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Abstract

This thesis contains two directions both related to Frobenius manifolds.

In the first part we deal with the orbit space My, = V/W of a finite Coxeter group
W acting in its reflection representation V. The orbit space My, carries the structure of
a Frobenius manifold and admits a pencil of flat metrics of which the Saito flat metric 7,
defined as the Lie derivative of the W-invariant form g on V' is the key object. In the main
result of the first part we find the determinant of Saito metric restricted on the Coxeter
discriminant strata in Myy. It is shown that this determinant in the flat coordinates of
the form ¢ is proportional to a product of linear factors. We also find multiplicities of
these factors in terms of Coxeter geometry of the stratum.

In the second part we study N = 4 supersymmetric extensions of quantum mechanical
systems of Calogero-Moser type. We show that for any V-system, in particular, for any
Coxeter root system, the corresponding Hamiltonian can be extended to the supersym-
metric Hamiltonian with D(2,1; @) symmetry. We also obtain AN/ = 4 supersymmetric
extensions of Calogero-Moser—Sutherland systems. Thus, we construct supersymmetric

Hamiltonians for the root systems BC'y, Fy and Gs.
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Chapter 1
Introduction

In this thesis we address two problems from the areas of Frobenius manifolds and super-
symmetry. The structures that we consider, despite being seemingly different, share the

common ground of Coxeter groups and Witten—Dijkgraaf—Verlinde—Verlinde equations.

1.1 Frobenius structures

Frobenius manifolds have rich differential-geometric properties. Despite the name, general
theory is local and is nontrivial, already in a vector space case. They were introduced in the
early 90s by Dubrovin [22], who in particular provided differential-geometric context to the
work of the physicists E. Witten, R. Dijkgraaf, E.Verlinde, and H.Verlinde on topological
field theories (TFTs) [21,87]. Key elements of Frobenius manifolds were already developed
by Dubrovin and Novikov in their study of bi-Hamiltonian structures of hydrodynamic
type (see [23| and references therein). In the framework of TFTs a remarkable system of
nonlinear partial differential equations for a holomorphic function F' emerged which are
now known as Witten—-Dijkgraaf-Verlinde—Verlinde (WDVV) equations. They appeared as
a consequence of associativity of the operator algebra of primary fields in two-dimensional
topological theories (see Chapter 2).

Let us recall some key elements of Frobenius manifolds. Let M be a complex smooth
n-dimensional manifold (which may be just a complex domain) equipped with a holo-
morphic flat metric n, that is a non-degenerate symmetric bilinear form on the complex
tangent bundle T'M such that the associated Levi-Civita connection V for this metric has
zero curvature. A Frobenius manifold is such a manifold M which also possesses some
additional properties. Thus, there should exist a symmetric tensor ¢ € I'*(T* M) such that

an associative commutative multiplication o is defined on 7'M by the formula

n(xoy,z) =cxyz), xyzel(TM), (1.1)
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and a flat vector field e € T'(T'M), namely Ve = 0, such that e is the unity for the
multiplication. The metric and multiplication are assumed to be homogeneous with respect
to an additional vector field £ on M, which is called Euler vector field.

The multiplication (1.1) makes T'M into a family of commutative associative algebras
with unity e, which is a family of Frobenius algebras. The tensor ¢ is required to have addi-
tional symmetry properties which lead to existence of a prepotential F = F(t!,¢2, ... "),
which is a function on M. The variables t* (1 < a < n) are flat coordinates of the metric
1. Then the associativity of the multiplication o leads to WDVV equations for F:

Pr
Ca/j)\(t)n/\#c/wl/(t) = Ca'y)\(wn)\ucuﬁu(t)a Caﬁ’y<t) = ma (1'2)

for any 1 < «, 3,7,v < n. Frobenius manifolds and related structures have been stud-
ied intensively over the last three decades. They appear to have surprising connections
with many areas of mathematics, perhaps most prominently with singularity theory and
quantum cohomology. Already in the early 80s, K. Saito found some key structures of
Frobenius manifolds in interesting examples (see [46] and references therein). Based on
the theory of primitive forms of K. Saito, such structures were realised on the base spaces
of the semiuniversal unfoldings of the simple hypersurface singularities A, (n > 1), D,
(n > 4), and FEg, Er, E.

1.1.1 Singularity theory

Frobenius structures coming from singularity theory have their origins in the close relation
of singularities of holomorphic functions with the geometry of Coxeter groups. More
precisely, it is known that the complexified orbit space My, of an irreducible (finite)
Coxeter group W is biholomorphic to the semiuniversal unfolding of the corresponding
singularity (see [85] and references therein).

K. Saito proved the existence of a flat structure on My, [77]|, which can be viewed as
a flat metric, now known as Saito metric. Dubrovin used this metric to establish that the
orbit space My, carries the structure of a Frobenius manifold |22, Lecture 4|. He also
conjectured that these Frobenius manifolds (and their products) are the only semisimple
Frobenius manifolds with polynomial prepotential F'. This conjecture was later proved
by Hertling based on the notion of an F-manifold which was introduced by himself and
Manin [47,61]. An F-manifold is weaker than a Frobenius manifold as one only assumes the
existence of a commutative and associative multiplication on the tangent bundle satisfying
a certain integrability condition which is automatically satisfied by a Frobenius manifold
[46].

An isolated hypersurface singularity is a holomorphic function germ f : (C™,0) —

(C,0) with an isolated singularity at x = 0. The multiplicity of the singularity f is the
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dimension of its local algebra, that is the quotient Clzy, ..., xy,|/If, where z;, 1 =1,...,m
are coordinates in C™ and Iy is the ideal generated by 0,,f, i = 1,...,m. An unfolding
(or deformation) of f is a holomorphic function germ F : (C™ x C',0) — (C,0) such
that F(x,0) = f(x). The space C' is called the base space of the unfolding F. The
deformation F(z,v), v € Cl is versal, if any deformation F (z, 1), u € C* of the singularity
is equivalent to the deformation induced by F. There is a (unique) versal deformation
such that the multiplicity of the singularity equals the dimension of the parameter space.
This deformation is said to be semiuniversal [7,8|.

In this framework, the simplest Frobenius structure is given by the semiuniversal un-
folding of the simple singularity A,, f(z) = 2" [7,22]. The associated Coxeter group
is the symmetric group S, which acts on the space C"*! by permutation of the coordi-
nates xo, 21, ..., %, € C. The action is restricted onto the hyperplane H : Y jz; = 0.

By Chevalley’s Theorem the corresponding orbit space Mg ., maps isomorphically to the

n+1
hyperplane H = C". Let o;(xy,...,2,) be the i-th elementary symmetric polynomial in

n + 1 variables. A semiuniversal deformation of the singularity f(z) has the form
Flr,a) =2"" +a 2™ 4+ +a, a=(a,...,a), (1.3)

where a; = a;(zo, ..., z,) = (=1) o1 (0, ..., 2n), i = 1,...,n. The variables xy, . .., z,
are identified with the roots of the polynomial F(z,a), they satisfy > . ,z; = 0. That is,

n

Flx,a) =[]z - 2), Zx = 0. (1.4)

1=0

The set ¥ C My given by
Y =A{(a,...,a,) € C"| F(z, a)|zn_0 2,—o has multiple roots}

is isomorphic to the discriminant of the singularity A,. In other words, the set X consists
of those values of a for which the polynomial has a critical point with critical value equal
to zero, that is it has multiple root at z; = x;. This condition defines the mirrors of the
Coxeter group S,,+1. The Frobenius algebra @), is realised as the ring of complex polynomi-
als modulo polynomials vanishing at the critical points of F, namely Q, = Clz]/F (z,a).
This algebra coincides with the local algebra of the singularity A, at the origin a = 0.
The Saito metric on My, coincides (up to proportionality) with the inner product on @,
defined as

flgte) ,

= F(x,a) (1.5)

<fa g>a - = reS|

The primitive form (up to a constant factor) is given by the differential dz [76].
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More generally, (Frobenius) flat metric for singularities by the use of primitive forms is
induced from a Grothendieck residue pairing [46]. Existence of a primitive form in general
was proved by M. Saito (see [46] and references therein). In the case of hypersurface
singularities D,, (n > 4) and boundary singularities B,, (n > 2) semiuniversal unfoldings
can be brought into a form similar to (1.3) and thus construction is analogous to the case

of type A singularity [7,80]. We take this approach in our considerations in Chapter 3.

1.1.2 Quantum cohomology

Quantum cohomology can be viewed as a deformation of the ordinary cohomology (De
Rham etc.) where the cup product is replaced by a certain ‘quantum product’. Definition
involves the intersections of cycles in the space of ‘complex curves’ in a manifold M. The
(large) quantum product defined on the total cohomology group H*M is directly related
to the third-order derivatives of the generating function F' of Gromov-Witten invariants.
This product is commutative and associative and one can show that for any x € H*M the
(large) quantum cohomology algerba is a Frobenius algebra [44]. The function F' satisfies
WDVYV equations and the (large) quantum cohomology of M can be equipped with the
structure of a Frobenius manifold. The following example is due to Kontsevich and Manin
|44, 54]. Consider the complex projective plane M = CP?. The starting point is to fix a

constant metric 7 on the vector space C* and a basis e, e, e5 € C? such that
n(ei, e;) = 0irja, 1<i,j<3.
The cohomology algebra H*M = @?_, H*(M;C) can be written in the form
H*M = C[z]/2* = (1,2, 2%) =2 (e1, e, €3),

where ¢; is identified with the generator of the cohomology group H2(~V(M;C). One
then considers a family of quantum products %, : H*M x H*M — H*M, where z =
xr1e1 + Toeg + w3esz and e; is fixed to be the identity element for these products. There

exists a prepotential F' such that

PF

Do~ M *e k) = Ft

In the special case when & € H2M, that is x; = 23 = 0, *, determines the (small) quantum

cohomology algebra given explicitly as
ek € =€, 1 <1<3, erxyep=e€3, €%, €3=qe1, €3%;€3= (e,

where the parameter ¢ = ¢®. This algebra is isomorphic to C[z, q]/(2* — q).
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The associativity of the quantum products for the function F is equivalent to the single
WDVYV equation (cf. (1.2))
Fy33 = Flyy — FagaFass.

One can show that there is a solution unique up to third-order terms of the form

1 p3d—1
Py, 2z, 33) = 5(orah + aws) + 3 N(d)e™ i

d>1

where N (d) are positive integers determined recursively by N(1) =1 and

3d —4 3d —4
N(i — > 2.
=2 ((3z—2)” ”(3—1))’ a2
i+j=d

The numbers N(d) are directly related to the Gromov-Witten invariants of M and for a

fixed d, N(d) is the number of rational curves of degree d in M which hit 3d — 1 generic
points. The first few values of N(d) are

N(2) =1, N(3) =12, N(4) =620, N(5) = 87304, N(6) = 26312976.

1.1.3 More instances of WDVYV equations

Other places where (generalised) WDVV equations emerge include Seiberg-Witten theories
and N = 4 supersymmetric mechanics. These generalised WDVV equations are similar to
(1.2) but there is no complete structure of Fronenius manifolds which may be associated
with them, in general.

In Seiberg-Witten (effective) theory, the exact Seiberg-Witten prepotential F' is defined
in terms of a family of auxiliary Riemann surfaces, which are endowed with some special
meromorphic differential dS [62,63]. For example in the case of pure N’ = 2 SUSY gauge
theory with SU(n 4 1) gauge group, the Riemann surfaces (genus g = n hyperelliptic

curves) and differential dS have the form

y? = Flz,a)? — A*"D 0 qS = x—d]:(x’ a),
Y
where F(z,a) is the semiuniversal unfolding associated to the A, singularity given by
(1.3) and A is a complex parameter. The third-order derivatives of F' are defined in
terms of residues of some carefully chosen differentials. Then the leading perturbative
approximation to the prepotential F' as A tends to 0 after rescaling satisfies generalised
WDVYV equations and is given by

n

Fpm:%z:(xi—xj) log(z; — x;), Z%—O

1<j
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Motivated by the above construction, Martini and Gragert showed that functions of

the form
F=- Z(%x)Qlog(%x), A e C, (1.6)

vEA
where A is the root system associated to a semisimple Lie algebra also satisfy generalised
WDVYV equations [66]. Later, Veselov extended this class further to the so-called V-systems
which in particular contain all Coxeter root systems [86].

V-systems form special collections of vectors in a linear space, which satisfy certain
linear algebraic conditions. More precisely, let V= C", A C V and define a non-degenerate
bilinear form on V' by G 4(u,v) = Y c4(a,u)(a,v), u,v € V. Then A is said to be a V-
system if for any v € A and for any two-dimensional plane 7 C V such that v € 7 one

has

> GalB.7)B =,

BeANT

for some complex parameter p = pu(vy, 7). A logarithmic prepotential (1.6) corresponding
to a collection of vectors A satisfies generalised WDVV equations if and only if A is a V-
system. The class of V—systems contains Coxeter root systems, deformations of generalized
root systems of Lie superalgebras, special subsystems in and restrictions of such systems

[36,79]. A complete description of the class remains open (see [37| and references therein).

1.2 Supersymmetric mechanics

Calogero-Moser Hamiltonian is a famous example of an integrable system [20,67,82] which
is related to a number of mathematical areas (see e.g. [28]). Generalised Calogero-Moser
systems associated with an arbitrary root system were introduced by Olshanetsky and
Perelomov [69], [70].

N = 2 supersymmetric quantum Calogero-Moser systems were constructed in [39] and
considered further in [18]. They were generalised to classical root systems in [19] and to
an arbitrary root system in [16]. In such constructions one considers N quantum particles
on a line with coordinates x = (x1,...,xy) and momenta p = (p1, ..., pn), which satisfy
canonical commutation relations. Additionally one takes 2N fermionic variables, 1 =

(W, 9N), = (¥ .. ., ¢N) which satisfy the canonical (anti)-commutation relations,
o 1. o o o
{W,W}:—§5”, {Y', '} ={Y" '} =0, 4,7=1,...,N.

The dynamics of the system are controlled by a potential U and there are two supercharges
Q(z,p, v, ), Q(x,p,1b,v) which generate the N’ = 2 supersymmetry algebra

Q*=Q*=0, Hgysy = —%(QQ + QQ),



CHAPTER 1. INTRODUCTION 7

where Hgygy is the corresponding supersymmetric Hamiltonian [16]. In the case of (ra-

tional) generalised Calogero-Moser system one considers a potential of the form
U(r) = 23 caloglo,z), >0
x) == colog(a,x), ¢, ,
2 acA °

where A is any Coxeter root system. Then the bosonic part of the Hamiltonian Hgysy

(up to rescaling) takes the form

A motivation for construction of N' = 4 Calogero-Moser system goes back to the
work [42] on a conjectural description of near—horizon limit of Reissner-Nordstrom black
holes where appearance of su(1, 1|2) superconformal Calogero-Moser model was suggested.
Though we also note more recent different considerations of near extremal black holes
in [60]. Another motivation to study supersymmetric (trigonometric) Calogero—Moser—
Sutherland systems comes from the relation of these systems with conformal blocks and
possible generalisation of these relations to the supersymmetric case [52]. It has been a
long standing problem to construct N/ = 4 supersymmetric extensions of Calogero—Moser
systems.

Wyllard gave an ansatz for N' = 4 supercharges in [88]. In general his ansatz depends
on two potentials W and F. In order to realise an N' = 4 supersymmetric mechanical
system one can take 4N fermionic variables, thus to each particle four fermionic variables
{499 4pd |a = 1,2} are associated. They satisfy canonical (anti)-commutation relations.
Then the N = 4 supercharges are defined by (a,b=1,2)

Q" = p, (V7 +iW,) + iF g U Qy = pu(y, + iWh) i Fp O, (1.7)

where U77% mn are particular cubic fermionic terms and W; = Ou W, Fij, = 04,040, F.

The N = 4 supersymmetry algebra has the form

{Qaa Qb} = {Qaa Qb} = Oa HSUSY = _%(QaQa + QaQa), (18)

where Hgpgy is the supersymmetric Hamiltonian. Wyllard considered a su(1, 1|2) super-
conformal extension of the ' = 4 supersymmetry algebra (1.8) by incorporating additional
generators so that su(1, 1|2) relations are satisfied, and derived necessary differential equa-
tions for F' and W [88]. Thus prepotential F satisfies generalised WDVV equations (as it

was pointed out in [11]) and potential W satisfies equations of the form

leW + FkljﬁjW = O (19)
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Wyllard’s prepotential F' has the form (1.6), where A is the root system Ay_;. Then
W is a twisted period (see Definition 2.2.18) of the Frobenius manifold on the space of
orbits Mg,. Wyllard constructed su(1,1|2) N particle Calogero-Moser Hamiltonian for
a single value of the coupling parameter ¢ = 1/N as bosonic part of his supersymmetric
Hamiltonian with W = 0. He argued that his ansatz does not produce superconformal
Calogero-Moser Hamiltonians for general values of c. Examples based on root systems
A = G4, Bs were also considered in [88].

Wyllard’s ansatz for NV = 4 supercharges was extended to other root systems in [40],
[41] where solutions for a small number of particles were studied both for W = 0 and
W # 0. In particular, su(1,1|2) superconformal Calogero—Moser systems related to A =
Ay @ Go, Fy and subsystems of Fy were derived. Superconformal su(1,1]|2) Calogero—
Moser systems for the rank two root systems were derived in [13| via suitable action in the
superspace. For the WDVV equations arising in the superfield (Lagrangian) approach,

which involves consideration of N' = 4 supersymmetric action, we refer to [56].
1
2
ered in [29]. This model was obtained by a reduction from matrix model and it incorporates

A many-body model with D(2, 1; a) supersymmetry algebra with o = —= was consid-
an extra set of bosonic variables (“U(2) spin variables”) which enter the bosonic potential
of the corresponding Hamiltonian. One-dimensional version of such a model was consid-
ered in [30] and, for any «, in [12], [31]. A generalisation of the many-body classical spin
superconformal model for any value of the parameter o was proposed in [55|. In the survey
paper [32, p. 33] it is stated: “...it turns out that the realization of D(2, 1; ) superconfor-
mal symmetry on the multi-particle phase space for o # —1 or 0 requires at least one pair
of (bosonic) isospin variables {u’, 4;|i = 1,2} parametrizing an internal two-sphere...”.
Within D(2,1; ) supersymmetry ansatz of [55] a class of bosonic potentials was ob-
tained in [34]|. The prepotential F' has the form (1.6) for a root system .A. Then W is a
twisted period of the Frobenius manifold on the space of orbits corresponding to the root
system A. Such polynomial twisted periods were described in [34], they exist for special
values of parameter .. Although the corresponding bosonic potentials are algebraic this
class does not seem to contain generalised Calogero-Moser potentials associated with A.
Recently a construction of type Ay_; supersymmetric (classical) Calogero-Moser model
with extra spin bosonic generators and A’ N? fermionic variables (for any even N') was pre-
sented in [57|. The ansatz for supercharges is more involved and extra fermionic variables
appear due to reduction from a matrix model. A related quantum N = 4 supersymmetric
spin Ay_; Calogero-Moser system was studied recently in [33]. Furthermore, a simpler
ansatz for supercharges for the spin classical Ay_; Calogero-Moser system was presented
in [58]. This model has %/\/' N(N + 1) fermionic variables and the supersymmetry algebra
is 0sp(N]2). Most recently classical supersymmetric osp(N]2) Calogero-Moser systems

were presented in [59]; these models have nonlinear Hermitian conjugation property of
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matrix fermions and supercharges are cubic in fermions.

1.3 Present work and plan of this thesis

1.3.1 Main results

I. Determinant of restricted Saito metric

The first question that we address in this work is motivated by Frobenius structures arising
in singularity theory (Chapter 3). Natural objects from the point of view of Coxeter
geometry are the discriminant and the corresponding discriminant strata in My, = V/W
and V' (see e.g. [46] for a discussion on the geometry of discriminants). The discriminant
Y in My is the union of irregular orbits of the action of the group W, that is ¥ is the
union of the orbits of W with cardinality less than the order of W. The preimage of > in
V under the quotient map 7 : V — My, corresponds to the union of mirrors of W.

Let V = C" and let R C V be a Coxeter root system corresponding to W. For any
a € R, the hyperplane 11, = {z € V|(«a, z) = 0} is called a mirror. Consider the subspace
D = Ngeslly C V for some subset S C R. Its image 7(D) (and also D C V) in My
under the map 7 is called a discriminant stratum. As an example, consider the case when
W = S,41. An arbitrary discriminant stratum (up to the action of W) D C V' is given by

the following equations:

$0:...:$m0:§0,
Tmo+1 = -+ = Tmg+mi — 51 (110)
TEN G et = T IR = AN
where &, ..., &y can serve as coordinates on D and § = — ) ;" mi&iy Nym; € N

The Saito metric 7 on My, is defined as the Lie derivative along the unity field e of
the intersection form. A natural question is to study the restriction np of the (covariant)
metric 7 to discriminant strata D. In particular, to find the determinant of this metric (in
a suitable coordinate system). In the case of A, singularity this metric has a form similar

to (1.5) where F is replaced with its restriction Fp on D, which we define as

N

Fp(z,a) = Flx,a)|, = [ [z — &)™ (1.11)

1=0

We obtain two structure theorems (Main Theorems 1, 2, Chapter 3) for this determi-
nant det np. More precisely, we show in Main Theorem 1 that det np (in linear coordinates

on D) is proportional to a product of linear forms which define the restricted Coxeter ar-
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rangement Ap. In the case where S is empty this theorem (essentially) reduces to a
well-known statement that the Jacobian .J of basic invariants of the group W is propor-

tional to [[,cr, o (Proposition 2.4.20). Thus we obtain:

Main Theorem 1. The following proportionality takes place

detnp ~ [ 1, kuweN.

HeAp

In Main Theorem 2 we explain that the multiplicities kg of the linear forms [y are
related to the Coxeter numbers of certain parabolic subgroups of W. Let us illustrate

these theorems by an example.

Example. Let us consider the case where R = A4 and consider a stratum D of type
Ay given by D : xqg = x1 = x5 with the corresponding parabolic subgroup generated by
(orthogonal) reflections in the mirrors xy = z; and x; = z5. Coordinates on D are chosen
as: &y = xp = X1 = To, & = x3, and & = x4 subject to the condition 3§y + & + & = 0.
Then
detnp ~ (S0 — &1)" (& — &)'(& — &)*.

The numbers 4, 4,2 are Coxeter numbers of certain parabolic subgroups. The multiplicity
4 of the linear form &, — &; is the Coxeter number of the parabolic subgroup of type As
generated by reflections in the mirrors o = x1, r1 = 2 and x5 = x3. The multiplicity
4 of the linear form &, — &, is the Coxeter number of the parabolic subgroup of type
As generated by reflections in the mirrors xg = x1, r1 = x5 and x5 = x4. Finally, the
multiplicity 2 of the linear form &; — & is the Coxeter number of the parabolic subgroup

of type A; generated by a reflection in the mirror x3 = z4.

In the case of classical Coxeter groups, namely the families A, (n > 1), B, (n > 2), D,
(n > 4) the proof of Main Theorem 1 relies on the use of Landau-Ginzburg superpotentials,
which is function F(x,a) given by (1.4) for type A.

In the remaining cases, namely the dihedral groups I5(m) (m > 5) and the exceptional
groups Fg, F7, Es, Hs, Hy, Fy the proofs of Main Theorems 1 and 2 rely heavily on the

geometry of the corresponding root systems and their subsystems.

II. Dubrovin’s almost duality

Logarithmic solutions of generalised WDV'V equations of the form (1.6) for any root system
A associated to a finite Coxeter group are related to polynomial solutions of WDVV
equations via the notion of almost duality introduced by Dubrovin [25].

Solutions (1.6) determine a multiplication structure % on the tangent bundle of the

complement to the discriminant ¥ in Myy. The space My, \ X satisfies all the properties
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of a Frobenius manifold but flatness of the identity field for the ‘new’ multiplication .

The two multiplications are related by the formula
rxy=Elozoy, (1.12)

where z,y € T, My for a point p € My, and E~! is the inverse of the Euler vector field
associated to Myy. Feigin and Veselov showed that almost duality admits a natural (in
some suitable sense) restriction on discriminant strata in ¥ C My, [35]. In particular,
they proved that the left-hand-side of (1.12) has a well-defined limit at generic points in
a stratum.

On the other hand, the submanifolds of an arbitrary Frobenius manifold M which carry
the structure of a Frobenius algebra on each tangent space were considered by Strachan
and are called natural submanifolds. Key examples of natural submanifolds were expected
to be discriminant strata in the orbit spaces My, as well as caustics [81].

We confirm this to be the case for discriminant strata. Namely, we show that for
vector fields u,v € T,,D, where xy is a generic point in D, the product uv o v is well-
defined and that wowv € T,,D (Proposition 3.8.2). Further to that, as a consequence of
our considerations (see Remark 3.1.4) we also get that the restricted Saito metric np to
any stratum D is generically non-degenerate. We apply our results to strengthen almost
duality (1.12) on the discriminant strata (Section 3.8).

ITI. Superconformal extension of Calogero—Moser Hamiltonian

Several attempts have been made to construct supersymmetric mechanics such that the
corresponding Hamiltonian has bosonic potential of Calogero-Moser type with a reason-
ably general coupling parameter(s). In the survey paper [32] various problems and obsta-
cles in these constructions are mentioned.

In the current work (Chapter 4) we construct supersymmetric Calogero-Moser systems
without extra isospin variables. In fact, we present two constructions of N' = 4 super-
symmetric quantum mechanical systems, where the superconformal algebra is D(2,1; «),
starting with an arbitrary V-system. Thus, in the case of a Coxeter root system A the
bosonic part of the Hamiltonian is the Calogero-Moser Hamiltonian associated with A
introduced by Olshanetsky and Perelomov in [70], which we get in two different gauges:
the potential and potential free ones. In the latter case the Hamiltonian is not formally
self-adjoint; this gauge comes from the radial part of the Laplace—Beltrami operator on
symmetric spaces [14,45,70|. The parameter o depends on the V-system and is ultimately
related with the coupling parameter in the resulting Calogero-Moser type Hamiltonian.

We use original ansatz (1.7) for the supercharges [40], [88] based on two potentials
F, W and we take W = 0. The algebra D(2,1;a) contains the supersymmetry algebra
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as its subalgebra and has some additional generators and relations. We construct two
representations of the algebra D(2, 1; ) which crucially depend on the choice of the cubic
fermionic terms W'7% Wimn in (1.7). We use a prepotential of the form (1.6) where A is
an arbitrary V-system and the parameters A and « satisfy a linear relation. We obtain

the following result.

Theorem (Theorems 4.4.4, 4.4.5, 4.4.8). The supersymmetric quantum Hamiltonians
Héig,sy, (i =1,2) take the form

Hgsy = Hyy + 9,
where ® is the fermionic part and the bosonic parts (up to rescaling) Hg) take the form

O_ A ANV N BB e ) 4
B = L T T 2 GG A“;wm

In the case of a Cozeter root system A = R, the bosonic parts Hg) are the generalised

Calogero—Moser Hamiltonians

DA ZQA)\Jrl’ HO — a4 Y

2\
—8_”
YER+ YER+ ('}/, x)

where (7v,7) =2 for ally € R.

In the special case when o = —1 the superalgebra D(2, 1; —1) contains the superalgebra
su(1,1]2) as its subalebra, and our first ansatz on the su(1,1|2) generators reduces to the
one considered by Galajinsky, Lechtenfeld and Polovnikov in [40,41]. It was emphasised
in [41] that such quantum models with &« = —1 and W = 0 are non-trivial with bosonic
potentials proportional to squared Planck constant, though they were not considered in
many details in [41], in particular the explicit form of the Hamiltonian was not given. Thus
we extend considerations in [41] for W = 0 to the case of superconformal algebra D(2, 1; «)
for any a, and we get in this framework quantum Calogero-Moser type systems associated
with an arbitrary V-system, which includes Olshanetsky—Perelomov generalisations of the
Calogero-Moser system with arbitrary invariant coupling parameters. The parameter o

depends on these coupling parameters.

IV. Supersymmetric extension of Calogero—Moser—Sutherland Hamil-
tonian
We also consider generalised trigonometric Calogero-Moser—Sutherland systems related to

a collection of vectors A with multiplicities (Section 4.5). We include these Hamiltonians

in the supersymmetry algebra provided that extra assumptions on A are satisfied which
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are similar to WDV'V equations for the trigonometric version of the prepotential F. We
show that these assumptions can be satisfied when A is an irreducible root system with
more than one orbit of the Weyl group, that is BCly, Fy and G5 cases.

In the case when A = BCy the corresponding bosonic parts of the supersymmetric
Hamiltonians take the form (Theorem 4.5.8):

HO— A i <(8s +2(N - 2) (2N = 2)g—1) | 165(ds + 1)> i 4q(2¢ + 1)

. 12 . 12 . 12 )
— sinh” z; sinh” 2x; P sinh®(z; £+ x;)

N N
HY = —A+2)" (8scoth 2x; — (8s+2(N —2)q) coth2;)J; +4g Y _ coth(w; £x;)(0; £0;),
i=1 1<j
where the multiplicity parameters r, s, ¢ satisfy a linear relation.
It turns out that in this case one can show that the corresponding prepotential satisfies
generalised WDVV equations which is a generalisation of the solution for the root system

By obtained in [49] (we refer to |2] for this development).

1.3.2 Structure of the thesis

Chapter 2 In this chapter we provide an overview of notations, basic definitions and
results one should be familiar with throughout the rest of the thesis. In Section
2.1 we review schematically the appearance of the WDVV equations in topologi-
cal field theories and thus motivate the construction of a Frobenius manifold. In
Section 2.2 we recall key notions from the theory of Frobenius manifolds includ-
ing Landau-Ginzburg superpotentials and almost duality. We introduce generalised
WDVYV equations in Section 2.3. In Section 2.4 finite Coxeter groups and elements
of their invariant theory are introduced. In particular, K. Saito’s flat structure on
Coxeter orbit spaces is discussed. In Section 2.5 we survey Dubrovin’s realisation of
Coxeter orbit spaces endowed with such flat structures as one of the main examples
of Frobenius manifolds. These Frobenius structures are the central objects in our
considerations in Chapter 3. The main sources which are used in the present chapter
are references [22,25| for the Frobenius manifold theory and references [17,51] for

the theory of Coxeter groups. All the results in this chapter are well-known.

Chapter 3 In this chapter we state and prove Main Theorems 1, 2 for the determinant
of the restricted Saito metric on Coxeter discriminant strata. In Section 3.1 we
formulate Main Theorem 1. We show that this determinant is a product of linear
factors with some multiplicities. In Section 3.2 we formulate Main Theorem 2 on
the multiplicities of these linear factors of Main Theorem 1.

We prove Main Theorems 1 and 2 for classical root systems in Section 3.3 and
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3.4 respectively. Considerations are based on the use of superpotentials for the
corresponding Frobenius manifolds and their discriminant strata. That is, in the
case of type A singularity we define the Saito metric 7p on an arbitrary stratum
D c V (1.10) with the use of the corresponding Landau-Ginzburg superpotential
defined on D (1.11). We find 7p in the variables & (i = 0,..., N) in Theorem 3.3.5
and show that the statement of Main Theorem 2 is true in Theorem 3.4.1.

In Section 3.5 we derive a general formula for the determinant of the restricted Saito
metric on discriminant strata (Theorem 3.5.9), which is obtained by considering the
Saito metric on My, in the corresponding flat coordinates. This formula is given
in terms of (some of the components) % of the contravariant Saito metric on My,
which take the form (3.5.5):

Ji

= (1) g (g,

; (1.13)

where J, are particular minors of the Jacobi matrix of basic invariants of W. We use
this formula for the components of Saito metric to prove Main Theorems 1 and 2 for
the strata of the exceptional root systems in dimension 1 and codimensions 1, 2, 3
and 4 in Section 3.6. Due to the use of Theorem 3.5.9 the cases of dimension 1 and
codimension 1 are easier to handle, but in general the difficulty of the corresponding
proofs increases with increase of codimension, as one has to deal with the determinant
of a matrix of size codim D x codim D. Our analysis in codimensions 3 and 4 is done
by case by case considerations of the subgraphs of the Coxeter graph corresponding
to the group W. This analysis covers all strata in the orbit spaces of the Coxeter
groups I»(p), Hs, Hy, Fj.

In Section 3.7 we consider the remaining cases, namely strata of codimension 5
in F7 and strata of codimensions 5 and 6 in Eg. In these cases we obtain explicit
formulae for the determinant of the restricted Saito metric and analyse corresponding
multiplicities with the help of Mathematica. This completes Main Theorems 1 and
2 for all the cases.

In Section 3.8 we revisit Dubrovin’s duality on discriminant strata. Part of this

chapter is joint work with M. Feigin and I. Strachan [4].

Chapter 4 We recall the definition of Lie superalgebra D(2, 1; ) in Section 4.1. The di-
mension of this algebra is 17, and in particular the even part (dimension 9) comprises
of three mutually commuting sl(2) algebras. We give two types of representations of
this superalgebra in Sections 4.2, 4.3. Odd generators include N' = 4 supercharges
(1.7) defined in terms of a prepotential F' of the form (1.6).

Starting with any V-system A4 we get two corresponding supersymmetric Hamil-

tonians. In Section 4.4 we present them explicitly. We consider supersymmetric
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trigonometric Calogero-Moser—Sutherland systems in Section 4.5. Part of Chapter
4 is joint work with M. Feigin [3].
For the reader’s convenience we also include considerations for one particle systems

in Appendix B which are particular cases of considerations from Sections 4.2 and
4.3.

Chapter 5 In the last chapter we summarise main results from this thesis and pose

questions for further research.



Chapter 2

Frobenius manifolds and finite Coxeter

groups

This chapter provides an introduction to the most important aspects from the theory of

Frobenius manifolds and from that of finite Coxeter groups, which feature in this work.

2.1 WDVYV equations in TQFTs

The Witten-Digkgraaf-Verlinde- Verlinde equations (WDVV) of associativity constitute a
famous example of a nonlinear integrable system which emerges in numerous areas of mod-
ern mathematical and theoretical physics. They form an over-determined system of PDEs
for a function F which is defined locally in terms of some variables t = (¢!, 2 ... ). Orig-
inally, WDVV equations appeared in the context of 2-dimensional topological quantum
field theories (TQFTs) [21,87].

Roughly speaking, a quantum field theory (QFT) is defined by specifying the properties
of the physical correlation functions. Let us consider a QFT on a n-dimensional manifold

Y and let ¢, () be a family of local fields (observables) on . In general, correlators

<¢i1 (x1)¢i2 (I2) cee ¢is (Is»ﬁ’ T; € 27

depend on the geometric-topological properties of 3. Here, we consider a particular class
of 2-dimensional QFTs which exhibits topological invariance. In such topological theories
(2D-TQFTs) the action is invariant with respect to arbitrary changes of the metric on X,
which is a non-dynamic variable. Correlators depend only on the topology of ¥ (i.e genus

g) and the labels of the operators, but not on their positions, that is

(03, (1) iy (22) - . D1, (7))2 = (Dir Pis - - Pi)g-
The set of all physical states H = {|¢;) } is a Hilbert space. One assumes the existence

16
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of an identity operator ¢, := 1 corresponding to the state |0). The inner product on H is

defined by the following three-point function on the sphere

Nag = Clap = (Ldadp)o = (Padp)o- (2.1)

A key feature in the study of a QFT is the operator algebra A of the local (primary)
fields ¢,. We will assume that A is n-dimensional. The algebra A has the structure of
a unital commutative and associative ring and formally the multiplication is defined as

follows:

¢a : ¢,B = C’ay{g(b’w (2'2>

where CZB are the structure constants of the algebra and summation over + is finite. These

are described via three-point functions on the sphere,

Capy = <¢a¢ﬁ¢v>0 = 025 <¢n¢e¢7>0 = newczﬁa

where the multiplication (2.2) is used in the second equality.
The requirement for TQFTs to satisfy certain factorisation theorems (crossing rela-

tions) leads to the following system of equations for the three point functions

Coaﬁend\c)\;u/ = Caue77€>\c)\ﬁ1/7 (23)

where 1% is the inverse matrix (assuming non-degeneracy) of (2.1).

One can consider perturbations of TQFTs by introducing a suitable family of actions
depending on a set of parameters ¢t = (t!,... ") such that there is a one-to-one corre-
spondence of the perturbed operators ¢, (t) with ¢,. Similarly to the unperturbed theory
crossing relations must hold and thus it can be shown that the correlation functions c,g,(t)
satisfy relations (2.3) for any parameter ¢ in this case as well.

Additional assumptions on the structure of the theory, namely conformal invariance
lead to the following integrability equations for the correlations functions cag,(t) for any

parameter t:
Ocapy(t) _ Ocapu(t)
R voat (2.4)

Poincaré’s Lemma then implies that there exists (at least locally) a generating function

F(t) such that the three-point correlation functions of the operators ¢, coincide with the

third-order derivatives of F', namely

DE(t)

Further on, one can show that equations (2.4) imply that the matrix 1,3 does not depend
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on the parameters ¢, that is
M
ot

for any «, 3,v. Finally, the function F' must be quasi-homogeneous (see Section 2.2) in

(2.6)

the variables t as a consequence of a scaling law of the theory. The WDVV equations are
defined as the combination of formulae (2.3), (2.5) and (2.6).

Atiyah introduced a set of axioms which specify the properties of the correlators in the
(matter sector) of a 2D-TQFT [9,10]. The operator algebra A carries the structure of a
Frobenius algebra [22]. Indeed, it has been shown that the category of 2D-TQFTs is in
some sense equivalent to that of commutative Frobenius algebras [53].

Frobenius manifolds were constructed by Dubrovin [22] in the 90s in an effort to
provide a rigorous geometric formalism for TQFTs as families of Frobenius algebras and
to investigate possible connections with the theory of integrable systems, in particular
integrable hierarchies of KdV type. In Section 2.2 we recall key aspects from the theory

of these manifolds.

2.2  Frobenius manifolds

Frobenius manifolds have been in the centre of intensive study since their appearance due
to their rich geometric structure as well as their surprising connections to different areas

of mathematics.

2.2.1 Frobenius manifolds and WDVYV equations

A key property of a Frobenius manifold is the existence of a Frobenius algebra structure
on any tangent plane. Let us recall the following definition of a Frobenius algebra at first

(see for example [53]).

Definition 2.2.1. Let A be a C-algebra of finite dimension and let <,> be a non-

degenerate symmetric bilinear C-valued form on A. Then A is a Frobenius algebra if
(i) A is an associative algebra with unity e;

(ii) the multiplication in the algebra, o, is compatible with the form <, >, namely

<aob,c>=<a,boc>, forany a,b,c, € A.

Example 2.2.2. The ring of all square matrices over C forms a Frobenius algebra where

the inner product is defined as the trace of the product.

In our considerations below we only deal with commutative Frobenius algebras.
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Definition 2.2.3. A Frobenius manifold of charge d € C is a (complex) smooth n-
dimensional manifold M with (commutative) Frobenius algebra structure (A,n :=<,>)

on each tangent space satisfying the following axioms for any z,y, z,w € T'(TM):
(i) the metric n on M is flat (1 is a complex valued form);

(ii) the unity vector field e is constant with respect to the Levi-Civita connection V of

the metric n;
(iii) the (0,4)-tensor V,c(z,y, z) is totally symmetric, where c(z,y, z) := n(z oy, 2);
(iv) there exists a vector field E which is covariantly linear VVE = 0, and

e Lpe=—e,

o (Len)(z,y) = Em(z,y)) —n(Lez,y) —n(z, Lpy) = (2 = d)n(z,y),
o (Lpo)(x,y,2) = E(c(x,y,2)) —c(Lpx,y,2) —c(x, Lry, 2) — c(x,y, Lpz) = (3 —
d)c(z,y, 2);

The last three properties mean that E generates conformal rescalings of the metric

and of the Frobenius structure.

Note that the last two properties of axiom (iv) above imply that Lg(o) = o, that is
Lo(zoy) — (Lux)oy—w0(Lay) =zoy, .y € T(TM). (2.7)

Flatness of the metric  implies that locally there exist flat coordinates t*, 1 < a < n,

such that the metric n is constant and the components of the Levi-Civita connection V

0
ot

derivatives and the total symmetry of the tensor Ve is equivalent to the total symmetry of

vanish. Then locally in the basis = O, 1 < a < n covariant derivatives become partial
OraCgrys, Where copy (1) =< 00045, Oy >. It follows that there exists (locally) a prepotential
F = F(t',...,t") such that the tensor components c,g-(t) coincide with third-order partial
derivatives of F' (cf. (2.5)), that is

PF

Caﬁ,y(t) = m (28)

We have from axiom (ii) of Definition 2.2.3 that Ve = 0. Thus a linear change of flat
coordinates can be performed in such a way that e takes the form e = %. Then the
metric 7 takes the form

_ (—oei)—c(ei i)_as—F
Mo = M gpa © € 587 = & Bpa 918! ~ dnoreots

The multiplication o in the algebra A has the form Jja009ys = ¢ 4(t)0;, where the structure
constants ¢} 4(t) satisfy capy (t) = ()
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The vector field F is called Euler vector field. In general in flat coordinates it must

take the form 9
E(t) = (g5t” +b%) 52, (2.9)
for some scalars g3, b* satisfying ¢; = dy, 0" = 0, since [E,e] = —e. Let us define the

gradient operator Q = VE : TM — TM, x — V,E. If Q = (¢§) is diagonalisable then

the Euler vector field can be can be represented as

. 0
B(t) = (dot” +1%) 5,

a=1

where d, are the eigenvalues of the operator ) and are normalised such that d, = 1.

Moreover, up to a translation in the flat coordinates we have
0 0
E = At — b* —.

In this work we will only consider Frobenius manifolds where the numbers d, are non-zero

for all a, and thus we take an Euler field of the form:

n N a n N 8
E=Y dut 5 = > (1 —qat R (2.10)
a=1

a=1

where ¢, = 1 — d, are the eigenvalues® of the operator id —@Q. The degrees d, of the
variables t* are called scaling dimensions of M. Let us now recall the following notion of

quasi-homogeneity.

Definition 2.2.4. A function f : M — C is said to be quasi-homogeneous of degree d; if

it is an eigenfunction of the Euler vector field,
E(f) =dsf.
It follows from axiom (iv) of Definition 2.2.3 and formula (2.8) that
ElCagn(t)) — (3 — d)aps (t) = 0.
Then we have by integrating
LpF=(3—dF+ %Aaﬁt%ﬁ + But* + C, (2.11)

for some constants A.g, By, C. Thus, F' is quasi-homogeneous function of degree dp :=

3 — d modulo quadratic terms which are in the kernel of V3.

In TQFTs the numbers ¢, are called charges of the primary fields (see Subsection 2.1).
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Let us introduce an inner product on cotangent planes of M, <,>: TyM x T;yM — C
defined by the inverse of the metric 7, namely (n71)* = n®¥ =< dt*,dt’ >, where dt®,
1 < a < nis a flat basis of 7M. That is, we identify cotangent plane 7;M with
tangent plane T, M with the help of the metric n so that dt® corresponds to n*?9,s. Then

multiplication on 7; M induces multiplication on 7 M which takes the form
dt® o dt® = n°Tn e, (t)dt". (2.12)

Let us now recall how associativity of Frobenius algebra A implies that F' satisfies WDVV

equations. We have
(ata o 8t5) 00y = Opa 0 (@3 o 8ﬂ) <~ cgﬁ(t)cﬁw(t)atp = cgv(t)cﬁa(t)ﬁtp.

The last equality implies that cls(t)ch, (t) = i, (t)R,(t). Since cl4(t) = N cuap(t) we
have that
" Cuap(t)chy (t) = 1™ iy (£) B0 (1),

which implies the following system of equations:

Caﬁu(t)nwcum(t) = C*yﬁV(t)nwcupa(t)» 1<a,B,7v,p<n (2-13)

Example 2.2.5. In dimension n = 2 the associativity of the algebra A is trivial since the
algebra is unital. Thus, WDVV equations are empty. The form of the prepotential F' is
constrained only by quasi-homogeneity and the metric . In particular, it can be checked
that I takes the following form:

1
—(E)t 4 f(tY), if e =0,

F(t ) =42 .
6(752)3 + 5(z&2)2z51 +(tY)3, if My #0,

where ¢ € C* and f is a function of polynomial, logarithmic, or exponential type depending

on the charge d of the Frobenius manifold.

In this work we will consider only Frobenius manifolds such that the metric n satisfies
the condition 7,,, = 0. In these cases and for an Euler vector field of the form (2.10), flat

coordinates can be chosen in such a way that the matrix 7,4 is anti-diagonal

Napg = 5014‘67”4’17 1 S OZHB S n. (214)

Recall that from axiom (iv) of Definition 2.2.3 for x = 0« and y = 0,5 we have that
(LEN)(Ope, Op5) = (2 — d)nap, which implies the condition 15(ds + dg + d — 2) = 0 for any

a, 3. Then in the coordinates such that 7,5 = da+n+1, the numbers d, must satisfy the
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following relation:
do+dpi1—a=2—d, 1<a<n. (2.15)

2.2.2 Intersection form

On a Frobenius manifold one can define a second flat metric. It plays a key role in the
theory and it is directly related to the metric . Conventionally, it is defined as an inner

product of 1-forms.

Definition 2.2.6. The (contravariant) metric g € I'*(T'M) defined by
g(0,w) = E(f ow), (2.16)

for any 0, w € T'(T*M) is called the intersection form of the Frobenius manifold.
Let us recall the following statement.

Proposition 2.2.7. The (covariant) metric g € T?(T*M) is related to the metric n by

the following formula:

g(Eou,v)=n(u,v), u,vel(TM). (2.17)
Proof. We have from Definition 2.2.6 and formula (2.12) that
g°?(t) = g(dt®, dt’) = E*(dt* o dt’), = "0 i, (t) E*. (2.18)
Hence, multiplying both sides of (2.18) with gg(t) we get

5% = g*?(t)gpa(t) = 00" gax(t)cyen(t) E™.

Then multiplying by 7., we obtain 7)), = g,\g(t)cfm(t)E“. The statement follows. ]

Consider points t € M where there exists £~! € T,M such that E~' o E = e. Then it
follows by Proposition 2.2.7 that

g(u,v) =n(E~  uow). (2.19)

Thus the metric g is well-defined on the points of M where F is an invertible element of
the algebra.

A key observation in the theory of Frobenius manifolds is that the prepotential F', and
thus the Frobenius structure, can be reconstructed uniquely in general from the knowledge
of the metric g € I'*(T'M), the vector fields e, E as well as of the numbers d, d,, 1 < a < n.
Indeed, let us introduce the operator V : T'"M — T'M given by

2—-d

V="5--0, (2.20)
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and let Fi,5 denote the components of the Hessian matrix of F'(¢). It can be checked using

formula (2.11) that for any «, 5 we have
B(Fup) = (3= d)Fa — QLFy5 — Far @} + A
Then by Definition 2.2.6 we get 2
9P (t) = " EFe (t) = F*P + VOFYP + Pyl 4 AP, (2.21)

where
FoB naa/nﬁB/Fa’ﬁ’ and A% = naa’nﬁﬁ'Aa,/B,' (2.22)

If the matrix 7,4 is anti-diagonal (see formula (2.14)) and () is diagonal then equation
(2.21) reads
9P (t) = (do + dg +d — 1) F*P 4+ AP (2.23)

since the numbers d,, satisfy condition (2.15). Thus Frobenius structure can be recovered
uniquely if d, +dg +d—1# 0, for any 1 < o, 5 < n. The contravariant metric  can be
defined directly in terms of the metric g by setting

n*f = L.g*. (2.24)

This is compatible with (2.22), (2.23) and 7,3 = 6a+sn+1 Which holds in the coordinate
system t*, 1 <a <nsinced, +dg+d—-1=1ifa+8=n+1.

Consider a metric g € I'*(T*M) with Levi-Civita connection V5 and Christoffel sym-
bols T, (in some basis). Let g¥ = (g~')”. We define the contravariant connection of the

metric g by Vé := §""Vg; with contravariant Christoffel symbols as sz = —ﬁilF{k.

