which the full HOM dip is scanned by the scanning stage present at the fibre

coupling. This approach provides photon path delay measurements with a precision

of the order of a micrometer, as both the stage precision and the stage repeatability,
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b

a

Figure 6.6: Results of the quantum experiment [122].(a) HOM interference dip
measured by scanning the delay stage with no rotation of the experiment. The
vertical dashed line marks the delay corresponding to the point of maximum steep-
ness of the HOM dip. The shift can then be measured by fixing the stage at this
delay and observing the changes in coincidence counts when the interferometer is
in rotation. (b) Results showing measured HOM interference shift (circles) and

fitted line (dashed). [105]

have to be taken in consideration. Moreover, in a recent paper [123], it has been

shown that this precision can be greatly increased if instead of gauging the location

of the dip by moving the delay stage, a movement of the DIP can simply be measured

by observing changes in the coincidence counts as the interferometer is rotated. In

particular, as can be seen from fig. 6.6(a), if the HOM interferometer is set at the

maximum steepness of the dip (indicated by the dashed line), a shift of the dip due to

changes in photon path will result in an increase (if the dip shifts right) or decrease (if

the dip shifts left) of photons at the coincidence machine. Hence, a reference HOM dip
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is obtained for each data set. This dip is consequently fit with a inverse Sinc function

which is used as a maximum-likelihood estimator, allowing us to map the coincidence

counts to photon path delay. It is important to note that the narrower the dip, the

steeper the HOM curve hence the higher the precision that can be obtained using

this method. In this system we therefore do not use any bandpass filters after the

BBO crystal, hence generating a HOM dip of 0.02mm wide (as previously discussed

in 5.6). This allows us to measure very small photon path delays down to 100 nm

and smaller.

The results of the quantum experiment are therefore shown in figure 6.6(b), where the

photon delays, as inferred from the changes in the coincidence counts, are shown at

increasing rotation rates. In particular, figure 6.6(b) shows the values obtained on two

different occasions (data points blue/red circles), where, between the runs, the system

is reoptimized. This results in slightly different depths of the reference HOM dip but,

more interestingly, a consistency in the results. It is also important to point out that

each data point in the figure corresponds to the average and standard deviation

of 50 measurement runs, hence demonstrating the repeatability of the experiment.

Finally, the best fit to the data is calculated and is displayed in figure 6.6(b) as

a dashed line. In particular, we found that the data is best described by a linear

fit with slope ∆xfit = 200 ± 12 nm Hz−1 where the error on the slope was simply

calculated by finding the error band in which χ2/N = 1. These results clearly show

that rotation can, for a fixed physical path length of the interferometer, modify the

degree of distinguishability of two entangled photons and thus modify the quantum

interference between the two photons. As such, this demonstrates a clear influence

of non-inertial motion on non-classical photon states.
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6.4 Classical counterpart to the Quantum Gyro-

scope
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Figure 6.7: Classical experiment [122]. (a) The layout of the classical counterpart
to the experiment. In particular, the detectors in the quantum experiment are
replaced by a 642nm laser and the BBO crystal is replaced by a CMOS camera.
(b) The results of the Sagnac phase measured by the system is displayed together

with a fitted line that best fits the data.

Having shown a change in the bunching of the photons as a result of the presence

of a rotation motion, a second experiment is carried out in which a purely classical

measurement of the Sagnac effect is taken. This experiment holds two purposes: by
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producing results in agreement with equation 6.3, it confirms that the set-up is indeed

a gyroscope. It also sets an experimental benchmark on which we can calibrate the

setup for the quantum measurements. Hence, in order to turn the HOM interference

gyroscope previously described into its classical counterpart, two changes are carried

out: the two SPADs are removed from the table and a 642 nm fibre coupled laser

is connected to the HOM beam-splitter; and the BBO crystal is replaced with a

CMOS camera (see fig. 6.7(a)). It is easy to see that, by making these simple

changes, we have now created a classical system that retraces the path of its quantum

counterpart and most importantly, it does so by keeping the configuration intact

(i.e. all components between the generation of the light beams and the detection

of the interference remain exactly the same as for the quantum experiment). In

particular, the light generated by the coupled 642nm laser is split at the HOM beam

splitter into clockwise and anticlockwise light beams, which after travelling through

the system, recombine at a small angle at the CMOS camera. As the path length

of the system is within the laser’s coherence length, fringes will therefore appear

on the CMOS camera. As demonstrated in the Sagnac equation (eq. 6.3), when

the table is set to rotate at a constant speed, a shift of the fringes position can

be seen. As for the quantum experiment, this shift can therefore be measured at

different rotation speeds. The results of these measurements are shown in Fig. 6.7(b),

where the averaged measured phase shifts ∆φ together with their standard deviation

over 50 measurement runs are plotted. Also, similarly to the quantum experiment,

the shifts are obtained by performing the average (in absolute value) between a

clockwise and an anticlockwise rotation measurement. Finally, the best fit to the

data is calculated as in the quantum experiment and is displayed as a dashed line

in Fig. 6.7(b). These results hence show that the best fit to the data is a line with

slope ∆φfit = 167± 4 deg Hz−1. This is then compared with the theoretical estimate

based on the standard formula for the Sagnac effect, i.e. ∆φ = 4πΩRL/(λc) =

170 deg Hz−1. As a good agreement exists between the theory and experimental result
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we can therefore conclude that this experimental set-up is reliable in measuring the

Sagnac effect.

