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Abstract

This thesis contains two directions both related to Frobenius manifolds.
In the first part we deal with the orbit space MW = V/W of a finite Coxeter group

W acting in its reflection representation V . The orbit spaceMW carries the structure of
a Frobenius manifold and admits a pencil of flat metrics of which the Saito flat metric η,
defined as the Lie derivative of theW -invariant form g on V is the key object. In the main
result of the first part we find the determinant of Saito metric restricted on the Coxeter
discriminant strata in MW . It is shown that this determinant in the flat coordinates of
the form g is proportional to a product of linear factors. We also find multiplicities of
these factors in terms of Coxeter geometry of the stratum.

In the second part we study N = 4 supersymmetric extensions of quantum mechanical
systems of Calogero–Moser type. We show that for any ∨-system, in particular, for any
Coxeter root system, the corresponding Hamiltonian can be extended to the supersym-
metric Hamiltonian with D(2, 1;α) symmetry. We also obtain N = 4 supersymmetric
extensions of Calogero–Moser–Sutherland systems. Thus, we construct supersymmetric
Hamiltonians for the root systems BCN , F4 and G2.
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Chapter 1

Introduction

In this thesis we address two problems from the areas of Frobenius manifolds and super-
symmetry. The structures that we consider, despite being seemingly different, share the
common ground of Coxeter groups and Witten–Dijkgraaf–Verlinde–Verlinde equations.

1.1 Frobenius structures

Frobenius manifolds have rich differential-geometric properties. Despite the name, general
theory is local and is nontrivial, already in a vector space case. They were introduced in the
early 90s by Dubrovin [22], who in particular provided differential-geometric context to the
work of the physicists E. Witten, R. Dijkgraaf, E.Verlinde, and H.Verlinde on topological
field theories (TFTs) [21,87]. Key elements of Frobenius manifolds were already developed
by Dubrovin and Novikov in their study of bi-Hamiltonian structures of hydrodynamic
type (see [23] and references therein). In the framework of TFTs a remarkable system of
nonlinear partial differential equations for a holomorphic function F emerged which are
now known as Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations. They appeared as
a consequence of associativity of the operator algebra of primary fields in two-dimensional
topological theories (see Chapter 2).

Let us recall some key elements of Frobenius manifolds. Let M be a complex smooth
n-dimensional manifold (which may be just a complex domain) equipped with a holo-
morphic flat metric η, that is a non-degenerate symmetric bilinear form on the complex
tangent bundle TM such that the associated Levi-Civita connection ∇ for this metric has
zero curvature. A Frobenius manifold is such a manifold M which also possesses some
additional properties. Thus, there should exist a symmetric tensor c ∈ Γ3(T ∗M) such that
an associative commutative multiplication ◦ is defined on TM by the formula

η(x ◦ y, z) = c(x, y, z), x, y, z ∈ Γ(TM), (1.1)

1
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and a flat vector field e ∈ Γ(TM), namely ∇e = 0, such that e is the unity for the
multiplication. The metric and multiplication are assumed to be homogeneous with respect
to an additional vector field E on M , which is called Euler vector field.

The multiplication (1.1) makes TM into a family of commutative associative algebras
with unity e, which is a family of Frobenius algebras. The tensor c is required to have addi-
tional symmetry properties which lead to existence of a prepotential F = F (t1, t2, . . . , tn),
which is a function on M . The variables tα (1 ≤ α ≤ n) are flat coordinates of the metric
η. Then the associativity of the multiplication ◦ leads to WDVV equations for F :

cαβλ(t)η
λµcµγν(t) = cαγλ(t)η

λµcµβν(t), cαβγ(t) =
∂3F

∂tα∂tβ∂tγ
, (1.2)

for any 1 ≤ α, β, γ, ν ≤ n. Frobenius manifolds and related structures have been stud-
ied intensively over the last three decades. They appear to have surprising connections
with many areas of mathematics, perhaps most prominently with singularity theory and
quantum cohomology. Already in the early 80s, K. Saito found some key structures of
Frobenius manifolds in interesting examples (see [46] and references therein). Based on
the theory of primitive forms of K. Saito, such structures were realised on the base spaces
of the semiuniversal unfoldings of the simple hypersurface singularities An (n ≥ 1), Dn

(n ≥ 4), and E6, E7, E8.

1.1.1 Singularity theory

Frobenius structures coming from singularity theory have their origins in the close relation
of singularities of holomorphic functions with the geometry of Coxeter groups. More
precisely, it is known that the complexified orbit space MW of an irreducible (finite)
Coxeter group W is biholomorphic to the semiuniversal unfolding of the corresponding
singularity (see [85] and references therein).

K. Saito proved the existence of a flat structure onMW [77], which can be viewed as
a flat metric, now known as Saito metric. Dubrovin used this metric to establish that the
orbit space MW carries the structure of a Frobenius manifold [22, Lecture 4]. He also
conjectured that these Frobenius manifolds (and their products) are the only semisimple
Frobenius manifolds with polynomial prepotential F . This conjecture was later proved
by Hertling based on the notion of an F-manifold which was introduced by himself and
Manin [47,61]. An F -manifold is weaker than a Frobenius manifold as one only assumes the
existence of a commutative and associative multiplication on the tangent bundle satisfying
a certain integrability condition which is automatically satisfied by a Frobenius manifold
[46].

An isolated hypersurface singularity is a holomorphic function germ f : (Cm, 0) →
(C, 0) with an isolated singularity at x = 0. The multiplicity of the singularity f is the
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dimension of its local algebra, that is the quotient C[x1, . . . , xm]/If , where xi, i = 1, . . . ,m

are coordinates in Cm and If is the ideal generated by ∂xif , i = 1, . . . ,m. An unfolding
(or deformation) of f is a holomorphic function germ F : (Cm × Cl, 0) → (C, 0) such
that F(x, 0) = f(x). The space Cl is called the base space of the unfolding F . The
deformation F(x, ν), ν ∈ Cl is versal, if any deformation F̃(x, µ), µ ∈ Ck of the singularity
is equivalent to the deformation induced by F . There is a (unique) versal deformation
such that the multiplicity of the singularity equals the dimension of the parameter space.
This deformation is said to be semiuniversal [7, 8].

In this framework, the simplest Frobenius structure is given by the semiuniversal un-
folding of the simple singularity An, f(x) = xn+1 [7, 22]. The associated Coxeter group
is the symmetric group Sn+1 which acts on the space Cn+1 by permutation of the coordi-
nates x0, x1, . . . , xn ∈ C. The action is restricted onto the hyperplane H :

∑n
i=0 xi = 0.

By Chevalley’s Theorem the corresponding orbit spaceMSn+1 maps isomorphically to the
hyperplane H ∼= Cn. Let σi(x0, . . . , xn) be the i-th elementary symmetric polynomial in
n+ 1 variables. A semiuniversal deformation of the singularity f(x) has the form

F(x, a) = xn+1 + a1x
n−1 + · · ·+ an, a = (a1, . . . , an), (1.3)

where ai = ai(x0, . . . , xn) = (−1)i+1σi+1(x0, . . . , xn), i = 1, . . . , n. The variables x0, . . . , xn

are identified with the roots of the polynomial F(x, a), they satisfy
∑n

i=0 xi = 0. That is,

F(x, a) =
n∏
i=0

(x− xi),
n∑
i=0

xi = 0. (1.4)

The set Σ ⊂MW given by

Σ = {(a1, . . . , an) ∈ Cn| F(x, a)|∑n
i=0 xi=0 has multiple roots}

is isomorphic to the discriminant of the singularity An. In other words, the set Σ consists
of those values of a for which the polynomial has a critical point with critical value equal
to zero, that is it has multiple root at xi = xj. This condition defines the mirrors of the
Coxeter group Sn+1. The Frobenius algebra Qa is realised as the ring of complex polynomi-
als modulo polynomials vanishing at the critical points of F , namely Qa = C[x]/F ′(x, a).
This algebra coincides with the local algebra of the singularity An at the origin a = 0.
The Saito metric onMW coincides (up to proportionality) with the inner product on Qa

defined as

〈f, g〉a = − res|x=∞
f(x)g(x)

F ′(x, a)
dx. (1.5)

The primitive form (up to a constant factor) is given by the differential dx [76].
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More generally, (Frobenius) flat metric for singularities by the use of primitive forms is
induced from a Grothendieck residue pairing [46]. Existence of a primitive form in general
was proved by M. Saito (see [46] and references therein). In the case of hypersurface
singularities Dn (n ≥ 4) and boundary singularities Bn (n ≥ 2) semiuniversal unfoldings
can be brought into a form similar to (1.3) and thus construction is analogous to the case
of type A singularity [7, 80]. We take this approach in our considerations in Chapter 3.

1.1.2 Quantum cohomology

Quantum cohomology can be viewed as a deformation of the ordinary cohomology (De
Rham etc.) where the cup product is replaced by a certain ‘quantum product’. Definition
involves the intersections of cycles in the space of ‘complex curves’ in a manifold M . The
(large) quantum product defined on the total cohomology group H∗M is directly related
to the third-order derivatives of the generating function F of Gromov-Witten invariants.
This product is commutative and associative and one can show that for any x ∈ H∗M the
(large) quantum cohomology algerba is a Frobenius algebra [44]. The function F satisfies
WDVV equations and the (large) quantum cohomology of M can be equipped with the
structure of a Frobenius manifold. The following example is due to Kontsevich and Manin
[44, 54]. Consider the complex projective plane M = CP 2. The starting point is to fix a
constant metric η on the vector space C3 and a basis e1, e2, e3 ∈ C3 such that

η(ei, ej) = δi+j,4, 1 ≤ i, j ≤ 3.

The cohomology algebra H∗M =
⊕2

i=0 H
2i(M ;C) can be written in the form

H∗M ∼= C[z]/z3 ∼= 〈1, z, z2〉 ∼= 〈e1, e2, e3〉,

where ei is identified with the generator of the cohomology group H2(i−1)(M ;C). One
then considers a family of quantum products ∗x : H∗M × H∗M → H∗M , where x =

x1e1 + x2e2 + x3e3 and e1 is fixed to be the identity element for these products. There
exists a prepotential F such that

∂3F

∂xi∂xj∂xk
= η(ei ∗x ej, ek) := Fijk.

In the special case when x ∈ H2M , that is x1 = x3 = 0, ∗x determines the (small) quantum
cohomology algebra given explicitly as

e1 ∗x ei = ei, 1 ≤ i ≤ 3, e2 ∗x e2 = e3, e2 ∗x e3 = qe1, e3 ∗x e3 = qe2,

where the parameter q = ex2 . This algebra is isomorphic to C[z, q]/(z3 − q).
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The associativity of the quantum products for the function F is equivalent to the single
WDVV equation (cf. (1.2))

F333 = F 2
223 − F222F233.

One can show that there is a solution unique up to third-order terms of the form

F (x1, x2, x3) =
1

2
(x1x

2
2 + x2

1x3) +
∑
d≥1

N(d)edx2
x3d−1

3

(3d− 1)!
,

where N(d) are positive integers determined recursively by N(1) = 1 and

N(d) =
∑
i+j=d

N(i)N(j)

((
3d− 4

3i− 2

)
i2j2 − i3j

(
3d− 4

3i− 1

))
, d ≥ 2.

The numbers N(d) are directly related to the Gromov-Witten invariants of M and for a
fixed d, N(d) is the number of rational curves of degree d in M which hit 3d − 1 generic
points. The first few values of N(d) are

N(2) = 1, N(3) = 12, N(4) = 620, N(5) = 87304, N(6) = 26312976.

1.1.3 More instances of WDVV equations

Other places where (generalised) WDVV equations emerge include Seiberg-Witten theories
and N = 4 supersymmetric mechanics. These generalised WDVV equations are similar to
(1.2) but there is no complete structure of Fronenius manifolds which may be associated
with them, in general.

In Seiberg-Witten (effective) theory, the exact Seiberg-Witten prepotential F is defined
in terms of a family of auxiliary Riemann surfaces, which are endowed with some special
meromorphic differential dS [62,63]. For example in the case of pure N = 2 SUSY gauge
theory with SU(n + 1) gauge group, the Riemann surfaces (genus g = n hyperelliptic
curves) and differential dS have the form

y2 = F(x, a)2 − Λ2(n+1), dS = x
dF(x, a)

y
,

where F(x, a) is the semiuniversal unfolding associated to the An singularity given by
(1.3) and Λ is a complex parameter. The third-order derivatives of F are defined in
terms of residues of some carefully chosen differentials. Then the leading perturbative
approximation to the prepotential F as Λ tends to 0 after rescaling satisfies generalised
WDVV equations and is given by

F pert =
1

2

n∑
i<j

(xi − xj)2 log(xi − xj),
n∑
i=0

xi = 0.
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Motivated by the above construction, Martini and Gragert showed that functions of
the form

F =
λ

4

∑
γ∈A

(γ, x)2 log(γ, x), λ ∈ C, (1.6)

where A is the root system associated to a semisimple Lie algebra also satisfy generalised
WDVV equations [66]. Later, Veselov extended this class further to the so-called ∨-systems
which in particular contain all Coxeter root systems [86].
∨-systems form special collections of vectors in a linear space, which satisfy certain

linear algebraic conditions. More precisely, let V = Cn, A ⊂ V and define a non-degenerate
bilinear form on V by GA(u, v) =

∑
α∈A(α, u)(α, v), u, v ∈ V. Then A is said to be a ∨-

system if for any γ ∈ A and for any two-dimensional plane π ⊂ V such that γ ∈ π one
has ∑

β∈A∩π

GA(β, γ)β = µγ,

for some complex parameter µ = µ(γ, π). A logarithmic prepotential (1.6) corresponding
to a collection of vectors A satisfies generalised WDVV equations if and only if A is a ∨-
system. The class of ∨–systems contains Coxeter root systems, deformations of generalized
root systems of Lie superalgebras, special subsystems in and restrictions of such systems
[36,79]. A complete description of the class remains open (see [37] and references therein).

1.2 Supersymmetric mechanics

Calogero–Moser Hamiltonian is a famous example of an integrable system [20,67,82] which
is related to a number of mathematical areas (see e.g. [28]). Generalised Calogero–Moser
systems associated with an arbitrary root system were introduced by Olshanetsky and
Perelomov [69], [70].
N = 2 supersymmetric quantum Calogero–Moser systems were constructed in [39] and

considered further in [18]. They were generalised to classical root systems in [19] and to
an arbitrary root system in [16]. In such constructions one considers N quantum particles
on a line with coordinates x = (x1, . . . , xN) and momenta p = (p1, . . . , pN), which satisfy
canonical commutation relations. Additionally one takes 2N fermionic variables, ψ =

(ψ1, . . . , ψN), ψ̄ = (ψ̄1, . . . , ψ̄N) which satisfy the canonical (anti)-commutation relations,

{ψi, ψ̄j} = −1

2
δij, {ψi, ψj} = {ψ̄i, ψ̄j} = 0, i, j = 1, . . . , N.

The dynamics of the system are controlled by a potential U and there are two supercharges
Q(x, p, ψ, ψ̄), Q̄(x, p, ψ, ψ̄) which generate the N = 2 supersymmetry algebra

Q2 = Q̄2 = 0, HSUSY = −1

2
(QQ̄+ Q̄Q),
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where HSUSY is the corresponding supersymmetric Hamiltonian [16]. In the case of (ra-
tional) generalised Calogero–Moser system one considers a potential of the form

U(x) =
1

2

∑
α∈A

cα log(α, x), cα > 0,

where A is any Coxeter root system. Then the bosonic part of the Hamiltonian HSUSY

(up to rescaling) takes the form

HB = −∆ +
∑
α∈A

cα(cα − 1)(α, α)

(α, x)2
.

A motivation for construction of N = 4 Calogero–Moser system goes back to the
work [42] on a conjectural description of near–horizon limit of Reissner–Nordström black
holes where appearance of su(1, 1|2) superconformal Calogero–Moser model was suggested.
Though we also note more recent different considerations of near extremal black holes
in [60]. Another motivation to study supersymmetric (trigonometric) Calogero–Moser–
Sutherland systems comes from the relation of these systems with conformal blocks and
possible generalisation of these relations to the supersymmetric case [52]. It has been a
long standing problem to construct N = 4 supersymmetric extensions of Calogero–Moser
systems.

Wyllard gave an ansatz for N = 4 supercharges in [88]. In general his ansatz depends
on two potentials W and F . In order to realise an N = 4 supersymmetric mechanical
system one can take 4N fermionic variables, thus to each particle four fermionic variables
{ψaj, ψ̄ja | a = 1, 2} are associated. They satisfy canonical (anti)-commutation relations.
Then the N = 4 supercharges are defined by (a, b = 1, 2)

Qa = pr(ψ
ar + iWr) + iFrjkΨ

rjk, Q̄b = pl(ψ̄
l
b + iWl) + iFlmnΨ̄lmn, (1.7)

where Ψrjk, Ψ̄lmn are particular cubic fermionic terms and Wi = ∂xiW , Fijk = ∂xi∂xj∂xkF .
The N = 4 supersymmetry algebra has the form

{Qa, Qb} = {Q̄a, Q̄b} = 0, HSUSY = −1

2
(QaQ̄a + Q̄aQ

a), (1.8)

where HSUSY is the supersymmetric Hamiltonian. Wyllard considered a su(1, 1|2) super-
conformal extension of theN = 4 supersymmetry algebra (1.8) by incorporating additional
generators so that su(1, 1|2) relations are satisfied, and derived necessary differential equa-
tions for F and W [88]. Thus prepotential F satisfies generalised WDVV equations (as it
was pointed out in [11]) and potential W satisfies equations of the form

∂klW + Fklj∂jW = 0. (1.9)



CHAPTER 1. INTRODUCTION 8

Wyllard’s prepotential F has the form (1.6), where A is the root system AN−1. Then
W is a twisted period (see Definition 2.2.18) of the Frobenius manifold on the space of
orbits MSN . Wyllard constructed su(1, 1|2) N particle Calogero–Moser Hamiltonian for
a single value of the coupling parameter c = 1/N as bosonic part of his supersymmetric
Hamiltonian with W = 0. He argued that his ansatz does not produce superconformal
Calogero–Moser Hamiltonians for general values of c. Examples based on root systems
A = G2, B3 were also considered in [88].

Wyllard’s ansatz for N = 4 supercharges was extended to other root systems in [40],
[41] where solutions for a small number of particles were studied both for W = 0 and
W 6= 0. In particular, su(1, 1|2) superconformal Calogero–Moser systems related to A =

A1 ⊕ G2, F4 and subsystems of F4 were derived. Superconformal su(1, 1|2) Calogero–
Moser systems for the rank two root systems were derived in [13] via suitable action in the
superspace. For the WDVV equations arising in the superfield (Lagrangian) approach,
which involves consideration of N = 4 supersymmetric action, we refer to [56].

A many-body model with D(2, 1;α) supersymmetry algebra with α = −1
2
was consid-

ered in [29]. This model was obtained by a reduction from matrix model and it incorporates
an extra set of bosonic variables (“U(2) spin variables”) which enter the bosonic potential
of the corresponding Hamiltonian. One-dimensional version of such a model was consid-
ered in [30] and, for any α, in [12], [31]. A generalisation of the many-body classical spin
superconformal model for any value of the parameter α was proposed in [55]. In the survey
paper [32, p. 33] it is stated: “...it turns out that the realization of D(2, 1;α) superconfor-
mal symmetry on the multi-particle phase space for α 6= −1 or 0 requires at least one pair
of (bosonic) isospin variables {ui, ūi|i = 1, 2} parametrizing an internal two-sphere...”.

Within D(2, 1;α) supersymmetry ansatz of [55] a class of bosonic potentials was ob-
tained in [34]. The prepotential F has the form (1.6) for a root system A. Then W is a
twisted period of the Frobenius manifold on the space of orbits corresponding to the root
system A. Such polynomial twisted periods were described in [34], they exist for special
values of parameter α. Although the corresponding bosonic potentials are algebraic this
class does not seem to contain generalised Calogero–Moser potentials associated with A.

Recently a construction of typeAN−1 supersymmetric (classical) Calogero–Moser model
with extra spin bosonic generators and NN2 fermionic variables (for any even N ) was pre-
sented in [57]. The ansatz for supercharges is more involved and extra fermionic variables
appear due to reduction from a matrix model. A related quantum N = 4 supersymmetric
spin AN−1 Calogero–Moser system was studied recently in [33]. Furthermore, a simpler
ansatz for supercharges for the spin classical AN−1 Calogero–Moser system was presented
in [58]. This model has 1

2
NN(N + 1) fermionic variables and the supersymmetry algebra

is osp(N|2). Most recently classical supersymmetric osp(N|2) Calogero–Moser systems
were presented in [59]; these models have nonlinear Hermitian conjugation property of
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matrix fermions and supercharges are cubic in fermions.

1.3 Present work and plan of this thesis

1.3.1 Main results

I. Determinant of restricted Saito metric

The first question that we address in this work is motivated by Frobenius structures arising
in singularity theory (Chapter 3). Natural objects from the point of view of Coxeter
geometry are the discriminant and the corresponding discriminant strata inMW = V/W

and V (see e.g. [46] for a discussion on the geometry of discriminants). The discriminant
Σ in MW is the union of irregular orbits of the action of the group W , that is Σ is the
union of the orbits of W with cardinality less than the order of W . The preimage of Σ in
V under the quotient map π : V →MW corresponds to the union of mirrors of W .

Let V = Cn and let R ⊂ V be a Coxeter root system corresponding to W . For any
α ∈ R, the hyperplane Πα = {x ∈ V |(α, x) = 0} is called a mirror. Consider the subspace
D = ∩β∈SΠβ ⊂ V for some subset S ⊂ R. Its image π(D) (and also D ⊂ V ) in MW

under the map π is called a discriminant stratum. As an example, consider the case when
W = Sn+1. An arbitrary discriminant stratum (up to the action of W ) D ⊂ V is given by
the following equations:

x0 = . . . = xm0 = ξ0,

xm0+1 = . . . = xm0+m1 = ξ1 (1.10)
...

x∑N−1
i=0 mi+1 = . . . = x∑N

i=0mi
= ξN ,

where ξ1, . . . , ξN can serve as coordinates on D and ξ0 = −
∑N

i=1
mi
m0
ξi, N,mi ∈ N.

The Saito metric η on MW is defined as the Lie derivative along the unity field e of
the intersection form. A natural question is to study the restriction ηD of the (covariant)
metric η to discriminant strata D. In particular, to find the determinant of this metric (in
a suitable coordinate system). In the case of An singularity this metric has a form similar
to (1.5) where F is replaced with its restriction FD on D, which we define as

FD(x, a) = F(x, a)|D =
N∏
i=0

(x− ξi)mi . (1.11)

We obtain two structure theorems (Main Theorems 1, 2, Chapter 3) for this determi-
nant det ηD. More precisely, we show in Main Theorem 1 that det ηD (in linear coordinates
on D) is proportional to a product of linear forms which define the restricted Coxeter ar-
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rangement AD. In the case where S is empty this theorem (essentially) reduces to a
well-known statement that the Jacobian J of basic invariants of the group W is propor-
tional to

∏
α∈R+

α (Proposition 2.4.20). Thus we obtain:

Main Theorem 111. The following proportionality takes place

det ηD ∼
∏

H∈AD

lkHH , kH ∈ N.

In Main Theorem 2 we explain that the multiplicities kH of the linear forms lH are
related to the Coxeter numbers of certain parabolic subgroups of W . Let us illustrate
these theorems by an example.

Example. Let us consider the case where R = A4 and consider a stratum D of type
A2 given by D : x0 = x1 = x2 with the corresponding parabolic subgroup generated by
(orthogonal) reflections in the mirrors x0 = x1 and x1 = x2. Coordinates on D are chosen
as: ξ0 = x0 = x1 = x2, ξ1 = x3, and ξ2 = x4 subject to the condition 3ξ0 + ξ1 + ξ2 = 0.
Then

det ηD ∼ (ξ0 − ξ1)4(ξ0 − ξ2)4(ξ1 − ξ2)2.

The numbers 4, 4, 2 are Coxeter numbers of certain parabolic subgroups. The multiplicity
4 of the linear form ξ0 − ξ1 is the Coxeter number of the parabolic subgroup of type A3

generated by reflections in the mirrors x0 = x1, x1 = x2 and x2 = x3. The multiplicity
4 of the linear form ξ0 − ξ2 is the Coxeter number of the parabolic subgroup of type
A3 generated by reflections in the mirrors x0 = x1, x1 = x2 and x2 = x4. Finally, the
multiplicity 2 of the linear form ξ1 − ξ2 is the Coxeter number of the parabolic subgroup
of type A1 generated by a reflection in the mirror x3 = x4.

In the case of classical Coxeter groups, namely the families An (n ≥ 1), Bn (n ≥ 2), Dn

(n ≥ 4) the proof of Main Theorem 1 relies on the use of Landau-Ginzburg superpotentials,
which is function F(x, a) given by (1.4) for type A.

In the remaining cases, namely the dihedral groups I2(m) (m ≥ 5) and the exceptional
groups E6, E7, E8, H3, H4, F4 the proofs of Main Theorems 1 and 2 rely heavily on the
geometry of the corresponding root systems and their subsystems.

II. Dubrovin’s almost duality

Logarithmic solutions of generalised WDVV equations of the form (1.6) for any root system
A associated to a finite Coxeter group are related to polynomial solutions of WDVV
equations via the notion of almost duality introduced by Dubrovin [25].

Solutions (1.6) determine a multiplication structure ∗ on the tangent bundle of the
complement to the discriminant Σ inMW . The spaceMW \Σ satisfies all the properties
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of a Frobenius manifold but flatness of the identity field for the ‘new’ multiplication ∗.
The two multiplications are related by the formula

x ∗ y = E−1 ◦ x ◦ y, (1.12)

where x, y ∈ TpMW for a point p ∈ MW , and E−1 is the inverse of the Euler vector field
associated to MW . Feigin and Veselov showed that almost duality admits a natural (in
some suitable sense) restriction on discriminant strata in Σ ⊂ MW [35]. In particular,
they proved that the left-hand-side of (1.12) has a well-defined limit at generic points in
a stratum.

On the other hand, the submanifolds of an arbitrary Frobenius manifoldM which carry
the structure of a Frobenius algebra on each tangent space were considered by Strachan
and are called natural submanifolds. Key examples of natural submanifolds were expected
to be discriminant strata in the orbit spacesMW as well as caustics [81].

We confirm this to be the case for discriminant strata. Namely, we show that for
vector fields u, v ∈ Tx0D, where x0 is a generic point in D, the product u ◦ v is well-
defined and that u ◦ v ∈ Tx0D (Proposition 3.8.2). Further to that, as a consequence of
our considerations (see Remark 3.1.4) we also get that the restricted Saito metric ηD to
any stratum D is generically non-degenerate. We apply our results to strengthen almost
duality (1.12) on the discriminant strata (Section 3.8).

III. Superconformal extension of Calogero–Moser Hamiltonian

Several attempts have been made to construct supersymmetric mechanics such that the
corresponding Hamiltonian has bosonic potential of Calogero–Moser type with a reason-
ably general coupling parameter(s). In the survey paper [32] various problems and obsta-
cles in these constructions are mentioned.

In the current work (Chapter 4) we construct supersymmetric Calogero–Moser systems
without extra isospin variables. In fact, we present two constructions of N = 4 super-
symmetric quantum mechanical systems, where the superconformal algebra is D(2, 1;α),
starting with an arbitrary ∨-system. Thus, in the case of a Coxeter root system A the
bosonic part of the Hamiltonian is the Calogero–Moser Hamiltonian associated with A
introduced by Olshanetsky and Perelomov in [70], which we get in two different gauges:
the potential and potential free ones. In the latter case the Hamiltonian is not formally
self-adjoint; this gauge comes from the radial part of the Laplace–Beltrami operator on
symmetric spaces [14,45,70]. The parameter α depends on the ∨-system and is ultimately
related with the coupling parameter in the resulting Calogero–Moser type Hamiltonian.

We use original ansatz (1.7) for the supercharges [40], [88] based on two potentials
F , W and we take W = 0. The algebra D(2, 1;α) contains the supersymmetry algebra
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as its subalgebra and has some additional generators and relations. We construct two
representations of the algebra D(2, 1;α) which crucially depend on the choice of the cubic
fermionic terms Ψrjk, Ψ̄lmn in (1.7). We use a prepotential of the form (1.6) where A is
an arbitrary ∨-system and the parameters λ and α satisfy a linear relation. We obtain
the following result.

Theorem (Theorems 4.4.4, 4.4.5, 4.4.8). The supersymmetric quantum Hamiltonians
H

(i)
SUSY , (i = 1, 2) take the form

H
(i)
SUSY = H

(i)
B + Φ,

where Φ is the fermionic part and the bosonic parts (up to rescaling) H(i)
B take the form

H
(1)
B = −∆ +

λ

2

∑
γ∈A

(γ, γ)2

(γ, x)2
+
λ2

4

∑
γ,β∈A

(γ, γ)(β, β)(γ, β)

(γ, x)(β, x)
, H

(2)
B = −∆ + λ

∑
γ∈A

(γ, γ)

(γ, x)
∂γ.

In the case of a Coxeter root system A = R, the bosonic parts H(i)
B are the generalised

Calogero–Moser Hamiltonians

H
(1)
B = −∆ +

∑
γ∈R+

2λ(λ+ 1)

(γ, x)2
, H

(2)
B = −∆ +

∑
γ∈R+

2λ

(γ, x)
∂γ,

where (γ, γ) = 2 for all γ ∈ R.

In the special case when α = −1 the superalgebraD(2, 1;−1) contains the superalgebra
su(1, 1|2) as its subalebra, and our first ansatz on the su(1, 1|2) generators reduces to the
one considered by Galajinsky, Lechtenfeld and Polovnikov in [40, 41]. It was emphasised
in [41] that such quantum models with α = −1 and W = 0 are non-trivial with bosonic
potentials proportional to squared Planck constant, though they were not considered in
many details in [41], in particular the explicit form of the Hamiltonian was not given. Thus
we extend considerations in [41] forW = 0 to the case of superconformal algebra D(2, 1;α)

for any α, and we get in this framework quantum Calogero–Moser type systems associated
with an arbitrary ∨–system, which includes Olshanetsky–Perelomov generalisations of the
Calogero–Moser system with arbitrary invariant coupling parameters. The parameter α
depends on these coupling parameters.

IV. Supersymmetric extension of Calogero–Moser–Sutherland Hamil-

tonian

We also consider generalised trigonometric Calogero–Moser–Sutherland systems related to
a collection of vectors A with multiplicities (Section 4.5). We include these Hamiltonians
in the supersymmetry algebra provided that extra assumptions on A are satisfied which
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are similar to WDVV equations for the trigonometric version of the prepotential F . We
show that these assumptions can be satisfied when A is an irreducible root system with
more than one orbit of the Weyl group, that is BCN , F4 and G2 cases.

In the case when A = BCN the corresponding bosonic parts of the supersymmetric
Hamiltonians take the form (Theorem 4.5.8):

H
(1)
B = −∆ +

N∑
i=1

((8s+ 2(N − 2)q)(2(N − 2)q − 1)

sinh2 xi
+

16s(4s+ 1)

sinh2 2xi

)
+

N∑
i<j

4q(2q + 1)

sinh2(xi ± xj)
,

H
(2)
B = −∆+2

N∑
i=1

(
8s coth 2xi− (8s+2(N −2)q) cothxi

)
∂i+4q

N∑
i<j

coth(xi±xj)(∂i±∂j),

where the multiplicity parameters r, s, q satisfy a linear relation.
It turns out that in this case one can show that the corresponding prepotential satisfies

generalised WDVV equations which is a generalisation of the solution for the root system
BN obtained in [49] (we refer to [2] for this development).

1.3.2 Structure of the thesis

Chapter 2 In this chapter we provide an overview of notations, basic definitions and
results one should be familiar with throughout the rest of the thesis. In Section
2.1 we review schematically the appearance of the WDVV equations in topologi-
cal field theories and thus motivate the construction of a Frobenius manifold. In
Section 2.2 we recall key notions from the theory of Frobenius manifolds includ-
ing Landau-Ginzburg superpotentials and almost duality. We introduce generalised
WDVV equations in Section 2.3. In Section 2.4 finite Coxeter groups and elements
of their invariant theory are introduced. In particular, K. Saito’s flat structure on
Coxeter orbit spaces is discussed. In Section 2.5 we survey Dubrovin’s realisation of
Coxeter orbit spaces endowed with such flat structures as one of the main examples
of Frobenius manifolds. These Frobenius structures are the central objects in our
considerations in Chapter 3. The main sources which are used in the present chapter
are references [22, 25] for the Frobenius manifold theory and references [17, 51] for
the theory of Coxeter groups. All the results in this chapter are well-known.

Chapter 3 In this chapter we state and prove Main Theorems 1, 2 for the determinant
of the restricted Saito metric on Coxeter discriminant strata. In Section 3.1 we
formulate Main Theorem 1. We show that this determinant is a product of linear
factors with some multiplicities. In Section 3.2 we formulate Main Theorem 2 on
the multiplicities of these linear factors of Main Theorem 1.
We prove Main Theorems 1 and 2 for classical root systems in Section 3.3 and
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3.4 respectively. Considerations are based on the use of superpotentials for the
corresponding Frobenius manifolds and their discriminant strata. That is, in the
case of type A singularity we define the Saito metric ηD on an arbitrary stratum
D ⊂ V (1.10) with the use of the corresponding Landau-Ginzburg superpotential
defined on D (1.11). We find ηD in the variables ξi (i = 0, . . . , N) in Theorem 3.3.5
and show that the statement of Main Theorem 2 is true in Theorem 3.4.1.
In Section 3.5 we derive a general formula for the determinant of the restricted Saito
metric on discriminant strata (Theorem 3.5.9), which is obtained by considering the
Saito metric on MW in the corresponding flat coordinates. This formula is given
in terms of (some of the components) ηij of the contravariant Saito metric onMW

which take the form (3.5.5):

ηik = (−1)n+1+k∂ωi
Jk
J

+ (−1)n+1+i∂ωk
Ji
J
, (1.13)

where Ja are particular minors of the Jacobi matrix of basic invariants ofW . We use
this formula for the components of Saito metric to prove Main Theorems 1 and 2 for
the strata of the exceptional root systems in dimension 1 and codimensions 1, 2, 3

and 4 in Section 3.6. Due to the use of Theorem 3.5.9 the cases of dimension 1 and
codimension 1 are easier to handle, but in general the difficulty of the corresponding
proofs increases with increase of codimension, as one has to deal with the determinant
of a matrix of size codimD×codimD. Our analysis in codimensions 3 and 4 is done
by case by case considerations of the subgraphs of the Coxeter graph corresponding
to the group W . This analysis covers all strata in the orbit spaces of the Coxeter
groups I2(p), H3, H4, F4.
In Section 3.7 we consider the remaining cases, namely strata of codimension 5

in E7 and strata of codimensions 5 and 6 in E8. In these cases we obtain explicit
formulae for the determinant of the restricted Saito metric and analyse corresponding
multiplicities with the help of Mathematica. This completes Main Theorems 1 and
2 for all the cases.
In Section 3.8 we revisit Dubrovin’s duality on discriminant strata. Part of this
chapter is joint work with M. Feigin and I. Strachan [4].

Chapter 4 We recall the definition of Lie superalgebra D(2, 1;α) in Section 4.1. The di-
mension of this algebra is 17, and in particular the even part (dimension 9) comprises
of three mutually commuting sl(2) algebras. We give two types of representations of
this superalgebra in Sections 4.2, 4.3. Odd generators include N = 4 supercharges
(1.7) defined in terms of a prepotential F of the form (1.6).
Starting with any ∨-system A we get two corresponding supersymmetric Hamil-
tonians. In Section 4.4 we present them explicitly. We consider supersymmetric



CHAPTER 1. INTRODUCTION 15

trigonometric Calogero–Moser–Sutherland systems in Section 4.5. Part of Chapter
4 is joint work with M. Feigin [3].
For the reader’s convenience we also include considerations for one particle systems
in Appendix B which are particular cases of considerations from Sections 4.2 and
4.3.

Chapter 5 In the last chapter we summarise main results from this thesis and pose
questions for further research.



Chapter 2

Frobenius manifolds and finite Coxeter
groups

This chapter provides an introduction to the most important aspects from the theory of
Frobenius manifolds and from that of finite Coxeter groups, which feature in this work.

2.1 WDVV equations in TQFTs

The Witten-Dijkgraaf-Verlinde-Verlinde equations (WDVV) of associativity constitute a
famous example of a nonlinear integrable system which emerges in numerous areas of mod-
ern mathematical and theoretical physics. They form an over-determined system of PDEs
for a function F which is defined locally in terms of some variables t = (t1, t2, . . . , tn). Orig-
inally, WDVV equations appeared in the context of 2-dimensional topological quantum
field theories (TQFTs) [21,87].

Roughly speaking, a quantum field theory (QFT) is defined by specifying the properties
of the physical correlation functions. Let us consider a QFT on a n-dimensional manifold
Σ and let φα(x) be a family of local fields (observables) on Σ. In general, correlators

〈φi1(x1)φi2(x2) . . . φis(xs)〉Σ, xi ∈ Σ,

depend on the geometric-topological properties of Σ. Here, we consider a particular class
of 2-dimensional QFTs which exhibits topological invariance. In such topological theories
(2D-TQFTs) the action is invariant with respect to arbitrary changes of the metric on Σ,
which is a non-dynamic variable. Correlators depend only on the topology of Σ (i.e genus
g) and the labels of the operators, but not on their positions, that is

〈φi1(x1)φi2(x2) . . . φis(xs)〉Σ ≡ 〈φi1φi2 . . . φis〉g.

The set of all physical states H = {|φi〉} is a Hilbert space. One assumes the existence

16
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of an identity operator φn := 1 corresponding to the state |0〉. The inner product on H is
defined by the following three-point function on the sphere

ηαβ = c1αβ = 〈1φαφβ〉0 = 〈φαφβ〉0. (2.1)

A key feature in the study of a QFT is the operator algebra A of the local (primary)
fields φα. We will assume that A is n-dimensional. The algebra A has the structure of
a unital commutative and associative ring and formally the multiplication is defined as
follows:

φα · φβ = cγαβφγ, (2.2)

where cγαβ are the structure constants of the algebra and summation over γ is finite. These
are described via three-point functions on the sphere,

cαβγ := 〈φαφβφγ〉0 = cεαβ〈φnφεφγ〉0 = ηεγc
ε
αβ,

where the multiplication (2.2) is used in the second equality.
The requirement for TQFTs to satisfy certain factorisation theorems (crossing rela-

tions) leads to the following system of equations for the three point functions

cαβεη
ελcλµν = cαµεη

ελcλβν , (2.3)

where ηαβ is the inverse matrix (assuming non-degeneracy) of (2.1).
One can consider perturbations of TQFTs by introducing a suitable family of actions

depending on a set of parameters t = (t1, . . . , tn) such that there is a one-to-one corre-
spondence of the perturbed operators φα(t) with φα. Similarly to the unperturbed theory
crossing relations must hold and thus it can be shown that the correlation functions cαβγ(t)
satisfy relations (2.3) for any parameter t in this case as well.

Additional assumptions on the structure of the theory, namely conformal invariance
lead to the following integrability equations for the correlations functions cαβγ(t) for any
parameter t:

∂cαβγ(t)

∂tµ
=
∂cαβµ(t)

∂tγ
. (2.4)

Poincaré’s Lemma then implies that there exists (at least locally) a generating function
F (t) such that the three-point correlation functions of the operators φα coincide with the
third-order derivatives of F , namely

cαβγ(t) =
∂3F (t)

∂tα∂tβ∂tγ
. (2.5)

Further on, one can show that equations (2.4) imply that the matrix ηαβ does not depend



CHAPTER 2. FROBENIUS MANIFOLDS AND FINITE COXETER GROUPS 18

on the parameters t, that is
∂ηαβ
∂tγ

= 0, (2.6)

for any α, β, γ. Finally, the function F must be quasi-homogeneous (see Section 2.2) in
the variables t as a consequence of a scaling law of the theory. The WDVV equations are
defined as the combination of formulae (2.3), (2.5) and (2.6).

Atiyah introduced a set of axioms which specify the properties of the correlators in the
(matter sector) of a 2D-TQFT [9, 10]. The operator algebra A carries the structure of a
Frobenius algebra [22]. Indeed, it has been shown that the category of 2D-TQFTs is in
some sense equivalent to that of commutative Frobenius algebras [53].

Frobenius manifolds were constructed by Dubrovin [22] in the 90s in an effort to
provide a rigorous geometric formalism for TQFTs as families of Frobenius algebras and
to investigate possible connections with the theory of integrable systems, in particular
integrable hierarchies of KdV type. In Section 2.2 we recall key aspects from the theory
of these manifolds.

2.2 Frobenius manifolds

Frobenius manifolds have been in the centre of intensive study since their appearance due
to their rich geometric structure as well as their surprising connections to different areas
of mathematics.

2.2.1 Frobenius manifolds and WDVV equations

A key property of a Frobenius manifold is the existence of a Frobenius algebra structure
on any tangent plane. Let us recall the following definition of a Frobenius algebra at first
(see for example [53]).

Definition 2.2.1. Let A be a C-algebra of finite dimension and let <,> be a non-
degenerate symmetric bilinear C-valued form on A. Then A is a Frobenius algebra if

(i) A is an associative algebra with unity e;

(ii) the multiplication in the algebra, ◦, is compatible with the form <,>, namely

< a ◦ b, c >=< a, b ◦ c >, for any a, b, c,∈ A.

Example 2.2.2. The ring of all square matrices over C forms a Frobenius algebra where
the inner product is defined as the trace of the product.

In our considerations below we only deal with commutative Frobenius algebras.
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Definition 2.2.3. A Frobenius manifold of charge d ∈ C is a (complex) smooth n-
dimensional manifold M with (commutative) Frobenius algebra structure (A, η :=<,>)

on each tangent space satisfying the following axioms for any x, y, z, w ∈ Γ(TM):

(i) the metric η on M is flat (η is a complex valued form);

(ii) the unity vector field e is constant with respect to the Levi-Civita connection ∇ of
the metric η;

(iii) the (0, 4)-tensor ∇wc(x, y, z) is totally symmetric, where c(x, y, z) := η(x ◦ y, z);

(iv) there exists a vector field E which is covariantly linear ∇∇E = 0, and

• LEe = −e,

• (LEη)(x, y) = E(η(x, y))− η(LEx, y)− η(x,LEy) = (2− d)η(x, y),

• (LEc)(x, y, z) = E(c(x, y, z))− c(LEx, y, z)− c(x,LEy, z)− c(x, y,LEz) = (3−
d)c(x, y, z);

The last three properties mean that E generates conformal rescalings of the metric
and of the Frobenius structure.

Note that the last two properties of axiom (iv) above imply that LE(◦) = ◦, that is

LE(x ◦ y)− (LEx) ◦ y − x ◦ (LEy) = x ◦ y, x, y ∈ Γ(TM). (2.7)

Flatness of the metric η implies that locally there exist flat coordinates tα, 1 ≤ α ≤ n,
such that the metric η is constant and the components of the Levi-Civita connection ∇
vanish. Then locally in the basis ∂

∂tα
= ∂tα , 1 ≤ α ≤ n covariant derivatives become partial

derivatives and the total symmetry of the tensor ∇c is equivalent to the total symmetry of
∂tαcβγδ, where cαβγ(t) =< ∂tα◦∂tβ , ∂tγ >. It follows that there exists (locally) a prepotential
F = F (t1, . . . , tn) such that the tensor components cαβγ(t) coincide with third-order partial
derivatives of F (cf. (2.5)), that is

cαβγ(t) =
∂3F

∂tα∂tβ∂tγ
. (2.8)

We have from axiom (ii) of Definition 2.2.3 that ∇e = 0. Thus a linear change of flat
coordinates can be performed in such a way that e takes the form e = ∂

∂tn
. Then the

metric η takes the form

ηαβ = η(
∂

∂tα
◦ e, ∂

∂tβ
) = c(e,

∂

∂tα
,
∂

∂tβ
) =

∂3F

∂tn∂tα∂tβ
.

The multiplication ◦ in the algebra A has the form ∂tα◦∂tβ = cγαβ(t)∂tγ , where the structure
constants cγαβ(t) satisfy cαβγ(t) = cλαβ(t)ηλγ.
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The vector field E is called Euler vector field. In general in flat coordinates it must
take the form

E(t) = (qαβ t
β + bα)

∂

∂tα
, (2.9)

for some scalars qαβ , bα satisfying qαn = δαn , bn = 0, since [E, e] = −e. Let us define the
gradient operator Q = ∇E : TM → TM , x 7→ ∇xE. If Q = (qαβ ) is diagonalisable then
the Euler vector field can be can be represented as

E(t) =
n∑

α=1

(dαt
α + bα)

∂

∂tα
,

where dα are the eigenvalues of the operator Q and are normalised such that dn = 1.
Moreover, up to a translation in the flat coordinates we have

E =
∑
α

dαt
α ∂

∂tα
+
∑
α|dα=0

bα
∂

∂tα
.

In this work we will only consider Frobenius manifolds where the numbers dα are non-zero
for all α, and thus we take an Euler field of the form:

E =
n∑

α=1

dαt
α ∂

∂tα
=

n∑
α=1

(1− qα)tα
∂

∂tα
, (2.10)

where qα = 1 − dα are the eigenvalues1 of the operator id−Q. The degrees dα of the
variables tα are called scaling dimensions of M . Let us now recall the following notion of
quasi-homogeneity.

Definition 2.2.4. A function f : M → C is said to be quasi-homogeneous of degree df if
it is an eigenfunction of the Euler vector field,

E(f) = dff.

It follows from axiom (iv) of Definition 2.2.3 and formula (2.8) that

E(cαβγ(t))− (3− d)cαβγ(t) = 0.

Then we have by integrating

LEF = (3− d)F +
1

2
Aαβt

αtβ +Bαt
α + C, (2.11)

for some constants Aαβ, Bα, C. Thus, F is quasi-homogeneous function of degree dF :=

3− d modulo quadratic terms which are in the kernel of ∇3.
1In TQFTs the numbers qα are called charges of the primary fields (see Subsection 2.1).
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Let us introduce an inner product on cotangent planes of M , <,>: T ∗t M × T ∗t M → C
defined by the inverse of the metric η, namely (η−1)αβ = ηαβ =< dtα, dtβ >, where dtα,
1 ≤ α ≤ n is a flat basis of T ∗t M . That is, we identify cotangent plane T ∗t M with
tangent plane TtM with the help of the metric η so that dtα corresponds to ηαβ∂tβ . Then
multiplication on TtM induces multiplication on T ∗t M which takes the form

dtα ◦ dtβ = ηαγηβεcγεµ(t)dtµ. (2.12)

Let us now recall how associativity of Frobenius algebra A implies that F satisfies WDVV
equations. We have

(∂tα ◦ ∂tβ) ◦ ∂tγ = ∂tα ◦ (∂tβ ◦ ∂tγ ) ⇐⇒ cµαβ(t)cρµγ(t)∂tρ = cλβγ(t)c
ρ
λα(t)∂tρ .