Definition 2.2.8. Two non-proportional metrics gy € I*(TM), i = 1,2 form a flat pencil
if the following conditions hold:

(i) the metric gy + Ag(9) is flat for any A € C;

(ii) the Levi-Civita connection of the metric g1y + Ag(2) takes the form
T, +ALG).,
where I'; - are the contravariant Christoffel symbols of the metric g(_i)l, 1=1,2.

The following proposition implies that the metrics  and g form a flat pencil on the

Frobenius manifold.

2Note that there seem to be typos in the formula for g*?(t) in [25, p. 9].
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Proposition 2.2.9. Let g*?(t; \) denote the matrix
g (N = g™ () =™, AeC (2.25)

and let X C M be
Sy = {t € M|det g*’(t; \) = 0}. (2.26)

Then the inverse matriz gop(t; ) := (g*?(t; N))~! defines a flat metric, gy on M \ Iy.
Furthermore, the Christofell symbols for this metric take the form

5t A) = —ga (A1), (2.27)

where
Po3(t) = b (1) (% V)’ (2.28)

In particular, T2%(t) are contravariant Christoffel symbols for the metric g given by (2.19).
° y 99 y

Let V denote the contravariant Levi-Civita connection of the metric g (2.19) with

components defined by (2.28). A function p§ = p®(¢; \) satisfying the conditions

(V = AV)dps =0 (2.29)

is called a A-period of the Frobenius manifold. Flatness of the metric g, implies the
existence of n independent A-periods on the universal covering of M x C\ [J, Xy x A.
These define a system of flat coordinates for the metric g, on a small domain of M \ X,.

Let £ = O0sp%, B =1,...,n. In the basis t* conditions (2.29) read (V" — AV*)E = 0,
for any 1 < «, 8 < n. Then we get

(V" = AV)Es = (97 (OV, = M™TV,)Es = (977 (1) = M™)0n&s — g7 ()T5(D)E,.
It follows by Proposition 2.2.9 that conditions (2.29) take the form
(4(0) = M0ugs = OV - ke 1Sa8<n (2.30)
Let U be the operator of multiplication by £, Y = Eo : TM — TM. That is
US (1) = (Bo)g = g (t)ns. (231)

Let Co(t) be the n x n matrices defined by (Co(t))? = ¢, (t) and consider the vector

E(t) = (&,...,&,). Then conditions (2.30) are equivalent in a matrix form to the following
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system of equations:

1
—)Cl, 1<a<n. (2.32)

0 €U = V) =V~ 5

By definition the intersection form degenerates precisely on ¥ := ¥,. A system of n
independent periods p® := p®(t;0) gives flat coordinates of the intersection form. They
determine a local isometry between the space M \ ¥ and C". More precisely, this map is
defined by

p: M\X—C" tept) = ',....p"), (2.33)

and is called period mapping. Thus, the functions p* (a = 1,...,n) can serve locally as
coordinates on C" and the intersection form ¢g® = (dp?, dp®) can also be viewed as an

inner product on C".

2.2.3 Semisimplicity and canonical coordinates

We will study a special class of Frobenius manifolds which possess additional structure.

The Frobenius algebra at a generic point on the manifold is required to be semisimple as
defined below.

Definition 2.2.10. [43] A module over an algebra is called semisimple if it is the direct

sum of its simple submodules.

Definition 2.2.11. [43| An algebra A is semisimple if all non-zero A-modules are semisim-

ple.

By Artin-Wedderburn Theorem any finite dimensional semisimple algebra over C is

isomorphic to

[[M.(C), nieN,

ieN
where M,,, (C) is the matrix algebra of n; x n; matrices over C. Therefore, an n-dimensional
commutative semisimple Frobenius algebra A is isomorphic to n copies of C. There exists

a basis ¢; € A, 1 <i <n (idempotents) such that the multiplication becomes
€;0¢€; = (L-jej.

Definition 2.2.12. A Frobenius manifold M is called semisimple if the family of n-
dimensional algebras T; M is semisimple at any generic point ¢t € M. Such a point t € M

is called semisimple point.

Locally, near a semisimple point ¢t € M there exists a basis of vector fields §;, 1 <17 < n,

with the property
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These vector fields are called idempotent vector fields and are unique up to renumbering.

It can be checked that ¢; commute pairwise, [d;,0,] = 0 for all 1 < 7,57 < n and hence

9
ou;?

coordinates u; are unique up to shifts and permutations. Recall that the Euler field F
satisfies L (o) = o (formula (2.7)) and hence takes the form® £ ="  (u;+¢;)d; for some

¢; € C. Therefore near a semisimple point ¢ the eigenvalues of the operator U(= Eo) are

0; determine a canonical coordinate system wu; such that §; = 1 < i <n. Canonical

canonical coordinates (up to the mentioned non-uniqueness).

Canonical coordinates can be chosen such that the Euler vector field takes the form

9
E = Zu% (2.35)
=1

Similarly note that by (2.34) we have (377, 0;) o X = (3°7,_;d;i 0 0;)X? = X for any
X = E?Zl Xi§; € T,M. Therefore the identity field can be represented as

"0
e=)Y_ o (2.36)
i=1 v

It follows by formula (2.34) that the metric n(u) is diagonal
mij(u) =< 6;, 05 >=mii(u)di;, 1 <4,j<mn, (2.37)

where 7;;(u) are some non-zero functions. Similarly it is easy to see by Proposition 2.2.7
and formula (2.37) that

2.2.4 Natural submanifolds

It is natural to consider submanifolds of a Frobenius manifold which behave well with re-
spect to the restricted Frobenius structure. Strachan considered submanifolds of a Frobe-
nius manifold which carry a Frobenius algebra structure on each tangent space and studied

their differential-geometric properties [81].

Definition 2.2.13. [81] A natural submanifold N of a Frobenius manifold M is a sub-
manifold N C M such that the Euler vector field at any ¢ € N is tangential to N and
induced Frobenius multiplication on N is closed, namely TN o TN C T'N.

Definition 2.2.14. [46] The caustic K C M is the set of points where M is not semisimple.

3Throughout we employ the convention of no summation over repeated indices when working with
canonical coordinates.
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The discriminant ¥ C M is the set ¥ = {t € M| U is not invertible on T3 M }.

Let I be the set I = {1,...,n}. It is mentioned in [81] that the natural submanifolds

of a semisimple Frobenius manifold may be obtained as the level sets

for some arbitrary subsets Z C I, J C I x I, provided that the ‘unconstrained’ variables

u; define a coordinate system on the submanifold, which requires further analysis.

2.2.5 Superpotential description of Frobenius manifolds

The theory of topological Landau-Ginzburg (LG) models involves a holomorphic function
called superpotential, depending in general on several complex variables. In the simplest
case this function is a polynomial depending on a variable p. The moduli space in the
LG theory can be described via a family of actions which depend on an additional set of
parameters a = (ay,...,a,) through the deformed LG superpotential A(p) = A(p,a) [84]
(see also [62]). Dubrovin showed that the space of parameters carries a Frobenius structure
[22]. Moreover, any semisimple Frobenius manifold M admits a description through LG

superpotential such that

ui(a) = Mgi(a),a), i=1,...,n,

where ¢; are critical points of \:

p=q;(a)

that is the canonical coordinates on the Frobenius manifold are precisely the critical values
of the superpotential A. This assumes that the roots of \'(p) are generically distinct. The
expressions for the metrics 7, g and Frobenius multiplication are given by the following

residue formulae:

9i(AMp)9;(A(p))

n(0;,0;) = Z res|,_,,. N 0) dp, (2.38)
psiX (ps)=0
0;(log AM(p))0;(log A(p
00.0) = 3 resl,, HEETIILEEAE) g, (2.39)
psiX (ps)=0
0i(A(p))0;(A(p)) Ok (A
000000 = 3 resl,, HEIOEIIBEEN G, )
ps:X (ps)=0
where 9; denote some vector fields on M and \'(p) = %ﬁop). The following example is

analogous to Example 1.7 in [22] (see also references [48], [91] and Chapter 3 for details

of similar calculations).
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Example 2.2.15. Let M be the (affine) space of complex polynomials of the form
Ap) =p" +arp™ 2+ +an, ai,...,a, €C. (2.41)
Tangent vectors to M at a point a = (ay,...,a,) take the form
AMp) = ap™ > + -+,

where the ‘dot” means derivative with respect to the parameter s on a curve passing
through the point a. The algebra on the tangent space of M at any point a € M is
determined by formula (2.40) and is commutative, associative with unity. Moreover it is

isomorphic for any o € M to the algebra of truncated polynomials

Ay = Clpl/X (p)-
Indeed, let us define a bilinear form 1 = 7, on A, given by

o) 9lp) = = v, LEI,

Let also define polynomials

k(p) = 0:A(p), Up) =0;M(p), h(p) =\ (p),

for some vector fields 9;,9;, 0, on M. Note that we have

!

k(p)l(p) = X (p)a(p) + r(p), (2.42)

for some polynomials ¢(p),r(p) with degr(p) < 2n — 1. In the algebra A, the product
(2.42) takes the form k(p)l(p) = r(p). Then using (2.42) formula (2.40) can be written as

= —res|,_,

Then n(0; o 0;,0x) coincides with the bilinear form n(r(p), h(p)) = n(k(p)l(p), h(p)) and
the multiplication o is the same as the multiplication in the algebra A,.
The space M is a Frobenius manifold, T\ M = (A,,n) where the metric n and Frobenius

multiplication are given by formulae (2.38) and (2.40) respectively. It follows by formula
(2.41) that
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= H P =4, (2.43)

for some points ¢; € C (¢; = 0 for some 7). Then we define coordinates u; by u; = A(g;),
1=1,...,n
Let us now show that n(u) is diagonal (cf. formula (2.37)) and that w; are canonical

coordinates for M. By definition we have

Then considering the Taylor expansion of A(p) centred at p = ¢; we have A(p) = A(¢g;)+ O,
where O denotes the rest of the terms, and O has zero of order at least two at p = g;.
Then

OuMD) | yeg, = OuA(g5) = 0y (2.44)

It follows by Lagrange interpolation that

2¢;pA (p)

O0wAP) = = BN (g

(2.45)

where ¢, =1if ¢; # 0 and ¢; = % if ¢; = 0*. Let us now consider formula (2.38), n(9,,, Ou;)-
In the case when i # j the polynomial 9,,A(p)9,;A(p) is divisible by X (p) and the residues
at the points ¢; (1 < i < n) are trivial. Hence 7(0y,,0,,) = 0. Let us now consider the

case when ¢ = 5. We get

8u- A 2 462 2 )\’
n(a’uH aul) = Z Teslp:ps Mdp = Z T€S|p:p9 (p) dp

)\’ . . 2 )\N
ps:\ (ps)=0 (p) ps: N (ps)=0 (p i ) ( )

Let us note that

(g) = 4emH — ). (2.46)
J#Z
Then
pll ';ﬁi(pZ - %2) dp 2¢;

n aui? auz - 861277/ res ] 7 - . 2.47
( ) Z |p =ps 2 _qi2 N(g)?  Ng) ( )

ps:X (ps)=0
It follows directly by formula (2.39) that g(d,, 0y,) = u; 'n(0,,, dy,), which implies

261‘51']'
w;\" (i)

“Note that the case ¢; = 0 is not considered in [91], thus formula (2.45) differs from formula (5.19) in
[91] by a factor of ¢;.

9(Ou;, 0u;) = (2.48)
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by formula (2.47). Similarly, one can show that for the Frobenius multiplication (2.40)
in the case when i # j or j # k the polynomial 9;\(p)d;A(p)dkA(p) is divisible by \'(p).
Therefore the residues at the points ¢; (1 < ¢ < n) are trivial. Then it can be checked
that the multiplication takes the form

n(aul o an7 auk) = V (Jq;k

Formulae (2.47) and (2.49) imply that 0y, o 0., = d;;0,,, as required.

As a final remark in this example let us note that the discriminant > corresponds to

(2.49)

the set of polynomials A(p) in M which have zero as a critical value.

2.2.6 Almost dual Frobenius manifolds

Dubrovin showed that given a Frobenius manifold M one can associate a new structure
on M \ X, called almost dual Frobenius manifold. For any ¢t € M \ ¥ a new multiplication
of tangent vectors u,v € Ty M is defined by the following formula:

uxv=E" ouowv, (2.50)

where E~! is the inverse of the Euler vector field associated to M. Note that E * u = u,
hence the Euler vector field E is the identity for the product *. The multiplication (2.50)
together with the metric g (2.19) and the Euler vector field E satisfy all the axioms of the
Frobenius manifold but constancy of the identity E.

Let us define the algebra A, = (T,M, %), t € M\ ¥. It follows from formula (2.50) that
A, is unital, commutative and associative. Moreover, A, is a Frobenius algebra since the
multiplication * is compatible with the metric g, that is for any u,v,w € T,M we have

the following property by formula (2.19):
gluxv,w) =n(E7 (uxv)ow) =n(E~ uo (vrw) = g(u,v*w),

since (u * v) ow = uo (v w) by (2.50). At any point t € M \ ¥, the map ¢ : A, — A,
u — ¢(u) :== E~'ow is an algebra isomorphism. Indeed for any u,v € T;M it follows from
(2.50) that

pluxv)=E ' o(uxv)=EoE T ouov=¢(u)o ¢(v). (2.51)

Note that in the basis t*, (1 < a < n) we have

0

N N 0
o Ag) = gar (O 5 (2.52)

The following lemma takes place.
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Lemma 2.2.16. The multiplications *, o coincide on the cotangent planes TyM, t €
M\ X.

Proof. Let ¢1”(t) denote the structure constants of the dual of A;. Let us consider equality
(2.51) with u = Oy, v = Jys. Using (2.52) we have

&1 5(1) 100" O = ¢, () gae () g3, ()N F 1 Oy,

which implies that ¢)5(£)g,0(t)1°7 = ¢, (t)gac(t)gpo(t)n*n?”. Multiplying by n,, we get
Cop(D)gna(t) = (1) gac(t)gpp(t). Tt follows that ¢4”(t) = c4”(t) by multiplying with
g’w‘(t) g"?(t), as required. O

Using that Lgn®® = (d — 2)n°”, it follows that
LpcSP(t) = (d—1)eS"(t), and  Lpg*’(t) = (d — 1)g*"(t).

Thus F is the Euler vector field for the * multiplication as well. Let us define the tensor
Capy(t) i= ga,\(t)g,gu(t)*’\“( t). It can be checked that the tensor V' 57 (t) 1= g"(¢)V .55 (t)

is symmetric for any p with respect to «, 8 and . Thus the covariant derivatives

Vs (t) = G ()95 ()gpr ()Y (8)

are totally symmetric. In the flat coordinates p®, 1 < a < n of the metric ¢ this implies

that locally there is a function F, such that

, OPF, oot o, o ap op'

_ 2.
Cabc(p> 8p“8pb8p ap apb ap aﬁV(t) ga]gbla c Oth atl,c'y (t)7 ( 53)

where gu = g(:%, -25) is the Gram constant matrix of the metric g in the flat coordinates

dp*? opb
p®. Associativity of the algebra jzlp implies that the function Fi(p) satisfies the following

system of equations:

EaLbl (p)glmémck(p) = éacl (p)glmémbk (p)u (254>

for any 1 < a,b,c, k < n.

Definition 2.2.17. An almost dual Frobenius manifold of charge d # 1 is the manifold
M\ ¥ with a smoothly varying (commutative) Frobenius algebra structure on each tangent

space, T,M = ( ;lp, g), p € M\ ¥ satisfying the following axioms:
(i) the metric g is flat;

(ii) in the flat coordinates p® of the metric g the structure constants ¢, (p) of the algebra
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;11, can be represented locally in the form

O°F.(p)
Cpe(p) = 9" 77 2.55
Che (p) aplﬁpbapc ) ( )
for some function F,(p) and g% = (dp?, dp®).
(iii) the Euler vector field takes the form
l—d~ , 0
E=""05"po 2 2.

a=1

and the function F,(p) must satisfy the following homogeneity condition:

LpF.(p) = (1 —d)F.(p) + quadratic terms in p;

(iv) there exists a vector field e(p) being an invertible element of A,, p € M \ ¥ such that
it acts by shifts v — v — 1 on the solutions of the system of equations
0%p ¢ (9P

o Véab(p)a_pca (2.57)

for some function p = p(p; v).

Definition 2.2.18. Any function p(p; v) satisfying the system of equations (2.57) is called

a twisted period of the Frobenius manifold.

Equations (2.57) arise from the vanishing of the torsion and curvature of the so-called
deformed flat connection V) defined on (M \ ¥) x C for any u,v € T,M,t € M \ ¥ by

the formula o
VWy=Vw+rvuxv, veC.

One can show that in the flat coordinates t* equations (2.57) can be written in an equiv-
alent matrix form B
0€(t), _ ;

1
oo A=)V +r—2o), l<as<n, (2.58)

where £(t) = (dpp(t;v),...,dmp(t;v)). Note that for the special value v = 0 the system
(2.58) coincides with (2.32) with A = 0 for the flat coordinates of the metric g. The vector
field e of axiom (iv) in Definition 2.2.17 coincides with the identity field e = O;n of the

Frobenius manifold. It can be checked that
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satisfies

Qaft(i)u =V +v— 2)7 1 <a<n.

This implies that axiom (iv) of Definition 2.2.17 is satisfied.

2.3 Generalised WDVYV Equations

Let F be a function defined locally in terms of some variables® ¢ = (¢!, ¢2 ... t"). Let F,

be the n x n matrix constructed from the third-order derivatives of the function F':

OPF
(Fa)sy = e Capr(t)-

Then generalised WDV'V equations take the following form:
FoF;'Fy = F F;'F,, (2.59)

for any indices «, §,~. It is immediate that the system (2.59) is non-trivial only when F’
depends on at least three variables. These equations appeared in the works of Marshakov,
Mironov and Morozov in the context of Seiberg-Witten theory [63-65]. The same authors
indicated that generalised WDVV equations can be written in an equivalent form where
Fz in (2.59) is replaced by any invertible linear combination of the matrices F,, (see also

[66]). Let us explain this in the next two propositions. Let us define the matrix
G=> bs(t)Fp, (2.60)
B=1

where the coefficients bs(t) are some functions in ¢, and suppose that G~ exists. Let us

also assume below that the matrices F, are invertible for any a.

Proposition 2.3.1. [66] Suppose that a function F satisfies the system of equations
~1 -1
FoF,Fg = Il " F,, (2.61)

for some fixed index €y and for any indices o, 3. Then for any «, B the following equations
hold:
F,G'Fs = F3G'F,. (2.62)

Proof. For any index o let C® be the matrix C*) = F_'F,. Then equations (2.61) can

be written in the equivalent form

[0}

[cl), el = 0. (2.63)

5See discussion in [62] for infinite dimensional situation.
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It follows that for any invertible linear combination H = 3%, bﬁ(t)CgO) and any index «
we have [(CS®))=1, H] = 0, and hence by taking inverse

[C) g1 = 0. (2.64)

Note that H = F'G, hence G™' = H 'F_!. The left-hand-side of formula (2.62) takes
the form

F.G™'Fy = F,H 'F'Fy = F,,COH'C%, (2.65)

€0~

and it follows from relations (2.63), (2.64) that the right-hand-side of (2.65) is symmetric

under the swap of a and 3, as required. O

Note in particular that in the case where G = F, for some v we have from Proposition
2.3.1 that system (2.61) implies that F satisfies generalised WDVV equations. Now we

prove a converse statement in the following form.

Proposition 2.3.2. [66] Suppose that a function F' satisfies the system of equations (2.62)
foralla,B=1,...,n. Then F satisfies generalised WDVV equations (2.59).

Proof. The system (2.62) is equivalent to
G'F,, G 'F3] =0, forany a,8=1,...,n. (2.66)
Note that the left-hand-side of (2.59) can be written as
FoF3'Fy = GG F) (G Fy) " (GTE). (2.67)

Using (2.66) we have that the right-hand-side of (2.67) is symmetric under the swap of «
and 7, and thus the statement follows. O]

It follows from Propositions 2.3.1 and 2.3.2 that generalised WDVV equations are
equivalent to the system (2.62) for any particular choice of matrix G of the form (2.60).
The matrix G (resp. G~') which is usually referred to as the ‘metric’ can be used to lower
(resp. raise) indices,

Capy(t) = Gac(t)ch, (1),
where c)4(t) = )5 are the matrix entries of C,, : (Ca); = ¢3, and Gag(t) are the matrix
entries of G : G = (Gap(1)).

Note that contrary to the formulation of WDVV equations in Section 2.1 in the case of
generalised WDVV equations all indices are treated on an equal footing and no constancy

of the metric is assumed.
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2.4  Finite Coxeter groups and their orbit spaces

In this section we recall main properties from the theory of finite Coxeter groups [17,50,51]
and the corresponding orbit spaces [77,78]. Let V' be a real n-dimensional Euclidean space

endowed with a positive definite symmetric bilinear form® (, ) =: g.
Definition 2.4.1. Let u,a € V. A reflection is a linear operator s, on V defined by

(u, @)

ur—>sau:u—2(a7a)
Definition 2.4.2. Let R be a finite set of non-zero vectors in V. The set R is called a

root system if
(i) for every a € R, the set R is closed under the reflection s,, saR = R;
(ii) the only colinear vectors to a root a € R are a and —a.

For any a € R we define the corresponding mirror to be the hyperplane 11, = {z €
Vl|(e,x) = 0}, then s,II, = II,. The group W C O(V) defined by W = (s,|a € R) is
called reflection group and is associated to the root system R. Note that W is finite. To see
this, let Sz denote the symmetric group on the set R and define a group homomorphism
¢ : W — Sg by sending w € W to the element of Sz which permutes the roots in the
same way as w. Then ker ¢ = {1} since only the identity element of W can fix all elements
of R.

Definition 2.4.3. A root system R is called crystallographic root system if for all o, € R

the following constraint is satisfied:
(o, B)

6.5

€ Z.

The associated reflection group W is called Weyl group.

The choice of a root system R is not unique: the map
{Root systems} — {Reflection groups}

is not injective since different collections of vectors satisfying the geometric conditions (i),
(ii) in Definition 2.4.2 can generate the same reflection group.

Given a root system R this completely determines W. However, R can be very large
and thus it is more natural to define a subset of vectors in R which completely describes
the set R. Let H be a generic hyperplane in V' and fix a vector u € V such that it is
normal to the hyperplane H. Let V., denote the open half-space V, = {x € V|(z,u) > 0}.

6The choice of notation g for this form will become apparent below.
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Definition 2.4.4. A positive root system in a root system R is a subset R, C R such
that R+ =RN V_|_.

It is clear that R can be decomposed as R = R4 U (—R4).
Definition 2.4.5. The set A C R, is a simple system if
(i) it is a basis for the R-span of R in V;

(ii) each o € R is a linear combination of elements of A with coefficients all of the same

sign.

Note that for any w € W, the subset wA is also a simple system with corresponding

positive root system wR .

Definition 2.4.6. Let R be a root system with associated reflection group W. Let
U= (R) C V. The rank of R (and of W) is the dimension of the vector space U.

Let Ry, Ry C R. We write (Rq,R2) = 0 if (o, 3) = 0 for any o € R; and € Rs.

Let us recall the following definition of a reducible root system.

Definition 2.4.7. Let R be a root system and let R{, Ry C R be such that R = R{UR,
and (R, R2) = 0. Then we call R reducible root system.

Definition 2.4.8. A root system R is called irreducible if it is not reducible.

Definition 2.4.9. A subset R' C R is called a subsystem of R if R' = RN U for some
vector subspace U C V.

Note that a subsystem is also a root system.

Proposition 2.4.10. [17, Ch. VI| Let V; be a vector subspace of V. Let R be the
subsystem R = RN V. Let Vy be the vector subspace Vo = (R'). Then Vo C Vi and R’

15 a root system in both V| and Vj.

Lemma 2.4.11. Let R be a reducible root system, so that R = Ri LRy for some subsets
R1,Ra C R such that (R1,R2) =0. Then R; (1 <i<2)1is a subsystem of R.

Proof. Let U = (R) C V and consider the corresponding vector space decomposition
U=U ®&Us, where U; = (R;), 1 <i <2. Then R; = RNU;, (1 <i<2)asrequired. [J

Note that every positive root system contains a unique simple system. Given a simple
system A the group W is generated by s,, @ € A. Indeed let us recall the following

statement.
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Theorem 2.4.12. Let A C R, be a simple system. Then W is generated by the set
S = {sq|la € A} subject to the relations

(Sasﬁ)m(aﬂ) = 17 Oé,ﬁ € A,

where m(a, f) € Z>o and m(a, ) =1, for all o € A.

Any (finite) group W having such a presentation relative to a generating set S is called
a (finite) Cozeter group and the pair (W, S) is called a Cozeter system. In addition, W
is determined up to an isomorphism by the collection of m(«, ). One can encode this
information in a graph with vertex set in one-to-one correspondence with A, which gives
rise to the notion of a Cozeter graph. These are constructed as follows. To each pair of
simple roots «, [ one associates the corresponding vertices which are connected by an
edge only if the condition m(«a, $) > 3 is met. In addition, if m(«, 5) > 4 such an edge
acquires the label m. Further on, a Cozxeter subgraph is graph obtained from a Coxeter
graph by either omitting some vertices or by decreasing the labels on one or more edges
(if the label is 3 then it is not indicated).

Definition 2.4.13. A Coxeter system (W, S) is irreducible if the associated Coxeter graph

is connected.

Equivalently, the above definition states that there exists no partition of S into two
non-empty subsets S; and Sy of S such that each element of S; commutes with each
element of Sy. Thus irreducibility of Coxeter system (W, .S) is equivalent to irreducibility
of associated root system R. Finite Coxeter groups were classified by Coxeter. The

following theorem takes place.

Theorem 2.4.14. The graph of any irreducible finite Cozeter system (W, S) is one of the
following ones:

Classical series

Ay,(n>1): e—e—-—o—o
B

. oo o -— o oo
D,,(n>4): .—0——0—<
>5): ee
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FEzxceptional groups

H; P
H, e’ o o o
Fy o oo o

Example 2.4.15. Let W = S, be the symmetric group. Let ¢, ¢ = 1,...,n be the
standard orthonormal basis in V', then W acts on V by permutations of the standard
basis. It fixes pointwise the line L = {RS5}, 6 = €; + - -+ + ¢,. Hence, we usually denote

W by A, _1.The corresponding root and simple systems can be chosen as follows:
R:{:l:<€l'—€j>}, 1§Z<]§TL, A:{Ei_€i+1}7 1< <n—1.
Moreover, for distinct «, 8 € A we have that

2, disjoint vertices,
m(a, B) =

3, otherwise.

Remark 2.4.16. It is worth noting that there is weaker notion of a root subsystem (see
[74]) where a subset R' C R is called a subsystem of the root system R if w(R') = R’
for all w = s,, a € R'. For example A; x A; C By is a reducible subsystem of Bj in this

sense but it is not a subsystem in terms of Definition 2.4.9.

Finally, let us introduce the notion of parabolic subgroups of W. We fix a Coxeter
system (W, 5).

Definition 2.4.17. For any subset X of S the subgroup Wx of W generated by X is
called a parabolic subgroup of W.

Note that under the action of W the group Wx is mapped to its conjugate W, x =
wWxw™?, for any w € W.
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2.4.1 Chevalley’s Theorem

Let us fix an irreducible finite Coxeter group W of rank n. Consider the dual space V* and
let S = S(V*) denote the symmetric algebra on V*, namely the algebra of polynomials on
V' with real coefficients. Thus S has a natural graded ring structure S = @32, S @) An
element f of S@ is called homogeneous of degree d. The group W acts naturally on S as

a group of automorphisms by defining

(w.f)(u) = fw ),

forany we W, ueV, f e V*. Wesay f € S is W-inwvariant if w.f = f for all w e W
The subalgebra of W-invariants R = S" has also a graded ring structure R = R & R™,
where Rt = @2, R, with R := RN S@ and elements of R correspond to constant
polynomials. The structure of the algebra R is the subject of the following result of
Chevalley.

Theorem 2.4.18. The subalgebra of invariants R is generated by n algebraically indepen-

n

dent homogeneous polynomials f*, ..., f™ of positive degree, d; = deg f°.

Definition 2.4.19. A set of algebraically independent homogeneous polynomials f*, ..., f"

of positive degrees is called a set of basic invariants of W.

Let ' (1 < i < n) be a generator system for the algebra S and let J(f) be the
Jacobian J(f*,..., f*) = det(9f'/027)},_,. The following well-known result is crucial for

our considerations.

Proposition 2.4.20. |51] There is a proportionality

J(f) ~ ] (. 2).

aER 4

The basic invariants f1,..., f® are not canonically determined. However, one can show
that the corresponding degrees d; are independent of the choice of these generators and
are invariants of the group. The numbers d; can be described explicitly for every group

W and are related to the eigenvalues of a Coxeter element.

Definition 2.4.21. Let ¢ € W be the product ¢ = [] .5 5o With an assumed choice of
ordering of the simple reflections s,. Any such element c is called a Coxeter element and

the order h of ¢ in W is called the Cozeter number.

Although a Coxeter element depends on the choice of ordering of simple reflections

and on the choice of simple system A it can be shown that all such elements are conjugate
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in W. Then all Coxeter elements (as elements of GL(V')) have the same characteristic

polynomial P = P, which takes the form

where m; (1 < i < n) are integers which in fact satisfy
O<m=1<me<..<mu_1<my=h—1<h. (2.68)

Note in particular the strict inequalities m; < mgy and m,,_; < m, [17, Ch. V, p. 127,
Corollary 2|. The polynomial P(\) has real coefficients. Hence for all j the power of the
term A — exp 2”% in P(\) is equal to that of another factor which has to have the form

2im(h—my;)

;—=. It follows that the numbers m; satisty the relation

A — exp
my; + Mpy1—5 = h, 1 < ] <n. (269)

A surprising fact [51, Theorem 3.19] is that the degrees d; of W are related to the
numbers m; by the formula d; = m; + 1, for any 1 < j < n. Then it follows from

equalities (2.69) that
dj+dn,j+1:h+2, 1§j§n

In Table 2.1 we list the degrees of invariant polynomials for all the finite Coxeter

groups.

Table 2.1: Degrees of basic invariants

Type dy,...,d,
A, 2,3,...,n+1
B, 2,4,5,...2n
D, 2,4,6,...,2n—2,n
I(m) 2,m
Eg 2,5,6,8,9,12
E; 2,6,8,10,12,14,18
Ey | 2,8,12,14,18,20,24, 30
Hj 2,6,10
Hy 2,12,20, 30
Fy 2,6,8,12
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2.4.2 Flat structure on Coxeter orbit spaces

K. Saito proved uniformly the existence of a flat structure on the orbit space of a (irre-
ducible) finite Coxeter group W acting on the complexification of a real vector space |77].
Case by case construction of such structure was determined explicitly for all irreducible
finite Coxeter groups except for the types of E7 and FEg in [78]. For E7 and FEjg this was
accomplished later in [1,83] (see also [89]). Let us recall this notion of flat structure.

Let 2°, 1 < ¢ < n be some linear coordinates on V. The exterior derivative f — df =

S 2Ldat induces a bilinear map on R* x RT — R* defined by’

p X g+ (dp,dq) = ——(dxk,dxl), p,qg € R, (2.70)

Note that this product is well-defined since the bilinear form (, ) on V' is W-invariant and
is uniquely determined up to a non-zero constant multiple [17, Ch. V, p. 70, Proposition
1]. By Proposition 2.4.20, det(df*, df?);_, is proportional to [Tocr, (@ x)?, thus the form
(dp,dq) for any p,q € R™ degenerates on the union of the mirrors of W. The following

theorem takes place.

Theorem 2.4.22. |78| The matrix %(df’} df7)} ;= is non-degenerate. Furthermore there
exists a real n-dimensional subspace Q of R such that for any p, g € Q the form %(dp, dq)

takes constant values and ) generates R.

Note that the operation % is defined uniquely up to constant factor due to the strict
inequality d,, > d,,_;. A R-basis of €2 is called a flat generator system. Thus the problem
of determining a flat structure on the orbit space of W reduces into finding a set of basic
invariants f* of W which is a flat generator system, namely %(dfi, df’) € R.

Let us now consider the complexified vector space V @ C = C™ with (complex) coordi-
nates z'. Let My be orbit space My, = C*/W. By Theorem 2.4.18, My is isomorphic to
C" as an affine variety with coordinate ring R ® C generated by basic invariants y!, ..., y".
Namely,

R®C=C[z',...,2"" =C}',...,y"]. (2.71)

Let us recall the following important notion.

Definition 2.4.23. The set ¥ called discriminant is defined as the image of the union of

the (complexified) mirrors of W under the quotient map
m:C" — My (2.72)

Equivalently, > consists of the irregular orbits of W.

"This map is related to V. Arnold’s convolution of invariants [6].
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We will sometimes refer to the union of all hyperplanes Ilg, 8 € R as discriminant as

well. The quotient map on the complement to the discriminant,
75t C*" \ Uper Iy = My \ 2, z=(2',...,2") = ylx)=(y',...,y"), (2.73)

is a local diffecomorphism. Then, the linear coordinates z*, (1 < ¢ < n) on C" can be
viewed as local coordinates on My, \ X. The bilinear form (, ) on V is extended to a
complex quadratic form on C™. Note that this form is also defined on My, \ ¥ due to
its W-invariance. Then the map (2.70) induces a (complex) metric g(y) on the space of
orbits given by o

99(y) = (' dy’) = 3" 2L ) (2.74)

k.l

Then My can be regarded as a complex vector space with linear coordinates y* (1 < i < n)
endowed with the form (2.74). As a consequence of Theorem 2.4.22 a flat structure is
determined on My;,. This flat structure can be thought of as a flat complex-valued metric.

We will be taking this view in the next section.

2.5 Frobenius structures on Coxeter orbit spaces

Dubrovin using the flat structure introduced by K.Saito showed that the complexified orbit
space of a finite irreducible Coxeter group W provides interesting examples of Frobenius
manifolds. This somewhat surprising relation originated from an observation from Arnold
that the degrees of certain polynomial prepotentials are related to degrees of basic invari-
ants. Dubrovin conjectured that this construction is unique in the sense that all analytic
(at the origin) solutions of WDVV equations (d < 1) which satisfy the semisimplicity con-
dition arise in this way. This conjecture was proved later by Hertling [46] (see Theorem
2.5.7).

Let now V denote the complex vector space C". Consider the action of W in V
which is a complexification of the action of W in R™ by (composition of) reflections. Let
My = V/W be the orbit space as before. We move to describing the Frobenius manifold

structures on My .

2.5.1 Saito metric and main constructions

The first key point is that the form (2.74) is the intersection form (2.16) of the Frobenius
structure on My,. Let e;, ¢ = 1,...,n be the standard basis in V, namely g(e;,e;) =

(€;,€;) = 0;;. Without loss of generality we will assume below that the coordinates z* in
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V' are the corresponding orthonormal coordinates with respect to g, so that

g(da',da’) = (dz',dx?) = g” = 6. (2.75)
Then we fix a metric g(y) on My \ ¥ with components

oy oy
oxk Oxk”
k=1

97 (y) = (dy',dy’) = (2.76)
Locally, the coordinates x* on My \ X are flat coordinates of the metric (2.76) and the
period mapping (2.33) is given by inverting the map (2.73), namely by solving the system

of algebraic equations

The Euler vector field is defined as

n

1 -0 1.0
E=-SNdy L =42 2,
Zdzy oy P (2.77)

=1

It is normalised such that it agrees with formulae (2.9), (2.10). By Theorem 2.4.22 the
matrix dy»g"(y) is non-degenerate and thus defines a metric on My,. We also have by
Theorem 2.4.22 that there exists a system of basic invariants such that this matrix takes
constant values. More specifically there exists a set of basic invariants t* (« = 1,...,n),

degt® = d, such that in these coordinates

agaﬁ(t> _ 5a+5,n+1

5 , 1<a,8<n.

Definition 2.5.1. The Saito metric n on My is defined as

n°8 = L.g°%(t) = 6>Fnt 1 <a, B <n. (2.78)

where L. is the Lie derivative along the vector field e = 8%.

Note that the Saito metric is defined uniquely up to proportionality. The coordinates

t* are called Saito polynomials or Saito flat coordinates.

Example 2.5.2. [22,34]| Let W = A,,_; and let z be a complex parameter. Saito polyno-

mials take the form

n
; o
o J\V — —
t _reSZ=°°H(Z_x)|z;;1xi=o> V= a=1,...,n—1.
Jj=1
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In fact the coordinates t* are examples of polynomial twisted periods (see Definition
2.2.18). The existence of a Frobenius structure on My, is established in the following

theorem.

Theorem 2.5.3. Let t* be Saito flat coordinates and let n®® be the corresponding Saito
metric given by formula (2.78). Then there exists a quasi-homogeneous polynomial F(t)
of degree 2h + 2 defined (uniquely up to quadratic terms in t*) by the following equations

(a,p=1,...,n)
(do + dg — 2)0°"0 01 0 F (1),

bl'—‘

g*o(t) =

with the Euler vector field (2.77). Furthermore, the polynomial F(t) determines a polyno-

mial Frobenius structure on My, with the structure constants
DF(t)
COé t — ae ,
50 =" Graman

0
ot -’

Example 2.5.4. |24] Suppose rank W = 3. Then the polynomial F'(¢) takes one of the

following forms:

and the unity e =

(t3)2t1 + t3(t2>2 (t2t1)2 (t1)5

Fay () = 2 T T
B (t3)2t1 ‘l’ t3(t2)2 (t2)3t1 (t2)2(t1)3 (t1)7
P, (1) = 2 Tt T 210’
(t3)2t1 ‘l’ t3(t2) (t2)3(t1)2 (t2)2(t1)5 (t1>11
Fug (8) = 2 T T2 T ao60

Remark 2.5.5. Let W = B,,. The orbit space My, can be identified with the space of
complex polynomials of the form (2.41) in Example 2.2.15. The coefficients ay, . .., a, are
coordinates on My, with corresponding degrees dy = 2, dy =4, ..., d, = 2n (as functions
in z%). The superpotential A(p) can be represented as (see Chapter 3 for more general

superpotentials and corresponding analysis)

It can be checked that

Then it follows by formula (2.48) that

ox® Ox? u 2¢;x 00U,
g(dz® dx — du du] = .
Zauzauﬂ )= L @ 1PN
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Using formulae (2.43) and (2.46) we get

22" \(p)
(p? = 3(x*)?)(p* = 3(=*)?)N (p)’

g(dz®, dxb) = res| g

Then

292°A(p)

P 1@ - L@

g(dz®, dz®) = —(res|,_, +res|,_, .+ 1es|_.0)

Therefore the metric (2.48) coincides (up to a sign) with the W-invariant metric on

V' defined by formula (2.75). The identity field e is proportional to agn and the critical

points ¢; (hence also the values A" (¢;)) do not depend on the coordinate a, since deg a,, >
dega,_1. It follows from (2.48) that

s 1 " : 1 " : 1 " ;g :
Leg(u) = Lo(5—uX (@)07) = X' ()07 Lo = X' (g:)6" = 1 (u),
() = £.(5-uN (@)67) = 5N (@)% Lo = 5-X' (@)% =1 (a)
since the identity e in canonical coordinates takes the form (2.36). Then the metric (2.38)
coincides (up to proportionality) with the Saito metric on My . Hence, the Frobenius
structure on the space M of complex polynomials of the form (2.41) coincides (up to

equivalence) with the Frobenius structure on the orbit space Myy.

Example 2.5.6. Let W = B,. Consider polynomials y',y? € C[z]" given by
y' = (¢")’ + (2*)* and ¢ =a((z")" + (2®)") + b(a'2?)?,

for some a,b € C*. One can check that ¢! = ¢y' and t* = y?|,__,, are Saito polyno-

mials, that is 7,3 = da1p,3. The determinant of the intersection form is a homogeneous

polynomial of degree 8 in the 2 coordinates and it vanishes precisely on the discriminant
A(t) = —(#1)? +4096a% (1) = 160° (z'2*((+1)* - (+%)%))" = 0.

Note that canonical coordinates can be chosen as

((21)? = (22)%)*

4 Y

up = (x'2?)?, and wy = —

though in general they are not polynomial.

It was shown by Dubrovin that the Frobenius manifold My is in fact semisimple. The
following theorem by Hertling establishes that the only polynomial and semisimple Frobe-
nius manifolds are those constructed on the (complexified) orbit space of finite Coxeter

groups.
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Theorem 2.5.7. [46, Theorem 5.25| Let (M, o, e, E,n) be a semisimple Frobenius manifold
with the following properties:

(7’) £E<x © y) =Toy, EEn(xvy) = (2 - d)’?(%y)y fO?” any r,y € F(TM)7

(ii) the Euler field takes the form
~~ 0
E - dataT,
20
for a basis of flat coordinates t* and giva > 0 for all .

Then M decomposes uniquely into a product of Frobenius manifolds My, where W is an

2

irreducible finite Coxeter group with Coxeter number h = 1=;.

2.5.2 Almost duality on My,

It was shown [66,86] that the for any root system R C R™ of a finite Coxeter group the

function .

./_"(l') = Z Z<77 x)Q 1Og(77 f)? (279>

~ER
satisfies generalised WDV'V equations. Dubrovin related polynomial solutions to WDVV
equations with logarithmic solutions of the form (2.79) through the concept of almost
duality. The almost dual structure constructed on My, \ ¥ has a prepotential F,(x) which
is of the form (2.79), where the roots are normalised so that (v,~) = 2.
Let us define the tensor ¢q.(x) by taking third order derivatives of F,(x),

, PR Ya Vo Ve
o) = e = 2 Trye) (250
+

where v; = (e;,7). Let & (2) = ¢%%¢q.(x), where ¢g? is defined in (2.75). Then for any
r € C"\ Uger, 1y, the tensor & (x) forms the structure constants of an associative n-
dimensional algebra [25, Corollary 3.2]. The Euler/identity vector field of the almost dual
Frobenius manifold is defined by formula (2.77). Note that this agrees with axiom (iii)
of Definition 2.2.17 since 1 — d = 2. The vector field e in axiom (iv) coincides with the

identity e = 9;n of the Frobenius manifold My, .

2.5.3 Almost duality on discriminant strata

Feigin and Veselov showed in [35] that almost dual Frobenius multiplication (2.50)

usv=E‘touow



CHAPTER 2. FROBENIUS MANIFOLDS AND FINITE COXETER GROUPS 47

has a natural restriction on discriminant strata. The corresponding prepotentials also have
the form (2.79) with summation running over some projections of root systems. Below,
we recall some of these results.

Let us recall the notion of a discriminant stratum. Let us fix a collection of roots
S C R and let D = Ngeslls.

Definition 2.5.8. A discriminant stratum in the orbit space My, is defined to be the
image of D under the quotient map 7 given by (2.72).

Sometimes we will refer to the intersection of hyperplanes D as a discriminant stratum
as well.

The left-hand-side of equality (2.50) can be restricted to any stratum D with v and v
being tangential vectors to D. Let Rp = RN(S). Let ¥p be the union of the hyperplanes
II, N D in D, where v € R\ Rp and consider point zy in D \ ¥p. Let u,v € T,,;D and
consider extension of u and v to two local analytic vector fields u(z), v(z) € T,V such that

u(zg) = u and v = v(zg). Let us recall the following result.

Lemma 2.5.9. The multiplication u(x) * v(x) has a limit when x tends to xo which is

proportional to Z (o, u) (e, v)
—
a€R\Rp (e, o)

Furthermore, the product u v at xq is tangential to D.
As a corollary the following theorem takes place.

Theorem 2.5.10. The almost dual Frobenius structure (2.50), (2.79) has a natural re-
striction to the space D \ Xp with the prepotential

Fp(x) = éll Z (v,2)*log(y,z), x€ D\ Zp. (2.81)

YER\RD
which also satisfies the WDV'V equations.

The above results establish that there is a limit of the formula uxv = E~ouowv, as x
tends to xg, and u, v are tangential to D in the limit. However it is not clear what happens
with individual terms on the right hand side of this formula in this limit. We give more
details on this in Chapter 3 thus clarifying the missing bits in the almost duality relation

(2.50) on the discriminant strata.



Chapter 3

Saito Determinant for Coxeter

discriminant strata

The Saito metric n defined on an orbit space of a finite Coxeter group induces a metric on
the Coxeter discriminant strata which is given by restriction of the metric n to the strata.
In this chapter we obtain the determinant of the induced metric. It is shown that this
determinant in the flat coordinates of the intersection form is proportional to a product
of linear factors. We also find multiplicities of these factors in the determinant in terms

of Coxeter geometry of the stratum.

3.1 Main Theorem 1

Let us fix some notation. Let V' = C™ with the standard metric g given by g(e;,e;) =
(i, €j) = 0;j, where €;, i = 1,...,n, is the standard basis in V. Let z*, i = 1,...,n be the
corresponding orthonormal coordinates in V. Let W be an irreducible finite Coxeter group
of rank n which acts in V' by orthogonal transformations such that V' is the complexified
reflection representation of W. Let My, be the orbit space My, = V/W. Let R C V be
the Coxeter root system associated with the group W.

Consider a collection of roots (5i,...,0, € R, let D = ﬁ?zlﬂgj and let m be the
projection map given by (2.72). The metric 7 on My induces a metric on the stratum
7(D) which is naturally given as the restriction of n to 7(D). We will denote this metric
by np and its inverse by n”. Let us recall that the map 7 is a local diffeomorphism on
D near generic point zq € D. This allows us to lift metrics np, n” to the linear space D.

Likewise the metric 1 can be lifted to V near a generic point.

Definition 3.1.1. [73] A finite set A of hyperplanes in a vector space is called an ar-

rangement.

We will only be considering hyperplanes passing through the origin. Let A be an

48
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arrangement in V. Then we have its defining polynomial given (up to a scalar multiple)
by
I(A) = ] e (3.1)

TeA

where o, € V* is such that 7 = {z € V : a(x) = 0}.

Definition 3.1.2. [73] A Coxeter arrangement is an arrangement of mirrors of the Coxeter

group W.

Let A be the Coxeter arrangement corresponding to W. Then the determinant of the
Saito metric is proportional to I(A)%. To see this, let p* (i =1,...,n) be basic invariants
for W and let J(p) be the Jacobian J(p',... ,p") = det (8pi/8xj)zj:1.
Proposition 2.4.20 that there is proportionality J(p) ~ I(A). Let us take basis of Saito
polynomials t*, 1 < o < n and fix J = J(¢,...,t").

We have from

Proposition 3.1.3. We have
detn(z) = —J>. (3.2)

This proposition follows by performing a coordinate transformation ¢ = ¢(z). Then
nij(x) = %%nkl(t), which implies the statement due to Definition 2.5.1.

We are interested in the determinant of the restricted Saito metric np on the discrimi-
nant strata D. We will show that det np is a product of linear forms which can be viewed
as a generalization of formula (3.2). Let Ap be the restriction of arrangement A to D,
namely

Ap={DNH|HeAand D ¢ H}.
For each H € Ap we choose Iy € D* such that H = {x € D|ly(xz) = 0}. We can identify
vectors and covectors using bilinear form (, ), so that § € R also means a covector
f = B(x) = (B,z). Note that for any H € Ap there is a root § € R such that 3|, is
proportional to .

Let us consider the determinant of np in some coordinates which are given as lin-
ear combinations of the coordinates x?, i = 1,...,n. In these coordinates the following

theorem holds.

Main Theorem 1. The determinant of the restricted Saito metric np is proportional to

1T & (3.3)

HeAp

the product of linear forms

where kg € N.