6.5 Conclusion

We explicitly benchmark our experiment against a standard Sagnac (classical) inter-

ferometer in which phase interference is modified by rotation. However, the key point

in our case is that it is the quantum interference of two photons that is modified by

relativistic effects. As a result of this, we observe a clear change in the bunching of

the photons as a result of purely mechanical rotation that is in agreement with our

theory based on relativistic modifications to the standard HOM effect.

We can compare the quantum and the classical results, for example by taking the

ratio of the slopes of the two fitted lines in Figs. 6.7(b) and 6.6(b): ∆xfit/∆φfit =

1.2 ± 0.07 nm deg−1. Path and phase differences in an interferometer are related by

∆x/∆φ = λ/2π. If we use the vacuum wavelength for the classical laser (642 nm),

we find that ∆xfit/∆φfit and ∆x/∆φ differ by a multiplicative factor of 1.478± 0.09.

Interestingly, this value is compatible with the refractive index n ∼ 1.45 of the

optical fibre used, as may intuitively be expected based on the fact that the classical

measurement is sensitive to phase (and does not depend on the fibre index n [124])

whereas the quantum measurements rely on time delay hence it is not independent

of photon drag (which does depend on n). In order to conclusively demonstrate that

this is indeed related to the refractive index of the fibre, subsequent measurements

would be required using different refractive index mediums. In one such experiment

the current 100m long fibre could be replaced with a hollow core photonic-crystal

fibre.
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In conclusion, the experiment therefore implies that the quantum interference of two

photons is affected by non-inertial motion, which opens new pathways to probe the

relation between gravity and quantum mechanics.



Chapter 7

Conclusions and Future Work

Throughout this thesis, it has been shown how entangled photons can be used to ad-

vance a variety of fields: communication, computing and sensing being prime exam-

ples. Hence, in this thesis I have shown that two photon states, generated via SPDC

can be integrated in a variety of experiments each exploiting a different characteristic

of this quantum effect. As the SPDC effect was central to all the experiments, this

thesis begins with an introduction to this process and in particular the use of a Type

I phase matching nonlinear crystal in order to generate the entangled photon beams

which where employed in the different experiments. In particular, both chapter 3 and

chapter 4 utilise the spatial degree of freedom of SPDC generated entangled photons

to enhance the quantity of information that can be transmitted in quantum commu-

nication systems. On the other hand, chapter 5 and chapter 6 rely on the ability of

SPDC to generate indistinguishable photons.

As previously pointed out, quantum entanglement has been proposed to advance a va-

riety of application fields, one such field being the field of quantum communication.

In particular, as the spatial degree of freedom of light is theoretically unbounded,

there has been a growing interest in using spatial modes to increase the informa-

tion content in both quantum and classical communication systems. In chapter 3 I

93
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therefore chose to compare the information capacity of two of the best known spatial

modal sets, the LG set and the HG set, when trasmitted in a finite-aperture system.

Its important to note that all free space optical communication systems are aperture-

limited, as they rely on the presence of finite sized optical elements for the transmitter

and receiver (or in the case of our quantum system, two receiving apertures). In my

experiment I was able to show, both through simulation and experimental data that

the information capacity of the LG modes either equals or exceeds that of the HG

modes for all aperture ratios, therefore making the LG modal set the optimal choice

for an aperture limited system. This conclusion was solely based on the boundary

conditions of the system where careful consideration was taken in making the circular

aperture size of our detecting fibres the only limiting factor of the system. However,

the advantage of the LG modal set could no longer be guaranteed if other source of

loss are present in the system, an example being the loss caused by the modes’ lateral

displacement at the data receiver. In the future I therefore intend to extend this work

to both incorporate all the major boundary conditions present in optical communica-

tion systems, and more sophisticated modal sets that are more suited to counteract

the specific losses (the prolate spheroidal functions being a possible example [49]).

This study will therefore have the ultimate goal of presenting a comprehensive study

on the optimum choice of modal set depending on the boundary conditions of the

experiment and the requirements of the free-space optical link.

Similarly to chapter 3, the goal of the experiment carried out in chapter 4 was also

to enhance the quantity of information that can be transmitted in a quantum com-

munication system. In chapter 4, this was achieved by presenting a new aproach

to imparting information on photons. In particular, our collaborators at the Na-

tional University of Singapore designed a meta-fork grating capable of producing

optical vortices carrying arbitrary rational values of OAM. By implementing this

new grating in a quantum communication system, I was able to demonstrate the
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feasibility of using this OAM generator for quantum communication systems. In par-

ticular, I demonstrated, both through simulation and experimental data, the ability

of the proposed grating to generate a smooth spiral spectrum, thus demonstrating

that the proposed vortex generator can be used to manipulate OAM modes at the

single-photon regime. Furthermore, I was also able to demonstrate the ability of the

proposed vortex generator to generate a smooth diagonal correlation matrix, with lit-

tle to no crosstalk being exhibited by off diagonal elements, hence demonstrating the

applicability of this method for quantum communications. It is important to point

out that this is the first analog method proposed for the generation of OAM states

and therefore possible applications for this mechanism are still to be fully explored.