The last equality implies that cµαβ(t)cρµγ(t) = cλβγ(t)c
ρ
λα(t). Since cγαβ(t) = ηγµcµαβ(t) we

have that
ηµνcναβ(t)cρµγ(t) = ηλνcνβγ(t)c

ρ
λα(t),

which implies the following system of equations:

cαβν(t)η
νµcµργ(t) = cγβν(t)η

νµcµρα(t), 1 ≤ α, β, γ, ρ ≤ n. (2.13)

Example 2.2.5. In dimension n = 2 the associativity of the algebra A is trivial since the
algebra is unital. Thus, WDVV equations are empty. The form of the prepotential F is
constrained only by quasi-homogeneity and the metric η. In particular, it can be checked
that F takes the following form:

F (t1, t2) =


1

2
(t2)2t1 + f(t1), if η22 = 0,

c

6
(t2)3 +

1

2
(t2)2t1 + (t1)3, if η22 6= 0,

where c ∈ C× and f is a function of polynomial, logarithmic, or exponential type depending
on the charge d of the Frobenius manifold.

In this work we will consider only Frobenius manifolds such that the metric η satisfies
the condition ηnn = 0. In these cases and for an Euler vector field of the form (2.10), flat
coordinates can be chosen in such a way that the matrix ηαβ is anti-diagonal

ηαβ = δα+β,n+1, 1 ≤ α, β ≤ n. (2.14)

Recall that from axiom (iv) of Definition 2.2.3 for x = ∂tα and y = ∂tβ we have that
(LEη)(∂tα , ∂tβ) = (2− d)ηαβ, which implies the condition ηαβ(dα + dβ + d− 2) = 0 for any
α, β. Then in the coordinates such that ηαβ = δα+β,n+1, the numbers dα must satisfy the
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following relation:
dα + dn+1−α = 2− d, 1 ≤ α ≤ n. (2.15)

2.2.2 Intersection form

On a Frobenius manifold one can define a second flat metric. It plays a key role in the
theory and it is directly related to the metric η. Conventionally, it is defined as an inner
product of 1-forms.

Definition 2.2.6. The (contravariant) metric g ∈ Γ2(TM) defined by

g(θ, ω) = E(θ ◦ ω), (2.16)

for any θ, ω ∈ Γ(T ∗M) is called the intersection form of the Frobenius manifold.

Let us recall the following statement.

Proposition 2.2.7. The (covariant) metric g ∈ Γ2(T ∗M) is related to the metric η by
the following formula:

g(E ◦ u, v) = η(u, v), u, v ∈ Γ(TM). (2.17)

Proof. We have from Definition 2.2.6 and formula (2.12) that

gαβ(t) = g(dtα, dtβ) = Eµ(dtα ◦ dtβ)µ = ηαγηβεcγεµ(t)Eµ. (2.18)

Hence, multiplying both sides of (2.18) with gβλ(t) we get

δαλ = gαβ(t)gβλ(t) = ηαγηβεgβλ(t)cγεµ(t)Eµ.

Then multiplying by ηαρ we obtain ηλρ = gλβ(t)cβρµ(t)Eµ. The statement follows.

Consider points t ∈M where there exists E−1 ∈ TtM such that E−1 ◦ E = e. Then it
follows by Proposition 2.2.7 that

g(u, v) = η(E−1, u ◦ v). (2.19)

Thus the metric g is well-defined on the points of M where E is an invertible element of
the algebra.

A key observation in the theory of Frobenius manifolds is that the prepotential F , and
thus the Frobenius structure, can be reconstructed uniquely in general from the knowledge
of the metric g ∈ Γ2(TM), the vector fields e, E as well as of the numbers d, dα, 1 ≤ α ≤ n.
Indeed, let us introduce the operator V : TM → TM given by

V =
2− d

2
−Q, (2.20)
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and let Fαβ denote the components of the Hessian matrix of F (t). It can be checked using
formula (2.11) that for any α, β we have

E(Fαβ) = (3− d)Fαβ −Qγ
αFγβ − FαγQ

γ
β + Aαβ.

Then by Definition 2.2.6 we get 2

gαβ(t) = ηαγηβεEµcµγε(t) = Fαβ + Vαν F νβ + FανVβν + Aαβ, (2.21)

where
Fαβ = ηαα

′
ηββ

′
Fα′β′ and Aαβ = ηαα

′
ηββ

′
Aα′β′ . (2.22)

If the matrix ηαβ is anti-diagonal (see formula (2.14)) and Q is diagonal then equation
(2.21) reads

gαβ(t) = (dα + dβ + d− 1)Fαβ + Aαβ, (2.23)

since the numbers dα satisfy condition (2.15). Thus Frobenius structure can be recovered
uniquely if dα + dβ + d− 1 6= 0, for any 1 ≤ α, β ≤ n. The contravariant metric η can be
defined directly in terms of the metric g by setting

ηαβ = Legαβ. (2.24)

This is compatible with (2.22), (2.23) and ηαβ = δα+β,n+1 which holds in the coordinate
system tα, 1 ≤ α ≤ n since dα + dβ + d− 1 = 1, if α + β = n+ 1.

Consider a metric g̃ ∈ Γ2(T ∗M) with Levi-Civita connection ∇g̃ and Christoffel sym-
bols Γijk (in some basis). Let g̃ij = (g̃−1)ij. We define the contravariant connection of the
metric g̃ by ∇i

g̃ := g̃ij∇g̃j with contravariant Christoffel symbols as Γijk := −g̃ilΓjlk.

Definition 2.2.8. Two non-proportional metrics g(i) ∈ Γ2(TM), i = 1, 2 form a flat pencil
if the following conditions hold:

(i) the metric g(1) + λg(2) is flat for any λ ∈ C;

(ii) the Levi-Civita connection of the metric g(1) + λg(2) takes the form

Γ··(1)· + λΓ··(2)·,

where Γ··(i)· are the contravariant Christoffel symbols of the metric g−1
(i) , i = 1, 2.

The following proposition implies that the metrics η and g form a flat pencil on the
Frobenius manifold.

2Note that there seem to be typos in the formula for gαβ(t) in [25, p. 9].
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Proposition 2.2.9. Let gαβ(t;λ) denote the matrix

gαβ(t;λ) = gαβ(t)− ληαβ, λ ∈ C (2.25)

and let Σλ ⊂M be
Σλ = {t ∈M | det gαβ(t;λ) = 0}. (2.26)

Then the inverse matrix gαβ(t;λ) := (gαβ(t;λ))−1 defines a flat metric, gλ on M \ Σλ.
Furthermore, the Christofell symbols for this metric take the form

Γaβγ(t;λ) = −gβν(t;λ)Γναγ (t), (2.27)

where
Γαβγ (t) := cαµγ (t)

(1

2
− V

)β
µ
. (2.28)

In particular, Γαβγ (t) are contravariant Christoffel symbols for the metric g given by (2.19).

Let ∇ denote the contravariant Levi-Civita connection of the metric g (2.19) with
components defined by (2.28). A function paλ = pa(t;λ) satisfying the conditions

(∇− λ∇)dpaλ = 0 (2.29)

is called a λ-period of the Frobenius manifold. Flatness of the metric gλ implies the
existence of n independent λ-periods on the universal covering of M × C \

⋃
λ Σλ × λ.

These define a system of flat coordinates for the metric gλ on a small domain of M \ Σλ.
Let ξβ = ∂tβp

a
λ, β = 1, . . . , n. In the basis tα conditions (2.29) read (∇α−λ∇α)ξβ = 0,

for any 1 ≤ α, β ≤ n. Then we get

(∇α − λ∇α)ξβ = (gαγ(t)∇γ − ληαγ∇γ)ξβ = (gαγ(t)− ληαγ)∂tγξβ − gαγ(t)Γµγβ(t)ξµ.

It follows by Proposition 2.2.9 that conditions (2.29) take the form

(gαγ(t)− ληαγ)∂tγξβ = cαρβ (t)(V − 1

2
)µρξµ, 1 ≤ α, β ≤ n. (2.30)

Let U be the operator of multiplication by E, U = E◦ : TM → TM . That is

Uαβ (t) = (E◦)αβ = gαε(t)ηεβ. (2.31)

Let Cα(t) be the n × n matrices defined by (Cα(t))βγ = cβαγ(t) and consider the vector
ξ(t) = (ξ1, . . . , ξn). Then conditions (2.30) are equivalent in a matrix form to the following



CHAPTER 2. FROBENIUS MANIFOLDS AND FINITE COXETER GROUPS 25

system of equations:

∂tαξ(t)(U − λ) = ξ(t)(V − 1

2
)Cα, 1 ≤ α ≤ n. (2.32)

By definition the intersection form degenerates precisely on Σ := Σ0. A system of n
independent periods pa := pa(t; 0) gives flat coordinates of the intersection form. They
determine a local isometry between the space M \ Σ and Cn. More precisely, this map is
defined by

p : M \ Σ→ Cn, t 7→ p(t) := (p1, . . . , pn), (2.33)

and is called period mapping. Thus, the functions pa (a = 1, . . . , n) can serve locally as
coordinates on Cn and the intersection form gab = (dpa, dpb) can also be viewed as an
inner product on Cn.

2.2.3 Semisimplicity and canonical coordinates

We will study a special class of Frobenius manifolds which possess additional structure.
The Frobenius algebra at a generic point on the manifold is required to be semisimple as
defined below.

Definition 2.2.10. [43] A module over an algebra is called semisimple if it is the direct
sum of its simple submodules.

Definition 2.2.11. [43] An algebra A is semisimple if all non-zero A-modules are semisim-
ple.

By Artin-Wedderburn Theorem any finite dimensional semisimple algebra over C is
isomorphic to ∏

i∈N

Mni(C), ni ∈ N,

whereMni(C) is the matrix algebra of ni×ni matrices over C. Therefore, an n-dimensional
commutative semisimple Frobenius algebra A is isomorphic to n copies of C. There exists
a basis ei ∈ A, 1 ≤ i ≤ n (idempotents) such that the multiplication becomes

ei ◦ ej = δijej.

Definition 2.2.12. A Frobenius manifold M is called semisimple if the family of n-
dimensional algebras TtM is semisimple at any generic point t ∈ M . Such a point t ∈ M
is called semisimple point.

Locally, near a semisimple point t ∈M there exists a basis of vector fields δi, 1 ≤ i ≤ n,
with the property
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δi ◦ δj = δijδj. (2.34)

These vector fields are called idempotent vector fields and are unique up to renumbering.
It can be checked that δi commute pairwise, [δi, δj] = 0 for all 1 ≤ i, j ≤ n and hence
δi determine a canonical coordinate system ui such that δi = ∂

∂ui
, 1 ≤ i ≤ n. Canonical

coordinates ui are unique up to shifts and permutations. Recall that the Euler field E

satisfies LE(◦) = ◦ (formula (2.7)) and hence takes the form3 E =
∑n

i=1(ui+ci)δi for some
ci ∈ C. Therefore near a semisimple point t the eigenvalues of the operator U(= E◦) are
canonical coordinates (up to the mentioned non-uniqueness).

Canonical coordinates can be chosen such that the Euler vector field takes the form

E =
n∑
i=1

ui
∂

∂ui
. (2.35)

Similarly note that by (2.34) we have (
∑n

i=1 δi) ◦ X = (
∑n

i,j=1 δi ◦ δj)Xj = X for any
X =

∑n
j=1X

jδj ∈ TuM . Therefore the identity field can be represented as

e =
n∑
i=1

∂

∂ui
. (2.36)

It follows by formula (2.34) that the metric η(u) is diagonal

ηij(u) =< δi, δj >= ηii(u)δij, 1 ≤ i, j ≤ n, (2.37)

where ηii(u) are some non-zero functions. Similarly it is easy to see by Proposition 2.2.7
and formula (2.37) that

gij(u) = u−1
i ηii(u)δij, 1 ≤ i, j ≤ n.

2.2.4 Natural submanifolds

It is natural to consider submanifolds of a Frobenius manifold which behave well with re-
spect to the restricted Frobenius structure. Strachan considered submanifolds of a Frobe-
nius manifold which carry a Frobenius algebra structure on each tangent space and studied
their differential-geometric properties [81].

Definition 2.2.13. [81] A natural submanifold N of a Frobenius manifold M is a sub-
manifold N ⊂ M such that the Euler vector field at any t ∈ N is tangential to N and
induced Frobenius multiplication on N is closed, namely TN ◦ TN ⊂ TN .

Definition 2.2.14. [46] The caustic K ⊂M is the set of points whereM is not semisimple.
3Throughout we employ the convention of no summation over repeated indices when working with

canonical coordinates.
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The discriminant Σ ⊂M is the set Σ = {t ∈M | U is not invertible on TtM}.

Let I be the set I = {1, . . . , n}. It is mentioned in [81] that the natural submanifolds
of a semisimple Frobenius manifold may be obtained as the level sets

{ui = 0| i ∈ I} ∩ {ui = uj | i 6= j, (i, j) ∈ J },

for some arbitrary subsets I ⊂ I, J ⊂ I × I, provided that the ‘unconstrained’ variables
ui define a coordinate system on the submanifold, which requires further analysis.

2.2.5 Superpotential description of Frobenius manifolds

The theory of topological Landau-Ginzburg (LG) models involves a holomorphic function
called superpotential, depending in general on several complex variables. In the simplest
case this function is a polynomial depending on a variable p. The moduli space in the
LG theory can be described via a family of actions which depend on an additional set of
parameters a = (a1, . . . , an) through the deformed LG superpotential λ(p) = λ(p, a) [84]
(see also [62]). Dubrovin showed that the space of parameters carries a Frobenius structure
[22]. Moreover, any semisimple Frobenius manifold M admits a description through LG
superpotential such that

ui(a) = λ(qi(a), a), i = 1, . . . , n,

where qi are critical points of λ:

λ
′
(p) =

dλ(p)

dp

∣∣∣∣
p=qi(a)

= 0,

that is the canonical coordinates on the Frobenius manifold are precisely the critical values
of the superpotential λ. This assumes that the roots of λ′(p) are generically distinct. The
expressions for the metrics η, g and Frobenius multiplication are given by the following
residue formulae:

η(∂i, ∂j) =
∑

ps:λ
′ (ps)=0

res|p=ps
∂i(λ(p))∂j(λ(p))

λ′(p)
dp, (2.38)

g(∂i, ∂j) =
∑

ps:λ
′ (ps)=0

res|p=ps
∂i(log λ(p))∂j(log λ(p))

(log λ)′(p)
dp, (2.39)

η(∂i ◦ ∂j, ∂k) =
∑

ps:λ
′ (ps)=0

res|p=ps
∂i(λ(p))∂j(λ(p))∂k(λ(p))

λ′(p)
dp, (2.40)

where ∂i denote some vector fields on M and λ
′
(p) = dλ(p)

dp
. The following example is

analogous to Example 1.7 in [22] (see also references [48], [91] and Chapter 3 for details
of similar calculations).
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Example 2.2.15. Let M be the (affine) space of complex polynomials of the form

λ(p) = p2n + a1p
2n−2 + · · ·+ an, a1, . . . , an ∈ C. (2.41)

Tangent vectors to M at a point a = (a1, . . . , an) take the form

λ̇(p) = ȧ1p
2n−2 + · · ·+ ȧn,

where the ‘dot’ means derivative with respect to the parameter s on a curve passing
through the point a. The algebra on the tangent space of M at any point a ∈ M is
determined by formula (2.40) and is commutative, associative with unity. Moreover it is
isomorphic for any α ∈M to the algebra of truncated polynomials

Aλ = C[p]/λ
′
(p).

Indeed, let us define a bilinear form η = ηλ on Aλ given by

η(f(p), g(p)) = − res|p=∞
f(p)g(p)

λ′(p)
dp.

Let also define polynomials

k(p) = ∂iλ(p), l(p) = ∂jλ(p), h(p) = ∂kλ(p),

for some vector fields ∂i, ∂j, ∂k on M . Note that we have

k(p)l(p) = λ
′
(p)q(p) + r(p), (2.42)

for some polynomials q(p), r(p) with deg r(p) < 2n − 1. In the algebra Aλ the product
(2.42) takes the form k(p)l(p) = r(p). Then using (2.42) formula (2.40) can be written as

η(∂i ◦ ∂j, ∂k) = − res|p=∞
k(p)l(p)h(p)

λ′(p)
dp

= − res|p=∞
r(p)h(p)

λ′(p)
dp− res|p=∞ q(p)h(p)dp

= − res|p=∞
r(p)h(p)

λ′(p)
dp.

Then η(∂i ◦ ∂j, ∂k) coincides with the bilinear form η(r(p), h(p)) = η(k(p)l(p), h(p)) and
the multiplication ◦ is the same as the multiplication in the algebra Aλ.

The spaceM is a Frobenius manifold, TλM = (Aλ, η) where the metric η and Frobenius
multiplication are given by formulae (2.38) and (2.40) respectively. It follows by formula
(2.41) that
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λ
′
(p) = 2np−1

n∏
j=1

(p2 − q2
j ), (2.43)

for some points qi ∈ C (qi = 0 for some i). Then we define coordinates ui by ui = λ(qi),
i = 1, . . . , n.

Let us now show that η(u) is diagonal (cf. formula (2.37)) and that ui are canonical
coordinates for M . By definition we have

δij =
∂uj
∂ui

= ∂uiλ(qj).

Then considering the Taylor expansion of λ(p) centred at p = qj we have λ(p) = λ(qj)+O,
where O denotes the rest of the terms, and O has zero of order at least two at p = qj.
Then

∂uiλ(p)|p=qj = ∂uiλ(qj) = δij. (2.44)

It follows by Lagrange interpolation that

∂uiλ(p) =
2εipλ

′
(p)

(p2 − q2
i )λ

′′(qi)
, (2.45)

where εi = 1 if qi 6= 0 and εi = 1
2
if qi = 04. Let us now consider formula (2.38), η(∂ui , ∂uj).

In the case when i 6= j the polynomial ∂uiλ(p)∂ujλ(p) is divisible by λ′(p) and the residues
at the points qi (1 ≤ i ≤ n) are trivial. Hence η(∂ui , ∂uj) = 0. Let us now consider the
case when i = j. We get

η(∂ui , ∂ui) =
∑

ps:λ
′ (ps)=0

res|p=ps
∂ui(λ(p))2

λ′(p)
dp =

∑
ps:λ

′ (ps)=0

res|p=ps
4ε2i p

2

(p2 − q2
i )

2

λ
′
(p)

λ′′(qi)2
dp.

Let us note that
λ
′′
(qi) = 4εin

n∏
j=1
j 6=i

(q2
i − q2

j ). (2.46)

Then

η(∂ui , ∂ui) = 8ε2in
∑

ps:λ
′ (ps)=0

res|p=ps
p
∏

j 6=i(p
2 − q2

j )

p2 − q2
i

dp

λ′′(qi)2
=

2εi
λ′′(qi)

. (2.47)

It follows directly by formula (2.39) that g(∂ui , ∂uj) = u−1
i η(∂ui , ∂uj), which implies

g(∂ui , ∂uj) =
2εiδij
uiλ

′′(qi)
(2.48)

4Note that the case qi = 0 is not considered in [91], thus formula (2.45) differs from formula (5.19) in
[91] by a factor of εi.



CHAPTER 2. FROBENIUS MANIFOLDS AND FINITE COXETER GROUPS 30

by formula (2.47). Similarly, one can show that for the Frobenius multiplication (2.40)
in the case when i 6= j or j 6= k the polynomial ∂iλ(p)∂jλ(p)∂kλ(p) is divisible by λ′(p).
Therefore the residues at the points qi (1 ≤ i ≤ n) are trivial. Then it can be checked
that the multiplication takes the form

η(∂ui ◦ ∂uj , ∂uk) =
2εiδijδjk
λ′′(qi)

. (2.49)

Formulae (2.47) and (2.49) imply that ∂ui ◦ ∂uj = δij∂uj , as required.
As a final remark in this example let us note that the discriminant Σ corresponds to

the set of polynomials λ(p) in M which have zero as a critical value.

2.2.6 Almost dual Frobenius manifolds

Dubrovin showed that given a Frobenius manifold M one can associate a new structure
on M \Σ, called almost dual Frobenius manifold. For any t ∈M \Σ a new multiplication
of tangent vectors u, v ∈ TtM is defined by the following formula:

u ∗ v = E−1 ◦ u ◦ v, (2.50)

where E−1 is the inverse of the Euler vector field associated to M . Note that E ∗ u = u,
hence the Euler vector field E is the identity for the product ∗. The multiplication (2.50)
together with the metric g (2.19) and the Euler vector field E satisfy all the axioms of the
Frobenius manifold but constancy of the identity E.

Let us define the algebra *
At = (TtM, ∗), t ∈M \Σ. It follows from formula (2.50) that

*
At is unital, commutative and associative. Moreover, *

At is a Frobenius algebra since the
multiplication ∗ is compatible with the metric g, that is for any u, v, w ∈ TtM we have
the following property by formula (2.19):

g(u ∗ v, w) = η(E−1, (u ∗ v) ◦ w) = η(E−1, u ◦ (v ∗ w)) = g(u, v ∗ w),

since (u ∗ v) ◦ w = u ◦ (v ∗ w) by (2.50). At any point t ∈ M \ Σ, the map φ : *
At → At,

u 7→ φ(u) := E−1 ◦u is an algebra isomorphism. Indeed for any u, v ∈ TtM it follows from
(2.50) that

φ(u ∗ v) = E−1 ◦ (u ∗ v) = E−1 ◦ E−1 ◦ u ◦ v = φ(u) ◦ φ(v). (2.51)

Note that in the basis tα, (1 ≤ α ≤ n) we have

∂

∂tα
7→ φ(

∂

∂tα
) = gαλ(t)η

λγ ∂

∂tγ
. (2.52)

The following lemma takes place.
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Lemma 2.2.16. The multiplications ∗, ◦ coincide on the cotangent planes T ∗t M , t ∈
M \ Σ.

Proof. Let *cµνλ (t) denote the structure constants of the dual of *
At. Let us consider equality

(2.51) with u = ∂tα , v = ∂tβ . Using (2.52) we have

*cγαβ(t)gγθ(t)η
θσ∂tσ = cσµν(t)gαε(t)gβρ(t)η

εµηρν∂tσ ,

which implies that *cγαβ(t)gγθ(t)η
θσ = cσµν(t)gαε(t)gβρ(t)η

εµηρν . Multiplying by ησλ we get
*cγαβ(t)gγλ(t) = cερλ (t)gαε(t)gβρ(t). It follows that *cµνλ (t) = cµνλ (t) by multiplying with
gµα(t)gνβ(t), as required.

Using that LEηαβ = (d− 2)ηαβ, it follows that

LEcαβγ (t) = (d− 1)cαβγ (t), and LEgαβ(t) = (d− 1)gαβ(t).

Thus E is the Euler vector field for the ∗ multiplication as well. Let us define the tensor
*cαβγ(t) := gαλ(t)gβµ(t)*cλµγ (t). It can be checked that the tensor ∇γ

cαβρ (t) := gγµ(t)∇µc
αβ
ρ (t)

is symmetric for any ρ with respect to α, β and γ. Thus the covariant derivatives

∇ρ
*cαβγ(t) = gαµ(t)gβν(t)gρλ(t)∇

λ
cµνγ (t)

are totally symmetric. In the flat coordinates pa, 1 ≤ a ≤ n of the metric g this implies
that locally there is a function F∗ such that

*cabc(p) =
∂3F∗

∂pa∂pb∂pc
=
∂tα

∂pa
∂tβ

∂pb
∂tγ

∂pc
*cαβγ(t) = gajgbl

∂tγ

∂pc
∂pj

∂tµ
∂pl

∂tν
cµνγ (t), (2.53)

where gab = g( ∂
∂pa
, ∂
∂pb

) is the Gram constant matrix of the metric g in the flat coordinates
pa. Associativity of the algebra *

Ap implies that the function F∗(p) satisfies the following
system of equations:

*cabl(p)g
lm*cmck(p) = *cacl(p)g

lm*cmbk(p), (2.54)

for any 1 ≤ a, b, c, k ≤ n.

Definition 2.2.17. An almost dual Frobenius manifold of charge d 6= 1 is the manifold
M \Σ with a smoothly varying (commutative) Frobenius algebra structure on each tangent
space, TpM = ( *

Ap, g), p ∈M \ Σ satisfying the following axioms:

(i) the metric g is flat;

(ii) in the flat coordinates pa of the metric g the structure constants *cabc(p) of the algebra
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*
Ap can be represented locally in the form

*cabc(p) = gal
∂3F∗(p)

∂pl∂pb∂pc
, (2.55)

for some function F∗(p) and gab = (dpa, dpb).

(iii) the Euler vector field takes the form

E =
1− d

2

n∑
α=1

pα
∂

∂pα
, (2.56)

and the function F∗(p) must satisfy the following homogeneity condition:

LEF∗(p) = (1− d)F∗(p) + quadratic terms in p;

(iv) there exists a vector field e(p) being an invertible element of *
Ap, p ∈M \Σ such that

it acts by shifts ν 7→ ν − 1 on the solutions of the system of equations

∂2p̃

∂pa∂pb
= ν*ccab(p)

∂p̃

∂pc
, (2.57)

for some function p̃ = p̃(p; ν).

Definition 2.2.18. Any function p̃(p; ν) satisfying the system of equations (2.57) is called
a twisted period of the Frobenius manifold.

Equations (2.57) arise from the vanishing of the torsion and curvature of the so-called
deformed flat connection ∇(ν) defined on (M \ Σ) × C for any u, v ∈ TtM , t ∈ M \ Σ by
the formula

∇(ν)
u v = ∇uv + ν u ∗ v, ν ∈ C.

One can show that in the flat coordinates tα equations (2.57) can be written in an equiv-
alent matrix form

∂ξ̃(t)

∂tα
U = ξ̃(t)(V + ν − 1

2
), 1 ≤ α ≤ n, (2.58)

where ξ̃(t) = (∂t1 p̃(t; ν), . . . , ∂tn p̃(t; ν)). Note that for the special value ν = 0 the system
(2.58) coincides with (2.32) with λ = 0 for the flat coordinates of the metric g. The vector
field e of axiom (iv) in Definition 2.2.17 coincides with the identity field e = ∂tn of the
Frobenius manifold. It can be checked that

ξ̇(t) :=
∂ξ̃(t)

∂tn
,
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satisfies
∂ξ̇(t)

∂tα
U = ξ̇(t)(V + ν − 3

2
), 1 ≤ α ≤ n.

This implies that axiom (iv) of Definition 2.2.17 is satisfied.

2.3 Generalised WDVV Equations

Let F be a function defined locally in terms of some variables5 t = (t1, t2, . . . , tn). Let Fα
be the n× n matrix constructed from the third-order derivatives of the function F :

(Fα)βγ =
∂3F

∂tα∂tβ∂tγ
=: cαβγ(t).

Then generalised WDVV equations take the following form:

FαF
−1
β Fγ = FγF

−1
β Fα, (2.59)

for any indices α, β, γ. It is immediate that the system (2.59) is non-trivial only when F
depends on at least three variables. These equations appeared in the works of Marshakov,
Mironov and Morozov in the context of Seiberg-Witten theory [63–65]. The same authors
indicated that generalised WDVV equations can be written in an equivalent form where
Fβ in (2.59) is replaced by any invertible linear combination of the matrices Fα (see also
[66]). Let us explain this in the next two propositions. Let us define the matrix

G =
n∑
β=1

bβ(t)Fβ, (2.60)

where the coefficients bβ(t) are some functions in t, and suppose that G−1 exists. Let us
also assume below that the matrices Fα are invertible for any α.

Proposition 2.3.1. [66] Suppose that a function F satisfies the system of equations

FαF
−1
ε0
Fβ = FβF

−1
ε0
Fα, (2.61)

for some fixed index ε0 and for any indices α, β. Then for any α, β the following equations
hold:

FαG
−1Fβ = FβG

−1Fα. (2.62)

Proof. For any index α let C(ε0)
α be the matrix C(ε0)

α = F−1
ε0
Fα. Then equations (2.61) can

be written in the equivalent form

[C(ε0)
α , C

(ε0)
β ] = 0. (2.63)

5See discussion in [62] for infinite dimensional situation.
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It follows that for any invertible linear combination H =
∑n

β=1 bβ(t)C
(ε0)
β and any index α

we have [(C
(ε0)
α )−1, H] = 0, and hence by taking inverse

[C(ε0)
α , H−1] = 0. (2.64)

Note that H = F−1
ε0
G, hence G−1 = H−1F−1

ε0
. The left-hand-side of formula (2.62) takes

the form
FαG

−1Fβ = FαH
−1F−1

ε0
Fβ = Fε0C

(ε0)
α H−1C

(ε0)
β , (2.65)

and it follows from relations (2.63), (2.64) that the right-hand-side of (2.65) is symmetric
under the swap of α and β, as required.

Note in particular that in the case where G = Fγ for some γ we have from Proposition
2.3.1 that system (2.61) implies that F satisfies generalised WDVV equations. Now we
prove a converse statement in the following form.

Proposition 2.3.2. [66] Suppose that a function F satisfies the system of equations (2.62)
for all α, β = 1, . . . , n. Then F satisfies generalised WDVV equations (2.59).

Proof. The system (2.62) is equivalent to

[G−1Fα, G
−1Fβ] = 0, for any α, β = 1, . . . , n. (2.66)

Note that the left-hand-side of (2.59) can be written as

FαF
−1
β Fγ = G(G−1Fα)(G−1Fβ)−1(G−1Fγ). (2.67)

Using (2.66) we have that the right-hand-side of (2.67) is symmetric under the swap of α
and γ, and thus the statement follows.

It follows from Propositions 2.3.1 and 2.3.2 that generalised WDVV equations are
equivalent to the system (2.62) for any particular choice of matrix G of the form (2.60).
The matrix G (resp. G−1) which is usually referred to as the ‘metric’ can be used to lower
(resp. raise) indices,

cαβγ(t) = Gαε(t)c
ε
βγ(t),

where cγαβ(t) = cγαβ are the matrix entries of Cα : (Cα)γβ = cγαβ, and Gαβ(t) are the matrix
entries of G : G = (Gαβ(t)).

Note that contrary to the formulation of WDVV equations in Section 2.1 in the case of
generalised WDVV equations all indices are treated on an equal footing and no constancy
of the metric is assumed.
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2.4 Finite Coxeter groups and their orbit spaces

In this section we recall main properties from the theory of finite Coxeter groups [17,50,51]
and the corresponding orbit spaces [77,78]. Let V be a real n-dimensional Euclidean space
endowed with a positive definite symmetric bilinear form6 ( , ) =: g.

Definition 2.4.1. Let u, α ∈ V . A reflection is a linear operator sα on V defined by

u 7→ sαu = u− 2
(u, α)

(α, α)
α.

Definition 2.4.2. Let R be a finite set of non-zero vectors in V . The set R is called a
root system if

(i) for every α ∈ R, the set R is closed under the reflection sα, sαR = R;

(ii) the only colinear vectors to a root α ∈ R are α and −α.

For any α ∈ R we define the corresponding mirror to be the hyperplane Πα = {x ∈
V |(α, x) = 0}, then sαΠα = Πα. The group W ⊂ O(V ) defined by W = 〈sα|α ∈ R〉 is
called reflection group and is associated to the root systemR. Note thatW is finite. To see
this, let SR denote the symmetric group on the set R and define a group homomorphism
φ : W → SR by sending w ∈ W to the element of SR which permutes the roots in the
same way as w. Then kerφ = {1} since only the identity element ofW can fix all elements
of R.

Definition 2.4.3. A root systemR is called crystallographic root system if for all α, β ∈ R
the following constraint is satisfied:

2
(α, β)

(β, β)
∈ Z.

The associated reflection group W is called Weyl group.

The choice of a root system R is not unique: the map

{Root systems} → {Reflection groups}

is not injective since different collections of vectors satisfying the geometric conditions (i),
(ii) in Definition 2.4.2 can generate the same reflection group.

Given a root system R this completely determines W . However, R can be very large
and thus it is more natural to define a subset of vectors in R which completely describes
the set R. Let H be a generic hyperplane in V and fix a vector u ∈ V such that it is
normal to the hyperplane H. Let V+ denote the open half-space V+ = {x ∈ V |(x, u) > 0}.

6The choice of notation g for this form will become apparent below.
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Definition 2.4.4. A positive root system in a root system R is a subset R+ ⊂ R such
that R+ = R∩ V+.

It is clear that R can be decomposed as R = R+ t (−R+).

Definition 2.4.5. The set ∆ ⊂ R+ is a simple system if

(i) it is a basis for the R-span of R in V ;

(ii) each α ∈ R is a linear combination of elements of ∆ with coefficients all of the same
sign.

Note that for any w ∈ W , the subset w∆ is also a simple system with corresponding
positive root system wR+.

Definition 2.4.6. Let R be a root system with associated reflection group W . Let
U = 〈R〉 ⊂ V . The rank of R (and of W ) is the dimension of the vector space U .

Let R1, R2 ⊂ R. We write (R1,R2) = 0 if (α, β) = 0 for any α ∈ R1 and β ∈ R2.
Let us recall the following definition of a reducible root system.

Definition 2.4.7. Let R be a root system and let R1, R2 ⊂ R be such that R = R1∪R2

and (R1,R2) = 0. Then we call R reducible root system.

Definition 2.4.8. A root system R is called irreducible if it is not reducible.

Definition 2.4.9. A subset R′ ⊂ R is called a subsystem of R if R′ = R ∩ U for some
vector subspace U ⊂ V .

Note that a subsystem is also a root system.

Proposition 2.4.10. [17, Ch. VI] Let V1 be a vector subspace of V . Let R′ be the
subsystem R′ = R ∩ V1. Let V2 be the vector subspace V2 = 〈R′〉. Then V2 ⊆ V1 and R′

is a root system in both V1 and V2.

Lemma 2.4.11. Let R be a reducible root system, so that R = R1 tR2 for some subsets
R1,R2 ⊂ R such that (R1,R2) = 0. Then Ri (1 ≤ i ≤ 2) is a subsystem of R.

Proof. Let U = 〈R〉 ⊂ V and consider the corresponding vector space decomposition
U = U1⊕U2, where Ui = 〈Ri〉, 1 ≤ i ≤ 2. Then Ri = R∩Ui, (1 ≤ i ≤ 2) as required.

Note that every positive root system contains a unique simple system. Given a simple
system ∆ the group W is generated by sα, α ∈ ∆. Indeed let us recall the following
statement.
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Theorem 2.4.12. Let ∆ ⊂ R+ be a simple system. Then W is generated by the set
S = {sα|α ∈ ∆} subject to the relations

(sαsβ)m(α,β) = 1, α, β ∈ ∆,

where m(α, β) ∈ Z≥0 and m(α, α) = 1, for all α ∈ ∆.

Any (finite) groupW having such a presentation relative to a generating set S is called
a (finite) Coxeter group and the pair (W,S) is called a Coxeter system. In addition, W
is determined up to an isomorphism by the collection of m(α, β). One can encode this
information in a graph with vertex set in one-to-one correspondence with ∆, which gives
rise to the notion of a Coxeter graph. These are constructed as follows. To each pair of
simple roots α, β one associates the corresponding vertices which are connected by an
edge only if the condition m(α, β) ≥ 3 is met. In addition, if m(α, β) ≥ 4 such an edge
acquires the label m. Further on, a Coxeter subgraph is graph obtained from a Coxeter
graph by either omitting some vertices or by decreasing the labels on one or more edges
(if the label is 3 then it is not indicated).

Definition 2.4.13. A Coxeter system (W,S) is irreducible if the associated Coxeter graph
is connected.

Equivalently, the above definition states that there exists no partition of S into two
non-empty subsets S1 and S2 of S such that each element of S1 commutes with each
element of S2. Thus irreducibility of Coxeter system (W,S) is equivalent to irreducibility
of associated root system R. Finite Coxeter groups were classified by Coxeter. The
following theorem takes place.

Theorem 2.4.14. The graph of any irreducible finite Coxeter system (W,S) is one of the
following ones:

Classical series

An, (n ≥ 1) :

Bn, (n ≥ 2) : 4

Dn, (n ≥ 4) :

I2(m), (m ≥ 5) : m



CHAPTER 2. FROBENIUS MANIFOLDS AND FINITE COXETER GROUPS 38

Exceptional groups

E6 :

E7 :

E8 :

H3 : 5

H4 : 5

F4 : 4

Example 2.4.15. Let W = Sn be the symmetric group. Let εi, i = 1, . . . , n be the
standard orthonormal basis in V , then W acts on V by permutations of the standard
basis. It fixes pointwise the line L = {Rβ}, β = ε1 + · · · + εn. Hence, we usually denote
W by An−1.The corresponding root and simple systems can be chosen as follows:

R = {±(εi − εj)}, 1 ≤ i < j ≤ n, ∆ = {εi − εi+1}, 1 ≤ i ≤ n− 1.

Moreover, for distinct α, β ∈ ∆ we have that

m(α, β) =

2, disjoint vertices,

3, otherwise.

Remark 2.4.16. It is worth noting that there is weaker notion of a root subsystem (see
[74]) where a subset R′ ⊂ R is called a subsystem of the root system R if w(R′) = R′

for all w = sα, α ∈ R′. For example A1 × A1 ⊂ B2 is a reducible subsystem of B2 in this
sense but it is not a subsystem in terms of Definition 2.4.9.

Finally, let us introduce the notion of parabolic subgroups of W . We fix a Coxeter
system (W,S).

Definition 2.4.17. For any subset X of S the subgroup WX of W generated by X is
called a parabolic subgroup of W .

Note that under the action of W the group WX is mapped to its conjugate WwX =

wWXw
−1, for any w ∈ W .
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2.4.1 Chevalley’s Theorem

Let us fix an irreducible finite Coxeter groupW of rank n. Consider the dual space V ∗ and
let S = S(V ∗) denote the symmetric algebra on V ∗, namely the algebra of polynomials on
V with real coefficients. Thus S has a natural graded ring structure S =

⊕∞
d=0 S

(d). An
element f of S(d) is called homogeneous of degree d. The group W acts naturally on S as
a group of automorphisms by defining

(w.f)(u) = f(w−1u),

for any w ∈ W , u ∈ V , f ∈ V ∗. We say f ∈ S is W -invariant if w.f = f for all w ∈ W
The subalgebra of W -invariants R = SW has also a graded ring structure R = R ⊕ R+,
where R+ =

⊕∞
d>0R

(d), with R(d) := R ∩ S(d) and elements of R correspond to constant
polynomials. The structure of the algebra R is the subject of the following result of
Chevalley.

Theorem 2.4.18. The subalgebra of invariants R is generated by n algebraically indepen-
dent homogeneous polynomials f 1, . . . , fn of positive degree, di = deg f i.

Definition 2.4.19. A set of algebraically independent homogeneous polynomials f 1, . . . , fn

of positive degrees is called a set of basic invariants of W .

Let xi (1 ≤ i ≤ n) be a generator system for the algebra S and let J(f) be the
Jacobian J(f 1, . . . , fn) = det(∂f i/∂xj)ni,j=1. The following well-known result is crucial for
our considerations.

Proposition 2.4.20. [51] There is a proportionality

J(f) ∼
∏
α∈R+

(α, x).

The basic invariants f 1, . . . , fn are not canonically determined. However, one can show
that the corresponding degrees di are independent of the choice of these generators and
are invariants of the group. The numbers di can be described explicitly for every group
W and are related to the eigenvalues of a Coxeter element.

Definition 2.4.21. Let c ∈ W be the product c =
∏

α∈∆ sα with an assumed choice of
ordering of the simple reflections sα. Any such element c is called a Coxeter element and
the order h of c in W is called the Coxeter number.

Although a Coxeter element depends on the choice of ordering of simple reflections
and on the choice of simple system ∆ it can be shown that all such elements are conjugate
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in W . Then all Coxeter elements (as elements of GL(V )) have the same characteristic
polynomial P = Pc which takes the form

P (λ) =
n∏
j=1

(λ− e
2iπmj
h ),

where mi (1 ≤ i ≤ n) are integers which in fact satisfy

0 < m1 = 1 < m2 ≤ ... ≤ mn−1 < mn = h− 1 < h. (2.68)

Note in particular the strict inequalities m1 < m2 and mn−1 < mn [17, Ch. V, p. 127,
Corollary 2]. The polynomial P (λ) has real coefficients. Hence for all j the power of the
term λ− exp

2iπmj
h

in P (λ) is equal to that of another factor which has to have the form
λ− exp

2iπ(h−mj)
h

. It follows that the numbers mi satisfy the relation

mj +mn+1−j = h, 1 ≤ j ≤ n. (2.69)

A surprising fact [51, Theorem 3.19] is that the degrees dj of W are related to the
numbers mj by the formula dj = mj + 1, for any 1 ≤ j ≤ n. Then it follows from
equalities (2.69) that

dj + dn−j+1 = h+ 2, 1 ≤ j ≤ n.

In Table 2.1 we list the degrees of invariant polynomials for all the finite Coxeter
groups.

Table 2.1: Degrees of basic invariants

Type d1, . . . , dn
An 2, 3, . . . , n+ 1
Bn 2, 4, 5, . . . 2n
Dn 2, 4, 6, . . . , 2n− 2, n
I2(m) 2,m
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30
H3 2, 6, 10
H4 2, 12, 20, 30
F4 2, 6, 8, 12
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2.4.2 Flat structure on Coxeter orbit spaces

K. Saito proved uniformly the existence of a flat structure on the orbit space of a (irre-
ducible) finite Coxeter group W acting on the complexification of a real vector space [77].
Case by case construction of such structure was determined explicitly for all irreducible
finite Coxeter groups except for the types of E7 and E8 in [78]. For E7 and E8 this was
accomplished later in [1, 83] (see also [89]). Let us recall this notion of flat structure.

Let xi, 1 ≤ i ≤ n be some linear coordinates on V . The exterior derivative f 7→ df =∑n
i=1

∂f
∂xi
dxi induces a bilinear map on R+ ×R+ → R+ defined by7

p× q 7→ (dp, dq) =
∑
k,l

∂p

∂xk
∂q

∂xl
(dxk, dxl), p, q ∈ R+. (2.70)

Note that this product is well-defined since the bilinear form ( , ) on V is W -invariant and
is uniquely determined up to a non-zero constant multiple [17, Ch. V, p. 70, Proposition
1]. By Proposition 2.4.20, det(df i, df j)ni,j=1 is proportional to

∏
α∈R+

(α, x)2, thus the form
(dp, dq) for any p, q ∈ R+ degenerates on the union of the mirrors of W . The following
theorem takes place.

Theorem 2.4.22. [78] The matrix ∂
∂fn

(df i, df j)ni,j=1 is non-degenerate. Furthermore there
exists a real n-dimensional subspace Ω of R+ such that for any p, q ∈ Ω the form ∂

∂fn
(dp, dq)

takes constant values and Ω generates R.

Note that the operation ∂
∂fn

is defined uniquely up to constant factor due to the strict
inequality dn > dn−1. A R-basis of Ω is called a flat generator system. Thus the problem
of determining a flat structure on the orbit space of W reduces into finding a set of basic
invariants f i of W which is a flat generator system, namely ∂

∂fn
(df i, df j) ∈ R.

Let us now consider the complexified vector space V ⊗C ∼= Cn with (complex) coordi-
nates xi. LetMW be orbit spaceMW = Cn/W . By Theorem 2.4.18,MW is isomorphic to
Cn as an affine variety with coordinate ring R⊗C generated by basic invariants y1, . . . , yn.
Namely,

R⊗ C = C[x1, . . . , xn]W = C[y1, . . . , yn]. (2.71)

Let us recall the following important notion.

Definition 2.4.23. The set Σ called discriminant is defined as the image of the union of
the (complexified) mirrors of W under the quotient map

π : Cn →MW . (2.72)

Equivalently, Σ consists of the irregular orbits of W .
7This map is related to V. Arnold’s convolution of invariants [6].
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We will sometimes refer to the union of all hyperplanes Πβ, β ∈ R as discriminant as
well. The quotient map on the complement to the discriminant,

πΣ : Cn \ ∪α∈R+Πα →MW \ Σ, x = (x1, . . . , xn) 7→ y(x) = (y1, . . . , yn), (2.73)

is a local diffeomorphism. Then, the linear coordinates xi, (1 ≤ i ≤ n) on Cn can be
viewed as local coordinates on MW \ Σ. The bilinear form ( , ) on V is extended to a
complex quadratic form on Cn. Note that this form is also defined on MW \ Σ due to
its W -invariance. Then the map (2.70) induces a (complex) metric g(y) on the space of
orbits given by

gij(y) = (dyi, dyj) =
∑
k,l

∂yi

∂xk
∂yj

∂xl
(dxk, dxl). (2.74)

ThenMW can be regarded as a complex vector space with linear coordinates yi (1 ≤ i ≤ n)

endowed with the form (2.74). As a consequence of Theorem 2.4.22 a flat structure is
determined onMW . This flat structure can be thought of as a flat complex-valued metric.
We will be taking this view in the next section.

2.5 Frobenius structures on Coxeter orbit spaces

Dubrovin using the flat structure introduced by K.Saito showed that the complexified orbit
space of a finite irreducible Coxeter group W provides interesting examples of Frobenius
manifolds. This somewhat surprising relation originated from an observation from Arnold
that the degrees of certain polynomial prepotentials are related to degrees of basic invari-
ants. Dubrovin conjectured that this construction is unique in the sense that all analytic
(at the origin) solutions of WDVV equations (d < 1) which satisfy the semisimplicity con-
dition arise in this way. This conjecture was proved later by Hertling [46] (see Theorem
2.5.7).

Let now V denote the complex vector space Cn. Consider the action of W in V

which is a complexification of the action of W in Rn by (composition of) reflections. Let
MW = V/W be the orbit space as before. We move to describing the Frobenius manifold
structures onMW .

2.5.1 Saito metric and main constructions

The first key point is that the form (2.74) is the intersection form (2.16) of the Frobenius
structure on MW . Let ei, i = 1, . . . , n be the standard basis in V , namely g(ei, ej) =

(ei, ej) = δij. Without loss of generality we will assume below that the coordinates xi in
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V are the corresponding orthonormal coordinates with respect to g, so that

g(dxi, dxj) = (dxi, dxj) = gij = δij. (2.75)

Then we fix a metric g(y) onMW \ Σ with components

gij(y) = (dyi, dyj) =
n∑
k=1

∂yi

∂xk
∂yj

∂xk
. (2.76)

Locally, the coordinates xi on MW \ Σ are flat coordinates of the metric (2.76) and the
period mapping (2.33) is given by inverting the map (2.73), namely by solving the system
of algebraic equations

y1 = y1(x1, . . . , xn), y2 = y2(x1, . . . , xn), . . . , yn = yn(x1, . . . , xn).

The Euler vector field is defined as

E =
1

h

n∑
i=1

diy
i ∂

∂yi
=

1

h
xi

∂

∂xi
. (2.77)

It is normalised such that it agrees with formulae (2.9), (2.10). By Theorem 2.4.22 the
matrix ∂yngij(y) is non-degenerate and thus defines a metric on MW . We also have by
Theorem 2.4.22 that there exists a system of basic invariants such that this matrix takes
constant values. More specifically there exists a set of basic invariants tα (α = 1, . . . , n),
deg tα = dα such that in these coordinates

∂gαβ(t)

∂tn
= δα+β,n+1, 1 ≤ α, β ≤ n.

Definition 2.5.1. The Saito metric η onMW is defined as

ηαβ = Legαβ(t) = δα+β,n+1, 1 ≤ α, β ≤ n. (2.78)

where Le is the Lie derivative along the vector field e = ∂
∂tn

.

Note that the Saito metric is defined uniquely up to proportionality. The coordinates
tα are called Saito polynomials or Saito flat coordinates.

Example 2.5.2. [22,34] Let W = An−1 and let z be a complex parameter. Saito polyno-
mials take the form

tα = resz=∞

n∏
j=1

(z − xj)ν
∣∣∑n

i=1 x
i=0

, ν =
α

n
, α = 1, . . . , n− 1.
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In fact the coordinates tα are examples of polynomial twisted periods (see Definition
2.2.18). The existence of a Frobenius structure on MW is established in the following
theorem.