Remark 3.1.4. In fact det np is generically non-zero. In the case of classical root systems
this follows from Theorems 3.3.5, 3.3.14. In the case of strata of codimension 1, 2, 3 and

4 in exceptional root systems this follows from our corresponding analysis in Section 3.6.
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Similarly, for the strata considered in Section 3.7. For the strata of dimension 1 see our
discussion in Appendix A.

n+1=i A natural question

Let us consider a constant metric of the form 77 = Y 7" | dp'dp
is whether restriction of such metric to any stratum D satisfies the factorisation property
as in Main Theorem 1. In other words, how special is the property of the metric np to
have a factorised determinant with prescribed structure of linear factors? Let us consider

the following example.
Example 3.1.5. Let W = D3 = A3z and consider the following basic invariants:

3 3 3
1 i i i
P =@ =Tl P =a )@ b
i=1 i=1 i=1
for some a,b € C. Let a = e; — e3 and consider the corresponding stratum D = II,. Then

the determinant of metric 7 restricted to D is proportional to
(@2 ((2")? = (2%)?)* ((2")*(~64a + 32a® — b) — (2°)?(64a + 2b)).

Furthermore, det7)p is a product of linear factors which all vanish on the intersection of

mirrors with D exactly when a # 0 and b takes one of the following values:

detjp ~ (x?’xl((xl)Q - (x3)2)) , b= —32a,

det 7/7\D -~ (ZES)4((ZL‘1)2 N (1‘3)2>2, bh— 32(—2& + a2>7

. : 32
detp ~ (xS)Q((ajl)Q — (a:3)2)3, b= 5 (a2 — 4a) . (3.4)

Note that p’, (i = 1,2,3) are Saito polynomials if a = —% and b = 24. In this case

n = n and detnp takes the form (3.4) as expected from Main Theorem 1. The degrees
of linear factors in (3.4) are related below in Main Theorem 2 to some Coxeter numbers.
More generally, metric 77 in higher dimensions can have determinant of a restriction on a

stratum D with nonlinear zero loci.

3.2 Degrees of linear factors

In this section we formulate a main theorem on the degrees kg in Main Theorem 1.

Lemma 3.2.1. Let R be a reducible root system and let Ri, Ry C R be such that R =
R1URs. Consider the corresponding vector space decomposition (R) = Vi @ Vs, where
Vi=(R;). Let R C R be an irreducible subsystem. Then either R C Vi or R C Vs.

Let u € V and let B be a set of vectors in V. We will denote by (B, u) the vector

space spanned by elements of B and u. Let S be a collection of linearly independent
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roots S = {v,...,%} C R, 1 < k < n and let D be the corresponding discriminant
stratum D = N,egll,. Let Rp = RN (S) and consider its orthogonal decomposition into

irreducible root systems

l
Rp=| |RY.
=1

Below we will denote by A the corresponding Coxeter arrangement. For any 8 € R\ Rp
we define the root system Rps = (Rp, ) N R which can be represented as a disjoint

union of irreducible root systems R%) 5 (i=0,...,p), as follows:

p
Rps=| |RYs (3.5)

1=0

We will assume below that 3 € Rg)ﬂ. It follows from Lemma 3.2.1 that

0 i
RO |RY. (3.6)
i€l
for some subset I C {1,...,{} and
RE)y =Ry, (3.7)

where 1 <j<p p=I0—|I|and i; € {1,...,{}\ I

Proposition 3.2.2. Let Rg?ﬁ be root system from the decomposition (3.5). Let E € R be
such that B is a non-zero multiple of B|,. Then E € Rg)ﬂ.
D 9.

Proof. Let V be the vector space V= (Rp,B) = (Rp, E} and consider the root system
R =V NR. Then R takes the form

p
R=(Rp,B)NR=| |RY,.

1=0

Let us now assume that 3 ¢ Rg’)ﬁ. Then 3 € R%) for some i € {1,...,{} \ I, hence

Bl =0, which is a contradiction. Thus the statement follows. O
D

Main Theorem 2. Let H € Ap. Let 5 € R be such that (3|, is proportional to ly and it
is non-zero. The multiplicity of ly in the expression (3.3) is ky = h(Rg?ﬁ), where h(Rg?ﬂ)

1s the Cozeter number of the root system Rg?ﬁ from the decomposition (5.5).

We are going to prove Main Theorems 1, 2 (in the case of exceptional Coxeter groups)
for a subset of simple roots L C A, L = {a,,..., ;. }, 1 <k < n and the corresponding
stratum. Let us show how the statement of Main Theorem 1 then follows in general. Let
D C V be a stratum such that there exists w € W satisfying D =uwD.
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Lemma 3.2.3. Let y' and z* (i =1,...,n — k) be some coordinates on D and D respec-

tively. Then
det n5(2) = det B*det np(y), (3.8)

where B = (ggj)?;:kl is the Jacobi matriz of the transformation w € W, w: D — D.

Proof. We note that 7 is W-invariant. Then we have

np=w 'np. (3.9)

Using equality (3.9) the determinant of 17 is thus obtained from the determinant of 7p

by replacing y coordinates with z coordinates, and the statement follows. O]
This implies the following W-invariance of Main Theorem 1.

Proposition 3.2.4. Suppose that the Main Theorem 1 is true for D. Then it is true for
D.

Proof. Let S be such that D = N,c5ll, and let E~E~R\ <§> Then E = wf for some 5 € R
such that S[, # 0. We therefore have R 5 = (S, ) N'R. This shows that

Rpz=w(S, B NR=wRps=wRYsU- UwRY,,

where Rp g is given by (3.5). If § € Rg’)ﬁ then E € R%))E = ng’)ﬁ, and the Coxeter

numbers of Rg?ﬁ and R%))E are equal. Therefore the statement follows by Lemma 3.2.3. [

Let simple system A C R. The following result establishes that it is sufficient to prove
Main Theorem 1 for L = {ay,,...,a;, } C A, 1 <k <nand D = Nuerll,. It follows from

the simply transitive action of W on the family of alcoves and their closure.

Proposition 3.2.5. [51] Let L= {7,---,%} C R be a collection of linearly independent
roots and let D be the corresponding stratum D= N, eplly. Then there exists w € W such
that D = w='D has the form D = Nuerll,, where L = {ay,,...,q; } CA.

3.3 Classical series: Main Theorem 1

In this section we show that Main Theorem 1 holds for the determinant of the Saito
metric restricted to a stratum of a classical Coxeter system. We use Landau-Ginzburg

superpotential description of the Frobenius structures on the discriminant strata.
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3.3.1 Ay discriminant strata
Let us recall that the Landau-Ginzburg superpotential is given by [22]

N+1

Ap) =[] -2, (3.10)

=1

where p is some auxiliary variable and z?, 1 < i < N + 1, are the standard orthonormal
coordinates in CN*! with the additional assumption Zf\gl x* = 0. Then A(p) is a function
on the orbit space CN*1/Sy.,, for any fixed p. Note that up to a sign the metric (2.39)
coincides with the standard Sy i-invariant metric g on CV [22].

Let us consider an arbitrary discriminant stratum D given by the following equations:

zh = =2™ =&,
gt = = gt = ¢ (3.11)
gZiSemitl = Yiemi — ¢

where n,m; € Nand > )" ;m; = N + 1. Note that the dimension of this stratum is n, and

&1, - .., &, can be considered as coordinates on D, { = —Y " | & =

Then, the superpotential for the stratum D is

n

An(p) = A)lp =[]0 — &)™ (3.12)

1=0

The expressions for the restricted Saito metric np = 7|, and algebra multiplication are

then given as follows (cf. [22| for the case m; = 1, Vi),

(G, () = Z res|,_, mdp, (3.13)
Pps:Np (ps)=0 S (p)
np(Gi o Gy k) = Z res|,_,. 4o )C],(/\D)Ck(/\D)dp, (3.14)
PsiAp (ps)=0 Ap Q
dAp(p)

where ¢; denote some vector fields tangential to D and \p(p) = >

Proposition 3.3.1. On the stratum D we have the following expression for X :

n

Nop) =V + D [0 - & [[0 - ) (3.15)

i=1

for some points q,...,q, € C.



CHAPTER 3. SAITO DETERMINANT FOR COXETER DISCRIMINANT STRATA 54

Proof. Starting from formula (3.12), we have

n

o) =] — &)™ Q)
i=0
for some @ € Clpl|, deg @ = n. Then formula (3.15) follows. O
The following formula which follows from Proposition 3.3.1 will be useful below
Ay (N +1 qu]H — &) (3.16)
j#l a=0

where ¢; = ¢ — g;.
Let u; = Ap(g;), © = 1,...,n. Similarly to the case n = N (see [22|) we have the

following statement.

Proposition 3.3.2. We have

Ou, A (D) |peg, = 0ij- (3.17)
Proof. By definition we have
Ou,
0ij = 90, = 0u; Ap(¢5)-

Then considering the Taylor expansion of A(p) centred at p = ¢; we have

Ap(p) = Ap(q) + O,

where O denotes the rest of the terms, and O has zero of order at least two at p = g;.
Then

8ui)‘D(p)|p:qj = 8ui)‘D(Qj>a (318)
and the statement follows. O]

Analogous to the n = N case we obtain the following result.

Lemma 3.3.3. We have

_ Ap(p)
Sl = N @) (319
and
D L (3.20)

T (@ -\ (@)

where 1 < [l,a < n.
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Proof. Starting from formula (3.12) we get

n

duro(p) = [[ (0 — &) Fipi1). (3.21)

a=0

where F' € C[p] and deg ' = n — 1. From Proposition 3.3.2 we have 0,,Ap(p)|

and therefore

p=aq;

01,
[T (g — &a)meat

Since deg F' = n — 1, the points (¢;, F(¢;)), i = 1,...,n completely determine the polyno-

F(g;;1) =

mial F' and therefore by the Lagrange interpolation formula we have F(p; 1) = >~/ _, Fi(p; 1),

where
pP—aq
Fepil) = Flas D [ [ -—
i#k gk Qz
Hence
P—q
Fe(pil) = == (3.22)
Ha 0(Qk ma 1 };][ qr — QZ

It follows that F'(p;l) = F;(p;1). Therefore by considering ;\\,?((5 )), where A}, () is given by
p\di

(3.16), the first statement follows from formulae (3.15), (3.21), (3.22).
Let us express Ap(p) as the product Ap(p) = (p — &)™ [, (p — &)™. Then

=& — o - & [Jo— (3 m2t)

a=1 b=1

OuAp(p) = 0w ((p — &)™)

=

S
I
—_

(0 &)™ — Ap(p) 3y 2

—~ p=&

=

= auz ((p - gO)mO)

2
I
—_

From the first statement of the lemma this equals to % Dividing both sides by
D

(p— &)™t for some k, 1 < k < n we arrive at the following relation

- _jﬂﬁ__n 0w _ Ap(p)
Oullo=ta™) p=8) | 1™ == &)mﬂémbm—@b) T - @) &)™ )
Py
(3.23)
Note that /
A
%p gk—mkak—gb . (3'24>
btk
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We substitute p = & in the relation (3.23) and we get with the help of (3.24) that

o (6 = )06 = m P
mkH(fk €a) Sk = my, (& — @) Ap(ai)

a=0
a#k
The statement follows. m
Lemma 3.3.4. The critical values u; = A\p(q;), (i = 1,...,n) are the canonical coordinates
for the structures (3.13), (3.14) on the stratum D, that is
;i
nD(auiaan) = 7w
Ap (@)

8ui o} (9uj = (57;]-(9“]..

Proof. We use formulae (3.13), (3.14) together with (3.19). We consider consider formulae
(3.13), (3.14) with the vector fields ¢; = 0,,, (; = 0,,. Note that the residues are trivial in
&, (0 < a <n)by Lemma 3.3.3.

Let us consider first formula (3.13). In the case when i # j the residues at ¢; (1 <1 < n)
are trivial by Lemma 3.3.3, and hence 1p(0,,,0y,) = 0. Further on, by (3.13) and (3.19)

we have

9 0 (5u')‘D(p))2 1 XD(ZD)
D\Yu;s Yu; ) — Tes|, — . dp = 77 res| = —=—2—dp.
1o ( ) Z |pfps D N7 (q:)? E: |p*ps » — q,)? P

ps:)\ID(ps):O ps:)\ID(ps):O

It then follows from Proposition 3.3.1 and formulae (3.12), (3.16) that

Uisj (auz ) auz) -

N 1 T‘Lf —¢&)mi—t " i — 4y 1
\ + : Z T@S‘p:p H],()(p &) Hﬁé (p %)dp _ ’
Ap(ai) ; ’ P—a Ap(a)
ps5/\D(ps):0
as required.

Let us now consider formula (3.14). In the case when ¢ # j or j # k the residues at ¢
(1 <1 < n) are trivial by Lemma 3.3.3, and hence 1p(0,, © 0y, 0y, ) = 0. Further on, by

(3.14) and (3.19) we have

’

O, \ 3 1 A 2
Np(8,00,,,0,,) = Z res|,_, Mdp = Z res|,_, %dp.
D Ap(@) (= @)

ps:Xp (ps)=0 ps:\p (ps)=0

It then follows from Proposition 3.3.1 and formula (3.12) that

(N +1)2 5 [T — &)™ D Tp — ;) 1

nD(auiO@ui, auz) = W T@3|p:ps P — g )\},(qz-)'

ps:/\lD (ps)=0
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Therefore

nD(aui © auj? auk) =
which implies the second statement of the lemma. O
This allows us to find det np in the coordinates &;, 1 < i < n.

Theorem 3.3.5. The determinant of the restricted Saito metric np in the coordinates &;,

1 <i <mn, is factorised into a product of linear forms given as follows,

detnp =K [ &, (3.25)

0<i<j<n
where &; = & — & and K = (=1)2i=mdtnN(N 4 1) =NTT" m2 [0 miet.

Proof. We have by Lemma 3.3.4 that the determinant of the Saito metric np in the coor-

dinates u;, 1 <i < n, is

det np(u) :H //1 < (3.26)

detnp(€) = (det A)~ H Ap(@), (3.27)

where A is the n x n matrix with the matrix elements ﬁ, 1 <i,a < n. We note that

this is a Cauchy’s determinant and can be expressed as

n(n—1)

[z &isais
1<)

detd =0 @

(3.28)

where ¢;; = ¢; — g;.
From Proposition 3.3.1 and formula (3.12) we get

/

- N -1 Ap(p)
H(é.a qz) - (N + 1) (p _ fa)ma_l

=1

n

—-m me -
Hgab v+l N1 H{ab. (3.29)
b=0

P=8a ph=0 —
b#a b#a

Using formula (3.16) we have

" N (g n(n-1) n Ma—

o 20lt) _ v T - 6me
i<j i Qsesn
1<i<n
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By formula (3.29) we get

Hz 1 )‘D Qz H Hfma_l (330>

Hl<] U a=0 b=0
b#a

where ¢ = (—1) ™5 izotme D (N 4+ 1) [Ty (N + 1) 1mg) ™"

Combining formulae (3.27), (3.28), (3.30), we obtain the following expression for det 7p

LSEIO) TN s SIETC QPR 1 o)

Hi<j ijqij a=1 0<a<b<n a= Ob 0

detnp =

Finally, we note that

n n
HH ma—l Z:L Limi— n(n+1) H gma+mb 2
a=0 b=

b

0<a<b<n

n(n+1)

which gives the required statement as ¢ []_, (N + 1)*1ma)2(—1)2?:1imi—T — K. O

3.3.2 By, Dy discriminant strata

We consider the Landau-Ginzburg superpotential
N
=" []0* - @)%, (3.31)
i=1

where p is some auxiliary variable and ¢, 1 < i < N are the standard orthonormal
coordinates in CV and k = 0, —1. In the case k = 0, ) is the superpotential for the By
orbit space and in the case £k = —1, A is the superpotential for the Dy orbit space. Note
that up to a scalar multiple (see Remark 2.5.5) the metric (2.39) for the superpotential
(3.31) (k = 0) coincides with the standard By-invariant metric g on CV. Similarly for the
case of Dy.

Let us consider a By /Dy stratum D in CV given by the following equations:

1

= . =2 = 0,
81lerl — —c l+m1 5
c = Em T 1
l+mi+1 __ _ l+my1+mgo __
Empt1 T = = ey pme T = &y, (3.32)
Yt mel A e
e i tmen® S = = ST =6
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where l e NU{0}, e, =+1(j=1,....N=0),n,m; e N(i=1,...,n), > my=N—I,
and &1, ..., &, are coordinates on D. Equations (3.32) define discriminant stratum for Dy
provided [ # 1, and they always define a discriminant stratum for By.

We then consider the following superpotential on D:

n

Ap(p) =™ [J0* = &)™, (3.33)

=1

where m € Z and N = m + > orym; # 0. In the cases when m > —1 the superpotential
Ap(p) corresponds to restriction of the superpotential A(p) to discriminant stratum D.
Indeed, we get Ap(p) with m =1 —1, where { = 0 or [ > 2 by restricting A\(p) with k = —1
(type Dy) to the stratum (3.32). And we get Ap(p) with m = [ > 0 as the restriction
of \(p) with £ = 0 (type By) to the stratum (3.32). Superpotentials (3.33) with m; = 1
for all ¢ and —n + 1 < m < 0 were considered in [15,91]. The following statement follows
from formula (3.33).

Proposition 3.3.6. We have the following expression for the derivative XD(p) :

Np(p) = 2Np™ [T — &)™ T — o). (3.34)
i=1 i=1
for some points q; € C.
Let us define (canonical) coordinates u; = Ap(¢;), i = 1,...,n.

Proposition 3.3.7. We have the relation
Ou, Ap (D) |peg, = 0ij- (3.35)

Proof. The proof is similar to the proof of Proposition 3.3.2. O

The following formula which follows from Proposition 3.3.6 will be useful below:

Ap(ai) =4 NG [ [(@ = &)™ T[(@ - %) (3.36)
a=1 b=1
b£i

where ¢, = 1if ¢; # 0 and ¢; = % if ¢; = 0. The latter case occurs if and only if m = 0.
Let e =[], &.

Lemma 3.3.8. We have

dup(p) = 2 AD@ ) (3.37)
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Proof. Let U;(p) = 242 2p®) By Proposition 3.3.6 and formula (3.36) we get

5 2 .
pT—q; AD(Qi)

Pl (p* = &)™t H%&- (P* —¢2)
@ TTh_ (g — &2)ma—t H%%(q? —q)’

Ui(p) =

with deg U;(p) = deg 8, A\p(p) = 2N — 2. Tt also follows that Ui(p)lpeg, = O AD(q5) = 0
by Proposition 3.3.7. Note that the functions U;(p) and 0,,Ap(p) have the form of a
mqe—1

product of even polynomials of degree 2n — 2 and the function p*™ [['_,(p* — &2)

This implies the lemma. O
Next we determine the Jacobi matrix between the coordinates & and w;.

Lemma 3.3.9. We have

261'5(1 1
au,'ga = NS 3.38
q; — &2 Ap (@) ( )
where 1,a =1,...,n.
Proof. From (3.33) we obtain
0 0(p) = 23 22D 60,6, (3.39)
=P &

By Lemma 3.3.8 we obtain the following identity from (3.39) for a fixed k& (k =1,...,n):

26ip Ap(p) - A (p)
- i£0u,&;- .
(p? = @) (p* = §)m™ Ap(a:) 2 ]Z_; (p? — @2)@2 _ gi)mk—lmﬁj & (3.40)

We then consider the Taylor expansion of A\p centred at p = & observing that /\g) (&) =0,
r=1,...,my — 1. Finally we substitute p = & in the identity (3.40) and we obtain

2€;&k, Ap(p) _ A5 () 0, Ex

(& — a)Ap(a) P = &)m] ¢, (my — 1)1(28)me—t >
which implies the statement. O
Lemma 3.3.10. The critical values u; = Ap(q;), i = 1,...,n are the canonical coordinates

for the structures (3.13), (3.14) on the stratum D, that is
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Proof. We use formulae (3.13), (3.14) together with (3.37). We consider formulae (3.13),
(3.14) with the vector fields ¢; = 9,,, ¢; = 0,,. Note that the residues are trivial in &,
(1 <a <n) by Lemma 3.3.8.

Let us consider first formula (3.13). In the case when i # j the residues at ¢; (1 <[ < n)
are trivial by Lemma 3.3.8, and hence 1p(0y,;,dy,;) = 0. Further on, by (3.13) and (3.37)

we have

3 An(p))? 4e} P*Ap(p
Np(Ou;s Ou;) = Z res]p:ps Mdp = Z res|p:ps —(p2 _17((12;2dp.

D\4Ys
PsZAID (ps):O ps5>\ID (ps):0

It then follows from Proposition 3.3.6 and formulae (3.33), (3.36) that

P - T - ),

(0., 0,) = Vel S res it d
D ivYu;) = 7 N9 res|,_ P = 7 s
o Gi P=ps P’ —q Ap(a)

as required.

Let us now consider formula (3.14). In the case when ¢ # j or j # k the residues at ¢
(1 <1 < n) are trivial by Lemma 3.3.8, and hence 1p (0, © 0y, 0y, ) = 0. Further on, by
(3.14) and (3.37) we have

(7u/\ 3 86? 3
100000 Ou) = S res),, L0y, S e, p(pg b0)?
D

D )?
pS:)\;:)(ps)ZO ps5/\lD(p5):0
It then follows from Proposition 3.3.6 that

e P T 0 - R T - g
_ i J#
ND(0u; 00y, Ou,) = m E 7’€S|p:ps 2 dp.
D ps5)‘;j)(ps)20 !

Therefore we get using formula (3.36)

261’
Ap(@:)
and hence Defind
€i0ij05k
n 81”08”].,8” - ”jj )
ol )= o)
which implies the second statement of the lemma. O

The following lemmas will be useful below.
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Lemma 3.3.11. We have

H(é - q;) —% [ (3.41)

=1 =
#

Sl
ISE

Proof. We have with the help of Proposition 3.3.6

n .G = XD(p) - 2 _ g2y—mp+l 3.42
E(ga q;) 2]Vp2m_1(p2 — £2)ma-1 . g(ga &) . (3.42)

We note that

n

)‘/D<p) 2m+1 2 ¢2
Mg — = 2m@§am+ (ga, - gb)mb7
(p2 - 52) ot p=Ea E
b#a
by formula (3.33) and the statement follows. O

Lemma 3.3.12. We have . .
2 _ M 2
[[a =5 11<
a=1 Na:l
Proof. The function A}, can be expressed as

n

! — m m d < m
Np(p) = 2mp” [ (0* = &)™ + 1 deI(PQ—Si) "
a=1

a=1
We equate the above formula to (3.34) and we divide both sides by p?*™~!. Finally we
substitute p = 0 to obtain
2N [T T (=ad) = 2m [T (€)™,
a=1 a=1 a=1
which implies the statement. O
Lemma 3.3.13. Let Y
I V()
[Tisi(a? — ¢2)?
1<)
Then . .
z=c][&m eV L& -,
a=1 a,b=1
b#a
where .
c= (_1)71(27;:1 Mg — (";rl) )€4n]/\72n—m—22:1 Mg H mZza—lmm. (343)

a=1
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Proof. Let us recall formula (3.36):
Np(@:) = 4eNg@™ [ (a7 — [ — ab)-
i
We have then
(AN e Ty @ T e (07 — €2 Hw 1( —q;)
z =
ngl(% —q;)?
n(n 1) ’Vl " n Ma—
=(-1) M‘HqII — &)™
a,i=1
By Lemma 3.3.11 we have
[ (- &yt = (myrZem eI Eia D T T magd)™ [T (65— &)™
a,i=1 a=1 a,b=1
b;éa
Therefore the statement follows by Lemma 3.3.12. O

Theorem 3.3.14. The determinant of the metric, np, given by (3.13) for the superpo-
tential (3.33) in the coordinates &, 1 < i < n, is factorised into a product of linear forms

given as follows

detnp = K [[&™™ [ @-&m, (3.44)

i=1 1<i<j<n

where K = ( )n +n(N- m)+y 1 Mip19n, mN N Ha . mma—i-l

Proof. In the coordinates &; the determinant of the metric np by Lemma 3.3.10 is

det np = e(det A)~2 11]1 X (3.45)
where A is the Jacobi matrix (0,,8,)}'.=;- By Lemma 3.3.9 we have
det A = (=2)"e [ [ & [ [(\o(a:)) " det B, (3.46)
a=1 1=1
where matrix B = (5= £2 7)ia=1- The determinant of the matrix B is a Cauchy’s determinant

and can therefore be expressed as

[T (6 — €D(e? — a2)
Hz’,a:1(£a2 - Qi> .

n(n—1)
2

det B = (—1)

63
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Hence det B can be expressed with the help of Lemma 3.3.11 as follows:

o A Hz 1(q —q3) s
t D = . .
‘ Ha 1 Ma&s H1<a<b<n(£2 gb) ( )

Combining formulae (3.45), (3.46), (3.47) and Lemma 3.3.13 we then have

detnp =€~ 2N2 Hm £ H (€2 — £2)%z. (3.48)

1<a<b<n

We get the required statement since

(—1)2?:_11 i g — ") 6_1(2N2>_n H mic =K,

where ¢ is given by formula (3.43). O

3.4 Classical series: Main Theorem 2

We show that the statement of Main Theorem 2 is true for the root systems Ay, By and
Dy.

3.4.1 Ay discriminant strata

Theorem 3.4.1. Suppose R = Ayn. Then the statement of Main Theorem 2 is true.

Proof. Let S C Ay be a collection of roots such that the discriminant stratum D = N,egll,

is given by equations (3.11). Let &,...,&, be the corresponding functions on D (see
(3.11)).
Let Rp be the root system

Rp = <S>QAN:{046AN|OC’D:0}.

Then Rp has the following structure

|| Am-r

m>1

We are interested in the multiplicities of the linear forms [(§) =&, —& (0 < a <b < n)
in the formula (3.25). We choose corresponding roots 5 € Ay such that [ = 3|, as follows:

B = €mot-tma = Emot-tmy-
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Let H be the hyperplane in D given by the kernel of [. Then we have

(S, 8)NAy = | | Am—1U A, m,—1,
m;>1

i#a,b

where the last root system A,,, .+, —1 contains 5. Therefore m,+my = h(Ap,+my—1) = ko

as required. This completes the proof for the root system Ay. O

3.4.2 By, Dy discriminant strata

Theorem 3.4.2. Suppose R = By. Then the statement of Main Theorem 2 is true.

Proof. Let S C By be a collection of roots such that the discriminant stratum D = N,¢s1l,
is given by equations (3.32). Let &,...,&, be the corresponding coordinates on D (see
(3.32)).

Let Rp be the root system

Rp = <S>OBN:{OZEBN|OZ|D:0},

and consider root system A,,,_; with corresponding simple system

i—1 i
€€+ — EjH1€541+; ka +1<;5< ka - L
k=1 k=1
Note that if [ = 0, then Rp takes the form

7?/D: |_| Ami—la

iimy>1

and
Rp= || Am-1uRO, (3.49)
im>1
where RW = B, if 1 > 2, RW = Ay, if | = 1.
We are interested in the multiplicities of the linear forms [(§) = &, (1 < a < n) and
T(f) =& +& (1 <a<b<n)in (3.44). We choose corresponding roots E,E € By such
that | = B . and | = E b’ as follows:

~

B = €rrmy+-tma B = Emytotma Climittma T Emyttmy Climy - tmy-

Let H and H be hyperplanes in D given by the kernels of 1 and Trespectively.
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~

Let us consider firstly the form [(). If m, = 1 then we have that

<S7B\>QBN: |_| Ami—luR@)a

imy>1

where R® = A; when [ =0 and R® = B,,; when [ > 1. The root system R contains
B, and 2(1 +mg) = 2(1 + 1) = h(R®) = kj as required.

If m, > 1 then we have

<57 B> N BN = |_| Amifl U Bl+ma7
imy;>1

i#a

where the root system By ,,, contains 3 . Therefore 2(I4+mq,) = h(Biym,) = kg as required.

Let us now consider the form [(£). Then

<S’ B> NBy = |_| Amifl U Ama+mb*1 . R(l)v
i#a,b
where the root system Ay, +m,—1 contains 3 and R™ is the same as in (3.49). Therefore

mq + my = h(Ap,+m,—1) = k7 as required. O
Theorem 3.4.3. Suppose R = Dy. Then the statement of Main Theorem 2 is true.

Proof. Let S C Dy be a collection of roots such that the discriminant stratum D =
MyesIly is given by equations (3.32), where [ # 1. Let &,...,&, be the corresponding
coordinates on D (see (3.32)).

Let Rp be the root system

Rp = (S) N Dy = {a € Dy| o], = 0}.

Note that
Rp= | | Am-—
im;>1
if [ =0, and
Rp= || Am-iuRO, (3.50)
m; >1

where RM = Dy if 1 >3, and RWW = A, x A, if | = 2.

We are interested in the multiplicities of the linear forms I(§) = &, (1 < a < n) and
1(6)=¢6+& (1 <a<b<n)in (3.44). We choose corresponding roots B,B € Dy such
that | = B‘D and [ = B’D. Let H and H be hyperplanes in D given by the kernels of T

~

and [ respectively.
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~

Let us consider firstly the form [(£). This form has non-zero power in the formula (3.44)
provided that [ > 2 or m, > 2. In the former case one can choose B =€+ €limittm,

and in the latter one can choose

B = Emitotma—1€tmy+otma—1 F Emytotme Clabmy+otmo-

If m, = 1 then [ > 2 and we have that

<Saﬁ>mDN: |_| Amifll—lDlJrl?

im; >1
where the root system D, contains B Therefore,
2(mg +m) =2(m+1) =20 = h(Dy1) = kg,

as required.
If m, > 2 then we have that

(S.8)NDy= | | Ap1uUR®,

imy>1
i#a
where R? = A} x Ay if my =2 and [ = 0, and R® = Dy ,,,. if [ +m, > 3. The root
system R contains § and we have 2(mg+m) = 2(ma+1—1) = H(R®) = kj as required.

Let us now consider the form ~(£ ). The root E can be chosen as

B = Emyttma Clbmyttma E Emyeetmy €lbmy4etmy -

Then
(9 B> NDy = |_| Ami—1 U Ay —1 U R(l)>

im;>1
i#a,b

where the root system A,,,m,—1 contains 3 and RM is the same as in (3.50). Therefore

Mq + My = (A 4m,—1) = kg as required. O
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3.5 A general formula for the restricted Saito determi-

nant

In what follows, let us fix a basis of simple roots «; (i = 1,...,n) for an n-dimensional

system. We will formulate a general expression for the determinant of 7p. Let us define

~ 0
(90% = izl()ék %, (351)
where a; = (a,&l), . ,a,(gn)). A basis of fundamental coweights, w* € V (i = 1,...,n) is
defined by ‘ '
(W' aj) = d5.
Let us define a new coordinate system on V' given by 7' = (W', z),i=1,...,n.

Lemma 3.5.1. In the coordinates ', 1 < i < n, we have % = 0y, -

Proof. Let x = (zt,...,2™")T and ¥ = (2',...,2™)T. Then 27 = QaT, where 2 is the n x n
matrix 0 = ()7 ;-; with Q;; = wéj) if w' = (wél),‘. . ,wén)). The{n a7 :kQ_liT, a;?d it is
easy to see that the (7, 7)-th entry of Q7! equals ozy). Therefore a%i = g% a%k = 042 )% =
O, - O

For any basis of basic invariants p’, ¢ = 1,...,n, let B(p) be the (n — 1) x (n — 1)
matrix obtained from the Jacobi matrix (J,,p’)7;=; by eliminating the k-th column and
n-th row. Let Ji.(p) = Ju(p',...,p" ') = det B(p) and let us fix J, = Ji(t!,...,t"1) for a
basis of Saito polynomials. Note that the degree of J; as a polynomial in 2%, is [R, | —h+1
where h is the Coxeter number, since the entries of the n-th row consist of homogeneous

polynomials of degrees h — 1, and deg J = |R|.

Proposition 3.5.2. [90] The vector field -2 can be represented as

op™
opt opt
ozl t ox™
9 SRR :
_ _1 . . .
o~ P g oyt | (3.52)
oxl c ox™
_0_ _9_
ozl to dz™

The above proposition can be checked easily by applying left-hand side and right-hand
side of equality (3.52) to the polynomials p’. Similarly, one can replace coordinates z*
in the right-hand-side of (3.52) with another coordinate system on V. This gives the

following statement.

Proposition 3.5.3. The identity field, e = 2., in the vector field basis O,,, (i = 1,...,n)

a0
can be represented as
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e=J" (=1)""Jida,. (3.53)
Lemma 3.5.4. Let R = B,,. Then identity field e takes the following form:

e—cZ L - @

=1
J#i

where ¢ € C*.

Proof. Note that identity field e is proportional to 32, where 52 = J~!(p) Y7 (=1)" " J;(p) 2

by Proposition 3.5.2. The polynomial J(p) is proportlonal to I (A) where A is the arrange-

ment corresponding to R, namely

Jo)~ ]2 I (@)= @)

i=1  1<i<j<n

For any i, 1 < < n basic invariants can be chosen as

n

p= Y

=1

and thus one can show that J;(p) is proportional to the Vandermonde determinant

Hwy H )2 — (xk)Q)

j=1 1<l<k<n
];é'L l,k#1

Then the statement follows. O

Proposition 3.5.3 can also be restated as follows. By formula (3.53) we can represent
the identity field as

e=> e, (3.54)

aEA
where i .
€ = €7,
J
with a = «; and €, the sign corresponding to the ordering of simple roots. More precisely,
€a = (—1)" (@) and ¢ is a bijection o : {1,...,n} = A.

Jo=Ji, (3.55)

Theorem 3.5.5. In the coordinates T (i = 1,...,n) the contravariant Saito metric n~! =

ik 0 0 ;
n" o= 5k 1S given by

Ji
J

nik — ( 1)n+1+ka + (_1)n+1+iawk§. (356)
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Proof. For the Euclidean metric ¢ in the coordinates ' we have by Lemma 3.5.1

w o a0 B ~ k) (k
i = (Das, 0a,) = () )@7‘3‘5‘)@) = a{Yaou = Zo‘z( ‘ol = (s, ).
k=1

Hence, for the Saito metric 2.78 we have
77“ = Legij = _gkjaakei - gikaakej = - ujei - au’ieja

where vector u' = g”«;. Therefore we have

(ui>o‘j) = Zgik(ak7aj) = gikgkj = 5;
k=1

Hence we can identify u! with w’ and rewrite 9, as 0,,;. The result then follows immediately

using Proposition 3.5.3. [

Proposition 3.5.6. We have

Qﬂ-Ha: H a, i=1,...,n.

acA aEA\q;

Proof. We have

i

2. [[o=X Y o= [] =

a€EA acA a€EA aEA\q;

by the definition of fundamental coweights. O

To get the determinant of the restricted Saito metric np we will need the following

general result on determinants.

Proposition 3.5.7. [75] Let A= (a;;)"._, be a square nXn matriz and let A;; = (—1)" M;;,

ij=1
where M;; is the (i,7)-th minor of A. Let 1 < p < n and let 0 = <.1 | be an
Ji - Jn
arbitrary permutation from the symmetric group S,. Then
Aijr -+ Aig, Wiy gper o Biger g
P D = (=1D)ll(det A)P~!
Aipjl Aipjp ai’rﬁjp«&»l A ain,jn?

where |o| is the sign of o.
We denote n = {1,...,n}. Let I C n be a subset of cardinality |I| =k, 1 < k < n.

Lemma 3.5.8. Let D = Nyerlly, be a discriminant stratum. Then 7', 1 ¢ I is a coordinate

system on D.
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Proof. Note that D = (w': i ¢ I). Let us consider a linear dependence of Z* (i ¢ I) on D:
Z ;T = Z a;(w',z) =0,
ig I igl

where a; € C. Then 37, a;i(w’,w’) = 0 for all j ¢ I. This is a system of n — k linear
equations and the matrix of this system is Q = () j¢r, Qi = (W', w?). Since w'’, i ¢ I are
linearly independent the Gram matrix €2 is non-degenerate. Therefore the only solution

to this system is the trivial one, a; = 0 for all i ¢ I. O
Let us now fix basic invariants to be Saito polynomials. We obtain the following result.

Theorem 3.5.9. Let [ = {iy,...,ix}, 1 <k <n, 1 < i < -+ < i < n and let
D = Nyerlly,. Then the determinant detnp of the restricted Saito metric np n the
coordinates T° (i ¢ I) has the following form on D:

ni1i1 L nilik
detnp =—J*| = . 1| (3.57)
nilz‘k o nz’kz‘k

In particular, the right-hand-side of the expression (3.57) has a well-defined limit as one
tends to D.

Proof. Let us consider the covariant Saito metric in the flat coordinates !, (1 <14 < n)

n = nydt'dt) = Zn: dt'dt"t Tt = Zn: zn: Dprt'dz” zn: Out™ a7 (3.58)
=1

=1 i=1 r=1

Note that for any p € C[z]" one has that

Izp(T)]y—og = Ou;p() =0. (3.59)

a; =0

Therefore, 0xut'|, =0, if | = iy,...,i. Hence, using the property (3.59) and restricting
formula (3.58) on D, we get that the Saito metric on D is given by

n

o= > Oet'di” Y Ot AT = 3 ndi di, (3.60)

i=1 T el rlel

where 7, = 327 (05t (8t ) and T = n \ 1.
Let Q = (¢i;)7'j—, be the matrix of ™" in the coordinates . Then

(_1>T+1er

rl = T 3 . 7l:17"‘7 )
el det O " "
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where @, is the (r,1)-th minor of Q. Consider the matrix C' = (1), ;7 It follows from
formula (3.60) that C|j is the matrix of np and detnp = det C|,,. By Proposition 3.5.7

applied for A =Q, p= |]A| =n — k and ¢ = Id we have
det C' = (det Q)" ™M (det Q)" "1 det Q; = det Q' det Qy,

where @7 is the matrix (g;;); jes. Since det Q! = detn, which is equal to —J? by Propo-

sition 3.1.3, the statement follows. n

Proposition 3.5.10. Let Ji, be as above. Then Jy is divisible by a(x) for alla € RN U,
where vector space U = (o : 1 < i < mn,i #k).

Proof. Let a = > i1 ¢;u; for some ¢; € C. Consider the linear combination of columns of
itk

the matrix B(t) such that the i-th column is taken with the coefficient ¢;. The resulting
entries are of the form d,¢" hence they are divisible by a(z). One can assume that such a
column appears in the matrix whose determinant is proportional to Ji, hence the statement
follows. O

Proposition 3.5.11. The identity field e is singular on every hyperplane of the discrim-
inant of W.

Proof. We have that deg J = |R| and deg J, = |R|—h+1 for any k, 1 < k < n. Hence
by formula (3.53) e* = (—1)"**Z is a rational function of degree 1 — h. Let us suppose
that e is non-singular everywhere on V. Then we must have that ¥ = 0 for all k and
thus e is identically zero which is a contradiction. Therefore e is singular on Il for some
B € R. Since e is W-invariant it follows that it is singular on IL, for any v € R such that
veWp.

In the case where R is an irreducible root system with a single orbit of the group W
it follows that e is singular on Il for all 5 € R.

Let us now consider the cases where R is an irreducible root system with two orbits
of W. Let the root system R = F; and let A C R be a simple system. Recall that the
corresponding Coxeter number is h = 12. Let a € A be such that e* = eaJTQ is non-zero.
Let us now assume that e is non-singular on the hyperplane II,. By Proposition 3.5.10 Jj3
is divisible by (v, x) for any 8 € A\ {a}. Hence ¢” is non-singular on II,, and therefore

J,, must also be divisible by (a, z). It follows that

1817 (3.61)

BeA

Since e* is singular on at least h—1 = 11 different hyperplanes inside the discriminant and
there are 12 short and 12 long positive roots, it follows from (3.61) that e has singularities

on hyperplanes from both orbits. It follows by W-invariance of e that e is singular on II,,,
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which is a contradiction. We therefore have that e® is singular on II, and hence e is
singular on Ilg for all 3 € A such that 3 € Wa. Thus by Proposition 3.5.10 we have that

ef = 65‘]7/3 # 0. Let us now assume (see e.g. [51]) that A = {1, s, a3, ay}, where
Q1 = €2 — €3, Qg =63 €4, A3=¢€, 04— 5(61—62—63—64)-

If a is a long root then it follows from the previous that J,, # 0. By Proposition 3.5.10
Jo, is divisible by asasay(as + 2as). Since this product has two long roots and two short
roots and deg e* = —11 it follows that e*' has singularities on both orbits. If « is a short
root then it follows by the previous that J,, # 0. By Proposition 3.5.10 J,, is divisible by
ayasas(ag + ag). Since this product has two long and two short roots it follows similarly
to the previous case that e** is singular on both orbits. The statement follows for both
cases due to W-invariance of e.

Let us now consider the case where R = [5(2m), m > 3. By Proposition 3.5.2 identity

field e is proportional to
0 0
-1 1 2
T g — ),

and the statement follows. Finally, the case where R = B, is a corollary of Lemma

3.5.4. 0

Corollary 3.5.12. The polynomial Jj, is not identically zero on the hyperplane Il,,. In

particular, Ji is not a zero polynomial.

Proof. We have from Proposition 3.5.11 that the identity field e is singular on the hyper-
plane II, for all v € R and thus it is singular on II,,. Further on, we have from Proposition
3.5.10 that the polynomial J;, i # k, is divisible by ay(x). Since the degree of vanishing
of J on II,, is 1 and e is singular on I1,, it follows that J; is not divisible by ay(z). The

statement follows. O]
Proposition 3.5.13. Let 8,7 € R,  # £7. Then Jp(z) =0 if f(x) = y(x) = 0.

Proof. There exists a non-trivial linear combination of 5 and v such that

a1 + ayy = Z b,

=1
i#k

where a1, as,b; € C. Note that dgp|, = 0,p|, = 0 for D = IIg N1l and any invariant

polynomial p. Hence a linear combination of columns of the matrix B(t) is zero on D. [

Let us recall the following statement on the cardinality of restricted Coxeter arrange-

ment.
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Proposition 3.5.14. [71] Let A be a Cozeter arrangement for an irreducible Coxeter
group W, and let H € A. Then the cardinality of Ay is

Anl=[Al = h+1, (3.62)

where h is the Cozeter number of W. In particular, |Ag| does not depend on the choice
of H.

Using Propositions 3.5.13 and 3.5.14 we get the following statement on the structure
of Jk

Corollary 3.5.15. Let A be a Cozeter arrangement and D = 11,, for some k, 1 <k <mn.
Then Ji|p, is proportional to I(Ap).

Proof. We have that deg J, = |[R.| — h + 1, and hence deg J, = |Ap| using Proposition
3.5.14. From Proposition 3.5.13, it follows that Ji|, is divisible by (|, for any g €
R\ {£a}. The statement follows. O

Let us define the following polynomials:
I:=J H alr)™t and I := Jj, H alr)™h (3.63)

where 1 < k <n.

We denote the discriminant strata as D;,
Dl’l """" lk = ﬁ‘l;::l]‘_[az . (3.64)

We obtain the following useful result on the relation between I,,, and I; on D ,.

Proposition 3.5.16. Let oy, oy, € A be such that |[Ry N S| > 2, where S = (ay, avy,). Let

D = Dy, be the corresponding stratum. Then
Im|p = (=)t Lip - (3.65)
Proof. Let v, denote the column vector
v = (8%]91, . ,8akp"’1)T, (3.66)

k=1,...,n. We have
3akpi = ap(z)Qri(2), (3.67)

for some Qyi(x) € C[z]. Denote the corresponding column vector Q) = (Qk1, - - ., Qrn-1)T
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Let us firstly consider the case when (ay, o, ) # 0. It follows from Equation (3.67) that
0o, Oy = (011, ) Qui(2) + 01(2)Oa,, Qui().- (3.68)

Similarly,
aozlaampi = (&17 Oém)sz(x) + am(x)aoqui(x) (369)

Restriction of equalities (3.68), (3.69) to D gives

Qu(2)|p = Qmi(2)]p - (3.70)

Let A = A\ {oym, oy }. Note that I, = a(z)ay(z) " Jn(z) and (z) = a(z)om, (z) " J(2),
where a(z) = [ xa(@)™. If I < m then oy(z)™'Jp(z) = det Ay, where the matrix

Ay has columns vy, ..., v 1, Q1 Vg1, -+ oy Oy - - -, U Similarly, au,(z) 7' Ji(x) = det A,
where the matrix A,,; has columns vy,...,0;, ..., Vm-1, Qm; Vm+1, - - - , Up and where U,,,, 1;

means that the corresponding column is omitted. By the property (3.70) the matrices
Aim|p, Ami|p have the same columns up to a permutation. The case m < [ is similar.
Now, let us suppose that (o, o) = 0. We are going to establish property (3.70). Since
Ry N S| > 2, there exists v € R, such that v = ¢yoq + caayy, for some ¢, co € C*. Then

0,0 = () Q.4 (3.71)

for some Q. ; € C[z], i =1,...,n. Therefore

3alpi = 01_1(&, — 028am)pi = cl_l((clozl(x) + ot (7)) Qi — CQ()[m(.x)Qmi).

Hence ( )
P = o' = Qs 2 amit) i — Qmi
Ql Oél(l') 1P Q’Y + c1 Oél(x) (Q’Y Q )7
which implies that
Qulp,, = Qvilp,, - (3.72)

Further on by differentiating (3.67) for £k = m and by differentiating (3.71) we get
0,00 = (7, ) Qoni + ()0, Qo) = (3, ) Qs+ 7(@)0y Qalw). (373)
Since (7, ) # 0 the restriction of equality (3.73) to D gives
Quilp = @il (3.74)

By formulae (3.72), (3.74) we have Qii|, = Qmi|p. The statement follows similarly to the
case (oq, ap) # 0. O
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3.6 Exceptional groups: dimension 1 and codimensions
1, 2, 3, 4.

Orlik and Solomon [72] and Shcherbak [80] classified the strata in the Coxeter discrim-
inants. We say that x,y € V are equivalent if their corresponding stabilizers in W are
conjugate subgroups in W. Let I' be a Coxeter subgraph of the graph associated to W and
let Wt be the parabolic subgroup generated by reflections in the mirrors corresponding
to the vertices of I'. Then Wr is the stabilizer W, of a generic point x on the stratum
corresponding to the vertices of I'. Thus up to equivalence there is a map from strata
in the Coxeter discriminant to types of subgraphs. This map is surjective but in general
not injective since it can be that there are different subgraphs of the Coxeter graph which
have the same type and which are mapped to by different discriminant strata ( [35], [72],
[80]). For example there are two non-conjugate classes of subgroups of type Az x A; in

E7: there are 11 subgraphs of type Az x Ay, one stratum corresponding to the subgraphs

o deee o coleos

and one stratum corresponding to the remaining 9, for example

P

Let us stress that our analysis depends on the parabolic subgroup, that is the type of
the Coxeter subgraph only and it does not depend on the particular choice of stratum for
a given parabolic subgroup. We are going to prove Main Theorems 1, 2 for a subset of
simple roots L = {a,,...,q;,} C A, 1<k < n and the corresponding stratum D.

In this section, we obtain formulae for the determinant of the restricted Saito metric for
exceptional groups in codimensions 1,2, 3,4 and n — 1 and thus show that the statement

of Main Theorem 1 and Main Theorem 2 is true.

3.6.1 Dimension 1

Let us choose n — 1 different elements iy, ...,i, 1 € {1,...,n} and consider the stratum
D=D; ., Leti,#iforanyk=1,...,n—-1,1<4, <n.

Theorem 3.6.1. The determinant of the restricted Saito metric np is proportional to

in

()", where h is the Coxeter number of R.
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Proof. The covariant Saito metric 7 can be expressed as

n= i i Ozit*dT’ Z Ogit" T hd. (3.75)

n
k=1 i=1 j=1

Since (%ijtk‘D = &thk‘ =0forj=1,...,n—1 we get
D

Mo =Y Ogint* gt 7H(dTm ). (3.76)

k=1

Note that Oz, t*0z:,t" 17 is proportional to (z'*)" since degt’ = d; for all j and d; +
dpy1—5 = b+ 2. This implies the statement. O

Corollary 3.6.2. The statement of Main Theorems 1, 2 is true.

3.6.2 Codimension 1

Fix m, 1 < m < n and consider the corresponding (n — 1)-dimensional stratum D = D,,.
Let H € Ap.

Theorem 3.6.3. The determinant of the restricted Saito metric np is factorisable into a

product of linear forms on D. Furthermore it is proportional to

1T & (3.77)

HeAp

where my = |Yg|, with Xy = {X € A|H C X}.