While the experiments in chapters 3, and 4, rely on the spatial degree of freedom of

entangled photons this is not the only property of entanglement that can be used for

application purposes. In fact, both chapters 5, and 6 rely on the ability of SPDC

to generate entangled photon pairs that are completely indistinguishable, therefore

when made to interfere at a beam splitter, they will bunch together in what is known

as a N00N state. These two-photon superposition states, also known as qubits, play

an important role in quantum computing scheme as many types of quantum gates

require the interaction of two or more qubits. But as discussed in chapter 5, being able

to generate qubits is necessary but not sufficient for constructing quantum gates as

equally important is the ability to deterministically control these photons. A process

that has been shown to be able to deterministically absorb or transmit light at the

single-photon regime is the recently discovered ‘Coherent Perfect Absorption” process

(CPA). In chapter 5 we therefore chose to build on this work and demonstrate that a

thin multilayer graphene sample can be used to coherently absorb two-photon N00N

states. In particular, we showed that by controlling the input phase of the N00N state

at the graphene sample we where able to selectively control whether one photon or

two-photon absorption occurs. It is important to emphasise that this was the first
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experiment of its kind, as no previous experiment existed demonstrating the ability

to coherently absorb quantum superposition states. As previously mentioned, the

coherent control and absorption of qubits is essential for the generation of quantum

gates. By demonstrating the ability of the CPA process to coherently control and

absorb two-photon N00N states we therefore open the possibility of designing new

quantum gates based on coherent perfect absorbers.

Finally, in chapter 6, the last experiment in my PhD is discussed. In contrast to

all the previous experiments, the goal of this quantum test was not to advance an

application field but rather to better understand quantum mechanics itself. More

specifically, this experiment was proposed to test the role of relativity in quantum

mechanics. This was done through the use of a “quantum gyroscope” composed

of a HOM interferometer on a rotating table. In the experiment I was therefore

able to measure a shift in position of the HOM dip as a function of the rotation

speed of the table. This relative delay in the photons arrival is equivalent to the

classical Sagnac effect with the sole difference being that while in the classical set-

up the rotation motion induces a change in the interference of the two beams, in

the quantum set-up the change is in the quantum interference of the two photons.

This experiment therefore implies that the quantum interference of two entangled

photons is effected by a uniform gravitational field. In the future I plan to extend

this experiment in a more complicated reference frame. In particular I plan to use

the non-uniform rotation to investigate the effect of time-dependent curvature on

quantum entanglement.
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Dubietis. Transmittance and phase matching of bbo crystal in the 3&#x02212;5

&#x003bc;m range and its application for the characterization of mid-infrared

laser pulses. Opt. Mater. Express, 8(6):1410–1418, Jun 2018. doi: 10.1364/

OME.8.001410. URL http://www.osapublishing.org/ome/abstract.cfm?

URI=ome-8-6-1410.

[26] J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R.W. Boyd, A.K. Jha, S.M.

Barnett, S. Franke-Arnold, and M. J. Padgett. Violation of a bell inequality

in two-dimensional orbital angular momentum state-spaces. Opt. Express, 17

https://doi.org/10.1038/lsa.2017.156
https://link.aps.org/doi/10.1103/PhysRevLett.14.973
https://link.aps.org/doi/10.1103/PhysRevLett.14.973
http://www.osapublishing.org/ome/abstract.cfm?URI=ome-8-6-1410
http://www.osapublishing.org/ome/abstract.cfm?URI=ome-8-6-1410


Bibliography 101

(10):8287–8293, May 2009. doi: 10.1364/OE.17.008287. URL http://www.

opticsexpress.org/abstract.cfm?URI=oe-17-10-8287.

[27] Jonathan Leach, Barry Jack, Jacqui Romero, Anand K Jha, Alison M Yao,

Sonja Franke-Arnold, David G Ireland, Robert W Boyd, Stephen M Barnett,

and Miles J Padgett. Quantum correlations in optical angle–orbital angular

momentum variables. Science, 329(5992):662–665, 2010.

[28] D Giovannini, J Romero, and M J Padgett. Interference of probability ampli-

tudes: a simple demonstration within the hong–ou–mandel experiment. Journal

of Optics, 16(3):032002, mar 2014. doi: 10.1088/2040-8978/16/3/032002. URL

https://doi.org/10.1088%2F2040-8978%2F16%2F3%2F032002.

[29] Christophe Couteau. Spontaneous parametric down-conversion. Contemporary

Physics, 59(3):291–304, 2018.

[30] Chung K. Hong, Stephen R. Friberg, and Leonard Mandel. Optical communi-

cation channel based on coincident photon pairs. Appl. Opt., 24(22):3877–3882,

Nov 1985. doi: 10.1364/AO.24.003877. URL http://ao.osa.org/abstract.

cfm?URI=ao-24-22-3877.

[31] David C. Burnham and Donald L. Weinberg. Observation of simultaneity in

parametric production of optical photon pairs. Phys. Rev. Lett., 25:84–87, Jul

1970. doi: 10.1103/PhysRevLett.25.84. URL https://link.aps.org/doi/

10.1103/PhysRevLett.25.84.