Theorem 2.5.3. Let tα be Saito flat coordinates and let ηαβ be the corresponding Saito
metric given by formula (2.78). Then there exists a quasi-homogeneous polynomial F (t)

of degree 2h+ 2 defined (uniquely up to quadratic terms in tα) by the following equations
(α, β = 1, . . . , n)

gαβ(t) =
1

h
(dα + dβ − 2)ηαγηβε∂tγ∂tεF (t),

with the Euler vector field (2.77). Furthermore, the polynomial F (t) determines a polyno-
mial Frobenius structure onMW with the structure constants

cαβγ(t) = ηαε
∂3F (t)

∂tε∂tβ∂tγ
,

and the unity e = ∂
∂tn

.

Example 2.5.4. [24] Suppose rankW = 3. Then the polynomial F (t) takes one of the
following forms:

FA3(t) =
(t3)2t1 + t3(t2)2

2
+

(t2t1)2

4
+

(t1)5

60
,

FB3(t) =
(t3)2t1 + t3(t2)2

2
+

(t2)3t1

6
+

(t2)2(t1)3

6
+

(t1)7

210
,

FH3(t) =
(t3)2t1 + t3(t2)2

2
+

(t2)3(t1)2

6
+

(t2)2(t1)5

20
+

(t1)11

3960
.

Remark 2.5.5. Let W = Bn. The orbit space MW can be identified with the space of
complex polynomials of the form (2.41) in Example 2.2.15. The coefficients a1, . . . , an are
coordinates onMW with corresponding degrees d1 = 2, d2 = 4, . . . , dn = 2n (as functions
in xi). The superpotential λ(p) can be represented as (see Chapter 3 for more general
superpotentials and corresponding analysis)

λ(p) =
n∏
i=1

(p2 − 1

2
(xi)2).

It can be checked that

∂xa

∂ui
=

2εix
a

q2
i − 1

2
(xa)2

1

λ′′(qi)
, 1 ≤ i, a ≤ n.

Then it follows by formula (2.48) that

g(dxa, dxb) =
n∑

i,j=1

∂xa

∂ui

∂xb

∂uj
g(dui, duj) =

n∑
i=1

2εix
axbui

(q2
i − 1

2
(xa)2)(q2

i − 1
2
(xb)2)λ′′(qi)

.
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Using formulae (2.43) and (2.46) we get

g(dxa, dxb) = res|dλ=0

xaxbλ(p)

(p2 − 1
2
(xa)2)(p2 − 1

2
(xb)2)λ′(p)

.

Then

g(dxa, dxb) = −(res|p=∞ + res|p=±xa + res|p=±xb)
xaxbλ(p)

(p2 − 1
2
(xa)2)(p2 − 1

2
(xb)2)λ′(p)

= −δab.

Therefore the metric (2.48) coincides (up to a sign) with the W -invariant metric on
V defined by formula (2.75). The identity field e is proportional to ∂

∂an
and the critical

points qi (hence also the values λ′′(qi)) do not depend on the coordinate an since deg an >

deg an−1. It follows from (2.48) that

Legij(u) = Le
( 1

2εi
uiλ

′′
(qi)δ

ij
)

=
1

2εi
λ
′′
(qi)δ

ijLeui =
1

2εi
λ
′′
(qi)δ

ij = ηij(u),

since the identity e in canonical coordinates takes the form (2.36). Then the metric (2.38)
coincides (up to proportionality) with the Saito metric on MW . Hence, the Frobenius
structure on the space M of complex polynomials of the form (2.41) coincides (up to
equivalence) with the Frobenius structure on the orbit spaceMW .

Example 2.5.6. Let W = B2. Consider polynomials y1, y2 ∈ C[x]W given by

y1 = (x1)2 + (x2)2 and y2 = a((x1)4 + (x2)4) + b(x1x2)2,

for some a, b ∈ C×. One can check that t1 = 1
8
y1 and t2 = y2|b=−6a are Saito polyno-

mials, that is ηαβ = δα+β,3. The determinant of the intersection form is a homogeneous
polynomial of degree 8 in the xi coordinates and it vanishes precisely on the discriminant

∆(t) = −(t1)2 + 4096a2(t2)4 = 16a2
(
x1x2((x1)2 − (x2)2)

)2
= 0.

Note that canonical coordinates can be chosen as

u1 = (x1x2)2, and u2 = −((x1)2 − (x2)2)2

4
,

though in general they are not polynomial.

It was shown by Dubrovin that the Frobenius manifoldMW is in fact semisimple. The
following theorem by Hertling establishes that the only polynomial and semisimple Frobe-
nius manifolds are those constructed on the (complexified) orbit space of finite Coxeter
groups.
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Theorem 2.5.7. [46, Theorem 5.25] Let (M, ◦, e, E, η) be a semisimple Frobenius manifold
with the following properties:

(i) LE(x ◦ y) = x ◦ y, LEη(x, y) = (2− d)η(x, y), for any x, y ∈ Γ(TM);

(ii) the Euler field takes the form

E =
∑

d̃αt̃
α ∂

∂t̃α
,

for a basis of flat coordinates t̃α and d̃α > 0 for all α.

Then M decomposes uniquely into a product of Frobenius manifoldsMW , where W is an
irreducible finite Coxeter group with Coxeter number h = 2

1−d .

2.5.2 Almost duality on MW

It was shown [66, 86] that the for any root system R ⊂ Rn of a finite Coxeter group the
function

F(x) =
1

4

∑
γ∈R

(γ, x)2 log(γ, x), (2.79)

satisfies generalised WDVV equations. Dubrovin related polynomial solutions to WDVV
equations with logarithmic solutions of the form (2.79) through the concept of almost
duality. The almost dual structure constructed onMW \Σ has a prepotential F∗(x) which
is of the form (2.79), where the roots are normalised so that (γ, γ) = 2.

Let us define the tensor *cabc(x) by taking third order derivatives of F∗(x),

*cabc(x) =
∂3F∗

∂xa∂xb∂xc
=
∑
γ∈R+

γaγbγc
(γ, x)

, (2.80)

where γi = (ei, γ). Let *cdbc(x) = gda*cabc(x), where gab is defined in (2.75). Then for any
x ∈ Cn \ ∪α∈R+Πα, the tensor *cdbc(x) forms the structure constants of an associative n-
dimensional algebra [25, Corollary 3.2]. The Euler/identity vector field of the almost dual
Frobenius manifold is defined by formula (2.77). Note that this agrees with axiom (iii)
of Definition 2.2.17 since 1 − d = 2

h
. The vector field e in axiom (iv) coincides with the

identity e = ∂tn of the Frobenius manifoldMW .

2.5.3 Almost duality on discriminant strata

Feigin and Veselov showed in [35] that almost dual Frobenius multiplication (2.50)

u ∗ v = E−1 ◦ u ◦ v
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has a natural restriction on discriminant strata. The corresponding prepotentials also have
the form (2.79) with summation running over some projections of root systems. Below,
we recall some of these results.

Let us recall the notion of a discriminant stratum. Let us fix a collection of roots
S ⊂ R and let D = ∩β∈SΠβ.

Definition 2.5.8. A discriminant stratum in the orbit space MW is defined to be the
image of D under the quotient map π given by (2.72).

Sometimes we will refer to the intersection of hyperplanes D as a discriminant stratum
as well.

The left-hand-side of equality (2.50) can be restricted to any stratum D with u and v
being tangential vectors to D. Let RD = R∩〈S〉. Let ΣD be the union of the hyperplanes
Πγ ∩D in D, where γ ∈ R \ RD and consider point x0 in D \ ΣD. Let u, v ∈ Tx0D and
consider extension of u and v to two local analytic vector fields u(x), v(x) ∈ TxV such that
u(x0) = u and v = v(x0). Let us recall the following result.

Lemma 2.5.9. The multiplication u(x) ∗ v(x) has a limit when x tends to x0 which is
proportional to ∑

α∈R\RD

(α, u)(α, v)

(α, x0)
α.

Furthermore, the product u ∗ v at x0 is tangential to D.

As a corollary the following theorem takes place.

Theorem 2.5.10. The almost dual Frobenius structure (2.50), (2.79) has a natural re-
striction to the space D \ ΣD with the prepotential

FD(x) =
1

4

∑
γ∈R\RD

(γ, x)2 log(γ, x), x ∈ D \ ΣD. (2.81)

which also satisfies the WDVV equations.

The above results establish that there is a limit of the formula u ∗ v = E−1 ◦u ◦ v, as x
tends to x0, and u, v are tangential to D in the limit. However it is not clear what happens
with individual terms on the right hand side of this formula in this limit. We give more
details on this in Chapter 3 thus clarifying the missing bits in the almost duality relation
(2.50) on the discriminant strata.



Chapter 3

Saito Determinant for Coxeter
discriminant strata

The Saito metric η defined on an orbit space of a finite Coxeter group induces a metric on
the Coxeter discriminant strata which is given by restriction of the metric η to the strata.
In this chapter we obtain the determinant of the induced metric. It is shown that this
determinant in the flat coordinates of the intersection form is proportional to a product
of linear factors. We also find multiplicities of these factors in the determinant in terms
of Coxeter geometry of the stratum.

3.1 Main Theorem 1

Let us fix some notation. Let V = Cn with the standard metric g given by g(ei, ej) =

(ei, ej) = δij, where ei, i = 1, . . . , n, is the standard basis in V . Let xi, i = 1, . . . , n be the
corresponding orthonormal coordinates in V . LetW be an irreducible finite Coxeter group
of rank n which acts in V by orthogonal transformations such that V is the complexified
reflection representation of W . LetMW be the orbit spaceMW = V/W . Let R ⊂ V be
the Coxeter root system associated with the group W .

Consider a collection of roots β1, . . . , βk ∈ R, let D = ∩kj=1Πβj and let π be the
projection map given by (2.72). The metric η on MW induces a metric on the stratum
π(D) which is naturally given as the restriction of η to π(D). We will denote this metric
by ηD and its inverse by ηD. Let us recall that the map π is a local diffeomorphism on
D near generic point x0 ∈ D. This allows us to lift metrics ηD, ηD to the linear space D.
Likewise the metric η can be lifted to V near a generic point.

Definition 3.1.1. [73] A finite set A of hyperplanes in a vector space is called an ar-
rangement.

We will only be considering hyperplanes passing through the origin. Let A be an

48
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arrangement in V . Then we have its defining polynomial given (up to a scalar multiple)
by

I(A) =
∏
π∈A

απ, (3.1)

where απ ∈ V ∗ is such that π = {x ∈ V : απ(x) = 0}.

Definition 3.1.2. [73] A Coxeter arrangement is an arrangement of mirrors of the Coxeter
group W .

Let A be the Coxeter arrangement corresponding to W . Then the determinant of the
Saito metric is proportional to I(A)2. To see this, let pi (i = 1, . . . , n) be basic invariants
for W and let J(p) be the Jacobian J(p1, . . . , pn) = det

(
∂pi/∂xj

)n
i,j=1

. We have from
Proposition 2.4.20 that there is proportionality J(p) ∼ I(A). Let us take basis of Saito
polynomials tα, 1 ≤ α ≤ n and fix J = J(t1, . . . , tn).

Proposition 3.1.3. We have
det η(x) = −J2. (3.2)

This proposition follows by performing a coordinate transformation t = t(x). Then
ηij(x) = ∂tk

∂xi
∂tl

∂xj
ηkl(t), which implies the statement due to Definition 2.5.1.

We are interested in the determinant of the restricted Saito metric ηD on the discrimi-
nant strata D. We will show that det ηD is a product of linear forms which can be viewed
as a generalization of formula (3.2). Let AD be the restriction of arrangement A to D,
namely

AD = {D ∩H|H ∈ A and D 6⊂ H}.

For each H ∈ AD we choose lH ∈ D∗ such that H = {x ∈ D|lH(x) = 0}. We can identify
vectors and covectors using bilinear form ( , ), so that β ∈ R also means a covector
β = β(x) = (β, x). Note that for any H ∈ AD there is a root β ∈ R such that β|D is
proportional to lH .

Let us consider the determinant of ηD in some coordinates which are given as lin-
ear combinations of the coordinates xi, i = 1, . . . , n. In these coordinates the following
theorem holds.

Main Theorem 111. The determinant of the restricted Saito metric ηD is proportional to
the product of linear forms ∏

H∈AD

lkHH , (3.3)

where kH ∈ N.

Remark 3.1.4. In fact det ηD is generically non-zero. In the case of classical root systems
this follows from Theorems 3.3.5, 3.3.14. In the case of strata of codimension 1, 2, 3 and
4 in exceptional root systems this follows from our corresponding analysis in Section 3.6.
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Similarly, for the strata considered in Section 3.7. For the strata of dimension 1 see our
discussion in Appendix A.

Let us consider a constant metric of the form η̂ =
∑n

i=1 dp
idpn+1−i. A natural question

is whether restriction of such metric to any stratum D satisfies the factorisation property
as in Main Theorem 1. In other words, how special is the property of the metric ηD to
have a factorised determinant with prescribed structure of linear factors? Let us consider
the following example.

Example 3.1.5. Let W = D3 = A3 and consider the following basic invariants:

p1 =
1

8

3∑
i=1

(xi)2, p2 =
3∏
i=1

xi, p3 = a

3∑
i=1

(xi)4 + b(p1)2,

for some a, b ∈ C. Let α = e2− e3 and consider the corresponding stratum D = Πα. Then
the determinant of metric η̂ restricted to D is proportional to

(x3)2
(
(x1)2 − (x3)2

)2(
(x1)2(−64a+ 32a2 − b)− (x3)2(64a+ 2b)

)
.

Furthermore, det η̂D is a product of linear factors which all vanish on the intersection of
mirrors with D exactly when a 6= 0 and b takes one of the following values:

det η̂D ∼
(
x3x1

(
(x1)2 − (x3)2

))2

, b = −32a,

det η̂D ∼ (x3)4
(
(x1)2 − (x3)2

)2
, b = 32(−2a+ a2),

det η̂D ∼ (x3)2
(
(x1)2 − (x3)2

)3
, b =

32

3

(
a2 − 4a

)
. (3.4)

Note that pi, (i = 1, 2, 3) are Saito polynomials if a = −1
2
and b = 24. In this case

η̂ = η and det ηD takes the form (3.4) as expected from Main Theorem 1. The degrees
of linear factors in (3.4) are related below in Main Theorem 2 to some Coxeter numbers.
More generally, metric η̂ in higher dimensions can have determinant of a restriction on a
stratum D with nonlinear zero loci.

3.2 Degrees of linear factors

In this section we formulate a main theorem on the degrees kH in Main Theorem 1.

Lemma 3.2.1. Let R be a reducible root system and let R1,R2 ⊂ R be such that R =

R1 t R2. Consider the corresponding vector space decomposition 〈R〉 = V1 ⊕ V2, where
Vi = 〈Ri〉. Let R̃ ⊂ R be an irreducible subsystem. Then either R̃ ⊂ V1 or R̃ ⊂ V2.

Let u ∈ V and let B be a set of vectors in V . We will denote by 〈B, u〉 the vector
space spanned by elements of B and u. Let S be a collection of linearly independent
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roots S = {γ1, . . . , γk} ⊂ R, 1 ≤ k < n and let D be the corresponding discriminant
stratum D = ∩γ∈SΠγ. Let RD = R∩ 〈S〉 and consider its orthogonal decomposition into
irreducible root systems

RD =
l⊔

i=1

R(i)
D .

Below we will denote by AD the corresponding Coxeter arrangement. For any β ∈ R\RD

we define the root system RD,β = 〈RD, β〉 ∩ R which can be represented as a disjoint
union of irreducible root systems R(i)

D,β, (i = 0, . . . , p), as follows:

RD,β =

p⊔
i=0

R(i)
D,β. (3.5)

We will assume below that β ∈ R(0)
D,β. It follows from Lemma 3.2.1 that

R(0)
D,β ⊃

⊔
i∈I

R(i)
D , (3.6)

for some subset I ⊂ {1, . . . , l} and

R(j)
D,β = R(ij)

D , (3.7)

where 1 ≤ j ≤ p, p = l − |I| and ij ∈ {1, . . . , l} \ I.

Proposition 3.2.2. Let R(0)
D,β be root system from the decomposition (3.5). Let β̃ ∈ R be

such that β̃
∣∣∣
D
is a non-zero multiple of β|D. Then β̃ ∈ R(0)

D,β.

Proof. Let V̂ be the vector space V̂ = 〈RD, β〉 = 〈RD, β̃〉 and consider the root system
R̂ = V̂ ∩R. Then R̂ takes the form

R̂ = 〈RD, β〉 ∩ R =

p⊔
i=0

R(i)
D,β.

Let us now assume that β̃ 6∈ R(0)
D,β. Then β̃ ∈ R(i)

D for some i ∈ {1, . . . , l} \ I, hence
β̃
∣∣∣
D

= 0, which is a contradiction. Thus the statement follows.

Main Theorem 222. Let H ∈ AD. Let β ∈ R be such that β|D is proportional to lH and it
is non-zero. The multiplicity of lH in the expression (3.3) is kH = h(R(0)

D,β), where h(R(0)
D,β)

is the Coxeter number of the root system R(0)
D,β from the decomposition (3.5).

We are going to prove Main Theorems 1, 2 (in the case of exceptional Coxeter groups)
for a subset of simple roots L ⊂ ∆, L = {αi1 , . . . , αik}, 1 ≤ k < n and the corresponding
stratum. Let us show how the statement of Main Theorem 1 then follows in general. Let
D̃ ⊂ V be a stratum such that there exists w ∈ W satisfying D̃ = wD.
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Lemma 3.2.3. Let yi and zi (i = 1, . . . , n− k) be some coordinates on D and D̃ respec-
tively. Then

det ηD̃(z) = detB2 det ηD(y), (3.8)

where B = ( ∂y
i

∂zj
)n−ki,j=1 is the Jacobi matrix of the transformation w ∈ W , w : D → D̃.

Proof. We note that η is W -invariant. Then we have

ηD̃ = w−1ηD. (3.9)

Using equality (3.9) the determinant of ηD̃ is thus obtained from the determinant of ηD
by replacing y coordinates with z coordinates, and the statement follows.

This implies the following W -invariance of Main Theorem 1.

Proposition 3.2.4. Suppose that the Main Theorem 1 is true for D. Then it is true for
D̃.

Proof. Let S̃ be such that D̃ = ∩γ∈S̃Πγ and let β̃ ∈ R\〈S̃〉. Then β̃ = wβ for some β ∈ R
such that β|D 6= 0. We therefore have RD̃,β̃ = 〈S̃, β̃〉 ∩ R. This shows that

RD̃,β̃ = w〈S, β〉 ∩ R = wRD,β = wR(0)
D,β t · · · t wR

(p)
D,β,

where RD,β is given by (3.5). If β ∈ R(0)
D,β then β̃ ∈ R(0)

D̃,β̃
= wR(0)

D,β, and the Coxeter

numbers ofR(0)
D,β andR

(0)

D̃,β̃
are equal. Therefore the statement follows by Lemma 3.2.3.

Let simple system ∆ ⊂ R. The following result establishes that it is sufficient to prove
Main Theorem 1 for L = {αi1 , . . . , αik} ⊂ ∆, 1 ≤ k < n and D = ∩α∈LΠα. It follows from
the simply transitive action of W on the family of alcoves and their closure.

Proposition 3.2.5. [51] Let L̃ = {γ1, . . . , γk} ⊂ R be a collection of linearly independent
roots and let D̃ be the corresponding stratum D̃ = ∩γ∈L̃Πγ. Then there exists w ∈ W such
that D = w−1D̃ has the form D = ∩α∈LΠα, where L = {αi1 , . . . , αik} ⊂ ∆.

3.3 Classical series: Main Theorem 1

In this section we show that Main Theorem 1 holds for the determinant of the Saito
metric restricted to a stratum of a classical Coxeter system. We use Landau-Ginzburg
superpotential description of the Frobenius structures on the discriminant strata.
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3.3.1 AN discriminant strata

Let us recall that the Landau-Ginzburg superpotential is given by [22]

λ(p) =
N+1∏
i=1

(p− xi), (3.10)

where p is some auxiliary variable and xi, 1 ≤ i ≤ N + 1, are the standard orthonormal
coordinates in CN+1 with the additional assumption

∑N+1
i=1 xi = 0. Then λ(p) is a function

on the orbit space CN+1/SN+1 for any fixed p. Note that up to a sign the metric (2.39)
coincides with the standard SN+1-invariant metric g on CN [22].

Let us consider an arbitrary discriminant stratum D given by the following equations:

x1 = . . . = xm0 = ξ0,

xm0+1 = . . . = xm0+m1 = ξ1 (3.11)
...

x
∑n−1
i=0 mi+1 = . . . = x

∑n
i=0mi = ξn,

where n,mi ∈ N and
∑n

i=0mi = N + 1. Note that the dimension of this stratum is n, and
ξ1, . . . , ξn can be considered as coordinates on D, ξ0 = −

∑n
i=1

mi
m0
ξi.

Then, the superpotential for the stratum D is

λD(p) = λ(p)|D =
n∏
i=0

(p− ξi)mi . (3.12)

The expressions for the restricted Saito metric ηD = η|D and algebra multiplication are
then given as follows (cf. [22] for the case mi = 1,∀i),

ηD(ζi, ζj) =
∑

ps:λ
′
D(ps)=0

res|p=ps
ζi(λD)ζj(λD)

λ
′
D(p)

dp, (3.13)

ηD(ζi ◦ ζj, ζk) =
∑

ps:λ
′
D(ps)=0

res|p=ps
ζi(λD)ζj(λD)ζk(λD)

λ
′
D(p)

dp, (3.14)

where ζi denote some vector fields tangential to D and λ′D(p) = dλD(p)
dp

.

Proposition 3.3.1. On the stratum D we have the following expression for λ′:

λ
′

D(p) = (N + 1)
n∏
i=0

(p− ξi)mi−1

n∏
i=1

(p− qi), (3.15)

for some points q1, . . . , qn ∈ C.
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Proof. Starting from formula (3.12), we have

λ
′

D(p) =
n∏
i=0

(p− ξi)mi−1Q(p),

for some Q ∈ C[p], degQ = n. Then formula (3.15) follows.

The following formula which follows from Proposition 3.3.1 will be useful below

λ
′′

D(ql) = (N + 1)
∏
j 6=l

qlj

n∏
a=0

(ql − ξa)ma−1, (3.16)

where qlj = ql − qj.
Let ui = λD(qi), i = 1, . . . , n. Similarly to the case n = N (see [22]) we have the

following statement.

Proposition 3.3.2. We have
∂uiλD(p)|p=qj = δij. (3.17)

Proof. By definition we have

δij =
∂uj
∂ui

= ∂uiλD(qj).

Then considering the Taylor expansion of λ(p) centred at p = qj we have

λD(p) = λD(qj) +O,

where O denotes the rest of the terms, and O has zero of order at least two at p = qj.
Then

∂uiλD(p)|p=qj = ∂uiλD(qj), (3.18)

and the statement follows.

Analogous to the n = N case we obtain the following result.

Lemma 3.3.3. We have

∂ulλD(p) =
λ
′
D(p)

(p− ql)λ
′′
D(ql)

, (3.19)

and
∂ulξa =

1

(ql − ξa)λ
′′
D(ql)

, (3.20)

where 1 ≤ l, a ≤ n.
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Proof. Starting from formula (3.12) we get

∂ulλD(p) =
n∏
a=0

(p− ξa)ma−1F (p; l), (3.21)

where F ∈ C[p] and degF = n − 1. From Proposition 3.3.2 we have ∂ulλD(p)|p=qj = δlj

and therefore
F (qj; l) =

δlj∏n
a=0(qj − ξa)ma−1

.

Since degF = n− 1, the points (qi, F (qi)), i = 1, . . . , n completely determine the polyno-
mial F and therefore by the Lagrange interpolation formula we have F (p; l) =

∑n
k=1 Fk(p; l),

where
Fk(p; l) = F (qk; l)

∏
i 6=k

p− qi
qk − qi

.

Hence
Fk(p; l) =

δlk∏n
a=0(qk − ξa)ma−1

∏
i 6=k

p− qi
qk − qi

. (3.22)

It follows that F (p; l) = Fl(p; l). Therefore by considering λ
′
D(p)

λ
′′
D(ql)

, where λ′′D(ql) is given by
(3.16), the first statement follows from formulae (3.15), (3.21), (3.22).

Let us express λD(p) as the product λD(p) = (p− ξ0)m0
∏n

a=1(p− ξa)ma . Then

∂ulλD(p) = ∂ul
(
(p− ξ0)m0

) n∏
a=1

(p− ξa)ma − (p− ξ0)m0

n∏
a=1

(p− ξa)ma
( n∑
b=1

mb
∂ulξb
p− ξb

)
= ∂ul

(
(p− ξ0)m0

) n∏
a=1

(p− ξa)ma − λD(p)
n∑
b=1

mb
∂ulξb
p− ξb

.

From the first statement of the lemma this equals to λ
′
D(p)

(p−ql)λ
′′
D(ql)

. Dividing both sides by
(p− ξk)mk−1 for some k, 1 ≤ k ≤ n we arrive at the following relation

∂ul
(
(p−ξ0)m0

)
(p−ξk)

n∏
a=1
a6=k

(p−ξa)ma−
λD(p)

(p− ξk)mk−1

n∑
b=1

mb
∂ulξb

(p− ξb)
=

λ
′
D(p)

(p− ql)(p− ξk)mk−1λ
′′
D(ql)

.

(3.23)
Note that

λ
′
D(p)

(p− ξk)mk−1

∣∣∣∣
p=ξk

= mk

n∏
b=0
b6=k

(ξk − ξb)mb . (3.24)
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We substitute p = ξk in the relation (3.23) and we get with the help of (3.24) that

−mk

n∏
a=0
a6=k

(ξk − ξa)ma∂ulξk = mk

∏n
b=0
b 6=k

(ξk − ξb)mb

(ξk − ql)λ
′′
D(qi)

.

The statement follows.

Lemma 3.3.4. The critical values ui = λD(qi), (i = 1, . . . , n) are the canonical coordinates
for the structures (3.13), (3.14) on the stratum D, that is

ηD(∂ui , ∂uj) =
δij

λ
′′
D(qi)

,

∂ui ◦ ∂uj = δij∂uj .

Proof. We use formulae (3.13), (3.14) together with (3.19). We consider consider formulae
(3.13), (3.14) with the vector fields ζi = ∂ui , ζj = ∂uj . Note that the residues are trivial in
ξa (0 ≤ a ≤ n) by Lemma 3.3.3.

Let us consider first formula (3.13). In the case when i 6= j the residues at ql (1 ≤ l ≤ n)
are trivial by Lemma 3.3.3, and hence ηD(∂ui , ∂uj) = 0. Further on, by (3.13) and (3.19)
we have

ηD(∂ui , ∂ui) =
∑

ps:λ
′
D(ps)=0

res|p=ps
(∂uiλD(p))2

λ
′
D(p)

dp =
1

λ
′′
D(qi)2

∑
ps:λ

′
D(ps)=0

res|p=ps
λ
′
D(p)

(p− qi)2
dp.

It then follows from Proposition 3.3.1 and formulae (3.12), (3.16) that

ηD(∂ui , ∂ui) =
N + 1

λ
′′
D(qi)2

∑
ps:λ

′
D(ps)=0

res|p=ps

∏n
j=0(p− ξj)mj−1

∏n
j 6=i(p− qj)

p− qi
dp =

1

λ
′′
D(qi)

,

as required.
Let us now consider formula (3.14). In the case when i 6= j or j 6= k the residues at ql

(1 ≤ l ≤ n) are trivial by Lemma 3.3.3, and hence ηD(∂ui ◦ ∂uj , ∂uk) = 0. Further on, by
(3.14) and (3.19) we have

ηD(∂ui◦∂ui , ∂ui) =
∑

ps:λ
′
D(ps)=0

res|p=ps
(∂uiλD(p))3

λ
′
D(p)

dp =
1

λ
′′
D(qi)3

∑
ps:λ

′
D(ps)=0

res|p=ps
(λ
′
D(p))2

(p− qi)3
dp.

It then follows from Proposition 3.3.1 and formula (3.12) that

ηD(∂ui◦∂ui , ∂ui) =
(N + 1)2

λ
′′
D(qi)3

∑
ps:λ

′
D(ps)=0

res|p=ps

∏n
j=0(p− ξj)2(mj−1)

∏n
j 6=i(p− qj)2

p− qi
dp =

1

λ
′′
D(qi)

.
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Therefore
ηD(∂ui ◦ ∂uj , ∂uk) =

δijδjk
λ
′′
D(qi)

,

which implies the second statement of the lemma.

This allows us to find det ηD in the coordinates ξi, 1 ≤ i ≤ n.

Theorem 3.3.5. The determinant of the restricted Saito metric ηD in the coordinates ξi,
1 ≤ i ≤ n, is factorised into a product of linear forms given as follows,

det ηD = K
∏

06i<j6n

ξ
mi+mj
ij , (3.25)

where ξij = ξi − ξj and K = (−1)
∑n
i=1 imi+nN(N + 1)−N

∏n
a=1m

2
a

∏n
a=0 m

ma−1
a .

Proof. We have by Lemma 3.3.4 that the determinant of the Saito metric ηD in the coor-
dinates ui, 1 ≤ i ≤ n, is

det ηD(u) =
n∏
i=1

1

λ
′′
D(qi)

. (3.26)

Therefore we get with the help of formula (3.20) that

det ηD(ξ) = (detA)−2

n∏
i=1

λ
′′

D(qi), (3.27)

where A is the n × n matrix with the matrix elements 1
ξa−qi , 1 6 i, a 6 n. We note that

this is a Cauchy’s determinant and can be expressed as

detA = (−1)
n(n−1)

2

∏n
i=1
i<j

ξijqij∏n
i,a=1(ξa − qi)

, (3.28)

where qij = qi − qj.
From Proposition 3.3.1 and formula (3.12) we get

n∏
i=1

(ξa − qi) = (N + 1)−1 λ
′
D(p)

(p− ξa)ma−1

∣∣∣∣
p=ξa

n∏
b=0
b6=a

ξ−mb+1
ab =

ma

N + 1

n∏
b=0
b 6=a

ξab. (3.29)

Using formula (3.16) we have∏n
i=1 λ

′′
D(qi)∏

i<j q
2
ij

= (−1)
n(n−1)

2 (N + 1)n
∏

06a6n
16i6n

(qi − ξa)ma−1.
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By formula (3.29) we get ∏n
i=1 λ

′′
D(qi)∏

i<j q
2
ij

= c

n∏
a=0

n∏
b=0
b 6=a

ξma−1
ab , (3.30)

where c = (−1)
n(n−1)

2
+n

∑n
a=0(ma−1)(N + 1)n

∏n
a=0

(
(N + 1)−1ma

)ma−1.
Combining formulae (3.27), (3.28), (3.30), we obtain the following expression for det ηD

det ηD =

∏n
i=1 λ

′′
D(qi)

∏n
i,a=1(ξa − qi)2∏

i<j ξ
2
ijq

2
ij

= c
n∏
a=1

(
(N + 1)−1ma

)2
∏

06a<b6n

ξ2
ab

n∏
a=0

n∏
b=0
b 6=a

ξma−1
ab .

Finally, we note that

n∏
a=0

n∏
b=0
b6=a

ξma−1
ab = (−1)

∑n
i=1 imi−

n(n+1)
2

∏
06a<b6n

ξma+mb−2
ab ,

which gives the required statement as c
∏n

a=1

(
(N + 1)−1ma

)2
(−1)

∑n
i=1 imi−

n(n+1)
2 = K.

3.3.2 BN , DN discriminant strata

We consider the Landau-Ginzburg superpotential

λ(p) = p2k

N∏
i=1

(p2 − (xi)2), (3.31)

where p is some auxiliary variable and xi, 1 ≤ i ≤ N are the standard orthonormal
coordinates in CN and k = 0,−1. In the case k = 0, λ is the superpotential for the BN

orbit space and in the case k = −1, λ is the superpotential for the DN orbit space. Note
that up to a scalar multiple (see Remark 2.5.5) the metric (2.39) for the superpotential
(3.31) (k = 0) coincides with the standard BN -invariant metric g on CN . Similarly for the
case of DN .

Let us consider a BN/DN stratum D in CN given by the following equations:

x1 = . . . = xl = 0,

ε1x
l+1 = . . . = εm1x

l+m1 = ξ1,

εm1+1x
l+m1+1 = . . . = εm1+m2x

l+m1+m2 = ξ2, (3.32)
...

ε∑n−1
i=1 mi+1x

l+
∑n−1
i=1 mi+1 = . . . = ε∑n

i=1mi
xl+

∑n
i=1mi = ξn,
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where l ∈ N∪ {0}, εj = ±1 (j = 1, . . . , N − l), n,mi ∈ N (i = 1, . . . , n),
∑n

i=1mi = N − l,
and ξ1, . . . , ξn are coordinates on D. Equations (3.32) define discriminant stratum for DN

provided l 6= 1, and they always define a discriminant stratum for BN .
We then consider the following superpotential on D:

λD(p) = p2m

n∏
i=1

(p2 − ξ2
i )
mi , (3.33)

where m ∈ Z and N̂ = m +
∑n

i=1mi 6= 0. In the cases when m ≥ −1 the superpotential
λD(p) corresponds to restriction of the superpotential λ(p) to discriminant stratum D.
Indeed, we get λD(p) with m = l−1, where l = 0 or l ≥ 2 by restricting λ(p) with k = −1

(type DN) to the stratum (3.32). And we get λD(p) with m = l ≥ 0 as the restriction
of λ(p) with k = 0 (type BN) to the stratum (3.32). Superpotentials (3.33) with mi = 1

for all i and −n+ 1 ≤ m ≤ 0 were considered in [15,91]. The following statement follows
from formula (3.33).

Proposition 3.3.6. We have the following expression for the derivative λ′D(p):

λ
′

D(p) = 2N̂p2m−1

n∏
i=1

(p2 − ξ2
i )
mi−1

n∏
i=1

(p2 − q2
i ), (3.34)

for some points qi ∈ C.

Let us define (canonical) coordinates ui = λD(qi), i = 1, . . . , n.

Proposition 3.3.7. We have the relation

∂uiλD(p)|p=qj = δij. (3.35)

Proof. The proof is similar to the proof of Proposition 3.3.2.

The following formula which follows from Proposition 3.3.6 will be useful below:

λ
′′

D(qi) = 4εiN̂q
2m
i

n∏
a=1

(q2
i − ξ2

a)
ma−1

n∏
b=1
b 6=i

(q2
i − q2

b ), (3.36)

where εi = 1 if qi 6= 0 and εi = 1
2
if qi = 0. The latter case occurs if and only if m = 0.

Let ε =
∏n

i=1 εi.

Lemma 3.3.8. We have

∂uiλD(p) =
2εip

p2 − q2
i

λ
′
D(p)

λ
′′
D(qi)

. (3.37)
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Proof. Let Ui(p) = 2εip
p2−q2i

λ
′
D(p)

λ
′′
D(qi)

. By Proposition 3.3.6 and formula (3.36) we get

Ui(p) =
p2m

∏n
a=1(p2 − ξ2

a)
ma−1

∏n
b=1
b 6=i

(p2 − q2
b )

q2m
i

∏n
a=1(q2

i − ξ2
a)
ma−1

∏n
b=1
b 6=i

(q2
i − q2

b )
,

with degUi(p) = deg ∂uiλD(p) = 2N̂ − 2. It also follows that Ui(p)|p=qj = ∂uiλD(qj) = δij

by Proposition 3.3.7. Note that the functions Ui(p) and ∂uiλD(p) have the form of a
product of even polynomials of degree 2n − 2 and the function p2m

∏n
a=1(p2 − ξ2

a)
ma−1.

This implies the lemma.

Next we determine the Jacobi matrix between the coordinates ξi and ui.

Lemma 3.3.9. We have
∂uiξa =

2εiξa
q2
i − ξ2

a

1

λ
′′
D(qi)

, (3.38)

where i, a = 1, . . . , n.

Proof. From (3.33) we obtain

∂uiλD(p) = −2
n∑
j=1

λD(p)

p2 − ξ2
j

mjξj∂uiξj. (3.39)

By Lemma 3.3.8 we obtain the following identity from (3.39) for a fixed k (k = 1, . . . , n):

2εip

(p2 − q2
i )(p

2 − ξ2
k)
mk−1

λ
′
D(p)

λ
′′
D(qi)

= −2
n∑
j=1

λD(p)

(p2 − ξ2
j )(p

2 − ξ2
k)
mk−1

mjξj∂uiξj. (3.40)

We then consider the Taylor expansion of λD centred at p = ξk observing that λ(r)
D (ξk) = 0,

r = 1, . . . ,mk − 1. Finally we substitute p = ξk in the identity (3.40) and we obtain

2εiξk
(ξ2
k − q2

i )λ
′′
D(qi)

λ
′
D(p)

(p2 − ξ2
k)
mk−1

∣∣∣∣
p=ξk

= − λ
(mk)
D (ξk)

(mk − 1)!(2ξk)mk−1
∂uiξk,

which implies the statement.

Lemma 3.3.10. The critical values ui = λD(qi), i = 1, . . . , n are the canonical coordinates
for the structures (3.13), (3.14) on the stratum D, that is

ηD(∂ui , ∂uj) =
2εiδij
λ
′′
D(qi)

,

∂ui ◦ ∂uj = δij∂uj .
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Proof. We use formulae (3.13), (3.14) together with (3.37). We consider formulae (3.13),
(3.14) with the vector fields ζi = ∂ui , ζj = ∂uj . Note that the residues are trivial in ξa

(1 ≤ a ≤ n) by Lemma 3.3.8.
Let us consider first formula (3.13). In the case when i 6= j the residues at ql (1 ≤ l ≤ n)

are trivial by Lemma 3.3.8, and hence ηD(∂ui , ∂uj) = 0. Further on, by (3.13) and (3.37)
we have

ηD(∂ui , ∂ui) =
∑

ps:λ
′
D(ps)=0

res|p=ps
(∂uiλD(p))2

λ
′
D(p)

dp =
4ε2i

λ
′′
D(qi)2

∑
ps:λ

′
D(ps)=0

res|p=ps
p2λ

′
D(p)

(p2 − q2
i )

2
dp.

It then follows from Proposition 3.3.6 and formulae (3.33), (3.36) that

ηD(∂ui , ∂ui) =
8N̂ε2i
λ
′′
D(qi)2

∑
ps:λ

′
D(ps)=0

res|p=ps
p2m+1

∏n
j=1(p2 − ξ2

j )
mj−1

∏n
j=1
j 6=i

(p2 − q2
j )

p2 − q2
i

dp =
2εi

λ
′′
D(qi)

,

as required.
Let us now consider formula (3.14). In the case when i 6= j or j 6= k the residues at ql

(1 ≤ l ≤ n) are trivial by Lemma 3.3.8, and hence ηD(∂ui ◦ ∂uj , ∂uk) = 0. Further on, by
(3.14) and (3.37) we have

ηD(∂ui◦∂ui , ∂ui) =
∑

ps:λ
′
D(ps)=0

res|p=ps
(∂uiλD(p))3

λ
′
D(p)

dp =
8ε3i

λ
′′
D(qi)3

∑
ps:λ

′
D(ps)=0

res|p=ps
p3(λ

′
D(p))2

(p2 − q2
i )

3
dp.

It then follows from Proposition 3.3.6 that

ηD(∂ui◦∂ui , ∂ui) =
32N̂2ε3i
λ
′′
D(qi)3

∑
ps:λ

′
D(ps)=0

res|p=ps
p4m+1

∏n
j=1(p2 − ξ2

j )
2(mj−1)

∏n
j=1
j 6=i

(p2 − q2
j )

2

p2 − q2
i

dp.

Therefore we get using formula (3.36)

ηD(∂ui ◦ ∂ui , ∂ui) =
2εi

λ
′′
D(qi)

and hence
ηD(∂ui ◦ ∂uj , ∂uk) =

2εiδijδjk
λ
′′
D(qi)

,

which implies the second statement of the lemma.

The following lemmas will be useful below.
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Lemma 3.3.11. We have

n∏
i=1

(ξ2
a − q2

i ) =
ma

N̂
ξ2
a

n∏
b=1
b 6=a

(ξ2
a − ξ2

b ). (3.41)

Proof. We have with the help of Proposition 3.3.6

n∏
i=1

(ξ2
a − q2

i ) =
λ
′
D(p)

2N̂p2m−1(p2 − ξ2
a)
ma−1

∣∣∣∣∣
p=ξa

n∏
b=1
b6=a

(ξ2
a − ξ2

b )
−mb+1. (3.42)

We note that
λ
′
D(p)

(p2 − ξ2
a)
ma−1

∣∣∣∣
p=ξa

= 2maξ
2m+1
a

n∏
b=1
b 6=a

(ξ2
a − ξ2

b )
mb ,

by formula (3.33) and the statement follows.

Lemma 3.3.12. We have
n∏
a=1

q2
a =

m

N̂

n∏
a=1

ξ2
a.

Proof. The function λ′D can be expressed as

λ
′

D(p) = 2mp2m−1

n∏
a=1

(p2 − ξ2
a)
ma + p2m d

dp

n∏
a=1

(p2 − ξ2
a)
ma .

We equate the above formula to (3.34) and we divide both sides by p2m−1. Finally we
substitute p = 0 to obtain

2N̂
n∏
a=1

(−ξ2
a)
ma−1

n∏
a=1

(−q2
a) = 2m

n∏
a=1

(−ξ2
a)
ma ,

which implies the statement.

Lemma 3.3.13. Let

z =

∏n
i=1 λ

′′
D(qi)∏n

i=1
i<j

(q2
i − q2

j )
2
.

Then

z = c

n∏
a=1

ξ2(m+ma−1)
a

n∏
a,b=1
b 6=a

(ξ2
a − ξ2

b )
ma−1,

where

c = (−1)n(
∑n
a=1ma−

(n+1)
2

)ε4nN̂2n−m−
∑n
a=1ma

n∏
a=1

mma−1
a mm. (3.43)
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Proof. Let us recall formula (3.36):

λ
′′

D(qi) = 4εiN̂q
2m
i

n∏
a=1

(q2
i − ξ2

a)
ma−1

n∏
b=1
b 6=i

(q2
i − q2

b ).

We have then

z =

(4N̂)nε
∏n

i=1 q
2m
i

∏n
a,i=1(q2

i − ξ2
a)
ma−1

∏n
i,j=1
j 6=i

(q2
i − q2

j )∏n
i=1
i<j

(q2
i − q2

j )
2

= (−1)
n(n−1)

2 ε(4N̂)n
n∏
i=1

q2m
i

n∏
a,i=1

(q2
i − ξ2

a)
ma−1.

By Lemma 3.3.11 we have

n∏
a,i=1

(q2
i − ξ2

a)
ma−1 = (−1)n

∑n
a=1(ma−1)N̂−

∑n
a=1(ma−1)

n∏
a=1

(maξ
2
a)
ma−1

n∏
a,b=1
b6=a

(ξ2
a − ξ2

b )
ma−1.

Therefore the statement follows by Lemma 3.3.12.

Theorem 3.3.14. The determinant of the metric, ηD, given by (3.13) for the superpo-
tential (3.33) in the coordinates ξi, 1 ≤ i ≤ n, is factorised into a product of linear forms
given as follows

det ηD = K
n∏
i=1

ξ
2(mi+m)
i

∏
1≤i<j≤n

(ξ2
i − ξ2

j )
mi+mj , (3.44)

where K = (−1)n
2+n(N̂−m)+

∑n−1
i=1 imi+12nmmN̂−N̂

∏n
a=1 m

ma+1
a .

Proof. In the coordinates ξi the determinant of the metric ηD by Lemma 3.3.10 is

det ηD = ε(detA)−2

n∏
i=1

2

λ
′′
D(qi)

, (3.45)

where A is the Jacobi matrix (∂uiξa)
n
i,a=1. By Lemma 3.3.9 we have

detA = (−2)nε
n∏
a=1

ξa

n∏
i=1

(λ
′′

D(qi))
−1 detB, (3.46)

where matrix B = ( 1
ξ2a−q2i

)ni,a=1. The determinant of the matrix B is a Cauchy’s determinant
and can therefore be expressed as

detB = (−1)
n(n−1)

2

∏n
i=1
i<j

(ξ2
i − ξ2

j )(q
2
i − q2

j )∏n
i,a=1(ξ2

a − q2
i )

.
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Hence detB can be expressed with the help of Lemma 3.3.11 as follows:

detB =
N̂n∏n

a=1 maξ2
a

∏n
i=1
i<j

(q2
i − q2

j )∏
1≤a<b≤n(ξ2

a − ξ2
b )
. (3.47)

Combining formulae (3.45), (3.46), (3.47) and Lemma 3.3.13 we then have

det ηD = ε−1(2N̂2)−n
n∏
a=1

m2
aξ

2
a

∏
1≤a<b≤n

(ξ2
a − ξ2

b )
2z. (3.48)

We get the required statement since

(−1)
∑n−1
i=1 imi+1−n(n−1)

2 ε−1(2N̂2)−n
n∏
a=1

m2
ac = K,

where c is given by formula (3.43).

3.4 Classical series: Main Theorem 2

We show that the statement of Main Theorem 2 is true for the root systems AN , BN and
DN .

3.4.1 AN discriminant strata

Theorem 3.4.1. Suppose R = AN . Then the statement of Main Theorem 2 is true.

Proof. Let S ⊂ AN be a collection of roots such that the discriminant stratumD = ∩γ∈SΠγ

is given by equations (3.11). Let ξ0, . . . , ξn be the corresponding functions on D (see
(3.11)).

Let RD be the root system

RD = 〈S〉 ∩ AN = {α ∈ AN | α|D = 0}.

Then RD has the following structure

RD =
⊔

i:mi>1

Ami−1.

We are interested in the multiplicities of the linear forms l(ξ) = ξa−ξb (0 ≤ a < b ≤ n)
in the formula (3.25). We choose corresponding roots β ∈ AN such that l = β|D as follows:

β = em0+···+ma − em0+···+mb .
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Let H be the hyperplane in D given by the kernel of l. Then we have

〈S, β〉 ∩ AN =
⊔

i:mi>1
i 6=a,b

Ami−1 t Ama+mb−1,

where the last root system Ama+mb−1 contains β. Therefore ma+mb = h(Ama+mb−1) = kH

as required. This completes the proof for the root system AN .

3.4.2 BN , DN discriminant strata

Theorem 3.4.2. Suppose R = BN . Then the statement of Main Theorem 2 is true.

Proof. Let S ⊂ BN be a collection of roots such that the discriminant stratumD = ∩γ∈SΠγ

is given by equations (3.32). Let ξ1, . . . , ξn be the corresponding coordinates on D (see
(3.32)).

Let RD be the root system

RD = 〈S〉 ∩BN = {α ∈ BN | α|D = 0},

and consider root system Ami−1 with corresponding simple system

εjej+l − εj+1ej+1+l,
i−1∑
k=1

mk + 1 ≤ j ≤
i∑

k=1

mk − 1.

Note that if l = 0, then RD takes the form

RD =
⊔

i:mi>1

Ami−1,

and
RD =

⊔
i:mi>1

Ami−1 tR(1), (3.49)

where R(1) = Bl if l ≥ 2, R(1) = A1, if l = 1.
We are interested in the multiplicities of the linear forms l̂(ξ) = ξa (1 ≤ a ≤ n) and

l̃(ξ) = ξa ± ξb (1 ≤ a < b ≤ n) in (3.44). We choose corresponding roots β̂, β̃ ∈ BN such
that l̂ = β̂

∣∣∣
D
and l̃ = β̃

∣∣∣
D
, as follows:

β̂ = el+m1+···+ma , β̃ = εm1+···+mael+m1+···+ma ± εm1+···+mbel+m1+···+mb .