Proof. By Theorem 3.5.9 we have that det np is proportional to — n™™.J?

by Theorem 3.5.5 that

|, and therefore

detnp = 2J28wmﬁ

J :—2Jmawmle.

D

Recall that J = cay, [[gep, B, where R, = Ry \ {an}, ¢ € C. We thus note that
OpmJ|p =c HﬁeRm B|p- Therefore, by Corollary 3.5.15, one has that det 7)p is proportional
to

I(Ap) H Blp, (3.78)

BERM

Note that the second product in equality (3.78) can be written as []yc 4, I3, Where
qu = |Su| with © = {X € A|X D H,H # D}. That is, ¢z = myz — 1. Thus, we obtain
the required result. O

Corollary 3.6.4. The statement of Main Theorem 1 is true.
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Fix H € Ap. Let € R be such that H = {z € D|f(x) = 0} and consider Rp g =
R N {am, B).

Proposition 3.6.5. We have that

myg = hm,ﬁ
where hy, g is the Coxeter number of the irreducible subsystem in Rp g which contains 3.

Proof. The root system Rp g is a rank 2 subsystem of the root system R containing a,
and 8. Note that my = %|RD,,B|~ If the dihedral root system Rp g is irreducible then
%|RD75| equals its Coxeter number, and the statement follows. If the root system Rp g is
reducible then

RD,ﬁ = {Z‘:Oém,:tﬁ} = Al X Al

and my = $|Rpg| = 2. Since the Coxeter number of the root system A; equals 2 the

statement holds in this case as well. ]

Corollary 3.6.6. The statement of Main Theorem 2 is true.

3.6.3 Codimension 2

Let o, € A, 1 < m < 1 < n. Let us consider the (n — 2)-dimensional stratum
D = Dy,,,. We note that restriction of the covariant Saito metric 7 to the stratum D is well-
defined as the components of the metric n are polynomial expressions in the coordinates
x' (1 = 1,...,n). However, this is not necessarily true for the individual terms in the
expansion (3.57) of detnp as these terms can be singular on D. Below we will calculate
limits of these terms as x tends to D in a prescribed way which will give us the value of
det np.
More specifically, by Theorem 3.5.9, the determinant det np is given by

mm ml

n

n
gt

det np = —J? : (3.79)

where the limit of the right-hand side as x tends to D is taken. Furthermore, recall that
by Theorem 3.5.5 we have

, J, - J;
pik = (1) g ()it 2 (3.80)
J J
i,k =1,...,n. Therefore, using formulae (3.63) one has
Opi— = Oyi = — —0; ——— Oy —- 3.81
YT Y ayg(z)I ap(z)2 1" * ag(z) 1 (381)
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Further on, we are interested in the structure of I. Let d € Zx be the degree of vanishing
of I on D. Note that d = |Ry N (o, am)| — 2. Let us represent I as

I=fg, (3.82)

where f € C[z] is a homogeneous polynomial of degree d in the variables a,,,(x), oy (z) and
g € Clx] is not identically zero on D. Let dy be the degree of f(z) as a polynomial in «,
dy < d. We represent f(z) as

f@ﬂ=:§:aﬂﬁ@ﬂa%4@ﬂ==@%d%w)§:a#ﬁ@0a$*%$% (3.83)

where a; € C, a4, # 0. We have the following result.
Let a, 8 € R. In what follows, we will mean by F |a38 the restriction of a function F
onto « = = 0 in the order o = 0 first followed by takiﬁg the limit g — 0.

Lemma 3.6.7. We have

oy ()1 (2) 7' 0 (2)|am=0 = do. (3.84)

a;=0

Proof. Let f and g be as defined in (3.82), (3.83). Then
() (2) 0,1 (x) = aq(x)g(x) " 0ug(x) + cy(z) f(x) 'O f (). (3.85)
We note that by formula (3.83) one has

d do—1i
B 1a;0; a
o) (@) O f(a)|, _, = S = do.

Zz 0 alal Qm =0

Therefore restricting expression (3.85) onto «,,, = 0 first followed by the restriction onto

a; = 0, the statement follows. O

Let A = A\ {a;,m}. Let us consider the diagonal and anti-diagonal terms in the
determinant (3.79) separately.

Lemma 3.6.8. Let A = J?n™™n''. Then

Al — D™ 4(dy + 1) I, o — 3.86
Jam=0 = (1) + 1)1 I{a\mo (3.86)
aEe

Proof. By formulae (3.80), (3.81) we have that

nkk — (_1)n+k+123wk% — (_1)n+k+12( 1 IIk + 1 8wk%),
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for any k =1,...,n. Then

I = (=)= o o+ O D — LITT'OT) [ e
SONYES

Then

A= (=1)""4( = ap Ly + QL = T I 0 D) (= a7 L+ 0Dy = LI 00) [T« [ @

a€A  GeA
= (=14 = L+ (B Ly = L0 D) ) (= I+ (Bl = 1 0) ) T 02
acA
We consider the restriction of A on D,, first. This gives,
Al o = (=1 4L (I = (@) (0 dy = B90) ) TT 0¥, -

aEA

Therefore, restricting A further on D; and using Lemma 3.6.7, we obtain the required
result. O

Let us now consider the anti-diagonal terms.

Lemma 3.6.9. Let B =n™J. Then

B\am_oo =do(-1)""" L, [ | oz|am_o, (3.87)
aEA

Proof. Using formulae (3.80), (3.81) we have

L (caymagdmy,

— _1\n+i+1 .
B_J(( ) .

that is

B= ((—1)"+l+1am (O Ty — LT 20 T) + (= 1) ™y (2) (O I — Imrlawll)) e

acA

We consider the restriction of B on D,, at first. This gives

B = (=" (O Ty — I 10 d) [ @l —o- (3.88)

am=0

acA
Then restricting B further on D; and using Lemma 3.6.7 we obtain the required result. [

Using the above results we obtain a general expression for the determinant det np.
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Theorem 3.6.10. The determinant of the metric np is proportional to
L. ] o, (3.89)
acA

Proof. In the notation of Lemmas 3.6.8, 3.6.9 we have
Oél:() al:O
By these lemmas we get

detnp = doI, [ o[, + (1) 4(do + 1)1, [ ] 07|, (3.90)

acA acA
Let us first consider the case where d > 0. Then |R; N (o, a;,)| > 2 and from Proposition
3.5.16, we know that I, = (—1)""™71[; on D. Therefore
detnp = (=1)""(dy + 2L [ ] o?], (3.91)
aeA

as required. Let us now suppose that d = 0. Then f is constant and dy = 0. Therefore
(3.90) implies (3.91) as well. O

Let us reformulate Theorem 3.6.10 in terms of defining polynomials of some arrange-
ments. Let Rp = R N (an, oy). Note that Ap = AP = {D}.

Theorem 3.6.11. The statement of Main Theorem 1 is true. Furthermore, the determi-

nant of the metric np is proportional to
I(Ap,, \ Ap, )I(Ap, \ Ap), (3.92)

on D.

Proof. For any H e Ap,, let ag € R be the corresponding covector such that H =
{z € Dpl|ag(z) = 0}. Similarly for any i e Ap, we choose auz € R such that H =
{z € Di|ag(x) = 0}. We note that from Theorem 3.6.10 and Corollary 3.5.15 det np

proportional to

[,

S

Il p o iy~ T eal, T esl,~ I 6 (3.93)
HeAp,, HeAp, HeAp
H#D A#D

where {7 = O‘I?‘D for H € Ap,, UAp, such that H = ﬁﬂD, kry € N. Thus Main Theorem
1 holds. Formula (3.92) follows from (3.93). O
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Theorem 3.6.12. The statement of Main Theorem 2 is true.

Proof. Let us now fix H € Ap. We have to show that the multiplicity kg in Theorem 3.6.11
(formula (3.93)) takes the required form. Let 5 € R be such that H = {x € D|p(x) = 0}
and let R = Rp.s be the root system R =RN (Cm, ay, B). Let A be the corresponding
arrangement. Note that the multiplicity kg is given by

ki = |Ap, \ D| + |Ap, \ D|. (3.94)

If the root system R is irreducible then

~ —~ ~ 3h h
[ Ap, \ Dl = | Ap \ DI = |A| ~h =" ~h =7,
where h is the Coxeter number of 7/5, and the statement of Main Theorem 2 follows.
Let us now consider the case where R is reducible. Suppose firstly that Rp is an

irreducible rank 2 system. Then
R=RpU{+8} =Rp x A4, (3.95)

and

|Ap, \ D| = |Ap, \ D| = 1. (3.96)

Then ky = 2 equals the Coxeter number of Ay, and the statement holds in this case as
well.

Let us now consider the case where Rp is reducible. Suppose firstly that R,z =
R N {ay, B) is an irreducible rank 2 system and let A be the corresponding arrangement.
Note that R takes the form

R = Rayp U {Em} = Ra,s X Ar. (3.97)

Then |Ap, \D| = |A|—1 = h—1and |Ap,\D| = |Ap,| = 1, where h is the Coxeter number
of Ry, 3, and the statement of Main Theorem 2 follows. The case where R N (o, 5) is

irreducible is similar. The final case to consider is when 7% takes the form
R = {Ham} U{Eta} U{£8} = A x A; x A,.

Then equalities (3.96) hold, and ky = 2 as required. O

The above analysis shows that the statement of Main Theorems 1 and 2 for the the
determinant of the restricted Saito metric in codimensions 1, 2 and n — 1 is true. This

covers all strata in finite Coxeter groups I(p), Hs, Hy, Fy. This leaves us to study simply
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laced cases Fjg, E7, Fg only. The analysis becomes more involved and it will depend on the

parabolic subgroups which we consider.

3.6.4 Codimension 3

We consider (n—3)-dimensional strata D for simply laced Coxeter groups. Thus we obtain
factorisation formulae for the determinant of the metric np for strata D of type Az, Ay x Ay
and A3.

Let R, be the positive root system of the root systems E,, n = 6,7,8, although the
presented analysis below works for any irreducible simply laced root system. Let \, v, 60
be simple roots and consider the corresponding stratum D = D), , ¢ of codimension 3.

Stratum Aj. Let us assume that Rp = RN (A, v, 0) is a subsystem of R of type Az

and consider the corresponding Coxeter graph

Agl ﬁ

o<
°

Note that A\+v, v+ 6, A+ v +6 € R,. The Jacobian J can be represented as
J = O0A+v)(v+0)(A+ v+ )1, (3.98)

where II is proportional to I(A\ AP) and II is non-zero on D. By Proposition 3.5.10 we
have in the notation of (3.55)

Jy=v0(v+0)K,, (3.99)
J, = MK, (3.100)
Jo = A\ +v) Ky, (3.101)

for some polynomials K, Ky, K, € C[z].

We assume without loss of generality that the ordering of simple roots o : {1,...,n} —
A is such that n + o~!()) is odd, and that o= '(v) = o1 (\) + 1, 071(0) = o7 1(N\) + 2.
The following statement follows from Proposition 3.5.3 and formulae (3.98)-(3.101).

Proposition 3.6.13. The A\, v, and 0 components of the identity field e are given by

K\

A
S VG RS T 6 W)y & (3.102)
, K,
R U ) 1O W)y & (3103)
e = — Ko . (3.104)
Qv+ 0)(AN+v+0)II

In what follows, we deal with the restricted metric np by restricting n on D, firstly,

then on D,y and finally on D. Firstly, we derive relations between K, Ky, K.
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Lemma 3.6.14. We have
K,,]DV = MKy + QB]DV , (3.105)

for some polynomial B € Clx] such that
Bl, = Kyl (3.106)

Proof. By Proposition 3.5.16, 2 = % on D,4. Then by (3.100), (3.101), K, = K,
on D,y. Consider K, — AKjy on the hyperplane D,. This polynomial vanishes if § = 0.

Therefore we can represent K, on D, as
K,,]DV = MKy + HB]DV , (3.107)

for some B € Clz] as required.
Furthermore, we note that K, is divisible by (A + 6) on D, since by Corollary 3.5.15
Ju|p, is divisible by A+ v + 6|}, . Hence,

K,|p, = MKg+0B|, = (A+0)P|, , (3.108)

for some P € C|x]. Moreover by restricting equality (3.108) further on D, 5, we get that
Blp,, = Plp, - (3.109)

Similarly, restricting equality (3.108) further on D, g, we get that P)| Dy = Ky Duo- It

follows from equality (3.109) that

B|D: K9|D7

as required. O

Lemma 3.6.15. We have
KA]D: K9|D. (3.110)

Proof. By Proposition 3.5.16, we have J—/\” = % on D, and hence K, = 0K, on D, .

It follows from equality (3.105) that K,|, = 60B[, , hence K,|, = B, . The

statement now follows from formula (3.106). O

Theorem 3.5.9 gives a general formula for the determinant of the Saito metric np
which we now specialize to the case of codimension 3 stratum. Let us represent J, given
by formula (3.98) as J = \v6.J, where

J=A+v)v+0)(A+v+0)IL (3.111)
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We will write components of Saito metric 77 (@7 ') as n*# o, 3 € A. We rearrange

detnp as
77)\)\ 77)\11 nAG )\QnAA )\Vn/\u )\977,\9
detnp = — |p™ v n*f J2|D =—|\vn Vv vhn’? j2|D. (3.112)
P gt gt AN om0 9200

Let A = (a;;)},_; be the matrix

)\277)\)\ )‘V77>\V )\977)\9
A — )\Vn/\u I/an/ Vgnue i (3113)
/\077)\0 Venue 027790

Let us recall the basis of fundamental coweights w' (i = 1,...,n), we will also write w*
for w? M, X e A.

Proposition 3.6.16. The matriz entries a;; (1 <i,j < 3) are well-defined generically on
D, and they have the following form on D,,:

K

all = )\2,’7/\/\ — 2)\2aw)\ <m>’ (3114)
2K,
=i = 3.115
K

as3 = 92,’799 — 29280.)6 <m), (3116)

LA K,
19 = )\VT]A == —gawA (m), (3117)

A K 0 K,
X0 4
= — —0, 3.118
as = A= 500 <()\+9) >+/\“9(()\+0) ): (3.118)
0

Q93 = vln"? = ——8 ( e 0 H> (3.119)
Proof. By Theorem 3.5.5 we have n® = —0,ae® — 9,5e* for o, 8 € {\, u,v}. Formulae

(3.114), (3.116), (3.118) follow from Proposition 3.6.13 immediately. Let us prove formula
(3.115). We have

K,
2 vv _ -9 2 5 v )
v V0. (V()\—l-l/)(l/—l—@)()\—l-l/—l—@)H)

By Leibniz rule and taking the limit v(x) — 0 we obtain the formula. Formulae (3.117),
(3.119) follow similarly. O

By Proposition 3.6.16 we see that the entries of A may be singular on D, y. Therefore,

in order to restrict J>det A on D, 4 we consider the expansion of det A and collect the
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terms with the same order of poles at 8 = 0. Let det A be

det A=C+ E, (3.120)

where

C = —a},a33 + 212093013 — T30,
and
E = all(a22a33 — a§3).
Note that E has a pole at 8 = 0 of order at most 2. Now we study the term C' near ¢ = 0.

Lemma 3.6.17. We have

C= 6301+92

where Cy, Cy are well-defined generically on D, g and have the following form on D, :

Cs, (3.121)

“ (”9)_3<%(%(“ N R ECIE
(o) ot

(oo -a.i) - B (oo -0 52)7).

Co— (A4 0) (2(%% - KE(/\ (A+6) ))2(%@ Loyt = awe%)
+2(aw9%—%u 0)"! ( —&<>\_1+()\+9)‘1>>x
< (050 - B0 0 ) 2 (0~ (4 0) ) x
x (%(A‘l + A+ 9)—1) - awx%) (%(9-1 + A+ 9)—1) - awe%)—
90 11; ((0)\ V2 (0 [1? —%(/\+9)‘1>2+
+2(awg%—%(x+9)—l) (a A@——(He) ))) (3.122)

Proof. We expand formulae (3.116), (3.119) as

B Ky 1K,
ags = 20,0 (()\ n 9)H> o0\ + O)I1

e
BTONANF O T AN+ o)
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Then expressions for C, Cs follow by Proposition 3.6.16 using Leibniz rule and by col-
lecting terms with the same degree of the pole at § = 0. n

By Lemma 3.6.14 we have
K|, = AKg+ 08|, , (3.123)
and hence we can represent K, as
K, = Ky + 0B + vQ, (3.124)

for some polynomial @) € C[z]|. Therefore we get

K,

MKy + 0B
H A

O =

=0, : (3.125)

D,

D,

since for A\, u € A we have
1, A=u

A —
(wmu){O’ )\%M

Lemma 3.6.18. The expression Ci|p, s divisible by 0, that is we can represent it as

Cy = (Cy + FO)0

9

D,

where 51, F are well-defined generically on D,y and have the following form on D, :

Cr=(A+6)3 ( - 4>\§(0m% - %(A + 9)-1)2 + 6)\%(8m% - %(A + 9)-1) x
x <§ - %()\1 A+ 9)1)>), (3.126)

and
F=(+0)*4(F) (- B+ g(xl + (/\+0)‘1>>2—
- —(—§+§ A7l (A+0)‘1>><—8Mﬁ+ %(A+9)‘1)>,

n B
where B = O -
Proof. Note that

T(A +A+60)7") =9 o _A(H(A+0) awAH). (3.127)
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The statement follows by substituting formulae (3.123), (3.125) into C, collecting equal
powers of § and making use of (3.127). O

Lemma 3.6.19. We have

K2 Ky. Ky .~ K} BN _ K
—0 QBA—(’amﬁe — 3B A=Y — —(amf@

~ ~ K K,
2 B2l 220
4 e e 2 I ) +3 m 8w>\

IT

=2\ (43

DV,G DV,@

Proof. The statement follows immediately from the restriction of formula (3.126) to the
stratum D, g. [

Let us now consider the term C5 in equality (3.121). The restriction of Cs to D, g is

given in the following lemma.

Lemma 3.6.20. We have

B Ky K 2
CZIDV,G - 2)\72ﬁ(aw/\ﬁe - %)\71)

DV,@

Proof. Restricting formula (3.122) to D, we get

) K, 2K\ K, K, K, K, K, 2K
(B o - -2
Clp,, (8“ T~ I Qg 377 ) + et~ 5qp) P2 7 — 57 )~

Kulp,, = AKlp,, , (3.128)
and it follows from (3.125) that
K, MK
o2  =o.2t (3.129)
H Dl/,9 H DV,G
We also have from (3.124) that
K, Ky B
0,0 — = N0yo— + = (3.130)
H Dl/,@ H H DI/,G
By using (3.128), (3.129) we get
K, 2K, K, K,
O =~ — = Ag—2 - =8
M AT, m T,
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Hence,

- Ky Kpy2 Ky K K, K,
Gl = 27007 = )" (- 0+ 5 20y — 5)

(3.131)

DV,@

The statement follows from the formula (3.131) after substituting expressions (3.128) and
(3.130). O

Lemma 3.6.21. Let z = 0*C. Then

K; Ky Ky K} B\? Koy o ~ oKy, Ky
=227 4B=% —2B) —3BA=2 — 2— — BN =200 —
z|DV,9 ( e H2(8 H) 3 2 (O H) +3 HawAH b
LB Ko Ko, _1\?
2 (O = TN 132
+ W O, i i D”), (3 3 )
where B = awxﬁ. Further to that,
K,
4 6
Az, =10 (= o )’ i (3.133)
Proof. By Lemmas 3.6.19, 3.6.20 we have
1 ~
Z’Dyg = (501 + CQ) = (Cl + 02) y
' DV,@ DV’O
which implies (3.132). Therefore
K? K,
4 b _ 03
Nz|, = 10B35 = o(f) R
since B|, = Ky|p, by Lemma 3.6.14. O

Finally, we consider the term F in det A. Note that §?F is well-defined generically at

6 = 0. Furthermore, we obtain the following result.

Lemma 3.6.22. We have

18K2 K,
2
0B, , = =0 (A )Dye (3.134)
and furthermore,
Ky.\3
2E| = 54(=2 1
N2 E|, 5(H)D, (3.135)

where we take restrictions on v =0 at first, then on 6 =0 and then on A = 0.
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Proof. By Proposition 3.6.16 we have

o () (sl (S

2
E
0 IT I12 II

Y

Du,9
DV,@

which implies (3.134) since K, |, = = AKp|, = by Lemma 3.6.14. Therefore

K2K, Ky

3
MOPE|, =54 = 54 (57)

)
D

by Lemma 3.6.15. L
Using the above we have the following result.

Theorem 3.6.23. The determinant of the metric np is proportional to II"'K3 on D.

Proof. We have detnp = —J*detA|, = — J*(C + E)|,. Note that #°C' and 6*E arc

well-defined generically on D, 4, and J } b, = AM(A+ 0|, . Hence we have

TE|, = N0*(A+0)’E’

4/n2 2
n, = A\ (2E)TI

{Dl,’g Du,9 ’

By Lemma 3.6.22 it follows that

_ K3
2 _ 0
J°E|, = 54

D

Similarly we have
J*C

4
= Aeronr|,

Du, v,0
By Lemma 3.6.21 we get

Ky
IT

)

D

J*C|, =10

and the statement follows. O

For any H € A let ayg € R be such that H = {z € V|ay(x) = 0}. Similarly for
any H € Ap, we choose oy € R such that H = {z € Dy|lay(z) = 0}. It follows from
Corollary 3.5.15 and formula (3.101) that

Kolp~ [I enlp ~ 1(Ap, \ AB,)] - (3.136)
HEADQ
H¢ABG
Moreover we have that
Oy~ J[ anlp~ 1(A\ A7), (3.137)

HeA
H¢AP

90
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The above considerations produce the following reformulation of Theorem 3.6.23.

Theorem 3.6.24. The determinant of the metric np is proportional to
I(Ap, \ Ap, )’ T(A\ AP)™ (3.138)

on D.

Now we have to show that powers of distinct linear factors in (3.138) are non-negative

and are equal to the corresponding Coxeter numbers.
Theorem 3.6.25. The statement of Main Theorems 1 and 2 is true.

Proof. Let € R\ Rp and let R = Rp s be the root system R=RnN (\,v,0,5) with the
corresponding arrangement A. Note that the root system R is a rank 4 subsystem of R.
We have from formulae (3.136), (3.137) that the multiplicity of S|, in I(Ap, \ABQ)\D is

Ap, \ AD,| = |4p,| — 3, (3.139)
and the multiplicity of 8|, in I(A\ AP)|, is
A\ AP| = |A] —6. (3.140)

Let us suppose firstly that R is irreducible, that is R = Ay or R = Dy4. Then by
Proposition 3.5.14 we have |Ap,| = |A] — h + 1, where h is the Coxeter number of R.
Hence formula (3.139) implies that

(Ap, \ AD,| = A —h—2=h -2,
and formula (3.140) implies
A\ AP| = 2h — 6.

Then it follows from Theorem 3.6.23 that the multiplicity of 5|, in det np is h, as required.
Let us now suppose that R is reducible, that is R =RpU {£5} = A3 x A;. Then we
get from formulae (3.139), (3.140) that

’ADe \AB9| = |AD0| -3=1,

and

A\ AP = |A] -6 =1,

Then it follows from Theorem 3.6.23 that the multiplicity of 3|, in detnp is 2, which is

the Coxeter number of A;, as required. n
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Let us now consider the cases where the root system Rp = R N (A, v,0) is reducible,
that is RD = A2 X Al or RD = A?
Stratum A, x A;. Let us assume that Rp is a root subsystem of R of type Ay x Ay

and consider the corresponding Coxeter graph

ox
I
I
I

[

AQ X A1 : é
Note that A +v € R,. The Jacobian can be represented as
J = l(\+ v)II, (3.141)

where II is is proportional to I(A\ A”). Note that II is non-zero on D. By Proposition
3.5.10, we have

Jy = vOK, (3.142)
J, = MK, (3.143)
Jo = AN+ v)Ky (3.144)

for some polynomials Ky, K,, Ky € C[z]. We assume without loss of generality that
n+ o1\ is even, 07 (v) = 07}(\) + 1 and o71(0) — 07 (\) is even. This leads to the

following expressions of components of the identity field e by Proposition 3.5.3.
Proposition 3.6.26. The A\, v and 0 components of the identity field e are given by

K K K
A= = gpd =0

A+ )Tl v+ )T oI (3.145)

Let us introduce J = (A +)II so that J = Avf.J. Recall that in these notations det 7p
is given by formula (3.112). The entries of the matrix A = (a;;)7;_, defined in (3.113) are
given as follows.

Proposition 3.6.27. All the matriz entries a;; are well-defined generically on Dy g.They

have the following form on D) g:

2K, o Ko 4K, 2K,
all—yl—[a Q22 = “ T I ass = I
K K
aig = V_l_)\l - wVﬁ/\, ag3 = —VawVﬁe7 a3 = 0.
Proof. By Theorem 3.5.5 we have n® = —9,ae® — 0,5e* for a, 8 € {\,v,0}. Therefore
by Proposition 3.6.26 the statement follows. O]

For any H € A let ay € R be such that H = {z € V]ay(x) = 0}. Similarly for any
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H e Ap, , v € {0,v} we choose ay € R such that H = {z € D,|ay(z) = 0}. It follows
from Corollary 3.5.15 and formulae (3.143), (3.144) that

~ [ enlp~ I(Ap, \ AD)|, (3.146)

HE.ADV
HEAR,

and

Kolp~ [ aulp~ I(Ap, \ AB,)|, (3.147)
HG.ADG
H¢AR,
Moreover we have that

~ TI anlp~ 1(A\AP)],. (3.148)

HeA
H¢AP

We obtain the following statement on det np.

Theorem 3.6.28. The determinant of the metric np is proportional to
I(Ap, \ Ap,)*I(Ap, \ Ap ) I(A\ A”)™ (3.149)

on D. The same is true with v replaced with A in (3.149).

Proof. By formula (3.112) we have detnp = — J?det A‘D, where A is given by (3.113).
Therefore by Proposition 3.6.27

K\K, Ky

K2Ky
92
IT

I1

det np = ((afy — a11ag2)ass + aass) (A +v QHQ‘D 16

D D

By Proposition 3.5.16, we have % = % on D), and hence K,,\DM = K,\]DA iy Therefore

detnp is proportional to II"'K2K, on D. The statement follows by formulae (3.146),
(3.147) and (3.148). O

Let us now show that powers of distinct linear factors in (3.149) are non-negative and

are equal to the corresponding Coxeter numbers.
Theorem 3.6.29. The statement of Main Theorems 1 and 2 is true.

Proof. Let B € R\ Rp and let R = Rpp be the rank 4 root system R=RN A\, v,0,0)
with the corresponding arrangement A. Let h be the Coxeter number of R. We have that
the multiplicity of 5|, in I(Ap, \ AB))|, is

Ap, \ AD,| = |4p,| -2, (3.150)
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since AP = {D.,, Dp,}, and the multiplicity of 3], in I(Ap, \Agg)}D
Ap, \ AD | = |Ap,| - 3, (3.151)
since AB = {Djp, Do, Dav}. Similarly, the multiplicity of 8|, in I(A\ AP)| is
A\ AP| = |A] — 4. (3.152)

Let us suppose firstly that R is irreducible, that is R = Ay or R = D4. Then
|Ap,| = |Ap,| = |A| — h+ 1 [71]. Hence formula (3.150) implies that

Ap, \AD [ = Al =h—1=h—1,
and formula (3.151) implies that
Ap, \AD | =|A| —h—2=h—2.
Similarly formula (3.152) implies that
AN\ AP| =2k — 4.

Then it follows from Theorem 3.6.28 that the multiplicity of 3|, in det np is h, as required.

Let us now suppose that R is reducible. If R = Ay x Ay then we get that .ZDV =
{Dx, Dy, Dosesns Ds,}, where either e = 1 or € = —1, Ap, = {Dxg, Dyo, Drsvg, Do
and | A| = 6. Therefore, |Ap, | = |Ap,| = 4. It follows by formulae (3.150), (3.151), (3.152)
and Theorem 3.6.28 that the multiplicity of 8|, in det np is 3, which is the Coxeter number

of A,, as required. Let us now consider the case where R takes the form

A~

R = (RN (B, v) U {0} = Ay x Ay,

and let A be the arrangement corresponding to As. Hence |,21\Dy| = |-ZDV| +1 = 4,
|Ap,| = |A| = 6 and |A] = 7. It follows by formulae (3.150), (3.151), (3.152) and
Theorem 3.6.28 that the multiplicity of /|, in detnp is 4, which is the Coxeter number

of As, as required. Finally, let us consider the case where
R =RpU{EB} = Ay x A; x A;.

Then we have that ./zl\DV = {D)\’V, D97y, D@V}, A\Dg = {D)\797DV’9, D/\_,_Vﬁ, D@g} and |./Z{| ==
5. Then it follows by formulae (3.150), (3.151), (3.152) and Theorem 3.6.28 that the
multiplicity of 8|, in detnp is 2, which is the Coxeter number of A;, as required. The

statement follows. O
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Stratum A32. Let us assume that Rp is a root subsystem of R of type A2 and consider

the corresponding Coxeter graph

o<
|

PR S—

The Jacobian J can be represented as
J = Aol (3.153)

where II is proportional to I(A\ AP) and it is non-zero on D. By Proposition 3.5.10 we

have
J)\ = I/HK)\, (3154)
J, = MK, (3.155)
Jo = A Ky, (3.156)

for some polynomials K, K, Ky € Clz]. We assume without loss of generality that n +
o~ 1(7) is even for any v € {\,v,0}. This leads to the following expressions of components
of the identity field e by Proposition 3.5.3.

Proposition 3.6.30. The A\, v and 6 components of the identity field e are given by

K K, K,
A= = and & =22

ik ik vk (3.157)

Let us introduce J = II so that J = Avf#.J. Recall that in these notations detnp is
given by formula (3.112). The entries of the matrix A = (a;)7;_; defined in (3.113) are
given as follows.

Proposition 3.6.31. All the matriz entries a;; (1 <1i,j < 3) are well-defined generically
on D. They have the following form on D:

2K 2K, 2K e,

a1 :T/\’ Qo9 = I’ @33:%, @z’j:O, if 27&]-
Proof. By Theorem 3.5.5 we have n® = —0,ae’ — 9,5e* for a, B € {\,v,0}. Therefore
by Proposition 3.6.30 the statement follows. O

For any H € A let ay € R be such that H = {z € V]ay(x) = 0}. Similarly for any
H e Ap,, v € {\ 1,0} we choose ay € R such that H = {z € D,|ag(x) = 0}. It follows
from Corollary 3.5.15 and formulae (3.154), (3.155), (3.156) that

K”/|D ~ H amlp ~ I(AD7 \ABV) e (3.158)
HE.AD,Y
H¢AgV
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Moreover we have that

O, ~ [ eulp~I(A\AP)|,. (3.159)

HeA
H¢AP
We obtain the following statement on det np.
Theorem 3.6.32. The determinant of the metric np is proportional to

I(ANAP)Y T I(Ap, \ AD). (3.160)

ye{Av,0}

Proof. By formula (3.112) we have detnp = — J?det A|D, where A is given by formula
(3.113). Therefore by Proposition 3.6.31 we get

| SK\K, K

I1 D

det "D = —j2 det A|D = —a11a22a33H2|D =

and the statement follows by formulae (3.158) and (3.159). O

We now show that powers of distinct linear factors in formula (3.160) are non-negative

and are equal to the corresponding Coxeter numbers.
Theorem 3.6.33. The statement of Main Theorems 1 and 2 is true.

Proof. Let B € R\ Rp and let R = Rp,s be the rank 4 root system R=RnN (\v,0,5).
Let A be the corresponding arrangement. Note that |AD. | = |AD,| = |AB,| = 2. Then
we have from formulae (3.158) that the multiplicity of 3|, in I(Ap, \ABW))D for any
ve{\v,0}is

A, \ A | = [Ap,| -2 (3.161)

Similarly, we have from formula (3.159) that the multiplicity of 3|, in I(A\ AP)|, is
A\ AP| = | A| - 3. (3.162)

Let us consider firstly the case where R is irreducible. Then \JZDW| = |A] = h+1 for
any v € {\, v, 0}, where h is the Coxeter number of R. Hence formula (3.161) implies that

Ap, \ Ap | =h—1
and formula (3.162) implies that
A\ AP| =2h — 3.

Then it follows from Theorem 3.6.32 that the multiplicity of 5|, in det np is h, as required.
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Let us now consider the case where R = Az x A;. We can assume without loss of
generality that
R = (RN (\v,B)) LU {0} = A3 x A;.
Let A be the arrangement corresponding to A;. Then we have |¢Zl\D7| = |¢ZDW| +1=4, for
any v € {\, v} and |Ap,| = |A| = 6. Note that |A| = 7. Then it follows from Theorem
3.6.32 and formulae (3.161), (3.162) that the multiplicity of 3|, in detnp is 4, which is
the Coxeter number of Aj, as required.

Let us now suppose that R = Ay x A? and assume without loss of generality that

A~

R =(RN(\B))U{Er} U {0} = Ay x A; x A

Then it follows that ,Zl\pA = {Dgx, Dy, Do}, ./Zl\DV = {Dgsy,Dx.,Dp,, Driepr} and
./TDQ = {Dgsy, Drg, Dy, Driepo}, where either € = 1 or ¢ = —1. Hence ’A\D)\’ =3
and ]ﬁle — 4, for any v € {,0}. Note that |A| = 5. Then it follows from Theorem
3.6.32 and formulae (3.161), (3.162) that the multiplicity of |, in detnp is 3, which is
the Coxeter number of Ay, as required.

Finally, let us consider the case where R = Rp U {3} = A% Then we get |Ap, | =
|Ap,| = |./zl\D9| — 3 and |A| = 4. It follows from Theorem 3.6.32 and formulae (3.161),
(3.162) that the multiplicity of §|, in detnp is 2, which is the Coxeter number of A, as

required. Thus the statement follows. O

3.6.5 Codimension 4

In this section we consider (n — 4)-dimensional strata for simply laced Coxeter groups.
Thus, we obtain factorisation formulae for the determinant of the restricted Saito metric
for strata of type Ay, Dy, A3 X Ay, Ay x Ay, Ay x A? and A}

Let R, be the positive root system of the root systems FE,,, n = 6,7,8. Note that the
following analysis works in fact for any irreducible simply laced root system. Let u, A, v, 0
be simple roots and consider the corresponding stratum D = D, 5, 9. We have a number
of cases depending on the type of stratum D.

Stratum Ay Let Rp = R N (i, A\, v,60) be a subsystem of R of type A,;. Let us

consider the corresponding Coxeter graph

A4Z i

(3.163)

o>
[ 2N
[ )

By Proposition 3.5.10, in the notation of (3.55) we have

J, = W0A+v)(v+0)(A+v+0)K, (3.164)
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for some K . € C[z]. Note that the polynomials Jy, J,, Jy and J are still given by formulae
(3.98)-(3.101) and thus it follows from Proposition 3.5.10 and the form of the graph (3.163)
that N
O=pulp+N)(p+A+v)(p+X+v+06)II, ( )

Ky = pk,, (3.166)

K (3.167)

(3.168)

K, = /~L(:U’ + )‘>KV’
Ky = p(p+ M)+ A+ v)Ky,

for some Ky, K,,, K, 11 € C[z]. Note that the polynomial II is proportional to (A \ AP)
and is non-zero on D, and K, is proportional to I(Ap,)I(AD )™ on D,, for a = p,6.
The ordering of the simple roots A, v and 6 is assumed to be the same as in the case
Rp = As. We also assume without loss of generality that o=1(u) = 07*(\) — 1 and that
simple roots u, A, v, 0 are taken consecutively in this order in the Jacobi matrix.

In the following Lemmas 3.6.34-3.6.38 we study the structure of the polynomials K,
and K.

Lemma 3.6.34. We have

K,| =Mu+MNKs+0B| | (3.169)
for some polynomial B such that
Bl = AR +0R|, , F,FeCla. (3.170)
Dy v
One also has
B, =Ky : (3.171)
Bt D;_L,V,@
and
A, = 2[?9’ . (3.172)
D

Proof. By Proposition 3.5.16, we have % = % on D, g, hence K’/‘Due = )\KQIDVG. Thus

using equalities (3.167), (3.168) we have

K, = Mup+NK,

DV,O

(3.173)
v,0
Therefore, relation (3.169) follows.
To derive formula (3.170), let v = pu+A+v+60 and 6 = A+ v +0. By Corollary 3.5.15
we get
Jolp, = Mu(p+ NE,| = ~0F]p, = (p+ A+ 0)(A+0)F|p,

v
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for some polynomial F. It follows that K, is divisible by (s + A+ 6)(A+6) on D,, that is

~ A~

K, = (L+AX+0)(N+0O)F b
for some polynomial F. Hence, K, T (A + 0)2F - By (3.169) we get that
0B . NA(F — Kg) 4 2)\0F + 0°F . (3.174)
Hence [?9 — [ is divisible by 6 on D,,,, so we let
Ky V:ﬁwGD R (3.175)

where G € Clz]. Equality (3.170) then follows from (3.174), (3.175) with F; = AG + 2F
and Fy = F. Relations (3.171) and (3.172) now follow by further restrictions to D. O

We relate the polynomial B given by (3.105) and the polynomial B in the following

lemma.

Lemma 3.6.35. We have

Blp, = n(n+NB| (3.176)
and furthermore,
B F
- =12 , (3.177)
DZ/,;I,,G ]'_‘[ DV,;L,O

where we restrict on D, , ¢ by first restricting to v = 0, then to =0, and then on 6 = 0.

Proof. Combining formulae (3.105), (3.167) and (3.168) we have

i+ NE| = M+ A\?Ky+0B| . (3.178)

v Dl/

Relation (3.176) follows from the relations (3.169), (3.178). To obtain formula (3.177) we

first note that §|D = ﬁ:i”. Thus, using formula (3.165) we have
B B
= = (3.179)
v=0
"0 )\()\ + Q)H Zzg

where we first restrict to v = 0, and then to u = 0. Formula (3.177) follows from (3.170)
and (3.179). O

In what follows fix (o, ) = 2 for all @ € R. Let £ € R and let s¢ denote the orthogonal
reflection with respect to the hyperplane £ = 0. We have s; : o = a@ = a — (o, §)§ and
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hence

S¢ t aa — 83 = 8a — (a,f)(‘?g.

We thus have
Se 1 Oap(z) = Oap(se(x)) = Oap(x), (3.180)

for p € C[z]". By Corollary 3.5.15, K, can be represented as
K\ =P+ AR, (3.181)
where P, R € C[z] and P is divisible by y = u+ A+ v+ 6 and § = p + X + v that is,
P =88, (3.182)

for some S € Clz]. In the next few statements we study the behaviour of polynomials
P, R and I})\ as well as l~(u, [?9 as one restricts to the strata D, , ¢ and D. The required
result is formulated in Proposition 3.6.38. We need a few lemmas in order to establish

this proposition.

Lemma 3.6.36. We have

, (3.183)

sx(Dp)

Rl p,) = A+ A+ 0)(v+ N)sa(K,) — v(v+6)S]

and

Rl (p,y) = A (e + N (1 +0)s2(Q1) =l + 0)ST|, o, (3.184)

where ()1 € Clz].

Proof. Let us recall that J, = prf(v + 0)[? A- By applying orthogonal reflectionn s, we
have
sx(Ja) = (L 4+ N (v + N0+ A+ 0)sr(Ky). (3.185)

Note that Jy is the determinant of a matrix with entries of the form 0,p for some simple
roots a and p € Clz]V

simple root B # u, A, v, 0 such that

07 a:l’L?V?e’
(B,a) =
-1 a=A\

. We can assume without loss of generality that there exists a

Then for any a € A
a7 a%l’[WA?V?/B
sxa= s A+a, a=uvpf
-\, a=A\
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Formula (3.180) and linearity of determinants implies that
sx(In) = Ju + In+ J, + Js.
Then from above and (3.185) we get
JuA I+ Jy+Jg = (4 N+ N0+ X+ 0)sx(Ky). (3.186)

Restricting equality (3.186) on D,, we have by Proposition 3.5.10

Tulp, = MW + M)V + A +0)sy(Ky) - (3.187)
where J, is given by formula (3.164). Therefore
v(v+0)K, b= sx(Ky) b, (3.188)
Applying s, to equality (3.188) we obtain
K, o 4+ N+ A+ 0)sy(K,) . (3.189)

Notice that s)(D,) = D, and WBISA(D = v(v+ G)ISMD ;- Therefore using (3.189) and
" w
(3.182), we solve for R to obtain (3.183). Similarly, restricting equality (3.186) on D, we

obtain

Tolp, = M0+ N\ + 0)s5(K)) (3.190)
Recall that J, = Mu(p + ) K,. It follows from (3.190) that
nkK, , = 0)sx(K>) ,, (3.191)
By Corollary 3.5.15, K, can be represented as
K, = (p+A+v+0)(A v+ 0)Q1 + vQ,, (3.192)
for some Q1, Q2 € C[x]. Applying s, to equality (3.191), we find
K, o (1 +N)(0— N8y (K,) o (3.193)
We get from (3.192) that
sa(I5,) D) (1 +0)(0 = N)sx(@)ls, () - (3.194)
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It follows from (3.193), (3.194) that

KA, ) = BN+ 053(@)]y 0, (3.195)
S v
Using (3.181), (3.189) and (3.195) we solve for R to obtain (3.184). O
Let us consider an orthonormal coordinate system yi, (1 <i < ) where a vector
y € C" has coordinates y1 = Z5(u+AN)(Y), v = 5+ (), y5 = 5(+V)(Y), y2 =

ﬁg(,u + 2\ + 3v 4+ 40)(y). In the next lemma we Wlll con81der the Taylor expansion of the
polynomial R in the variables y; (1 <1i < 4). Note that D = {y|ly; = yo = y3 = y4 = 0}.

Lemma 3.6.37. We have

Rl ., = 28M,, ., +0, (3.196)
where O is a polynomial in X\, ys, . .., y, which is divisible by \>. Furthermore,
-1 oy
()\ R, ) ’D = 28], = 2K,| . (3.197)

Proof. Consider restriction of the polynomial R on D by taking first y, = 0. It follows
from (3.183) that
R|, =0. (3.198)

This, together with (3.181) implies that l~(,\ is divisible by A on D,, 9. Let us now compute

the first order terms in the Taylor expansion of R. We have

1
5y1R|y2:0 — an_)\ R|S,\(Dy) . (3199)

Note that (14 A\, A) = (1 + A, ) = 1. Therefore by formula (3.184) we have

O Bl (p,) = — A2 (4 ) (i 4 0)sx(Q1) — pulp + 6)S] }SA(DV)
FAT2 4 052 (@) + (14 N (14 0)52(Q1)) = (u+6)S — S
—pu(p +0)8,25]|, ) - (3.200)
We are going to restrict equality (3.200) onto {y; = y2 = y4 = 0} which is equivalent to
pw=v=—-20=—\ We get

S 35 A2

pirBl, o = 5+ AT = Asa(@1) + —)\ auﬂs} 0 (3.201)
Y1=Y2=yYa=
A
= 25— SA(Ql) - § lH-)\S . (3202)

y1=y2=y4=0
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Finally, restricting on {y3 = 0} and applying formula (3.199) we obtain

1
O R, = —=(25-0Q1)| . (3.203)
witp = 5 5
Further on, we have
1

Note that (v + A\, A) = (v+ A\ v) =1, and (v+ A\, v+ 6) = 0. Then by formula (3.183) we
have

Oy Rl (p,) = — A4+ A+ 0) (v + N)sa(K,) — v(v+6)S]

sx(Dp)

FAT2(0 4 A+ 0)sa(K,) + (v + N ((y Pt e)sA(f(u))

~(w+60)S —v(v+0)0,:.5]| (3.205)

sx(Du)

Restricting equality (3.205) onto {y; = y2 = y4 = 0}, we obtain

S ~ S 1
OrirBly,—ppeyimo = 5 T AT AW + 5A = SN 0005

y1=y2=y4=0

_ 1
= 5+ s\(Ky) = 5A04a5 (3.206)

Yy1=y2=y4=0
Finally, restricting on {y3 = 0} and applying formula (3.204) we have

1 -

0,,R|, = E(S +K,) (3.207)

D
Further on, we have

1

6y4 R|y1:0 = 2\/5

(O + 205 + 30, +40) R|,, p, -

Note that
0
(W+2X+3v+40,a) = {
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Then by formula (3.183) we have

2v/5 9, Rl = (0 + 205 + 30, + 409) X' [(v + A+ 0) (v + Nsa(K,) — v(v +0)S]

= (U + NAH, + 205 + 30, + 405) [(v + A + 0)sA(K,.)]

— vATH(8,, 4 205 + 30, + 49p) (v + 6) S| =

SA(DN)

= (W + NABsA(K,) + (v + A+ 0)(3,, + 20\ + 30, + 409)5r(K,)]

— VAT [58 + (v + 0) (0, + 205 + 30, + 40p)S] }S*(D“) '

By restricting (3.208) on y» = 0 and then further on D we get

V5
ayélR‘D = 75

D

Let us now study the polynomial @; on D. From (3.200) we get

1
On Bl pA=pbo=0 ES

A A==+ A=0

Combining this formula with (3.203) on D we obtain

Qilp = Slp -
Similarly, restricting (3.205) on v + A = 6 = 0 we have

(9l,+,\ R‘SA(D;L) D Am0=0 = 25 — )\ay+)\5|y+)\:9:)\+,u=0 :

Combining this with formula (3.206) we obtain that

S’D:KND7

which gives the second required equality in (3.197).

Let us now find R on D, , ¢ using its Taylor series on D. Coordinates yi, ...

space D, , ¢ satisfy equations
(

A
Nn=Y =7

&

Neay

o~

[l
o

Ney

=

[l
Sl >

sx(Dp)

SA(DM)

SA(DM)

(3.208)

(3.209)

(3.210)

(3.211)

(3.212)

(3.213)

, Y4 on the
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We have that
R = R|,+ 110y, R, + 120, R| , +y3 Oy, R| , + va Oy, R, + O, (3.214)

where O denotes terms of degree at least 2 in the variables y;,...,ys. From equations
(3.203), (3.207), (3.209), (3.211) and (3.213) we have

ay1 R|D = % S|D7
O Rl, = V28S|p, (3.215)
aZt/4 R|D = \/75 S|D

By (3.198), (3.215) Taylor expansion (3.214) takes the required form (3.196) on the space
(3.6.5). The first equality in formula (3.197) follows. O

Proposition 3.6.38. We have that

K,

=NQ|, . (3.216)
) 128

for some Q € Clz] such that

Ql, = 31?9‘[) — 3K, (3.217)

.
Proof. By equalities (3.181), (3.182) and (3.196) we have

= 39\ + 0,

Duwﬁ

K,

‘DM%G

where O denotes a polynomial divisible by A*. We are now going to show that S|, = Ky

By Proposition 3.5.16 we have

0K\ =pukK,| . (3.218)
Du,)\ Du,)\
By formula (3.181) we have K, = p(p+0)S|p |, therefore (3.218) gives
v, ]
O(u+0)S|, =K, o (3.219)
’ [Z0N

By Lemma 3.6.34 K, = 0°Fy|p, . Hence (3.219) implies that S|, = F|, .
VA, s A Vi1 Vi
It follows by formula (3.171) that

Slp =Ko . (3.220)
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Therefore, taking into account Lemma 3.6.37 the statement follows. O
The following proposition follows from formulae (3.164) and (3.165).

Proposition 3.6.39. The i component of the identity field e, is given by

et = K -, (3.221)
plp+ N+ A+ v)(p+ A+ v+ 0)I1

where l?u, II are given by formulae (3.164), (3.165).