[32] Yong Meng Sua, Heng Fan, Amin Shahverdi, Jia-Yang Chen, and Yu-Ping

Huang. Direct generation and detection of quantum correlated photons with

3.2 um wavelength spacing. Sci Rep, 7(1):17494, Dec 2017. ISSN 2045-2322

(Electronic); 2045-2322 (Linking). doi: 10.1038/s41598-017-17820-1.

http://www.opticsexpress.org/abstract.cfm?URI=oe-17-10-8287
http://www.opticsexpress.org/abstract.cfm?URI=oe-17-10-8287
https://doi.org/10.1088%2F2040-8978%2F16%2F3%2F032002
http://ao.osa.org/abstract.cfm?URI=ao-24-22-3877
http://ao.osa.org/abstract.cfm?URI=ao-24-22-3877
https://link.aps.org/doi/10.1103/PhysRevLett.25.84
https://link.aps.org/doi/10.1103/PhysRevLett.25.84


Bibliography 102

[33] Kai Guo, Erik N Christensen, Jesper B Christensen, Jacob G Koefoed, Davide

Bacco, Yunhong Ding, Haiyan Ou, and Karsten Rottwitt. High coincidence-to-

accidental ratio continuous-wave photon-pair generation in a grating-coupled

silicon strip waveguide. Applied Physics Express, 10(6):062801, 2017.

[34] D N Klyshko. A simple method of preparing pure states of an optical field, of

implementing the einstein–podolsky–rosen experiment, and of demonstrating

the complementarity principle. Soviet Physics Uspekhi, 31(1):74–85, jan 1988.

doi: 10.1070/pu1988v031n01abeh002537. URL https://doi.org/10.1070%

2Fpu1988v031n01abeh002537.

[35] Reuben S Aspden, Daniel S Tasca, Andrew Forbes, Robert W Boyd, and Miles J

Padgett. Experimental demonstration of klyshko’s advanced-wave picture using

a coincidence-count based, camera-enabled imaging system. Journal of Modern

Optics, 61(7):547–551, 2014.

[36] C. E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J.,

27:379–423, 1948.

[37] Guifang Li and Xiang Liu. Focus issue: Space multiplexed optical transmission.

Opt. Express, 19(17):16574–16575, Aug 2011. doi: 10.1364/OE.19.016574. URL

http://www.opticsexpress.org/abstract.cfm?URI=oe-19-17-16574.

[38] D. J. Richardson, J. M. Fini, and L. E. Nelson. Space-division multiplexing

in optical fibres. Nature Photonics, 7(5):354–362, Apr 2013. ISSN 1749-4893.

doi: 10.1038/nphoton.2013.94. URL http://dx.doi.org/10.1038/NPHOTON.

2013.94.

[39] Mohammad Mirhosseini, Omar S Magaña-Loaiza, Malcolm N O’Sullivan, Bran-

don Rodenburg, Mehul Malik, Martin PJ Lavery, Miles J Padgett, Daniel J

Gauthier, and Robert W Boyd. High-dimensional quantum cryptography with

twisted light. New Journal of Physics, 17(3):033033, 2015.

https://doi.org/10.1070%2Fpu1988v031n01abeh002537
https://doi.org/10.1070%2Fpu1988v031n01abeh002537
http://www.opticsexpress.org/abstract.cfm?URI=oe-19-17-16574
http://dx.doi.org/10.1038/NPHOTON.2013.94
http://dx.doi.org/10.1038/NPHOTON.2013.94


Bibliography 103

[40] A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li,

Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F.

Molisch, N. Ashrafi, and S. Ashrafi. Optical communications using orbital angu-

lar momentum beams. Adv. Opt. Photon., 7(1):66–106, Mar 2015. doi: 10.1364/

AOP.7.000066. URL http://aop.osa.org/abstract.cfm?URI=aop-7-1-66.

[41] Mario Krenn, Robert Fickler, Matthias Fink, Johannes Handsteiner, Mehul

Malik, Thomas Scheidl, Rupert Ursin, and Anton Zeilinger. Communication

with spatially modulated light through turbulent air across vienna. New Journal

of Physics, 16(11):113028, 2014.

[42] Alan E Willner, Jian Wang, and Hao Huang. A different angle on light com-

munications. Science, 337(6095):655–656, 2012.

[43] B. Zhu, T.F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M.

Fini, E. M. Monberg, and F. V. Dimarcello. 112-tb/s space-division multiplexed

dwdm transmission with 14-b/s/hz aggregate spectral efficiency over a 76.8-

km seven-core fiber. Opt. Express, 19(17):16665–16671, Aug 2011. doi: 10.

1364/OE.19.016665. URL http://www.opticsexpress.org/abstract.cfm?

URI=oe-19-17-16665.

[44] Nenad Bozinovic, Yang Yue, Yongxiong Ren, Moshe Tur, Poul Kristensen, Hao

Huang, Alan E Willner, and Siddharth Ramachandran. Terabit-scale orbital

angular momentum mode division multiplexing in fibers. science, 340(6140):

1545–1548, 2013.