Let Ĥ and H̃ be hyperplanes in D given by the kernels of l̂ and l̃ respectively.
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Let us consider firstly the form l̂(ξ). If ma = 1 then we have that

〈S, β̂〉 ∩BN =
⊔

i:mi>1

Ami−1 tR(2),

where R(2) = A1 when l = 0 and R(2) = Bl+1 when l ≥ 1. The root system R(2) contains
β̂, and 2(l +ma) = 2(l + 1) = h(R(2)) = kĤ as required.

If ma > 1 then we have

〈S, β̂〉 ∩BN =
⊔

i:mi>1
i 6=a

Ami−1 tBl+ma ,

where the root system Bl+ma contains β̂. Therefore 2(l+ma) = h(Bl+ma) = kĤ as required.
Let us now consider the form l̃(ξ). Then

〈S, β̃〉 ∩BN =
⊔

i:mi>1
i 6=a,b

Ami−1 t Ama+mb−1 tR(1),

where the root system Ama+mb−1 contains β̃ and R(1) is the same as in (3.49). Therefore
ma +mb = h(Ama+mb−1) = kH̃ as required.

Theorem 3.4.3. Suppose R = DN . Then the statement of Main Theorem 2 is true.

Proof. Let S ⊂ DN be a collection of roots such that the discriminant stratum D =

∩γ∈SΠγ is given by equations (3.32), where l 6= 1. Let ξ1, . . . , ξn be the corresponding
coordinates on D (see (3.32)).

Let RD be the root system

RD = 〈S〉 ∩DN = {α ∈ DN | α|D = 0}.

Note that
RD =

⊔
i:mi>1

Ami−1

if l = 0, and
RD =

⊔
i:mi>1

Ami−1 tR(1), (3.50)

where R(1) = Dl if l ≥ 3, and R(1) = A1 × A1 if l = 2.
We are interested in the multiplicities of the linear forms l̂(ξ) = ξa (1 ≤ a ≤ n) and

l̃(ξ) = ξa ± ξb (1 ≤ a < b ≤ n) in (3.44). We choose corresponding roots β̂, β̃ ∈ DN such
that l̂ = β̂

∣∣∣
D

and l̃ = β̃
∣∣∣
D
. Let Ĥ and H̃ be hyperplanes in D given by the kernels of l̂

and l̃ respectively.
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Let us consider firstly the form l̂(ξ). This form has non-zero power in the formula (3.44)
provided that l ≥ 2 or ma ≥ 2. In the former case one can choose β̂ = el + el+m1+···+ma

and in the latter one can choose

β̂ = εm1+···+ma−1el+m1+···+ma−1 + εm1+···+mael+m1+···+ma .

If ma = 1 then l ≥ 2 and we have that

〈S, β〉 ∩DN =
⊔

i:mi>1

Ami−1 tDl+1,

where the root system Dl+1 contains β̂. Therefore,

2(ma +m) = 2(m+ 1) = 2l = h(Dl+1) = kĤ ,

as required.
If ma ≥ 2 then we have that

〈S, β〉 ∩DN =
⊔

i:mi>1
i 6=a

Ami−1 tR(2),

where R(2) = A1 × A1 if ma = 2 and l = 0, and R(2) = Dl+ma if l + ma ≥ 3. The root
system R(2) contains β̂ and we have 2(ma+m) = 2(ma+l−1) = h(R(2)) = kĤ as required.

Let us now consider the form l̃(ξ). The root β̃ can be chosen as

β̃ = εm1+···+mael+m1+···+ma ± εm1+···+mbel+m1+···+mb .

Then
〈S, β̃〉 ∩DN =

⊔
i:mi>1
i 6=a,b

Ami−1 t Ama+mb−1 tR(1),

where the root system Ama+mb−1 contains β̃ and R(1) is the same as in (3.50). Therefore
ma +mb = h(Ama+mb−1) = kH̃ as required.
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3.5 A general formula for the restricted Saito determi-

nant

In what follows, let us fix a basis of simple roots αi (i = 1, . . . , n) for an n-dimensional
system. We will formulate a general expression for the determinant of ηD. Let us define

∂αk =
n∑
i=1

α
(i)
k

∂

∂xi
, (3.51)

where αk = (α
(1)
k , . . . , α

(n)
k ). A basis of fundamental coweights, ωi ∈ V (i = 1, . . . , n) is

defined by
(ωi, αj) = δij.

Let us define a new coordinate system on V given by x̃i = (ωi, x), i = 1, . . . , n.

Lemma 3.5.1. In the coordinates x̃i, 1 ≤ i ≤ n, we have ∂
∂x̃i

= ∂αi.

Proof. Let x = (x1, . . . , xn)ᵀ and x̃ = (x̃1, . . . , x̃n)ᵀ. Then x̃ᵀ = Ωxᵀ, where Ω is the n× n
matrix Ω = (Ωij)

n
i,j=1 with Ωij = ωi(j) if ωi = (ωi(1), . . . , ω

i
(n)). Then xᵀ = Ω−1x̃ᵀ, and it is

easy to see that the (i, j)-th entry of Ω−1 equals α(i)
j . Therefore ∂

∂x̃i
= ∂xk

∂x̃i
∂
∂xk

= α
(k)
i

∂
∂xk

=

∂αi .

For any basis of basic invariants pi, i = 1, . . . , n, let B(p) be the (n − 1) × (n − 1)

matrix obtained from the Jacobi matrix (∂αip
j)ni,j=1 by eliminating the k-th column and

n-th row. Let Jk(p) = Jk(p
1, . . . , pn−1) = detB(p) and let us fix Jk = Jk(t

1, . . . , tn−1) for a
basis of Saito polynomials. Note that the degree of Jk as a polynomial in xi, is |R+|−h+1

where h is the Coxeter number, since the entries of the n-th row consist of homogeneous
polynomials of degrees h− 1, and deg J = |R+|.

Proposition 3.5.2. [90] The vector field ∂
∂pn

can be represented as

∂

∂pn
= J−1(p)

∣∣∣∣∣∣∣∣∣∣

∂p1

∂x1
. . . ∂p1

∂xn

... . . . ...
∂pn−1

∂x1
. . . ∂pn−1

∂xn

∂
∂x1

. . . ∂
∂xn

∣∣∣∣∣∣∣∣∣∣
. (3.52)

The above proposition can be checked easily by applying left-hand side and right-hand
side of equality (3.52) to the polynomials pi. Similarly, one can replace coordinates xi

in the right-hand-side of (3.52) with another coordinate system on V . This gives the
following statement.

Proposition 3.5.3. The identity field, e = ∂
∂tn

, in the vector field basis ∂αi, (i = 1, . . . , n)
can be represented as
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e = J−1

n∑
i=1

(−1)n+iJi∂αi . (3.53)

Lemma 3.5.4. Let R = Bn. Then identity field e takes the following form:

e = c
n∑
i=1

(xi)−1

n∏
j=1
j 6=i

((xi)2 − (xj)2)−1 ∂

∂xi
,

where c ∈ C×.

Proof. Note that identity field e is proportional to ∂
∂pn

, where ∂
∂pn

= J−1(p)
∑n

i=1(−1)n+iJi(p)
∂
∂xi

by Proposition 3.5.2. The polynomial J(p) is proportional to I(A) where A is the arrange-
ment corresponding to R, namely

J(p) ∼
n∏
i=1

xi
∏

1≤i<j≤n

((xi)2 − (xj)2).

For any i, 1 ≤ i ≤ n basic invariants can be chosen as

pi =
n∑
j=1

(xj)2i

and thus one can show that Ji(p) is proportional to the Vandermonde determinant

n∏
j=1
j 6=i

xj
∏

1≤l<k≤n
l,k 6=i

((xl)2 − (xk)2).

Then the statement follows.

Proposition 3.5.3 can also be restated as follows. By formula (3.53) we can represent
the identity field as

e =
∑
α∈∆

eα∂α, (3.54)

where
eα = εα

Jα
J
, Jα = Ji, (3.55)

with α = αi and εα the sign corresponding to the ordering of simple roots. More precisely,
εα = (−1)n+σ−1(α) and σ is a bijection σ : {1, . . . , n} → ∆.

Theorem 3.5.5. In the coordinates x̃i (i = 1, . . . , n) the contravariant Saito metric η−1 =

ηik ∂
∂x̃i

∂
∂x̃k

is given by

ηik = (−1)n+1+k∂ωi
Jk
J

+ (−1)n+1+i∂ωk
Ji
J
. (3.56)
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Proof. For the Euclidean metric g in the coordinates x̃i we have by Lemma 3.5.1

gij = (∂αi , ∂αj) = (α
(k)
i

∂

∂xk
, α

(l)
j

∂

∂xl
) = α

(k)
i α

(l)
j δkl =

n∑
k=1

α
(k)
i α

(k)
j = (αi, αj).

Hence, for the Saito metric 2.78 we have

ηij = Legij = −gkj∂αkei − gik∂αkej = −∂ujei − ∂uiej,

where vector ui = gijαj. Therefore we have

(ui, αj) =
n∑
k=1

gik(αk, αj) = gikgkj = δij.

Hence we can identify ui with ωi and rewrite ∂ui as ∂ωi . The result then follows immediately
using Proposition 3.5.3.

Proposition 3.5.6. We have

∂ωi
∏
α∈∆

α =
∏

α∈∆\αi

α, i = 1, . . . , n.

Proof. We have
∂ωi
∏
α∈∆

α =
∑
α∈∆

(ωi, α)

α

∏
α∈∆

α =
∏

α∈∆\αi

α,

by the definition of fundamental coweights.

To get the determinant of the restricted Saito metric ηD we will need the following
general result on determinants.

Proposition 3.5.7. [75] Let A= (aij)
n
i,j=1 be a square n×n matrix and let Aij = (−1)i+jMij,

where Mij is the (i, j)-th minor of A. Let 1 6 p < n and let σ =

(
i1 . . . in

j1 . . . jn

)
be an

arbitrary permutation from the symmetric group Sn. Then∣∣∣∣∣∣∣∣
Ai1j1 . . . Ai1jp
... . . . ...

Aipj1 . . . Aipjp

∣∣∣∣∣∣∣∣ = (−1)|σ|(detA)p−1

∣∣∣∣∣∣∣∣
aip+1,jp+1 . . . aip+1,jn

... . . . ...
ain,jp+1 . . . ainjn ,

∣∣∣∣∣∣∣∣
where |σ| is the sign of σ.

We denote n = {1, . . . , n}. Let I ⊂ n be a subset of cardinality |I| = k, 1 ≤ k < n.

Lemma 3.5.8. Let D = ∩q∈IΠαq be a discriminant stratum. Then x̃i, i /∈ I is a coordinate
system on D.
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Proof. Note that D = 〈ωi : i /∈ I〉. Let us consider a linear dependence of x̃i (i /∈ I) on D:∑
i/∈I

aix̃
i =

∑
i/∈I

ai(ω
i, x) = 0,

where ai ∈ C. Then
∑

i/∈I ai(ω
i, ωj) = 0 for all j /∈ I. This is a system of n − k linear

equations and the matrix of this system is Ω = (Ωij)i,j /∈I , Ωij = (ωi, ωj). Since ωi, i /∈ I are
linearly independent the Gram matrix Ω is non-degenerate. Therefore the only solution
to this system is the trivial one, ai = 0 for all i /∈ I.

Let us now fix basic invariants to be Saito polynomials. We obtain the following result.

Theorem 3.5.9. Let I = {i1, . . . , ik}, 1 ≤ k < n, 1 ≤ i1 < · · · < ik ≤ n and let
D = ∩q∈IΠαq . Then the determinant det ηD of the restricted Saito metric ηD in the
coordinates x̃i (i /∈ I) has the following form on D:

det ηD = −J2

∣∣∣∣∣∣∣∣
ηi1i1 . . . ηi1ik

... . . . ...
ηi1ik . . . ηikik

∣∣∣∣∣∣∣∣ . (3.57)

In particular, the right-hand-side of the expression (3.57) has a well-defined limit as one
tends to D.

Proof. Let us consider the covariant Saito metric in the flat coordinates ti, (1 ≤ i ≤ n)

η = ηijdt
idtj =

n∑
i=1

dtidtn+1−i =
n∑
i=1

n∑
r=1

∂x̃rt
idx̃r

n∑
l=1

∂x̃lt
n+1−idx̃l. (3.58)

Note that for any p ∈ C[x]W one has that

∂x̃ip(x)|αi=0 = ∂αip(x)|αi=0 = 0. (3.59)

Therefore, ∂x̃lti|D = 0, if l = i1, . . . , ik. Hence, using the property (3.59) and restricting
formula (3.58) on D, we get that the Saito metric on D is given by

ηD =
n∑
i=1

∑
r∈Î

∂x̃rt
idx̃r

∑
l∈Î

∂x̃lt
n+1−idx̃l =

∑
r,l∈Î

ηrldx̃
rdx̃l, (3.60)

where ηrl =
∑n

i=1(∂x̃rt
i)(∂x̃lt

n+1−i) and Î = n \ I.
Let Q = (qij)

n
i,j=1 be the matrix of η−1 in the coordinates x̃i. Then

ηrl =
(−1)r+lQrl

detQ
, r, l = 1, . . . , n,
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where Qrl is the (r, l)-th minor of Q. Consider the matrix C = (ηrl)r,l∈Î . It follows from
formula (3.60) that C|D is the matrix of ηD and det ηD = det C|D. By Proposition 3.5.7
applied for A = Q, p = |Î| = n− k and σ = Id we have

detC = (detQ)−(n−k)(detQ)n−k−1 detQI = detQ−1 detQI ,

where QI is the matrix (qij)i,j∈I . Since detQ−1 = det η, which is equal to −J2 by Propo-
sition 3.1.3, the statement follows.

Proposition 3.5.10. Let Jk be as above. Then Jk is divisible by α(x) for all α ∈ R∩ U ,
where vector space U = 〈αi : 1 ≤ i ≤ n, i 6= k〉.

Proof. Let α =
∑n

i=1
i 6=k

ciαi for some ci ∈ C. Consider the linear combination of columns of

the matrix B(t) such that the i-th column is taken with the coefficient ci. The resulting
entries are of the form ∂αt

i hence they are divisible by α(x). One can assume that such a
column appears in the matrix whose determinant is proportional to Jk, hence the statement
follows.

Proposition 3.5.11. The identity field e is singular on every hyperplane of the discrim-
inant of W .

Proof. We have that deg J = |R+| and deg Jk = |R+|−h+ 1 for any k, 1 ≤ k ≤ n. Hence
by formula (3.53) ek = (−1)n+k Jk

J
is a rational function of degree 1 − h. Let us suppose

that e is non-singular everywhere on V . Then we must have that ek = 0 for all k and
thus e is identically zero which is a contradiction. Therefore e is singular on Πβ for some
β ∈ R. Since e is W -invariant it follows that it is singular on Πγ for any γ ∈ R such that
γ ∈ Wβ.

In the case where R is an irreducible root system with a single orbit of the group W
it follows that e is singular on Πβ for all β ∈ R.

Let us now consider the cases where R is an irreducible root system with two orbits
of W . Let the root system R = F4 and let ∆ ⊂ R be a simple system. Recall that the
corresponding Coxeter number is h = 12. Let α ∈ ∆ be such that eα = εα

Jα
J

is non-zero.
Let us now assume that e is non-singular on the hyperplane Πα. By Proposition 3.5.10 Jβ
is divisible by (α, x) for any β ∈ ∆ \ {α}. Hence eβ is non-singular on Πα, and therefore
Jα must also be divisible by (α, x). It follows that∏

β∈∆

β | Jα. (3.61)

Since eα is singular on at least h−1 = 11 different hyperplanes inside the discriminant and
there are 12 short and 12 long positive roots, it follows from (3.61) that eα has singularities
on hyperplanes from both orbits. It follows by W -invariance of e that e is singular on Πα,
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which is a contradiction. We therefore have that eα is singular on Πα and hence e is
singular on Πβ for all β ∈ ∆ such that β ∈ Wα. Thus by Proposition 3.5.10 we have that
eβ = εβ

Jβ
J
6= 0. Let us now assume (see e.g. [51]) that ∆ = {α1, α2, α3, α4}, where

α1 = e2 − e3, α2 = e3 − e4, α3 = e4, α4 =
1

2
(e1 − e2 − e3 − e4).

If α is a long root then it follows from the previous that Jα1 6= 0. By Proposition 3.5.10
Jα1 is divisible by α2α3α4(α2 + 2α3). Since this product has two long roots and two short
roots and deg eα1 = −11 it follows that eα1 has singularities on both orbits. If α is a short
root then it follows by the previous that Jα4 6= 0. By Proposition 3.5.10 Jα4 is divisible by
α1α2α3(α2 + α3). Since this product has two long and two short roots it follows similarly
to the previous case that eα4 is singular on both orbits. The statement follows for both
cases due to W -invariance of e.

Let us now consider the case where R = I2(2m), m ≥ 3. By Proposition 3.5.2 identity
field e is proportional to

J−1(p)(x1 ∂

∂x2
− x2 ∂

∂x1
),

and the statement follows. Finally, the case where R = Bn is a corollary of Lemma
3.5.4.

Corollary 3.5.12. The polynomial Jk is not identically zero on the hyperplane Παk . In
particular, Jk is not a zero polynomial.

Proof. We have from Proposition 3.5.11 that the identity field e is singular on the hyper-
plane Πγ for all γ ∈ R and thus it is singular on Παk . Further on, we have from Proposition
3.5.10 that the polynomial Ji, i 6= k, is divisible by αk(x). Since the degree of vanishing
of J on Παk is 1 and e is singular on Παk it follows that Jk is not divisible by αk(x). The
statement follows.

Proposition 3.5.13. Let β, γ ∈ R, β 6= ±γ. Then Jk(x) = 0 if β(x) = γ(x) = 0.

Proof. There exists a non-trivial linear combination of β and γ such that

a1β + a2γ =
n∑
i=1
i 6=k

biαi,

where a1, a2, bi ∈ C. Note that ∂βp|D = ∂γp|D = 0 for D = Πβ ∩ Πγ and any invariant
polynomial p. Hence a linear combination of columns of the matrix B(t) is zero on D.

Let us recall the following statement on the cardinality of restricted Coxeter arrange-
ment.
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Proposition 3.5.14. [71] Let A be a Coxeter arrangement for an irreducible Coxeter
group W , and let H ∈ A. Then the cardinality of AH is

|AH | = |A| − h+ 1, (3.62)

where h is the Coxeter number of W . In particular, |AH | does not depend on the choice
of H.

Using Propositions 3.5.13 and 3.5.14 we get the following statement on the structure
of Jk.

Corollary 3.5.15. Let A be a Coxeter arrangement and D = Παk for some k, 1 ≤ k ≤ n.
Then Jk|D is proportional to I(AD).

Proof. We have that deg Jk = |R+| − h + 1, and hence deg Jk = |AD| using Proposition
3.5.14. From Proposition 3.5.13, it follows that Jk|D is divisible by β|D for any β ∈
R \ {±αk}. The statement follows.

Let us define the following polynomials:

I := J
∏
α∈∆

α(x)−1 and Ik := Jk
∏

α∈∆\αk

α(x)−1, (3.63)

where 1 ≤ k ≤ n.
We denote the discriminant strata as Di1,...,ik = Dαi1 ,...,αik

, namely,

Di1,...,ik = ∩kj=1Παij
. (3.64)

We obtain the following useful result on the relation between Im and Il on Dl,m.

Proposition 3.5.16. Let αl, αm ∈ ∆ be such that |R+ ∩ S| > 2, where S = 〈αl, αm〉. Let
D = Dl,m be the corresponding stratum. Then

Im|D = (−1)l−m−1 Il|D . (3.65)

Proof. Let vk denote the column vector

vk =
(
∂αkp

1, . . . , ∂αkp
n−1
)ᵀ
, (3.66)

k = 1, . . . , n. We have
∂αkp

i = αk(x)Qki(x), (3.67)

for some Qki(x) ∈ C[x]. Denote the corresponding column vector Qk = (Qk1, . . . , Qk,n−1)ᵀ.
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Let us firstly consider the case when (αl, αm) 6= 0. It follows from Equation (3.67) that

∂αm∂αlp
i = (αl, αm)Qli(x) + αl(x)∂αmQli(x). (3.68)

Similarly,
∂αl∂αmp

i = (αl, αm)Qmi(x) + αm(x)∂αlQmi(x) (3.69)

Restriction of equalities (3.68), (3.69) to D gives

Qli(x)|D = Qmi(x)|D . (3.70)

Let ∆̃ = ∆ \ {αm, αl}. Note that Im = a(x)αl(x)−1Jm(x) and Il(x) = a(x)αm(x)−1Jl(x),
where a(x) =

∏
α∈∆̃ α(x)−1. If l < m then αl(x)−1Jm(x) = detAlm, where the matrix

Alm has columns v1, . . . , vl−1, Ql, vl+1, . . . , v̂m, . . . , vn. Similarly, αm(x)−1Jl(x) = detAml,
where the matrix Aml has columns v1, . . . , v̂l, . . . , vm−1, Qm, vm+1, . . . , vn and where v̂m, v̂l
means that the corresponding column is omitted. By the property (3.70) the matrices
Alm|D, Aml|D have the same columns up to a permutation. The case m < l is similar.
Now, let us suppose that (αl, αm) = 0. We are going to establish property (3.70). Since
|R+ ∩ S| > 2, there exists γ ∈ R+ such that γ = c1αl + c2αm for some c1, c2 ∈ C×. Then

∂γp
i = γ(x)Qγ,i, (3.71)

for some Qγ,i ∈ C[x], i = 1, . . . , n. Therefore

∂αlp
i = c−1

1 (∂γ − c2∂αm)pi = c−1
1

(
(c1αl(x) + c2αm(x))Qγ,i − c2αm(x)Qmi

)
.

Hence
Qli = αl(x)−1∂lp

i = Qγi +
c2

c1

αm(x)

αl(x)
(Qγi −Qmi),

which implies that
Qli|Dm = Qγ,i|Dm . (3.72)

Further on by differentiating (3.67) for k = m and by differentiating (3.71) we get

∂γ∂αmp
i = (γ, αm)Qmi + αm(x)∂γQmi(x) = (γ, αm)Qγ,i + γ(x)∂αmQγ,i(x). (3.73)

Since (γ, αm) 6= 0 the restriction of equality (3.73) to D gives

Qmi|D = Qγ,i|D . (3.74)

By formulae (3.72), (3.74) we have Qli|D = Qmi|D. The statement follows similarly to the
case (αl, αm) 6= 0.
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3.6 Exceptional groups: dimension 1 and codimensions

1, 2, 3, 4.

Orlik and Solomon [72] and Shcherbak [80] classified the strata in the Coxeter discrim-
inants. We say that x, y ∈ V are equivalent if their corresponding stabilizers in W are
conjugate subgroups inW . Let Γ be a Coxeter subgraph of the graph associated toW and
let WΓ be the parabolic subgroup generated by reflections in the mirrors corresponding
to the vertices of Γ. Then WΓ is the stabilizer Wx of a generic point x on the stratum
corresponding to the vertices of Γ. Thus up to equivalence there is a map from strata
in the Coxeter discriminant to types of subgraphs. This map is surjective but in general
not injective since it can be that there are different subgraphs of the Coxeter graph which
have the same type and which are mapped to by different discriminant strata ( [35], [72],
[80]). For example there are two non-conjugate classes of subgroups of type A3 × A1 in
E7: there are 11 subgraphs of type A3 ×A1, one stratum corresponding to the subgraphs

or

and one stratum corresponding to the remaining 9, for example

.

Let us stress that our analysis depends on the parabolic subgroup, that is the type of
the Coxeter subgraph only and it does not depend on the particular choice of stratum for
a given parabolic subgroup. We are going to prove Main Theorems 1, 2 for a subset of
simple roots L = {αi1 , . . . , αik} ⊂ ∆, 1 ≤ k < n and the corresponding stratum D.

In this section, we obtain formulae for the determinant of the restricted Saito metric for
exceptional groups in codimensions 1, 2, 3, 4 and n− 1 and thus show that the statement
of Main Theorem 1 and Main Theorem 2 is true.

3.6.1 Dimension 1

Let us choose n − 1 different elements i1, . . . , in−1 ∈ {1, . . . , n} and consider the stratum
D = Di1,...,in−1 . Let in 6= ik for any k = 1, . . . , n− 1, 1 ≤ in ≤ n.

Theorem 3.6.1. The determinant of the restricted Saito metric ηD is proportional to
(x̃in)h, where h is the Coxeter number of R.
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Proof. The covariant Saito metric η can be expressed as

η =
n∑
k=1

n∑
i=1

∂x̃it
kdx̃i

n∑
j=1

∂x̃j t
n+1−kdx̃j. (3.75)

Since ∂x̃ij t
k
∣∣
D

= ∂αij t
k
∣∣∣
D

= 0 for j = 1, . . . , n− 1 we get

ηD =
n∑
k=1

∂x̃in t
k∂x̃in t

n+1−k(dx̃in)2. (3.76)

Note that ∂x̃in tk∂x̃in tn+1−k is proportional to (x̃in)h since deg tj = dj for all j and dj +

dn+1−j = h+ 2. This implies the statement.

Corollary 3.6.2. The statement of Main Theorems 1, 2 is true.

3.6.2 Codimension 1

Fix m, 1 ≤ m ≤ n and consider the corresponding (n− 1)-dimensional stratum D = Dm.
Let H ∈ AD.

Theorem 3.6.3. The determinant of the restricted Saito metric ηD is factorisable into a
product of linear forms on D. Furthermore it is proportional to∏

H∈AD

lmHH , (3.77)

where mH = |ΣH |, with ΣH = {X ∈ A|H ⊂ X}.

Proof. By Theorem 3.5.9 we have that det ηD is proportional to − ηmmJ2|D and therefore
by Theorem 3.5.5 that

det ηD = 2J2∂ωm
Jm
J

∣∣∣∣
D

= − 2Jm∂ωmJ |D .

Recall that J = cαm
∏

β∈Rm β, where Rm = R+ \ {αm}, c ∈ C. We thus note that
∂ωmJ |D = c

∏
β∈Rm β|D. Therefore, by Corollary 3.5.15, one has that det ηD is proportional

to
I(AD)

∏
β∈Rm

β|D , (3.78)

Note that the second product in equality (3.78) can be written as
∏

H∈AD l
qH
H , where

qH = |Σ̃H | with Σ̃H = {X ∈ A|X ⊃ H,H 6= D}. That is, qH = mH − 1. Thus, we obtain
the required result.

Corollary 3.6.4. The statement of Main Theorem 1 is true.
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Fix H ∈ AD. Let β ∈ R be such that H = {x ∈ D|β(x) = 0} and consider RD,β =

R∩ 〈αm, β〉.

Proposition 3.6.5. We have that
mH = hm,β

where hm,β is the Coxeter number of the irreducible subsystem in RD,β which contains β.

Proof. The root system RD,β is a rank 2 subsystem of the root system R containing αm
and β. Note that mH = 1

2
|RD,β|. If the dihedral root system RD,β is irreducible then

1
2
|RD,β| equals its Coxeter number, and the statement follows. If the root system RD,β is

reducible then
RD,β = {±αm,±β} = A1 × A1

and mH = 1
2
|RD,β| = 2. Since the Coxeter number of the root system A1 equals 2 the

statement holds in this case as well.

Corollary 3.6.6. The statement of Main Theorem 2 is true.

3.6.3 Codimension 2

Let αl, αm ∈ ∆, 1 ≤ m < l ≤ n. Let us consider the (n − 2)-dimensional stratum
D = Dl,m. We note that restriction of the covariant Saito metric η to the stratumD is well-
defined as the components of the metric η are polynomial expressions in the coordinates
xi (i = 1, . . . , n). However, this is not necessarily true for the individual terms in the
expansion (3.57) of det ηD as these terms can be singular on D. Below we will calculate
limits of these terms as x tends to D in a prescribed way which will give us the value of
det ηD.

More specifically, by Theorem 3.5.9, the determinant det ηD is given by

det ηD = −J2

∣∣∣∣∣ηmm ηml

ηml ηll

∣∣∣∣∣ , (3.79)

where the limit of the right-hand side as x tends to D is taken. Furthermore, recall that
by Theorem 3.5.5 we have

ηik = (−1)n+k+1∂ωi
Jk
J

+ (−1)n+i+1∂ωk
Ji
J
, (3.80)

i, k = 1, . . . , n. Therefore, using formulae (3.63) one has

∂ωi
Jk
J

= ∂ωi
Ik

αk(x)I
= − 1

αk(x)2

Ik
I
δik +

1

αk(x)
∂ωi

Ik
I
. (3.81)
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Further on, we are interested in the structure of I. Let d ∈ Z≥0 be the degree of vanishing
of I on D. Note that d = |R+ ∩ 〈αl, αm〉| − 2. Let us represent I as

I = fg, (3.82)

where f ∈ C[x] is a homogeneous polynomial of degree d in the variables αm(x), αl(x) and
g ∈ C[x] is not identically zero on D. Let d0 be the degree of f(x) as a polynomial in αl,
d0 ≤ d. We represent f(x) as

f(x) =

d0∑
i=0

aiα
i
l(x)αd−im (x) = αd−d0m (x)

d0∑
i=0

aiα
i
l(x)αd0−im (x), (3.83)

where ai ∈ C, ad0 6= 0. We have the following result.
Let α, β ∈ R. In what follows, we will mean by F |α=0

β=0
the restriction of a function F

onto α = β = 0 in the order α = 0 first followed by taking the limit β → 0.

Lemma 3.6.7. We have

αl(x)I(x)−1∂ωlI(x)
∣∣
αm=0
αl=0

= d0. (3.84)

Proof. Let f and g be as defined in (3.82), (3.83). Then

αl(x)I(x)−1∂ωlI(x) = αl(x)g(x)−1∂ωlg(x) + αl(x)f(x)−1∂ωlf(x). (3.85)

We note that by formula (3.83) one has

αl(x)f(x)−1∂ωlf(x)
∣∣
αm=0

=

∑d0
i=1 iaiα

i
lα
d0−i
m∑d0

i=0 aiα
i
lα
d0−i
m

∣∣∣∣∣
αm=0

= d0.

Therefore restricting expression (3.85) onto αm = 0 first followed by the restriction onto
αl = 0, the statement follows.

Let ∆̃ = ∆ \ {αl, αm}. Let us consider the diagonal and anti-diagonal terms in the
determinant (3.79) separately.

Lemma 3.6.8. Let A = J2ηmmηll. Then

A|αm=0
αl=0

= (−1)m+l4(d0 + 1)IlIm
∏
α∈∆̃

α2
∣∣
αm=0
αl=0

. (3.86)

Proof. By formulae (3.80), (3.81) we have that

ηkk = (−1)n+k+12∂ωk
Jk
J

= (−1)n+k+12
(
− 1

α2
k

Ik
I

+
1

αk
∂ωk

Ik
I

)
,
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for any k = 1, . . . , n. Then

Jηkk = (−1)n+k+12
(
− α−1

k Ik + ∂ωkIk − IkI−1∂ωkI
) ∏
α∈∆\{αk}

α.

Then

A = (−1)m+l4
(
− α−1

m Im + ∂ωmIm − ImI−1∂ωmI
)(
− α−1

l Il + ∂ωlIl − IlI−1∂ωlI
) ∏
α∈∆

α
∏
α∈∆̃

α

= (−1)m+l4
(
− Im + αm

(
∂ωmIm − ImI−1∂ωmI

))(
− Il + αl

(
∂ωlIl − IlI−1∂ωlI

)) ∏
α∈∆̃

α2.

We consider the restriction of A on Dm first. This gives,

A|αm=0 = (−1)m+l4Im

(
Il − αl(x)

(
∂ωlIl − IlI−1∂ωlI

)) ∏
α∈∆̃

α2
∣∣
αm=0

.

Therefore, restricting A further on Dl and using Lemma 3.6.7, we obtain the required
result.

Let us now consider the anti-diagonal terms.

Lemma 3.6.9. Let B = ηmlJ . Then

B|αm=0
αl=0

= d0(−1)n+mIm
∏
α∈∆̃

α|αm=0
αl=0

, (3.87)

Proof. Using formulae (3.80), (3.81) we have

B = J
(

(−1)n+l+1∂ωm
Jl
J

+ (−1)n+m+1∂ωl
Jm
J

)
,

that is

B =
(

(−1)n+l+1αm
(
∂ωmIl − IlI−1∂ωmI

)
+ (−1)n+m+1αl(x)

(
∂ωlIm − ImI−1∂ωlI

)) ∏
α∈∆̃

α.

We consider the restriction of B on Dm at first. This gives

B|αm=0 = (−1)n+m+1αl
(
∂ωlIm − ImI−1∂ωlI

) ∏
α∈∆̃

α|αm=0 . (3.88)

Then restricting B further on Dl and using Lemma 3.6.7 we obtain the required result.

Using the above results we obtain a general expression for the determinant det ηD.
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Theorem 3.6.10. The determinant of the metric ηD is proportional to

ImIl
∏
α∈∆̃

α2
∣∣
D
. (3.89)

Proof. In the notation of Lemmas 3.6.8, 3.6.9 we have

det ηD = B2
∣∣
αm=0
αl=0

− A|αm=0
αl=0

.

By these lemmas we get

det ηD = d2
0I

2
m

∏
α∈∆̃

α2
∣∣
D

+ (−1)m+l+14(d0 + 1)IlIm
∏
α∈∆̃

α2
∣∣
D
. (3.90)

Let us first consider the case where d > 0. Then |R+∩〈αl, αm〉| > 2 and from Proposition
3.5.16, we know that Im = (−1)l−m−1Il on D. Therefore

det ηD = (−1)l+m+1(d0 + 2)2ImIl
∏
α∈∆̃

α2
∣∣
D
, (3.91)

as required. Let us now suppose that d = 0. Then f is constant and d0 = 0. Therefore
(3.90) implies (3.91) as well.

Let us reformulate Theorem 3.6.10 in terms of defining polynomials of some arrange-
ments. Let RD = R∩ 〈αm, αl〉. Note that ADDm = ADDl = {D}.

Theorem 3.6.11. The statement of Main Theorem 1 is true. Furthermore, the determi-
nant of the metric ηD is proportional to

I(ADm \ ADDm)I(ADl \ ADDl), (3.92)

on D.

Proof. For any Ĥ ∈ ADm let αĤ ∈ R be the corresponding covector such that Ĥ =

{x ∈ Dm|αĤ(x) = 0}. Similarly for any Ĥ ∈ ADl we choose αĤ ∈ R such that Ĥ =

{x ∈ Dl|αĤ(x) = 0}. We note that from Theorem 3.6.10 and Corollary 3.5.15 det ηD is
proportional to

α−1
l Jm

∣∣
D
α−1
m Jl

∣∣
D
∼

∏
Ĥ∈ADm
Ĥ 6=D

αĤ
∣∣
D

∏
Ĥ∈ADl
Ĥ 6=D

αĤ
∣∣
D
∼
∏

H∈AD

lkHH , (3.93)

where lH = αĤ
∣∣
D
for Ĥ ∈ ADm∪ADl such that H = Ĥ∩D, kH ∈ N. Thus Main Theorem

1 holds. Formula (3.92) follows from (3.93).
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Theorem 3.6.12. The statement of Main Theorem 2 is true.

Proof. Let us now fixH ∈ AD. We have to show that the multiplicity kH in Theorem 3.6.11
(formula (3.93)) takes the required form. Let β ∈ R be such that H = {x ∈ D|β(x) = 0}
and let R̂ = RD,β be the root system R̂ = R ∩ 〈αm, αl, β〉. Let Â be the corresponding
arrangement. Note that the multiplicity kH is given by

kH = |ÂDm \D|+ |ÂDl \D|. (3.94)

If the root system R̂ is irreducible then

|ÂDm \D| = |ÂDl \D| = |Â| − h =
3h

2
− h =

h

2
,

where h is the Coxeter number of R̂, and the statement of Main Theorem 2 follows.
Let us now consider the case where R̂ is reducible. Suppose firstly that RD is an

irreducible rank 2 system. Then

R̂ = RD t {±β} = RD × A1, (3.95)

and
|ÂDm \D| = |ÂDl \D| = 1. (3.96)

Then kH = 2 equals the Coxeter number of A1, and the statement holds in this case as
well.

Let us now consider the case where RD is reducible. Suppose firstly that Rαl,β =

R ∩ 〈αl, β〉 is an irreducible rank 2 system and let Ã be the corresponding arrangement.
Note that R̂ takes the form

R̂ = Rαl,β t {±αm} = Rαl,β × A1. (3.97)

Then |ÂDm\D| = |Ã|−1 = h−1 and |ÂDl\D| = |ÃDl | = 1, where h is the Coxeter number
of Rαl,β, and the statement of Main Theorem 2 follows. The case where R ∩ 〈αm, β〉 is
irreducible is similar. The final case to consider is when R̂ takes the form

R̂ = {±αm} t {±αl} t {±β} = A1 × A1 × A1.

Then equalities (3.96) hold, and kH = 2 as required.

The above analysis shows that the statement of Main Theorems 1 and 2 for the the
determinant of the restricted Saito metric in codimensions 1, 2 and n − 1 is true. This
covers all strata in finite Coxeter groups I2(p), H3, H4, F4. This leaves us to study simply
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laced cases E6, E7, E8 only. The analysis becomes more involved and it will depend on the
parabolic subgroups which we consider.

3.6.4 Codimension 3

We consider (n−3)-dimensional strata D for simply laced Coxeter groups. Thus we obtain
factorisation formulae for the determinant of the metric ηD for strata D of type A3, A2×A1

and A3
1.

Let R+ be the positive root system of the root systems En, n = 6, 7, 8, although the
presented analysis below works for any irreducible simply laced root system. Let λ, ν, θ
be simple roots and consider the corresponding stratum D = Dλ,ν,θ of codimension 3.

Stratum A3. Let us assume that RD = R ∩ 〈λ, ν, θ〉 is a subsystem of R of type A3

and consider the corresponding Coxeter graph

A3 :
λ ν θ

Note that λ+ ν, ν + θ, λ+ ν + θ ∈ R+. The Jacobian J can be represented as

J = λνθ(λ+ ν)(ν + θ)(λ+ ν + θ)Π, (3.98)

where Π is proportional to I(A \ AD) and Π is non-zero on D. By Proposition 3.5.10 we
have in the notation of (3.55)

Jλ = νθ(ν + θ)Kλ, (3.99)

Jν = λθKν , (3.100)

Jθ = λν(λ+ ν)Kθ, (3.101)

for some polynomials Kλ, Kθ, Kν ∈ C[x].
We assume without loss of generality that the ordering of simple roots σ : {1, . . . , n} →

∆ is such that n + σ−1(λ) is odd, and that σ−1(ν) = σ−1(λ) + 1, σ−1(θ) = σ−1(λ) + 2.
The following statement follows from Proposition 3.5.3 and formulae (3.98)-(3.101).

Proposition 3.6.13. The λ, ν, and θ components of the identity field e are given by

eλ = − Kλ

λ(λ+ ν)(λ+ ν + θ)Π
, (3.102)

eν =
Kν

ν(λ+ ν)(ν + θ)(λ+ ν + θ)Π
, (3.103)

eθ = − Kθ

θ(ν + θ)(λ+ ν + θ)Π
. (3.104)

In what follows, we deal with the restricted metric ηD by restricting η on Dν firstly,
then on Dν,θ and finally on D. Firstly, we derive relations between Kλ, Kθ, Kν .
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Lemma 3.6.14. We have
Kν |Dν = λKθ + θB|Dν , (3.105)

for some polynomial B ∈ C[x] such that

B|D = Kθ|D . (3.106)

Proof. By Proposition 3.5.16, Jν
θ

= Jθ
ν

on Dν,θ. Then by (3.100), (3.101), Kν = λKθ

on Dν,θ. Consider Kν − λKθ on the hyperplane Dν . This polynomial vanishes if θ = 0.
Therefore we can represent Kν on Dν as

Kν |Dν = λKθ + θB|Dν , (3.107)

for some B ∈ C[x] as required.
Furthermore, we note that Kν is divisible by (λ + θ) on Dν since by Corollary 3.5.15

Jν |Dν is divisible by λ+ ν + θ|Dν . Hence,

Kν |Dν = λKθ + θB|Dν = (λ+ θ)P |Dν , (3.108)

for some P ∈ C[x]. Moreover by restricting equality (3.108) further on Dν,λ, we get that

B|Dν,λ = P |Dν,λ . (3.109)

Similarly, restricting equality (3.108) further on Dν,θ, we get that P |Dν,θ = Kθ|Dν,θ . It
follows from equality (3.109) that

B|D = Kθ|D ,

as required.

Lemma 3.6.15. We have
Kλ|D = Kθ|D . (3.110)

Proof. By Proposition 3.5.16, we have Jν
λ

= Jλ
ν

on Dν,λ and hence Kν = θKλ on Dν,λ.
It follows from equality (3.105) that Kν |Dν,λ = θB|Dν,λ , hence Kλ|Dν,λ = B|Dν,λ . The
statement now follows from formula (3.106).

Theorem 3.5.9 gives a general formula for the determinant of the Saito metric ηD
which we now specialize to the case of codimension 3 stratum. Let us represent J , given
by formula (3.98) as J = λνθJ̄ , where

J̄ = (λ+ ν)(ν + θ)(λ+ ν + θ)Π. (3.111)
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We will write components of Saito metric ησ−1(α)σ−1(β) as ηαβ, α, β ∈ ∆. We rearrange
det ηD as

det ηD = −

∣∣∣∣∣∣∣
ηλλ ηλν ηλθ

ηλν ηνν ηνθ

ηλθ ηνθ ηθθ

∣∣∣∣∣∣∣ J2
∣∣
D

= −

∣∣∣∣∣∣∣
λ2ηλλ λνηλν λθηλθ

λνηλν ν2ηνν νθηνθ

λθηλθ νθηνθ θ2ηθθ

∣∣∣∣∣∣∣ J̄2
∣∣
D
. (3.112)

Let A = (aij)
3
i,j=1 be the matrix

A =

λ
2ηλλ λνηλν λθηλθ

λνηλν ν2ηνν νθηνθ

λθηλθ νθηνθ θ2ηθθ

 . (3.113)

Let us recall the basis of fundamental coweights ωi (i = 1, . . . , n), we will also write ωλ

for ωσ−1(λ), λ ∈ ∆.

Proposition 3.6.16. The matrix entries aij (1 ≤ i, j ≤ 3) are well-defined generically on
Dν, and they have the following form on Dν:

a11 = λ2ηλλ = 2λ2∂ωλ
( Kλ

λ2(λ+ θ)Π

)
, (3.114)

a22 = ν2ηνν =
2Kν

λθ(λ+ θ)Π
, (3.115)

a33 = θ2ηθθ = 2θ2∂ωθ
( Kθ

θ2(λ+ θ)Π

)
, (3.116)

a12 = λνηλν = −λ
θ
∂ωλ
( Kν

λ(λ+ θ)Π

)
, (3.117)

a13 = λθηλθ =
λ

θ
∂ωλ
( Kθ

(λ+ θ)Π

)
+
θ

λ
∂ωθ
( Kλ

(λ+ θ)Π

)
, (3.118)

a23 = νθηνθ = − θ
λ
∂ωθ
( Kν

θ(λ+ θ)Π

)
. (3.119)

Proof. By Theorem 3.5.5 we have ηαβ = −∂ωαeβ − ∂ωβeα for α, β ∈ {λ, µ, ν}. Formulae
(3.114), (3.116), (3.118) follow from Proposition 3.6.13 immediately. Let us prove formula
(3.115). We have

ν2ηνν = −2ν2∂ων
( Kν

ν(λ+ ν)(ν + θ)(λ+ ν + θ)Π

)
.

By Leibniz rule and taking the limit ν(x) → 0 we obtain the formula. Formulae (3.117),
(3.119) follow similarly.

By Proposition 3.6.16 we see that the entries of A may be singular on Dν,θ. Therefore,
in order to restrict J̄2 detA on Dν,θ we consider the expansion of detA and collect the
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terms with the same order of poles at θ = 0. Let detA be

detA = C + E, (3.120)

where
C = −a2

12a33 + 2a12a23a13 − a2
13a22,

and
E = a11

(
a22a33 − a2

23

)
.

Note that E has a pole at θ = 0 of order at most 2. Now we study the term C near θ = 0.

Lemma 3.6.17. We have
C =

1

θ3
C1 +

1

θ2
C2, (3.121)

where C1, C2 are well-defined generically on Dν,θ and have the following form on Dν:

C1 = (λ+ θ)−3

(
4Kθ

Π

(Kν

Π

(
λ−1 + (λ+ θ)−1

)
− ∂ωλ

Kν

Π

)2

− 2Kν

Π

(Kν

Π

(
λ−1 + (λ+ θ)−1

)
− ∂ωλ

Kν

Π

)
×

×
(Kθ

Π
(λ+ θ)−1 − ∂ωλ

Kθ

Π

)
− 2λKν

Π

(Kθ

Π
(λ+ θ)−1 − ∂ωλ

Kθ

Π

)2
)
,

C2 = (λ+ θ)−3

(
2
(
∂ωλ

Kν

Π
− Kν

Π

(
λ−1 + (λ+ θ)−1

))2(Kθ

Π
(λ+ θ)−1 − ∂ωθ

Kθ

Π

)
+ 2
(
∂ωθ

Kν

Π
− Kν

Π
(λ+ θ)−1

)(
∂ωλ

Kν

Π
− Kν

Π

(
λ−1 + (λ+ θ)−1

))
×

×
(
∂ωλ

Kθ

Π
− Kθ

Π
(λ+ θ)−1

)
+ 2θ2λ−2

(
∂ωθ

Kλ

Π
− Kλ

Π
(λ+ θ)−1

)
×

×
(Kν

Π

(
λ−1 + (λ+ θ)−1

)
− ∂ωλ

Kν

Π

)(Kν

Π

(
θ−1 + (λ+ θ)−1

)
− ∂ωθ

Kν

Π

)
−

− 2θλ−1Kν

Π

(
(θλ−1)2

(
∂ωθ

Kλ

Π
− Kλ

Π
(λ+ θ)−1

)2

+

+ 2
(
∂ωθ

Kλ

Π
− Kλ

Π
(λ+ θ)−1

)(
∂ωλ

Kθ

Π
− Kθ

Π
(λ+ θ)−1

)))
. (3.122)

Proof. We expand formulae (3.116), (3.119) as

a33 = 2∂ωθ
( Kθ

(λ+ θ)Π

)
− 4Kθ

θ(λ+ θ)Π
,

a23 = −1

λ
∂ωθ
( Kν

(λ+ θ)Π

)
+

Kν

λθ(λ+ θ)Π
.
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Then expressions for C1, C2 follow by Proposition 3.6.16 using Leibniz rule and by col-
lecting terms with the same degree of the pole at θ = 0.

By Lemma 3.6.14 we have

Kν |Dν = λKθ + θB|Dν , (3.123)

and hence we can represent Kν as

Kν = λKθ + θB + νQ, (3.124)

for some polynomial Q ∈ C[x]. Therefore we get

∂ωλ
Kν

Π

∣∣∣∣
Dν

= ∂ωλ
λKθ + θB

Π

∣∣∣∣
Dν

, (3.125)

since for λ, µ ∈ ∆ we have

(ωλ, µ) =

{
1, λ = µ

0, λ 6= µ.