Let us define the polynomial J = (uAv#)~J, where J is given by (3.98). We specialize
the formula for the determinant of the restricted Saito metric given by Theorem 3.5.9 to

the case of codimension 4 strata. We rearrange det np as

gt g g pr At iyt
dot - nu)\ n)\)\ ,r])\l/ nw J2‘ - M/\np)\ /\27]/\)\ )\V,r])\l/ )\6),'7)\9 j?
€D = ynz Av vv v0 D Nz Av 2,V v0 ’
et on v Avi) ven vin D
n,u@ n,\e nu() 7709 Menue )\977)\9 1/9171/9 927790
Let A = (@)} j—o be the matrix
M At o ot
R /\HA )\2 A A Av 0 O
A | # U v g (3.222)
IMV’T]MV )\V,n)\y V27]VV VGT]VG
M977“0 )\077)\0 1/977”9 927796'
Thus
detnp = — J>det A - (3.223)
Proposition 3.6.40. The matriz entries ay; have the following form on D, :
2K
Qoo = Py = ——1 (3.224)
N2 (A+0)I1
K
Go1 = A = —AD, (—“N) (3.225)
XA+ 01
Qgo = pvn™ =0, (3.226)
0 K
s = pln® = ——awg<—“~). 3.227
03 = HUT) \2 O+ 00 ( )

Furthermore, @;; = a;; on D,,,, fori,j =1,2,3 where a;; are given by Proposition 3.6.16.

In particular, the entries @;; are well-defined generically on D,,,, for 0 <i,j < 3.
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Proof. By Theorem 3.5.5 we have n® = —,ae® — 9 5e* for a, 8 € {u,\,v,0}. Then
formulae (3.225) and (3.227) follow by Propositions 3.6.13, 3.6.39 immediately. Similarly,
it is easy to show that aps = 0. Let us prove formula (3.224). We have

K, >
(L+Np+A+0)(p+A+v+ 0/

et = —2u28wu<
14

By Leibniz rule and taking the limit p(z),v(x) — 0 we obtain the required formula.
It follows from established formulae (3.224)-(3.227) that entries @p;, 0 < j < 3, are
well-defined generically on D, ,. Note that polynomials Ky, K,, Ky given by formulae
(3.165)—(3.168) are divisible by p. Hence the entries a;; = a;;, 1 < ¢,7 < 3, are also
well-defined generically on D,,,, by Proposition 3.6.16. O]

We are going to find det np given by formula (3.223) by restricting the right-hand side
to D, , first, then to § = 0, and then to A = 0. Let us denote by M;; the (4, j) minor of

A and consider a row expansion for det E,
det A = /a\ODMOO — 801M01 + /a\ongQ — 503M03, (3228)

where My, = det A and A is given by (3.113). By Proposition 3.6.40 602|DW = 0 and M,
(0 <j < 3)is regular on D, ,. Hence

det A

= 500 det A — amMm - 603M03|DM,V . (3229)

Dy

Let us note that J| is divisible by 6. Further on, we observe that ags] Duvo = 0

Dy
by Proposition 3.6.40 and that 62 Moz is well-defined generically on D,, , o by Propositions

3.6.16, 3.6.40. Therefore we have

2 1T _ p2(x o~
0° det A Duvo =40 (CLOO det A CLQlMOl) ‘D#,u,e . (3230)
By Propositions 3.6.16, 3.6.40 we get that
02 MOJDM,,,Q N agg)\DW : (3.231)
Lemma 3.6.41. We have K
ﬁA _ @ : (3.232)
Dp,,u,a )\H Du,u,G

where Q) is given by Lemma 3.6.38.
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Proof. By formulae (3.165), (3.166) we have

K)\ [?)\

I i+ N+ A +0)(p+A+v+0)I0

Hence, £ = K

ﬁ}DWﬂ = %ii|p and formula (3.232) follows by Lemma 3.6.38. 0

wov,0

Now, let us observe that (v+6)~! 7|

is divisible by A\°> and that ag| Dy has third

Du,uﬂ

order pole at A = 0.

Lemma 3.6.42. We have

~ K}
AL62 det A‘ ] (3.233)
p I

where ¢ € C*.

Proof. We calculate 62X'° det A\’ by making use of expression (3.230). Restrictions of
det A on D, and #?det A on Dl,ﬂDwere found in Subsection 3.6.4 on codimension 3 strata
(type Az case). The corresponding terms z and §%F as well as their restrictions on D,, and
D,y are regular at ;r = 0. Therefore we will be using results of Subsection 3.6.4 on type
Asz with further restriction to 4 = 0, which we will be doing after restriction to ¥ = 0 and
before restriction to § = 0. Using formula (3.120) we have

=2+ 0*°F

v,p,6

6% det A b

(3.234)

Dr/,uﬁ )

Let us find an expression for the restriction z| Dy, By formulae (3.165), (3.168) we

K _ K B _ PR
have Dops = Y Dos By Lemma 3.6.35 we have 7 Dypo = A Doy and hence
B - B
Ong Do =0 A/\H‘DV " Therefore by Lemma 3.6.21 we get
2 (ARK} 2NFK,, Ko 3\K K F
Ap, = =t Y Y s O g — (3.235)
et AT I3 12 AT T2 AT
_2MF 3NE, F K, 2F Ky Kp\2
1(ax—)2+ 0 (O L) (O r —2) +—i(am_£__i)
Il A I1 A ML Jip, ., NI AL N1/ p,,.,
By Lemmas 3.6.22 and 3.6.41 we get
18K3
CE|, =- fam( Q~) (3.236)
U,k )\QHQ )\41_[ Du,u,g
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Note that formulae (3.235), (3.236) lead to the following expressions on D:

RK; K}
Nz, =36—=12| , N6°E|, = 72980 (3.237)
I I

D

It follows from (3.172), (3.217) that

K3
N(z+0E)|, = 288ﬁ—§ (3.238)

D

By Proposition 3.6.40 we have /\3500|DW9 = 2%

(3.217) imply that

. Therefore formulae (3.238) and

Du,uﬁ

62\ 0G0q det A ) = 576(%)4 (3.239)

D
Now we would like to simplify remaining terms in (3.230), see also (3.231). By Proposition
3.6.40 we get

3K, 1. K,

aolp,,, = N T

Du,v,e

Hence

2
a2 | = QK“
0l{p —

= (3.240)

D

By Proposition 3.6.16 (in the notations of Proposition 3.6.40) and making use of formulae
(3.165), (3.167), (3.168) we get

8 K,Kg 1K?

2~ o~ ~9 _ v v

e

Du,v,e

— \2K,

wov,0

By (3.169) we get K,

, therefore
v,

K2
N'0? (anatizs — G35)|, = —9=2| (3.241)
T2
D
Since I?H = }%9‘ by Lemma 3.6.38 it follows by multiplying (3.240) with (3.241) that
D D
10§22 (~ ~  ~3 K}
D

Substituting formulae (3.239) and (3.242) into the expression (3.230) for det A we get the
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statement. ]

Theorem 3.6.43. The determinant of the metric np is proportional to
I(Ap, \ AD)' I(A\ A)™? (3.243)

on D. The same is true with 6 replaced by p in (3.243).
Proof. We have by formula (3.223)

det np = —J2 det E(D = — ((A3(\+ 0)20T1)2 det A)

(3.244)

D%Vﬂ =0

By Lemma 3.6.42 we have

B c[?g f
Duve  AO[A A

62 det A

9

wyv,0

for some rational function f regular generically on D, , 4. It follows from (3.244) that

74
_ ogj2(_¢ Ko 1
detm)——<)‘ 11 (Wﬁ"i‘ﬁf)’aw,e)‘)\:o

and thus det np is proportional to ﬁle?g on D. Then the statement follows by Corollary
3.5.15. Replacement of 6 with u is possible by (3.217). O

Let us now show that the powers of distinct linear factors in (3.243) are non-negative

and are equal to the corresponding Coxeter numbers.
Theorem 3.6.44. The statement of Main Theorems 1 and 2 is true.

Proof. Let f € R\ Rp and let R = Rpp be the root system R=RnN (1, A\, v, 0, B) with
the corresponding arrangement A. Note that the root system R is a rank 5 subsystem of

R. The multiplicity of 8|, in I(Ap, \ AB,)|,, is
Ap, \ A, | = |Ap,| - 6, (3.245)
and the multiplicity of 8|, in I(A\ AP)|, is
|A\ AP| = | A - 10. (3.246)

Let us suppose firstly that R is irreducible, that is R = As or R = Ds5. Then
|Ap,| = |A| — h + 1, where h is the Coxeter number of R [71]. Hence formula (3.245)
implies that

~ ~ 3h
Ao, \ AR, = Al = h = 5= =5,



CHAPTER 3. SAITO DETERMINANT FOR COXETER DISCRIMINANT STRATA 111

and formula (3.246) implies

]/T\AD\—%—M).

Then it follows from Theorem 3.6.43 that the multiplicity of 5|, in det np is h, as required.
Let us now suppose that R is reducible, that is R=TRplL {5} = Ay x A;. Then we
get from formulae (3.245), (3.246) that

’ADG \Agg‘ = ’AD9| —-6=1,

and

A\ AP| = |A] —10 =1.

Then it follows from Theorem 3.6.43 that the multiplicity of 3|, in detnp is 2, which is

the Coxeter number of Ay, as required. m

Stratum Dy. Let Rp = RN (i, A\, v,0) be a subsystem of R of type D,. Let us

consider the corresponding Coxeter graph

Dy : (3.247)

Notice that
Atv,v+0 v+pu A+v+pu A+v+0, u+v+0, pu+A+v+60, p+A+2v+60 € R,
The Jacobian J can be represented as

J=M0uAN+v)(v+0) v+ p) A+ v+ 0)(A+ v+ p)x
XV+0+p)A+v+0+ ) (A4 2v+ 0 + p)II, (3.248)

where I1 € Cl[z] is proportional to I(A\ A?) and is non-zero on D. By Proposition 3.5.10
and the form of the graph (3.247) we get

I=vu(v+p)(v+0)(v+0+p K, (3.249)
J, = MuK,, (3.250)
Jg = A+ v)(v+ p)( A+ v+ p) Ky, (3.251)
J, =0 +v)(v+0)(A+v+0)K,, (3.252)
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for some Ky, K,, Ky, K,, € C[z]. We assume without loss of generality that the ordering
of simple roots is such that n + o7!(«a) is odd if @ € {v, u} and that n + o~!(«) is even
if o € {\,0}. Furthermore, we assume that simple roots A, v, 6, u are taken consecutively
in this order in the Jacobi matrix. It is convenient to define polynomials S, € C[z],

a = \v,0,u as follows:

Sx=AA+v) A +v+0)A+v+p)A+v 40+ p)(A+2v + 60 + p),

S, =v AN +) v+ +uA+v+0N+v+p) v +0+p)A+v+0+p)x
X (A+2v 40+ p),

So =0+ AN+v+0)w+0+p)A+v+04+p)(A+2v+ 0+ p),

Sp=p+p)A+v+p)v+0+p)A+v+0+p)A+20+0+ p).

The following statement follows from formulae (3.248)—(3.252) and Proposition 3.5.3.

Proposition 3.6.45. The A\, v, 0, 1 components of the identity field e are given by

Ko
Soll’

e = (1)t (@) a=\v,0,pu.

By Corollary 3.5.15 we can represent polynomials K, Ky, Ky and K, as follows:
K,o=A+v+p)A+v+0)(v+0+p)(AN+2v4+0+pn)A, + VR, (3.253)
for some A,, R € C[z], and
Kyo=MA+2v+0+4 pnA, + aQ., (3.254)
for some A,, Q. € Clz], « = A, 0, . Moreover, note that for any o € A

o, « 7& >\7 9, M,
s, a =< v+a a=\0pu, (3.255)

-V, q=1U.

In the following Lemmas 3.6.46-3.6.49 we study the structure of the polynomials K,
a=v,\0,u.

Lemma 3.6.46. The polynomial R defined in (3.253) satisfies conditions

Rl py = v v+ 1) 0 +v)(v+ 0+ p)(0 + p)su ()], ., (3.256)
— v (v + 0+ “)2‘4'/‘5,,(@) ,
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Rlooy = v 0+ WO+ )+ A+ O+ sl )], ) (3257
—v A (v + A+ 'LL)2AV|S,/(D9) ,
and
Rl py = v (v +0)A+v) (v +A+0)(A+0)s,(A,) (D) (3.258)
—v N+ N+ Q)QA,,‘SV(DH) :
Proof. By applying orthogonal reflection s, to J, we get
Sy(J)=A+v)O0+v)(u+v)s,(K,). (3.259)
By formulae (3.180), (3.255) and linearity of determinants we get
sy(Jy) = I+ o+ Jo — Jp. (3.260)
Then restricting equality (3.259) on D, we have by Proposition 3.5.10
R, = 106+ 1)+ )5, (K, (3.261)
where J), is given by (3.249). Therefore we get by formulae (3.249), (3.261)
$u(K)|p, = Oy + 6 + p) Kx|p, - (3.262)
Then by applying s, to equality (3.262) we obtain,
Kyl oy = W+ w)l +v)(v+ 0+ p)s.(K)\)l,,p,) (3.263)

and s, (Ky)l,, p,) = (0 + p)su(AN)l,, p,) using (3.254). Using (3.253), (3.263) we solve
for R to obtain (3.256). Formula (3.257) follows by symmetry which allows to swap A and
0. Similarly formula (3.258) follows by the symmetry of the graph (3.247) and taking into
account the sign in (3.260). O

Lemma 3.6.47. Let B = A+ 2v + 60 + p. We have
R’s,,ﬂ:(] = A+ )0 +v)(n+v)s,(Qx) — Ou(v + 0 + M)AV|SV5=0 . (3.264)
Proof. 1t follows from (3.250) and (3.260) that

s ()= h+d+Jdg—J,=A+v)0+v)(p+v)s,(K,). (3.265)
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Let us express A as A\ = § — 2v — 6 — o and substitute it in the determinants J,, Jy, and

J,. By linearity of determinants we obtain
Jy==2J\, Jo=J\, J,=-—Jx
on Dg. Therefore by restricting s,(.J,) to 8 = 0 we have that
SV(JV)|5:0 = J>\|B:0' (3.266)
From the definition of R in (3.253) we get that
Rl 50 = VK|, 4o+ OUNAL - (3.267)
By restricting (3.265) to 5 = 0 we get with the help of (3.266) that
Ilgeog = A+ )0 +v) (1 +v)s,(Ky)| - - (3.268)
By formulae (3.249) and (3.254) we get
Ilg=g = VOV + p)(0 +v) (v + 0 + 1) Qx| 5 - (3.269)
It follows from (3.268) and (3.269) by applying s, that
Kul,ypoo = 00+ 9) (1 + )+ )3,Q, o (3.270)

Substituting (3.270) into (3.267) we get the required statement. O

In the following lemma we are going to study the structure of the polynomials @, A, Ag
and Aj.

Lemma 3.6.48. We have
Qlp=A\lp=Alp=Alp=—Ap- (3.271)
Proof. Applying s, to equality (3.254) we have
SA(Ky) = (A + 204 0 4 p)sx(Ax) — Asx(Q). (3.272)

We can assume that there is a simple root 5 # A, v, 0, i such that

07 &:I/797u7
(B,0) =
-1 a=A\
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Then by applying s, to equality (3.249) we obtain
sx\(h)=Jdg+ I+, =0uv+Nv+p+ NV +A+0)(v+ A+ 04 p)sx(Ky), (3.273)
and restricting (3.273) to D, we thus have by Proposition 3.5.10 that
Tulp, = 100+ N+ )+ 0+ @)sx ()],

where the left-hand side is given by J,|, = pA(0 + X)X+ p)(0 + p) (A 40 + p) Al
using formulae (3.250) and (3.253). Therefore,we have

SA(KA>|D1, = (0 + M)AV|DV .

Comparing with formula (3.272) we obtain

(A + 0+ p)sa(Ax) = Asa(@i)[p, = (O + 1) Alp, , (3.274)

and restricting equality (3.274) to 8+ = 0 we obtain that Qy = Ay on {#+p = 0}ND,,.
Further to that restricting equality (3.274) on D, we obtain that A>\|DM = AV|DM.
By Proposition 3.5.16 we have that 2 = 22 on D, y. Therefore using formulae (3.250),
(3.251) we have
Ap(A + N)K9|Du’9 - KV|DU’9 )

which implies that Ag|, == A,[p , using formulae (3.253), (3.254). Further on, by

Proposition 3.5.16 we have % = —JT“ on D,,. Similarly to above we obtain AM|DW =
— Ay|p,,- Therefore the statement follows. O

Lemma 3.6.49. The polynomial R from formula (3.253) satisfies

(u’3R|DA79#)‘D — 44, (3.275)

Proof. Let us consider an orthonormal coordinate system 7;, (1 < i < n), where a vector

y € C™ has coordinates

n = Z5 O+ 1)), 12 = SO+ ). 1 = e+ V)0 = S5O+ 0+ ()

We consider the Taylor expansion of R in the variables y;, (1 < i < 4). Let us note that
D ={z|y1 = y2 = y3 = ys = 0}.

Consider restriction of the polynomial R on D by taking first yo = 0. It follows from
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(3.256) that
R|, =0. (3.276)

Further to that, let us apply formula (3.264) where we note that s,/ = 0 can be written
as Y4 = 0. The polynomial R| su—o has the form of a cubic polynomial in yi,ys,ys times

another polynomial. Hence
Oy R, = ayiaij}D =0,

for any 4,7 = 1,2,3. Let us now use formula (3.258) for R|, _,. It is easy to see that
o OF R’ _, (k' =1,2) after further restriction on A = # = 0 have
Y= Ya y3=0

the form of a polynomial of order 3 — k in y, vy, y4 variables times another polynomial.

derivatives 0, 0,, R|

Hence
8y, 0y, R, = 05 R| = 0.

4

Similarly, using formula (3.256) it follows that d,,0,, R|, = 0.
Let us now compute the third order terms in the Taylor expansion for R. We present
some of these calculations while the other terms are similarly computed. By formula

(3.257) we have

3 3 3
2\/5 ale‘D == a/\'i‘VR‘D = a/\-i-ll R‘SV(DQ) D

= R [~ M A+ v+ p)Al|,

+ (1 + V)R [T A+ VA v+ ) (A + w)su(A)] |,

since (A + v, + v) = 0. Let us rearrange the function inside the first derivative by using
= ,\(

relation \puv—* p+v)v~t — X Tt follows by restricting at p + v = 0 at first that

05, R|, = 64,5, (3.277)

since (A 4 v,A) = 1. Similarly, using formulae (3.256), (3.258), (3.264) we obtain 97 R,
(1=2,3,4) on D:
93 R|, = 0 R|, = s R|, = 64|, (3.278)
Let us now consider mixed partial derivatives of R. Using (3.264) we have
23 32,0, ], = 8O0l = Rois Bl o]
that is
2vV2 2 0,,R|, = 03,000 [ — Oulv + 0+ ) AJ]|,
+ (14 V)840 [(A + 1) (0 + ), (@]
=—-24,|p.

since (0 + v, pu+ v) = 0. Similarly, we obtain all other derivatives of the form 0?20, R| b
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(1<ij<3),
8)2\+V8H+VR‘D = 83+V8A+VR}D = 892+V8#+VR}D
- 8M+V8)‘+VR‘D - 89+VR‘D

=24,

Ot
Further to that we obtain derivatives 07, 8y4R’ p, from (3.258) by specialising it at 6 +v =
0 = y9, and similarly for 8§i8y4R‘D, (1=2,3):

3§+V85,(@)R‘D = 8§+1,(95U(/3)R}D = ap+u88u R|D =64, |D
In the same way we find derivatives 8548%]%}1), 1<i<3:

2 2 _ a2 _

%oyOriB| = 000000 Bl = 0, OnsiR] ) = 6 Au .

Furthermore, using formula (3.264) we find 0y, 0,,0,, R|
a)\+1/a¢9+l/a#+l/R|D = w0041 0u1v R|s,,(ﬂ):0‘D = 8Qx + 2AV|D‘

And using formula (3.258) we find 0,,0,,0,, R|

w0105, | = Or0004005,8) Bl p,)| | = 104y + 84,

Finally, symmetry considerations (0 <+ p), (A <+ p) give by Lemma 3.6.48 0,,0,,0,, R/,
0y, 0,0y, R y:
8>\+,,(9#+,,(95U(5)R|D = 1014,/ - 8A9’D 5

39+V3“+1,35V(5)R}D - ].OAV - 8A>\’D .
Let us find R on D) ;¢ using its Taylor series near D. We have that

4

1 4
=31 DD uiyiyr0y,0,,04R| , + O, (3.279)

i=1 j=1 k=1

where O denotes the higher order terms in i, y2, ys3, y4. Note that D is the subspace of
D) .0 which is given by
v
Y1 =Y2=Y3s = UYsa /2 ( )
Then by Lemma 3.6.48 and collecting the derivatives found above we get that the Taylor
expansion (3.279) takes the following form on the space (3.280):

Rlp,.,, = 4408, +0. (3.281)
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where O = O| Dano is a polynomial in v, ys, . .., y, which is divisible by v*. Therefore the

statement follows. ]

By Theorem 3.5.9 the determinant of the restricted Saito metric is given by

detnp = —J?det A . (3.282)

where A is given by (3.222) and J is defined by J = pAvfJ. We are going to find det np
given by (3.282) by restricting the right-hand side to D, g, first, and then to v = 0.

Proposition 3.6.50. The matriz entries a;j, (0 < 1,7 < 3) are well-defined generically
on Dyg,. Furthermore, the entries @;; which are non-zero on Dy, ¢ have the following

form on Dy ,6:

~ K . K N K,
aoo = _ﬁuy—r), an = ﬁ/\V_E), ass = ﬁOV_E),
and
N _ K _IK N N 1 _ K DK,
o 7 v 8 v _ — %y, 5
QAo — UV 8wu i 14 I s a12 921 2V 8w I +v T s
~ R 1 _ K, K N . 1 _ K K
93 = A3 = _EU 46@1% v 5—21_[9, ap2 = A0 = EV 480_,:/# -V 5—21_[#.
Proof. By Theorem 3.5.5 we have n® = —0,ae” — 0,5e® for a, B € {u, \,v,0}. It is easy

to see that yaﬁwaj—; vanishes on D,, o = p, 0, A. Also

J, 1 K
val,w — = — V0, ——
w w 5
J Da o 2 oIl Da o

Then formulae for non-zero matrix entries follow by Proposition 3.6.45. Note also that

= Oéawa %

J,
Olﬂawa —B
Da.p J

=0
J )

Da,g

for all a, 8 € {A\, p,0}, o # [ since B# is non-singular on D, g, which implies that all

other matrix entries @o1, ags, a13 vanish on D, 4. O

Formula (3.282), Proposition 3.6.50 and row expansion of det A imply that

det D = —4 1/161_[2 (&\33M33 — /a\ggMgg )

, (3.283)

‘Dx,e,u D,

where Mg, Mss are the minors of the matrix A. Note that by formula (3.253) and Lemma
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3.6.49 we have

4 4 ~
KV|D)\,H,6 = A, + VR}DM,(; = 6v°A, + 10O

Dipo
It follows that
(vt KV|DM9)’D — 64, (3.284)
and
(V20w Ky )|o= 24% (3.285)
Daue |p D
In the following lemma we calculate terms from (3.283).
Lemma 3.6.51. We have
(1'% M| )‘ _ 308 2 (3.286)
Do’ | p |,
and . 4
(V"3 Mas|, ) T

PT’OOf. We have that 633M33|D>\ " = ZL\33 (&00611522 — 6006%2 — 632611> . Let us recall

}Dk,uﬁ
that by (3.254) we have K,|p, o = 2VA06|DM97 where o = A, i, 6. Then by Proposition

3.6.50, Lemma 3.6.49 and formulae (3.284), (3.285) we obtain

L 2404, A\AgA, 14
H aii|D>\,H,e - v

H4

=0

where O is a rational function in v,ys,...,y, with poles of order at most 15 at v = 0.
Then by Lemma 3.6.48 we have

—240A%

4
% H iilp, ,,) :
=1 D D

Similarly, it can be shown that

12842
p 14

16/~ ~ND o~ ~D o~
14 (CL33 (CL12(100 + CLOQ(IH) |DA ; 9)

Y

D

hence (3.286) follows. Moreover,

B 64 A2
p II*

y16(523M23|DA,u,9) n Z 500511633}%,”,6)

D

Therefore the statement follows. O]
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Theorem 3.6.52. The determinant of the metric np is proportional to
I(Ap, \ Ap )'I(A\ AP)~? (3.287)

on D for any v =\, u,0,v.

Proof. Let us recall that detnp is given by (3.283). By Lemma 3.6.51 we get that

A,
detnp = 17285 .

Then formula (3.287) follows by Corollary 3.5.15 and formulae (3.250), (3.253) for v = v.
Similarly (3.287) follows for v = A, 1,0 by Lemma 3.6.48. O

Theorem 3.6.53. The statement of Main Theorems 1 and 2 s true.

Proof. Let f € R\ Rp and let R = Rpp be the root system R=RN (u, A\, v, 0, B) with
the corresponding arrangement A. The root system R is a rank 5 subsystem of R.
By Theorem 3.6.52 the multiplicity of 8|, in I(Ap, \ AP )|, is

Ap, \AB,| = | Ap,| - 7. (3.288)
and the multiplicity of 8|, in I(A\ AP)|, is
A\ AP| = |A] - 12. (3.289)

Let us suppose firstly that R is irreducible, that is R = As or R = Ds5. Note that
|Ap,| = |A] = h + 1, where h is the Coxeter number of R [71]. Hence formula (3.288)
implies that
3h
5

|~’2{Du \Agy| - 67

and formula (3.289) implies that

A\ AP :%_12.

Then it follows from Theorem 3.6.52 that the multiplicity of 5|, in det np is h, as required.
Let us now suppose that Ris reducible, that is R =TRpLl {£5} = Dy x A;. Then we
get
A, \ AD,| =1 4p,| -~ T=1,

since |Ap, | = |AD | +1 =38, and

A\ AP| = A —12=1.
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Then it follows from Theorem 3.6.52 that the multiplicity of §|, in detnp is 2, which is

the Coxeter number of Ay, as required. m

Let us now consider the cases where R is a reducible rank 4 root system. We consider
first strata of type Ay x A,.
Stratum A2. Let Rp = RN {u, \,,0) be a subsystem of R of type Ay x Ay. Let us

consider the corresponding Coxeter graph

A2 e — ——— % . (3.290)
In this case, the Jacobian J can be represented as
J = pAvb(pn+ N) (v + )11, (3.291)

where II is proportional to I(A\ A”) and II is non-zero on D. Further on, by Proposition
3.5.15 we have

J, = l(v+0)K,, (3.292)
Jy = pvb(v + 0)K,y, (3.293)
T, = pi\0(u+ VK, (3.204)

= puAv(p+ N Ky, (3.295)

for K, € Clz], & = p, \,v,0. We assume without loss of generality that the ordering of
simple roots u, A, v, 6 is such that n + o~ !(a) is odd if a € {\, v} and that n + o7 1(a) is
even if o € {p,0}. The following proposition follows from formulae (3.291)-(3.295) and
Proposition 3.5.3.

Proposition 3.6.54. The p, \,v and 0 components of the identity field e are given by

o Kﬂ A K)\

e = —————, €= ——"=,
p(p+ M1 Ap+ MII

. K, , K

T T lwrom  ° T wrom

By Theorem 3.5.9 the determinant of the restricted Saito metric is given by
detnp = —J*det A| | (3.296)
D

where A is given by (3.222) and J is defined by J = (uAvd)~1J. We are going to find
(3.296) by restricting the right-hand side to D,,, first, then to A = 0 and finally to § = 0.

Proposition 3.6.55. The matriz entries a;; (0 < i < 3) are well-defined generically on

D, ... Furthermore, the entries a;; which are non-zero on D,,,, have the following form on
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D,,:
~ LK N N K K N R _ K
dgo = 2A 1ﬁu7 ap1 = ayp = —QM# + A 1iﬂa g3 = azp = —HA 13@9#7
R K LK 1, Ky
ayjp = ZOMF)‘ — 4\ 1ﬁ)\, 192 = A1 — MO 16@?,
~ —~ _ K, _ K
a3 = azp = —\d 1(9@% + O 18(“0?)\,
and
~ LK, R K, LK, K, K,
age = —20 13, (23 = Q32 = a,ﬂﬁ — 0 137 az3 = —Qaweie + 40 1%.
Proof. By Theorem 3.5.5 we have % = —, e’ — §,se for a, B € {u, \,v,0}. Thus by
Proposition 3.6.54 the statement follows. n
Theorem 3.6.56. The determinant of the metric np is proportional to
I(ANAP) T I(Ap, \ AD,)? (3.297)

vE{p.v}
on D. The same is true with p replaced with A and v replaced with 0 in (3.297).

Proof. Let us collect terms with third-order poles at A = 0 in the expansion of deta A. By

Proposition 3.6.55 such terms are part of the following expression on D, ,:
C =y (503 (Aor@13 — @110d03) — @13(Qoodr3 — 601603)). (3.298)

By Proposition 3.5.16 we have that KM|D# = K\ + AP|p, for some P € C[z]. It follows
that terms with third-order poles at A = 0 in (3.298) cancel each other, thus the function
A?C'is regular on D,,,,x. Moreover, it is easy to see that 6°(A* C|, )]sy = 0. Therefore
it follows by formula (3.296) and Proposition 3.6.55 that det A takes the form

det np = —62X\211% det A

— —02)2112 det B, det BQ|DW .

Duv|p

where By = (ay);;—o and By = (a;); since the remaining terms in the expression

i.j=2)

det A have poles at A = 0 of order at most 1. Note also that Ky|, = K,|, by
Dy

Proposition 3.5.16. It follows that

KKy ﬁ> ( N K3>

_ 2
det"D__H<_8 2 I m Iz

_ —2772 7172
= —8II?K.K7| ),

D

Then the statement follows by Corollary 3.5.15 and formulae (3.292), (3.294). O

122
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Let us now show that the powers of distinct linear forms in (3.297) are non-negative

and are equal to the corresponding Coxeter numbers.
Theorem 3.6.57. The statement of Main Theorems 1 and 2 is true.

Proof. Let 8 € R\ Rp and let R = Rp 5 be the root system R = R N {11, A, v, 6, B) with
the corresponding arrangement A. The root system R is a rank 5 subsystem of R. The

multiplicity of 8|, in I(Ap, \ A} ) X (v = p,v) is

Ap, \ AP | =|4p. | - 4. (3.299)
Similarly, the multiplicity of 8|, in I(A\ AP)| is
A\ AP| = |A| — 6. (3.300)

Let us suppose firstly that R is irreducible, that is R = As or R = Ds. Note that
‘./Zl\D,Y| =314+ 1 and ]ﬁl = 31 where h is the Coxeter number of R. Then

5h

Ao, \AD | =T =3, and |A\A”| = —6,

= 3h
2
and it follows from Theorem 3.6.56 that the multiplicity of 3|, in detnp is h, as required.

Let us now consider the case where R is reducible. If R = A3 x A, we can assume

without loss of generality that

~

R = (RN (A B))U (RN, 0) = A; x A,

Let A be the arrangement corresponding to As. Then |Ap,| = |A| + 1 and |¢ZD#| =
‘-/ZD# |+ 3. Tt follows by formulae (3.299), (3.300) and Theorem 3.6.56 that the multiplicity
of B|, in detnp is 4, which is the Coxeter number of A3, as required.

Finally, consider the case when R = Rp L {£3} = A2 x A;. Then |./Zl\DH] —|Ap,| =5
and |A| = 7. Thus the multiplicity of | p in detnp is 2, which is the Coxeter number of
Ay, as required. ]

Stratum A, X A2. Let Rp = RN {u, A\, v,0) be a subsystem of R of type Ay x AZ%.

Let us consider the corresponding Coxeter graph

© A
Ay x A2: o ® - ® - °

The Jacobian J can be represented as

J = pAvf(p+ MIIL, (3.301)
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where II is proportional to I(A\ A”) and II is non-zero on D. By Proposition 3.5.15 we

get
J, = WOK,, (3.302)
Iy = pfKy, (3.303)
Jy, = pN0(pn+ N K,, (3.304)
Jo = pAv(p+ N Ky (3.305)

for K, € Clx], @« = u, \,v,0. We assume without loss of generality that the ordering is
such that n + o7 '(a) is even if a € {u,v,0} and that n + oc~!()\) is odd. The following
proposition follows using formulae (3.301)-(3.305) and Proposition 3.5.3.

Proposition 3.6.58. The u, A\, v and 6 components of the identity field e are given by

K K,

e,LL = A 61/ -
p(p+ I vIT’

GA _ }(A 0 }(9

MNe+ o ¢ T

By Theorem 3.5.9 the determinant of the restricted Saito metric is given by
detnp = —J*det A| | (3.306)
D

where A is given by (3.222) and J is defined by J = (pAv8)~'J. We find (3.306) by
restricting the right-hand side first on D, ,  and finally to A = 0.

Proposition 3.6.59. The matriz entries a;; (0 <i,j < 3) are well-defined generically on

D, 0. Furthermore, the entries a;; which are non-zero on D, , ¢ have the following form

on Dy,e:
~ K, _ - - K K, _ - K K, _
aOOZQ#A Y G =Gy = —am#‘l'ﬁ)\ YA 223wkf/\—4ﬁ)\)\ g
-~ KV -~ ~ K o~ v o~ K
Qg = Gy = _Aa“*f’ aiz = az1 = —)\amﬁea Q22 = 2?, ass = 2%-
Proof. By Theorem 3.5.5 we have % = —9, e’ — 0 se for a, B € {u, \,v,0}. Thus by
Proposition 3.6.58 the statement follows. O

We have the following statement.

Theorem 3.6.60. The determinant of the metric np is proportional to

I(AN AP 1(Ap, \AD)” T 1(Ap, \ AD) (3.307)

~ve{v,0}

on D. The same is true if u is replaced with X in (3.307).
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Proof. By formula (3.306), Proposition 3.6.59 and row expanding det A we obtain

det np = —A2I1% det B, det BQ|DM o

D Y
where By = (dy;); j—o and By = (@;;); ,—,. By Proposition 3.5.16 we have K|, = K|
Therefore

det np = 3611 2K} K, Ko, .

Then the statement follows by Corollary 3.5.15 and formulae (3.302), (3.304), (3.305). [

Let us now show that the powers of distinct linear forms in (3.307) are non-negative

and are equal to the corresponding Coxeter numbers.
Theorem 3.6.61. The statement of Main Theorems 1 and 2 is true.

Proof. Let f € R\ Rp and let R = Rp s be the root system R=RN (1, A\, v, 0, B) with
the corresponding arrangement A. The multiplicity of 4| pin I(Ap, \ AP )’ is
“Ip

[Ap, \ AD | = |4p,| -3, (3.308)

and the multiplicity of 3|, in I(Ap, \ A3 for a« = 1,0 is

s
|Ap, \ A | = |Ap,| — 4. (3.309)

Similarly, the multiplicity of 3|, in I(A\ AP)| is
A\ AP| = |A| - 5. (3.310)

Let us consider first the case where R is irreducible. Then |A\Da’ = \/T| —h+1, for
any a = u, v, 0, where h is the Coxeter number of R. We also have |.,2l\| = % It follows
from formulae (3.308)—(3.310) and Theorem 3.6.60 that the multiplicity of 3|, in detnp
is h, as required.

Let us now consider the case where R takes the form

~

R = (RO (N B)) U {£0} U {0} = Ay x Ay x A,

Let A be the arrangement corresponding to As. Then |Ap,| = |Ap,| = |A| + 1 = 7 and
|‘/Zl\Du| = |¢ZDH| +2 =15. We also have |A| = 8. It follows by formulae (3.308)~(3.310) and
Theorem 3.6.60 that the multiplicity of /|, in detnp is 4, which is the Coxeter number
of Az, as required.

Let us suppose that R takes the form

~

Rz(Rﬂ(u,A))u(Rﬂ(u,Q,B» :AQ XAB:
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and let A’ A be the arrangements corresponding to As and Aj respectively. Then ]./Zl\D#| =
Al +1=7and |[Ap,| = |fTD@| = |Ap,| + |A'| = 6. Further to that, |A] = 9. It follows
from Theorem 3.6.60 that the multiplicity of /5|, in detnp is 4, which is the Coxeter
number of Az, as required.

Let us now assume without loss of generality that R takes the form
R = (RN {(u,\v,B)) U {0} =R x A, (3.311)

where R = Ay or R = D,. Let A be the arrangement corresponding to R. We have
|‘2"\Du| = |Ap,| = |.ZD;L| +1 = h+2, where & is the Coxeter number of R, and |./Zl\D9| =
| A| = 2h. Note also that |A] = 2h+1. It follows from Theorem 3.6.60 that the multiplicity
mg of S|, in detnp is

mg =2(h —1) + (h — 2) + (2h — 4) — 2(2h — 4) = h,

as required.

Let us now suppose that R takes the form

A~

R= (RO, V) U (RN (1, B)) U {0} = Ay x Ay x A, (3.312)

We have ﬁDH = {Dxu, Dy, Day, Dysep s Doy}, where either € = 1 or e = —1, ﬁpu =
{Dyv,Dxrvy Dy, Doy Dyt Note also that |J1D9| = 6 and |./Z| = 7. It follows from
Theorem 3.6.60 that the multiplicity of /|, in detnp is 3, which is the Coxeter number
of As, as required. Note that the case where 6 and v are swapped in (3.312) is similar.

Finally, let us consider the case where R = Rp U {+8} = Ay x A3. Then A\Du =
{Dx > Dvws Do, D} and

A\Dy = {DuﬂnD/\,I/aDu—i-/\,uaD,B,V;DH,V}- (3313)

Note that Ap, is given by (3.313) where v is swapped with 6 and that |A] = 6. Then
it follows from Theorem 3.6.60 that the multiplicity of f|, in detnp is 2, which is the

Coxeter number of Ay, as required. O

Stratum A; x Az. Let Rp = RN {(u, A\, v,6) be a subsystem of R of type A; x Aj.

Let us consider the corresponding Coxeter graph

14

Al X Ag . ® ---

® >
®
(]

(3.314)
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In this case the Jacobian J can be represented as
J = pAbA+v)(v+0) (A + v+ 0)II, (3.315)

where II is proportional to (A \ A”) and II is non-zero on D. By Proposition 3.5.15 we

et
" J, =0 +v)(v+0)(A+v+0)K,, (3.316)
Iy = (v +0)K,, (3.317)
Jy = pNOK,, (3.318)
Jo = pAv(A 4+ v) Ky, (3.319)

for K, Ky, K,,, Ky € C[z]. We assume that the ordering of the simple roots A, v, 6 is the
same as in our considerations for type Az strata in Subsection 3.6.4. Further to that we

assume without loss of generality that n+o~1(u) is even. The following statement follows
by formulae (3.315)—(3.319) and Proposition 3.5.3.

Proposition 3.6.62. The p component of the identity field e is given by e = (ull) 'K,
Furthermore, the \,v and 6 components are given in Proposition 3.6.13, where K, a =

A\ v, 0 and 11 are defined by formulae (3.315)—(3.319).

By Theorem 3.5.9 the determinant of the restricted Saito metric is given by
detnp = —J*det A| | (3.320)
D

where the matrix A is given by (3.222) and J is defined by J = (uAvd)~1J. We are
going to find det np by restricting the right-hand side of (3.320) first on D,,, followed by
restriction to # = 0 and then to A = 0.

Proposition 3.6.63. The matriz entries a;; (0 < i,j < 3) are well-defined generically

on D,,. Furthermore, the non-zero entries Gg;, (i = 0,...,3) have the following form on
D,:

~ K N N K N N K

Qg = 2%, app = a19 = —)\awxﬁ#, ap3 = Az = —Qﬁweﬁu,

and the remaining matriz entries a;; (1 <1,7 <3) on D,,, are given by formulae (3.114)-
(3.119) restricted on D,, .

Proof. By Theorem 3.5.5 we have 1 = —0,.e’ — 0,se® for o, € {u,\,v,0}. By
Proposition 3.6.62 the statement follows. O

Theorem 3.6.64. The determinant of the metric np is proportional to

I(AN\ AP)2I(Ap, \ AD,)’I(Ap, \Agu) (3.321)
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on D.

Proof. Let us consider row expansion for det A. Since | D = 0 we have on D, , that
detA = aOOMOO — a01M01 — CL03M03,

where M;; is the (4, j) minor of A and My, = det A is given by formula (3.120). It follows
by Proposition 3.6.63 that 6?My;, j = 1,3 is well-defined generically on D, ,» and has
poles at A = 0 of order at most 3 on D, ,4. Then by Proposition 3.6.63 and formula
(3.320) we have

detnp = — J*>det A =P+ 0T det A o= ~GpolIPA*0% det A .
,v,0
Note that A*0*det Al is found in Theorem 3.6.23. Then detnp = —128I2KjK,|,.
The statement follows by Corollary 3.5.15 and formulae (3.316), (3.319). O

Let us now show that the powers of distinct linear forms in (3.307) are non-negative

and are equal to the corresponding Coxeter numbers.
Theorem 3.6.65. The statement of Main Theorems 1 and 2 is true.

Proof. Let B € R\ Rp and let R = Rpp be the root system R=RN (1, A\, v, 0, B) with
the corresponding arrangement A. The root system R is a rank 5 subsystem of R. The

multiplicity of 3|, in I(Ap, \ A3

0)‘ pand in I(Ap, \AB“) . is given respectively by

’A\De \’Agg‘ = ’A\D9| —4,

and

Similarly, the multiplicity of 8|, in I(A\ AP)| is
AN AP| = |A] - 7.

Let us suppose firstly that R is irreducible, that is R = As or R = Ds5. Then
\A\D#] = \.ZDQ\ =32+ 1 and Al = 2 where h the Coxeter number of R. Thus, it follows
from Theorem 3.6.64 that the multiplicity of 3|, in detnp is h, which is the Coxeter
number of 7%, as required.

Let us now consider the case where R is reducible and suppose firstly that R takes the

form

R=(RN\v6,8)U{tu} =R x A,
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where R = A, or R = Dy, with Coxeter number h. Let A be the arrangement correspond-
ing to R. Notice that |Ap,| = |Ap,| +1=h+2, |Ap,| = |A| = 2h and |A] = 2h + 1. Tt
follows from Theorem 3.6.64 that the multiplicity of 5|, in detnp is h as required. Let

us now assume that R is given by

~

R= (R0 B)URNNY,0)= Ay x As,

and let A be the arrangement corresponding to the root system Az. Then |A\D9| = 6,
‘A\Du’ = |A|+1 = 7 and |A] = 9. Thus, it follows from Theorem 3.6.64 that the
multiplicity of 3|, in detnp is 3, which is the Coxeter number of A,, as required.

Finally, let us consider the case where
R =TRpU{xp} = A2 x A,
We have |Ap,| = 5, |.ZDH| = 7 and |A| = 8. It follows from Theorem 3.6.64 that the
multiplicity of 3|, in detnp is 2, which is the Coxeter number of A;, as required. m

Finally, we consider a stratum of type Aj.
Stratum Af. Let Rp = R N (u, \,v,0) be a subsystem of R of type A]. Let us
consider the corresponding Coxeter graph

I3
®

Af

The Jacobian can be represented as
J = pAvoll, (3.322)

where II is proportional to I(A\ AP) and II is non-zero on D. Let S = {u, \,v,0} C A.
By Proposition 3.5.15 we have for any o € S that

Jo =K. [ (3.323)
yeS
Yo
for K, € Clx]. We assume without loss of generality that the ordering of simple roots

, A, v, 0 is such that n + o~ !(a) is even for any o € S. The following proposition follows
using formulae (3.322), (3.323) and Proposition 3.5.3.

Proposition 3.6.66. The u, A\, v and 0 components of the identity field e are given by
e = (all)'K,, a € S.
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By Theorem 3.5.9 the determinant of the restricted Saito metric is given by

detnp = —J>det A| | (3.324)
D

where the matrix A is given by (3.222) and J is defined by J = (uAv)~1J.

Proposition 3.6.67. The matriz entries a;;, (0 < i,7 < 3) are well-defined generically

on D. In particular, the entries a;; which are non-zero on D have the following form on

D:
Goo = 211K, Gy =2I17"'K), Qg =2I1""K,, a3 =_211""K,.

Proof. By Theorem 3.5.5 we have n® = —0,.e’ — 0,5e® for a,8 € {u,\,v,0}. By
Proposition 3.6.66 the statement follows. O

Theorem 3.6.68. The determinant of the metric np is proportional to
I(A\ AP T 1(Ap, \ AD) (3.325)
yeS
on D.
Proof. 1t follows from formula (3.324) and Proposition (3.6.67) that

detnp = —J2det A| = —160 2 K./ ..
etnp € 5 };[S ’Y‘D

The statement follows by Corollary 3.5.15 and formulae (3.322), (3.323). O

Let us now show that the powers of distinct linear forms in (3.325) are non-negative

and are equal to the corresponding Coxeter numbers.
Theorem 3.6.69. The statement of Main Theorems 1 and 2 is true.

Proof. Let f € R\ Rp and let R = Rp s be the root system R=RN (1, A, v, 0, B) with
the corresponding arrangement A. The multiplicity of f| pin I(Ap, \ABW)‘D, for any
~v € S is given by

[Ap, \ A | = |Ap,| - 3. (3.326)

Similarly, the multiplicity of 8|, in I(A\ A" )| b is
A\ AP| = |A| — 4. (3.327)

Let us consider first the case where R is irreducible. Then ‘A\DW| = |./Zl\| —h+1, for
any v € S, where h is the Coxeter number of R. Note also that |./Zl\| = % It follows from
formulae (3.326), (3.327) and Theorem 3.6.68 that the multiplicity of /|, in detnp is h,

as required.
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Let us now assume without loss of generality that R takes the form
R=(RN\v0,8)U{tu} =R x A,

where R = A, or R = Dy, with Coxeter number h. Let A be the arrangement correspond-
ing to R. Notice that \-ZDJ = VTDW‘ +1=h+2, forany vy € S\ {u}, |‘/Zl\Du| = |A] =2hn
and |./zl\| = 2h+ 1. It follows from Theorem 3.6.68 that the multiplicity of 3|, in detnp is
h, as required.

Let us assume without loss of generality that R takes the form
R = (RN (u,B)) U{EA} U {v} U {6} = Ay x A3

Then ]ﬁDM] = 4 and ’A\DJ =5, for v € S\ {u}. We also have |A| = 6. It follows from
Theorem 3.6.68 that the multiplicity of /3|, in detnp is 3, which is the Coxeter number
of A,, as required.

Let us now suppose that without loss of generality R takes the form
R = (RN (A B)) U {£r}L{+0} = A3 x A%, (3.328)

Let A be the arrangement corresponding to As. Then ‘A\DM| — Ap, | =5, |Ap,| = |Ap,| =
|A| +1 =7 and |A] = 8. It follows from Theorem 3.6.68 that the multiplicity of Bl p in
det np is 4, which is the Coxeter number of Aj, as required.

Finally, let us consider the case where R = Rp U {#} = AS. For any v € S we have
‘./Zl\D,Y| — 4 and |A| = 5. It follows from Theorem 3.6.68 that the multiplicity of | pin

det np is 2, which is the Coxeter number of A;, as required. O

3.7 Exceptional groups: the remaining cases

In this section we obtain formulae for the determinant of the restricted Saito metric and
analyse the corresponding multiplicities for the remaining cases with the help of Mathe-
matica [5]. Thus we consider codimension 5 strata for R = FE; and codimension 5 and
6 strata for R = Eg. We consider Saito metric and use Saito polynomials for these root
systems R = E,, n = 7,8. These are explicitly constructed in [83] and also in [1].

Let us start with the case n = 8, R = Es. We use Saito polynomials from [83] which

are written in terms of coordinates y; (i = 1,...,8) (denoted as z; in [83]) defined by

(i + 2441), iodd

Yi = (3.329)

| =D =

—((’Ei,l - .lei), 1 even.
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Let us recall the positive part of the root system Eg C V = C® (see for example [51]):
. 1 :
e, te;, 1<i<j<8, §<€1Z|:62:t"':t68) (even number of + signs).