[45] Hao Huang, Guodong Xie, Yan Yan, Nisar Ahmed, Yongxiong Ren, Yang Yue,

Dvora Rogawski, Moshe J. Willner, Baris I. Erkmen, Kevin M. Birnbaum,

Samuel J. Dolinar, Martin P. J. Lavery, Miles J. Padgett, Moshe Tur, and

Alan E. Willner. 100&#x2009;&#x2009;tbit/s free-space data link enabled by

three-dimensional multiplexing of orbital angular momentum, polarization, and

http://aop.osa.org/abstract.cfm?URI=aop-7-1-66
http://www.opticsexpress.org/abstract.cfm?URI=oe-19-17-16665
http://www.opticsexpress.org/abstract.cfm?URI=oe-19-17-16665


Bibliography 104

wavelength. Opt. Lett., 39(2):197–200, Jan 2014. doi: 10.1364/OL.39.000197.

URL http://ol.osa.org/abstract.cfm?URI=ol-39-2-197.

[46] Andrew Forbes and Isaac Nape. Quantum mechanics with patterns of light:

Progress in high dimensional and multidimensional entanglement with struc-

tured light. AVS Quantum Science, 1(1):011701, 2019.

[47] C. H. Bennett and G. Brassard. Quantum cryptography: public key distri-

bution and coin tossing. In Proceedings of IEEE International Conference on

Computers Systems and Signal Processing, volume 175, 1984.

[48] M Avesani, L Calderaro, M Schiavon, A Stanco, C Agnesi, A Santamato, M Za-

hidy, A Scriminich, G Foletto, G Contestabile, et al. Full daylight quantum-

key-distribution at 1550 nm enabled by integrated silicon photonics. arXiv

preprint arXiv:1907.10039, 2019.

[49] Brandon Rodenburg. Communicating with transverse modes of light. University

of Rochester, 2015.

[50] Nicolas J Cerf, Mohamed Bourennane, Anders Karlsson, and Nicolas Gisin.

Security of quantum key distribution using d-level systems. Physical Review

Letters, 88(12):127902, 2002.

[51] Juan Yin, Yuan Cao, Yu-Huai Li, Sheng-Kai Liao, Liang Zhang, Ji-Gang Ren,

Wen-Qi Cai, Wei-Yue Liu, Bo Li, Hui Dai, et al. Satellite-based entanglement

distribution over 1200 kilometers. Science, 356(6343):1140–1144, 2017.

[52] Kai Pang, Haoqian Song, Zhe Zhao, Runzhou Zhang, Hao Song, Guodong Xie,

Long Li, Cong Liu, Jing Du, Andreas F Molisch, et al. 400-gbit/s qpsk free-

space optical communicationlink based on four-fold multiplexing of hermite–

gaussian or laguerre–gaussian modes by varying both modal indices. Optics

letters, 43(16):3889–3892, 2018.

http://ol.osa.org/abstract.cfm?URI=ol-39-2-197


Bibliography 105

[53] Jian Wang, Jeng-Yuan Yang, Irfan M Fazal, Nisar Ahmed, Yan Yan, Hao

Huang, Yongxiong Ren, Yang Yue, Samuel Dolinar, Moshe Tur, et al. Terabit

free-space data transmission employing orbital angular momentum multiplex-

ing. Nature photonics, 6(7):488, 2012.

[54] Martin PJ Lavery, Christian Peuntinger, Kevin Günthner, Peter Banzer, Do-

minique Elser, Robert W Boyd, Miles J Padgett, Christoph Marquardt, and

Gerd Leuchs. Free-space propagation of high-dimensional structured optical

fields in an urban environment. Science Advances, 3(10):e1700552, 2017.

[55] E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino,

and M. Matsumoto. 1.28-tb/s (32 × 40 gb/s) free-space optical wdm trans-

mission system. IEEE Photonics Technology Letters, 21(16):1121–1123, 8 2009.

ISSN 1041-1135. doi: 10.1109/LPT.2009.2021149.

[56] Heinz Willebrand and Baksheesh S Ghuman. Free space optics: enabling optical

connectivity in today’s networks. SAMS publishing, 2002.

[57] Les Allen, Marco W Beijersbergen, RJC Spreeuw, and JP Woerdman. Orbital

angular momentum of light and the transformation of laguerre-gaussian laser

modes. Physical Review A, 45(11):8185, 1992.

[58] Alison M Yao and Miles J Padgett. Orbital angular momentum: origins, behav-

ior and applications. Advances in Optics and Photonics, 3(2):161–204, 2011.

[59] Manuel Erhard, Robert Fickler, Mario Krenn, and Anton Zeilinger. Twisted

photons: new quantum perspectives in high dimensions. Light: Science &

Applications, 7(3):17146, 2018.

[60] Jennifer E Curtis, Brian A Koss, and David G Grier. Dynamic holographic

optical tweezers. Optics communications, 207(1-6):169–175, 2002.



Bibliography 106

[61] Graham Gibson, Johannes Courtial, Miles J Padgett, Mikhail Vasnetsov, Va-

leriy Pas’ko, Stephen M Barnett, and Sonja Franke-Arnold. Free-space infor-

mation transfer using light beams carrying orbital angular momentum. Optics

express, 12(22):5448–5456, 2004.