Lemma 3.6.18. The expression C1|Dν is divisible by θ, that is we can represent it as

C1 = (C̃1 + Fθ)θ
∣∣∣
Dν
,

where C̃1, F are well-defined generically on Dν,θ and have the following form on Dν:

C̃1 = (λ+ θ)−3

(
− 4λ

B

Π

(
∂ωλ

Kθ

Π
− Kθ

Π
(λ+ θ)−1

)2

+ 6λ
Kθ

Π

(
∂ωλ

Kθ

Π
− Kθ

Π
(λ+ θ)−1

)
×

×
(
B̂ − B

Π

(
λ−1 + (λ+ θ)−1

)))
, (3.126)

and

F = (λ+ θ)−3

(
4
(Kθ

Π

)(
− B̂ +

B

Π

(
λ−1 + (λ+ θ)−1

))2

−

− 2B

Π

(
− B̂ +

B

Π

(
λ−1 + (λ+ θ)−1

))(
− ∂ωλ

Kθ

Π
+
Kθ

Π
(λ+ θ)−1

))
,

where B̂ = ∂ωλ
B
Π
.

Proof. Note that

λKθ

Π

(
λ−1 + (λ+ θ)−1

)
− ∂ωλ

λKθ

Π
= λ

(Kθ

Π
(λ+ θ)−1 − ∂ωλ

Kθ

Π

)
. (3.127)
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The statement follows by substituting formulae (3.123), (3.125) into C1, collecting equal
powers of θ and making use of (3.127).

Lemma 3.6.19. We have

C̃1

∣∣∣
Dν,θ

= 2λ−4

(
4B

K2
θ

Π3
− 2Bλ

Kθ

Π2
∂ωλ

Kθ

Π
− 3B̂λ

K2
θ

Π2
− 2

Bλ2

Π
(∂ωλ

Kθ

Π
)2 + 3B̂λ2Kθ

Π
∂ωλ

Kθ

Π

)∣∣∣∣
Dν,θ

.

Proof. The statement follows immediately from the restriction of formula (3.126) to the
stratum Dν,θ.

Let us now consider the term C2 in equality (3.121). The restriction of C2 to Dν,θ is
given in the following lemma.

Lemma 3.6.20. We have

C2|Dν,θ = 2λ−2B

Π

(
∂ωλ

Kθ

Π
− Kθ

Π
λ−1
)2
∣∣∣∣
Dν,θ

.

Proof. Restricting formula (3.122) to Dν,θ we get

C2|Dν,θ = 2λ−3

((
∂ωλ

Kν

Π
− 2Kν

λΠ

)2(
− ∂ωθ

Kθ

Π
+
Kθ

λΠ

)
+
(
∂ωθ

Kν

Π
− Kν

λΠ

)(
∂ωλ

Kν

Π
− 2Kν

λΠ

)
×

×
(
∂ωλ

Kθ

Π
− Kθ

λΠ

))∣∣∣∣
Dν,θ

.

It follows from (3.123) that
Kν |Dν,θ = λKθ|Dν,θ , (3.128)

and it follows from (3.125) that

∂ωλ
Kν

Π

∣∣∣∣
Dν,θ

= ∂ωλ
λKθ

Π

∣∣∣∣
Dν,θ

. (3.129)

We also have from (3.124) that

∂ωθ
Kν

Π

∣∣∣∣
Dν,θ

= λ∂ωθ
Kθ

Π
+
B

Π

∣∣∣∣
Dν,θ

. (3.130)

By using (3.128), (3.129) we get

∂ωλ
Kν

Π
− 2Kν

λΠ

∣∣∣∣
Dν,θ

= λ∂ωλ
Kθ

Π
− Kθ

Π

∣∣∣∣
Dν,θ

.
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Hence,

C2|Dν,θ = 2λ−3
(
λ∂ωλ

Kθ

Π
− Kθ

Π

)2
(
− ∂ωθ

Kθ

Π
+
Kθ

λΠ
+ λ−1(∂ωθ

Kν

Π
− Kν

λΠ
)
)∣∣∣∣

Dν,θ

. (3.131)

The statement follows from the formula (3.131) after substituting expressions (3.128) and
(3.130).

Lemma 3.6.21. Let z = θ2C. Then

z|Dν,θ = 2λ−4

(
4B

K2
θ

Π3
− 2Bλ

Kθ

Π2
(∂ωλ

Kθ

Π
)− 3B̂λ

K2
θ

Π2
− 2

Bλ2

Π
(∂ωλ

Kθ

Π
)2 + 3B̂λ2Kθ

Π
∂ωλ

Kθ

Π

)∣∣∣∣
Dν,θ

+ 2λ−2B

Π

(
∂ωλ

Kθ

Π
− Kθ

Π
λ−1
)2
∣∣∣∣
Dν,θ

, (3.132)

where B̂ = ∂ωλ
B
Π
. Further to that,

λ4z
∣∣
D

= 10
(Kθ

Π

)3

∣∣∣∣
D

. (3.133)

Proof. By Lemmas 3.6.19, 3.6.20 we have

z|Dν,θ = (
1

θ
C1 + C2)

∣∣∣∣
Dν,θ

= (C̃1 + C2)
∣∣∣
Dν,θ

,

which implies (3.132). Therefore

λ4z
∣∣
D

= 10B
K2
θ

Π3
= 10

(Kθ

Π

)3

∣∣∣∣
D

,

since B|D = Kθ|D, by Lemma 3.6.14.

Finally, we consider the term E in detA. Note that θ2E is well-defined generically at
θ = 0. Furthermore, we obtain the following result.

Lemma 3.6.22. We have

θ2E
∣∣
Dν,θ

= −18K2
θ

Π2
∂ωλ
(Kλ

Π
λ−3
)∣∣∣∣

Dν,θ

. (3.134)

and furthermore,

λ4θ2E
∣∣
D

= 54
(Kθ

Π

)3

∣∣∣∣
D

, (3.135)

where we take restrictions on ν = 0 at first, then on θ = 0 and then on λ = 0.
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Proof. By Proposition 3.6.16 we have

θ2E
∣∣
Dν,θ

= 2λ2∂ωλ
(Kλ

Π
λ−3
)(
− 8

KνKθ

Π2
λ−3 −

(Kν

Π

)2
λ−4
)∣∣∣∣

Dν,θ

,

which implies (3.134) since Kν |Dν,θ = λKθ|Dν,θ by Lemma 3.6.14. Therefore

λ4θ2E
∣∣
D

= 54
K2
θKλ

Π3
= 54

(Kθ

Π

)3

∣∣∣∣
D

,

by Lemma 3.6.15.

Using the above we have the following result.

Theorem 3.6.23. The determinant of the metric ηD is proportional to Π−1K3
θ on D.

Proof. We have det ηD = −J̄2 detA
∣∣
D

= − J̄2(C + E)
∣∣
D
. Note that θ2C and θ2E are

well-defined generically on Dν,θ, and J̄
∣∣
Dν

= λθ(λ+ θ)Π|Dν . Hence we have

J̄2E
∣∣
Dν,θ

= λ2θ2(λ+ θ)2EΠ2
∣∣
Dν,θ

= λ4(θ2E)Π2
∣∣
Dν,θ

.

By Lemma 3.6.22 it follows that

J̄2E
∣∣
D

= 54
K3
θ

Π

∣∣∣∣
D

.

Similarly we have
J̄2C

∣∣
Dν,θ

= λ4(θ2C)Π2
∣∣
Dν,θ

.

By Lemma 3.6.21 we get

J̄2C
∣∣
D

= 10
K3
θ

Π

∣∣∣∣
D

,

and the statement follows.

For any H ∈ A let αH ∈ R be such that H = {x ∈ V |αH(x) = 0}. Similarly for
any H ∈ ADθ we choose αH ∈ R such that H = {x ∈ Dθ|αH(x) = 0}. It follows from
Corollary 3.5.15 and formula (3.101) that

Kθ|D ∼
∏

H∈ADθ
H/∈ADDθ

αH |D ∼ I(ADθ \ ADDθ)
∣∣
D
. (3.136)

Moreover we have that

Π|D ∼
∏
H∈A
H/∈AD

αH |D ∼ I(A \ AD)
∣∣
D
. (3.137)
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The above considerations produce the following reformulation of Theorem 3.6.23.

Theorem 3.6.24. The determinant of the metric ηD is proportional to

I(ADθ \ ADDθ)
3I(A \ AD)−1 (3.138)

on D.

Now we have to show that powers of distinct linear factors in (3.138) are non-negative
and are equal to the corresponding Coxeter numbers.

Theorem 3.6.25. The statement of Main Theorems 1 and 2 is true.

Proof. Let β ∈ R\RD and let R̂ = RD,β be the root system R̂ = R∩〈λ, ν, θ, β〉 with the
corresponding arrangement Â. Note that the root system R̂ is a rank 4 subsystem of R.
We have from formulae (3.136), (3.137) that the multiplicity of β|D in I(ADθ \ ADDθ)

∣∣
D
is

|ÂDθ \ ADDθ | = |ÂDθ | − 3, (3.139)

and the multiplicity of β|D in I(A \ AD)
∣∣
D
is

|Â \ AD| = |Â| − 6. (3.140)

Let us suppose firstly that R̂ is irreducible, that is R̂ = A4 or R̂ = D4. Then by
Proposition 3.5.14 we have |ÂDθ | = |Â| − h + 1, where h is the Coxeter number of R̂.
Hence formula (3.139) implies that

|ÂDθ \ ADDθ | = |Â| − h− 2 = h− 2,

and formula (3.140) implies
|Â \ AD| = 2h− 6.

Then it follows from Theorem 3.6.23 that the multiplicity of β|D in det ηD is h, as required.
Let us now suppose that R̂ is reducible, that is R̂ = RD t {±β} = A3 ×A1. Then we

get from formulae (3.139), (3.140) that

|ÂDθ \ ADDθ | = |ÂDθ | − 3 = 1,

and
|Â \ AD| = |Â| − 6 = 1,

Then it follows from Theorem 3.6.23 that the multiplicity of β|D in det ηD is 2, which is
the Coxeter number of A1, as required.
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Let us now consider the cases where the root system RD = R ∩ 〈λ, ν, θ〉 is reducible,
that is RD = A2 × A1 or RD = A3

1.
Stratum A2 ×A1. Let us assume that RD is a root subsystem of R of type A2 ×A1

and consider the corresponding Coxeter graph

A2 × A1 :
λ ν θ

Note that λ+ ν ∈ R+. The Jacobian can be represented as

J = λνθ(λ+ ν)Π, (3.141)

where Π is is proportional to I(A \ AD). Note that Π is non-zero on D. By Proposition
3.5.10, we have

Jλ = νθKλ, (3.142)

Jν = λθKν , (3.143)

Jθ = λν(λ+ ν)Kθ (3.144)

for some polynomials Kλ, Kν , Kθ ∈ C[x]. We assume without loss of generality that
n + σ−1(λ) is even, σ−1(ν) = σ−1(λ) + 1 and σ−1(θ) − σ−1(λ) is even. This leads to the
following expressions of components of the identity field e by Proposition 3.5.3.

Proposition 3.6.26. The λ, ν and θ components of the identity field e are given by

eλ =
Kλ

λ(λ+ ν)Π
, eν = − Kν

ν(λ+ ν)Π
, and eθ =

Kθ

θΠ
. (3.145)

Let us introduce J̄ = (λ+ν)Π so that J = λνθJ̄ . Recall that in these notations det ηD

is given by formula (3.112). The entries of the matrix A = (aij)
3
i,j=1 defined in (3.113) are

given as follows.

Proposition 3.6.27. All the matrix entries aij are well-defined generically on Dλ,θ.They
have the following form on Dλ,θ:

a11 =
2Kλ

νΠ
, a22 = 2∂ων

Kν

Π
− 4Kν

νΠ
, a33 =

2Kθ

Π
,

a12 =
Kλ

νΠ
− ∂ων

Kλ

Π
, a23 = −ν∂ων

Kθ

Π
, a13 = 0.

Proof. By Theorem 3.5.5 we have ηαβ = −∂ωαeβ − ∂ωβeα for α, β ∈ {λ, ν, θ}. Therefore
by Proposition 3.6.26 the statement follows.

For any H ∈ A let αH ∈ R be such that H = {x ∈ V |αH(x) = 0}. Similarly for any
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H ∈ ADγ , γ ∈ {θ, ν} we choose αH ∈ R such that H = {x ∈ Dγ|αH(x) = 0}. It follows
from Corollary 3.5.15 and formulae (3.143), (3.144) that

Kν |D ∼
∏

H∈ADν
H/∈ADDν

αH |D ∼ I(ADν \ ADDν )
∣∣
D
, (3.146)

and
Kθ|D ∼

∏
H∈ADθ
H/∈ADDθ

αH |D ∼ I(ADθ \ ADDθ)
∣∣
D

(3.147)

Moreover we have that

Π|D ∼
∏
H∈A
H/∈AD

αH |D ∼ I(A \ AD)
∣∣
D
. (3.148)

We obtain the following statement on det ηD.

Theorem 3.6.28. The determinant of the metric ηD is proportional to

I(ADν \ ADDν )
2I(ADθ \ ADDθ)I(A \ AD)−1 (3.149)

on D. The same is true with ν replaced with λ in (3.149).

Proof. By formula (3.112) we have det ηD = − J̄2 detA
∣∣
D
, where A is given by (3.113).

Therefore by Proposition 3.6.27

det ηD =
(
(a2

12 − a11a22)a33 + a11a
2
23

)
(λ+ ν)2Π2

∣∣
D

= 16
KλKνKθ

Π

∣∣∣∣
D

+ 2
K2
λKθ

Π

∣∣∣∣
D

.

By Proposition 3.5.16, we have Jλ
ν

= Jν
λ

on Dλ,ν and hence Kν |Dλ,ν = Kλ|Dλ,ν . Therefore
det ηD is proportional to Π−1K2

νKθ on D. The statement follows by formulae (3.146),
(3.147) and (3.148).

Let us now show that powers of distinct linear factors in (3.149) are non-negative and
are equal to the corresponding Coxeter numbers.

Theorem 3.6.29. The statement of Main Theorems 1 and 2 is true.

Proof. Let β ∈ R \ RD and let R̂ = RD,β be the rank 4 root system R̂ = R∩ 〈λ, ν, θ, β〉
with the corresponding arrangement Â. Let h be the Coxeter number of R̂. We have that
the multiplicity of β|D in I(ADν \ ADDν )

∣∣
D
is

|ÂDν \ ADDν | = |ÂDν | − 2, (3.150)
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since ADDν = {Dλ,ν , Dθ,ν}, and the multiplicity of β|D in I(ADθ \ ADDθ)
∣∣
D

|ÂDθ \ ADDθ | = |ÂDθ | − 3, (3.151)

since ADDθ = {Dλ,θ, Dν,θ, Dλ+ν,θ}. Similarly, the multiplicity of β|D in I(A \ AD)
∣∣
D
is

|Â \ AD| = |Â| − 4. (3.152)

Let us suppose firstly that R̂ is irreducible, that is R̂ = A4 or R̂ = D4. Then
|ÂDν | = |ÂDθ | = |Â| − h+ 1 [71]. Hence formula (3.150) implies that

|ÂDν \ ADDν | = |Â| − h− 1 = h− 1,

and formula (3.151) implies that

|ÂDθ \ ADDθ | = |Â| − h− 2 = h− 2.

Similarly formula (3.152) implies that

|Â \ AD| = 2h− 4.

Then it follows from Theorem 3.6.28 that the multiplicity of β|D in det ηD is h, as required.
Let us now suppose that R̂ is reducible. If R̂ = A2 × A2 then we get that ÂDν =

{Dλ,ν , Dθ,ν , Dθ+εβ,ν , Dβ,ν}, where either ε = 1 or ε = −1, ÂDθ = {Dλ,θ, Dν,θ, Dλ+ν,θ, Dβ,θ}
and |Â| = 6. Therefore, |ÂDν | = |ÂDθ | = 4. It follows by formulae (3.150), (3.151), (3.152)
and Theorem 3.6.28 that the multiplicity of β|D in det ηD is 3, which is the Coxeter number
of A2, as required. Let us now consider the case where R̂ takes the form

R̂ = (R∩ 〈β, λ, ν〉) t {±θ} = A3 × A1,

and let Ã be the arrangement corresponding to A3. Hence |ÂDν | = |ÃDν | + 1 = 4,
|ÂDθ | = |Ã| = 6 and |Â| = 7. It follows by formulae (3.150), (3.151), (3.152) and
Theorem 3.6.28 that the multiplicity of β|D in det ηD is 4, which is the Coxeter number
of A3, as required. Finally, let us consider the case where

R̂ = RD t {±β} = A2 × A1 × A1.

Then we have that ÂDν = {Dλ,ν , Dθ,ν , Dβ,ν}, ÂDθ = {Dλ,θ, Dν,θ, Dλ+ν,θ, Dβ,θ} and |Â| =

5. Then it follows by formulae (3.150), (3.151), (3.152) and Theorem 3.6.28 that the
multiplicity of β|D in det ηD is 2, which is the Coxeter number of A1, as required. The
statement follows.
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Stratum A3
1. Let us assume that RD is a root subsystem of R of type A3

1 and consider
the corresponding Coxeter graph

A3
1 :

λ ν θ

The Jacobian J can be represented as

J = λνθΠ, (3.153)

where Π is proportional to I(A \ AD) and it is non-zero on D. By Proposition 3.5.10 we
have

Jλ = νθKλ, (3.154)

Jν = λθKν , (3.155)

Jθ = λνKθ, (3.156)

for some polynomials Kλ, Kν , Kθ ∈ C[x]. We assume without loss of generality that n +

σ−1(γ) is even for any γ ∈ {λ, ν, θ}. This leads to the following expressions of components
of the identity field e by Proposition 3.5.3.

Proposition 3.6.30. The λ, ν and θ components of the identity field e are given by

eλ =
Kλ

λΠ
, eν =

Kν

νΠ
, and eθ =

Kθ

θΠ
. (3.157)

Let us introduce J̄ = Π so that J = λνθJ̄ . Recall that in these notations det ηD is
given by formula (3.112). The entries of the matrix A = (aij)

3
i,j=1 defined in (3.113) are

given as follows.

Proposition 3.6.31. All the matrix entries aij (1 ≤ i, j ≤ 3) are well-defined generically
on D. They have the following form on D:

a11 =
2Kλ

Π
, a22 =

2Kν

Π
, a33 =

2Kθ

Π
, aij = 0, if i 6= j.

Proof. By Theorem 3.5.5 we have ηαβ = −∂ωαeβ − ∂ωβeα for α, β ∈ {λ, ν, θ}. Therefore
by Proposition 3.6.30 the statement follows.

For any H ∈ A let αH ∈ R be such that H = {x ∈ V |αH(x) = 0}. Similarly for any
H ∈ ADγ , γ ∈ {λ, ν, θ} we choose αH ∈ R such that H = {x ∈ Dγ|αH(x) = 0}. It follows
from Corollary 3.5.15 and formulae (3.154), (3.155), (3.156) that

Kγ|D ∼
∏

H∈ADγ
H/∈ADDγ

αH |D ∼ I(ADγ \ ADDγ )
∣∣∣
D
. (3.158)
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Moreover we have that

Π|D ∼
∏
H∈A
H/∈AD

αH |D ∼ I(A \ AD)
∣∣
D
. (3.159)

We obtain the following statement on det ηD.

Theorem 3.6.32. The determinant of the metric ηD is proportional to

I(A \ AD)−1
∏

γ∈{λ,ν,θ}

I(ADγ \ ADDγ ). (3.160)

Proof. By formula (3.112) we have det ηD = − J̄2 detA
∣∣
D
, where A is given by formula

(3.113). Therefore by Proposition 3.6.31 we get

det ηD = −J̄2 detA
∣∣
D

= −a11a22a33Π2
∣∣
D

= − 8KλKνKθ

Π

∣∣∣∣
D

,

and the statement follows by formulae (3.158) and (3.159).

We now show that powers of distinct linear factors in formula (3.160) are non-negative
and are equal to the corresponding Coxeter numbers.

Theorem 3.6.33. The statement of Main Theorems 1 and 2 is true.

Proof. Let β ∈ R \RD and let R̂ = RD,β be the rank 4 root system R̂ = R∩ 〈λ, ν, θ, β〉.
Let Â be the corresponding arrangement. Note that |ADDλ| = |ADDν | = |ADDθ | = 2. Then

we have from formulae (3.158) that the multiplicity of β|D in I(ADγ \ ADDγ )
∣∣∣
D

for any
γ ∈ {λ, ν, θ} is

|ÂDγ \ ADDγ | = |ÂDγ | − 2. (3.161)

Similarly, we have from formula (3.159) that the multiplicity of β|D in I(A \ AD)
∣∣
D
is

|Â \ AD| = |Â| − 3. (3.162)

Let us consider firstly the case where R̂ is irreducible. Then |ÂDγ | = |Â| − h + 1 for
any γ ∈ {λ, ν, θ}, where h is the Coxeter number of R̂. Hence formula (3.161) implies that

|ÂDγ \ ADDγ | = h− 1

and formula (3.162) implies that

|Â \ AD| = 2h− 3.

Then it follows from Theorem 3.6.32 that the multiplicity of β|D in det ηD is h, as required.
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Let us now consider the case where R̂ = A3 × A1. We can assume without loss of
generality that

R̂ = (R∩ 〈λ, ν, β〉) t {±θ} = A3 × A1.

Let Ã be the arrangement corresponding to A3. Then we have |ÂDγ | = |ÃDγ |+ 1 = 4, for
any γ ∈ {λ, ν} and |ÂDθ | = |Ã| = 6. Note that |Â| = 7. Then it follows from Theorem
3.6.32 and formulae (3.161), (3.162) that the multiplicity of β|D in det ηD is 4, which is
the Coxeter number of A3, as required.

Let us now suppose that R̂ = A2 × A2
1 and assume without loss of generality that

R̂ = (R∩ 〈λ, β〉) t {±ν} t {±θ} = A2 × A1 × A1.

Then it follows that ÂDλ = {Dβ,λ, Dν,λ, Dθ,λ}, ÂDν = {Dβ,ν , Dλ,ν , Dθ,ν , Dλ+εβ,ν} and
ÂDθ = {Dβ,θ, Dλ,θ, Dν,θ, Dλ+εβ,θ}, where either ε = 1 or ε = −1. Hence |ÂDλ| = 3

and |ÂDγ | = 4, for any γ ∈ {ν, θ}. Note that |Â| = 5. Then it follows from Theorem
3.6.32 and formulae (3.161), (3.162) that the multiplicity of β|D in det ηD is 3, which is
the Coxeter number of A2, as required.

Finally, let us consider the case where R̂ = RD t {±β} = A4
1. Then we get |ÂDλ| =

|ÂDν | = |ÂDθ | = 3 and |Â| = 4. It follows from Theorem 3.6.32 and formulae (3.161),
(3.162) that the multiplicity of β|D in det ηD is 2, which is the Coxeter number of A1, as
required. Thus the statement follows.

3.6.5 Codimension 4

In this section we consider (n − 4)-dimensional strata for simply laced Coxeter groups.
Thus, we obtain factorisation formulae for the determinant of the restricted Saito metric
for strata of type A4, D4, A3 × A1, A2 × A2, A2 × A2

1 and A4
1.

Let R+ be the positive root system of the root systems En, n = 6, 7, 8. Note that the
following analysis works in fact for any irreducible simply laced root system. Let µ, λ, ν, θ
be simple roots and consider the corresponding stratum D = Dµ,λ,ν,θ. We have a number
of cases depending on the type of stratum D.

Stratum A4. Let RD = R ∩ 〈µ, λ, ν, θ〉 be a subsystem of R of type A4. Let us
consider the corresponding Coxeter graph

A4 :
µ λ ν θ

(3.163)

By Proposition 3.5.10, in the notation of (3.55) we have

Jµ = λνθ(λ+ ν)(ν + θ)(λ+ ν + θ)K̃µ (3.164)
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for some K̃µ ∈ C[x]. Note that the polynomials Jλ, Jν , Jθ and J are still given by formulae
(3.98)-(3.101) and thus it follows from Proposition 3.5.10 and the form of the graph (3.163)
that

Π = µ(µ+ λ)(µ+ λ+ ν)(µ+ λ+ ν + θ)Π̃, (3.165)

Kλ = µK̃λ, (3.166)

Kν = µ(µ+ λ)K̃ν , (3.167)

Kθ = µ(µ+ λ)(µ+ λ+ ν)K̃θ, (3.168)

for some K̃λ, K̃ν , K̃θ, Π̃ ∈ C[x]. Note that the polynomial Π̃ is proportional to I(A \ AD)

and is non-zero on D, and K̃α is proportional to I(ADα)I(ADDα)−1 on Dα, for α = µ, θ.
The ordering of the simple roots λ, ν and θ is assumed to be the same as in the case
RD = A3. We also assume without loss of generality that σ−1(µ) = σ−1(λ) − 1 and that
simple roots µ, λ, ν, θ are taken consecutively in this order in the Jacobi matrix.

In the following Lemmas 3.6.34–3.6.38 we study the structure of the polynomials K̃ν

and K̃λ.

Lemma 3.6.34. We have

K̃ν

∣∣∣
Dν

= λ(µ+ λ)K̃θ + θB̃
∣∣∣
Dν
, (3.169)

for some polynomial B̃ such that

B̃
∣∣∣
Dµ,ν

= λF1 + θF2|Dµ,ν , F1, F2 ∈ C[x]. (3.170)

One also has
F2|Dµ,ν,θ = K̃θ

∣∣∣
Dµ,ν,θ

, (3.171)

and
F1|D = 2K̃θ

∣∣∣
D
. (3.172)

Proof. By Proposition 3.5.16, we have Jν
θ

= Jθ
ν

on Dν,θ, hence Kν |Dν,θ = λKθ|Dν,θ . Thus
using equalities (3.167), (3.168) we have

K̃ν

∣∣∣
Dν,θ

= λ(µ+ λ)K̃θ

∣∣∣
Dν,θ

. (3.173)

Therefore, relation (3.169) follows.
To derive formula (3.170), let γ = µ+λ+ ν+ θ and δ = λ+ ν+ θ. By Corollary 3.5.15

we get
Jν |Dν = λθµ(µ+ λ)K̃ν

∣∣∣
Dν

= γδF |Dν = (µ+ λ+ θ)(λ+ θ)F |Dν ,
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for some polynomial F . It follows that K̃ν is divisible by (µ+ λ+ θ)(λ+ θ) on Dν , that is

K̃ν

∣∣∣
Dν

= (µ+ λ+ θ)(λ+ θ)F̂
∣∣∣
Dν
,

for some polynomial F̂ . Hence, K̃ν

∣∣∣
Dµ,ν

= (λ+ θ)2F̂
∣∣∣
Dµ,ν

. By (3.169) we get that

θB̃
∣∣∣
Dµ,ν

= λ2(F̂ − K̃θ) + 2λθF̂ + θ2F̂
∣∣∣
Dµ,ν

. (3.174)

Hence K̃θ − F̂ is divisible by θ on Dµ,ν , so we let

K̃θ

∣∣∣
Dµ,ν

= F̂ + θG
∣∣∣
Dµ,ν

, (3.175)

where G ∈ C[x]. Equality (3.170) then follows from (3.174), (3.175) with F1 = λG + 2F̂

and F2 = F̂ . Relations (3.171) and (3.172) now follow by further restrictions to D.

We relate the polynomial B given by (3.105) and the polynomial B̃ in the following
lemma.

Lemma 3.6.35. We have
B|Dν = µ(µ+ λ)B̃

∣∣∣
Dν
, (3.176)

and furthermore,
B

Π

∣∣∣∣
Dν,µ,θ

= λ−1F1

Π̃

∣∣∣∣
Dν,µ,θ

, (3.177)

where we restrict on Dν,µ,θ by first restricting to ν = 0, then to µ = 0, and then on θ = 0.

Proof. Combining formulae (3.105), (3.167) and (3.168) we have

µ(µ+ λ)K̃ν

∣∣∣
Dν

= λµ(µ+ λ)2K̃θ + θB
∣∣∣
Dν
. (3.178)

Relation (3.176) follows from the relations (3.169), (3.178). To obtain formula (3.177) we
first note that B

Π

∣∣
Dν

=
B|Dν
Π|Dν

. Thus, using formula (3.165) we have

B

Π

∣∣∣∣
ν=0
µ=0

=
B̃

λ(λ+ θ)Π̃

∣∣∣∣∣
ν=0
µ=0

, (3.179)

where we first restrict to ν = 0, and then to µ = 0. Formula (3.177) follows from (3.170)
and (3.179).

In what follows fix (α, α) = 2 for all α ∈ R. Let ξ ∈ R and let sξ denote the orthogonal
reflection with respect to the hyperplane ξ = 0. We have sξ : α 7→ α̂ = α − (α, ξ)ξ and
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hence
sξ : ∂α 7→ ∂α̂ = ∂α − (α, ξ)∂ξ.

We thus have
sξ : ∂αp(x) 7→ ∂α̂p(sξ(x)) = ∂α̂p(x), (3.180)

for p ∈ C[x]W . By Corollary 3.5.15, K̃λ can be represented as

K̃λ = P + λR, (3.181)

where P,R ∈ C[x] and P is divisible by γ = µ+ λ+ ν + θ and β = µ+ λ+ ν that is,

P = γβS, (3.182)

for some S ∈ C[x]. In the next few statements we study the behaviour of polynomials
P,R and K̃λ as well as K̃µ, K̃θ as one restricts to the strata Dµ,ν,θ and D. The required
result is formulated in Proposition 3.6.38. We need a few lemmas in order to establish
this proposition.

Lemma 3.6.36. We have

R|sλ(Dµ) = λ−1
[
(ν + λ+ θ)(ν + λ)sλ(K̃µ)− ν(ν + θ)S

]∣∣∣
sλ(Dµ)

, (3.183)

and
R|sλ(Dν) = λ−1

[
(µ+ λ)(µ+ θ)sλ(Q1)− µ(µ+ θ)S

]∣∣
sλ(Dν)

, (3.184)

where Q1 ∈ C[x].

Proof. Let us recall that Jλ = µνθ(ν + θ)K̃λ. By applying orthogonal reflectionn sλ we
have

sλ(Jλ) = (µ+ λ)(ν + λ)θ(ν + λ+ θ)sλ(K̃λ). (3.185)

Note that Jλ is the determinant of a matrix with entries of the form ∂αp for some simple
roots α and p ∈ C[x]W . We can assume without loss of generality that there exists a
simple root β 6= µ, λ, ν, θ such that

(β, α) =

{
0, α = µ, ν, θ,

−1 α = λ.

Then for any α ∈ ∆

sλα =


α, α 6= µ, λ, ν, β

λ+ α, α = µ, ν, β

−λ, α = λ.
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Formula (3.180) and linearity of determinants implies that

sλ(Jλ) = Jµ + Jλ + Jν + Jβ.

Then from above and (3.185) we get

Jµ + Jλ + Jν + Jβ = (µ+ λ)(ν + λ)θ(ν + λ+ θ)sλ(K̃λ). (3.186)

Restricting equality (3.186) on Dµ we have by Proposition 3.5.10

Jµ|Dµ = λθ(ν + λ)(ν + λ+ θ)sλ(K̃λ)
∣∣∣
Dµ
, (3.187)

where Jµ is given by formula (3.164). Therefore

ν(ν + θ)K̃µ

∣∣∣
Dµ

= sλ(K̃λ)
∣∣∣
Dµ
. (3.188)

Applying sλ to equality (3.188) we obtain

K̃λ

∣∣∣
sλ(Dµ)

= (ν + λ)(ν + λ+ θ)sλ(K̃µ)
∣∣∣
sλ(Dµ)

. (3.189)

Notice that sλ(Dµ) = Dµ+λ and γβ|sλ(Dµ)
= ν(ν + θ)|sλ(Dµ)

. Therefore using (3.189) and
(3.182), we solve for R to obtain (3.183). Similarly, restricting equality (3.186) on Dν we
obtain

Jν |Dν = λθ(µ+ λ)(λ+ θ)sλ(K̃λ)
∣∣∣
Dν
. (3.190)

Recall that Jν = λθµ(µ+ λ)K̃ν . It follows from (3.190) that

µK̃ν

∣∣∣
Dν

= (λ+ θ)sλ(K̃λ)
∣∣∣
Dν
. (3.191)

By Corollary 3.5.15, K̃ν can be represented as

K̃ν = (µ+ λ+ ν + θ)(λ+ ν + θ)Q1 + νQ2, (3.192)

for some Q1, Q2 ∈ C[x]. Applying sλ to equality (3.191), we find

K̃λ

∣∣∣
sλ(Dν)

= (µ+ λ)(θ − λ)−1sλ(K̃ν)
∣∣∣
sλ(Dν)

. (3.193)

We get from (3.192) that

sλ(K̃ν)
∣∣∣
sλ(Dν)

= (µ+ θ)(θ − λ)sλ(Q1)|sλ(Dν) . (3.194)
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It follows from (3.193), (3.194) that

K̃λ

∣∣∣
sλ(Dν)

= (µ+ λ)(µ+ θ)sλ(Q1)|sλ(Dν) . (3.195)

Using (3.181), (3.189) and (3.195) we solve for R to obtain (3.184).

Let us consider an orthonormal coordinate system yi, (1 ≤ i ≤ n) where a vector
y ∈ Cn has coordinates y1 = 1√

2
(µ + λ)(y), y2 = 1√

2
(ν + λ)(y), y3 = 1

2
(µ + ν)(y), y4 =

1
2
√

5
(µ+ 2λ+ 3ν + 4θ)(y). In the next lemma we will consider the Taylor expansion of the

polynomial R in the variables yi (1 ≤ i ≤ 4). Note that D = {y|y1 = y2 = y3 = y4 = 0}.

Lemma 3.6.37. We have
R|Dµ,ν,θ = 2Sλ|Dµ,ν,θ + Õ, (3.196)

where Õ is a polynomial in λ, y5, . . . , yn which is divisible by λ2. Furthermore,(
λ−1R

∣∣
Dµ,ν,θ

)∣∣∣
D

= 2S|D = 2K̃µ

∣∣∣
D
. (3.197)

Proof. Consider restriction of the polynomial R on D by taking first y2 = 0. It follows
from (3.183) that

R|D = 0. (3.198)

This, together with (3.181) implies that K̃λ is divisible by λ2 onDµ,ν,θ. Let us now compute
the first order terms in the Taylor expansion of R. We have

∂y1R|y2=0 =
1√
2
∂µ+λ R|sλ(Dν) . (3.199)

Note that (µ+ λ, λ) = (µ+ λ, µ) = 1. Therefore by formula (3.184) we have

∂µ+λ R|sλ(Dν) = − λ−2
[
(µ+ λ)(µ+ θ)sλ(Q1)− µ(µ+ θ)S

]∣∣
sλ(Dν)

+ λ−1
[
2(µ+ θ)sλ(Q1) + (µ+ λ)∂µ+λ

(
(µ+ θ)sλ(Q1)

)
− (µ+ θ)S − µS

−µ(µ+ θ)∂µ+λS
]∣∣
sλ(Dν)

. (3.200)

We are going to restrict equality (3.200) onto {y1 = y2 = y4 = 0} which is equivalent to
µ = ν = −2θ = −λ. We get

∂µ+λR|y1=y2=y4=0 =
S

2
+ λ−1

[
− λsλ(Q1) +

3S

2
λ− λ2

2
∂µ+λS

]∣∣∣∣
y1=y2=y4=0

(3.201)

= 2S − sλ(Q1)− λ

2
∂µ+λS

∣∣∣∣
y1=y2=y4=0

. (3.202)
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Finally, restricting on {y3 = 0} and applying formula (3.199) we obtain

∂y1R|D =
1√
2

(2S −Q1)

∣∣∣∣
D

. (3.203)

Further on, we have

∂y2 R|y1=0 =
1√
2
∂ν+λ R|sλ(Dµ) . (3.204)

Note that (ν + λ, λ) = (ν + λ, ν) = 1, and (ν + λ, ν + θ) = 0. Then by formula (3.183) we
have

∂ν+λ R|sλ(Dµ) = − λ−2
[
(ν + λ+ θ)(ν + λ)sλ(K̃µ)− ν(ν + θ)S

]∣∣∣
sλ(Dµ)

+ λ−1
[
2(ν + λ+ θ)sλ(K̃µ) + (ν + λ)∂ν+λ

(
(ν + λ+ θ)sλ(K̃µ)

)
−(ν + θ)S − ν(ν + θ)∂ν+λS

]∣∣
sλ(Dµ)

. (3.205)

Restricting equality (3.205) onto {y1 = y2 = y4 = 0}, we obtain

∂ν+λR|y1=y2=y4=0 =
S

2
+ λ−1

[
λsλ(K̃µ) +

S

2
λ− 1

2
λ2∂ν+λS

]∣∣∣∣
y1=y2=y4=0

= S + sλ(K̃µ)− 1

2
λ∂ν+λS

∣∣∣∣
y1=y2=y4=0

. (3.206)

Finally, restricting on {y3 = 0} and applying formula (3.204) we have

∂y2R|D =
1√
2

(S + K̃µ)

∣∣∣∣
D

. (3.207)

Further on, we have

∂y4 R|y1=0 =
1

2
√

5
(∂µ + 2∂λ + 3∂ν + 4∂θ) R|sλDµ .

Note that

(µ+ 2λ+ 3ν + 4θ, α) =

{
0, α = ν, λ,

5, α = θ.
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Then by formula (3.183) we have

2
√

5 ∂y4R|y1=0 = (∂µ + 2∂λ + 3∂ν + 4∂θ) λ
−1
[
(ν + λ+ θ)(ν + λ)sλ(K̃µ)− ν(ν + θ)S

]∣∣∣
sλ(Dµ)

= (ν + λ)λ−1(∂µ + 2∂λ + 3∂ν + 4∂θ)
[
(ν + λ+ θ)sλ(K̃µ)

]∣∣∣
sλ(Dµ)

−

− νλ−1(∂µ + 2∂λ + 3∂ν + 4∂θ)(ν + θ)S
∣∣
sλ(Dµ)

=

= (ν + λ)λ−1
[
5sλ(K̃µ) + (ν + λ+ θ)(∂µ + 2∂λ + 3∂ν + 4∂θ)sλ(K̃µ)

]∣∣∣
sλ(Dµ)

−

− νλ−1
[
5S + (ν + θ)(∂µ + 2∂λ + 3∂ν + 4∂θ)S

]∣∣
sλ(Dµ)

. (3.208)

By restricting (3.208) on y2 = 0 and then further on D we get

∂y4R|D =

√
5

2
S

∣∣∣∣∣
D

. (3.209)

Let us now study the polynomial Q1 on D. From (3.200) we get

∂y1 R|sλ(Dν)

∣∣∣
µ+λ=µ+θ=0

=
1√
2
S

∣∣∣∣
µ+λ=µ+θ=ν+λ=0

. (3.210)

Combining this formula with (3.203) on D we obtain

Q1|D = S|D . (3.211)

Similarly, restricting (3.205) on ν + λ = θ = 0 we have

∂ν+λ R|sλ(Dµ)

∣∣∣
ν+λ=θ=0

= 2S − λ∂ν+λS|ν+λ=θ=λ+µ=0 . (3.212)

Combining this with formula (3.206) we obtain that

S|D = K̃µ

∣∣∣
D
, (3.213)

which gives the second required equality in (3.197).
Let us now find R on Dµ,ν,θ using its Taylor series on D. Coordinates y1, . . . , y4 on the

space Dµ,ν,θ satisfy equations 

y1 = y2 =
λ√
2

y4 =

√
2

5
y1 =

λ√
5

y3 = 0.
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We have that

R = R|D + y1∂y1R|D + y2∂y2R|D + y3 ∂y3R|D + y4 ∂y4R|D +O, (3.214)

where O denotes terms of degree at least 2 in the variables y1, . . . , y4. From equations
(3.203), (3.207), (3.209), (3.211) and (3.213) we have

∂y1 R|D = 1√
2
S|D ,

∂y2 R|D =
√

2 S|D ,
∂y4 R|D =

√
5

2
S|D .

(3.215)

By (3.198), (3.215) Taylor expansion (3.214) takes the required form (3.196) on the space
(3.6.5). The first equality in formula (3.197) follows.

Proposition 3.6.38. We have that

K̃λ

∣∣∣
Dµ,ν,θ

= λ2Q
∣∣
Dµ,ν,θ

, (3.216)

for some Q ∈ C[x] such that

Q|D = 3K̃θ

∣∣∣
D

= 3K̃µ

∣∣∣
D
. (3.217)

Proof. By equalities (3.181), (3.182) and (3.196) we have

K̃λ

∣∣∣
Dµ,ν,θ

= 3Sλ2
∣∣
Dµ,ν,θ

+ Ô,

where Ô denotes a polynomial divisible by λ3. We are now going to show that S|D = K̃θ

∣∣∣
D
.

By Proposition 3.5.16 we have

θK̃λ

∣∣∣
Dν,λ

= µK̃ν

∣∣∣
Dν,λ

. (3.218)

By formula (3.181) we have K̃λ

∣∣∣
Dν,λ

= µ(µ+ θ)S|Dν,λ , therefore (3.218) gives

θ(µ+ θ)S|Dν,λ = K̃ν

∣∣∣
Dν,λ

. (3.219)

By Lemma 3.6.34 K̃ν

∣∣∣
Dν,λ,µ

= θ2F2|Dν,λ,µ . Hence (3.219) implies that S|Dν,λ,µ = F2|Dν,λ,µ .

It follows by formula (3.171) that

S|D = K̃θ

∣∣∣
D
. (3.220)
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Therefore, taking into account Lemma 3.6.37 the statement follows.

The following proposition follows from formulae (3.164) and (3.165).

Proposition 3.6.39. The µ component of the identity field e, is given by

eµ =
K̃µ

µ(µ+ λ)(µ+ λ+ ν)(µ+ λ+ ν + θ)Π̃
, (3.221)

where K̃µ, Π̃ are given by formulae (3.164), (3.165).

Let us define the polynomial Ĵ = (µλνθ)−1J , where J is given by (3.98). We specialize
the formula for the determinant of the restricted Saito metric given by Theorem 3.5.9 to
the case of codimension 4 strata. We rearrange det ηD as

det ηD = −

∣∣∣∣∣∣∣∣∣∣
ηµµ ηµλ ηµν ηµθ

ηµλ ηλλ ηλν ηλθ

ηµν ηλν ηνν ηνθ

ηµθ ηλθ ηνθ ηθθ

∣∣∣∣∣∣∣∣∣∣
J2
∣∣
D

= −

∣∣∣∣∣∣∣∣∣∣
µ2ηµµ µληµλ µνηµν µθηµθ

µληµλ λ2ηλλ λνηλν λθηλθ

µνηµν λνηλν ν2ηνν νθηνθ

µθηµθ λθηλθ νθηνθ θ2ηθθ

∣∣∣∣∣∣∣∣∣∣
Ĵ2
∣∣∣
D
.

Let Â = (âij)
3
i,j=0 be the matrix

Â =


µ2ηµµ µληµλ µνηµν µθηµθ

µληµλ λ2ηλλ λνηλν λθηλθ

µνηµν λνηλν ν2ηνν νθηνθ

µθηµθ λθηλθ νθηνθ θ2ηθθ

 . (3.222)

Thus
det ηD = − Ĵ2 det Â

∣∣∣
D
. (3.223)

Proposition 3.6.40. The matrix entries â0j have the following form on Dµ,ν:

â00 = µ2ηµµ =
2K̃µ

λ2(λ+ θ)Π̃
, (3.224)

â01 = µληµλ = −λ∂ωλ
( K̃µ

λ2(λ+ θ)Π̃

)
, (3.225)

â02 = µνηµν = 0, (3.226)

â03 = µθηµθ = − θ

λ2
∂ωθ
( K̃µ

(λ+ θ)Π̃

)
. (3.227)

Furthermore, âij = aij on Dµ,ν, for i, j = 1, 2, 3 where aij are given by Proposition 3.6.16.
In particular, the entries âij are well-defined generically on Dµ,ν for 0 ≤ i, j ≤ 3.
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Proof. By Theorem 3.5.5 we have ηαβ = −∂ωαeβ − ∂ωβe
α for α, β ∈ {µ, λ, ν, θ}. Then

formulae (3.225) and (3.227) follow by Propositions 3.6.13, 3.6.39 immediately. Similarly,
it is easy to show that â02 = 0. Let us prove formula (3.224). We have

µ2ηµµ = −2µ2∂ωµ
( K̃µ

µ(µ+ λ)(µ+ λ+ ν)(µ+ λ+ ν + θ)Π̃

)
.

By Leibniz rule and taking the limit µ(x), ν(x) → 0 we obtain the required formula.
It follows from established formulae (3.224)–(3.227) that entries â0j, 0 ≤ j ≤ 3, are
well-defined generically on Dµ,ν . Note that polynomials Kλ, Kν , Kθ given by formulae
(3.165)–(3.168) are divisible by µ. Hence the entries âij = aij, 1 ≤ i, j ≤ 3, are also
well-defined generically on Dµ,ν by Proposition 3.6.16.

We are going to find det ηD given by formula (3.223) by restricting the right-hand side
to Dµ,ν first, then to θ = 0, and then to λ = 0. Let us denote by Mij the (i, j) minor of
Â and consider a row expansion for det Â,

det Â = â00M00 − â01M01 + â02M02 − â03M03, (3.228)

where M00 = detA and A is given by (3.113). By Proposition 3.6.40 â02|Dµ,ν = 0 and M0j

(0 ≤ j ≤ 3) is regular on Dµ,ν . Hence

det Â
∣∣∣
Dµ,ν

= â00 detA− â01M01 − â03M03|Dµ,ν . (3.229)

Let us note that Ĵ
∣∣∣
Dµ,ν

is divisible by θ. Further on, we observe that â03|Dµ,ν,θ = 0

by Proposition 3.6.40 and that θ2M03 is well-defined generically on Dµ,ν,θ by Propositions
3.6.16, 3.6.40. Therefore we have

θ2 det Â
∣∣∣
Dµ,ν,θ

= θ2
(
â00 detA− â01M01

)∣∣
Dµ,ν,θ

. (3.230)

By Propositions 3.6.16, 3.6.40 we get that

θ2M01

∣∣
Dµ,ν,θ

= θ2â01(â22â33 − â2
23)
∣∣
Dµ,ν,θ

. (3.231)

Lemma 3.6.41. We have
Kλ

Π

∣∣∣∣
Dµ,ν,θ

=
Q

λΠ̃

∣∣∣∣
Dµ,ν,θ

, (3.232)

where Q is given by Lemma 3.6.38.
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Proof. By formulae (3.165), (3.166) we have

Kλ

Π
=

K̃λ

(µ+ λ)(µ+ λ+ ν)(µ+ λ+ ν + θ)Π̃
.

Hence, Kλ
Π

∣∣
Dµ,ν,θ

= K̃λ
λ3Π̃

∣∣∣
Dµ,ν,θ

and formula (3.232) follows by Lemma 3.6.38.

Now, let us observe that (ν+θ)−1 Ĵ
∣∣∣
Dµ,ν,θ

is divisible by λ5 and that â00|Dµ,ν,θ has third
order pole at λ = 0.

Lemma 3.6.42. We have

λ10θ2 det Â
∣∣∣
D

= c
K̃4
θ

Π̃4

∣∣∣∣∣
D

. (3.233)

where c ∈ C×.