Let us fix the following simple system A C FEg:

1
051:5(61_62_63_64_65_66_67+68)7
Qo = €1 + €9, (3330)

a; =e€i_1—€_2 318

and consider the corresponding Coxeter graph:

[€%]

[ \ L 4 L 4 L 4 .
(€31 Qg Qg [e%:1 (€7} Qg Qg

Let us also introduce coordinates z; = (a4, x), 1 < i < 8. Note that z; = Agf)yj, where
A=A® = (A®)8__ s the following matrix:

ij Jig=

0 -1 0 -1 0 0 —1
2 0 0 0 0 0 0
0 -2 0 0 0 0 0
o |t 1 0 0 0 0
0 0 0 -2 0 0 0 0
0 0 -1 1 1 1 0 0
0 0 0 -2 0 0
0 0 -1 1 1 1

We have

n=">_dt'dt =>>3> 5 dyrdys = nudy,dy.
i=1 Yr ayl

i=1 r=1 [=1 rl=1

In z-coordinates we have 7(z) = >, nij(2)dzidz;, where

n

mis(z) = Y (A (A . (3.331)

k=1

Let [ = {iy,...,ig}, 1 <i3 <--- <ip <nandlet J={1,...,n}\ . Consider the

corresponding stratum D = D, ;. It follows that the restriction of n(z) on D takes the

1111
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form

o =Y m(2)|p dzidzy. (3.332)
l,keJ

We use formula (3.332) to find the determinant of the restricted Saito metric with the help
of Mathematica [5]. Tables 3.1 and 3.2 below give det np up to a non-zero proportionality
factor for all three- and two-dimensional strata D in Eg respectively. We list types of strata
Rp = RN(S), where S = {a;,,...,a;,} C R in the first column of these tables. We
use the notation {iy,... it} = {1,...,k} to denote the stratum D. We get the following

statement.

Theorem 3.7.1. Let D be any two- or three-dimensional stratum in R = Es. Then the

statement of Main Theorem 1 s true.

Table 3.1: Determinant of restricted Saito metric, dim D = 3, R = Ejg
Rp, S det D

a?adal (a1 +az) " (g + a3) 0 (a1 + ag + a3) 10 (a1 + az + 2a3) 12x

A57
{4,5,6,7,8} x (o1 + 202 + 3a3) 7 (2041 + 200 + 3a3) 7 (2a1 + 3ae + 4a3) 7 (a1 +2(ag + a3)) 105
T (O[l +3(Ot2 —|—C¥3)) (20&1 +3(Oé2—|—0[3))2
D ag?a? (ag + ar) 12 (206 + ar) 202 (a7 + ag) ? (g + a7 + ag) 12 (206 + a7 + ag) 19x
{1 9 3574 5} (2046 + 2a7 + Oég) 10 (30&6 + 2a7 + Oég) 12 (4046 + 2a07 + Oég) 2 (40(6 + 3ay + Oég) 2%
T (40[6 + 30&7 + 20[8) 2
Dy x A afad? (a1 + ap) 10 (a1 + 20a6) 8 (o + ag) & (a1 + ag + ag) 8 (2a6 + ag) 3 x
I ?), 4 51’7} X (a1 + 206 + ag) 1% (201 + 206 + ag) 3 (a1 + 3ag + ag) 8 (20 + 3ag + ag) 8 x
T X(20t1 +4a6+a8)3
A % A aSaf (g + ag) 2 (2a + ag) 3 (a + 2a) S0 (ap + ag) & (g + ap + ag) 8 x
{1 é 4 51,77} ><(2&2+a6+a8)2(a2—|—2a6+a8)7(2a2+2a6+ag)7(a2+3a6+a8)2x

X (20[2 + 30&6 —+ Oég) 8 (30[2 + 30[6 —+ Olg) 6 (3042 —+ 40[6 + OZS) 3 (3052 —+ 4046 —+ 20[8) 2

afad? (a1 +as) T (a1 +2a5) 7 (a1 + 3as) 5 (201 + 3as) 2ad (as + ag) O x

Az X Ao, (041 + a5 + 048) 5 (20&5 + Oég) 4 (041 + 2a5 + Oég) v (041 + 3as + Oég) 7%
{2,3,4,6,7} | x (2a1 + 3as + ag) (a1 + das + ag) ® (201 + 4as + ag) © (201 + 5as + ag) 4 x
X (20[1 —+ 5045 + 20[8) 2

afag® (a1 + aq) ® (a1 +204) 8 (a1 + 3s) 8 (a1 + dag) 33 (g + ag) X
X (a1 + ay + ag)® (204 + ag) ® (a1 + 204 + ag) b (a1 + 3044 + ag)® (g + 4day + ag) Ox
X (2c1 + 4oy + ag)® (a1 + bay + ag) 2 (201 + by + ag) * (2a1 + 6oy + ag)®

A3 X A%,
{2,3,5,6,7}

ag’ag (ag + ar)® (204 + a7) ® (Bay + ar) ® (day + ar) *af (a7 + ag) * (as + a7 + ag) °x
A% x Ay, (20[4 + a7 + 058) 6 (30&4 + a7 + ag) 5 (40[4 + a7 + 058) 4 (20&4 + 207 + 048) 4%

{1,2,3,5,6} | x (3aq + 207 + ag) ® (day + 207 + ag) 8 (5ay + 2a7 + ag) ¥ (6ay + 2a7 + ag) +x

x (6aq + 37 + ag) 2 (6ay + 3ar + 2ag) 2

ajal (ar + o) ? (a1 +2a4) 30 (o + a6) ® (a1 + o + ag) ° (204 + ag) O x

A2 X A:{), X (Oél + 20[4 + 056) 8 (041 + 30&4 + 046) (Oél + 30[4 + 20&6) 8 (Oél + 40[4 + 20[6) 5)(

{2,3,5,7,8} | x (a1 +4ay + 3ag) * (201 + dag + 3a6) 2 (aq + By + 3a) 2 (2a1 + Bag + 3a) 4 x
x (201 + 60y + 3a) 3 (g + 2 (g + ag))® (a1 + 3 (ag + ) ®

Let us now consider the case n = 7, R = E; C V = C8. Recall the positive part of E;
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Table 3.2: Determinant of restricted Saito metric, dim D = 2, R = Fjg

Rp, S detnp
{2,4, ?,66,’ 7,8} ofad? (a1 + a3) 12 (a1 + 2a3) ' (a1 + 3a3) ® (201 + 3a3) 8
{2, 3,51),65’, 6,7} affad? (a1 + ag) ¥ (201 + ag) 12
{1,2, 564’, 5,6} adal (a7 + ag) ¥ (2a7 + ag) ¥ (3ar + ag) 2 (3ar + 2ag) 2
{171?2,?4?51?1(1;: 8} az’af (g + a7) ¥ (200 + a7) ® (ag + 2a7) T (Baz + 2a7) 7
{27D3?4>7<5f1(1;:8} ot?od? (o + o) 18 (200 + a7) ? (a1 + 207) 12 (204 + 3a7)®
{1,/31,114?5?;: 8} a§af (aa + ag) 18 (200 + ag) * (ag + 2a6) ® (2 + 3a6) 2 (243 + 3a6) ® (3as + 4ag) *
{2,[3)»?:51,4;:8} afad? (ar + ag) 12 (a1 + 2a6) 12 (a1 + 3ag) & (201 + 3a6) &

A x AL adad? (a1 + aq) " (a1 + 20) 12 (a1 + 3aa) 12 (a1 +4o) T (o 4 Bag) 3 (200 4 5ag) 4
{2,3,5,6,7,8}
{2,3, 4A’§677 7,8} afad? (aq + as) ® (a1 + 2a5) 2 (a1 + 3as) 8 (2a1 + 3as) ® (a1 + 4as) ® (201 + 5as) ®
?137 ;7 226,X7é1}’ ajaf (as +as5)® (203 + a5) * (as +205) * (205 + 3a5) 7 (3az + das) ° (dag + 5as) °
{1,/53?51?2: gy | o¥af(as+an)® 201+ ar) ™ (Bas + a7) * (das + a7) * (B + 207) (5 + 207)°

(see for example [51]):
1 6
eite;, 1<i<j<6, er—es, 5(67—68+21:|:6i),

where the number of minus signs in the sum is odd. Let us fix simple system A =

{ai,..., a7}, where o, i = 1,...,7 are defined in (3.330) and consider the corresponding
Coxeter graph:
Qg
[ & @ @ @ . g
ay Qg Qy Qs e [e%4

We use Saito polynomials from [83] which are written in terms of coordinates y; defined
by formulae (3.329) for any 1 < i < 4 and defined by the following formulae for ¢ = 5,6, 7:

DO | —

({Ei — xi+1), 1= 5, 7
vi=11 (3.333)
E(mi_l + ZL“Z'), 1= 6,

134



CHAPTER 3. SAITO DETERMINANT FOR COXETER DISCRIMINANT STRATA

Let us also introduce coordinates z; = (a;,x), 1 < i < 7. Note that z; = Ag)yj, where

A=A = (AE;))ijl is the following matrix:

1 -1 0 0 -1 -1

o o0 0 0 0 0

-2 0 0 0 0 0

AD=f-1 1 1 1 0 0 0

o o0 0 -2 0 0 0

0O 0 -1 1 1 1 0

o o0 o0 0 -2 0 0

We use formulae (3.331), (3.332) (n = 7) to find the determinant of the restricted Saito
metric with the help of Mathematica [5]. Table 3.3 gives detnp up to a non-zero pro-
portionality factor for any two-dimensional stratum D in E;. We list types of strata
Rp =RN(S), where S = {e,, ..., } C R in the first column of this table. We use the
notation {iy,...,it} = {1,...,k}. Note that there are two non-equivalent strata of type

As [80]. The following statement is a direct corollary of this table.

Theorem 3.7.2. Let D be any two-dimensional stratum in R = E;. Then the statement

of Main Theorem 1 is true.

Table 3.3: Determinant of restricted Saito metric, dim D = 2, R = Ey

Rp, S det np

As, {2,4,5,6,7} a?al? (a1 + a3) 19 (a1 +2a3) 19 (a1 + 3a3) 2 (201 + 3a3) 2

A3, {3,4,5,6,7} afad’ (ar + az) % (e + 2a2) 7

Ds, {1,2,3,4,5} ag?a? (ag + ar) 12 (206 + ar) 10
Ay x Ay, {1,2,3,4,7} afad (as + ag) 12 (2a5 + ag) T (3as + 2a6) ©
Dy x Ay, {2,3,4,5,7} afad? (a1 + ap) 10 (a1 + 2a6) 8
Az x Az, {1,3,5,6,7} | a3af (g + as) 7 (a2 + 2a4) 19 (a2 + 3a4) 5 (202 + 3a4) ®
Az x A2 {1,2,4,5,7} | aSad (as+ ag) 10 (203 + ag) (a3 + 2a6) ? (3az + 2a6) 2
A3 x Ay, {1,2,4,6,7} | ajal (as +as)? (203 + as) ? (a3 + 2a5) ® (2a3 + 3as) 4
A x A3 {1,2,3,5,7} | afag (o + a6)® (204 + a) 8 (Bay + ap) ? (3ay + 20a6)

Now we are going to establish Main Theorem 2 for these strata in £),. Recall that for
any stratum D and § € R\ Rp we define the root system Rps = (Rp, ) N R which
has the decomposition (3.5) and that we have 5 € Rg?ﬁ. The approach to finding Rg?ﬂ
is as follows. We compute the size |Rp g| of the root system Rp g using Mathematica [5].

In most cases considerations of subgraphs of the Coxeter graph of F), allow to determine
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Rpp from its size uniquely (see also [74] for classification of all subsets of a root system
which are irreducible root systems). We find the type of the root system Rp g and we
consider embedding of root systems Rp C Rpg. Using Lemma 3.2.1 and relations (3.6),
(3.7) we identify irreducible component R(g?ﬁ. We give these results in Tables 3.5, 3.6 for
the root system R = Eg and in Table 3.4 for the root system R = F;.

The cases when knowledge of |Rp 5| does not immediately lead to the type of Rp g

are as follows:

(i) R = Eg, dim D = 3, |Rpg| = 42 in which case Rpg = Ag or Rpg = D5 X A,
(ii) R = Fs, dim D = 3, |Rp | = 24 in which case Rps = Ay X A? or Rp s = A2,

(ili) R = Er, dim D = 2, |Rp | = 42 in which case Rps = Ag or Rpg = D5 x A;.
Let us consider these remaining cases in detail.

(i) Considerations of Coxeter graphs and their subgraphs for D5 and Ag allow to deter-

mine Rp g in all the cases except for when Rp = Ay x A;.

Let us consider firstly 5 € R such that |, = ag|,. Then it is immediate from the
Coxeter graph of Eg that Rp g = As.

Let us now consider |, = as + 2a4 + as|p. Suppose that Rpg = D5 x A;. Note
that A4 x A is not a subsystem of Ds. Therefore it has to be that § € D5 and
(A4, B) NR = Ds. One can choose

B=ar+ar+as+2(as+as+ar) +3(as+a5) €ER

so that f|, has the required form. Then one can check by Mathematica that
[(A4, B) NR| = 30 # 40 = | Ds|. This contradiction implies that Rp 3 = As.

The case 3|, = 2as + 2a6 + as|p is similar. One can choose
B:oq+a7+a8+2(a2+a3+a5+a6)+3a4 eER

so that (|, has the required form.

Now let us consider the case when (|, = as|p. It is immediate from the Coxeter
graph of Eg that Rpg = D5 x A;.

Consider the case when 3|, = 2, + 3o + as| . One can choose
5:Oél+Oég+2(012+063+Oé7)+3(064+065+046) eER

so that /|, has the required form. One can check by Mathematica that |(A4, 5) N
R| =40 = |D5|. Note that a7 € Rpg. Since |Rp | = 42 it follows that the root
system Rp g is reducible which implies that Rp g = D5 x A;.
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(iii)

The case 8|, = aa + ag + ag|, is similar. One can choose = 35 | a; € R so that

B|p has the required form.
Considerations of Coxeter graphs and their subgraphs for A3 and A, allow to deter-
mine Rp s in all the cases except for when Rp = A3 x A

Consider firstly 8 € R such that 3|, = a4 + asgl|,. Suppose that Rp s = Ay x Al

Note that A3 x A; is not a subsystem of A4. Therefore it has to be that 5 € A, and

(A3, B) "R = A4. One can choose = Z?ZQ a; € R so that f3|, has the required
i£3

£
form. Then one can check by Mathematica that [(As, ) NR| = 12 # 20 = |A4|.
This contradiction implies that Rp 5 = A2.

The case 8|, = 204 + bay + asl, is similar. In this case one can choose
ﬁ:Oég+2(0(1+Oé7)+3(0[2+0é3+0(6)+4065+5064 ER

so that (|, has the required form.

Now let us consider the case when S|, = ag|,. Then it is immediate from the
Coxeter graph of Eg that Rpg = Ay x A3

Consider now the case when f|, = 2a; + 6a4 + ag|,. One can choose
B:a8+2(a1+a7)+3a2+4(a3+a6)+5a5+6a4 ER

so that f|,, has the required form. Suppose that Rp s = A%. Then it has to be that
(A2 BYNR = As. One can check by Mathematica that |(A%, BYNR| = 6 # 12 = | A3].
This contradiction implies that Rp g = A4 X A2,

The cases 3|, = 20q + 4oy + as|, and S|, = 2a4 + ag are similar. One can choose
B:OZ7+O./8+2(041+O./2+O(6)+3(O./3+0z5)+4014 GR
and

B=ar+ag+ay+as+2(as+as+as) €ER

respectively, so that (|, have the required forms.

Considerations of Coxeter graphs and their subgraphs for D5 and Ag allow to deter-

mine Rp g in all the cases except for when Rp = Ay x A;.

Consider firstly 8 € R such that |, = as|,. Then it is immediate from the
Coxeter graph of E; that Rpg = Ds x A;. Let us now consider the case when
Blp = 205 + agl. Suppose that Rp g = D5 x A;. Then it has to be that 5 € Dj
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and (A4, 5) "R = Ds. One can choose
f=as+as+as+2+as) €ER

so that /|, has the required form. One can check by Mathematica that |(A4, 5) N

R| =30 # 40 = |Ds|. This contradiction implies that Rp 3 = As.

We get the following statement as a direct corollary of Table 3.4.

Theorem 3.7.3. Let D be any two-dimenstonal stratum in R = E7. Then the statement

of Main Theorem 2 1is true.

Table 3.4: Rp g, dimD =2, R = Ex

0 0
Rp, S Blo Rpsl | Ros | Rp)s | MRp))

As, as, a1 + as, a + 2ag 60 Dg Dg 10
{2,4,5,6,7} | a1, 2a1 + 3as, a + 3as 32 As x Ay Ay 2
A/ a1 + Q2 72 E6 E6 12

5 [65) 60 D6 D6 10
{374’5’6’7} aq, a1 + 2as 42 Ag Ag 7
D g, O + Qy 72 FEg FEg 12

55

{1’ 2’ 3’ 4, 5} 2056 + ay 60 D6 DG 10
a7 42 Dy x Ay A 2

as + ag 72 Eg Eg 12

2&5 + ag 42 AG A6 7

{1143 >; 121,,7} Qa5 42 D5 X Al D5 8
T 30&5 + 20[6 32 A5 X A1 A5 6
(675 26 A4 X A2 AQ 3

Dy x Ay, g, 01 + Qg 60 Dg Dg 10
{2,3,4,5,7} a1, 01 +20£6 42 D5 X Al D5 8
g + 20 60 Ds Dg 10

A3 X Ag, a4, Q2 —+ gy 42 Aﬁ A6 7
{1,3,5,6,7} 20(2+30é4, (6%) +30é4 26 A4 X A2 A4 5
(6%} 20 A3 X AQ X A1 A1 2

a3 + ag 60 Dg Dg 10

Ag X A%, (0% 42 D5 X Al D5 8
{1,2,4,5,7} Qg 20[3 + ag 32 A5 X A1 A5 6
a3+ 20&6, 30[3 + 20&6 20 A3 X A2 X A1 A2 3

a3 + as 72 EG EG 12

A% X Al, (0% 32 A5 X A1 A5 6
{1,2,4,6,7} asg, 043+20[5 26 A4 X A2 A4 5
2a3 + as, 2a3 + 3as 20 Az X Ay x Aq As 4

A2 X A‘f, gy, 0q + Og, 20[4 + o 42 D5 X A1 D5 8
{1, 2, 3, 5, 7} Qg, 3oy + ag, 3ay + 205 20 A3 X A2 X A1 A3 4

As a direct corollary of Tables 3.5, 3.6 we get the following statement.

Theorem 3.7.4. Let D be any two- or three-dimensional stratum in R = Eg. Then the

statement of Main Theorem 2 s true.
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Table 3.5: Rp g, dimD = 3, R = Eg

139

0 0
Rp, S Blp R sl Rp,s Rp)s | h(Ris)
a1 + as + 2as 72 FEg FEg 12
As, as + as, o + as + ag, ap + 2as + 2a3 60 Dg Dg 10
{4a5767778} a2, a3, 2051 +30¢2 +4a37
2ar1 + 2ai + 3a, a1 + 2as + 3ag, a1 + as 42 A A 7
aq, 20&1 + 30&2 + 30&3, a1 + 30[2 + 30&3 32 A5 X A1 A1 2
D ag, O + a7 + Og, 3()46+2C¥7+048, g + a7 72 E6 Eg 12
{1 9 3574 5} 206 + a7 + ag, 206 + 207 + ag, 206 + ar 60 Dg Dg 10
B ar, ag, dag + 3ar + 2ag, ar + ag, 49 D- x A A 9
dag + 3ar + ag, dag + 2a7 + ag 5 ! !
Dix A ag, a1 + 206 + ag, a1 + g 60 Dg Dg 10
4 1
a1, oq +3ae + s, a1 + a6 + as, a + as,
{2, 3, 4, 5, 7} 20[1 + 30&6 T ag, ag + 2046 42 D5 X A1 D5 8
ag, 201 + 4ag + ag,
201 + 206 + ag, 206 + ag 30 Dy x A Az 3
oo + og 72 FEsg FEg 12
A x A Qg a2+2a6+a8, 20[2+20¢6+OZ8 42 A6 A6 7
(1 ?;) 4 51’7} g, 200 4+ 3aig + g, as + ag + ag 42 Dy x Ay Ds 8
I as + 204, ag + ag, 3as + 3ag + ag 32 As x Aq Asx 6
ag, 209 + ag, 3as + dag + ag 26 Ay x Ay As 3
3ag + dag + 2ag, 200 + ag + asg, 94 Ay x A% A 9
a9 + 30&6 + ag
Qs 60 Dg Dg 10
a1+ 2a5 + ag, a1 + 3as + as,
Az X Ag, a1 + as, ay + 2as 42 As As 7
{2,3,4,6,7} as + ag, 201 + das + ag 30 Dy x A, Dy 6
a1, a1 +4as + ag, a1 + as + ag, a1 + 3as 26 Ay x Ay Ay 5
as, 20[1 + 50[5 + as, 20[1 + 30&5 + as, 20[5 + ag 24 A% A3 4
20[1 + 5&5 + 20[8, 2041 + 3045 20 A3 X A2 X A1 A1 2
Oy 60 Dg Dg 10
a1 + 3ay + ag, a1 + 20y 42 D5 x Ay Ds 8
A3 XA%, Cl{1+2044+0£8, 0[1+40é4+048,
{2,3.5,6,7} on + 3as, a1 + g 32 As x Ay As 0
a4 + ag, 201 + dayg + ag 24 Ag As 4
ag, 2000 + 60y + g, 200 + 4oy + ag, 204 + ag 24 Ay x A3 Ay 5
a1, a1 + dbay + ag, a + ayg + ag, a; + 4day 20 Az x Ay X Ay Ay 3
(67} 72 E6 E6 12
A2 % A 2004 + a7, 2004 + a7 + ag, dayg + 207 + g 32 As x Aq Ag 6
2 1,
ay + ar + ag, dSag + 2a7 + ag, 3ay + az,
{1,2,3,576} 3044+0z7—|—ag, 3()(4+2047+048, o+ an 26 A4 X A2 A4 5
4oy + a7 + ag, 6oy + 207 + ag,
ar, day + ag, az + ag, 2a4 + 207 + ag 20 Asx Ao | 4 A
ag, 604 + 3a7 + 208, 6oy + 37 + ag 16 A3 x A3 A 2
ay + ag, a1 + 204 + ag, a1 + 3ay + 206 42 Dy x Ay Ds 8
Ay x A3 Qy 30 Dy x Ao Dy 6
: ag, 204 + a, a1 + g + ag, a1 + 3as + g, 2
{2, 3, 5, 7,8} oq + 40&4 + 2066, oq + 2044 + 20[6 24 A4 X A1 A4 5
2cr1 + day + 3ag, a1 + 4oy + 3ag, a1 + ay 20 Az x Ay X A Az 4
a1, 2aq + 4oy + 3ag, 2aq + 6y + 3ag, 16 A% « A% Ay 3

a1 + 3ay + 3ag, a1 + day + 3ag, o + 2a4




Table 3.6: Rp g, dim D = 2, R = Fg

CHAPTER 3. SAITO DETERMINANT FOR COXETER DISCRIMINANT STRATA

0 0
Rp, S Blp Rosl | Rps | Rl | MRY,)
a1 + 2as 126 E; E; 18
Ag, ag, a1 + Qs 84 Dy Dy 12
{2,4,5,6,7,8} 201 + 3ag, a; + 3ag 56 Aq Az 8
(e75] 44 AG X A1 A1 2
D6, a1, (1 + ag 126 E7 E7 18
{2,3,475,6, 7} ag, 201 + ag 84 D D 12
Eg, a7, ar + ag, 2a7 + ag 126 FE; FEr 18
{1,2,3,4,5,6} ag, 3ar + ag, 3ar + 2ag 74 Fg x Ay Ay 2
g + oy 126 Er Er 18
As X Aq, ar, 200 + a7 56 A Ay 8
{1,3,475,6,8} Qo 74 EG X A1 E6 12
3as + 2a7, as + 2a7 44 Ag x A Ag 7
o1 + oy 126 Er Er 18
D5 X Al, (6% 84 D7 D7 12
{2,3,4,5,6,8} ay, a1 + 207 74 FEg x Aq Es 12
201 + 3a7, 200 + a7 46 D5 x Ao Ay 3
Qg + Qg 126 Ey FEr 18
Ay X Ao, ag, o + 20 56 Aq Ay 8
{1,3,4,5,7,8} a9, 200 + 3a 46 Dy x A, Dy 8
2ai3 + ag, 3as + dag 32 Ay X Ag As 4
a9 + 3ag 28 Ay x Ay x A A 2
Dy x As, ag, a1 + 206, a1 + g 84 Dy Dy, 12
{2,3,4,5,7,8} aq, 201 4+ 3ag, a1 + 3ag 46 Ds x Ay Dy 8
oy 84 D Dy 12
A, x A2 a1 + 3ay, a1 + 204 74 FEg x Aq Es 12
{2 345 6 ;’8} a1 +4ay, o + ay 44 Ag X Aq Ag 7
L 20c1 4+ bay 32 Ay x As Az 4
a1, a1 + day 28 Ay X Ay X Ay Ao 3
A2 as, a1 + 2as 84 D Dy 12
{2 3 436’ 7 8} a1 + 3as, a1 + as 56 Aq Aq 8
T a1, 200 + das, a1 +4as, 200 + 3o 32 Ay X As Ay 5
a3 + as 126 FEr FEr 18
2a3 + 3 44 Ag x A A 7
Ae % Ao x A as, 203 5 6 1 6
0 s ) as + 205 16 Ds x A, Ds 8
T a3, 30[3 +40¢5 32 A4 X Ag A4 5
2a3 + a5, das + das 28 Ay X Ay X Ay Ay 5
2 2 Qay, 204 + a7 74 Fg x A FEs 12
As x A3,
{1,2,3,5,6,8) 3ay + am, ag + oy 46 D5 x As Ds 8
T ar, 4oy + ag, bay + 2ar, 3ay + 2a7 28 Ay x Ay X Ay Ay 5
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Below we give Tables 3.1, 3.2, 3.5, 3.6 for the root system R = FEjy in terms of the
coordinates y; defined by formulae (3.329) and we also give Tables 3.3, 3.4 for the root
system R = Fy; in terms of the coordinates y; defined by formulae (3.333).

Table 3.1a: Determinant of restricted Saito metric, dim D = 3, R = FEjg

Rp, S det np
As, vl (y1—ys) “ya% (1 —ys) 2 (y1 — 3ys — ys) 2 (y1 — ys — ys) O (y5 — ys) "X
{4,5,6,7,8} | x (y1 +ys —ys) ®(v1 +3ys —ys) 2vl (v1 —3ys +ys) " (y1 —ys +ys) > (y1 +ys +ys) ”
Ds, Y22 (y7 — ve) ' (y6 + y7) ° (—y6 + y7 — 2ys) 2 (y6 + y7 — 2ys) 2 (y7 — ys) 2ys®x
{1,2,3,4,5} | x (ys —vs) 2 (y6 + ys) 2 (y7 + ys) 2 (—ye + y7 + 2ys) 2 (y6 + y7 + 2ys) 2

DyxAr, | y2%%0 (yr —ys) 8 (ys + y7) ® (yr — ys) B (—ys + yr — ys) ® (y5 + y7 — ys) Pyal x

{2,3,4,5,7} | x (ys —ys) S (ys +ys) S (yr +ys) 8 (—ys + yr + ys) ® (Y5 + y7 + ys) ®

Ay x Ay 3 (Y3 — ) "yS (ys +us) 2 (Bys +u5)® (y3 —yr) ™ (2ys — w5 — y7) 2 (2ys + ys5 — yr) ¥
(1,3,4,5 77} X0 (ys +2ys — y7) 32 (ys + y7) " (Y7 — y5) ® (2y3 — ys + y7) % (y5 + y7) 8%
e X (2ys +ys +y7) ¢ (y3 + 2ys +y7)®

As x Ay Y322 (y7 — 3ys)® (yr —ws) " (w3 +y7) " (Bys +u7) ® (yr — ys) ® (—2y3 + y7 — ys) * %

X (2y3 +y7 — ys) *u3 (ys — 3ys) ® (ys — y3) " (ys + vs) " (Bys +ys) ® (yr + us)
{2,3,4,6,7} s s
x (—2ys +y7 +ys) “ (2ys + y7 + ys)

As x A2 ys0y8 (yr — 2y5)° (yr — ) ® (ys +y7) ® (2us +y7)® (y7 — ys) * (—ys + y7 — ys) °x

X (ys + y7 — ys) "y& (ys — 2y5) ® (ys — y5) ® (5 + ys) © (2ys + ys) ® (y7 + ys) *x
{2,3,5,6,7} s 8
X (—ys +y7 +vs)® (Ys + y7 + ys)

A2 x A, ySy3 (yr — 3ys) * (yr — ys5) ® (5 + y7) © Bys + y7) % (—3ys + yr — 2ys) * x
(1,2,3,56 | (vt ur—2u8) " (7 —48)* (=295 +y7 — ys) *us (s — 1) ® (U5 + Us)
T X (2ys +ys)* (Bys +ys) ® (yr + ys) ® (2ys + yr + ys) ® (ys + y7 + 2ys) * Bys + yr + 2ys) *

Ay x A3 YSys (Y5 —y3) ® (ys +s) ° (s — 2ys) * (—ys + A?LJE» —2ys)® (ys + ys — 2ys) ® (y5 — ys) ® %
(2,35 71é} X (—ys+ys —us)° (ys +y5 — ys) ® (2ys — ys) * (—ys + 2ys — ys) ® (y3 + 2y5 — ys) *y§ x

12><

X (ys —y3)® (ys +ys)® (s +ys)* (—ys +ys +us)® (ys +ys +ys)®
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Table 3.2a: Determinant of restricted Saito metric, dim D =2, R = Fjg

Rp, S det np
As,
y y3? (ys — y7) ® (2ys — y7) 2 (dys — y7) 2ys® (2ys + yr) ®
{2,4,5,6,7,8)
D, 18 12,18 12
7 7T Y8 8 7 8
L, 18 18 2,2 18 2
6 (Y6 — Y7 6 — Y7) “Y7 (Y6 + Y7 6+ Y7
{1,2,3.4,5,6) Yo (Yo =) " (3Ys — y7) “y7 (yo +y7) ° (3ys +y7)
Ag X Aq,
g ' y52y8 (ys + ys) '8 (2ys + vs) ® (ys + 2ys) * (3ys + 2ys)
{1,3,4,5,6,8)
Ds x Ay,
° . ys? (ys — y7) 23 (ys + y7) '® (2u6 + y7) * (3ys + y7) 12
(2,3,4,5,6,8)
Ay x Ag, 8 4,18 8 8 4 8 2
(1,3,4,5,7.8} | Y3 (s —s) s (ys +s) " (2us + ys) " (s + 2us) " (25 + 3ys) ” (4ys + 3ys)
Dy x As,
- 32 (yr — ys) Sys2 (yr +ys) 2 (2y7 + ys) ® (yr + 2u8) B
{2,3,4,5,7,8)
Ag x A, 12 4 12 7 3,12 7 3
37 (Y3 — 2u8 3 — Us 3 — Us 3 —Ys) Y~ (Y3 + us 3+ Ys
(2,3,5,6,7.8) | Y3 (3= 298) " (s = us) = (2 = ys) " (3ys — s) "wis” (s + ys) * (245 + vs)
A?’n 12 _ 12 2 _ 5 3 _ 8 5 _ 5,5 8 3 5
(2,3,4,6,7,8) ys® (Y3 —ys) * (2y3 — vs) ° (3ys — ys) ® (5ys — ys) "vg (y3 +ys) ° (3ys + ys)
Az x Ay X Ay,
(12.4.6.7.8) | Y5 3us —2us)° (u5 ) ® (Bys — ) T (us +s)® (Bys +4s) T (3ys + 20)°
A3 x A3, 12 8 5,5 12 5 8 5
(1,2.3,5.6.8) | Y5 Ws—ys)" (3vs = ys) "y5 (s + s) = (205 + ) (3u5 + ys)” (55 + vs)

Table 3.3a: Determinant of restricted Saito metric, dim D = 2, R = Ey

Rp, S det np
As, {2,4,5,6,7} y2° (Y2 — y7) ' (By2 — y7) 292 (2 + y7) ' (By2 + y7) 2
A,5’ {3,4,5,6,7} y1° (2y1 — w7) 72%%2 (2y1 +y7) r
Ds, {1,2,3,4,5} vz (ys — y7) Pyr® (ys +yr) 2
Ay x Ay, {1,2,3,4,7} Y3 (2ys — e) *us” (ys + ve) ® (2ys + ys) ”
Dy x Ay, {2,3,4,5,7} ys" (e — y7) “yz° (ys +y7) ®

Ag X AQ, {1,3,5,677}

7,,10

As x A2, {1,2,4,5,7}

y? (y1 —3y3) % (y1 —y3) "y3° (y1 +y3) 7 (y1 + 3y3) ®
vS (s — v6) ®ud (ys + v6) '° (2ys + vs) * (Bys + ye) ©

A3 x Ay, {1,2,4,6,7}

Y32 (y3 — ya) ® (2y3 — ya) *y§ (y3 + va) ® (2y3 +ya) ?

Ay x A3, {1,2,3,5,7}

yS (ys — ye) “vus (ys + y6) ® (2ys + ye) * (y3 + 2y6) *
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0 0
Rp, § Blp Rosl | Ros | Rp)s | MRE))
As, Y2, Y2 £ y7 60 Ds Ds 10
{274,5,6,7} Yz, 3y2 :|:y7 32 A5 X A1 A1 2
A Y7 72 Eg Eg 12
5 Y1 60 D6 Dﬁ 10
{3’ 4’ 5’ 67 7} 2y1 + yr 42 Aﬁ A6 7
D Ys + Yr 72 E6 E6 12
5
Y7 60 Dg Dg 10
{1’273’475} Ys 42 D5 X Al A1 2
Ye 72 E6 EG 12
2y3 + Vs 42 Aﬁ A6 7
{{43 >; 1;11,’7} Y3 42 D5 X Al D5 8
I Y3 + Yo 32 A5XA1 A5 6
2y3 — Y6 26 A4 X AQ A2 3
Dy x Ay, Y6, Y7 60 Dg D¢ 10
{2, 3, 4, 5, 7} Yo + Y7 42 D5 X A1 D5 8
Y3 60 DG D6 10
Az X Aj, y1 £ y3 42 Ag Asg 7
{1,3,5,6,7} U1 i3y3 26 A4 X AQ A4 5
Y1 20 A3 X A2 X A1 A1 2
Y3 + Ys 60 Dg Dg 10
Ag X A%, Y3 42 D5 X Al D5 8
{1,2,4,5,7} | ys — ys, 3y3 + s 32 As X Ay As 6
Y6, 2y3 + Yo 20 Az X Ag x Ay | Az 3
Ys 72 E6 EG 12
A% X Al, Ya 32 A5 X A1 A5 6
{1,2,4,6,7} Y3 :l:y4 26 A4 X AQ A4 5
2y5 + Ya 20 A5 X A2 X A1 A5 4
Ay x A3, Y3, Y6; Y3 + Yo 42 D5 x Ay D5 8
{1’2’3’577} Ys — Ye> 20 A3 X AQ X A1 A3 4

2y3 + ys, Y3 + 2us
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Table 3.5a: Rp g, dimD = 3, R = Ejg

Rp, S Blp Rp.s Rp.s RS | MRS)
Y1 — Ys + ys 72 FEg FEs 12
As, Y5, Y1 — Ys — Yss Y1+ Ys — Us 60 Dg D¢ 10
{4,5,6,7,8} | y1, y1 — Ys, Ys — s, Ys, Y1 — 3Y5 + ¥s
> Us) 4 Ag A 7
Y1+ ys + us 0 0
Y1 — Y8, Y1 — Y5 — Ys, Y1 + 3Ys — Us 32 As x A4 Aq 2
D Y7 £ Ys, Ys * Ys 72 Es Es 12
{1,2 35’4 5} Yo £ Y7, ys 60 Dg Dg 10
Y Y6, Y7, TY6 + Y7 — 2ys, tys +y7 +2ys | 42 D5 x Ay Ay 2
Ys, Y7, Ys 60 Dg Dg 10
{21)?))1?177} Y5 = y7, yr £ ys, Ys £ ys 42 Ds x Ay Ds 8
U tys + Y7 — Ys, £Ys + Y7 + s 30 Dy x Ag Ay 3
Y3 + Us 72 Eg Es 12
Y3 — Ys, Y3 T Y7 42 Asg Ag 7
s s, 1 % b5 | DixA_| Dy | 8
e Ys, 2y3 + Y5 — Y7, 2y3 + ys + y7 32 As x Ay As 6
3ys + s, Ys +2ys £ yr 26 Ay x Ay A, 3
Y7, 2y3 — ys L y7 24 Ay x A3 A, 2
Y3 60 Dg Dg 10
yr £ y3, ys £ 3 42 As Asg 7
A3 X AQ, Y7 + ys 30 D4 X A2 D4 6
{2,3,4,6,7} yr £ 3ys3, ys £ 3y3 26 Ay x Ay Ay 5
+2y3 + Y7 — ys, 22y + y7 + us 24 A3 As 4
Y7, Ys 20 Ag X A2 X Al Al 2
s 60 Ds D 10
Y7, Ys 42 D5 x Ay Ds 8
Az x A}, Y7 £ ys, Yys £ Ys 32 As x Ay As 6
{2,3,5,6, 7} Y7 :tyg 24 Ag A3 4
*ys + yr — ys, TYs + Y7 + Us 24 Ay x A7 Ay 5
+2y5 + y7, £2y5 + ys 20 As x Ay x A | A, 3
Ys +y8 72 E6 E6 12
A2 x A, Ys, Y7 £ Ys 32 As X Ay As 6
{133576} y7iy87y8_y57
B —2y5 + y7 — s, 26 Ay x Ay Ay 5
2ys + y7 + ys, 3Ys + ys
—3ys + yr — 2ys, —ys + y7 — 2ys,
Yss 2Ys + Ys, Ys + Y7 + 2ys, 20 Az x Ag x Ay | As 4
3ys + y7 + 2ys
Y7, :|:3y5 + Y7 16 A% X A% Al 2
Ys, Ys, Ys — Ys 42 Ds x Ay Ds 8
3 Y3 30 D, x A2 Dy 6
A2 X A17 >
(2,3,5,7,8} Ys T y3 ,¥s £ Y3, TY3 + Y5 — s 24 Ay x AY Ay 5
Y Ys — 2Yg, 25 — Ys, Ys + Ys 20 As x Ag x Ay | As 4
*ys + ys — 2ys, Tys + 2ys — ys, 16 A2 x A2 Ay 3

tys +ys + s
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Table 3.6a: Rp g, dimD =2, R = Ejg

0 0
Rp, S Blp IRp sl Rp,s RYs | HRY))

yr 126 E7 E7 18

Ag, Y3, 2y3 — yr 84 Dy Dy 12
{274a5765778} Yys — Yr, 2y3 +y7 56 A7 A7 8
43/3 — Y7 44 AG X A1 A1 2

D, ys, Y7 126 Er Ly 18
{27374a5a677} y7:|:y8 84 D7 D7 12
Egs, Y6, Yo T Y7 126 Er E; 18
{1,2,3,4,576} 3y6iy7, Y7 74 E6 X Al Al 2
Yys + s 126 Ey E; 18

As X Ay, Ys, 2y3 + ys 56 A7 A; 8
{1,3,4,5,6,8} Y3 74 FEg x Ay FEg 12
Y3 + 2ys, 3ysz + 2ys 44 Ag X Ay Asg 7

Ye + yr 126 E7 E7 18

D5 X Al, Y6 84 D7 D7 12
{27374a5a678} Y6 — Y7, 3y6 +y7 74 EG X Al E6 12
Y7, 26 + Y7 46 D5 x Ay A 3

ys 126 E7 E7 18

Ay X Ay, Y3 +Ys, 2ys + ys 56 A7 Aq 8
{173a4a55778} Y3, 21/3+3y8 46 Dy x A2 Dy 8
2y3 — ys, Y3 + 2us 32 Ay x A3 As 4

4y3 + 3yg 28 A4 X A2 X A1 Al 2

Dy x As, Y7, Ys, Y7 + Ys 84 D+ Dy 12
{27?”475)778} Yyr — Ys, 2y7+y8a y7+2y8 46 D5 XA? D5 8
Y3 84 D D 12

Ay x A2 Y3 — Ys, Ys 74 Eg x Ay Eg 12
(2,3,5,6 %78} 2y3 — ys, Y3 + ys 44 Ag X Ay Ag 7
R y3—2y8 32 A4><A3 Ag, 4
3ys — ys, 2y3 + ys 28 Ay x Ay x Ay | Az 3

A2 Y3, Y3 — Ys 84 D~ Dy 12

{2 3 4367 7 8} 3y3 —Ys, Y3 +y8 56 A7 A7 8
oy 2y3 — ys, Y3z — Ys, Ys, Y3 t Us 32 Ay x A3 Ay 5
Ys 126 E7 E7 18

A3 % Ag % Al, 3y5 iyg 44 A6 X Al A6 7
{1,2,4,6,7,8} Ys 46 D5 x Ag Ds 8
T 3ys £ 2ys 32 Ay X As Ay 5
Ys + Ys 28 A4 X A2 X A1 A4 5

A2 % A2 Ys: Y5 + Ys 74 Eg x Ay Eg 12
{1 223 5 é78} Ys — Ys, 3y5+y8 46 D5><A2 D5 8
oo Yss 3Ys — Ys, 2Ys + Ys, OY5 + Us 28 Ay x Ay x Ay | Ay 5
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3.8 Dubrovin’s duality on discriminant strata revisited

In this section we revisit almost duality of Frobenius manifolds on discriminant strata
(see Chapter 2). Such a duality was considered in [35], and it was suggested in [81] that
discriminant strata are natural submanifolds. We can now give all the details to complete
this study proving that multiplication of tangential vectors from each stratum belongs to
the stratum.
Let us recall that for or any x € My, \ X the almost dual Frobenius multiplication is
defined by the formula
uxv=Elouowv, (3.334)

where u,v € T, My, and FE is the Euler vector field

]'i «
E= e tht ata

Recall also that F is the identity field of the almost dual multiplication *. Let e~! denote
the inverse field of e with respect to the almost dual multiplication, namely e™! x ¢ = E.

It follows by formula (3.334) that E = E~!oe™!, and hence e~! can be represented as
1= FoE. (3.335)
Note that we also have by formulae (3.334), (3.335) that
etxurxv=FE"to(etxu)ov=E"to(Etoetou)ov=uow. (3.336)
Let us now recall that Saito metric n and metric g are related as follows:
n(u,v) = g(E o u,v). (3.337)

Let us consider the vector field e7! = e71(x) as a vector field on V, z € V.

Lemma 3.8.1. The vector field e ' (x) is well-defined at xy € D. Moreover, e '(xg) €
T,.D.

Proof. We have by formulae (3.336) and (3.337) that

n(u,v) = g(Eou,v) = gle ! *u,v). (3.338)

For the components (e7!)? (1 < j < n) of the vector field e™! we have

) ) )
-1 YN _ -1 _
g7 = 9eT * B o) = (B, o),
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where the last equality follows by (3.338). Then

Ol o 9 0 1o otP 1 & dgnti-a
—1\j — oy U _ 2t o _1 N
(™) h;dat 50 i 528 ha§:1 dot® 5 1las ha§:1 dot* =5 ——. (3.339)

since 1q3 = Oa+sn+1- Lhus the first part of the statement follows. Let v € Rp, and let 0,
be the corresponding vector field orthogonal to D. Then we have by formula (3.339) that
(e7!(x),0,) =0, as = tends to xg. Therefore e~!(xg) € Ty, D, as required. O

Let ¥p be the union of the hyperplanes I, N D in D, where v € R \ Rp and consider
point xy in D \ ¥p. Let u,v € T,,D and consider extension of u and v to two local
analytic vector fields u(z),v(x) € T,V such that u(zg) = v and v = v(xg). Recall that
the multiplication u(x) * v(z) has a limit when z tends to xy and furthermore that the
product u * v at xq is tangential to D (Lemma 2.5.9). As a result we get the following

statement using Lemma 3.8.1 and formula (3.336).

Proposition 3.8.2. Let u,v € T,,,D, xg € D\ Xp. Then uowv € T,,D. Furthermore,

uov=e xuxuv.

The proposition is the strengthening of the results and observations from [35, 81].
Namely, in Dubrovin’s duality formula (3.336) both sides are well-defined if u,v € T,,D

and equality remains to be satisfied on D.



Chapter 4
Supersymmetric V—-Systems

We construct N' = 4 D(2,1; «) superconformal quantum mechanical system for any con-
figuration of vectors forming a V-system. In the case of a Coxeter root system the bosonic
potential of the supersymmetric Hamiltonian is the corresponding generalised Calogero—
Moser potential. We also construct supersymmetric generalised trigonometric Calogero—

Moser—Sutherland Hamiltonians for some root systems including BCly.

4.1 The D(2,1;«a) Lie superalgebra

Let us recall the definition of the family of Lie superalgebras D(2,1;«) which depends
on a parameter o € C (see e.g. [38, p. 29]). This algebra has 8 odd generators Fyy..,
and 9 even generators Ti(j ) (1,7 = 1,2,3) so that for each fixed j they generate mutually
commuting sl(2) algebras. In the context of supersymmetry the generators of the algebra
usually appear in a slighty different form (see e.g. [32]). We relate the forms of the algebra
D(2,1; «) given in [38] and [32] as follows.

We take Q% = Fe, 51 = —2i, 55 = 2i(1 + a), s3 = —2ia and introduce different

generators in the si(2)

(j)zll — _Tz(]) + ’lTl(J), (j)222 — _T2(.7) . 2771(1)7 (j)le :(j) 221 _ _ZT?EJ) (41)

Further on, we re-denote generators X% as follows: (¥ = Tab (2)yab — Jab gpq
B)yeb — Jab g b =1,2. Let ey, € be the fully anti-symmetric tensors in two dimensions
such that €;5 = ¢! = 1. Then all the relations of the superalgebra D(2,1;«) take the

following form:
{Qace, def} _ _2(€6f€chab + aEab€chef - (a + 1)€ab€efjcd)7 (42)

[Tab’ Tcd] — (€achd + Edeac> ’ (43)

148
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a) [J(}Lb7 ch] —_ _Z'(EaCde + edeac), b) [[CLb) [cd] — —i(GaCIbd 4 Ebd[ac)’ (44)
a) [Tab, chf] _ iEC(aQb)df, b) [Jab, chf] _ iEf(aQ|Cd|b), C) [Iab7 chf] _ iEd(aQMb)f, (45>

where we symmetrise over two indices inside (...) with indices inside |...| being un-
changed. For example, ef(¢Qlcdb) = %(ef aQ)edb 4 f bQCda). We also have relations

[Tab,]Cd] — []Cdv Jef] — [Tab, Jef] — 0, (46)
for all a,b,c,d,e, f =1,2. Let us rename generators as follows:

Qa _ _QQla’ Qa — _6222a7 Sa — Qlla’ S«a — 6212117 a = 1’ 2’

K — Tll H — T22 D — _T12 — —T21.

We will use €, and €® to lower and raise indices, for example Q* = €®Q,, Q% = €Q,.
We consider N (quantum) particles on a line with coordinates and momenta (z;,p;),
j=1,...,N to each of which we associate four fermionic variables {¢)%, J|a = 1,2}. We
will also write z = (z1,...,2n), p = (p1,...,pn). We realise these variables as operators
acting on wavefunctions which lie on the tensor product of the Hilbert space of functions
of x and a 4"V-dimensional fermionic Fock space.

We assume the following (anti)-commutation relations (a,b=1,2;5,k=1,...,N):

R 1 .. ) .
[$j7pk] = i(sjka {wa]a ¢l’f} = _55]]651?7 {ww)d}bk} = {¢i7¢f} = 0. (47)

Thus one can think of p; as p, = —i%. We introduce further fermionic variables by
vl = e, 9% = e, (4.8)

They satisfy the following useful relations:
j bk Loik aj ,Tbk L cik ab ik L i
{¢a7¢ } = 55 5@7 {w >¢ } = 55 €, {wmwb} = 55 €ba- (49>

We will be assuming throughout that summation over repeated indices takes place (even
when both indices are either low or upper indices) unless it is indicated that no summation
is applied.