[62] Mauritz Andersson, Eilert Berglind, and Gunnar Björk. Orbital angular mo-

mentum modes do not increase the channel capacity in communication links.

New Journal of Physics, 17(4):043040, 2015.

[63] Ningbo Zhao, Xiaoying Li, Guifang Li, and Joseph M Kahn. Capacity limits of

spatially multiplexed free-space communication. Nature photonics, 9(12):822,

2015.

[64] Boulat A Bash, Nivedita Chandrasekaran, Jeffrey H Shapiro, and Saikat Guha.

Quantum key distribution using multiple gaussian focused beams. arXiv

preprint arXiv:1604.08582, 2016.

[65] Robert W Boyd, Brandon Rodenburg, Mohammad Mirhosseini, and Stephen M

Barnett. Influence of atmospheric turbulence on the propagation of quantum

states of light using plane-wave encoding. Optics express, 19(19):18310–18317,

2011.

[66] Guoxuan Zhu, Yuanhui Wen, Xiong Wu, Yujie Chen, Jie Liu, and Siyuan Yu.

Obstacle evasion in free-space optical communications utilizing airy beams.

Opt. Lett., 43(6):1203–1206, Mar 2018. doi: 10.1364/OL.43.001203. URL http:

//ol.osa.org/abstract.cfm?URI=ol-43-6-1203.

[67] Ronald L. Phillips and Larry C. Andrews. Spot size and divergence for la-

guerre gaussian beams of any order. Appl. Opt., 22(5):643–644, Mar 1983.

doi: 10.1364/AO.22.000643. URL http://ao.osa.org/abstract.cfm?URI=

ao-22-5-643.

http://ol.osa.org/abstract.cfm?URI=ol-43-6-1203
http://ol.osa.org/abstract.cfm?URI=ol-43-6-1203
http://ao.osa.org/abstract.cfm?URI=ao-22-5-643
http://ao.osa.org/abstract.cfm?URI=ao-22-5-643


Bibliography 107

[68] Johannes Courtial and MJ Padgett. Performance of a cylindrical lens mode

converter for producing laguerre–gaussian laser modes. Optics communications,

159(1-3):13–18, 1999.

[69] M.W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, and J.P. Woerdman.

Astigmatic laser mode converters and transfer of orbital angular momentum.

Optics Communications, 96(1):123 – 132, 1993. ISSN 0030-4018. doi: https:

//doi.org/10.1016/0030-4018(93)90535-D. URL http://www.sciencedirect.

com/science/article/pii/003040189390535D.

[70] Alois Mair, Alipasha Vaziri, Gregor Weihs, and Anton Zeilinger. Entanglement

of the orbital angular momentum states of photons. Nature, 412:313 EP –, 07

2001. URL https://doi.org/10.1038/35085529.

[71] SSR Oemrawsingh, X Ma, D Voigt, A Aiello, E.R. Eliel, and JP Woerdman.

Experimental demonstration of fractional orbital angular momentum entangle-

ment of two photons. Physical review letters, 95(24):240501, 2005.

[72] Melanie McLaren, Megan Agnew, Jonathan Leach, Filippus S. Roux, Miles J.

Padgett, Robert W. Boyd, and Andrew Forbes. Entangled bessel-gaussian

beams. Opt. Express, 20(21):23589–23597, Oct 2012. doi: 10.1364/

OE.20.023589. URL http://www.opticsexpress.org/abstract.cfm?URI=

oe-20-21-23589.

[73] Robert Fickler, Radek Lapkiewicz, William N Plick, Mario Krenn, Christoph

Schaeff, Sven Ramelow, and Anton Zeilinger. Quantum entanglement of high

angular momenta. Science, 338(6107):640–643, 2012.

[74] Naoya Matsumoto, Taro Ando, Takashi Inoue, Yoshiyuki Ohtake, Norihiro

Fukuchi, and Tsutomu Hara. Generation of high-quality higher-order laguerre-

gaussian beams using liquid-crystal-on-silicon spatial light modulators. J. Opt.

http://www.sciencedirect.com/science/article/pii/003040189390535D
http://www.sciencedirect.com/science/article/pii/003040189390535D
https://doi.org/10.1038/35085529
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-21-23589
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-21-23589


Bibliography 108

Soc. Am. A, 25(7):1642–1651, Jul 2008. doi: 10.1364/JOSAA.25.001642. URL

http://josaa.osa.org/abstract.cfm?URI=josaa-25-7-1642.

[75] Bienvenu Ndagano, Nokwazi Mphuthi, Giovanni Milione, and Andrew Forbes.

Comparing mode-crosstalk and mode-dependent loss of laterally displaced or-

bital angular momentum and hermite–gaussian modes for free-space optical

communication. Opt. Lett., 42(20):4175–4178, Oct 2017. doi: 10.1364/OL.42.

004175. URL http://ol.osa.org/abstract.cfm?URI=ol-42-20-4175.

[76] J. H. Poynting. The wave motion of a revolving shaft, and a suggestion as to the

angular momentum in a beam of circularly polarised light. Proceedings of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences,

82(557):560–567, 1909. ISSN 0950-1207. doi: 10.1098/rspa.1909.0060. URL

http://rspa.royalsocietypublishing.org/content/82/557/560.