Proof. We calculate θ2λ10 det Â
∣∣∣
D

by making use of expression (3.230). Restrictions of
detA on Dν and θ2 detA on Dν,θ were found in Subsection 3.6.4 on codimension 3 strata
(type A3 case). The corresponding terms z and θ2E as well as their restrictions on Dν and
Dν,θ are regular at µ = 0. Therefore we will be using results of Subsection 3.6.4 on type
A3 with further restriction to µ = 0, which we will be doing after restriction to ν = 0 and
before restriction to θ = 0. Using formula (3.120) we have

θ2 detA
∣∣
Dν,µ,θ

= z + θ2E
∣∣
Dν,µ,θ

. (3.234)

Let us find an expression for the restriction z|Dν,µ,θ . By formulae (3.165), (3.168) we

have Kθ
Π

∣∣
Dν,µ,θ

= K̃θ
λΠ̃

∣∣∣
Dν,µ,θ

. By Lemma 3.6.35 we have B
Π

∣∣
Dν,µ,θ

= F1

λΠ̃

∣∣∣
Dν,µ,θ

, and hence

∂ωλ
B
Π

∣∣
Dν,µ,θ

= ∂ωλ
F1

λΠ̃

∣∣∣
Dν,µ,θ

. Therefore by Lemma 3.6.21 we get

z|Dν,µ,θ =
2

λ7

(
4F1K̃

2
θ

Π̃3
− 2λ2F1K̃θ

Π̃2
∂ωλ

K̃θ

λΠ̃
− 3λ2K̃2

θ

Π̃2
∂ωλ

F1

λΠ̃
(3.235)

− 2λ4F1

Π̃

(
∂ωλ

K̃θ

λΠ̃

)2
+

3λ4K̃θ

Π̃

(
∂ωλ

F1

λΠ̃

)(
∂ωλ

K̃θ

λΠ̃

))∣∣∣∣
Dν,µ,θ

+
2F1

λ3Π̃

(
∂ωλ

K̃θ

λΠ̃
− K̃θ

λ2Π̃

)2
∣∣∣∣
Dν,µ,θ

.

By Lemmas 3.6.22 and 3.6.41 we get

θ2E
∣∣
Dν,µ,θ

= −18K̃2
θ

λ2Π̃2
∂ωλ
( Q

λ4Π̃

)∣∣∣∣
Dν,µ,θ

. (3.236)
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Note that formulae (3.235), (3.236) lead to the following expressions on D:

λ7z
∣∣
D

= 36
F1K̃

2
θ

Π̃3

∣∣∣∣∣
D

, λ7θ2E
∣∣
D

= 72
QK̃2

θ

Π̃3
. (3.237)

It follows from (3.172), (3.217) that

λ7(z + θ2E)
∣∣
D

= 288
K̃3
θ

Π̃3

∣∣∣∣∣
D

. (3.238)

By Proposition 3.6.40 we have λ3â00|Dµ,ν,θ = 2 K̃µ
Π̃

∣∣∣
Dµ,ν,θ

. Therefore formulae (3.238) and

(3.217) imply that

θ2λ10â00 detA
∣∣
D

= 576
(K̃θ

Π̃

)4

∣∣∣∣∣
D

. (3.239)

Now we would like to simplify remaining terms in (3.230), see also (3.231). By Proposition
3.6.40 we get

â01|Dµ,ν,θ =
3

λ3

K̃µ

Π̃
− 1

λ2
∂ωλ

K̃µ

Π̃

∣∣∣∣∣
Dµ,ν,θ

.

Hence

λ6â2
01

∣∣
D

= 9
K̃2
µ

Π̃2

∣∣∣∣∣
D

. (3.240)

By Proposition 3.6.16 (in the notations of Proposition 3.6.40) and making use of formulae
(3.165), (3.167), (3.168) we get

θ2(â22â33 − â2
23)
∣∣
Dµ,ν,θ

= − 8

λ6

K̃νK̃θ

Π̃2
− 1

λ8

K̃2
ν

Π̃2

∣∣∣∣∣
Dµ,ν,θ

.

By (3.169) we get K̃ν

∣∣∣
Dµ,ν,θ

= λ2K̃θ

∣∣∣
Dµ,ν,θ

, therefore

λ4θ2(â22â33 − â2
23)
∣∣
D

= −9
K̃2
θ

Π̃2

∣∣∣∣∣
D

. (3.241)

Since K̃µ

∣∣∣
D

= K̃θ

∣∣∣
D
by Lemma 3.6.38 it follows by multiplying (3.240) with (3.241) that

λ10θ2â2
01(â22â33 − â2

23)
∣∣
D

= − 81
K̃4
θ

Π̃4

∣∣∣∣∣
D

. (3.242)

Substituting formulae (3.239) and (3.242) into the expression (3.230) for det Â we get the
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statement.

Theorem 3.6.43. The determinant of the metric ηD is proportional to

I(ADθ \ ADDθ)
4I(A \ AD)−2 (3.243)

on D. The same is true with θ replaced by µ in (3.243).

Proof. We have by formula (3.223)

det ηD = −Ĵ2 det Â
∣∣∣
D

= −
(
(λ3(λ+ θ)2θΠ̃)2 det Â

)∣∣∣
Dµ,ν,θ

∣∣∣∣
λ=0

. (3.244)

By Lemma 3.6.42 we have

θ2 det Â
∣∣∣
Dµ,ν,θ

=
cK̃4

θ

λ10Π̃4
+
f

λ9

∣∣∣∣∣
Dµ,ν,θ

,

for some rational function f regular generically on Dµ,ν,θ. It follows from (3.244) that

det ηD = −
(
λ10Π̃2

( c

λ10

K̃4
θ

Π̃4
+

1

λ9
f
)∣∣
Dµ,ν,θ

)∣∣∣
λ=0

and thus det ηD is proportional to Π̃−2K̃4
θ on D. Then the statement follows by Corollary

3.5.15. Replacement of θ with µ is possible by (3.217).

Let us now show that the powers of distinct linear factors in (3.243) are non-negative
and are equal to the corresponding Coxeter numbers.

Theorem 3.6.44. The statement of Main Theorems 1 and 2 is true.

Proof. Let β ∈ R \RD and let R̂ = RD,β be the root system R̂ = R∩ 〈µ, λ, ν, θ, β〉 with
the corresponding arrangement Â. Note that the root system R̂ is a rank 5 subsystem of
R. The multiplicity of β|D in I(ADθ \ ADDθ)

∣∣
D
is

|ÂDθ \ ADDθ | = |ÂDθ | − 6, (3.245)

and the multiplicity of β|D in I(A \ AD)
∣∣
D
is

|Â \ AD| = |Â| − 10. (3.246)

Let us suppose firstly that R̂ is irreducible, that is R̂ = A5 or R̂ = D5. Then
|ÂDθ | = |Â| − h + 1, where h is the Coxeter number of R̂ [71]. Hence formula (3.245)
implies that

|ÂDθ \ ADDθ | = |Â| − h− 5 =
3h

2
− 5,
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and formula (3.246) implies

|Â \ AD| = 5h

2
− 10.

Then it follows from Theorem 3.6.43 that the multiplicity of β|D in det ηD is h, as required.
Let us now suppose that R̂ is reducible, that is R̂ = RD t {±β} = A4 ×A1. Then we

get from formulae (3.245), (3.246) that

|ÂDθ \ ADDθ | = |ÂDθ | − 6 = 1,

and
|Â \ AD| = |Â| − 10 = 1.

Then it follows from Theorem 3.6.43 that the multiplicity of β|D in det ηD is 2, which is
the Coxeter number of A1, as required.

Stratum D4. Let RD = R ∩ 〈µ, λ, ν, θ〉 be a subsystem of R of type D4. Let us
consider the corresponding Coxeter graph

D4 :
λ ν

µ

θ

(3.247)

Notice that

λ+ ν, ν + θ, ν + µ, λ+ ν + µ, λ+ ν + θ, µ+ ν + θ, µ+ λ+ ν + θ, µ+ λ+ 2ν + θ ∈ R+.

The Jacobian J can be represented as

J = λνθµ(λ+ ν)(ν + θ)(ν + µ)(λ+ ν + θ)(λ+ ν + µ)×

× (ν + θ + µ)(λ+ ν + θ + µ)(λ+ 2ν + θ + µ)Π, (3.248)

where Π ∈ C[x] is proportional to I(A\AD) and is non-zero on D. By Proposition 3.5.10
and the form of the graph (3.247) we get

Jλ = νθµ(ν + µ)(ν + θ)(ν + θ + µ)Kλ, (3.249)

Jν = λθµKν , (3.250)

Jθ = λνµ(λ+ ν)(ν + µ)(λ+ ν + µ)Kθ, (3.251)

Jµ = λνθ(λ+ ν)(ν + θ)(λ+ ν + θ)Kµ, (3.252)
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for some Kλ, Kν , Kθ, Kµ ∈ C[x]. We assume without loss of generality that the ordering
of simple roots is such that n + σ−1(α) is odd if α ∈ {ν, µ} and that n + σ−1(α) is even
if α ∈ {λ, θ}. Furthermore, we assume that simple roots λ, ν, θ, µ are taken consecutively
in this order in the Jacobi matrix. It is convenient to define polynomials Sα ∈ C[x],
α = λ, ν, θ, µ as follows:

Sλ = λ(λ+ ν)(λ+ ν + θ)(λ+ ν + µ)(λ+ ν + θ + µ)(λ+ 2ν + θ + µ),

Sν = ν(λ+ ν)(ν + θ)(ν + µ)(λ+ ν + θ)(λ+ ν + µ)(ν + θ + µ)(λ+ ν + θ + µ)×

× (λ+ 2ν + θ + µ),

Sθ = θ(ν + θ)(λ+ ν + θ)(ν + θ + µ)(λ+ ν + θ + µ)(λ+ 2ν + θ + µ),

Sµ = µ(ν + µ)(λ+ ν + µ)(ν + θ + µ)(λ+ ν + θ + µ)(λ+ 2ν + θ + µ).

The following statement follows from formulae (3.248)–(3.252) and Proposition 3.5.3.

Proposition 3.6.45. The λ, ν, θ, µ components of the identity field e are given by

eα = (−1)n+σ−1(α) Kα

SαΠ
, α = λ, ν, θ, µ.

By Corollary 3.5.15 we can represent polynomials Kν , Kλ, Kθ and Kµ as follows:

Kν = (λ+ ν + µ)(λ+ ν + θ)(ν + θ + µ)(λ+ 2ν + θ + µ)Aν + νR, (3.253)

for some Aν , R ∈ C[x], and

Kα = (λ+ 2ν + θ + µ)Aα + αQα, (3.254)

for some Aα, Qα ∈ C[x], α = λ, θ, µ. Moreover, note that for any α ∈ ∆

sνα =


α, α 6= λ, θ, µ,

ν + α, α = λ, θ, µ,

−ν, α = ν.

(3.255)

In the following Lemmas 3.6.46–3.6.49 we study the structure of the polynomials Kα,
α = ν, λ, θ, µ.

Lemma 3.6.46. The polynomial R defined in (3.253) satisfies conditions

R|sν(Dλ) = ν−1(ν + µ)(θ + ν)(ν + θ + µ)(θ + µ)sν(Aλ)
∣∣
sν(Dλ)

(3.256)

− ν−1µθ(ν + θ + µ)2Aν
∣∣
sν(Dλ)

,
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R|sν(Dθ) = ν−1(ν + µ)(λ+ ν)(ν + λ+ µ)(λ+ µ)sν(Aθ)
∣∣
sν(Dθ)

(3.257)

−ν−1µλ(ν + λ+ µ)2Aν
∣∣
sν(Dθ)

,

and

R|sν(Dµ) = −ν−1(ν + θ)(λ+ ν)(ν + λ+ θ)(λ+ θ)sν(Aµ)
∣∣
sν(Dµ)

(3.258)

−ν−1θλ(ν + λ+ θ)2Aν
∣∣
sν(Dµ)

.

Proof. By applying orthogonal reflection sν to Jν we get

sν(Jν) = (λ+ ν)(θ + ν)(µ+ ν)sν(Kν). (3.259)

By formulae (3.180), (3.255) and linearity of determinants we get

sν(Jν) = Jλ + Jν + Jθ − Jµ. (3.260)

Then restricting equality (3.259) on Dλ we have by Proposition 3.5.10

Jλ|Dλ = ν(θ + ν)(µ+ ν)sν(Kν)|Dλ , (3.261)

where Jλ is given by (3.249). Therefore we get by formulae (3.249), (3.261)

sν(Kν)|Dλ = θµ(ν + θ + µ)Kλ|Dλ . (3.262)

Then by applying sν to equality (3.262) we obtain,

Kν |sν(Dλ) = (ν + µ)(θ + ν)(ν + θ + µ)sν(Kλ)|sν(Dλ) , (3.263)

and sν(Kλ)|sν(Dλ) = (θ + µ)sν(Aλ)|sν(Dλ) using (3.254). Using (3.253), (3.263) we solve
for R to obtain (3.256). Formula (3.257) follows by symmetry which allows to swap λ and
θ. Similarly formula (3.258) follows by the symmetry of the graph (3.247) and taking into
account the sign in (3.260).

Lemma 3.6.47. Let β = λ+ 2ν + θ + µ. We have

R|sνβ=0 = (λ+ ν)(θ + ν)(µ+ ν)sν(Qλ)− θµ(ν + θ + µ)Aν |sνβ=0 . (3.264)

Proof. It follows from (3.250) and (3.260) that

sν(Jν) = Jλ + Jν + Jθ − Jµ = (λ+ ν)(θ + ν)(µ+ ν)sν(Kν). (3.265)
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Let us express λ as λ = β − 2ν − θ − µ and substitute it in the determinants Jν , Jθ, and
Jµ. By linearity of determinants we obtain

Jν = −2Jλ, Jθ = Jλ, Jµ = −Jλ.

on Dβ. Therefore by restricting sν(Jν) to β = 0 we have that

sν(Jν)|β=0 = Jλ|β=0 . (3.266)

From the definition of R in (3.253) we get that

R|sνβ=0 = ν−1Kν

∣∣
sνβ=0

+ θµλAν |sνβ=0 . (3.267)

By restricting (3.265) to β = 0 we get with the help of (3.266) that

Jλ|β=0 = (λ+ ν)(θ + ν)(µ+ ν)sν(Kν)|β=0 . (3.268)

By formulae (3.249) and (3.254) we get

Jλ|β=0 = νθµλ(ν + µ)(θ + ν)(ν + θ + µ)Qλ|β=0 . (3.269)

It follows from (3.268) and (3.269) by applying sν that

Kν |sνβ=0 = ν(θ + ν)(µ+ ν)(λ+ ν)sνQλ|sνβ=0 . (3.270)

Substituting (3.270) into (3.267) we get the required statement.

In the following lemma we are going to study the structure of the polynomialsQλ, Aµ, Aθ

and Aλ.

Lemma 3.6.48. We have

Qλ|D = Aλ|D = Aν |D = Aθ|D = − Aµ|D . (3.271)

Proof. Applying sλ to equality (3.254) we have

sλ(Kλ) = (λ+ 2ν + θ + µ)sλ(Aλ)− λsλ(Qλ). (3.272)

We can assume that there is a simple root β 6= λ, ν, θ, µ such that

(β, α) =

{
0, α = ν, θ, µ,

−1 α = λ.
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Then by applying sλ to equality (3.249) we obtain

sλ(Jλ) = Jβ + Jλ + Jν = θµ(ν + λ)(ν + µ+ λ)(ν + λ+ θ)(ν + λ+ θ + µ)sλ(Kλ), (3.273)

and restricting (3.273) to Dν we thus have by Proposition 3.5.10 that

Jν |Dν = µλθ(θ + λ)(λ+ µ)(λ+ θ + µ)sλ(Kλ)|Dν ,

where the left-hand side is given by Jν |Dν = µλθ(θ + λ)(λ+ µ)(θ + µ)(λ+ θ + µ)Aν |Dν
using formulae (3.250) and (3.253). Therefore,we have

sλ(Kλ)|Dν = (θ + µ)Aν |Dν .

Comparing with formula (3.272) we obtain

(λ+ θ + µ)sλ(Aλ)− λsλ(Qλ)|Dν = (θ + µ)Aν |Dν , (3.274)

and restricting equality (3.274) to θ+µ = 0 we obtain that Qλ = Aλ on {θ+µ = 0}∩Dλ,ν .
Further to that restricting equality (3.274) on Dλ we obtain that Aλ|Dλ,ν = Aν |Dλ,ν .

By Proposition 3.5.16 we have that Jν
θ

= Jθ
ν
on Dν,θ. Therefore using formulae (3.250),

(3.251) we have
λµ(λ+ µ)Kθ|Dν,θ = Kν |Dν,θ ,

which implies that Aθ|Dν,θ = Aν |Dν,θ using formulae (3.253), (3.254). Further on, by
Proposition 3.5.16 we have Jν

µ
= −Jµ

ν
on Dµ,ν . Similarly to above we obtain Aµ|Dµ,ν =

− Aν |Dµ,ν . Therefore the statement follows.

Lemma 3.6.49. The polynomial R from formula (3.253) satisfies

(ν−3R
∣∣
Dλ,θ,µ

)
∣∣∣
D

= 4Aν |D . (3.275)

Proof. Let us consider an orthonormal coordinate system yi, (1 ≤ i ≤ n), where a vector
y ∈ Cn has coordinates

y1 =
1√
2

(λ+ ν)(y), y2 =
1√
2

(θ + ν)(y), y3 =
1√
2

(µ+ ν)(y), y4 =
1√
2

(λ+ ν + θ + µ)(y).

We consider the Taylor expansion of R in the variables yi, (1 ≤ i ≤ 4). Let us note that

D = {x|y1 = y2 = y3 = y4 = 0}.

Consider restriction of the polynomial R on D by taking first y2 = 0. It follows from
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(3.256) that
R|D = 0. (3.276)

Further to that, let us apply formula (3.264) where we note that sνβ = 0 can be written
as y4 = 0. The polynomial R|y4=0 has the form of a cubic polynomial in y1, y2, y3 times
another polynomial. Hence

∂yiR|D = ∂yi∂yjR
∣∣
D

= 0,

for any i, j = 1, 2, 3. Let us now use formula (3.258) for R|y3=0. It is easy to see that
derivatives ∂yk∂y4R|y3=0, ∂

k
y4
R
∣∣
y3=0

, (k = 1, 2) after further restriction on λ = θ = 0 have
the form of a polynomial of order 3 − k in y1, y2, y4 variables times another polynomial.
Hence

∂yk∂y4R|D = ∂ky4R
∣∣
D

= 0.

Similarly, using formula (3.256) it follows that ∂y3∂y4R|D = 0.
Let us now compute the third order terms in the Taylor expansion for R. We present

some of these calculations while the other terms are similarly computed. By formula
(3.257) we have

2
√

2 ∂3
y1
R
∣∣
D

= ∂3
λ+νR

∣∣
D

= ∂3
λ+ν R|sν(Dθ)

∣∣∣
D

= ∂3
λ+ν

[
− λµν−1(λ+ ν + µ)2Aν

]∣∣
D

+ (µ+ ν)∂3
λ+ν

[
ν−1(λ+ ν)(λ+ ν + µ)(λ+ µ)sν(Aθ)

]∣∣
D
,

since (λ+ ν, µ+ ν) = 0. Let us rearrange the function inside the first derivative by using
relation λµν−1 = λ(µ+ ν)ν−1 − λ. It follows by restricting at µ+ ν = 0 at first that

∂3
λ+νR

∣∣
D

= 6Aν |D , (3.277)

since (λ + ν, λ) = 1. Similarly, using formulae (3.256), (3.258), (3.264) we obtain ∂3
yi
R,

(i = 2, 3, 4) on D:
∂3
θ+νR

∣∣
D

= ∂3
µ+νR

∣∣
D

= ∂3
sν(β)R

∣∣
D

= 6Aν |D . (3.278)

Let us now consider mixed partial derivatives of R. Using (3.264) we have

2
√

2 ∂2
y1
∂y2R

∣∣
D

= ∂2
λ+ν∂θ+νR

∣∣
D

= ∂2
λ+ν∂θ+ν R|sν(β)=0

∣∣∣
D
,

that is

2
√

2 ∂2
y1
∂y2R

∣∣
D

= ∂2
λ+ν∂θ+ν

[
− θµ(ν + θ + µ)Aν

]∣∣
D

+ (µ+ ν)∂2
λ+ν∂θ+ν

[
(λ+ ν)(θ + ν)sν(Qλ)

]∣∣
D

= − 2Aν |D ,

since (θ + ν, µ + ν) = 0. Similarly, we obtain all other derivatives of the form ∂2
yi
∂yjR

∣∣
D
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(1 ≤ i, j ≤ 3),

∂2
λ+ν∂µ+νR

∣∣
D

= ∂2
θ+ν∂λ+νR

∣∣
D

= ∂2
θ+ν∂µ+νR

∣∣
D

= ∂2
µ+ν∂λ+νR

∣∣
D

= ∂2
µ+ν∂θ+νR

∣∣
D

= − 2Aν |D .

Further to that we obtain derivatives ∂2
y1
∂y4R

∣∣
D
from (3.258) by specialising it at θ+ ν =

0 = y2, and similarly for ∂2
yi
∂y4R

∣∣
D
, (i = 2, 3):

∂2
λ+ν∂sν(β)R

∣∣
D

= ∂2
θ+ν∂sν(β)R

∣∣
D

= ∂2
µ+ν∂sν(β)R

∣∣
D

= 6 Aν |D .

In the same way we find derivatives ∂2
y4
∂yiR

∣∣
D
, 1 ≤ i ≤ 3:

∂2
sν(β)∂λ+νR

∣∣
D

= ∂2
sν(β)∂θ+νR

∣∣
D

= ∂2
sν(β)∂µ+νR

∣∣
D

= 6 Aν |D .

Furthermore, using formula (3.264) we find ∂y1∂y2∂y3R|D:

∂λ+ν∂θ+ν∂µ+νR|D = ∂λ+ν∂θ+ν∂µ+ν R|sν(β)=0

∣∣∣
D

= 8Qλ + 2Aν |D .

And using formula (3.258) we find ∂y1∂y2∂y4R|D:

∂λ+ν∂θ+ν∂sν(β)R
∣∣
D

= ∂λ+ν∂θ+ν∂sν(β) R|sν(Dµ)

∣∣∣
D

= 10Aν + 8Aµ|D .

Finally, symmetry considerations (θ ↔ µ), (λ ↔ µ) give by Lemma 3.6.48 ∂y1∂y3∂y4R|D,
∂y2∂y3∂y4R|D:

∂λ+ν∂µ+ν∂sν(β)R
∣∣
D

= 10Aν − 8Aθ|D ,

∂θ+ν∂µ+ν∂sν(β)R
∣∣
D

= 10Aν − 8Aλ|D .

Let us find R on Dλ,µ,θ using its Taylor series near D. We have that

R =
1

3!

4∑
i=1

4∑
j=1

4∑
k=1

yiyjyk∂yi∂yj∂ykR
∣∣
D

+O, (3.279)

where O denotes the higher order terms in y1, y2, y3, y4. Note that D is the subspace of
Dλ,µ,θ which is given by

y1 = y2 = y3 = y4 =
ν√
2
. (3.280)

Then by Lemma 3.6.48 and collecting the derivatives found above we get that the Taylor
expansion (3.279) takes the following form on the space (3.280):

R|Dλ,µ,θ = 4Aνν
3
∣∣
Dλ,µ,θ

+ Õ, (3.281)
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where Õ = O|Dλ,µ,θ is a polynomial in ν, y5, . . . , yn which is divisible by ν4. Therefore the
statement follows.

By Theorem 3.5.9 the determinant of the restricted Saito metric is given by

det ηD = −Ĵ2 det Â
∣∣∣
D
, (3.282)

where Â is given by (3.222) and Ĵ is defined by J = µλνθĴ . We are going to find det ηD

given by (3.282) by restricting the right-hand side to Dλ,θ,µ first, and then to ν = 0.

Proposition 3.6.50. The matrix entries âij, (0 ≤ i, j ≤ 3) are well-defined generically
on Dλ,θ,µ. Furthermore, the entries âij which are non-zero on Dλ,µ,θ have the following
form on Dλ,µ,θ:

â00 = −Kµ

Π
ν−5, â11 =

Kλ

Π
ν−5, â33 =

Kθ

Π
ν−5,

and

â22 = ν−7∂ων
Kν

Π
− ν−8 9Kν

Π
, â12 = â21 = −1

2
ν−4∂ων

Kλ

Π
+ ν−5 5Kλ

2Π
,

â23 = â32 = −1

2
ν−4∂ων

Kθ

Π
+ ν−5 5Kθ

2Π
, â02 = â20 =

1

2
ν−4∂ων

Kµ

Π
− ν−5 5Kµ

2Π
.

Proof. By Theorem 3.5.5 we have ηαβ = −∂ωαeβ − ∂ωβeα for α, β ∈ {µ, λ, ν, θ}. It is easy
to see that να∂ωα JνJ vanishes on Dα, α = µ, θ, λ. Also

να∂ων
Jα
J

∣∣∣∣
Dλ,µ,θ

=
1

2
ν∂ων

Kα

ν5Π

∣∣∣∣
Dλ,µ,θ

.

Then formulae for non-zero matrix entries follow by Proposition 3.6.45. Note also that

αβ∂ωα
Jβ
J

∣∣∣∣
Dα,β

= α∂ωα
βJβ
J

∣∣∣∣
Dα,β

= 0,

for all α, β ∈ {λ, µ, θ}, α 6= β since βJβ
J

is non-singular on Dα,β, which implies that all
other matrix entries â01, â03, â13 vanish on Dα,β.

Formula (3.282), Proposition 3.6.50 and row expansion of det Â imply that

det ηD = −4 ν16Π2
(
â33M33 − â23M23

)∣∣
Dλ,θ,µ

∣∣∣
Dν
, (3.283)

whereM23, M33 are the minors of the matrix Â. Note that by formula (3.253) and Lemma
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3.6.49 we have

Kν |Dλ,µ,θ = 2ν4Aν + νR
∣∣
Dλ,µ,θ

= 6ν4Aν + νÕ
∣∣∣
Dλ,µ,θ

.

It follows that
(ν−4Kν

∣∣
Dλ,µ,θ

)
∣∣∣
D

= 6Aν |D , (3.284)

and

(ν−3∂ων
Kν

Π

∣∣∣∣
Dλ,µ,θ

)

∣∣∣∣∣
D

= 24
Aν
Π

∣∣∣∣
D

. (3.285)

In the following lemma we calculate terms from (3.283).

Lemma 3.6.51. We have

(ν16â33M33

∣∣
Dλ,µ,θ

)
∣∣∣
D

= −368
A4
ν

Π4

∣∣∣∣
D

, (3.286)

and
(ν16â23M23

∣∣
Dλ,µ,θ

)
∣∣∣
D

= 64
A4
ν

Π4

∣∣∣∣
D

.

Proof. We have that â33M33|Dλ,µ,θ = â33

(
â00â11â22 − â00â

2
12 − â2

02â11

)∣∣
Dλ,µ,θ

. Let us recall
that by (3.254) we have Kα|Dλ,µ,θ = 2νAα|Dλ,µ,θ , where α = λ, µ, θ. Then by Proposition
3.6.50, Lemma 3.6.49 and formulae (3.284), (3.285) we obtain

3∏
i=0

âii|Dλ,µ,θ =
240AµAλAθAν

Π4
ν−16

∣∣∣∣
Dλ,µ,θ

+ O|Dλ,µ,θ ,

where O is a rational function in ν, y5, . . . , yn with poles of order at most 15 at ν = 0.
Then by Lemma 3.6.48 we have

(ν16

4∏
i=1

âii|Dλ,µ,θ)

∣∣∣∣∣
D

=
−240A4

ν

Π4

∣∣∣∣
D

.

Similarly, it can be shown that

ν16( â33

(
â2

12â00 + â2
02â11

)∣∣
Dλ,µ,θ

)
∣∣∣
D

=
128A4

ν

Π4

∣∣∣∣
D

,

hence (3.286) follows. Moreover,

ν16( â23M23|Dλ,µ,θ)
∣∣∣
D

= (ν16 â00â11â
2
23

∣∣
Dλ,µ,θ

)
∣∣∣
D

=
64A4

ν

Π4

∣∣∣∣
D

.

Therefore the statement follows.
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Theorem 3.6.52. The determinant of the metric ηD is proportional to

I(ADγ \ ADDγ )
4I(A \ AD)−2 (3.287)

on D for any γ = λ, µ, θ, ν.

Proof. Let us recall that det ηD is given by (3.283). By Lemma 3.6.51 we get that

det ηD = 1728
A4
ν

Π2

∣∣∣∣
D

.

Then formula (3.287) follows by Corollary 3.5.15 and formulae (3.250), (3.253) for γ = ν.
Similarly (3.287) follows for γ = λ, µ, θ by Lemma 3.6.48.

Theorem 3.6.53. The statement of Main Theorems 1 and 2 is true.

Proof. Let β ∈ R \RD and let R̂ = RD,β be the root system R̂ = R∩ 〈µ, λ, ν, θ, β〉 with
the corresponding arrangement Â. The root system R̂ is a rank 5 subsystem of R.

By Theorem 3.6.52 the multiplicity of β|D in I(ADν \ ADDν )
∣∣
D
is

|ÂDν \ ADDν | = |ÂDν | − 7, (3.288)

and the multiplicity of β|D in I(A \ AD)
∣∣
D
is

|Â \ AD| = |Â| − 12. (3.289)

Let us suppose firstly that R̂ is irreducible, that is R̂ = A5 or R̂ = D5. Note that
|ÂDν | = |Â| − h + 1, where h is the Coxeter number of R̂ [71]. Hence formula (3.288)
implies that

|ÂDν \ ADDν | =
3h

2
− 6,

and formula (3.289) implies that

|Â \ AD| = 5h

2
− 12.

Then it follows from Theorem 3.6.52 that the multiplicity of β|D in det ηD is h, as required.
Let us now suppose that R̂ is reducible, that is R̂ = RD t {±β} = D4 ×A1. Then we

get
|ÂDν \ ADDν | = |ÂDν | − 7 = 1,

since |ÂDν | = |ADDν |+ 1 = 8, and

|Â \ AD| = |Â| − 12 = 1.
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Then it follows from Theorem 3.6.52 that the multiplicity of β|D in det ηD is 2, which is
the Coxeter number of A1, as required.

Let us now consider the cases where RD is a reducible rank 4 root system. We consider
first strata of type A2 × A2.

Stratum A2
2. Let RD = R∩ 〈µ, λ, ν, θ〉 be a subsystem of R of type A2 ×A2. Let us

consider the corresponding Coxeter graph

A2
2 :

µ λ ν θ
(3.290)

In this case, the Jacobian J can be represented as

J = µλνθ(µ+ λ)(ν + θ)Π, (3.291)

where Π is proportional to I(A\AD) and Π is non-zero on D. Further on, by Proposition
3.5.15 we have

Jµ = λνθ(ν + θ)Kµ, (3.292)

Jλ = µνθ(ν + θ)Kλ, (3.293)

Jν = µλθ(µ+ λ)Kν , (3.294)

Jθ = µλν(µ+ λ)Kθ, (3.295)

for Kα ∈ C[x], α = µ, λ, ν, θ. We assume without loss of generality that the ordering of
simple roots µ, λ, ν, θ is such that n + σ−1(α) is odd if α ∈ {λ, ν} and that n + σ−1(α) is
even if α ∈ {µ, θ}. The following proposition follows from formulae (3.291)-(3.295) and
Proposition 3.5.3.

Proposition 3.6.54. The µ, λ, ν and θ components of the identity field e are given by

eµ =
Kµ

µ(µ+ λ)Π
, eλ = − Kλ

λ(µ+ λ)Π
,

eν = − Kν

ν(ν + θ)Π
, eθ =

Kθ

θ(ν + θ)Π
.

By Theorem 3.5.9 the determinant of the restricted Saito metric is given by

det ηD = −Ĵ2 det Â
∣∣∣
D
, (3.296)

where Â is given by (3.222) and Ĵ is defined by Ĵ = (µλνθ)−1J . We are going to find
(3.296) by restricting the right-hand side to Dµ,ν first, then to λ = 0 and finally to θ = 0.

Proposition 3.6.55. The matrix entries âij (0 ≤ i ≤ 3) are well-defined generically on
Dµ,ν. Furthermore, the entries âij which are non-zero on Dµ,ν have the following form on
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Dµ,ν:

â00 = 2λ−1Kµ

Π
, â01 = â10 = −∂ωλ

Kµ

Π
+ λ−1Kµ

Π
, â03 = â30 = −θλ−1∂ωθ

Kµ

Π
,

â11 = 2∂ωλ
Kλ

Π
− 4λ−1Kλ

Π
, â12 = â21 = λθ−1∂ωλ

Kν

Π
,

â13 = â31 = −λθ−1∂ωλ
Kθ

Π
+ θλ−1∂ωθ

Kλ

Π
,

and

â22 = −2θ−1Kν

Π
, â23 = â32 = ∂ωθ

Kν

Π
− θ−1Kν

Π
, â33 = −2∂ωθ

Kθ

Π
+ 4θ−1Kθ

Π
.

Proof. By Theorem 3.5.5 we have ηαβ = −∂ωαeβ − ∂ωβeα for α, β ∈ {µ, λ, ν, θ}. Thus by
Proposition 3.6.54 the statement follows.

Theorem 3.6.56. The determinant of the metric ηD is proportional to

I(A \ AD)−2
∏

γ∈{µ,ν}

I(ADγ \ ADDγ )
2 (3.297)

on D. The same is true with µ replaced with λ and ν replaced with θ in (3.297).

Proof. Let us collect terms with third-order poles at λ = 0 in the expansion of deta Â. By
Proposition 3.6.55 such terms are part of the following expression on Dµ,ν :

C = â22

(
â03(â01â13 − â11â03)− â13(â00â13 − â01â03)

)
. (3.298)

By Proposition 3.5.16 we have that Kµ|Dµ = Kλ + λP |Dµ for some P ∈ C[x]. It follows
that terms with third-order poles at λ = 0 in (3.298) cancel each other, thus the function
λ2C is regular on Dµ,ν,λ. Moreover, it is easy to see that θ2(λ2 C|Dµ,ν,λ )|θ=0 = 0. Therefore
it follows by formula (3.296) and Proposition 3.6.55 that det Â takes the form

det ηD = −θ2λ2Π2 det Â
∣∣∣
Dµ,ν

∣∣∣∣
D

= −θ2λ2Π2 detB1 detB2|Dµ,ν
∣∣∣
D
,

where B1 = (âij)
1
i,j=0 and B2 = (âij)

3
i,j=2, since the remaining terms in the expression

det Â
∣∣∣
Dµ,ν

have poles at λ = 0 of order at most 1. Note also that Kθ|D = Kν |D by

Proposition 3.5.16. It follows that

det ηD = −Π2
(
− 8

KµKλ

Π2
−
K2
µ

Π2

)(
− 8

KνKθ

Π2
− K2

ν

Π2

)∣∣∣∣
D

= − 81Π−2K2
µK

2
ν

∣∣
D
,

Then the statement follows by Corollary 3.5.15 and formulae (3.292), (3.294).
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Let us now show that the powers of distinct linear forms in (3.297) are non-negative
and are equal to the corresponding Coxeter numbers.

Theorem 3.6.57. The statement of Main Theorems 1 and 2 is true.

Proof. Let β ∈ R \RD and let R̂ = RD,β be the root system R̂ = R∩ 〈µ, λ, ν, θ, β〉 with
the corresponding arrangement Â. The root system R̂ is a rank 5 subsystem of R. The
multiplicity of β|D in I(ADγ \ ADDγ )

∣∣∣
D
, (γ = µ, ν) is

|ÂDγ \ ADDγ | = |ÂDγ | − 4. (3.299)

Similarly, the multiplicity of β|D in I(A \ AD)
∣∣
D
is

|Â \ AD| = |Â| − 6. (3.300)

Let us suppose firstly that R̂ is irreducible, that is R̂ = A5 or R̂ = D5. Note that
|ÂDγ | = 3h

2
+ 1 and |Â| = 5h

2
, where h is the Coxeter number of R̂. Then

|ÂDγ \ ADDγ | =
3h

2
− 3, and |Â \ AD| = 5h

2
− 6,

and it follows from Theorem 3.6.56 that the multiplicity of β|D in det ηD is h, as required.
Let us now consider the case where R̂ is reducible. If R̂ = A3 × A2 we can assume

without loss of generality that

R̂ = (R∩ 〈µ, λ, β〉) t (R∩ 〈ν, θ〉) = A3 × A2.

Let Ã be the arrangement corresponding to A3. Then |ÂDν | = |Ã| + 1 and |ÂDµ| =

|ÃDµ|+3. It follows by formulae (3.299), (3.300) and Theorem 3.6.56 that the multiplicity
of β|D in det ηD is 4, which is the Coxeter number of A3, as required.

Finally, consider the case when R̂ = RD t {±β} = A2
2 ×A1. Then |ÂDµ| = |ÂDν | = 5

and |Â| = 7. Thus the multiplicity of β|D in det ηD is 2, which is the Coxeter number of
A1, as required.

Stratum A2 ×A2
1. Let RD = R ∩ 〈µ, λ, ν, θ〉 be a subsystem of R of type A2 × A2

1.
Let us consider the corresponding Coxeter graph

A2 × A2
1 :

µ λ ν θ

The Jacobian J can be represented as

J = µλνθ(µ+ λ)Π, (3.301)
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where Π is proportional to I(A \ AD) and Π is non-zero on D. By Proposition 3.5.15 we
get

Jµ = λνθKµ, (3.302)

Jλ = µνθKλ, (3.303)

Jν = µλθ(µ+ λ)Kν , (3.304)

Jθ = µλν(µ+ λ)Kθ (3.305)

for Kα ∈ C[x], α = µ, λ, ν, θ. We assume without loss of generality that the ordering is
such that n + σ−1(α) is even if α ∈ {µ, ν, θ} and that n + σ−1(λ) is odd. The following
proposition follows using formulae (3.301)-(3.305) and Proposition 3.5.3.

Proposition 3.6.58. The µ, λ, ν and θ components of the identity field e are given by

eµ =
Kµ

µ(µ+ λ)Π
, eν =

Kν

νΠ
,

eλ = − Kλ

λ(µ+ λ)Π
, eθ =

Kθ

θΠ
.

By Theorem 3.5.9 the determinant of the restricted Saito metric is given by

det ηD = −Ĵ2 det Â
∣∣∣
D
, (3.306)

where Â is given by (3.222) and Ĵ is defined by Ĵ = (µλνθ)−1J . We find (3.306) by
restricting the right-hand side first on Dµ,ν,θ and finally to λ = 0.

Proposition 3.6.59. The matrix entries âij (0 ≤ i, j ≤ 3) are well-defined generically on
Dµ,ν,θ. Furthermore, the entries âij which are non-zero on Dµ,ν,θ have the following form
on Dµ,ν,θ:

â00 = 2
Kµ

Π
λ−1, â01 = â10 = −∂ωλ

Kµ

Π
+
Kµ

Π
λ−1, â11 = 2∂ωλ

Kλ

Π
− 4

Kλ

Π
λ−1,

â12 = â21 = −λ∂ωλ
Kν

Π
, â13 = â31 = −λ∂ωλ

Kθ

Π
, â22 = 2

Kν

Π
, â33 = 2

Kθ

Π
.

Proof. By Theorem 3.5.5 we have ηαβ = −∂ωαeβ − ∂ωβeα for α, β ∈ {µ, λ, ν, θ}. Thus by
Proposition 3.6.58 the statement follows.

We have the following statement.

Theorem 3.6.60. The determinant of the metric ηD is proportional to

I(A \ AD)−2I(ADµ \ ADDµ)2
∏

γ∈{ν,θ}

I(ADγ \ ADDγ ) (3.307)

on D. The same is true if µ is replaced with λ in (3.307).
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Proof. By formula (3.306), Proposition 3.6.59 and row expanding det Â we obtain

det ηD = −λ2Π2 detB1 detB2|Dµ,ν,θ
∣∣∣
D
,

where B1 = (âij)
1
i,j=0 and B2 = (âij)

3
i,j=2. By Proposition 3.5.16 we have Kµ|D = Kλ|D.

Therefore
det ηD = 36Π−2K2

µKνKθ

∣∣
D
.

Then the statement follows by Corollary 3.5.15 and formulae (3.302), (3.304), (3.305).

Let us now show that the powers of distinct linear forms in (3.307) are non-negative
and are equal to the corresponding Coxeter numbers.

Theorem 3.6.61. The statement of Main Theorems 1 and 2 is true.

Proof. Let β ∈ R \RD and let R̂ = RD,β be the root system R̂ = R∩ 〈µ, λ, ν, θ, β〉 with
the corresponding arrangement Â. The multiplicity of β|D in I(ADµ \ ADDµ)

∣∣∣
D
is

|ÂDµ \ ADDµ | = |ÂDµ| − 3, (3.308)

and the multiplicity of β|D in I(ADα \ ADDα)
∣∣
D
, for α = ν, θ is

|ÂDα \ ADDα| = |ÂDα| − 4. (3.309)

Similarly, the multiplicity of β|D in I(A \ AD)
∣∣
D
is

|Â \ AD| = |Â| − 5. (3.310)

Let us consider first the case where R̂ is irreducible. Then |ÂDα| = |Â| − h + 1, for
any α = µ, ν, θ, where h is the Coxeter number of R̂. We also have |Â| = 5h

2
. It follows

from formulae (3.308)–(3.310) and Theorem 3.6.60 that the multiplicity of β|D in det ηD

is h, as required.
Let us now consider the case where R̂ takes the form

R̂ = (R∩ 〈µ, λ, β〉) t {±ν} t {±θ} = A3 × A1 × A1.

Let Ã be the arrangement corresponding to A3. Then |ÂDν | = |ÂDθ | = |Ã| + 1 = 7 and
|ÂDµ| = |ÃDµ |+ 2 = 5. We also have |Â| = 8. It follows by formulae (3.308)–(3.310) and
Theorem 3.6.60 that the multiplicity of β|D in det ηD is 4, which is the Coxeter number
of A3, as required.

Let us suppose that R̂ takes the form

R̂ = (R∩ 〈µ, λ〉) t (R∩ 〈ν, θ, β〉) = A2 × A3,
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and let A′ , Ã be the arrangements corresponding to A2 and A3 respectively. Then |ÂDµ| =
|Ã| + 1 = 7 and |ÂDν | = |ÂDθ | = |ÃDν | + |A

′ | = 6. Further to that, |Â| = 9. It follows
from Theorem 3.6.60 that the multiplicity of β|D in det ηD is 4, which is the Coxeter
number of A3, as required.

Let us now assume without loss of generality that R̂ takes the form

R̂ = (R∩ 〈µ, λ, ν, β〉) t {±θ} = R̃ × A1, (3.311)

where R̃ = A4 or R̃ = D4. Let Ã be the arrangement corresponding to R̃. We have
|ÂDµ| = |ÂDν | = |ÃDµ| + 1 = h + 2, where h is the Coxeter number of R̃, and |ÂDθ | =

|Ã| = 2h. Note also that |Â| = 2h+1. It follows from Theorem 3.6.60 that the multiplicity
mβ of β|D in det ηD is

mβ = 2(h− 1) + (h− 2) + (2h− 4)− 2(2h− 4) = h,

as required.
Let us now suppose that R̂ takes the form

R̂ = (R∩ 〈µ, λ〉) t (R∩ 〈ν, β〉) t {±θ} = A2 × A2 × A1. (3.312)

We have ÂDµ = {Dλ,µ, Dν,µ, Dβ,µ, Dν+εβ,µ, Dθ,µ}, where either ε = 1 or ε = −1, ÂDν =

{Dµ,ν , Dλ,ν , Dµ+λ,ν , Dβ,ν , Dθ,ν}. Note also that |ÂDθ | = 6 and |Â| = 7. It follows from
Theorem 3.6.60 that the multiplicity of β|D in det ηD is 3, which is the Coxeter number
of A2, as required. Note that the case where θ and ν are swapped in (3.312) is similar.

Finally, let us consider the case where R̂ = RD t {±β} = A2 × A3
1. Then ÂDµ =

{Dλ,µ, Dν,µ, Dθ,µ, Dβ,µ} and

ÂDν = {Dµ,ν , Dλ,ν , Dµ+λ,ν , Dβ,ν , Dθ,ν}. (3.313)

Note that ÂDθ is given by (3.313) where ν is swapped with θ and that |Â| = 6. Then
it follows from Theorem 3.6.60 that the multiplicity of β|D in det ηD is 2, which is the
Coxeter number of A1, as required.

Stratum A1 ×A3. Let RD = R ∩ 〈µ, λ, ν, θ〉 be a subsystem of R of type A1 × A3.
Let us consider the corresponding Coxeter graph

A1 × A3 :
µ λ ν θ

(3.314)
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In this case the Jacobian J can be represented as

J = µλνθ(λ+ ν)(ν + θ)(λ+ ν + θ)Π, (3.315)

where Π is proportional to I(A \ AD) and Π is non-zero on D. By Proposition 3.5.15 we
get

Jµ = λνθ(λ+ ν)(ν + θ)(λ+ ν + θ)Kµ, (3.316)

Jλ = µνθ(ν + θ)Kλ, (3.317)

Jν = µλθKν , (3.318)

Jθ = µλν(λ+ ν)Kθ, (3.319)

for Kµ, Kλ, Kν , Kθ ∈ C[x]. We assume that the ordering of the simple roots λ, ν, θ is the
same as in our considerations for type A3 strata in Subsection 3.6.4. Further to that we
assume without loss of generality that n+σ−1(µ) is even. The following statement follows
by formulae (3.315)–(3.319) and Proposition 3.5.3.

Proposition 3.6.62. The µ component of the identity field e is given by eµ = (µΠ)−1Kµ.
Furthermore, the λ, ν and θ components are given in Proposition 3.6.13, where Kα, α =

λ, ν, θ and Π are defined by formulae (3.315)–(3.319).

By Theorem 3.5.9 the determinant of the restricted Saito metric is given by

det ηD = −Ĵ2 det Â
∣∣∣
D
, (3.320)

where the matrix Â is given by (3.222) and Ĵ is defined by Ĵ = (µλνθ)−1J . We are
going to find det ηD by restricting the right-hand side of (3.320) first on Dµ,ν followed by
restriction to θ = 0 and then to λ = 0.

Proposition 3.6.63. The matrix entries âij (0 ≤ i, j ≤ 3) are well-defined generically
on Dµ,ν. Furthermore, the non-zero entries â0i, (i = 0, . . . , 3) have the following form on
Dµ,ν:

â00 = 2
Kµ

Π
, â01 = â10 = −λ∂ωλ

Kµ

Π
, â03 = â30 = −θ∂ωθ

Kµ

Π
,

and the remaining matrix entries âij (1 ≤ i, j ≤ 3) on Dµ,ν are given by formulae (3.114)-
(3.119) restricted on Dµ,ν.

Proof. By Theorem 3.5.5 we have ηαβ = −∂ωαeβ − ∂ωβe
α for α, β ∈ {µ, λ, ν, θ}. By

Proposition 3.6.62 the statement follows.

Theorem 3.6.64. The determinant of the metric ηD is proportional to

I(A \ AD)−2I(ADθ \ ADDθ)
3I(ADµ \ ADDµ) (3.321)
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on D.