In addition it is convenient to define an involutive operation on any operator which we
denote by ‘~’ and with the property that AB = AB for any operators A, B and

—~

i ~ai . n ~ ~ ~ . —~ b ~
wé - Q/Ja]’ @Zfa] = é? Pj = —Dj, €Ty =Ty, 1= -1, €ab = e” y o = . (410)

Note that this is compatible with (4.8), and that one has to keep record of €** when dealing
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with fermions with upper and lower indices and applying ~.
Let F = F(xy,...,zn) be a function such that

errjk = —(204 + 1>5jk7 (411)

*F
Oxr0x 0y,

are homogeneous in x of degree -1. Furthermore, we assume that F' satisfies the following

generalised WDVV equations (cf. (2.59))

where Fpj, = for any r,j,k =1,..., N. We assume that all the derivatives F,

Frijkmn = rmkajnv (412>

for any r,j,m,n=1,..., N.

The following relations for arbitrary operators A, B, C' will be useful:

[AB,C] = A[B, C] + A, C]B, (4.13)
[AB,C) = A{B,C} — {A,C}B, (4.14)
{AB,C} = A[B,C] + {A,C}B. (4.15)

We are going to present two representations of D(2,1; «) algebra using F'.

4.2 The first representation

Let the supercharges be of the form

Q% = pp™ + iF (Wi ), (4.16)
Qe = P + i Fpn (Dp ™), (4.17)

where the symbol (...) stands for the anti-symmetrisation. That is given N operators A;,
(1=1,...,N) we define

1
(Ar.. Ay} = 1 > sgn(o) Ay - - Ao (4.18)

" oeSn

Note that we have by (4.7), (4.9) and (4.18)
. 1 . _ ) _ . .
<,¢)brwg¢ak> — E(war¢i¢ak + 2¢akwbr,¢)lj} o ¢br¢ak¢{) + wzwakd}br)
— %(lpbrwgd—}ak + @akwbrdji i wbrd_}akwi) + %(5]%1#17' . 57’]{:1/}(13')

- 1 1 1 . )
— ¢brwi,¢ak o adrkwa] . gé]kwar + E(é]kwar o 5rkwa3)‘
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Note that F(07% — §™p99) = 0 since §7%¢p* — §™1)% is anti-symmetric under the

interchange of j and r. Therefore

1 )
Fuge (" 0™) = Fo(0mil™ — 20 %), (4.19)
Similarly,
P (00" ) = Fon (00" — ¢ &""). (4.20)
Let also
N
K=2"= Zm?, (4.21)
j=1
1 1 1N
D= —Z{%pj} = %Pt 5 (4.22)
= =i, TP =ity 1= —%[ AR (4.23)
Jb = Jba = 2jqp(edqpbi), (4.24)
S = —2z;4%, S, =2z (4.25)

Remark 4.2.1. Ansatz for the supercharges (4.16), (4.17) is the same as the ansatz
introduced by Wyllard (see formula (2.15) in [88]) under a suitable scaling of the variables

x,p and the following identification of fermionic variables:

_ Z\/Qilk i _ zﬁzz%

Op = V20", O =iV, —
k Z\/_w7 k Z\/—l/}7 aek ’ aek

Remark 4.2.2. Ansatz (4.16), (4.17), (4.21), (4.22), (4.24), (4.25) with F' satisfying (4.11)
at & = —1 matches considerations in [40], [41] (see also [88]), where su(1,1|2) supercon-
formal mechanics were considered. Note that the superalgebra su(1,1|2) generated by
Q% T J% is a subalgebra in the superalgebra D(2,1; —1). Thus Lemmas 4.2.3, 4.2.5
below can be deduced from considerations in [40], [41]. We include these lemmas so that
to have complete derivations for reader’s convenience. Let us give some details on this
correspondence.

For the sake of clarity let us denote generators from [41] with a ‘hat’. In this case we
deal with algebra generated by supercharges Qa, Q“ their superconformal partners Sa,
Sa (a =1,2) and two sl(2) algebras with generators J,, (a = 1,2,3) and K, H, D. Then
bosonic and fermionic variables in [41] are related to the same variables defined in the

present work as follows:

A = \/§$k, ﬁk = @ = ﬂ¢§7 &ak = \/Q&ak.

1
Epk,



CHAPTER 4. SUPERSYMMETRIC v-SYSTEMS 152

Let us then consider the generators J, from [41] which are defined as J, = %@Zb\k (Ja)gl/}/\(’f =
VO (0,)50%, where o, (a = 1,2,3) denote the Pauli matrices (see (3.5) in [41]). The

generators J, satisfy the relations [J,, J,] = i€apeJ.. Then we have
Ty = e e Rt 2Ry g ke 2k Lk
Hence we obtain the following correspondence between the generators J* and .J, using
(4.9): _ _
JU = 2iptRpth = — J, iy, T2 = 20t = —J, — iy,
J12 — Z(wlk&?k 4 ka‘QZlk) — —ZJ3
Then it is easy to to recover relations (4.4a). Finally we take

Sa:_Saa Sa:_Sa7 @:Qaa @\a:Qaa I?:Ka ]/—\I:Ha EZD

Let us firstly check relations (4.4), (4.5) involving generators J and 1.
Lemma 4.2.3 (cf. [40], [41]). Let J% be given by (4.24). Then relations (4.4a) hold.

Proof. We consider the commutator
[ pFPE] = I [ pap ] 4 [ pap ]t
o 1 cb,aj, 7.dj 1 da,cj,7bj
— SEPIG 4 ey,
which implies the statement. O

We will use the following relations:
e e N R T (4.26)
Lemma 4.2.4. Let I be given by (4.23). Then relations (4.4b) hold.
Proof. The relations (4.4b) read
(9, 122) = 202, (1Y [\ =iV, (122, 1'% = il

We have
(11, 1%%] = [dap™ "y (4.27)
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By applying (4.13), (4.14) we rearrange expression (4.27) as
(11, 1%2) = g [0 "] + [d, gy
— G Y = e -
= %",
as required. Moreover, using the Jacobi identity we have
11 712 L a1k Tk Lok ook g,
[[ 7[ ] = _§[¢a¢ 7[wb7w H = 5[%7 [¢ ﬂﬂ&b H
Thus by using the first relation in (4.26)
[[11’ [12] — wé@wbk — i[ll.
Similarly,
1 - _ 1.
(122, 1'%] = S[go3e, [uh, 974]) = =5 (9%, [9°993, ]l
Hence, by using the latter relation in (4.26)
[122 [12] — ,&bk,&}l)ﬂ — _2‘1'22
and hence the statement follows. O

In what follows, we will use the following relation:
aj,;,bj .pcl 1 be,/al
[, ) = ey (4.28)
By formulae (4.13), (4.14) we also have
[ ] = YA I ] A [P T
= YR Y MO R [P e
1 - 1 - 1 -

— §Ecawdl Crln,djbn + 5wblwamwcn + 5wbmwal,¢0n‘ (429)

Lemma 4.2.5 (cf. [40], [41]). Let Q, J% be as above. Then the relations (4.5b) hold.

Proof. Firstly let us note that the sum of the last two terms in (4.29) is anti-symmetric

in a and b and J% = J*. Therefore we have by applying (4.29)

?

_ [
[, Pt "0 = 5

2€cbﬂmn¢dlwgn,&an. (430)

€ Pl 050" +
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Then
2, Q2] = —[JP, Q] = —[JP, ptb] — i Fiyan] J2, (0B
Therefore we get from (4.28) and (4.30) that
%(ebcplwal + e prpt! — i€ By (W) — i€ By (0T (4.31)

— _%(ﬁcha + EcaQb) — iGC(aQ|21|b)7

[Jab7 QQlc] —

as required in (4.5b). Further, we consider
[Jab7sc] _ _QIZ[Jab’wcl] _ ix[(é)cwal + 6acwbl) _ %(Ecbsa + 6caSb) _ iEC(aQ|11|b),

which coincides with the corresponding relation in (4.5b). Finally, applying ~ to [J%, Q%]

and [J®, 5S¢ we obtain the remaining relations (see also Lemma B.1.3). O
Lemma 4.2.6. Let Q%, 1% be as above. Then relations (4.5¢) hold.
Proof. Let us first consider [I', @*'%]. Using formulae (4.13), (4.14) we have
[a™, Wy ] = PP g™, ) =~y (4.32)
It follows that Fj,,,[¢hw® )] = 0 and hence
(1, Q%] = il ™, Q] = i[gp™ , prp™] = 0, (4.33)
as required for (4.5¢). Let us now consider [1?2, Q?!'*]. We have
(122, 4] = d[ra;, ] = —igpe, (4.34)
and hence
[ g, W) = =[Ny g

= ("G Uy + [T g, )
— g - e, (135

By reordering terms in (4.35) we obtain
S - - - —p1, — 1
(G G, S = (G + g 4 GGy — o)

_ 1- - - 1-
— _w;nwanwbl - 5wam(sln + 6lmwan . wéwanwbm o §¢al(5nm.
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Therefore
F’lmn[&dT&wablqﬁ;ﬂJ}an] = _QEmnqzll;&anwbm' (436)

Note that Fj,,, 0l p™ = 0 if ¢ is fixed such that ¢ # a. Hence (4.36) can be rearranged
as —2F}n @™ p® which is also equal to —Fj,,, i, Therefore

[122;Q21a] — _i[qzdrqjj(;?Qa] — —i( _pl,(zal + iﬂﬂqﬂ(_@(l)&bmd}an + %&alanm)) — i@a7

(4.37)
as required for (4.5¢).
Further, let us consider [I'2, Q?'%] = i[5 ?", Q%]. Then by (4.29) we have
[ ] = SeM
Therefore, with the help of (4.28) we get
1,7 = S (o + B (U9 - S00) = 2Q°, (439

which matches with (4.5¢).
Let us now consider the generator Q. Firstly, it is immediate that [I', Q%] = 0,

as required. In addition, we have by (4.34) that
[122’ Qlla] — Z‘[,&dr&:l’ Sa] — _27;1,].[&(17"1;2,1#(1]'] — —iga,

and

1T dr Qa . aj i a
(12,5 = —i[pp™, 8] = iz ™ = —55°

as required for (4.5c¢). The remaining relations in (4.5¢) can be checked similarly by

applying ~. O

Let A;, B; (i =1,2,3) be operators. In the following theorem we will use the identity

{A1A2A3, B1ByBs} = A1 Ay{ A3, B1} By B3 + A1 Ay B Bo{ B3, A3} — A1 Ay B1{ By, A3} Bs—
— Ai{ Ay, B1} By B3 Az — A1 By Bo{ B3, Ao} Az + A1 Bi{ Ba, Ay} Bo A3

+ {4, B1} B3B3 Ay A3 + B1By{ B3, A1} Ay A3 — B1{ By, A1} B3 A3 As.
(4.39)

We will also use the following relations. We have by (4.13) and (4.15)

{wa’r‘, @Z_inﬂzdm@b?} — 77Elli[77z_}dm¢;z7 war] + ’(Ldm@b?{l/;(li, 77Z)ar} — _l@zald)?(srm . lqz)amw?éra
2 2
(4.40)
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and similarly,
_ o 1 _ . 1 .-
[ AP G} = — g — g, (141)
Theorem 4.2.7. For all a,b = 1,2 we have {Q%, Qy} = —2HJ¢, where the Hamiltonian
H is given by

o R 1 ... 1 o
(W™ — Yyt o" 4 20V 4 = Figp Find™™ 0% (4.42)

H:ﬁ_%
4 2 16

with p* = SN | p2.
Proof. Let us consider {Q%, Q.}, where

A B Al B

N

—~ = — _ N —— ~
Q" = pb™ +iF (W V™), Qe = pitbl + i Fy (W0 )

We have .
{A A} = —§5gp2.

Further on, by (4.20) we have

{Av B,} = i{l/}arpr, Flinn <1/_}£ﬂ/_’dm¢?>}
. ar 7l dm,n v nm ar 7
= Z{¢ DPr, Emn¢é¢d ¢c} - 55 {pr%b 7F’lmn1/)£;}
= W P YL [Py Fionn] + i{0, D™} Fimnpr—
- %(Vmeard_}i[pm Emn] + iénmdgprmnpr
By (4.40) we have
Fonn {0, 00 ™™ 1!} = = Fiynn ™8™
Therefore,
s gar, 7l 7 dm,n s Jal, i n Z.nm ar,7, Z.nma
{A, B/} = “ﬁ %lﬂﬁd ¢c [pm Emn] - Z¢ l¢c Enrpr - 55 ¢ @/)i[Pm Emn] + 15 5c Frmnpr'

(4.43)
Similarly, using (4.41) we obtain

Tl bro1d Ta SR R Z“far Z“a
{B, A"} = iy " g™ [py, Frjp] —ih ) kFrkjpj—§5]k¢i1/) [pl;Frjk]+15]k5cFrjkpr- (4.44)

Note that &“lnglm«pr + wgz/?akFrkjpj = %él”(S“CFlmpr. Then, after cancelling out terms

and simplifying we have

/ ar, 71,7, j n r 1J.7a 1 nm srl ca
{A, B} +{B, A"} = 0. Figp (0" G ™0 + 0" g 0™) + 20, Fipund™™6707. - (4.45)
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In particular, we note that using the symmetry of Fj;;, we have that

Op Fiyt) ™ b ™ ] = 0 Fygn (" L™ + 78", (4.46)
and

O Pyt ™" = 0, Fyge (" o™ — o). (4.47)
Note that if a # ¢, we have

UYr =™, and TPl = —gVYr, Y™ = (4.48)

Using the symmetry 0,F;; = O, F,jx and Fjj, = Fyj; it follows from (4.46), (4.47) and
(4.48) that the sum of expressions in (4.46) and (4.47) vanishes if a # ¢. Therefore we get
from (4.46), (4.47), (4.48) that

O Fyjie (W g ™l + D" ™) = 0, Fygp (0 g™ + Pl — et

(4.49)
Note that
A (4.50)
here @ # a. Therefore the right-hand side of (4.49) equals
Or By (0" g™ — Y™ 3o (451)
Therefore in total expression (4.45) becomes
(A B} (B, A = 0 Fgp (0™ — o ™o" + 070700
Finally, let us consider the term {B, B'}. We first show that
C' = FojpFionn {4070, i)™} = 0. (4.52)

By using (4.39) we obtain
C' = FojiFin (W00 ™ {2, %} — PR p™ {ay, 0}
+ PR P Y + PP T, O} — Gl g, 7Y
= Fo i (D00 S8 P 4 o g

1_,- - 1 .
4 §§rlwbmwiw?wak + §§rmwblwl])w?wak) )
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Then using the symmetry of F,,, under the swap of [ and m we obtain
1 o , _ _ o
C= Frijlmn(§5? TP+ ST+ ST ).

Note that by (4.7), (4.9) we have

YT = Y — gL, (453)
and
PR = = ™
— PG = UL g (4.54)
Further on by (4.12) we have F,;;Fypmn = FrppFym; and therefore some terms in the right-

hand side of (4.53), (4.54) enter the relation
n,ak smj 1 r,7ak smn 1 7. .ak smn
Frijrmn¢c¢ 5 = 5 rjkﬂmn¢c¢ 5 + iFrijrmn¢c¢ 5 . (455>
Then by using (4.53)-(4.55) and the symmetry of F,;, under the swap of r and j we obtain
1 o , o o
C = Fost P (50260 0™ — Gyt — 57t gok)
1an v 13,70, 7.dm j rom, T m,J.a
= 'rjk-Flmn(§6C5 PPt — 267y ).

Note that for ¢ # a we have C' = 0, since F.j;Fiynnd? 9y = 0 by using (4.12).
Further on, if ¢ = a then by using (4.12) we have

1 o o

C' = FojnFram (59" g™ = 20" ™). (4.56)
Note that for b # a, F,;x""¢J = 0. Hence

Fik Fram " 0™ = Fjp Fam 0™ Wil o™, (4.57)

which is equal to }LFrijklmwbrwgz/;(lﬂ/?dm because of relations (4.50). This proves that
C = 0. Then the term {B, B’} takes the following form:

1 Cak T 1 e+ 1. -
{B. B} = Py Finn (50" (700, 91} 4+ S0M ™ "y = Z075 (", 1),
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By using formulae (4.40), (4.41) and (4.12) we obtain

1 r. jak cnm ¢ Jal jnsmr gy ]"nmra
{B, B} = 5 Fuji B (006" 4 g0y 6m 7% — 67466757
1 , — 1 ,
= _§Frjkﬂmn5nm5ﬂ{w£7 wak} + gFrjkEmnéjkdnmdrlég

1 .
— _g Tjkﬂmnanm(sjl(srk(sg‘

Therefore, the statement follows. m

Lemma 4.2.8. Let T%? = H be given by Theorem 4.2.7. Let T"' = K and T'?> = —D be
given by (4.21), (4.22). Then relations (4.3) hold.

Proof. Firstly, we have that [K, H] = {[2?,p?] = £{x,,p.} = —2iD, as required. More-
over, since H is homogeneous in = of degree —2 it follows that [H, D] = iH as required.

Further on, [K, D] = —1[z7,z;p;] = K, which is the corresponding relation (4.3). O
Lemma 4.2.9. Let Q¢, 1% T% J% be as above. Then relations (4.2) hold.

Proof. Firstly let us consider
{6221a7 Qllf} — _{Cga7 Sf}
Note that
{pe™, ap?'} = i I = —ie Myl
where a is complimentary to a. Note that we can assume now that @ = f. Therefore
ar . _Q ' ' Z a T T
[P 2} = —ie Tyl = — ey,

Further,
. 1 .
E i { ™ app 'y = §€“f Tk Ferjtbih?.

Therefore by formula (4.11)
{Q*, Q") = —ie ™ + i€ wy Frpjthjp¥ = 2(a+ 1) T, (4.58)

as required for the corresponding relation (4.2).
Further on, consider {Q*¢, Q'?} = —€"{Q?%,S;}. Now, by using formula (4.41) we
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have
Q 7 . v 3. 7ak 7 1 ar 7.
{Q, 54} = —2{p V™", wl}} — 2wy By ({9 Y™ b} — §5Jk{¢ RUAY)
_ ‘ g
= 20 + 2,pp0% + iz ™ — 55]k(5§$rFrjk
_ B 50
= 20, + 2,p, 08 — 2i(20 + DYDY + %dN(za +1).
Therefore

;- _ab
{Q21a’ Q12b} _ _2iwar1;br + prreab + 21(20( + 1)wbr&ar + %N(20{ + 1)

Let us now note that

72 — _%[ g),(;aj] _ _Z-(ijQle _ wlj@%‘ — g>

Hence the right-hand side of (4.2) for {Q?', Q'?*} is
' N _ . . N
:L,rpreab . %Eab + 4Z~a¢(ar¢b7‘) . 22(1 + a>6ab<¢2j,¢1j _ w1]¢2] _ ?)

By considering various values of a,b € {1, 2}, expression (4.60) takes the form

- _ab )
xrprfab + %N(?Oé + 1) — 22'1/}‘"1#"’“ + 22(20( 4 1)1/}171"¢afr7

which is equal to (4.59) as required, so the corresponding relation (4.2) follows.

160

(4.59)

(4.60)

(4.61)

Further on, let us consider relation {Q?'*, Q*'*} = {Q?, Q°}. By using (4.7) and (4.9)

we have

{Q% QY = i{pt™, Fomnb ™0™} + i{pip™, Frrt) )™} —
- F}mnFrjk{<wdl¢Zjn&cn>a Wb?q%z&akﬂ-
Note that by (4.14), (4.15) we have
{p'rwa,r7 F’lmnwdlwdmflgcn} = warwdlwgnqzcn [p?"? Emn] + {¢a7l7 delw:jntzcn}ﬂmnpr
= _iwarwdlwylﬁcnarﬂmn + {war’ lzcn}wdl :lnﬂmnpr

- ar m,jcn 1 ca m
= —2¢ ¢dl¢d w 81”Emn - 56 wdlwd Emrpr-

Note also that "1™, F,,, = 0 using the symmetry of 0, F},,, under the swap of r and
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[. Then ¢ pdapmehend, Fi,n = 0 and hence

— 1
L e —§6C“Flmrprwdlw2" : (4.62)

Similarly,

i 7 - el br, g 7a 1 ac v, 10
{p®, B g} = =iy g O Frg — S Frpit
1 .
= S Fymi" . (4.63)

Note that terms in (4.62) and (4.63) cancel. Further, we have

EmnFrjk{<¢dl¢Zln1/;cn>a <¢br¢g&ak>} _ EmnFrjk{¢dl¢?Qch7 ¢br¢i&ak}
1 1 ;
7€ Fomr Frg b0 + € FrjpFlomm ™0 (464)
- EmnFTjk{wdlelnd_}cn7 ,(bbrwiqﬁak},

since the last two terms in (4.64) cancel. Note that by (4.39) we have
{wdlw&n,&cn? ¢br¢glﬁak} _ wdlw;rln (lﬁglﬁak{&cn? wbr} N wbr&ak{wg'? &cn})
+ ¢b7‘¢)lj)( Z%,&cn{&ak’ 77Z)dl} . ¢dl¢_)cn{1/_}ak7 w;n})
_ _%wdlwzln <¢Cj6nr + z/Jcréjn)lEak . %wbrwi (wal(skm + wam(skl)djcn.

Therefore using the symmetry of F};;, under the swap of j and r, and that of Fj,,, under

the swap of [ and m we obtain
i Fr i {007 0 0" 0™} = — By By (V00" P 4y p6M™ ) (4.65)

Further, note that for any b € {1,2} we have by using (4.12) that Fj,,, Fyjx@md = 0.
Hence the right-hand side of (4.65) vanishes. Therefore it follows that

Fn L @My, (W ™)} = 0

and hence that {Q%, Q°} = 0 as required.

Further on it is easy to see that {Q'¢ Q'*} = {Q'**,Q'*} = 0. By Theorem 4.2.7
we have {Q?'%, Q?*} = —2H¢*. The remaining relations (4.2) can be shown to hold by
applying ~ (see also Lemma B.1.7). O

Remark 4.2.10. Let the supercharges Q¢ and @, be of the form (4.16), (4.17) for a
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potential F. Then the N' = 4 supersymmetry algebra

{Q".Q") ={Qu. @} =0 and {Q",Qw} = —2Hdy, (4.66)

is satisfied if and only if the function F' is solution to equations (4.12). Thus relations (4.66)
do not imply WDVV equations for the potential F'. Indeed, if F satisfies equations (4.12),
then the statement follows by Theorem 4.2.7 and Lemma 4.2.9. The converse follows from
the proof of Theorem 4.2.7. More precisely, we should have that {Q% Q,} = 0 for a # b.
This implies that the term {B, B'} should vanish. Imposing this constraint implies the

statement.

Lemma 4.2.11. Let T, Q% be as above. Then relations (4.5a) hold.

Proof. Firstly, it is easy to see that [T, Q%9 = —[K,Q%] = —2iz,¢" = iS% and
[T', Q1] = [K,S = 0, and [T",Q"*] = —[D, 5% = —iQ". Moreover, we have
[T'2,Q*] = [D, Q"] = 1Q** as Q" is homogeneous in  of degree —1. This gives relations

(4.5a) for commutators between K, D and Q% S®.
Further, we have
o 1 o _
[wbrl/}lj)wéwdk, wam] — Ewbrwi (walékm + Q/}akélm)?
therefore
O [0 Qi p ™ 0] = Oy Fm " by ™ (4.67)

Note also that .
Or Fge [y 8 o] = 537~Fzmwm5lk- (4.68)

Hence we get from (4.67) and (4.68) that

o o o 1
O Fit [0 g 0™ — by p™ 6% ™™ = 0, " o™ — EaermkWr(Slk (4.69)
== amF;‘jl Wbr@DZ@ZQI%

in view of (4.19). Therefore

[H, 5] = ipet)™ + T O Frjt (W 0™ (4.70)
— ip™ = P (" v
—iQ,

as required for (4.5a). Further on, by Theorem 4.2.7 we have T%? = H = —%{Q“,Qa}.
Since (Q%)? = 0 we get that [H, Q%] = 0 as required. The remaining relations (4.5a) can

be shown using ~ operation (cf. Lemma B.1.8). O
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Lemma 4.2.12. Let T®, 1%, J% be as above. Then relations (4.6) hold.

Proof. Let us firstly consider [I%°, J*¥]. We have by (4.13) and (4.26) that
[ijaj’ wck,&dk] — wdkwck'

Therefore
[[11, ch] — 2[wgwaj, w(ckzﬁdk)] — O,

as required. Further, we have by (4.13), (4.14) that

(12, 9], 9™ = 2[dp, ™)
231", ] + [, )
2™ {7} — PP pl}) = 0.

Therefore,

(112, %) = [[wg, 9], 9™ =0,
which is the corresponding relation (4.6). In addition we have by (4.13) and (4.26) that
5904, = kg

Therefore,
[122’ ch] — _2[1/_}@153;72/)(6161;%)] _ O,

as required.

Let us now consider relations [I%, T, (a,b,c,d = 1,2). It is easy to see that for
T'? = —D and T" = K relations (4.6) hold. Further, we have T?* = H = —%{QC, Qc}.
Then by (4.13) we obtain

1 ~ _
1, H] = =5 (1", Q°Qc] + I, Q.Q))
= (@™, @+ 11, Q1Q. + Q™ @ + [, Q)
1 N _ _ .
= S (- QelI™, Q) + 1, Q7100 + QulI™, Q7] — (1™, G7IQ0)
where ¢ is complimentary to ¢. Then by Lemma 4.2.6 we have
[Iab7 Qc] — _[]Cl,bj Q2lc] — _%(GIGQQbC + Ele2ac) and [Iab7 Qc] — _%(62QQ2bc + €2bQ2ac)'

Therefore by considering various values of a,b € {1,2} and by using Lemma 4.2.9 and
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Theorem 4.2.7 we obtain the following:
) e .
1, H) = 2(QeQ° + Q°Q2) = 0,
i o
[1227 H] - §(QCQC + QCQC> =0,
i . _ _ .
(1'%, H] = 5(QeQ" + Q°Qe + QQ° + Q°Ce) = 0,

which are the corresponding relations (4.6).

Similarly we have
% H] = —5 (- QelI™ Q)+ [ Q10 + QulJ™, @] — 7, Q1)
By Lemma 4.2.5 we have
Q) = L QM) and (@] = L@+ Q).

Therefore by considering various values of a,b € {1,2} we obtain:

?

U H = QR+ Q0+ Q- Q') (4.71)
2, H) = 1~ Qi — Q01 + QG + Q0.

F QR+ Q" - FQQ — PQ'Q0) (4.72)
7 H] =~ LR+ Q0+ QR — Q) (4.73)

Then by considering various values of ¢ € {1,2} in (4.71)—(4.73) and by using Lemma
4.2.9 and Theorem 4.2.7 we obtain that

[J", H] = [J*, H] = [J**, H] = 0,

as required for (4.6). O

4.3 The second representation

Let now the supercharges be of the form

Q" = pb™ + iF, 3" P, (4.74)
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so we do not have anti-symmetrisation in the cubic fermionic terms. Let generators K,
I J® and S%, S, be given by formulas (4.21), (4.23), (4.24), (4.25) same as in the first

representation, while the generator D is now given by

, |
D = —ap;+ 5(a+1)N. (4.76)

Theorem 4.3.1. For all a,b = 1,2 we have {Q%, Qy} = —2HJ¢, where the Hamiltonian
H is > o p ,
p rtj LN BN r,7,bj v enm
H=" - TJ”“(W Vg™ — wp8") + 20" Frpap. (4.77)
Proof. Let us denote terms in (4.74), (4.75) as follows:

A B A’ B’
——~ =

a ar . br 1.7 7.ak 2 7l . 7l 7dmn
Q" = prb™ +iF 0" g™, Qe = P + iF i Vb Yy
Then, analogues of relations (4.43), (4.44) are

{A, B} = i ip ™™ 2 [pr, Fiann] — 00" 08 Fiepr (4.78)
{B, A"} = il b ™ oy, Frjp] — a0 ™ Fopyp;. (4.79)

Then using (4.78) and (4.79) an analogue of equality (4.45) is (cf. (4.51))
{A, B} + {B, A} = 0 Fige (0" Gl "] + G 0fg™) = S6™ Fiop,
S . )
= aerlk(wbrwgwﬁlwdk - @bgiﬂbjfslk)&g - §5an’lnrpr53
Further on we have {B, B’} = 0 (cf. (4.52)). Therefore in total, we get that

2
{Qa> Qc} = _%53 + {A7 B/} + {BvA/}
2

P r 13707 r, 7.bj a 4 nm a
= _550 + aerlk(wb ¢g¢é¢dk - wbwbjélk)éc - 55 Frmnpr(sca (48())

and hence the statement follows. O
Lemma 4.3.2. Let T be given by (4.76), (4.77) and (4.21). Then relations (4.3) hold.

Proof. Firstly, we have that

1 ' ' N
K, H] = ~[2*p°] + iéanrmn[$2apr] = %{l‘r,pr} + 5(205 +1) = —2D,

4
as required. Moreover we have [Fy..pr, Tjpj] = —iFmnDr + 120 Frpnpr = —20F,mn Dy
Then it is easy to see that [H, D] = iH, as required. Further on, [K, D] = —1[z? x;p;] =

iK', which is the corresponding relation (4.3). O
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We note that since generators J and I keep the same form as in the first representation,
the statement of the Lemmas 4.2.3, 4.2.4 hold.

Lemma 4.3.3. Let Q%¢, 1%, J% be given by (4.74), (4.75), (4.23), (4.24), (4.25). Then
relations (4.5b), (4.5¢) hold.

Proof. Relations (4.5b),(4.5¢) are easy to verify by an adaptation of the proof of Lemmas
4.2.5 and 4.2.6 respectively. Indeed let us consider first relations (4.5b) for [J°, Q?'¢],
which now takes the form (cf. (4.31))

i - _ca m,bn e m,j.an
[J%, Q%] = §(ebcpz"¢“l + e“pp? — i€ Fn 0P " — i€ Fnp ")

_ —%(CCan + 6cacgb) _ iEC(aQ|21|b),

as required for (4.5b).
Further on, let us consider relations (4.5¢) for [/%°, Q*'¢]. Expression (4.37) now takes

the form
[[22’ QQla] — _i[&dr,&g’ Qa] — i(pl,&al + iﬂmn&é&bmwan) — i@a’
as required. The analogue of (4.38) is

12,07 = L (o + Bt 00" = LQ"

N | =

which matches (4.5¢). Finally, it is easy to see that [I'!, Q?'%] = 0 (see (4.32), (4.33) in
Lemma 4.2.6). Relations (4.5) for S® take the same form as in Lemmas 4.2.5 and 4.2.6.

The remaining relations can be checked in a similar way. O

Lemma 4.3.4. Let Q%¢, 1%, J% T be given by formulae (4.74), (4.75), (4.21), (4.23),
(4.24), (4.25), (4.76), (4.77). Then relations (4.2) hold.

Proof. We first note that by Theorem 4.3.1 we have {Q%, Q°} = €?{Q* Q,} = —2He*
which is the corresponding relation (4.2). The anticommutator {Q%'¢, Q*'*} vanishes since
the terms (4.62), (4.63) cancel each other and the right-hand side of (4.65) vanishes. Fur-
ther on it is immediate that {Q?'¢, Q1/} is the same as in the first representation. Similarly
for {22, Q?2Y, {4, Q'/}. Note also that {Q1%, Q'Y {Q'2%, Q'2}, {Q1e, Q') take
the same form as in Lemma 4.2.9.

Further on, let us consider {Q*'%, Q'%}. The left-hand side of (4.2) now takes the form
(cf.(4.59) and the change in the generator D)

{6221117 Q12b} — _2i¢ar,{zbr + prTECLb T 22(1 + 2a>¢br,&ar7 (481)
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and the right-hand side of (4.2) becomes (cf. (4.61))

{QZla’ Q12b} — xrpreab + 4Z~a¢(ar¢b7‘) o 22(1 + (I)Eab(@/}QT’lI)lr . @ZJIT@EZT)
— _2iwar,&br + l,rpreab + 27,(1 + QQ)wer]ar’

which is equal to (4.81) as required. The remaining relations can be checked by applying
~. O

Lemma 4.3.5. Let T® and Q% be given by (4.21), (4.25), (4.74), (4.75), (4.76), (4.77).
Then relations (4.5a) hold.

Proof. Firstly, it is easy to see that [T, Q%9 = —[K,Q%] = —2iz,0" = iS% and
[T, Q1] = [K,S5 = 0, and [T",Q"*] = —[D, 5% = —iQ". Moreover, we have
[T'2,Q?] = %Qma as Q® is homogeneous in x of degree —1.

Let us recall that from the proof of Lemma 4.2.11 (formula (4.69)) we have
o . - 1.
O, Fun [0 g ibgth™ — by 81 ] = 6" O Fyju (0 ™ — 5% ).
Therefore an analogue of (4.70) takes the form

1 — s 1
[H, 8 = —5[173, L") + 2Oy Fn [0 g bth™ — hpip™ 8% ] — S0 Frm ™

= ip " — F” oot = iQ",

as required for the corresponding relation (4.5a). Further on, we have that [T%, Q% = 0
and similarly, [T%,Q,] = 0, (cf. Lemma 4.2.11). The remaining relations can be checked

by applying ~. [

Lemma 4.3.6. Let T, 1%, J% be given by (4.21), (4.23), (4.24), (4.76), (4.77). Then
relations (4.6) hold.

The proof of the lemma is the same as the proof of Lemma B.1.9 for the first represen-
tation since 7% and J® keep the same form, and the proof of commutation relations with
H in Lemma B.1.9 relies only on relations (4.2) which express H as the anticommutator

of the supercharges Q® and Q,,.

4.4 Hamiltonians

We now proceed to explicit calculations of Hamiltonians appearing in Theorem 4.2.7 and

Theorem 4.3.1. We start with a Coxeter root system case.
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4.4.1 Coxeter systems

In this case we take R to be a Coxeter root system in V = RY (see Chapter 2). More
exactly, let R be a collection of vectors which spans V' and is invariant under orthogonal
reflections about all the hyperplanes (v,z) = 0, v € R, where (-, ) is the standard scalar
product in V. Furthermore, let us assume that squared length (vy,~) = 2 for any v € R,
and that R is irreducible. Non-equal choices of length of roots in the cases when the
Coxeter group has two orbits on R are covered by considerations in Subsection 4.4.2
below.

The corresponding function F' has the form

F(zy,...,zy) = % Z (v, )*log(7y, ). (4.82)

YER+

Recall that F' satisfies generalised WDVV equations (2.59) (see Subsection 2.5.2). Recall
the following property.

Lemma 4.4.1. [17, Ch. V| p. 125 | For any u,v € V
> (1 u)(v,v) = h(u,v),
YER+

where h is the Coxeter number of R.

Lemma 4.4.1 has the following corollary.

Lemma 4.4.2. Let F be given by (4.82). Then
Proof. Let v € R have coordinates v = (71,...,7n). By Lemma 4.4.1 we have

tiFp =AY m””’“ NS ok = Miles, ) = M 0

YER+ (f}/, YER+
The identity stated in the next lemma will be useful below.

Lemma 4.4.3. We have (6.7)
Y .
2 Gows " (4.83)

B"YGR-&- x)(77 )
BF#y

Proof. Let us consider a pair of roots 3,v. If v and 3 are orthogonal, then their contri-
bution in equality (4.83) is zero. Hence, assume that (v, 5) # 0. Let 7' = s3(y) € R. We

have

(ss(v),2) = (v, 2) = (8,7)(B; ).
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Therefore

L (nh) 0O _ (v, 8)?
(57‘7;) <<’)/,.Z') - (”y’,ac)) N ( ) _ (ﬁf)/)(ﬁ,l')(’%%). (484)

Hence, the term (4.84) is non-singular at all the hyperplanes (5,2) = 0, 5 € R,. This

implies the statement. [

Let us choose now

hA+1
a=_tA11 (4.85)
2
Then hA = —(2a + 1), so by Lemma 4.4.2 function F satisfies the required condition

(4.11). Thus it leads to D(2, 1; o) superconformal mechanics with the Hamiltonians given

by Theorems 4.2.7, 4.3.1. We now simplify these Hamiltonians for the root system case.

Theorem 4.4.4. Let function F be given by (4.82). Then the Hamiltonian H given by
(4.42) is supersymmetric with the superconformal algebra D(2,1;«), where « is given by
(4.85). The rescaled Hamiltonian Hy = 4H has the form

2 1
Hy = —A+ Z—M+ ) v o,

’YER (,}/7 )
where A = —p? is the Laplacian in V and the fermionic term
ViViVEV | i Vi
=2\ Z J ’; LTI bt apbap®® — 4\ Z J) Wit (4.86)
YER+ Py’ YER+ fy’
Proof. By formula (4.42) we have that
p?

where potential

1 sk L .
U = = 006" + o FijiFi 6™ 67'6

and

1 o o
U = =S 0:Fu (" ™ — ¢4 o").

Let us firstly simplify U. We have

]lk _ Z ’Yﬂz%

YER+

Then

O Fys96" = - Y TNk gisgn — g Z (4.87)

(v, z)?

YER+ ’YER+
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and
Fyjp Fppn6™" 6% = 4N Y e = Y - (4.88)
2 B - 2= Goo)
because of identity (4.83). The statement follows from formulae (4.87), (4.88). O

The following theorem can be easily checked directly.

Theorem 4.4.5. For the function F given by (4.82) the Hamiltonian H given by (4.77)
is supersymmetric with the superconformal algebra D(2,1;«), where « is given by (4.85).
The rescaled Hamiltonian Hy = 4H has the form

where ® is defined by (4.86).

Proposition 4.4.6. Hamiltonians Hy, Hy from Theorems 4.4.4, 4.4.5 satisfy gauge rela-
tion 0! o Hy 0§ = Hy, where § = [[4er, (8, 2).

The proof follows immediately by making use of the identity (4.83).

Remark 4.4.7. We note that the Hamiltonian H, is not self-adjoint under hermitian

involution defined by

Y@t = i p;. = pj, xj =, i'=—i, and (AB)' = B'A

a’

for any two operators A, B. One could have considered another ansatz for @, so that to
obtain self-adjoint Hamiltonian. Namely, let Q* be as in (4.74) and consider hermitian
conjugate (Q%)". Let Q% (Q*)" (a = 1,2) be the ansatz for the supercharges. Then

Q)T = pl, + iF bl ™.

Note that since Frjkwéﬂ@zg&bj _ Frjk(q/jg&bj@/)s _ Q/jg(gkj) We may express (Qa)T in terms of
Q. (see (4.75)) as follows

(Qa)T — Qa _ ZF’lmnz/_}(ll(snm
We then have

{Qa, (QC)T} — {Qa7 Qc} . i{Qa, Flmn@z,l;}énm
= {Qa’ QC} - warﬁiarﬂmnénm - wglﬁakFrle’lmnénm + %FTmnprégdnmu

with {Q% Q.} defined by (4.80). Then supersymmetry algebra constraint {Q%, (Q°)'} =

—20%H leads to restrictions a = —%, or a = —%. In both cases the bosonic part of the
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Hamiltonian H can be seen to be zero. Note that for o = —% the rescaled Hamiltonian
4H is given by
ViV b5 7T
AH =+ Y i,
(v, z)
YER+

Then bosonic part can appear only by reordering of fermionic terms.

4.4.2 General V-systems

Let us consider a finite collection of covectors A on V = CV such that the corresponding

bilinear form

Ga(u,v) = Z(%u)(%v), u,veV

yeEA
is non-degenerate.

Let f be any linear transformation on V', f : V — V and let f* denote the dual map
f*:V* — V* defined by p— po f. Then we have that

Gre(u,0) =Y () (f (1), 0) = Y (1, f(w) (1, f(v) = Galf(u), f(0)).

veA yeA

Then it is easy to see that f*(.A) satisfies the V—conditions.
Furthermore, since G4 is non-degenerate we can assume by applying a suitable linear

transformation f that

Ga(u,v) = (u,v)

for any u,v € V. We can then identify vectors and covectors. In particular, in this case A
is a V-system if for any v € A and for any two-dimensional plane 7 C V such that v € =

one has

> (BB =,

BeEANT
for some p = pu(v,7) € C.
Let F' = F(xy,...,xy) be the corresponding function
A 2
F =2 (v,2)log(y,). (4.89)
yeA

Then F satisfies generalised WDVV equations (4.12). Furthermore, the condition
ziFiji = — (20 + 1)dj

is satisfied if .
= —(A+1).
a=—30+1)
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Therefore this leads to D(2, 1; ) superconformal mechanics with the Hamiltonians given

by Theorems 4.2.7, 4.3.1, which we present explicitly in the following theorem.

Theorem 4.4.8. Let function F be given by (4.89). Then the Hamiltonian H given by
(4.42) is supersymmetric with the superconformal algebra D(2,1; ), where o = —%()\—l— 1).
The rescaled Hamiltonian Hy = 4H has the form

0 o— A+§Z(v,7)2 A’ 3 (7,7)(8,8) (7, B)

L= v + @,
25 (2?4 2= (1,2)(B,)
where A = —p? is the Laplacian in 'V and the fermionic term
2)\’%"77 i 130T 2>‘7T7 V) b
O =y I IRt =y #@bbw’”. (4.90)
"/EA (77 Zl?) ’YE.A (7, Qj)

Furthermore, the Hamiltonian H given by (4.77) is also supersymmetric with the super-
conformal algebra D(2,1; «), where o = —%()\—i- 1) and the rescaled Hamiltonian Hy = 4H
has the form

H2:—A+/\Z%ay+<b.

The proof is similar to the one in the Coxeter case. The following proposition can also
be checked directly.

yeA

Proposition 4.4.9. Hamiltonians Hy, Hy from Theorem 4.4.8 satisfy the gauge relation
6o Hyod = Hy, where § = HﬂeA(ﬁ,x)%(ﬁﬁ)'

4.5 Trigonometric version

In this section we consider prepotential functions F' = F(z1,...,zy) of the form

F=Y cuf((a,x)), (4.91)

acA

where A is a finite set of vectors in V = C¥, ¢, € C are some multiplicities of these

vectors, and function f is given by

() = %23 _ iLig(e_QZ)

so that f"”(z) = coth z.
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We are interested in the supercharges of the form

Q" = )™ + iy (WP,
Q. = b + i Fppn (Pl ™™™y,

a,c = 1,2, which is analogous to the first representation considered in Section 4.2.

Function F' should satisfy conditions
Frijkmn = Frmkajn7 (492>

for all r,j,m,n =1,..., N but we no longer assume conditions (4.11). Then we have the

following statement on supersymmetry algebra.

Theorem 4.5.1. Let us assume that F' satisfies conditions (4.92). Then for all a,b = 1,2

we have
{Qa7 Qb} - {QGJ Qb} =0 and {Qa7 Qb} - _2H6g7

where the Hamiltonian H 1s given by

1

P2 8Fylk bi Tdk ik L cig ok il cik
(WP D™ — s +Z5”5 )+EFszmn6"m5J 5.

H=5—
4

Furthermore, the rescaled Hamiltonian Hy = 4H has the form

1 o
H =-A+- ZC(% - Z cacsla, ) (B, B) (e, B) coth(a, x) coth(B, z) + @
2 = sinh*(a, z)
ae a,fEA
(4.93)
where A = —p? is the Laplacian in V and the fermionic term
20(10410( i e
© = 3 o oo = (0 )03, (4.94)

The proof of the first part of the theorem is the same as the proof of Theorem 4.2.7
together with the proof of the relevant part of Lemma 4.2.9. The proof of formula (4.93)
is similar to the proof of Theorem 4.4.4.

Let us now consider supercharges of the form
Qa _ prwar + iFrjkwbr¢quak’
Qc = pl&é + Zﬂmn&ézzdmw?a

a,c = 1,2, which is analogous to the second representation considered in Section 4.3. Then

we have the following statement on supersymmetry algebra.
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Theorem 4.5.2. Let us assume that F' satisfies conditions (4.92). Then for all a,b = 1,2

we have
{Qa7 Qb} = {Qaa Qb} =0 and {Qa7 Qb} = _2H6g7

where the Hamiltonian H 1s given by

p_2 N a7“1-7’]'lk

H =
4 2

(WU B™ — U E5") + 26" Frmapr (4.95)
Furthermore, the rescaled Hamiltonian Hy = 4H , has the form

Hy=-A+ Z colar, @) coth(a, )0, + P, (4.96)
acA

where ® is the fermionic term defined by (4.94).

The proof of the first part of the theorem is the same as the proof of Theorem 4.3.1
together with the proof of the relevant part of Lemma 4.3.4. Then formula (4.96) can be
easily derived from the form (4.95) of H.

Proposition 4.5.3. Hamiltonians Hy, Ho from Theorems 4.5.1, 4.5.2 respectively satisfy
gauge relation
5_1OH205:H17

where § = [, 4 sinh(a, )% (@),

Let us now assume that A = R is a crystallographic root system, and that the multi-
plicity function ¢(«) = ¢4, @ € R is invariant under the corresponding Weyl group W. For
a general root system R the corresponding function F' does not satisfy equations (4.92).
For example, if R = Ay_; then relations (4.92) do not hold (see Remark 4.5.7) . But for
some root systems and collections of multiplicities relations (4.92) are satisfied.

In the rest of this section we consider such cases when prepotential F' satisfying (4.92)
does exist. The corresponding root systems R have more than one orbit under the action
of the Weyl group W. We start by simplifying the corresponding Hamiltonians H; given
by (4.93).

Proposition 4.5.4. Let us assume that prepotential F' given by (4.91) for a root system
R with invariant multiplicity function c satisfies (4.92). Then Hamiltonian (4.93) can be

rearranged as

c
Hy=-A+ ———+ D, 4.97

' Z sinh?(a, ) (4.97)
aER 4

where

Co —

_ {ca(oz, a)2(1 + cola, a)), if 2a¢ R,
cala, a)?(1+ (,a)(ca 4+ 8c2a)), if 20 €R,
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O = O + const, with ® given by (4.94) and Ry is a positive subsystem in R.

Indeed, it is easy to see that for the crystallographic root system R the term

> cacsle, ) (8, B)(a, B) coth(a, ) coth(8, z)
B,a€ER
Bra

is non-singular at tanh(c, ) = 0 for all @ € R, hence it is constant. One can show that
the Hamiltonian H; given by (4.93) simplifies to the required form.

We now show that solutions to equations (4.92) exist for the root systems R = BCl,
R = F; and R = G5, with special collections of invariant multiplicities.

Let R, be a positive subsystem in the root system R. For a pair of vectors a,b € V

we define a 2-form B%f) by

Bg“f) = Z cacy(B,7)Bs(a,b)B A7, (4.98)

BYER+

where By s(a,b) = a A B(a,b) = (a,a)(8,b) — (a,0)(B,a). The form By has good
properties with regard to the action of the corresponding Weyl group W. Namely, the

following statement takes place.

Proposition 4.5.5. The 2-form (4.98) is W -invariant, that is

wBE? = B = Bl (4.99)

wWR4
for any w e W.

Proof. Let us choose a simple root o € R,. It is sufficient to prove the statement for

. b
w = S,. Let us rewrite B%Jr) as

Bg’f) = 2¢, Z ca(e, B)Bagla,b)a A B+ Z cpc(B,7)Bg(a,b)B A .

BER+ BAER+\{a}

It is easy to see that for any 8,7 € R
Bﬂﬂ(saa’ Sab) = Bsaﬂ,son/(aa b) (4100)

since (u, $qv) = (Squ,v) for any u,v € V. Let us now apply s, to equality (4.98). Since
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Sa(Ry \{a}) =Ry \ {a} we have

sangf) = —2¢, Z cs(a, B)Bagla,b)a A B+ Z cacy(B,7)Bs(a,b)sa B N say

BER BAER+\{)
= 2ch Z C,B(a7 /B)Bsaa,sa[?(a’ b)a A /B + Z cﬂcv(67 7)Bsa,8,sa'y(aa b)ﬁ A 7
BER 4 BAER+\{a)
. B(saa,sab)

= Dgr. ,

by the relation (4.100). This proves the first equality in (4.99). In order to prove the
second equality (4.99) let us notice that in fact

Z cg(a, B)Basla,b)a A = 0.