[77] Richard A. Beth. Mechanical detection and measurement of the angular mo-

mentum of light. Phys. Rev., 50:115–125, Jul 1936. doi: 10.1103/PhysRev.50.

115. URL https://link.aps.org/doi/10.1103/PhysRev.50.115.

[78] C. G. Darwin. Notes on the theory of radiation. Proceedings of the Royal

Society of London A: Mathematical, Physical and Engineering Sciences, 136

(829):36–52, 1932. ISSN 0950-1207. doi: 10.1098/rspa.1932.0065. URL http:

//rspa.royalsocietypublishing.org/content/136/829/36.

[79] P. Coullet, L. Gil, and F. Rocca. Optical vortices. Optics Commu-

nications, 73(5):403 – 408, 1989. ISSN 0030-4018. doi: https://doi.

org/10.1016/0030-4018(89)90180-6. URL http://www.sciencedirect.com/

science/article/pii/0030401889901806.

[80] Miles J. Padgett. Orbital angular momentum 25 years on [invited]. Opt.

Express, 25(10):11265–11274, May 2017. doi: 10.1364/OE.25.011265. URL

http://www.opticsexpress.org/abstract.cfm?URI=oe-25-10-11265.

http://josaa.osa.org/abstract.cfm?URI=josaa-25-7-1642
http://ol.osa.org/abstract.cfm?URI=ol-42-20-4175
http://rspa.royalsocietypublishing.org/content/82/557/560
https://link.aps.org/doi/10.1103/PhysRev.50.115
http://rspa.royalsocietypublishing.org/content/136/829/36
http://rspa.royalsocietypublishing.org/content/136/829/36
http://www.sciencedirect.com/science/article/pii/0030401889901806
http://www.sciencedirect.com/science/article/pii/0030401889901806
http://www.opticsexpress.org/abstract.cfm?URI=oe-25-10-11265


Bibliography 109

[81] Mario Krenn, Johannes Handsteiner, Matthias Fink, Robert Fickler, Rupert

Ursin, Mehul Malik, and Anton Zeilinger. Twisted light transmission over 143

km. Proceedings of the National Academy of Sciences, 113(48):13648–13653,

2016. ISSN 0027-8424. doi: 10.1073/pnas.1612023113. URL http://www.

pnas.org/content/113/48/13648.

[82] Xuewen Wang, Zhongquan Nie, Liang Yao, Jian Wang, Tao Li, and

Baohua Jia. Recent advances on optical vortex generation. Nanopho-

tonics, 7:1533, 2018-11-20T11:19:13.756+01:00 2018. doi: 10.1515/

nanoph-2018-0072. URL https://www.degruyter.com/view/j/nanoph.

2018.7.issue-9/nanoph-2018-0072/nanoph-2018-0072.xml.

[83] John Frederick Nye and Michael Victor Berry. Dislocations in wave trains.

Proc. R. Soc. Lond. A, 336(1605):165–190, 1974.

[84] M.W. Beijersbergen, R.P.C. Coerwinkel, M. Kristensen, and J.P. Woerd-

man. Helical-wavefront laser beams produced with a spiral phaseplate. Op-

tics Communications, 112(5):321 – 327, 1994. ISSN 0030-4018. doi: https:

//doi.org/10.1016/0030-4018(94)90638-6. URL http://www.sciencedirect.

com/science/article/pii/0030401894906386.

[85] V. Bazhenov, M. V. Vasnetsov, and M. S. Soskin. Laser-beamswithscrew dis-

locations in their wave-fronts. JETP. Lett., 52:429–431, 1990.

[86] A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and

M. Ritsch-Marte. Wavefront correction of spatial light modulators using an

optical vortex image. Opt. Express, 15(9):5801–5808, Apr 2007. doi: 10.

1364/OE.15.005801. URL http://www.opticsexpress.org/abstract.cfm?

URI=oe-15-9-5801.

[87] Thomas W. Clark, Rachel F. Offer, Sonja Franke-Arnold, Aidan S. Arnold, and

Neal Radwell. Comparison of beam generation techniques using a phase only

http://www.pnas.org/content/113/48/13648
http://www.pnas.org/content/113/48/13648
https://www.degruyter.com/view/j/nanoph.2018.7.issue-9/nanoph-2018-0072/nanoph-2018-0072.xml
https://www.degruyter.com/view/j/nanoph.2018.7.issue-9/nanoph-2018-0072/nanoph-2018-0072.xml
http://www.sciencedirect.com/science/article/pii/0030401894906386
http://www.sciencedirect.com/science/article/pii/0030401894906386
http://www.opticsexpress.org/abstract.cfm?URI=oe-15-9-5801
http://www.opticsexpress.org/abstract.cfm?URI=oe-15-9-5801


Bibliography 110

spatial light modulator. Opt. Express, 24(6):6249–6264, Mar 2016. doi: 10.

1364/OE.24.006249. URL http://www.opticsexpress.org/abstract.cfm?

URI=oe-24-6-6249.

[88] Neal Radwell, Rachel F Offer, Adam Selyem, and Sonja Franke-Arnold. Op-

timisation of arbitrary light beam generation with spatial light modulators.

Journal of Optics, 19(9):095605, 2017.