Proof. Let us consider row expansion for det Â. Since â02|Dµ,ν = 0 we have on Dµ,ν that

det Â = â00M00 − â01M01 − â03M03,

where Mij is the (i, j) minor of Â and M00 = detA is given by formula (3.120). It follows
by Proposition 3.6.63 that θ2M0j, j = 1, 3 is well-defined generically on Dµ,ν,θ and has
poles at λ = 0 of order at most 3 on Dµ,ν,θ. Then by Proposition 3.6.63 and formula
(3.320) we have

det ηD = − Ĵ2 det Â
∣∣∣
D

= −(λ2θ2(λ+ θ)2Π2 det Â
∣∣∣
Dµ,ν,θ

)|D = −â00Π2λ4θ2 detA
∣∣
D
.

Note that λ4θ2 detA|D is found in Theorem 3.6.23. Then det ηD = −128Π−2K3
θKµ|D.

The statement follows by Corollary 3.5.15 and formulae (3.316), (3.319).

Let us now show that the powers of distinct linear forms in (3.307) are non-negative
and are equal to the corresponding Coxeter numbers.

Theorem 3.6.65. The statement of Main Theorems 1 and 2 is true.

Proof. Let β ∈ R \RD and let R̂ = RD,β be the root system R̂ = R∩ 〈µ, λ, ν, θ, β〉 with
the corresponding arrangement Â. The root system R̂ is a rank 5 subsystem of R. The
multiplicity of β|D in I(ADθ \ ADDθ)

∣∣
D
and in I(ADµ \ ADDµ)

∣∣∣
D
is given respectively by

|ÂDθ \ ADDθ | = |ÂDθ | − 4,

and
|ÂDµ \ ADDµ | = |ÂDµ| − 6.

Similarly, the multiplicity of β|D in I(A \ AD)
∣∣
D
is

|Â \ AD| = |Â| − 7.

Let us suppose firstly that R̂ is irreducible, that is R̂ = A5 or R̂ = D5. Then
|ÂDµ| = |ÂDθ | = 3h

2
+ 1 and |Â| = 5h

2
, where h the Coxeter number of R̂. Thus, it follows

from Theorem 3.6.64 that the multiplicity of β|D in det ηD is h, which is the Coxeter
number of R̂, as required.

Let us now consider the case where R̂ is reducible and suppose firstly that R̂ takes the
form

R̂ = (R∩ 〈λ, ν, θ, β〉) t {±µ} = R̃ × A1,
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where R̃ = A4 or R̃ = D4, with Coxeter number h. Let Ã be the arrangement correspond-
ing to R̃. Notice that |ÂDθ | = |ÃDθ |+ 1 = h+ 2, |ÂDµ| = |Ã| = 2h and |Â| = 2h+ 1. It
follows from Theorem 3.6.64 that the multiplicity of β|D in det ηD is h as required. Let
us now assume that R̂ is given by

R̂ = (R∩ 〈µ, β〉) t (R∩ 〈λ, ν, θ〉) = A2 × A3,

and let Ã be the arrangement corresponding to the root system A3. Then |ÂDθ | = 6,
|ÂDµ| = |Ã| + 1 = 7 and |Â| = 9. Thus, it follows from Theorem 3.6.64 that the
multiplicity of β|D in det ηD is 3, which is the Coxeter number of A2, as required.

Finally, let us consider the case where

R̂ = RD t {±β} = A2
1 × A3.

We have |ÂDθ | = 5, |ÂDµ| = 7 and |Â| = 8. It follows from Theorem 3.6.64 that the
multiplicity of β|D in det ηD is 2, which is the Coxeter number of A1, as required.

Finally, we consider a stratum of type A4
1.

Stratum A4
1. Let RD = R ∩ 〈µ, λ, ν, θ〉 be a subsystem of R of type A4

1. Let us
consider the corresponding Coxeter graph

A4
1 :

µ λ ν θ

The Jacobian can be represented as

J = µλνθΠ, (3.322)

where Π is proportional to I(A \ AD) and Π is non-zero on D. Let S = {µ, λ, ν, θ} ⊂ ∆.
By Proposition 3.5.15 we have for any α ∈ S that

Jα = Kα

∏
γ∈S
γ 6=α

γ, (3.323)

for Kα ∈ C[x]. We assume without loss of generality that the ordering of simple roots
µ, λ, ν, θ is such that n+ σ−1(α) is even for any α ∈ S. The following proposition follows
using formulae (3.322), (3.323) and Proposition 3.5.3.

Proposition 3.6.66. The µ, λ, ν and θ components of the identity field e are given by
eα = (αΠ)−1Kα, α ∈ S.
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By Theorem 3.5.9 the determinant of the restricted Saito metric is given by

det ηD = −Ĵ2 det Â
∣∣∣
D
, (3.324)

where the matrix Â is given by (3.222) and Ĵ is defined by Ĵ = (µλνθ)−1J .

Proposition 3.6.67. The matrix entries âij, (0 ≤ i, j ≤ 3) are well-defined generically
on D. In particular, the entries âij which are non-zero on D have the following form on
D:

â00 = 2Π−1Kµ, â11 = 2Π−1Kλ, â22 = 2Π−1Kν , â33 = 2Π−1Kθ.

Proof. By Theorem 3.5.5 we have ηαβ = −∂ωαeβ − ∂ωβe
α for α, β ∈ {µ, λ, ν, θ}. By

Proposition 3.6.66 the statement follows.

Theorem 3.6.68. The determinant of the metric ηD is proportional to

I(A \ AD)−2
∏
γ∈S

I(ADγ \ ADDγ ) (3.325)

on D.

Proof. It follows from formula (3.324) and Proposition (3.6.67) that

det ηD = −Ĵ2 det Â
∣∣∣
D

= −16Π−2
∏
γ∈S

Kγ|D .

The statement follows by Corollary 3.5.15 and formulae (3.322), (3.323).

Let us now show that the powers of distinct linear forms in (3.325) are non-negative
and are equal to the corresponding Coxeter numbers.

Theorem 3.6.69. The statement of Main Theorems 1 and 2 is true.

Proof. Let β ∈ R \RD and let R̂ = RD,β be the root system R̂ = R∩ 〈µ, λ, ν, θ, β〉 with
the corresponding arrangement Â. The multiplicity of β|D in I(ADγ \ ADDγ )

∣∣∣
D
, for any

γ ∈ S is given by
|ÂDγ \ ADDγ | = |ÂDγ | − 3. (3.326)

Similarly, the multiplicity of β|D in I(A \ AD)
∣∣
D
is

|Â \ AD| = |Â| − 4. (3.327)

Let us consider first the case where R̂ is irreducible. Then |ÂDγ | = |Â| − h + 1, for
any γ ∈ S, where h is the Coxeter number of R̂. Note also that |Â| = 5h

2
. It follows from

formulae (3.326), (3.327) and Theorem 3.6.68 that the multiplicity of β|D in det ηD is h,
as required.
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Let us now assume without loss of generality that R̂ takes the form

R̂ = (R∩ 〈λ, ν, θ, β〉) t {±µ} = R̃ × A1,

where R̃ = A4 or R̃ = D4, with Coxeter number h. Let Ã be the arrangement correspond-
ing to R̃. Notice that |ÂDγ | = |ÃDγ |+ 1 = h + 2, for any γ ∈ S \ {µ}, |ÂDµ | = |Ã| = 2h

and |Â| = 2h+ 1. It follows from Theorem 3.6.68 that the multiplicity of β|D in det ηD is
h, as required.

Let us assume without loss of generality that R̂ takes the form

R̂ = (R∩ 〈µ, β〉) t {±λ} t {±ν} t {±θ} = A2 × A3
1.

Then |ÂDµ| = 4 and |ÂDγ | = 5, for γ ∈ S \ {µ}. We also have |Â| = 6. It follows from
Theorem 3.6.68 that the multiplicity of β|D in det ηD is 3, which is the Coxeter number
of A2, as required.

Let us now suppose that without loss of generality R̂ takes the form

R̂ = (R∩ 〈µ, λ, β〉) t {±ν} t {±θ} = A3 × A2
1. (3.328)

Let Ã be the arrangement corresponding to A3. Then |ÂDµ | = ÂDλ | = 5, |ÂDν | = |ÂDθ | =
|Ã| + 1 = 7 and |Â| = 8. It follows from Theorem 3.6.68 that the multiplicity of β|D in
det ηD is 4, which is the Coxeter number of A3, as required.

Finally, let us consider the case where R̂ = RD t {±β} = A5
1. For any γ ∈ S we have

|ÂDγ | = 4 and |Â| = 5. It follows from Theorem 3.6.68 that the multiplicity of β|D in
det ηD is 2, which is the Coxeter number of A1, as required.

3.7 Exceptional groups: the remaining cases

In this section we obtain formulae for the determinant of the restricted Saito metric and
analyse the corresponding multiplicities for the remaining cases with the help of Mathe-
matica [5]. Thus we consider codimension 5 strata for R = E7 and codimension 5 and
6 strata for R = E8. We consider Saito metric and use Saito polynomials for these root
systems R = En, n = 7, 8. These are explicitly constructed in [83] and also in [1].

Let us start with the case n = 8, R = E8. We use Saito polynomials from [83] which
are written in terms of coordinates yi (i = 1, . . . , 8) (denoted as xi in [83]) defined by

yi =


1

2
(xi + xi+1), i odd

1

2
(xi−1 − xi), i even.

. (3.329)
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Let us recall the positive part of the root system E8 ⊂ V = C8 (see for example [51]):

ei ± ej, 1 ≤ i < j ≤ 8,
1

2
(e1 ± e2 ± · · · ± e8) (even number of + signs).

Let us fix the following simple system ∆ ⊂ E8:

α1 =
1

2
(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8),

α2 = e1 + e2, (3.330)

αi = ei−1 − ei−2, 3 6 i 6 8.

and consider the corresponding Coxeter graph:

α1

α2

α3 α4 α5 α6 α7 α8

Let us also introduce coordinates zi = (αi, x), 1 ≤ i ≤ 8. Note that zi = A
(8)
ij yj, where

A = A(8) = (A
(8)
ij )8

i,j=1 is the following matrix:

A(8) =



0 1 −1 0 −1 0 0 −1

2 0 0 0 0 0 0 0

0 −2 0 0 0 0 0 0

−1 1 1 1 0 0 0 0

0 0 0 −2 0 0 0 0

0 0 −1 1 1 1 0 0

0 0 0 0 0 −2 0 0

0 0 0 0 −1 1 1 1


.

We have

η =
n∑
i=1

dtidtn+1−i =
n∑
i=1

n∑
r=1

n∑
l=1

∂ti

∂yr

∂tn+1−i

∂yl
dyrdyl =

n∑
r,l=1

ηrldyrdyl.

In z-coordinates we have η(z) =
∑n

i,j=1 ηij(z)dzidzj, where

ηij(z) =
n∑

k,l=1

(A(n))−1
ki (A(n))−1

lj ηkl. (3.331)

Let I = {i1, . . . , ik}, 1 6 i1 < · · · < ik 6 n and let J = {1, . . . , n} \ I. Consider the
corresponding stratum D = Di1,...,ik . It follows that the restriction of η(z) on D takes the
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form
ηD =

∑
l,k∈J

ηlk(z)|D dzldzk. (3.332)

We use formula (3.332) to find the determinant of the restricted Saito metric with the help
of Mathematica [5]. Tables 3.1 and 3.2 below give det ηD up to a non-zero proportionality
factor for all three- and two-dimensional strataD in E8 respectively. We list types of strata
RD = R ∩ 〈S〉, where S = {αi1 , . . . , αik} ⊂ R in the first column of these tables. We
use the notation {i1, . . . , ik} = {1, . . . , k} to denote the stratum D. We get the following
statement.

Theorem 3.7.1. Let D be any two- or three-dimensional stratum in R = E8. Then the
statement of Main Theorem 1 is true.

Table 3.1: Determinant of restricted Saito metric, dimD = 3, R = E8

RD, S det ηD

A5,
{4, 5, 6, 7, 8}

α2
1α

7
2α

7
3 (α1 + α3)

7 (α2 + α3)
10 (α1 + α2 + α3)

10 (α1 + α2 + 2α3)
12×

× (α1 + 2α2 + 3α3)
7 (2α1 + 2α2 + 3α3)

7 (2α1 + 3α2 + 4α3)
7 (α1 + 2 (α2 + α3))

10×
× (α1 + 3 (α2 + α3))

2 (2α1 + 3 (α2 + α3))
2

D5,
{1, 2, 3, 4, 5}

α12
6 α

2
7 (α6 + α7)

12 (2α6 + α7)
10α2

8 (α7 + α8)
2 (α6 + α7 + α8)

12 (2α6 + α7 + α8)
10×

× (2α6 + 2α7 + α8)
10 (3α6 + 2α7 + α8)

12 (4α6 + 2α7 + α8)
2 (4α6 + 3α7 + α8)

2×
× (4α6 + 3α7 + 2α8)

2

D4 ×A1,
{2, 3, 4, 5, 7}

α8
1α

10
6 (α1 + α6)

10 (α1 + 2α6)
8α3

8 (α6 + α8)
8 (α1 + α6 + α8)

8 (2α6 + α8)
3×

× (α1 + 2α6 + α8)
10 (2α1 + 2α6 + α8)

3 (α1 + 3α6 + α8)
8 (2α1 + 3α6 + α8)

8×
× (2α1 + 4α6 + α8)

3

A4 ×A1,
{1, 3, 4, 5, 7}

α8
2α

7
6 (α2 + α6)

12 (2α2 + α6)
3 (α2 + 2α6)

6α3
8 (α6 + α8)

6 (α2 + α6 + α8)
8×

× (2α2 + α6 + α8)
2 (α2 + 2α6 + α8)

7 (2α2 + 2α6 + α8)
7 (α2 + 3α6 + α8)

2×
× (2α2 + 3α6 + α8)

8 (3α2 + 3α6 + α8)
6 (3α2 + 4α6 + α8)

3 (3α2 + 4α6 + 2α8)
2

A3 ×A2,
{2, 3, 4, 6, 7}

α5
1α

10
5 (α1 + α5)

7 (α1 + 2α5)
7 (α1 + 3α5)

5 (2α1 + 3α5)
2α4

8 (α5 + α8)
6×

× (α1 + α5 + α8)
5 (2α5 + α8)

4 (α1 + 2α5 + α8)
7 (α1 + 3α5 + α8)

7×
× (2α1 + 3α5 + α8)

4 (α1 + 4α5 + α8)
5 (2α1 + 4α5 + α8)

6 (2α1 + 5α5 + α8)
4×

× (2α1 + 5α5 + 2α8)
2

A3 ×A2
1,

{2, 3, 5, 6, 7}

α3
1α

10
4 (α1 + α4)

6 (α1 + 2α4)
8 (α1 + 3α4)

6 (α1 + 4α4)
3α5

8 (α4 + α8)
4×

× (α1 + α4 + α8)
3 (2α4 + α8)

5 (α1 + 2α4 + α8)
6 (α1 + 3α4 + α8)

8 (α1 + 4α4 + α8)
6×

× (2α1 + 4α4 + α8)
5 (α1 + 5α4 + α8)

3 (2α1 + 5α4 + α8)
4 (2α1 + 6α4 + α8)

5

A2
2 ×A1,

{1, 2, 3, 5, 6}

α12
4 α

4
7 (α4 + α7)

5 (2α4 + α7)
6 (3α4 + α7)

5 (4α4 + α7)
4α2

8 (α7 + α8)
4 (α4 + α7 + α8)

5×
× (2α4 + α7 + α8)

6 (3α4 + α7 + α8)
5 (4α4 + α7 + α8)

4 (2α4 + 2α7 + α8)
4×

× (3α4 + 2α7 + α8)
5 (4α4 + 2α7 + α8)

6 (5α4 + 2α7 + α8)
5 (6α4 + 2α7 + α8)

4×
× (6α4 + 3α7 + α8)

2 (6α4 + 3α7 + 2α8)
2

A2 ×A3
1,

{2, 3, 5, 7, 8}

α3
1α

6
4 (α1 + α4)

4 (α1 + 2α4)
3α5

6 (α4 + α6)
8 (α1 + α4 + α6)

5 (2α4 + α6)
5×

× (α1 + 2α4 + α6)
8 (α1 + 3α4 + α6)

5 (α1 + 3α4 + 2α6)
8 (α1 + 4α4 + 2α6)

5×
× (α1 + 4α4 + 3α6)

4 (2α1 + 4α4 + 3α6)
3 (α1 + 5α4 + 3α6)

3 (2α1 + 5α4 + 3α6)
4×

× (2α1 + 6α4 + 3α6)
3 (α1 + 2 (α4 + α6))

5 (α1 + 3 (α4 + α6))
3

Let us now consider the case n = 7, R = E7 ⊂ V = C8. Recall the positive part of E7
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Table 3.2: Determinant of restricted Saito metric, dimD = 2, R = E8

RD, S det ηD

A6,
{2, 4, 5, 6, 7, 8} α2

1α
12
3 (α1 + α3)

12 (α1 + 2α3)
18 (α1 + 3α3)

8 (2α1 + 3α3)
8

D6,
{2, 3, 4, 5, 6, 7} α18

1 α
12
8 (α1 + α8)

18 (2α1 + α8)
12

E6,
{1, 2, 3, 4, 5, 6} α18

7 α
2
8 (α7 + α8)

18 (2α7 + α8)
18 (3α7 + α8)

2 (3α7 + 2α8)
2

A5 ×A1,
{1, 3, 4, 5, 6, 8} α12

2 α
8
7 (α2 + α7)

18 (2α2 + α7)
8 (α2 + 2α7)

7 (3α2 + 2α7)
7

D5 ×A1,
{2, 3, 4, 5, 6, 8} α12

1 α
12
7 (α1 + α7)

18 (2α1 + α7)
3 (α1 + 2α7)

12 (2α1 + 3α7)
3

A4 ×A2,
{1, 3, 4, 5, 7, 8} α8

2α
8
6 (α2 + α6)

18 (2α2 + α6)
4 (α2 + 2α6)

8 (α2 + 3α6)
2 (2α2 + 3α6)

8 (3α2 + 4α6)
4

D4 ×A2,
{2, 3, 4, 5, 7, 8} α8

1α
12
6 (α1 + α6)

12 (α1 + 2α6)
12 (α1 + 3α6)

8 (2α1 + 3α6)
8

A4 ×A2
1,

{2, 3, 5, 6, 7, 8} α3
1α

12
4 (α1 + α4)

7 (α1 + 2α4)
12 (α1 + 3α4)

12 (α1 + 4α4)
7 (α1 + 5α4)

3 (2α1 + 5α4)
4

A2
3,

{2, 3, 4, 6, 7, 8} α5
1α

12
5 (α1 + α5)

8 (α1 + 2α5)
12 (α1 + 3α5)

8 (2α1 + 3α5)
5 (α1 + 4α5)

5 (2α1 + 5α5)
5

A3 ×A2 ×A1,
{1, 2, 4, 6, 7, 8} α5

3α
7
5 (α3 + α5)

18 (2α3 + α5)
5 (α3 + 2α5)

8 (2α3 + 3α5)
7 (3α3 + 4α5)

5 (4α3 + 5α5)
5

A2
2 ×A2

1,
{1, 2, 3, 5, 6, 8} α12

4 α
5
7 (α4 + α7)

8 (2α4 + α7)
12 (3α4 + α7)

8 (4α4 + α7)
5 (3α4 + 2α7)

5 (5α4 + 2α7)
5

(see for example [51]):

ei ± ej, 1 ≤ i < j ≤ 6, e7 − e8,
1

2
(e7 − e8 +

6∑
i=1

±ei),

where the number of minus signs in the sum is odd. Let us fix simple system ∆ =

{α1, . . . , α7}, where αi, i = 1, . . . , 7 are defined in (3.330) and consider the corresponding
Coxeter graph:

α1

α2

α3 α4 α5 α6 α7

We use Saito polynomials from [83] which are written in terms of coordinates yi defined
by formulae (3.329) for any 1 ≤ i ≤ 4 and defined by the following formulae for i = 5, 6, 7:

yi =


1

2
(xi − xi+1), i = 5, 7

1

2
(xi−1 + xi), i = 6,

(3.333)
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Let us also introduce coordinates zi = (αi, x), 1 ≤ i ≤ 7. Note that zi = A
(7)
ij yj, where

A = A(7) = (A
(7)
ij )7

i,j=1 is the following matrix:

A(7) =



0 1 −1 0 0 −1 −1

2 0 0 0 0 0 0

0 −2 0 0 0 0 0

−1 1 1 1 0 0 0

0 0 0 −2 0 0 0

0 0 −1 1 1 1 0

0 0 0 0 −2 0 0


.

We use formulae (3.331), (3.332) (n = 7) to find the determinant of the restricted Saito
metric with the help of Mathematica [5]. Table 3.3 gives det ηD up to a non-zero pro-
portionality factor for any two-dimensional stratum D in E7. We list types of strata
RD = R∩〈S〉, where S = {αi1 , . . . , αik} ⊂ R in the first column of this table. We use the
notation {i1, . . . , ik} = {1, . . . , k}. Note that there are two non-equivalent strata of type
A5 [80]. The following statement is a direct corollary of this table.

Theorem 3.7.2. Let D be any two-dimensional stratum in R = E7. Then the statement
of Main Theorem 1 is true.

Table 3.3: Determinant of restricted Saito metric, dimD = 2, R = E7

RD, S det ηD

A5, {2, 4, 5, 6, 7} α2
1α

10
3 (α1 + α3)

10 (α1 + 2α3)
10 (α1 + 3α3)

2 (2α1 + 3α3)
2

A
′

5, {3, 4, 5, 6, 7} α7
1α

10
2 (α1 + α2)

12 (α1 + 2α2)
7

D5, {1, 2, 3, 4, 5} α12
6 α

2
7 (α6 + α7)

12 (2α6 + α7)
10

A4 ×A1, {1, 2, 3, 4, 7} α8
5α

3
6 (α5 + α6)

12 (2α5 + α6)
7 (3α5 + 2α6)

6

D4 ×A1, {2, 3, 4, 5, 7} α8
1α

10
6 (α1 + α6)

10 (α1 + 2α6)
8

A3 ×A2, {1, 3, 5, 6, 7} α2
2α

7
4 (α2 + α4)

7 (α2 + 2α4)
10 (α2 + 3α4)

5 (2α2 + 3α4)
5

A3 ×A2
1, {1, 2, 4, 5, 7} α8

3α
6
6 (α3 + α6)

10 (2α3 + α6)
6 (α3 + 2α6)

3 (3α3 + 2α6)
3

A2
2 ×A1 , {1, 2, 4, 6, 7} α5

3α
6
5 (α3 + α5)

12 (2α3 + α5)
4 (α3 + 2α5)

5 (2α3 + 3α5)
4

A2 ×A3
1, {1, 2, 3, 5, 7} α8

4α
4
6 (α4 + α6)

8 (2α4 + α6)
8 (3α4 + α6)

4 (3α4 + 2α6)
4

Now we are going to establish Main Theorem 2 for these strata in En. Recall that for
any stratum D and β ∈ R \ RD we define the root system RD,β = 〈RD, β〉 ∩ R which
has the decomposition (3.5) and that we have β ∈ R(0)

D,β. The approach to finding R(0)
D,β

is as follows. We compute the size |RD,β| of the root system RD,β using Mathematica [5].
In most cases considerations of subgraphs of the Coxeter graph of En allow to determine
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RD,β from its size uniquely (see also [74] for classification of all subsets of a root system
which are irreducible root systems). We find the type of the root system RD,β and we
consider embedding of root systems RD ⊂ RD,β. Using Lemma 3.2.1 and relations (3.6),
(3.7) we identify irreducible component R(0)

D,β. We give these results in Tables 3.5, 3.6 for
the root system R = E8 and in Table 3.4 for the root system R = E7.

The cases when knowledge of |RD,β| does not immediately lead to the type of RD,β

are as follows:

(i) R = E8, dimD = 3, |RD,β| = 42 in which case RD,β = A6 or RD,β = D5 × A1,

(ii) R = E8, dimD = 3, |RD,β| = 24 in which case RD,β = A4 × A2
1 or RD,β = A2

3,

(iii) R = E7, dimD = 2, |RD,β| = 42 in which case RD,β = A6 or RD,β = D5 × A1.

Let us consider these remaining cases in detail.

(i) Considerations of Coxeter graphs and their subgraphs for D5 and A6 allow to deter-
mine RD,β in all the cases except for when RD = A4 × A1.

Let us consider firstly β ∈ R such that β|D = α6|D. Then it is immediate from the
Coxeter graph of E8 that RD,β = A6.

Let us now consider β|D = α2 + 2α6 + α8|D. Suppose that RD,β = D5 × A1. Note
that A4 × A1 is not a subsystem of D5. Therefore it has to be that β ∈ D5 and
〈A4, β〉 ∩ R = D5. One can choose

β = α1 + α2 + α8 + 2(α3 + α6 + α7) + 3(α4 + α5) ∈ R

so that β|D has the required form. Then one can check by Mathematica that
|〈A4, β〉 ∩ R| = 30 6= 40 = |D5|. This contradiction implies that RD,β = A6.

The case β|D = 2α2 + 2α6 + α8|D is similar. One can choose

β = α1 + α7 + α8 + 2(α2 + α3 + α5 + α6) + 3α4 ∈ R

so that β|D has the required form.

Now let us consider the case when β|D = α2|D. It is immediate from the Coxeter
graph of E8 that RD,β = D5 × A1.

Consider the case when β|D = 2α2 + 3α6 + α8|D. One can choose

β = α1 + α8 + 2(α2 + α3 + α7) + 3(α4 + α5 + α6) ∈ R

so that β|D has the required form. One can check by Mathematica that |〈A4, β〉 ∩
R| = 40 = |D5|. Note that ±α7 ∈ RD,β. Since |RD,β| = 42 it follows that the root
system RD,β is reducible which implies that RD,β = D5 × A1.
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The case β|D = α2 + α6 + α8|D is similar. One can choose β =
∑8

i=1 αi ∈ R so that
β|D has the required form.

(ii) Considerations of Coxeter graphs and their subgraphs for A3 and A4 allow to deter-
mine RD,β in all the cases except for when RD = A3 × A2

1.

Consider firstly β ∈ R such that β|D = α4 + α8|D. Suppose that RD,β = A4 × A2
1.

Note that A3×A1 is not a subsystem of A4. Therefore it has to be that β ∈ A4 and
〈A3, β〉 ∩ R = A4. One can choose β =

∑8
i=2
i 6=3

αi ∈ R so that β|D has the required

form. Then one can check by Mathematica that |〈A3, β〉 ∩ R| = 12 6= 20 = |A4|.
This contradiction implies that RD,β = A2

3.

The case β|D = 2α1 + 5α4 + α8|D is similar. In this case one can choose

β = α8 + 2(α1 + α7) + 3(α2 + α3 + α6) + 4α5 + 5α4 ∈ R

so that β|D has the required form.

Now let us consider the case when β|D = α8|D. Then it is immediate from the
Coxeter graph of E8 that RD,β = A4 × A2

1.

Consider now the case when β|D = 2α1 + 6α4 + α8|D. One can choose

β = α8 + 2(α1 + α7) + 3α2 + 4(α3 + α6) + 5α5 + 6α4 ∈ R

so that β|D has the required form. Suppose that RD,β = A2
3. Then it has to be that

〈A2
1, β〉∩R = A3. One can check by Mathematica that |〈A2

1, β〉∩R| = 6 6= 12 = |A3|.
This contradiction implies that RD,β = A4 × A2

1.

The cases β|D = 2α1 + 4α4 + α8|D and β|D = 2α4 + α8 are similar. One can choose

β = α7 + α8 + 2(α1 + α2 + α6) + 3(α3 + α5) + 4α4 ∈ R

and
β = α7 + α8 + α2 + α3 + 2(α4 + α5 + α6) ∈ R

respectively, so that β|D have the required forms.

(iii) Considerations of Coxeter graphs and their subgraphs for D5 and A6 allow to deter-
mine RD,β in all the cases except for when RD = A4 × A1.

Consider firstly β ∈ R such that β|D = α5|D. Then it is immediate from the
Coxeter graph of E7 that RD,β = D5 × A1. Let us now consider the case when
β|D = 2α5 + α6|D. Suppose that RD,β = D5 × A1. Then it has to be that β ∈ D5



CHAPTER 3. SAITO DETERMINANT FOR COXETER DISCRIMINANT STRATA 138

and 〈A4, β〉 ∩ R = D5. One can choose

β = α2 + α3 + α6 + 2(α4 + α5) ∈ R

so that β|D has the required form. One can check by Mathematica that |〈A4, β〉 ∩
R| = 30 6= 40 = |D5|. This contradiction implies that RD,β = A6.

We get the following statement as a direct corollary of Table 3.4.

Theorem 3.7.3. Let D be any two-dimensional stratum in R = E7. Then the statement
of Main Theorem 2 is true.

Table 3.4: RD,β, dimD = 2, R = E7

RD, S β|D |RD,β | RD,β R(0)
D,β h(R(0)

D,β)

A5,
{2, 4, 5, 6, 7}

α3, α1 + α3, α1 + 2α3 60 D6 D6 10
α1, 2α1 + 3α3, α1 + 3α3 32 A5 ×A1 A1 2

A
′

5,
{3, 4, 5, 6, 7}

α1 + α2 72 E6 E6 12
α2 60 D6 D6 10

α1, α1 + 2α2 42 A6 A6 7

D5,
{1, 2, 3, 4, 5}

α6, α6 + α7 72 E6 E6 12
2α6 + α7 60 D6 D6 10

α7 42 D5 ×A1 A1 2

A4 ×A1,
{1, 2, 3, 4, 7}

α5 + α6 72 E6 E6 12
2α5 + α6 42 A6 A6 7

α5 42 D5 ×A1 D5 8
3α5 + 2α6 32 A5 ×A1 A5 6

α6 26 A4 ×A2 A2 3

D4 ×A1,
{2, 3, 4, 5, 7}

α6, α1 + α6 60 D6 D6 10
α1, α1 + 2α6 42 D5 ×A1 D5 8

A3 ×A2,
{1, 3, 5, 6, 7}

α2 + 2α4 60 D6 D6 10
α4, α2 + α4 42 A6 A6 7

2α2 + 3α4, α2 + 3α4 26 A4 ×A2 A4 5
α2 20 A3 ×A2 ×A1 A1 2

A3 ×A2
1,

{1, 2, 4, 5, 7}

α3 + α6 60 D6 D6 10
α3 42 D5 ×A1 D5 8

α6, 2α3 + α6 32 A5 ×A1 A5 6
α3 + 2α6, 3α3 + 2α6 20 A3 ×A2 ×A1 A2 3

A2
2 ×A1,

{1, 2, 4, 6, 7}

α3 + α5 72 E6 E6 12
α5 32 A5 ×A1 A5 6

α3, α3 + 2α5 26 A4 ×A2 A4 5
2α3 + α5, 2α3 + 3α5 20 A3 ×A2 ×A1 A3 4

A2 ×A3
1,

{1, 2, 3, 5, 7}
α4, α4 + α6, 2α4 + α6 42 D5 ×A1 D5 8
α6, 3α4 + α6, 3α4 + 2α6 20 A3 ×A2 ×A1 A3 4

As a direct corollary of Tables 3.5, 3.6 we get the following statement.

Theorem 3.7.4. Let D be any two- or three-dimensional stratum in R = E8. Then the
statement of Main Theorem 2 is true.
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Table 3.5: RD,β, dimD = 3, R = E8

RD, S β|D |RD,β | RD,β R(0)
D,β h(R(0)

D,β)

A5,
{4, 5, 6, 7, 8}

α1 + α2 + 2α3 72 E6 E6 12
α2 + α3, α1 + α2 + α3, α1 + 2α2 + 2α3 60 D6 D6 10

α2, α3, 2α1 + 3α2 + 4α3,
2α1 + 2α2 + 3α3, α1 + 2α2 + 3α3, α1 + α3

42 A6 A6 7

α1, 2α1 + 3α2 + 3α3, α1 + 3α2 + 3α3 32 A5 ×A1 A1 2

D5,
{1, 2, 3, 4, 5}

α6, α6 + α7 + α8, 3α6 + 2α7 + α8, α6 + α7 72 E6 E6 12
2α6 + α7 + α8, 2α6 + 2α7 + α8, 2α6 + α7 60 D6 D6 10

α7, α8, 4α6 + 3α7 + 2α8, α7 + α8,
4α6 + 3α7 + α8, 4α6 + 2α7 + α8

42 D5 ×A1 A1 2

D4 ×A1,
{2, 3, 4, 5, 7}

α6, α1 + 2α6 + α8, α1 + α6 60 D6 D6 10
α1, α1 + 3α6 + α8, α1 + α6 + α8, α6 + α8,

2α1 + 3α6 + α8, α1 + 2α6
42 D5 ×A1 D5 8

α8, 2α1 + 4α6 + α8,
2α1 + 2α6 + α8, 2α6 + α8

30 D4 ×A2 A2 3

A4 ×A1,
{1, 3, 4, 5, 7}

α2 + α6 72 E6 E6 12
α6, α2 + 2α6 + α8, 2α2 + 2α6 + α8 42 A6 A6 7
α2, 2α2 + 3α6 + α8, α2 + α6 + α8 42 D5 ×A1 D5 8
α2 + 2α6, α6 + α8, 3α2 + 3α6 + α8 32 A5 ×A1 A5 6
α8, 2α2 + α6, 3α2 + 4α6 + α8 26 A4 ×A2 A2 3

3α2 + 4α6 + 2α8, 2α2 + α6 + α8,
α2 + 3α6 + α8

24 A4 ×A2
1 A1 2

A3 ×A2,
{2, 3, 4, 6, 7}

α5 60 D6 D6 10
α1 + 2α5 + α8, α1 + 3α5 + α8,

α1 + α5, α1 + 2α5
42 A6 A6 7

α5 + α8, 2α1 + 4α5 + α8 30 D4 ×A2 D4 6
α1, α1 + 4α5 + α8, α1 + α5 + α8, α1 + 3α5 26 A4 ×A2 A4 5

α8, 2α1 + 5α5 + α8, 2α1 + 3α5 + α8, 2α5 + α8 24 A2
3 A3 4

2α1 + 5α5 + 2α8, 2α1 + 3α5 20 A3 ×A2 ×A1 A1 2

A3 ×A2
1,

{2, 3, 5, 6, 7}

α4 60 D6 D6 10
α1 + 3α4 + α8, α1 + 2α4 42 D5 ×A1 D5 8

α1 + 2α4 + α8, α1 + 4α4 + α8,
α1 + 3α4, α1 + α4

32 A5 ×A1 A5 6

α4 + α8, 2α1 + 5α4 + α8 24 A2
3 A3 4

α8, 2α1 + 6α4 + α8, 2α1 + 4α4 + α8, 2α4 + α8 24 A4 ×A2
1 A4 5

α1, α1 + 5α4 + α8, α1 + α4 + α8, α1 + 4α4 20 A3 ×A2 ×A1 A2 3

A2
2 ×A1,

{1, 2, 3, 5, 6}

α4 72 E6 E6 12
2α4 + α7, 2α4 + α7 + α8, 4α4 + 2α7 + α8 32 A5 ×A1 A5 6
α4 + α7 + α8, 5α4 + 2α7 + α8, 3α4 + α7,
3α4 + α7 + α8, 3α4 + 2α7 + α8, α4 + α7

26 A4 ×A2 A4 5

4α4 + α7 + α8, 6α4 + 2α7 + α8,
α7, 4α4 + α7, α7 + α8, 2α4 + 2α7 + α8

20 A3 ×A2 ×A1 A3 4

α8, 6α4 + 3α7 + 2α8, 6α4 + 3α7 + α8 16 A2
2 ×A2

1 A1 2

A2 ×A3
1,

{2, 3, 5, 7, 8}

α4 + α6, α1 + 2α4 + α6, α1 + 3α4 + 2α6 42 D5 ×A1 D5 8
α4 30 D4 ×A2 D4 6

α6, 2α4 + α6, α1 + α4 + α6, α1 + 3α4 + α6,
α1 + 4α4 + 2α6, α1 + 2α4 + 2α6

24 A4 ×A2
1 A4 5

2α1 + 5α4 + 3α6, α1 + 4α4 + 3α6, α1 + α4 20 A3 ×A2 ×A1 A3 4
α1, 2α1 + 4α4 + 3α6, 2α1 + 6α4 + 3α6,

α1 + 3α4 + 3α6, α1 + 5α4 + 3α6, α1 + 2α4
16 A2

2 ×A2
1 A2 3
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Table 3.6: RD,β, dimD = 2, R = E8

RD, S β|D |RD,β | RD,β R(0)
D,β h(R(0)

D,β)

A6,
{2, 4, 5, 6, 7, 8}

α1 + 2α3 126 E7 E7 18
α3, α1 + α3 84 D7 D7 12

2α1 + 3α3, α1 + 3α3 56 A7 A7 8
α1 44 A6 ×A1 A1 2

D6,
{2, 3, 4, 5, 6, 7}

α1, α1 + α8 126 E7 E7 18
α8, 2α1 + α8 84 D7 D7 12

E6,
{1, 2, 3, 4, 5, 6}

α7, α7 + α8, 2α7 + α8 126 E7 E7 18
α8, 3α7 + α8, 3α7 + 2α8 74 E6 ×A1 A1 2

A5 ×A1,
{1, 3, 4, 5, 6, 8}

α2 + α7 126 E7 E7 18
α7, 2α2 + α7 56 A7 A7 8

α2 74 E6 ×A1 E6 12
3α2 + 2α7, α2 + 2α7 44 A6 ×A1 A6 7

D5 ×A1,
{2, 3, 4, 5, 6, 8}

α1 + α7 126 E7 E7 18
α7 84 D7 D7 12

α1, α1 + 2α7 74 E6 ×A1 E6 12
2α1 + 3α7, 2α1 + α7 46 D5 ×A2 A2 3

A4 ×A2,
{1, 3, 4, 5, 7, 8}

α2 + α6 126 E7 E7 18
α6, α2 + 2α6 56 A7 A7 8
α2, 2α2 + 3α6 46 D5 ×A2 D5 8

2α2 + α6, 3α2 + 4α6 32 A4 ×A3 A3 4
α2 + 3α6 28 A4 ×A2 ×A1 A1 2

D4 ×A2,
{2, 3, 4, 5, 7, 8}

α6, α1 + 2α6, α1 + α6 84 D7 D7 12
α1, 2α1 + 3α6, α1 + 3α6 46 D5 ×A2 D5 8

A4 ×A2
1,

{2, 3, 5, 6, 7, 8}

α4 84 D7 D7 12
α1 + 3α4, α1 + 2α4 74 E6 ×A1 E6 12
α1 + 4α4, α1 + α4 44 A6 ×A1 A6 7

2α1 + 5α4 32 A4 ×A3 A3 4
α1, α1 + 5α4 28 A4 ×A2 ×A1 A2 3

A2
3,

{2, 3, 4, 6, 7, 8}

α5, α1 + 2α5 84 D7 D7 12
α1 + 3α5, α1 + α5 56 A7 A7 8

α1, 2α1 + 5α5, α1 + 4α5, 2α1 + 3α5 32 A4 ×A3 A4 5

A3 ×A2 ×A1,
{1, 2, 4, 6, 7, 8}

α3 + α5 126 E7 E7 18
α5, 2α3 + 3α5 44 A6 ×A1 A6 7
α3 + 2α5 46 D5 ×A2 D5 8

α3, 3α3 + 4α5 32 A4 ×A3 A4 5
2α3 + α5, 4α3 + 5α5 28 A4 ×A2 ×A1 A4 5

A2
2 ×A2

1,
{1, 2, 3, 5, 6, 8}

α4, 2α4 + α7 74 E6 ×A1 E6 12
3α4 + α7, α4 + α7 46 D5 ×A2 D5 8

α7, 4α4 + α7, 5α4 + 2α7, 3α4 + 2α7 28 A4 ×A2 ×A1 A4 5
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Below we give Tables 3.1, 3.2, 3.5, 3.6 for the root system R = E8 in terms of the
coordinates yi defined by formulae (3.329) and we also give Tables 3.3, 3.4 for the root
system R = E7 in terms of the coordinates yi defined by formulae (3.333).

Table 3.1a: Determinant of restricted Saito metric, dimD = 3, R = E8

RD, S det ηD

A5,
{4, 5, 6, 7, 8}

y71 (y1 − y5) 7y105 (y1 − y8) 2 (y1 − 3y5 − y8) 2 (y1 − y5 − y8) 10 (y5 − y8) 7×
× (y1 + y5 − y8) 10 (y1 + 3y5 − y8) 2y78 (y1 − 3y5 + y8)

7 (y1 − y5 + y8)
12 (y1 + y5 + y8)

7

D5,
{1, 2, 3, 4, 5}

y26y
2
7 (y7 − y6) 10 (y6 + y7)

10 (−y6 + y7 − 2y8)
2 (y6 + y7 − 2y8)

2 (y7 − y8) 12y108 ×
× (y8 − y6) 12 (y6 + y8)

12 (y7 + y8)
12 (−y6 + y7 + 2y8)

2 (y6 + y7 + 2y8)
2

D4 ×A1,
{2, 3, 4, 5, 7}

y105 y
10
7 (y7 − y5) 8 (y5 + y7)

8 (y7 − y8) 8 (−y5 + y7 − y8) 3 (y5 + y7 − y8) 3y108 ×
× (y8 − y5) 8 (y5 + y8)

8 (y7 + y8)
8 (−y5 + y7 + y8)

3 (y5 + y7 + y8)
3

A4 ×A1,
{1, 3, 4, 5, 7}

y83 (y3 − y5) 7y65 (y3 + y5)
12 (3y3 + y5)

3 (y3 − y7) 7 (2y3 − y5 − y7) 2 (2y3 + y5 − y7)×
×6 (y3 + 2y5 − y7) 3y27 (y3 + y7)

7 (y7 − y5) 8 (2y3 − y5 + y7)
2 (y5 + y7)

8×
× (2y3 + y5 + y7)

6 (y3 + 2y5 + y7)
3

A3 ×A2,
{2, 3, 4, 6, 7}

y103 y
2
7 (y7 − 3y3)

5 (y7 − y3) 7 (y3 + y7)
7 (3y3 + y7)

5 (y7 − y8) 6 (−2y3 + y7 − y8) 4×
× (2y3 + y7 − y8) 4y28 (y8 − 3y3)

5 (y8 − y3) 7 (y3 + y8)
7 (3y3 + y8)

5 (y7 + y8)
6×

× (−2y3 + y7 + y8)
4 (2y3 + y7 + y8)

4

A3 ×A2
1,

{2, 3, 5, 6, 7}

y105 y
8
7 (y7 − 2y5)

3 (y7 − y5) 6 (y5 + y7)
6 (2y5 + y7)

3 (y7 − y8) 4 (−y5 + y7 − y8) 5×
× (y5 + y7 − y8) 5y88 (y8 − 2y5)

3 (y8 − y5) 6 (y5 + y8)
6 (2y5 + y8)

3 (y7 + y8)
4×

× (−y5 + y7 + y8)
5 (y5 + y7 + y8)

5

A2
2 ×A1,

{1, 2, 3, 5, 6}

y65y
2
7 (y7 − 3y5)

2 (y7 − y5) 6 (y5 + y7)
6 (3y5 + y7)

2 (−3y5 + y7 − 2y8)
4×

× (−y5 + y7 − 2y8)
4 (y7 − y8) 5 (−2y5 + y7 − y8) 5y48 (y8 − y5) 5 (y5 + y8)

12×
× (2y5 + y8)

4 (3y5 + y8)
5 (y7 + y8)

5 (2y5 + y7 + y8)
5 (y5 + y7 + 2y8)

4 (3y5 + y7 + 2y8)
4

A2 ×A3
1,

{2, 3, 5, 7, 8}

y63y
8
5 (y5 − y3) 5 (y3 + y5)

5 (y5 − 2y8)
4 (−y3 + y5 − 2y8)

3 (y3 + y5 − 2y8)
3 (y5 − y8) 8×

× (−y3 + y5 − y8) 5 (y3 + y5 − y8) 5 (2y5 − y8) 4 (−y3 + 2y5 − y8) 3 (y3 + 2y5 − y8) 3y88×
× (y8 − y3) 5 (y3 + y8)

5 (y5 + y8)
4 (−y3 + y5 + y8)

3 (y3 + y5 + y8)
3
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Table 3.2a: Determinant of restricted Saito metric, dimD = 2, R = E8

RD, S det ηD

A6,
{2, 4, 5, 6, 7, 8} y123 (y3 − y7) 8 (2y3 − y7) 12 (4y3 − y7) 2y187 (2y3 + y7)

8

D6,
{2, 3, 4, 5, 6, 7} y187 (y7 − y8) 12y188 (y7 + y8)

12

E6,
{1, 2, 3, 4, 5, 6} y186 (y6 − y7) 18 (3y6 − y7) 2y27 (y6 + y7)

18 (3y6 + y7)
2

A5 ×A1,
{1, 3, 4, 5, 6, 8} y123 y

8
8 (y3 + y8)

18 (2y3 + y8)
8 (y3 + 2y8)

7 (3y3 + 2y8)
7

D5 ×A1,
{2, 3, 4, 5, 6, 8} y126 (y6 − y7) 12y37 (y6 + y7)

18 (2y6 + y7)
3 (3y6 + y7)

12

A4 ×A2,
{1, 3, 4, 5, 7, 8} y83 (2y3 − y8) 4y188 (y3 + y8)

8 (2y3 + y8)
8 (y3 + 2y8)

4 (2y3 + 3y8)
8 (4y3 + 3y8)

2

D4 ×A2,
{2, 3, 4, 5, 7, 8} y127 (y7 − y8) 8y128 (y7 + y8)

12 (2y7 + y8)
8 (y7 + 2y8)

8

A4 ×A2
1,

{2, 3, 5, 6, 7, 8} y123 (y3 − 2y8)
4 (y3 − y8) 12 (2y3 − y8) 7 (3y3 − y8) 3y128 (y3 + y8)

7 (2y3 + y8)
3

A2
3,

{2, 3, 4, 6, 7, 8} y123 (y3 − y8) 12 (2y3 − y8) 5 (3y3 − y8) 8 (5y3 − y8) 5y58 (y3 + y8)
8 (3y3 + y8)

5

A3 ×A2 ×A1,
{1, 2, 4, 6, 7, 8} y85 (3y5 − 2y8)

5 (y5 − y8) 5 (3y5 − y8) 7y188 (y5 + y8)
5 (3y5 + y8)

7 (3y5 + 2y8)
5

A2
2 ×A2

1,
{1, 2, 3, 5, 6, 8} y125 (y5 − y8) 8 (3y5 − y8) 5y58 (y5 + y8)

12 (2y5 + y8)
5 (3y5 + y8)

8 (5y5 + y8)
5

Table 3.3a: Determinant of restricted Saito metric, dimD = 2, R = E7

RD, S det ηD

A5, {2, 4, 5, 6, 7} y102 (y2 − y7) 10 (3y2 − y7) 2y27 (y2 + y7)
10 (3y2 + y7)

2

A
′

5, {3, 4, 5, 6, 7} y101 (2y1 − y7) 7y127 (2y1 + y7)
7

D5, {1, 2, 3, 4, 5} y25 (y5 − y7) 12y107 (y5 + y7)
12

A4 ×A1, {1, 2, 3, 4, 7} y83 (2y3 − y6) 3y126 (y3 + y6)
6 (2y3 + y6)

7

D4 ×A1, {2, 3, 4, 5, 7} y106 (y6 − y7) 8y107 (y6 + y7)
8

A3 ×A2, {1, 3, 5, 6, 7} y21 (y1 − 3y3)
5 (y1 − y3) 7y103 (y1 + y3)

7 (y1 + 3y3)
5

A3 ×A2
1, {1, 2, 4, 5, 7} y83 (y3 − y6) 6y36 (y3 + y6)