BER+

Below we will denote B%:’_b) = B since by Proposition 4.5.5, B%’_b) does not depend
on the choice of root system. Let us derive some conditions for a function F' to satisfy
equations of the form (4.92). Let F; be the N x N matrices of third derivatives of F,
(F)im = _OF__ and for any vector a = (ay,...,ay) € V let us denote F, = Ef\il a; F;.

Im = 0x;01;0Tm,’

Theorem 4.5.6. Let a,b € V. Then the equations
Fan = FbFa

are satisfied if and only if
B =, (4.101)

Proof. We have
(Fo)ix = Z colar, a)ayay coth(a, x),

aER

and therefore

F.F, = Z cacpla,a)(B,0) (e, B) coth(a, ) coth(B, z)a ® .
a,BER

Hence the equations [F,, Fy] = 0 are equivalent to

Z caCpBagla,b)(a, B) coth(a, z) coth(B, z)a ® =0,
a,BER
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which can be easily checked to be equivalent to

Z caCsBag(a,b)(a, B) coth(a, z) coth(B, z)a A B = 0. (4.102)

a,BER+

It is easy to see that the sum in the left-hand side of the equality (4.102) is non-singular at
tanh(a, x) = 0 for all & € R, hence this sum is always constant. In an appropriate limit
in a cone coth(a,z) — 1 for all @« € R, and therefore the equality (4.102) is equivalent
to the equality

S cacsBapla,b)(a. B)a A B =0,

a,BER L
as required. N
Let e;, i =1,..., N be the standard orthonormal basis in V. We may express B(*" in
the basis e; A e; of A?V,
B(a’b) = Z gij€i VAN €;, (4103)

1<i<j<N

for some scalars g;; = g;;(a,b). Then linear independence of the basis vectors and condition
(4.101) give rise to (];7) equations g;;(a,b) = 0. If Ay_y C R then by Proposition 4.5.5
we should have that g;;(a,b) = £,3i)0(;)(0(a),o(b)) for any transposition o € Sy which
acts on vectors a,b by the corresponding permutation of coordinates. This shows that
the condition (4.101) reduces to a single equation g;; = 0 for any fixed 4, j and general

a,b € V. For convenience we will write below B, . (a,b) as By;(a,b).
Remark 4.5.7. Let R = Ay_;. Then relations (4.92) do not hold.

Proof. Let the positive half of the root system Axn_; be
ei—ej, 1<i<j<N.

Let s be the multiplicity of the vectors in Ay_; and let us use Theorem 4.5.6 in order to
deal with conditions (4.92). We consider the coefficient gi2(a,b) at e; A ey by collecting
respective terms in the corresponding form B(*% given by (4.98), (4.103). The non-trivial
contribution to g2 comes only from the following pairs of vectors {3,~} in the expansion
(4.98):

{e1 —ez,e1 —e;}, {e1 —eq,ea—e€;}, {e1—ej,ea—¢;}, 3<j<N.
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Let ag, = (N — 2)ey, — vazs ei, k =1,2. Then since a1 — ay = (N — 2)(e; — e3) we have
N
912((1’ b) = 282 (B€1—627Oc1 (av b) - B€1—627O<2 (a’ b) + Z Be1—€j,62—€j (CL, b))
=3

N
=25 " Be, o er—e,(a,D). (4.104)

j=3

Then it is easy to see that the right-hand side of g5 (4.104) is generically non-zero. The

statement then follows. O]

Theorem 4.5.8. Let R = BCly. Let the positive half of the root system BCy be
nei, 2ne;, 1 <i < N; n(e; ej), 1 <i<j<N,

where n € C* s a parameter. Let r be the multiplicity of vectors ne;, and let s be the

multiplicity of vectors 2ne;. Let q be the multiplicity of vectors n(e;£e;). Then the function
N
F= Z rf(nx;) + sf(2nx;)) —|-qu (; £ ;) (4.105)
=1 1<j

satisfies conditions (4.92) if and only if r = —8s — 2(N — 2)q. The corresponding super-
symmetric Hamiltonians given by (4.96), (4.97) take the form

N
8s+2(N —2)q)(2(N —2)gn* — 1)  16s(4sn* + 1)
Hy = —A -+ (( + ) (06
! 1 ; sinh? nz; sinh? 2nx; ( )
N
4q( 2q77 +) 5
4
+ @,
Z sinh?(n(z; & 7))
and
N
Hy = —A+21° Z (8s coth 2nz; — (85 + 2(N — 2)q) cothnz;)0; (4.107)
i=1

N
+ 4qn® Z coth(n(z; £ x;))(0; £9;) + ®

1<j
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with ® given by

- i( Gt BN =200y %) (wruidia® — vid")

sinh® nz; sinh? 2nx;

Z Z Z qdmtzdmt] (dmtldmtkqﬂbiwiqgiﬂzdk - 2%&%)

2
66{1 -1} m<ti,jlk Slnh ,I + Ext))

where dyp = dpir(€) = Omp + €04, and ® = ® + const.

Proof. Let us use Theorem 4.5.6 in order to deal with conditions (4.92). Let us consider
the coefficient gi2(a,b) at e; A es by collecting respective terms in the corresponding form
B given by (4.98), (4.103). The non-trivial contribution to g;o comes only from the
following pairs of vectors {3,~} in the expansion (4.98):

(1) {ner,m(er £ea)}, (2) {2ner,mler £ ea)},  (3) {mlex L ea),nles £ ej)}, 3<j <N,

since contributions from pairs {n(e; £ e2),n(e2 £ ¢€;)} and {n(e; £ ¢;),n(e2 £e;)} is zero
each. Pairs (1) contribute 47qn®Bis(a,b), pairs (2) contribute 32sqn®Bia(a,b) and pairs
(3) contribute 8¢*(N — 2)n°Bia(a,b). Therefore

g12(a,b) = 4q(r + 8s + 2(N — 2)q)776B12(a, b).

By Proposition 4.5.5, g;; = 0 for all 1 < i < j < N if and only if r = —8s — 2(N — 2)q.
The form of the Hamiltonians H,, H; follows from Theorem 4.5.2 and Proposition 4.5.4

respectively. Then the statement follows. O

Remark 4.5.9. We note that for the multiplicity s = 0 Theorem 4.5.8 is contained in [49].
Indeed, Theorem 2.3 in [49] states that the function F' given by formula (4.105) with root
system R = By satisfies WDVV equations. It also follows from the proof of Theorem 2.3
in [49] that the corresponding metric is proportional to the standard metric d;;. Therefore
WDVYV equations are equivalent to equations (4.92).

More generally, it is shown in [2] that the function (4.105) satisfies WDVV equations
if and only if the relation r = —8s — 2(N — 2)q for the multiplicities r, s, ¢ in Theorem
4.5.8 takes place. Thus, a metric from the third derivatives of F'is constructed which is
proportional to the metric ;;, and in this way a generalisation of Theorem 2.3 in [49] is
obtained. In fact, one can consider a generalisation of the configuration BCy and show

that the corresponding function also satisfies WDVV equations (see [2| for details).

Theorem 4.5.10. Let R = F. Let the positive half of the root system F, be

nei, 1 <i<4; nlexe;), 1<i<j<d4 (e1 £es +egtey),

N |3
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where n € C* is a parameter. Let r be the multiplicity of short roots ne;, %(e1teytestey)
and let q be the multiplicity of long roots n(e; = e;). The function

2

e;e{1,-1} 1<j

4 4
F=rY flm)+r > f( (L erar + eata + 313 + 74)) +q ) fln(e £ x)))
=1

satisfies conditions (4.92) if and only if r = —2q or r = —4q. The corresponding super-
symmetric Hamiltonians (4.97), (4.96) take the form

4

1 1
Hi==A+r(l+mn (3 ——+ > — )
— sinh” nz;

e€{1,~1} sinh (3(611'1 + €209 + €373 + x4))

4

4q(1 + 2qn?) ~
+7) +
Z sinh?(n(x; £ 7))

and

Hy=—-A+m? Z Coth(g(qml + €axo + €373 + 4)) (€101 + €205 + €305 + 04)
61‘6{1,—1}

4 4
+ 2rn? Z cothnz;0; + 4qn® Z coth(n(x; £ x;))(0; £ 0;) +

i=1 1<j

with ® given by
! r
P — A <bii_i_di_ i_bi)
n E —Sinh2 . Vgt (0

dm zdm P — R
DY Z > Smhf s (s o 5™ — 203350 )

ee{l -1} m<tiglk

P D e (s — i),

ce{l,—1} i g €171 + €209 + €373 + .134))

where r = —2q orr = —4q, d; = d;(€1, €2, €3) = €101; + €209; + €303; + 045 and d = ®+const.

Proof. Since B, C F, we have the contribution to the coefficient g5 of the form (4.98),
(4.103) from the pairs of vectors {f3,7} € By which is equal to 4q(4q + r)n°Bia(a,b). The
remaining contribution to the coefficient g5 comes from the following pairs of vectors
{,~} in the expansion (4.98):

(1) {nei, g<61 testeste)), (2) {nler£es),

N3

(61 + €9 + €3 + 64)},

(3) {n(e1 L eq),=(e1 L ea ez tey)}.

(N
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Indeed, let us demonstrate why pairs of vectors of the form

N3

(61 + €9 + €3 + 64) (4108)

contribute trivially to the coefficient g;5 of the form (4.98), (4.103). Let 8 = Z(ey + Aez +
pes+vey) and B = Z(e1+Aeg—pes—vey), where A, p, v = £1. Non-trivial contribution with
this 3 to g1 can only come from the two pairs {3, &7}, where v+ = 2(e1—AeaE(pnes+rves)).
The same holds for 3. The contribution from the two pairs {3, .} is —/\77"2776 Be\ 1 xes pes+ves
while the contribution from the two pairs {B Y+ ) is ’\T’”QnGBeﬁ Aea,ues4veq- Hence altogether
contributions to gj2 from pairs of vectors of the form (4.108) cancel. Similarly, one can
check that contributions from pairs {nes, 7(e1 ey *es£eq)} and {n(er £ez), 2(e1 ey £
e3 £ e4)} is zero.

Then pairs (1) contribute 2r?n°Biy(a,b) and pairs (2),(3) contribute 4r¢n°Bis(a,b)

each. Therefore in total
gra(a,b) = 2(8¢° + 6rq + r*)n° Bia(a, b).

By Proposition 4.5.5, g;; = 0 for all 1 <7 < j <4 if and only if r = —2¢ or r = —4q. The
form of the Hamiltonians Hs, H; follows from Theorem 4.5.2 and Proposition 4.5.4. Then

the statement follows. O

Theorem 4.5.11. Let R = G5. Let the positive half of the root system Go considered in

three dimensional space be
ap =1n(er —ea), ax=mn(er —e3), az=rmnex—e3),

ay =n(2e; —ey —e3), as=mn(e;+es—2e3), ag=n(e; —2e+ e3),

where n € C* is a parameter. Let s be the multiplicity of the short roots ay;, i+ = 1,2,3 and
let v be the multiplicity of the long roots o, j = 4,5,6. Then the function

3
F=s Z fn(z; — ;) + g ZS Fn(2zo0) — To2) — To(3)))

satisfies conditions (4.92) if and only if s = —3r or s = —9r. The corresponding super-
symmetric Hamiltonians (4.97), (4.96) take the form

3
Hl _ —A—|—774Z 4S<1+28772) +7]4 Z 18T(1+6T172) +€)
i<j sinhQ(n(:Ui - :EJ)) -€5s sinhQ(n(QxU(l) — To(2) — $g(3))) ’
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and

3
Hy = —A+4sn® Y " coth(n(z; — 2;))(0; — 0;)

1<J

+ 67‘773 Z COth(n(Ql"U(l) — To(2) — 110(3)))(280(1) — 00(2) — 8‘,(3)) + O,

oES3

with ® given by

d_..d- R
b ity Y (g g — 2

sinh?(n(x,, — ;)

m<ti,jlk
DY L (oot — ouii)
eSs ik smh N(22q(1) — To(2) — Ia(g))) b

where s = —=3r or s = =9r, d,,; = Omi — 04, di = 205(1)i — 00 (2)i — 00 (3)i, and ® = &+ const.

Proof. The coefficient at e; A ey in the form B®?) given by (4.98), (4.103) is

6 5
g12(a,b) = Z 2C0,;Ca, (i, ) Bay o, (@, b) (s A ag,er A eg) = Z A,
i<j i=1

where (a;Aaj, e1\eg) = det(cq, ¢a) where ¢, are the column vectors ¢, = ((ov, ex), (o4, ex))T,
k=1,2, and
6
= Z 24, Ca; (i, 00j) By o (a,0) (i A aj,e1 A e).
Jj=i+1
We have

Ay = 6511° By, s (a, b),

Ay = 251°(5Bay,a5(a,b) — 37 Bay a6(a, b)),
A3 =0,

Ay = 18r*n° By, 305 (a, ),

As = 187*n° B, o (a, ).

Simplifying we obtain
g12(a,b) = 2776(277“2 + 12rs + 52)(Blz(a, b) — Bis(a,b) + Bas(a,b)).

By Proposition 4.5.5, g;; = 0 for all 1 <7 < j < 3 if and only if s = —3r or s = —9r.
The form of the Hamiltonians H,, H; follows from Theorem 4.5.2 and Proposition 4.5.4

respectively. Then the statement follows. O
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Remark 4.5.12. The bosonic part of the supersymmetric Hamiltonians (4.96), (4.97)
becomes Calogero-Moser Hamiltonian in the rational limit. For example let us consider
the case of the root system BCy and let us introduce rescaled multiplicities 3 = n?s,

= n%¢ and 7 = 7n%r in Theorem 4.5.8. Then in the limit » — 0 bosonic parts of
Hamiltonians H; and Hs given by (4.106), (4.107) become the rational By Hamiltonians

Hf’r, Hg’r with two independent coupling parameters, namely,

i<j 371 i xﬂ i=1
and v N
4q 21
HY = —A (0; % 0;) =,
2 + ; z; xj — T

where | = 2((N — 2)g + 25). Thus supersymmetric Hamiltonians (4.106), (4.107) can
be viewed as n-deformation of the rational superconformal Hamiltonians considered in
Theorems 4.4.4, 4.4.5 for the root system R = By.



Chapter 5

Concluding remarks and open questions

5.1 Determinant of restricted Saito metric

In this work we considered the Saito metric 7 defined on the Coxeter orbit space My,. We
studied the restriction of this metric on discriminant strata inside the discriminant of My,
and obtained a formula for its determinant which is described in terms of the underlying

Coxeter geometry of root systems and corresponding arrangements of hyperplanes.

Comment 1. Main Theorems 1 and 2 are proved for exceptional Coxeter groups by case
by case considerations (except for codimensions one and two, and dimension one). It
would be more illuminating if a proof for all Coxeter groups can be obtained uniformly,

perhaps via a different route.

Comment 2. It would be interesting to study other properties of the metric np on the
strata D. For example, the scalar curvature may be of interest. Initial considerations

suggest that it may have a factorised form, similarly to the determinant of 7p.

Comment 3. Frobenius manifold structures on the orbit spaces My of extended affine
Weyl groups W were considered firstly by Dubrovin and Zhang [26]. A non-degenerate
flat metric (analogous to the Saito metric on My, ) can be defined on these orbit spaces.
It would be interesting to see if the restriction of this metric to the corresponding strata
inside the discriminant of Mg has a similar property to the restricted Saito metric, that

is whether determinant has a nice form in suitable coordinate system.

Comment 4. T. Dourvopoulos recently informed us about their conjecture with C. Stump
on freeness of a new class of multi-arrangements (see |73] book for the theory of free
arrangements). These are restricted Coxeter arrangements and multiplicities come from
the multiplicities of factors of the determinant of the restricted Saito metric considered
in this work. It would be interesting to analyse this conjecture possibly, in relation with

methods developed in this thesis.

184
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5.2 Supersymmetric V—systems

Since work [88] there were extensive attempts to define superconformal N' = 4 Calogero—
Moser type systems for sufficiently general coupling parameters and suitable superconfor-
mal algebras. Some low rank cases were treated in [40], [41]. A number of works were
devoted to the superconformal extensions of Calogero-Moser systems where extra spin
type variables had to be present (see [32] for a discussion and the review). In the cur-
rent work we presented superconformal extensions of the ordinary Calogero-Moser system
with scalar potential as well as its generalisations for an arbitrary V-system, which in-
cludes Olshanetsky—Perelomov generalisations of Calogero-Moser systems with arbitrary
invariant coupling parameters, and without introduction of extra bosonic variables. The
superconformal algebra is D(2, 1; «) where parameter « is related to the coupling parame-
ter(s). It is crucial for our considerations that we deal with quantum rather than classical
Calogero—Moser type systems.

We also presented supersymmetric non-conformal deformations of the trigonometric
Calogero-Moser—Sutherland type systems related with the root system By (which may
be thought of as the Calogero-Moser—Sutherland system with boundary terms) as well as

with some other exceptional root systems.

Comment 5. It would be very interesting to see if there are any relations of consid-
ered systems with black holes (cf. [42] for the conjectural relation with supersymmetric
Calogero—Moser systems and e.g. [60], [68] and references therein for non—conformal de-
formations of AdSs black hole geometry). We note that it is also suggested that the
superconformal algerba D(2,1;«) may be relevant to multi-black hole systems (see [32]

and references therein).

Comment 6. We dealt with BC)y trigonometric prepotentials which were recently shown
in 2] to satisfy generalised WDVV equations. It would be interesting to see whether there

are more Frobenius manifold structures associated to this solution of WDVV equations.

Comment 7. It may also be interesting to clarify integrability of considered supersym-

metric Hamiltonians.



Appendix A

One-dimensional strata: the cases Fi,
Hy

It can be checked directly with the help of Mathematica (see [5]) that the metric 7p is non-
zero for any one-dimensional stratum in the following Coxeter groups: Fjy, Hy, Fg, 7, Es.
All the remaining cases are considered in Chapter 3.

Let us give some details here only for the cases when R = F; and R = H,. The cases
when R = Eg, 7, Eg are similar. Basic invariants and Saito polynomials for the groups
of type Eg and E7, Eg can be found in [1,78| and [1,83] respectively. Let us introduce
coordinates & = (g, x1, T, 3) € RL.

Let R = F, C R* The polynomials

3
L= (&' =) + (" + 27)F, k=26,8,12,

i<j

are basic invariants. Saito polynomials can be chosen as follows [35, 78]:
1 1 1 15 s I5\3 1 3 21 /1, 77 I\
=g e b B o= 3 S (- B
144> 6\ 3" 16\6/) ) 6\~ 10 so\s) " als) )

t =it gt (6) aso(6) a0 (6)(6) oo (6)
60 960 "\ 6 480 \ 6 960 \6/\6 1280\ 6

Note that normalisation of these polynomials is chosen such that 7,5(t) = d4+p5. There

are two non-equivalent one-dimensional strata in F; which have types B3 and Ay x A;. In

the former case we obtain np = —2z1?dz?, with D : 1y = z1, x5 = 3 = 0 and in the latter
np = —576x1%dx?, with D : 329 = 21 = 25 = 3.

Let us now consider the case R = H; C R* The corresponding root system is

given by cyclic permutations of the vectors (£2,0,0,0) and (+7,+(7 — 1), £1,0), where

7 = (14 V/5) (independent choices of signs) [27,78]. A simple system can be chosen as

186
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follows:
a; =(0,2,0,0), ay=(0,—7,7—1,—-1), a3=1(0,0,0,2), as= (7

with corresponding Coxeter graph

t = %22,

t? \/1_(z12+ 1 29),

t3=\/——( 20+:1,) 29% 12+4§5 2°),

th = 230 — %23220 gzngz - %23312 1;235 %57

- 1,0,

187

—7,—1)

where zo, 219, 290, 230 are particular polynomials of degrees 2,12, 20, 30 respectively, in

the variables xq, 1, 22, x3. They are defined explicitly in [78, p. 403] but there seem to

be typos in the expressions for the polynomials z15 and z39. We give correct expressions

below. We also normalised the polynomials ¢, 2, 3 so that 7,5 = dasp5-

There are four non-equivalent one-dimensional strata D in H; which have type Hs, As,

I5(5) x Ay and A; x Ay. In the following table we give the determinant det np(x) of the

restricted Saito metric np for these strata. We use the notation {«;,, as,, a;;} to denote

the stratum D = D,

11,12,13 *

Table A.1: Restricted Saito metric np, dimD =1, R = Hy

Type of stratum det np(x)
Hs, {ay, g, a3} 23.374.571 (\/3—3) 230
Az, {ag, a3, a4} 2%8.374. 571 (71— 3V5) 23’
L(5) x Ay, {0, g, a4t 2%8.374.5 (725 4 161) 23
Ay x Ay, {o, ag, o4} —27-3- 571 (121393v/5 + 271443) 23

Let us now give expressions for the polynomials z15 and z39. They are defined in terms

of polynomials Xy, Xg, Xjo (which are denoted by xs, x4, x19 in [78, p. 401]).

These
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polynomials have the form

X2 = D1,
X = V5ps + pips — 11ps,
X10 = 3V5pap2 + 2pip2 — 32p%ps — Sp1p3 + 95paps,

where
3

3 3 3
_ 2 _ 2.2 _ 2 _ 2 2
P1 = E Ty, D2 = E xixja p3 = Hxia P4 = H(x@ _'TJ)
=1 =1 1

i=1 =1 = =1
1<j 1<J

In these notations one gets

212 = — 22" Xo + 635 X" + 2§ (33X — 14X5°) — 23(33X2X6 — 6X5")

3
+ Qfg(lleo - 2X25> - X10X2 + §X62,
20 = D242 — 22 (R0XE + 120X, X 20 (360X 10 + ot X3 4 GT2X2X
30—3$0 2 fo( 9 T 26)+m0( 10+ 5 o T 2 6)

1328
+ z° (= 2880X10X> — TXS — 1608 X5 Xs + 1080X¢) + 2°(10024X,0.X3

+ 272X] + 1248X5 X — 5628 X,X¢) + " ( — 16856X10X5 — 7620.X10 X6

1328
+272X5 + 18588X5X¢ ) + x4 (14216 X10.X5 + 23508 X 10X X6 — 5 XJ
— 1248X7 X — 27396 X5 X¢ — 5796X¢) + 24° (3240X 7, — 7160X 10X — 25332X10.X5 X
1344

+ TX210 + 1608X7 Xg + 19968X5 X¢ + 7350X5X3 ) + a5 ( — 3232X7Xo + 2144X ;X5

+ 10908X10.X5 Xs — 906 X10.Xg — 80X, — 672X5 X — 6924X5X¢ — 1956 X5 X))

32
+ 2 (1168X 70 X5 — 344X 10X; — 2172X10X5 X — 1908 X190 X5Xg + §X212

+ 120X3 X6 + 1332X5 X7 + 288 X5 X + 2394X¢) + 2 ( — 152X X5 + 348 X7 X
+ 16X10X5 + 60X10X5 X + 408X10X5 X5 — 84X X¢ + 84X; X¢ — 909X,X)
+ x5 (8 X7 X5 — 42X10 X5 X — 87X10Xg — 6X7X§ + 135X7 X))

4 9
+ gxf’o —3X10X2 X{ + 5 0.

Polynomials 2z, and zg9 are the same as in |78, p. 403]. They have the form

2
29 = Ty + Xo,
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200 = 4ai° X5 — x5t (20X5 + 30Xg) + x” (44X5 + 138X,X5)
+ 2’ (180X — 44X5 — 402X3 X)) + af (—464X 10X, + 44X5 + 402X5 X + 294X¢)
+ 2§ (296 X10X5 — 20X — 138X5 X5 — 306 X>X;7)
+ zy (=76 X10X5 — 114X10 X + 4X5 + 30X, X6 + 168X5X7)

57 3
+ x5 <4X10X§ —21X5X¢ + 7X§’> + X7y — 5X2Xg>.



Appendix B

One particle systems

In this appendix we include our considerations for one particle systems for reader’s con-
venience. Namely, we construct two representations of the algebra D(2,1;«) which are
particular cases of considerations from Sections 4.2, 4.3. Relations (4.7) for one particle
take the form (j,k = 1,2)

[z, p] =1, {wk’&]} = _%(5;?7 and {wjﬂwk} = {&w&k} = 0. (B.1)

Relations (4.9) take the form

. 1. — 1 — 1
{¢k7¢]} = §5i7 {¢k’¢j} = §€k]7 {¢k7¢]} - §6jl€7 <B2>
since €;,€'* = 6% We consider a potential of the form (4.82) with A = —2%=L.
B.1 The first representation
Let the supercharges be of the form (4.16), (4.17), namely
a a ,20& + 1 a
Q" = pu + i (), (.3)
~ - 200+1, -, -
Qp = pthy +i— (" Prab). (B.4)

Note that by (4.18) we have that
_ 1 L _ _ _ _
(™) = 6(%1/]%“ + P+ PN — P Y — PPy, — PR
= ST+ Pt — ), (B.5)

since for any ¢ we have that

Yroy, = —Ppp”. (B.6)

190
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Note also that by (B.1), (B.2) we get

- - - . 1
VUt = PPt + 0, PPt = =t — F¥" (B.7)
Hence it follows from (B.5) and (B.7) that
() = Y P+ (B3)
Similarly, .
(W i) = P by + Elﬁb-
Let also
K=2 D=—{rp} (B.9)
_[11 _ _Zwmwm7 122 — “Zml/_}ma 112 — 121 _ _%[d}mpl/;m]a (Bl())
JO = Jbe = 24qp(@qpb) (B.11)
St = —2xp%, S, = —2x,. (B.12)

Note that under the operation ~ defined by (4.10) we obtain the following relations:

Qa - _Q(M Qa = _Qau Sa - Saa 5;; = Sa7 (Bl?))
=2 212 (B.14)
H=H D=-D, K=K. (B.15)
Note also that
Jap = €antyg ] = Jab, (B.16)

since Yoy + Vptha = —(Yathy + Ypila) by (B.2), where @, b are complimentary to a and b
respectively. Let us first check relations (4.4) involving generators J% and I%°. Note that

the statement of Lemma B.1.2 appears also in [31] and we include it here for completeness.
Lemma B.1.1. Let J% be as above. Then the relations (4.4a) hold.

Proof. We have the following commutator by applying (4.13), (4.14)

[wazzb7 lpclﬁd] — %Ecb¢a1zd + %edad}cd—}b'
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Thus,
_ _ 1 _ _
(PP + 91) + S WY+ )
_ _ 1 _ _
P+ U)W+ YY),

[Jab’ ch] —

+

| o)~

which implies the lemma.
Let us now check relations involving generators 1.
Lemma B.1.2 (cf. [31]). Let I’ be as above. Then relations (4.4b) hold.
Proof. Relations (4.4b) read as follows:
(U2 = 212, [V 1) =, (12,11 = —iI®2.

We have
[, 1%2]) = [hatp®, 00y

By applying (4.13), (4.14) we rearrange expression (B.17) as

[]117 ]22] = ¢a [770“7 &bﬂ_}b] + WJW &b&b]wa
= %@Ea + @ana = %@Ea - ZEGQ/Ja
= 2412,

as required. Moreover, using the Jacobi identity we have
11 712 1 a b 1 b a
[[ 7I ]:_§Wa¢ ,[¢b7¢]]:§[¢b>[¢ >wa¢ H
We have [¢°, 4,1 = 1. Thus,
[1117112] — @Db'@bb — i[ll.

Similarly, X X
[[227 [12] = 5[&%;(17 [wba &b“ = _5[&1)7 [&a,&a’ %H,
and [1)%,, Y] = —1),. Thus,

[122’ ]12] _ @ZbQZb _ —'i]22,

which is the corresponding relation (4.4b) and hence the statement follows.

Lemma B.1.3. Let Q%¢, J% be as above. Then relations (4.5b) hold.

192

(B.17)
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Proof. We have by (B.2) and (4.14) that

3", 9] = 40 (9, 97} = g, (B.15)
By (4.13), (4.14) and (B.2) we have that

WJQQZZ)J wklpk&j] - _¢k¢k W_)j7 zﬁa&b] - [¢k¢k’ wa&b]&j
= — {7 Y — [, ST — [y, P
= ST — (B.19)

Note that since J% is symmetric in a and b, it follows from (B.18), (B.19) that

[Jab’ 1/)0] — %Ecbwa + %Eca¢b7 <B20>
[Jab7,¢k¢k¢_)c] — %60a¢k¢k&b + %ECb@bk@bk’JJ&. (B21)

Therefore, the left-hand side of (4.5b) for [J% Q%] is

[T, byt y© + w] (B.22)

[Jab7 QQIC] — _[Jab7 QC] — _[Jab’ 2/}c]p (20;—'— 1)

Then by formulae (B.8), (B.20) and (B.21) we obtain

i(2a+1) i

[Jab’Q2lc] — %Ebcpwa 4 %peac + ( acw w w + bcw w w _|_ bcw + 4 Q/Jb)
be
= (w0 D g gey) 4 1 1 120 E ><w ) (B23)
_ 5( bCQa 4 6acc) ) '(Ech21a i ecaQ21b>’
that is
[Jab’ QQlc] — iEc(aQ|21|b), (B24>

as required. Applying ~ to (B.24) and by (B.13), (B.16) we obtain

1 ~ 1 ~
[Jaln QC] = _§ECan - §€caQb-

Therefore we have

) i ) e - c(a
[Jab’ Q22C] _ _[J(;Lb7 Qc] 6aa€bb€CC[Jab7 Q"] _ §<€bCQCL + Each) — e ( Q|22|b),
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as required. Further on using (B.18) we obtain
[Jablelc] — [Jab’ Sc] — —2$[(]ab,’l7bc] — iebcl,wa + iEaCI’QZ)b
= %(erS“ + €8%) = jeclat), (B.25)

Applying ~ to [J, S¢] and using (B.13) we get that [Ju, S.] = %(ebcga+ea65’b) from which
it follows that

[Jab7 QIQC] _ [Jab’ Svc] _ 6aﬁebb CE[JEE’ SE] _ %(ecaSb + Ecbsva> _ iEC(aQ|12|b).
The statement follows. O

Lemma B.1.4. Let Q%, I be as above. Then relations (4.5¢) hold.

Proof. Let us first consider the commutator [I1!, Q*Y] = i[¢),,1)™, Q7]. Note that

[Un™ W] =0, and  [ny™, YY) = —p* W7 ™) = —l Ut = 0.

Therefore [I', Q7] = 0, as required. Now let us consider the commutator [?2, Q?*/]. By
(4.14) and (B.1), (B.2) we get

[ o, ] = =7 (B-26)
By (4.13) we get
[0 s o™ T = — [ )*, "] (B.27)
We have by (4.13) and (B.26)

where we also used (B.6). Note that by (B.2) we obtain
DG = P 2, (B.29)

and .
P = =Ty + 51/;f~ (B.30)
Therefore we get from (B.28), (B.29) and (B.30) that

[, P 00T = 207y (B.31)

Note that .
sz&fwk:{wm, if f=1,

i (B.32)
Prp?, i f=2.
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Since ¥l = %)y, we get from (B.32) that
b — Lk !
PPl = S0,
for any f = 1,2. Therefore it follows that expression (B.31) takes the form
[, " ] = PFeyp?. (B.33)
From the forms of 1?2 and Q%' and using (B.26), (B.27), (B.33) we obtain
[]227 Q21f] = _Zl[d—}mi}ma Qf]

= —i( —pf +i
:iQf7

Gt D (pruasd - Lo (B.34)

which is the corresponding relation (4.5¢).
Further on, let us consider [I'2, Q?!f]. Note that [, ¥™] = 20, Y™ — 1 and

_ 1 _

where we use (4.14) to get the latter expression. Now we have by (4.13)

= Um0, O NP + P md™, O]

1 _

= §¢k¢kl/}f’ (B.36)
where in the last equality we applied (B.35) and the formula [¢,,¢™, /] = —1¢7/. Since
Q/ is a linear combination of 17 and v¥y*1)? with bosonic coefficients it follows from the
first formula in (B.35) and (B.36) that [¢,,¢™, Q'] = 1@/, therefore [I'?, Q*] = —1Q?'/,
as required. Using formulae (B.13), (B.14) and ~ operation, it follows that relations (4.5¢c)

hold for the supercharge Q%*/ as well.
Finally, let us consider [, Q1!/]. Firstly, note that

[IH? Qllf] - _i[¢m¢m7 Sf] = 2ix[¢m¢ma 1/}f] =0,
as required. Moreover, we get from (B.26) that

172, Q] = il P, 7] = —2ix )" P, 7] = 2ia)T = —iQ™,
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and from the first formula in (B.35) that

[112,QM) = —ilyn g™, 8] = 2ial ™, 9] = i = — QY

which are the corresponding relations (4.5¢). Using formulae (B.13), (B.14) and ~ op-
eration, it follows that relations (4.5¢) for [I°,Q'?f] (a,b, f = 1,2) hold as well. The

statement follows. O
We will use the following relations below. By (4.15) we have
{py*, lﬂb} U hu|p, ] + {w U }p

a

= —w WUy — ——p, (B.37)

and similarly

{pv, w“} = —@b e ——p
Further on, by (4.14), (4.15) we have that
{@Elﬂ wmlﬁm&a} = _@Z)md_}a{ﬂ}mu @Z_)b} + wqua{wﬂu sz}
= %5?2/}1%2/_}& - %embwm&a

= Yyt (B.38)
and similarly
{% P P} = 4. (B.39)
Let us now compute the Hamiltonian of the system. We will use the following formulae
below )
Theorem B.1.5. For a,b = 1,2 we have {Q% Qy} = —2HE¢, where the Hamiltonian H
1S given by
2 2
P 2a +1 200 + 1
H="r- ( )Wml/} TRy + (16—902) (B.41)

Proof. By (4.15) and (B.38), (B.39) we have

(2a +1)

. -
o0, 22 )y = 20+ 1) (g0 Bt + P+ 5T — p),

(B.42)



APPENDIX B. ONE PARTICLE SYSTEMS 197

and similarly,

. ) o .
{pvhy, =——— (20‘ U (5} = if2a+ 1) (%wbwkw%“ o op+ g wbw“ - ——p>
(B.43)
Finally, we have .
{0 Pmn), (st 9)} = 207 (B.44)

Indeed,

L Bt W T} = (97t 0007+ L0 Tt 07+ 3 L0045, 50)
+ %1{¢a’ &b}? (B45>
where it is easy to see that the first term in equality (B.45) is zero and then by (B.38),

(B.39) formula (B.44) follows.
Therefore in total, we get from (B.42)-(B.44) that

(2c + 1)2 0y

55 p? M( — PP Py — @/_)blbklﬁ%a) i

{Q, Q) = +
Now let us try to simplify the above expression. We have by applying (B.2) that
O Py = P P — U, (B.46)

and by (B.1), (B.2) that
Dyt = Ypt iy + U, (B.47)

It follows from (B.46), (B.47) that
Wl/_)m?ﬁm% + &bwkwk&a = (¢a1;qum¢a + @Eaiﬁkiﬁk@aﬁﬁl,

where there is no summation over a in the right-hand side. Note that 1%}, = ¢%); and
Y, = ¥1Ps (no summation). Let us fix a and let b = a. Then we get from (B.46), (B.47)
that

wa&m&mwa = —%wa&m?ﬁm - W@a, (B48>
and

@ankwk&a = —WWW&E + wa@zaa (B49>
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where @ is complementary to a. With summation over m only we have
¢m¢m,&a¢a = wad}a&a&a + 770677&6,&%;11
= Y™ P + Ve ihs
= ¢a¢a&m&m-
Hence we get from (B.48)-(B.50) that for any fixed a,
wa&m&mwa + &awkwk&a = _wmwm&k&k + wm&ma
which is equal to 1 — (1, ™ ")y) by (B.40). Hence,

62 2
2+(O‘+)

{Qa,Qb}:—Ebp (2c + 1)? 8¢

m™ ) ——.
("), —
This concludes the proof.

It is easy to check that the following lemma holds.

Lemma B.1.6. Let H, K, D be as above. Then relations (4.3) hold.

198

(B.50)

(B.51)

(B.52)

]

The following relations will be useful below. Firstly, by (B.40) it is easy to see that

Y T = g Y+ 0
Further, by using (B.1), (B.2) and (B.40) we obtain (for any fixed a) that
T S - 1
e e
- - 1
— —/l/}m/l/}m/lpa _ ¢awm¢m _ Z¢a'
Hence by (B.8), (B.53) and (B.54) we have that

[0, (™ Pi)] = (™).

Lemma B.1.7. Let Q¢, %, J® T be as above. Then relations (4.2) hold.

Proof. Let us check at first that {Q? Q"} = 0. We have
{0, o™} + {90, Prp*p} = 0,

since

(00, B} = Syt

(B.53)

(B.54)

(B.55)

(B.56)

(B.57)
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Hence (B.56) follows. Similarly, {Q% Q°} = 0. Moreover, by Theorem B.1.5 we have

{Q%, Q%) = {Q*,Q} = ¢{Q", Qy} = —2He** as required.
Now, let us consider {Q?'%, Q'/}. Then

(g, ) = —iy! = — STyt
since Y1, = 9*1),. Further on we have
R
by formulae (B.8) and (B.57). Therefore,
{Q4,Q11} = —{Q*, 87} = —2i(1 + @) ¥ = 2(1 + a)erl 11,
as required by (4.2). By applying ~ to {Q?*'*, Q'/} and using (B.13), (B.14) we obtain
{Qa, S} = 2(1 + a)eas I,
which matches with (4.2). Furthermore, it is easy to see that {Q¢ Q1*} = {S* 5} = 0,
Q12 Q%) = {52, 5%} = 0 and that {Q', Q'*} = {52, Sb} = 2¢2°T! as required by
(4.2).

Finally, we consider the anti-commutator {Q?'*, Q?*}. The left-hand side of (4.2)
takes the following form in view of relations (B.38) and (4.15):

_ _ o 1 _
{Q, 84} = —2{py*, wiba} — 2i(2a + 1) ({st" ", ha} + S 1% dat) (B.58)
= 2i) ")y + xpds — 2i(2a + 1) (hgtp® — i—g)
Therefore
i(2a+1)

—e"{Q", Sa} = —20)"Y" + wpe®™ + 2i(2a + 1) + . (B.59)

2

We have
{QQla’ Q12b} — _{Qa’ va} — —Ebd{Qa, Sd}
The right-hand side of (4.2) equals
2(6“bT12 4+ aJ® + (1 + a)e“bfu) = zpe?® — eab% +2aJ% + 2(1 + a)e® 112

= zpe® — e“b% + 200 (Y ® 4+ YPP?) — i(1 4 )€ by, V™).
(B.60)
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Note that
[, ™) = 20°0" — 29 — 1

By considering various values of a and b one can see that the expression (B.60) takes the

form i@ 1)
a+
ab I St

2

which is equal to expression (B.59) as required.

— 2P + 2i(1 + 20) 9P, (B.61)

Tpe

Finally, applying ~ to {Q%, S®} we obtain

{Qas o} = 2(asT™ + J® + (1 + @) eap] 12)
= 2(—6abT12 + CKJab + (1 + Oé)Eaqu),
as required by (4.2). The statement thus follows. O
Lemma B.1.8. Let T be as above. Then relations (4.5a) hold.

Proof. Tt is easy to see that relations (4.5a) hold for 7' = —D and for T"' = K. Let us
consider relations (4.5a) with 7%? = H, and Q®. Note that by Theorem B.1.5

1. . A~
2= _5{62 aQa}‘

Since (Q%)? = 0 we get that [H, Q%] = 0 as required. Similarly, [H, Q] = 0
Let us now consider relations (4.5a) with H and S® We have by (B.55) that

1,8 = 2t ef] 20D

(204+ 1)

S (W ), ) (B.62)
= ipp! — S () = i,

which is the corresponding relation (4.5a). Using (B.13), (B.15) and ~ operation, it follows
that relations (4.5a) hold for S¢. Hence the statement follows. O

Let us now check relations (4.6).
Lemma B.1.9. Let T%, 1% J% be as above. Then relations (4.6) hold.

Proof. Let us first consider [, J°]. We have by (4.13) and (4.14) that
(a0, Y = Y hatp?, 7] = Ty,
Therefore

[[ll ch] [wawa w(c¢d]



APPENDIX B. ONE PARTICLE SYSTEMS 201

as required. Further we have by (4.13), (4.14) that

2[patp®, ]
2(tha[U0, Y] + [tha, PP
2( PHWC, 0"} — {9, . }) = 0.

[[a, %], 4]

Therefore,
(112, 7 = [[tha, 9], 9197 = 0,
which is the corresponding relation (4.6). In addition we have by (4.13) and (4.14) that
[0, 0] = [0, 0" = 9.
Therefore,
[[227 JCd] = _2[1Ea1;a7 Q/J(C&d)] = Oa
as required.

Let us now consider relations [I%, T (a,b,c,d = 1,2). It is easy to see that for
T = —D and T" = K relations (4.6) hold. We have 7% = H = —1{Q°,Q.}. Then by
(4.13) we obtain

1 ~ _
1, H] = =5 (1", Q°Qc] + I, Q.Q)
1 _ L _
L@ Q + Q90 + QI Q7 + 17, QQ)
1 . _ _ N
= —5(—628[1“1), QT+ I, Q°)Qc + Qc[I™, Q] = [I°, Q°|Qe),
where ¢ is complimentary to ¢. By Lemma B.1.4 we have

l

[Iab’ Qc] — _[Iab7 Q2lc] — 2(€1aQ2bc + 61b622ac> and [Iab7 Qc] — _%(€2aQ2bc + GQbQZac)'

Therefore by considering various values of a,b € {1,2} and by using Lemma B.1.7 and

Theorem B.1.5 we obtain the following:
(1 H] = S(Qe + @°Qe) = 0,
17, H] = S(Q°Qc + Q.Q) =0,
112 H] = 5(Qe@ + QQu + QuQ° + Q°Q2) = 0,

which are the corresponding relations (4.6).
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Similarly we have
%, H) = 5 (~QelI™ Q)+ 1, Q1Q0 + QL™ @] — 1. 0F1Q0).
By Lemma B.1.3 we have
Q) = £(Q Q) and [J7,Q] = H(e"Q + Q).

Therefore by considering various values of a,b € {1,2} we obtain:

H] = QR Q' Q+ Q- Q). (B6Y
7 H] = Q07— Q0 + QG + QG

+e1Q.Q% + e?QQ" — €1 Q*Qe — €7Q'Qo), (B.64)
2] = P+ QO QR — Q). (B.65)

Then by considering various values of ¢ € {1,2} in (B.63)-(B.65) and by using Lemma
B.1.7 and Theorem B.1.5 we obtain

[T, H] = [J*, H] = [J**, H] = 0,

as required. N

B.2 The second representation

Let the supercharges be of the form

2a

o 1%1?1615'1, Qv = piy +i i 11/_1]6?51{%- (B.66)

T T

2
Q" = pu +i

Let generators K, 1%, J% and S% S, be given by the corresponding formulae (B.9),
(B.10), (B.11) and (B.12) same as in the first representation, while the generator D is now

given by
zp (1l +«)
D=—— :
2 + 2

Let us also note that

Qa = _Qay /:Q\; = _Qa, 5 =-D.

Theorem B.2.1. For any a,b € {1,2} we have {Q%,Q,} = —2HJ?, where the Hamilto-
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nian H 1s given by

2 i(2a+1)1 2 1
gV i+l Qa)
4 4 T

with © = & — (Y p™P*)y).
Proof. Analogues of expressions (B.42), (B.43) are

(2a+ 1)

oo, 2 g} = 20+ 1) (T Gtalp, 2]+ (0,5 Gt} )

= (20 + 1) (0" Gty + T ). (B.67)
and

(2a +1)

o, P ey = ifea+ 1) (Ot 4 il p), (BS)

respectively. Further on, the analogue of (B.45) is

{ ™ iy, Yp 0} = 0. (B.69)
Therefore in total, we get from (B.67)-(B.69) (see also (B.51)) that

i2a+1)1 20 +1) 1

— 2 — —
(@@ = Lo+ 2D Ly QD dtig, (B70)

and hence the statement follows. ]
It is easy to check that the following lemma holds.
Lemma B.2.2. Let T® be as above. Then relations (4.3) hold.

Lemma B.2.3. Let Q¥¢, J% 1% be as above. Then relations (4.5b), (4.5¢) hold.

Proof. Relations (4.5b), (4.5¢) can be shown to hold by an adaptation of the proofs of
Lemmas B.1.3 and B.1.4 respectively. Indeed let us first consider [J, Q2'¢]. It now takes
the form (cf. (B.22))

i(2a + 1)

(7, Q%) = —[J*, Q) = —[J*, ¥*]p — ———=[J*, ) y7].

Therefore similarly to (B.23) we have

[J(:Lbj Q2lc] — %.Ebcpz/}a + %pEac + (204 + ]-)( acw d} ¢ + bcw 1/} Q/}a)
jebe 2 1 ] 2 1
_ 1€ ( ’l/]a ( o+ )w w ,l/}a) <pwb ( a+ )¢k’w wb)
_ %( bCQa + 6acc) ) — €€ aQ|21|b (B?l)
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as required. Applying ~ to (B.71) we obtain the corresponding relation for [J°, Q%%¢].
The rest of the relations in (4.4a) are shown to hold in Lemma B.1.3.
Further on, let us consider [I%, Q/]. Relation (B.34) now takes the form

[1%2,Q*] = =il Y, Q]
= —i(—py! —i
=iQ’,

(2a+1)w wkwf)

which is the corresponding relation (4.5¢). Similarly, it is easy to see that [I'2, Q?Y/] = %Qf
and that [I'!, Q'] = 0, as required. Applying ~ to [I?°,Q/] we obtain the corresponding
relation for [1°, Q/]. The rest of the relations in (4.4b) are shown to hold in Lemma B.1.3

and therefore the statement follows. ]
Lemma B.2.4. Let T®, Q% be as above. Then relations (4.5a) hold.
Proof. Tt is easy to see that relations (4.5a) hold for T*? = —D and for T" = K. Similarly

it is easy to see that expressions [T2%, Q% and [T?2, Q,] take the required form.

Let us now consider relations (4.5a) with H and S® In view of (B.55) relation
[T2%, Q'] now takes the following form (cf. (B.62))

1,87 = 1%, ww!) + 2Dyl ) 4 BT gy ey, o
= ipyt + B0 Dy B0t Dy s S99,

Therefore, [H, S/] = iQ7, as required. Applying ~ to [H, S’] we obtain the corresponding
relation for [H, S/] = iQ7 in (4.5a). Hence the statement follows. O

Lemma B.2.5. Let Q%¢, % T J% be as above. Then the relations (4.2) hold.
Proof. We first note that by Theorem B.2.1 we have {Q% Q°} = ¢*{Q% Q,} = —2He*

which is the corresponding relation (4.2).

Moreover the expressions {Q%, Q1"}, {Q*, @}, {Q21", @/}, {Q™,Q™/}, {Q"'", "},

{Qe,Q12°} {Q1*, @'} take the same form as in Lemma B.1.7.
Let us consider the anti-commutator {Q*¢, Q'%*}. The left-hand side of (4.2) now
takes the form (cf. (B.58), (B.59))

{Q21a’ QlQb} _ xpeab . 2iwa&b 4 22(2& + 1)1/}’1;‘1' (B72>

The right-hand side of (4.2) equals (cf. (B.60) which has different constant in the right-
hand side)

—26D + 20 — i(1 + @)™ [thpm, P™] = 2pe® + 20T — 2i(1 + a)e®® (Y2 — P?),
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which takes the form
zpe®® + 20 (P’ + YPP) — 2i(1 4 )e® (PP — pl?). (B.73)

By considering various values of a and b one can see that the expression (B.73) can be
rearranged (cf. (B.61)) as

wpe™ — 2P’ + 2i(20 + 1)ahyp?,

which is equal to expression (B.72) as required. Using ~ operation we obtain the remaining

relations. This concludes the proof. O

Finally, we note that the statement of Lemma B.1.9 holds in this case as well, and the

corresponding proof keeps the same form.
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