[89] MV Berry. Optical vortices evolving from helicoidal integer and fractional phase

steps. Journal of Optics A: Pure and Applied Optics, 6(2):259, 2004.

[90] Jonathan Leach, Eric Yao, and Miles J Padgett. Observation of the vortex

structure of a non-integer vortex beam. New Journal of Physics, 6(1):71, 2004.

[91] Alipasha Vaziri, Jian-Wei Pan, Thomas Jennewein, Gregor Weihs, and An-

ton Zeilinger. Concentration of higher dimensional entanglement: Qutrits of

photon orbital angular momentum. Phys. Rev. Lett., 91:227902, Nov 2003.

doi: 10.1103/PhysRevLett.91.227902. URL https://link.aps.org/doi/10.

1103/PhysRevLett.91.227902.

[92] Ebrahim Karimi, Daniel Giovannini, Eliot Bolduc, Nicolas Bent, Filippo M

Miatto, Miles J Padgett, and Robert W Boyd. Exploring the quantum nature

of the radial degree of freedom of a photon via hong-ou-mandel interference.

PHYSICAL REVIEW A Phys Rev A, 89:013829, 2014.

[93] Peter C. Humphreys, Benjamin J. Metcalf, Justin B. Spring, Merritt Moore,

Xian-Min Jin, Marco Barbieri, W. Steven Kolthammer, and Ian A. Walmsley.

Linear optical quantum computing in a single spatial mode. Phys. Rev. Lett.,

111:150501, Oct 2013. doi: 10.1103/PhysRevLett.111.150501. URL https:

//link.aps.org/doi/10.1103/PhysRevLett.111.150501.

http://www.opticsexpress.org/abstract.cfm?URI=oe-24-6-6249
http://www.opticsexpress.org/abstract.cfm?URI=oe-24-6-6249
https://link.aps.org/doi/10.1103/PhysRevLett.91.227902
https://link.aps.org/doi/10.1103/PhysRevLett.91.227902
https://link.aps.org/doi/10.1103/PhysRevLett.111.150501
https://link.aps.org/doi/10.1103/PhysRevLett.111.150501


Bibliography 111

[94] Hwang Lee, Pieter Kok, Colin P Williams, and Jonathan P Dowling. From

linear optical quantum computing to heisenberg-limited interferometry. Journal

of Optics B: Quantum and Semiclassical Optics, 6(8):S796, 2004.

[95] Agedi N. Boto, Pieter Kok, Daniel S. Abrams, Samuel L. Braunstein, Colin P.

Williams, and Jonathan P. Dowling. Quantum interferometric optical lithog-

raphy: Exploiting entanglement to beat the diffraction limit. Phys. Rev.

Lett., 85:2733–2736, Sep 2000. doi: 10.1103/PhysRevLett.85.2733. URL

https://link.aps.org/doi/10.1103/PhysRevLett.85.2733.

[96] Keiichi Edamatsu, Ryosuke Shimizu, and Tadashi Itoh. Measurement of the

photonic de broglie wavelength of entangled photon pairs generated by spon-

taneous parametric down-conversion. Phys. Rev. Lett., 89:213601, Nov 2002.

doi: 10.1103/PhysRevLett.89.213601. URL https://link.aps.org/doi/10.

1103/PhysRevLett.89.213601.

[97] Pieter Kok, Hwang Lee, and Jonathan P Dowling. Creation of large-photon-

number path entanglement conditioned on photodetection. Physical Review A,

65(5):052104, 2002.

[98] Pieter Kok, W. J. Munro, Kae Nemoto, T. C. Ralph, Jonathan P. Dowling, and

G. J. Milburn. Linear optical quantum computing with photonic qubits. Rev.

Mod. Phys., 79:135–174, Jan 2007. doi: 10.1103/RevModPhys.79.135. URL

https://link.aps.org/doi/10.1103/RevModPhys.79.135.

[99] YD Chong, Li Ge, Hui Cao, and A Douglas Stone. Coherent perfect absorbers:

time-reversed lasers. Physical review letters, 105(5):053901, 2010.

[100] Wenjie Wan, Yidong Chong, Li Ge, Heeso Noh, A Douglas Stone, and Hui

Cao. Time-reversed lasing and interferometric control of absorption. Science,

331(6019):889–892, 2011.

https://link.aps.org/doi/10.1103/PhysRevLett.85.2733
https://link.aps.org/doi/10.1103/PhysRevLett.89.213601
https://link.aps.org/doi/10.1103/PhysRevLett.89.213601
https://link.aps.org/doi/10.1103/RevModPhys.79.135


Bibliography 112

[101] Mingbo Pu, Qin Feng, Min Wang, Chenggang Hu, Cheng Huang, Xiaoliang

Ma, Zeyu Zhao, Changtao Wang, and Xiangang Luo. Ultrathin broadband

nearly perfect absorber with symmetrical coherent illumination. Opt. Express,

20(3):2246–2254, Jan 2012. doi: 10.1364/OE.20.002246. URL http://www.

opticsexpress.org/abstract.cfm?URI=oe-20-3-2246.

[102] Sukosin Thongrattanasiri, Frank H. L. Koppens, and F. Javier Garćıa de Abajo.
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