10 (2y3 + y6)
3 (3y3 + y6)

6

A2
2 ×A1 , {1, 2, 4, 6, 7} y123 (y3 − y4) 5 (2y3 − y4) 4y64 (y3 + y4)

5 (2y3 + y4)
4

A2 ×A3
1, {1, 2, 3, 5, 7} y83 (y3 − y6) 4y86 (y3 + y6)

8 (2y3 + y6)
4 (y3 + 2y6)

4



CHAPTER 3. SAITO DETERMINANT FOR COXETER DISCRIMINANT STRATA 143

Table 3.4a: RD,β, dimD = 2, R = E7

RD, S β|D |RD,β | RD,β R(0)
D,β h(R(0)

D,β)

A5,
{2, 4, 5, 6, 7}

y2, y2 ± y7 60 D6 D6 10
y7, 3y2 ± y7 32 A5 ×A1 A1 2

A
′

5,
{3, 4, 5, 6, 7}

y7 72 E6 E6 12
y1 60 D6 D6 10

2y1 ± y7 42 A6 A6 7

D5,
{1, 2, 3, 4, 5}

y5 ± y7 72 E6 E6 12
y7 60 D6 D6 10
y5 42 D5 ×A1 A1 2

A4 ×A1,
{1, 2, 3, 4, 7}

y6 72 E6 E6 12
2y3 + y6 42 A6 A6 7

y3 42 D5 ×A1 D5 8
y3 + y6 32 A5 ×A1 A5 6
2y3 − y6 26 A4 ×A2 A2 3

D4 ×A1,
{2, 3, 4, 5, 7}

y6, y7 60 D6 D6 10
y6 ± y7 42 D5 ×A1 D5 8

A3 ×A2,
{1, 3, 5, 6, 7}

y3 60 D6 D6 10
y1 ± y3 42 A6 A6 7
y1 ± 3y3 26 A4 ×A2 A4 5

y1 20 A3 ×A2 ×A1 A1 2

A3 ×A2
1,

{1, 2, 4, 5, 7}

y3 + y6 60 D6 D6 10
y3 42 D5 ×A1 D5 8

y3 − y6, 3y3 + y6 32 A5 ×A1 A5 6
y6, 2y3 + y6 20 A3 ×A2 ×A1 A2 3

A2
2 ×A1,

{1, 2, 4, 6, 7}

y3 72 E6 E6 12
y4 32 A5 ×A1 A5 6

y3 ± y4 26 A4 ×A2 A4 5
2y3 ± y4 20 A3 ×A2 ×A1 A3 4

A2 ×A3
1,

{1, 2, 3, 5, 7}
y3, y6, y3 + y6 42 D5 ×A1 D5 8

y3 − y6,
2y3 + y6, y3 + 2y6

20 A3 ×A2 ×A1 A3 4
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Table 3.5a: RD,β, dimD = 3, R = E8

RD, S β|D |RD,β | RD,β R(0)
D,β h(R(0)

D,β)

A5,
{4, 5, 6, 7, 8}

y1 − y5 + y8 72 E6 E6 12
y5, y1 − y5 − y8, y1 + y5 − y8 60 D6 D6 10

y1, y1 − y5, y5 − y8, y8, y1 − 3y5 + y8,
y1 + y5 + y8

42 A6 A6 7

y1 − y8, y1 − 3y5 − y8, y1 + 3y5 − y8 32 A5 ×A1 A1 2

D5,
{1, 2, 3, 4, 5}

y7 ± y8, y8 ± y6 72 E6 E6 12
y6 ± y7, y8 60 D6 D6 10

y6, y7, ±y6 + y7 − 2y8, ±y6 + y7 + 2y8 42 D5 ×A1 A1 2

D4 ×A1,
{2, 3, 4, 5, 7}

y5, y7, y8 60 D6 D6 10
y5 ± y7, y7 ± y8, y5 ± y8 42 D5 ×A1 D5 8

±y5 + y7 − y8, ±y5 + y7 + y8 30 D4 ×A2 A2 3

A4 ×A1,
{1, 3, 4, 5, 7}

y3 + y5 72 E6 E6 12
y3 − y5, y3 ± y7 42 A6 A6 7
y3, y7 ± y5 42 D5 ×A1 D5 8

y5, 2y3 + y5 − y7, 2y3 + y5 + y7 32 A5 ×A1 A5 6
3y3 + y5, y3 + 2y5 ± y7 26 A4 ×A2 A2 3

y7, 2y3 − y5 ± y7 24 A4 ×A2
1 A1 2

A3 ×A2,
{2, 3, 4, 6, 7}

y3 60 D6 D6 10
y7 ± y3, y8 ± y3 42 A6 A6 7

y7 ± y8 30 D4 ×A2 D4 6
y7 ± 3y3, y8 ± 3y3 26 A4 ×A2 A4 5

±2y3 + y7 − y8, ±2y3 + y7 + y8 24 A2
3 A3 4

y7, y8 20 A3 ×A2 ×A1 A1 2

A3 ×A2
1,

{2, 3, 5, 6, 7}

y5 60 D6 D6 10
y7, y8 42 D5 ×A1 D5 8

y7 ± y5, y8 ± y5 32 A5 ×A1 A5 6
y7 ± y8 24 A2

3 A3 4
±y5 + y7 − y8, ±y5 + y7 + y8 24 A4 ×A2

1 A4 5
±2y5 + y7, ±2y5 + y8 20 A3 ×A2 ×A1 A2 3

A2
2 ×A1,

{1, 2, 3, 5, 6}

y5 + y8 72 E6 E6 12
y5, y7 ± y5 32 A5 ×A1 A5 6

y7 ± y8, y8 − y5,
−2y5 + y7 − y8,

2y5 + y7 + y8, 3y5 + y8

26 A4 ×A2 A4 5

−3y5 + y7 − 2y8, −y5 + y7 − 2y8,
y8, 2y5 + y8, y5 + y7 + 2y8,

3y5 + y7 + 2y8

20 A3 ×A2 ×A1 A3 4

y7, ±3y5 + y7 16 A2
2 ×A2

1 A1 2

A2 ×A3
1,

{2, 3, 5, 7, 8}

y5, y8, y5 − y8 42 D5 ×A1 D5 8
y3 30 D4 ×A2 D4 6

y5 ± y3 ,y8 ± y3, ±y3 + y5 − y8 24 A4 ×A2
1 A4 5

y5 − 2y8, 2y5 − y8, y5 + y8 20 A3 ×A2 ×A1 A3 4
±y3 + y5 − 2y8, ±y3 + 2y5 − y8,

±y3 + y5 + y8
16 A2

2 ×A2
1 A2 3
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Table 3.6a: RD,β, dimD = 2, R = E8

RD, S β|D |RD,β | RD,β R(0)
D,β h(R(0)

D,β)

A6,
{2, 4, 5, 6, 7, 8}

y7 126 E7 E7 18
y3, 2y3 − y7 84 D7 D7 12

y3 − y7, 2y3 + y7 56 A7 A7 8
4y3 − y7 44 A6 ×A1 A1 2

D6,
{2, 3, 4, 5, 6, 7}

y8, y7 126 E7 E7 18
y7 ± y8 84 D7 D7 12

E6,
{1, 2, 3, 4, 5, 6}

y6, y6 ± y7 126 E7 E7 18
3y6 ± y7, y7 74 E6 ×A1 A1 2

A5 ×A1,
{1, 3, 4, 5, 6, 8}

y3 + y8 126 E7 E7 18
y8, 2y3 + y8 56 A7 A7 8

y3 74 E6 ×A1 E6 12
y3 + 2y8, 3y3 + 2y8 44 A6 ×A1 A6 7

D5 ×A1,
{2, 3, 4, 5, 6, 8}

y6 + y7 126 E7 E7 18
y6 84 D7 D7 12

y6 − y7, 3y6 + y7 74 E6 ×A1 E6 12
y7, 2y6 + y7 46 D5 ×A2 A2 3

A4 ×A2,
{1, 3, 4, 5, 7, 8}

y8 126 E7 E7 18
y3 + y8, 2y3 + y8 56 A7 A7 8
y3, 2y3 + 3y8 46 D5 ×A2 D5 8

2y3 − y8, y3 + 2y8 32 A4 ×A3 A3 4
4y3 + 3y8 28 A4 ×A2 ×A1 A1 2

D4 ×A2,
{2, 3, 4, 5, 7, 8}

y7, y8, y7 + y8 84 D7 D7 12
y7 − y8, 2y7 + y8, y7 + 2y8 46 D5 ×A2 D5 8

A4 ×A2
1,

{2, 3, 5, 6, 7, 8}

y3 84 D7 D7 12
y3 − y8, y8 74 E6 ×A1 E6 12

2y3 − y8, y3 + y8 44 A6 ×A1 A6 7
y3 − 2y8 32 A4 ×A3 A3 4

3y3 − y8, 2y3 + y8 28 A4 ×A2 ×A1 A2 3

A2
3,

{2, 3, 4, 6, 7, 8}

y3, y3 − y8 84 D7 D7 12
3y3 − y8, y3 + y8 56 A7 A7 8

2y3 − y8, 5y3 − y8, y8, 3y3 + y8 32 A4 ×A3 A4 5

A3 ×A2 ×A1,
{1, 2, 4, 6, 7, 8}

y8 126 E7 E7 18
3y5 ± y8 44 A6 ×A1 A6 7

y5 46 D5 ×A2 D5 8
3y5 ± 2y8 32 A4 ×A3 A4 5
y5 ± y8 28 A4 ×A2 ×A1 A4 5

A2
2 ×A2

1,
{1, 2, 3, 5, 6, 8}

y5, y5 + y8 74 E6 ×A1 E6 12
y5 − y8, 3y5 + y8 46 D5 ×A2 D5 8

y8, 3y5 − y8, 2y5 + y8, 5y5 + y8 28 A4 ×A2 ×A1 A4 5
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3.8 Dubrovin’s duality on discriminant strata revisited

In this section we revisit almost duality of Frobenius manifolds on discriminant strata
(see Chapter 2). Such a duality was considered in [35], and it was suggested in [81] that
discriminant strata are natural submanifolds. We can now give all the details to complete
this study proving that multiplication of tangential vectors from each stratum belongs to
the stratum.

Let us recall that for or any x ∈ MW \ Σ the almost dual Frobenius multiplication is
defined by the formula

u ∗ v = E−1 ◦ u ◦ v, (3.334)

where u, v ∈ TxMW and E is the Euler vector field

E =
1

h
xi

∂

∂xi
=

1

h

∑
α

dαt
α ∂

∂tα
.

Recall also that E is the identity field of the almost dual multiplication ∗. Let e−1 denote
the inverse field of e with respect to the almost dual multiplication, namely e−1 ∗ e = E.
It follows by formula (3.334) that E = E−1 ◦ e−1, and hence e−1 can be represented as

e−1 = E ◦ E. (3.335)

Note that we also have by formulae (3.334), (3.335) that

e−1 ∗ u ∗ v = E−1 ◦ (e−1 ∗ u) ◦ v = E−1 ◦ (E−1 ◦ e−1 ◦ u) ◦ v = u ◦ v. (3.336)

Let us now recall that Saito metric η and metric g are related as follows:

η(u, v) = g(E ◦ u, v). (3.337)

Let us consider the vector field e−1 = e−1(x) as a vector field on V , x ∈ V .

Lemma 3.8.1. The vector field e−1(x) is well-defined at x0 ∈ D. Moreover, e−1(x0) ∈
Tx0D.

Proof. We have by formulae (3.336) and (3.337) that

η(u, v) = g(E ◦ u, v) = g(e−1 ∗ u, v). (3.338)

For the components (e−1)j (1 ≤ j ≤ n) of the vector field e−1 we have

(e−1)j = g(e−1,
∂

∂xj
) = g(e−1 ∗ E, ∂

∂xj
) = η(E,

∂

∂xj
),
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where the last equality follows by (3.338). Then

(e−1)j =
1

h

n∑
α=1

dαt
α ∂t

β

∂xj
η(

∂

∂tα
,
∂

∂tβ
) =

1

h

n∑
α=1

dαt
α ∂t

β

∂xj
ηαβ =

1

h

n∑
α=1

dαt
α∂t

n+1−α

∂xj
, (3.339)

since ηαβ = δα+β,n+1. Thus the first part of the statement follows. Let γ ∈ RD, and let ∂γ
be the corresponding vector field orthogonal to D. Then we have by formula (3.339) that
(e−1(x), ∂γ) = 0, as x tends to x0. Therefore e−1(x0) ∈ Tx0D, as required.

Let ΣD be the union of the hyperplanes Πγ ∩D in D, where γ ∈ R \RD and consider
point x0 in D \ ΣD. Let u, v ∈ Tx0D and consider extension of u and v to two local
analytic vector fields u(x), v(x) ∈ TxV such that u(x0) = u and v = v(x0). Recall that
the multiplication u(x) ∗ v(x) has a limit when x tends to x0 and furthermore that the
product u ∗ v at x0 is tangential to D (Lemma 2.5.9). As a result we get the following
statement using Lemma 3.8.1 and formula (3.336).

Proposition 3.8.2. Let u, v ∈ Tx0D, x0 ∈ D \ ΣD. Then u ◦ v ∈ Tx0D. Furthermore,
u ◦ v = e−1 ∗ u ∗ v.

The proposition is the strengthening of the results and observations from [35, 81].
Namely, in Dubrovin’s duality formula (3.336) both sides are well-defined if u, v ∈ Tx0D
and equality remains to be satisfied on D.



Chapter 4

Supersymmetric ∨–Systems

We construct N = 4 D(2, 1;α) superconformal quantum mechanical system for any con-
figuration of vectors forming a ∨-system. In the case of a Coxeter root system the bosonic
potential of the supersymmetric Hamiltonian is the corresponding generalised Calogero–
Moser potential. We also construct supersymmetric generalised trigonometric Calogero–
Moser–Sutherland Hamiltonians for some root systems including BCN .

4.1 The D(2, 1;α) Lie superalgebra

Let us recall the definition of the family of Lie superalgebras D(2, 1;α) which depends
on a parameter α ∈ C (see e.g. [38, p. 29]). This algebra has 8 odd generators Fabc,
and 9 even generators T (j)

i (i, j = 1, 2, 3) so that for each fixed j they generate mutually
commuting sl(2) algebras. In the context of supersymmetry the generators of the algebra
usually appear in a slighty different form (see e.g. [32]). We relate the forms of the algebra
D(2, 1;α) given in [38] and [32] as follows.

We take Qabc ≡ Fabc, s1 = −2i, s2 = 2i(1 + α), s3 = −2iα and introduce different
generators in the sl(2)

(j)Σ11 = −T (j)
2 + iT

(j)
1 , (j)Σ22 = −T (j)

2 − iT
(j)
1 , (j)Σ12 =(j) Σ21 = −iT (j)

3 . (4.1)

Further on, we re-denote generators (j)Σab as follows: (1)Σab = T ab, (2)Σab = Iab and
(3)Σab = Jab, a, b = 1, 2. Let εab, εab be the fully anti-symmetric tensors in two dimensions
such that ε12 = ε21 = 1. Then all the relations of the superalgebra D(2, 1;α) take the
following form:

{Qace, Qbdf} = −2
(
εefεcdT ab + αεabεcdJef − (α + 1)εabεefIcd

)
, (4.2)

[T ab, T cd] = −i
(
εacT bd + εbdT ac

)
, (4.3)

148
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a) [Jab, J cd] = −i
(
εacJ bd + εbdJac

)
, b) [Iab, Icd] = −i

(
εacIbd + εbdIac

)
, (4.4)

a) [T ab, Qcdf ] = iεc(aQb)df , b) [Jab, Qcdf ] = iεf(aQ|cd|b), c) [Iab, Qcdf ] = iεd(aQ|c|b)f , (4.5)

where we symmetrise over two indices inside (. . . ) with indices inside | . . . | being un-
changed. For example, εf(aQ|cd|b) = 1

2

(
εfaQcdb + εfbQcda

)
. We also have relations

[T ab, Icd] = [Icd, Jef ] = [T ab, Jef ] = 0, (4.6)

for all a, b, c, d, e, f = 1, 2. Let us rename generators as follows:

Qa = −Q21a, Q̄a = −Q22a, Sa = Q11a, S̄a = Q12a, a = 1, 2,

K = T 11, H = T 22, D = −T 12 = −T 21.

We will use εab and εab to lower and raise indices, for example Qa = εabQb, Q̄a = εabQ̄b.
We consider N (quantum) particles on a line with coordinates and momenta (xj, pj),
j = 1, . . . , N to each of which we associate four fermionic variables {ψaj, ψ̄ja|a = 1, 2}. We
will also write x = (x1, . . . , xN), p = (p1, . . . , pN). We realise these variables as operators
acting on wavefunctions which lie on the tensor product of the Hilbert space of functions
of x and a 4N -dimensional fermionic Fock space.

We assume the following (anti)-commutation relations (a, b = 1, 2; j, k = 1, . . . , N):

[xj, pk] = iδjk, {ψaj, ψ̄kb } = −1

2
δjkδab , {ψaj, ψbk} = {ψ̄ja, ψ̄kb } = 0. (4.7)

Thus one can think of pk as pk = −i ∂
∂xk

. We introduce further fermionic variables by

ψja = εabψ
bj, ψ̄aj = εabψ̄jb . (4.8)

They satisfy the following useful relations:

{ψja, ψ̄bk} =
1

2
δjkδba, {ψaj, ψ̄bk} =

1

2
δjkεab, {ψja, ψ̄kb } =

1

2
δjkεba. (4.9)

We will be assuming throughout that summation over repeated indices takes place (even
when both indices are either low or upper indices) unless it is indicated that no summation
is applied.

In addition it is convenient to define an involutive operation on any operator which we
denote by ‘∼’ and with the property that ÃB = ÃB̃ for any operators A, B and

ψ̃ja = ψ̄aj, ψ̃aj = ψ̄ja, p̃j = −pj, x̃j = xj, ĩ = −i, ε̃ab = εab, α̃ = α. (4.10)

Note that this is compatible with (4.8), and that one has to keep record of εab when dealing
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with fermions with upper and lower indices and applying ∼.
Let F = F (x1, . . . , xN) be a function such that

xrFrjk = −(2α + 1)δjk, (4.11)

where Frjk = ∂3F
∂xr∂xj∂xk

for any r, j, k = 1, . . . , N . We assume that all the derivatives Frjk
are homogeneous in x of degree -1. Furthermore, we assume that F satisfies the following
generalised WDVV equations (cf. (2.59))

FrjkFkmn = FrmkFkjn, (4.12)

for any r, j,m, n = 1, . . . , N .
The following relations for arbitrary operators A, B, C will be useful:

[AB,C] = A[B,C] + [A,C]B, (4.13)

[AB,C] = A{B,C} − {A,C}B, (4.14)

{AB,C} = A[B,C] + {A,C}B. (4.15)

We are going to present two representations of D(2, 1;α) algebra using F .

4.2 The first representation

Let the supercharges be of the form

Qa = prψ
ar + iFrjk〈ψbrψjb ψ̄

ak〉, (4.16)

Q̄c = plψ̄
l
c + iFlmn〈ψ̄ldψ̄dmψnc 〉, (4.17)

where the symbol 〈. . . 〉 stands for the anti-symmetrisation. That is given N operators Ai,
(i = 1, . . . , N) we define

〈A1 . . . AN〉 =
1

N !

∑
σ∈SN

sgn(σ)Aσ(1) . . . Aσ(N). (4.18)

Note that we have by (4.7), (4.9) and (4.18)

〈ψbrψjb ψ̄
ak〉 =

1

6
(2ψbrψjb ψ̄

ak + 2ψ̄akψbrψjb − ψ
brψ̄akψjb + ψjb ψ̄

akψbr)

=
1

3
(ψbrψjb ψ̄

ak + ψ̄akψbrψjb − ψ
brψ̄akψjb) +

1

12
(δjkψar − δrkψaj)

= ψbrψjb ψ̄
ak − 1

6
δrkψaj − 1

3
δjkψar +

1

12
(δjkψar − δrkψaj).
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Note that Frjk(δjkψar − δrkψaj) = 0 since δjkψar − δrkψaj is anti-symmetric under the
interchange of j and r. Therefore

Frjk〈ψbrψjb ψ̄
ak〉 = Frjk(ψ

brψjb ψ̄
ak − 1

2
ψarδjk). (4.19)

Similarly,

Flmn〈ψ̄ldψ̄dmψnc 〉 = Flmn(ψ̄ldψ̄
dmψnc −

1

2
ψ̄lcδ

nm). (4.20)

Let also

K = x2 =
N∑
j=1

x2
j , (4.21)

D = −1

4
{xj, pj} = −1

2
xjpj +

iN

2
, (4.22)

I11 = −iψjaψaj, I22 = iψ̄ajψ̄ja, I12 = − i
2

[ψja, ψ̄
aj], (4.23)

Jab = J ba = 2iψ(ajψ̄bj), (4.24)

Sa = −2xjψ
aj, S̄a = −2xjψ̄

j
a. (4.25)

Remark 4.2.1. Ansatz for the supercharges (4.16), (4.17) is the same as the ansatz
introduced by Wyllard (see formula (2.15) in [88]) under a suitable scaling of the variables
x, p and the following identification of fermionic variables:

θk = i
√

2ψ1k, θ̃k = i
√

2ψ2k,
∂

∂θk
= i
√

2ψ̄1k,
∂

∂θ̃k
= i
√

2ψ̄2k.

Remark 4.2.2. Ansatz (4.16), (4.17), (4.21), (4.22), (4.24), (4.25) with F satisfying (4.11)
at α = −1 matches considerations in [40], [41] (see also [88]), where su(1, 1|2) supercon-
formal mechanics were considered. Note that the superalgebra su(1, 1|2) generated by
Qabc, T ab, Jab is a subalgebra in the superalgebra D(2, 1;−1). Thus Lemmas 4.2.3, 4.2.5
below can be deduced from considerations in [40], [41]. We include these lemmas so that
to have complete derivations for reader’s convenience. Let us give some details on this
correspondence.

For the sake of clarity let us denote generators from [41] with a ‘hat’. In this case we
deal with algebra generated by supercharges Q̂a, ̂̄Qa, their superconformal partners Ŝa,̂̄Sa (a = 1, 2) and two sl(2) algebras with generators Ja, (a = 1, 2, 3) and K̂, Ĥ, D̂. Then
bosonic and fermionic variables in [41] are related to the same variables defined in the
present work as follows:

x̂k =
√

2xk, p̂k =
1√
2
pk, ψ̂ka =

√
2ψka ,

̂̄ψak =
√

2ψ̄ak.
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Let us then consider the generators Ja from [41] which are defined as Ja = 1
2
̂̄ψbk(σa)cbψ̂kc =

ψ̄bk(σa)
c
bψ

k
c , where σa (a = 1, 2, 3) denote the Pauli matrices (see (3.5) in [41]). The

generators Ja satisfy the relations [Ja, Jb] = iεabcJc. Then we have

J1 = ψ̄2kψ2k − ψ̄1kψ1k, J2 = i(ψ̄1kψ1k + ψ̄2kψ2k), J3 = ψ̄1kψ2k + ψ̄2kψ1k.

Hence we obtain the following correspondence between the generators Jab and Ja using
(4.9):

J11 = 2iψ1kψ̄1k = −J2 + iJ1, J22 = 2iψ2kψ̄2k = −J2 − iJ1,

J12 = i(ψ1kψ̄2k + ψ2kψ̄1k) = −iJ3.

Then it is easy to to recover relations (4.4a). Finally we take

Ŝa = −Sa, ̂̄Sa = −S̄a, ̂̄Qa = Q̄a, Q̂a = Qa, K̂ = K, Ĥ = H, D̂ = D.

Let us firstly check relations (4.4), (4.5) involving generators Jab and Iab.

Lemma 4.2.3 (cf. [40], [41]). Let Jab be given by (4.24). Then relations (4.4a) hold.

Proof. We consider the commutator

[ψajψ̄bj, ψckψ̄dk] = ψaj[ψ̄bj, ψckψ̄dk] + [ψaj, ψckψ̄dk]ψ̄bj

=
1

2
εcbψajψ̄dj +

1

2
εdaψcjψ̄bj,

which implies the statement.

We will use the following relations:

[ψ̄bk, ψjaψ
aj] = ψbk, [ψ̄ajψ̄ja, ψ

k
b ] = −ψ̄kb . (4.26)

Lemma 4.2.4. Let Iab be given by (4.23). Then relations (4.4b) hold.

Proof. The relations (4.4b) read

[I11, I22] = 2iI12, [I11, I12] = iI11, [I22, I12] = −iI22.

We have
[I11, I22] = [ψjaψ

aj, ψ̄bkψ̄kb ]. (4.27)
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By applying (4.13), (4.14) we rearrange expression (4.27) as

[I11, I22] = ψja[ψ
aj, ψ̄bkψ̄kb ] + [ψja, ψ̄

bkψ̄kb ]ψaj

= ψjaψ̄
aj + ψ̄jaψ

aj = ψjaψ̄
aj − ψ̄ajψja

= 2iI12,

as required. Moreover, using the Jacobi identity we have

[I11, I12] = −1

2
[ψjaψ

aj, [ψkb , ψ̄
bk]] =

1

2
[ψkb , [ψ̄

bk, ψjaψ
aj]].

Thus by using the first relation in (4.26)

[I11, I12] = ψkbψ
bk = iI11.

Similarly,

[I22, I12] =
1

2
[ψ̄ajψ̄ja, [ψ

k
b , ψ̄

bk]] = −1

2
[ψ̄bk, [ψ̄ajψ̄ja, ψ

k
b ]].

Hence, by using the latter relation in (4.26)

[I22, I12] = ψ̄bkψ̄kb = −iI22,

and hence the statement follows.

In what follows, we will use the following relation:

[ψajψ̄bj, ψcl] = −1

2
εbcψal. (4.28)

By formulae (4.13), (4.14) we also have

[ψajψ̄bj, ψdlψmd ψ̄
cn] = ψdlψmd [ψajψ̄bj, ψ̄cn] + [ψajψ̄bj, ψdlψmd ]ψ̄cn

= −ψdlψmd ψ̄bj{ψ̄cn, ψaj}+ ψdl[ψajψ̄bj, ψmd ]ψ̄cn + [ψajψ̄bj, ψdl]ψmd ψ̄
cn

=
1

2
εcaψdlψmd ψ̄

bn +
1

2
ψblψamψ̄cn +

1

2
ψbmψalψ̄cn. (4.29)

Lemma 4.2.5 (cf. [40], [41]). Let Qabc, Jab be as above. Then the relations (4.5b) hold.

Proof. Firstly let us note that the sum of the last two terms in (4.29) is anti-symmetric
in a and b and Jab = J ba. Therefore we have by applying (4.29)

[Jab, Flmnψ
dlψmd ψ̄

cn] =
i

2
εcaFlmnψ

dlψmd ψ̄
bn +

i

2
εcbFlmnψ

dlψmd ψ̄
an. (4.30)
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Then

[Jab, Q21c] = −[Jab, Qc] = −[Jab, plψ
cl]− iFlmn[Jab, 〈ψdlψmd ψ̄cn〉].

Therefore we get from (4.28) and (4.30) that

[Jab, Q21c] =
i

2

(
εbcplψ

al + εacplψ
bl − iεcaFlmn〈ψdlψmd ψ̄bn〉 − iεcbFlmn〈ψdlψmd ψ̄an〉

)
(4.31)

= − i
2

(εcbQa + εcaQb) = iεc(aQ|21|b),

as required in (4.5b). Further, we consider

[Jab, Sc] = −2xl[J
ab, ψcl] = ixl(ε

bcψal + εacψbl) =
i

2
(εcbSa + εcaSb) = iεc(aQ|11|b),

which coincides with the corresponding relation in (4.5b). Finally, applying ∼ to [Jab, Q21c]

and [Jab, Sc] we obtain the remaining relations (see also Lemma B.1.3).

Lemma 4.2.6. Let Qabc, Iab be as above. Then relations (4.5c) hold.

Proof. Let us first consider [I11, Q21a]. Using formulae (4.13), (4.14) we have

[ψrdψ
dr, ψblψmb ψ̄

an] = ψblψmb [ψrdψ
dr, ψ̄an] = −ψblψmb ψan. (4.32)

It follows that Flmn[ψrdψ
dr, ψblψmb ψ̄

an] = 0 and hence

[I11, Q21a] = i[ψrdψ
dr, Qa] = i[ψrdψ

dr, plψ
al] = 0, (4.33)

as required for (4.5c). Let us now consider [I22, Q21a]. We have

[I22, ψal] = i[ψ̄drψ̄rd, ψ
al] = −iψ̄al, (4.34)

and hence

[ψ̄drψ̄rd, ψ
blψmb ψ̄

an] = −[ψblψmb , ψ̄
drψ̄rd]ψ̄

an

= (ψbl[ψ̄drψ̄rd, ψ
m
b ] + [ψ̄drψ̄rd, ψ

bl]ψmb )ψ̄an

= −ψblψ̄mb ψ̄an − ψ̄blψmb ψ̄an. (4.35)

By reordering terms in (4.35) we obtain

[ψ̄drψ̄rd, ψ
blψmb ψ̄

an] = (ψ̄mb ψ
bl + δlm)ψ̄an + ψ̄bl(ψ̄anψmb −

1

2
δab δ

nm)

= −ψ̄mb ψ̄anψbl −
1

2
ψ̄amδln + δlmψ̄an − ψ̄lbψ̄anψbm −

1

2
ψ̄alδnm.
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Therefore
Flmn[ψ̄drψ̄rd, ψ

blψmb ψ̄
an] = −2Flmnψ̄

l
bψ̄

anψbm. (4.36)

Note that Flmnψ̄lcψ̄anψcm = 0 if c is fixed such that c 6= a. Hence (4.36) can be rearranged
as −2Flmnψ̄

l
aψ̄

amψan which is also equal to −Flmnψ̄lbψ̄bmψan. Therefore

[I22, Q21a] = −i[ψ̄drψ̄rd, Qa] = −i
(
− plψ̄al + iFlmn(−ψ̄lbψ̄bmψan +

1

2
ψ̄alδnm)

)
= iQ̄a,

(4.37)

as required for (4.5c).
Further, let us consider [I12, Q21a] = i[ψrdψ̄

dr, Qa]. Then by (4.29) we have

[ψrdψ̄
dr, ψblψmb ψ̄

an] =
1

2
ψblψmb ψ̄

an.

Therefore, with the help of (4.28) we get

[I12, Q21a] =
i

2

(
plψ

al + iFlmn(ψblψmb ψ̄
an − 1

2
ψalδmn)

)
=
i

2
Qa, (4.38)

which matches with (4.5c).
Let us now consider the generator Q11a. Firstly, it is immediate that [I11, Q11a] = 0,

as required. In addition, we have by (4.34) that

[I22, Q11a] = i[ψ̄drψ̄rd, S
a] = −2ixj[ψ̄

drψ̄rd, ψ
aj] = −iS̄a,

and
[I12, Sa] = −i[ψrdψ̄dr, Sa] = ixjψ

aj = − i
2
Sa,

as required for (4.5c). The remaining relations in (4.5c) can be checked similarly by
applying ∼.

Let Ai, Bi (i = 1, 2, 3) be operators. In the following theorem we will use the identity

{A1A2A3, B1B2B3} = A1A2{A3, B1}B2B3 + A1A2B1B2{B3, A3} − A1A2B1{B2, A3}B3−

− A1{A2, B1}B2B3A3 − A1B1B2{B3, A2}A3 + A1B1{B2, A2}B2A3

+ {A1, B1}B2B3A2A3 +B1B2{B3, A1}A2A3 −B1{B2, A1}B3A2A3.

(4.39)

We will also use the following relations. We have by (4.13) and (4.15)

{ψar, ψ̄ldψ̄dmψnc } = ψ̄ld[ψ̄
dmψnc , ψ

ar] + ψ̄dmψnc {ψ̄ld, ψar} = −1

2
ψ̄alψnc δ

rm − 1

2
ψ̄amψnc δ

rl,

(4.40)
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and similarly,

{ψ̄lc, ψbrψ
j
b ψ̄

ak} = −1

2
ψrc ψ̄

akδjl − 1

2
ψjc ψ̄

akδrl. (4.41)

Theorem 4.2.7. For all a, b = 1, 2 we have {Qa, Q̄b} = −2Hδab , where the Hamiltonian
H is given by

H =
p2

4
− ∂iFjlk

2
(ψbiψjb ψ̄

l
dψ̄

dk − ψibψ̄bjδlk +
1

4
δijδlk) +

1

16
FijkFlmnδ

nmδjlδik (4.42)

with p2 =
∑N

i=1 p
2
i .

Proof. Let us consider {Qa, Q̄c}, where

Qa =

A︷ ︸︸ ︷
prψ

ar +

B︷ ︸︸ ︷
iFrjk〈ψbrψjb ψ̄

ak〉, Q̄c =

A′︷︸︸︷
plψ̄

l
c +

B′︷ ︸︸ ︷
iFlmn〈ψ̄ldψ̄dmψnc 〉 .

We have
{A,A′} = −1

2
δac p

2.

Further on, by (4.20) we have

{A,B′} = i{ψarpr, Flmn〈ψ̄ldψ̄dmψnc 〉}

= i{ψarpr, Flmnψ̄ldψ̄dmψnc } −
i

2
δnm{prψar, Flmnψ̄lc}

= iψarψ̄ldψ̄
dmψnc [pr, Flmn] + i{ψar, ψ̄ldψ̄dmψnc }Flmnpr−

− i

2
δnmψarψ̄lc[pr, Flmn] +

i

4
δnmδacFrmnpr.

By (4.40) we have
Flmn{ψar, ψ̄ldψ̄dmψnc } = −Flmnψ̄alψnc δrm.

Therefore,

{A,B′} = iψarψ̄ldψ̄
dmψnc [pr, Flmn]− iψ̄alψnc Flnrpr −

i

2
δnmψarψ̄lc[pr, Flmn] +

i

4
δnmδacFrmnpr.

(4.43)
Similarly, using (4.41) we obtain

{B,A′} = iψ̄lcψ
brψjb ψ̄

ak[pl, Frjk]−iψrc ψ̄akFrkjpj−
i

2
δjkψ̄lcψ

ar[pl, Frjk]+
i

4
δjkδacFrjkpr. (4.44)

Note that ψ̄alψnc Flnrpr + ψrc ψ̄
akFrkjpj = 1

2
δlnδacFlnrpr. Then, after cancelling out terms

and simplifying we have

{A,B′}+ {B,A′} = ∂rFljk(ψ
arψ̄ldψ̄

dkψjc + ψ̄lcψ
brψjb ψ̄

ak) +
1

4
∂rFlmnδ

nmδrlδac . (4.45)



CHAPTER 4. SUPERSYMMETRIC ∨–SYSTEMS 157

In particular, we note that using the symmetry of Fljk we have that

∂rFljkψ
arψ̄ldψ̄

dkψjc = ∂rFljk(ψ
arψjc ψ̄

l
dψ̄

dk + ψarψ̄kc δ
lj), (4.46)

and
∂rFljkψ̄

l
cψ

brψjb ψ̄
ak = ∂rFljk(ψ

brψjb ψ̄
l
cψ̄

ak − ψrc ψ̄akδlj). (4.47)

Note that if a 6= c, we have

ψarψ̄kc = ψrc ψ̄
ak, and ψarψjc = −ψajψrc , ψ̄lcψ̄

ak = −ψ̄kaψ̄cl. (4.48)

Using the symmetry ∂rFljk = ∂lFrjk and Fljk = Fkjl it follows from (4.46), (4.47) and
(4.48) that the sum of expressions in (4.46) and (4.47) vanishes if a 6= c. Therefore we get
from (4.46), (4.47), (4.48) that

∂rFljk(ψ
arψ̄ldψ̄

dkψjc + ψ̄lcψ
brψjb ψ̄

ak) = ∂rFljk(ψ
arψjaψ̄

l
dψ̄

dk + ψbrψjb ψ̄
l
aψ̄

ak − ψrdψ̄dkδlj)δac .
(4.49)

Note that
ψarψja = ψâjψrâ, and ψ̄arψ̄ja = ψ̄âjψ̄râ, (4.50)

here â 6= a. Therefore the right-hand side of (4.49) equals

∂rFljk(ψ
brψjb ψ̄

l
dψ̄

dk − ψrdψ̄dkδlj)δac . (4.51)

Therefore in total expression (4.45) becomes

{A,B′}+ {B,A′} = ∂rFljk(ψ
brψjb ψ̄

l
dψ̄

dk − ψrdψ̄dkδlj +
1

4
δrlδjk)δac .

Finally, let us consider the term {B,B′}. We first show that

C := FrjkFlmn{ψbrψjb ψ̄
ak, ψ̄ldψ̄

dmψnc } = 0. (4.52)

By using (4.39) we obtain

C = FrjkFlmn
(
ψbrψjb ψ̄

l
dψ̄

dm{ψnc , ψ̄ak} − ψbrψ̄dmψnc ψ̄ak{ψ
j
b , ψ̄

l
d}

+ ψbrψ̄ldψ
n
c ψ̄

ak{ψ̄dm, ψjb}+ ψ̄dmψnc ψ
j
b ψ̄

ak{ψbr, ψ̄ld} − ψ̄ldψnc ψ
j
b ψ̄

ak{ψbr, ψ̄dm}
)

= FrjkFlmn
(1

2
δac δ

nkψbrψjb ψ̄
l
dψ̄

dm +
1

2
δljψbrψ̄mb ψ

n
c ψ̄

ak +
1

2
δmjψbrψ̄lbψ

n
c ψ̄

ak

+
1

2
δrlψ̄bmψjbψ

n
c ψ̄

ak +
1

2
δrmψ̄blψjbψ

n
c ψ̄

ak
)
.
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Then using the symmetry of Flmn under the swap of l and m we obtain

C = FrjkFlmn
(1

2
δac δ

nkψbrψjb ψ̄
l
dψ̄

dm + δjlψbrψ̄mb ψ
n
c ψ̄

ak + δrlψ̄bmψjbψ
n
c ψ̄

ak
)
.

Note that by (4.7), (4.9) we have

ψbrψ̄mb ψ
n
c ψ̄

ak = −ψbrψnc ψ̄mb ψ̄ak −
1

2
ψrc ψ̄

akδnm, (4.53)

and

ψ̄bmψjbψ
n
c ψ̄

ak = −ψjb ψ̄
bmψnc ψ̄

ak + ψnc ψ̄
akδmj

= −ψbjψnc ψ̄mb ψ̄ak −
1

2
ψjc ψ̄

akδnm + ψnc ψ̄
akδmj. (4.54)

Further on by (4.12) we have FrjkFrmn = FrnkFrmj and therefore some terms in the right-
hand side of (4.53), (4.54) enter the relation

FrjkFrmnψ
n
c ψ̄

akδmj =
1

2
FrjkFjmnψ

r
c ψ̄

akδmn +
1

2
FrjkFrmnψ

j
c ψ̄

akδmn. (4.55)

Then by using (4.53)-(4.55) and the symmetry of Frjk under the swap of r and j we obtain

C = FrjkFlmn
(1

2
δac δ

nkψbrψjb ψ̄
l
dψ̄

dm − δjlψbrψnc ψ̄mb ψ̄ak − δrlψbjψnc ψ̄mb ψ̄ak
)

= FrjkFlmn
(1

2
δac δ

nkψbrψjb ψ̄
l
dψ̄

dm − 2δjlψbrψnc ψ̄
m
b ψ̄

ak
)
.

Note that for c 6= a we have C = 0, since FrjkFlmnδjlψbrψnc ψ̄mb ψ̄ak = 0 by using (4.12).
Further on, if c = a then by using (4.12) we have

C = FrjkFklm
(1

2
ψbrψjb ψ̄

l
dψ̄

dm − 2ψbrψjaψ̄
l
bψ̄

am
)
. (4.56)

Note that for b 6= a, Frjkψbrψja = 0. Hence

FrjkFklmψ
brψjaψ̄

l
bψ̄

am = FrjkFklmψ
arψjaψ̄

l
aψ̄

am, (4.57)

which is equal to 1
4
FrjkFklmψ

brψjb ψ̄
l
dψ̄

dm because of relations (4.50). This proves that
C = 0. Then the term {B,B′} takes the following form:

{B,B′} = FrjkFlmn
(1

2
δnm{ψbrψjb ψ̄

ak, ψ̄lc}+
1

2
δjk{ψ̄ldψ̄dmψnc , ψar} −

1

4
δjkδnm{ψar, ψ̄lc}

)
.
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By using formulae (4.40), (4.41) and (4.12) we obtain

{B,B′} = −1

2
FrjkFlmn

(
ψrc ψ̄

akδnmδjl + ψ̄alψnc δ
mrδjk − 1

4
δjkδnmδrlδac

)
= −1

2
FrjkFlmnδ

nmδjl{ψrc , ψ̄ak}+
1

8
FrjkFlmnδ

jkδnmδrlδac

= −1

8
FrjkFlmnδ

nmδjlδrkδac .

Therefore, the statement follows.

Lemma 4.2.8. Let T 22 = H be given by Theorem 4.2.7. Let T 11 = K and T 12 = −D be
given by (4.21), (4.22). Then relations (4.3) hold.

Proof. Firstly, we have that [K,H] = 1
4
[x2, p2] = i

2
{xr, pr} = −2iD, as required. More-

over, since H is homogeneous in x of degree −2 it follows that [H,D] = iH as required.
Further on, [K,D] = −1

2
[x2
k, xjpj] = iK, which is the corresponding relation (4.3).

Lemma 4.2.9. Let Qabc, Iab, T ab, Jab be as above. Then relations (4.2) hold.

Proof. Firstly let us consider

{Q21a, Q11f} = −{Qa, Sf}.

Note that
{prψar, xlψfl} = −iψarψfr = −iεaâψrâψfr,

where â is complimentary to a. Note that we can assume now that â = f . Therefore

{prψar, xlψfl} = −iεafψrfψfr = − i
2
εafψrdψ

dr.

Further,

Frjk{ψbrψjb ψ̄
ak, xlψ

fl} =
1

2
εafxkFkrjψ

r
dψ

dj.

Therefore by formula (4.11)

{Q21a, Q11f} = −iεafψrdψdr + iεafxkFkrjψ
r
dψ

dj = 2(α + 1)εafI11, (4.58)

as required for the corresponding relation (4.2).
Further on, consider {Q21a, Q12b} = −εbd{Qa, S̄d}. Now, by using formula (4.41) we
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have

{Qa, S̄d} = −2{prψar, xlψ̄ld} − 2ixlFrjk({ψbrψjb ψ̄
ak, ψ̄ld} −

1

2
δjk{ψar, ψ̄ld})

= 2iψarψ̄rd + xrprδ
a
d + 2ixjFjrkψ

r
dψ̄

ak − i

2
δjkδadxrFrjk

= 2iψarψ̄rd + xrprδ
a
d − 2i(2α + 1)ψrdψ̄

ar +
iδad
2
N(2α + 1).

Therefore

{Q21a, Q12b} = −2iψarψ̄br + xrprε
ab + 2i(2α + 1)ψbrψ̄ar +

iεab

2
N(2α + 1). (4.59)

Let us now note that

I12 = − i
2

[ψja, ψ̄
aj] = −i(ψ2jψ̄1j − ψ1jψ̄2j − N

2
).

Hence the right-hand side of (4.2) for {Q21a, Q12b} is

xrprε
ab − iN

2
εab + 4iαψ(arψ̄br) − 2i(1 + α)εab(ψ2jψ̄1j − ψ1jψ̄2j − N

2
). (4.60)

By considering various values of a, b ∈ {1, 2}, expression (4.60) takes the form

xrprε
ab +

iεab

2
N(2α + 1)− 2iψarψ̄br + 2i(2α + 1)ψbrψ̄ar, (4.61)

which is equal to (4.59) as required, so the corresponding relation (4.2) follows.
Further on, let us consider relation {Q21a, Q21b} = {Qa, Qb}. By using (4.7) and (4.9)

we have

{Qa, Qc} = i{prψar, Flmnψdlψmd ψ̄cn}+ i{plψcl, Frjkψbrψjb ψ̄
ak}−

− FlmnFrjk{〈ψdlψmd ψ̄cn〉, 〈ψbrψ
j
b ψ̄

ak〉}.

Note that by (4.14), (4.15) we have

{prψar, Flmnψdlψmd ψ̄cn} = ψarψdlψmd ψ̄
cn[pr, Flmn] + {ψar, ψdlψmd ψ̄cn}Flmnpr

= −iψarψdlψmd ψ̄cn∂rFlmn + {ψar, ψ̄cn}ψdlψmd Flmnpr

= −iψarψdlψmd ψ̄cn∂rFlmn −
1

2
εcaψdlψmd Flmrpr.

Note also that ψarψal∂rFlmn = 0 using the symmetry of ∂rFlmn under the swap of r and
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l. Then ψarψdlψmd ψ̄cn∂rFlmn = 0 and hence

{prψar, Flmnψdlψmd ψ̄cn} = −1

2
εcaFlmrprψ

dlψmd . (4.62)

Similarly,

{plψcl, Frjkψbrψjb ψ̄
ak} = −iψclψbrψjb ψ̄

ak∂lFrjk −
1

2
εacFrjkpkψ

brψjb

= −1

2
εacFrjkpkψ

brψjb . (4.63)

Note that terms in (4.62) and (4.63) cancel. Further, we have

FlmnFrjk{〈ψdlψmd ψ̄cn〉, 〈ψbrψ
j
b ψ̄

ak〉} = FlmnFrjk{ψdlψmd ψ̄cn, ψbrψ
j
b ψ̄

ak}

+
1

4
εcaFlmrFrjjψ

dlψmd +
1

4
εacFrjkFkmmψ

brψjb (4.64)

= FlmnFrjk{ψdlψmd ψ̄cn, ψbrψ
j
b ψ̄

ak},

since the last two terms in (4.64) cancel. Note that by (4.39) we have

{ψdlψmd ψ̄cn, ψbrψ
j
b ψ̄

ak} = ψdlψmd
(
ψjb ψ̄

ak{ψ̄cn, ψbr} − ψbrψ̄ak{ψjb , ψ̄
cn}
)

+ ψbrψjb
(
ψmd ψ̄

cn{ψ̄ak, ψdl} − ψdlψ̄cn{ψ̄ak, ψmd }
)

= −1

2
ψdlψmd

(
ψcjδnr + ψcrδjn

)
ψ̄ak − 1

2
ψbrψjb

(
ψalδkm + ψamδkl

)
ψ̄cn.

Therefore using the symmetry of Frjk under the swap of j and r, and that of Flmn under
the swap of l and m we obtain

FlmnFrjk{ψdlψmd ψ̄cn, ψbrψ
j
b ψ̄

ak} = −FlmnFrjk
(
ψdlψmd ψ

cjψ̄akδnr + ψbrψjbψ
alψ̄cnδkm

)
. (4.65)

Further, note that for any b ∈ {1, 2} we have by using (4.12) that FlmrFrjkψdlψmd ψbj = 0.
Hence the right-hand side of (4.65) vanishes. Therefore it follows that

FlmnFrjk{〈ψdlψmd ψ̄cn〉, 〈ψbrψ
j
b ψ̄

ak〉} = 0

and hence that {Qa, Qb} = 0 as required.
Further on it is easy to see that {Q11a, Q11b} = {Q12a, Q12b} = 0. By Theorem 4.2.7

we have {Q21a, Q22b} = −2Hεba. The remaining relations (4.2) can be shown to hold by
applying ∼ (see also Lemma B.1.7).

Remark 4.2.10. Let the supercharges Qa and Q̄b be of the form (4.16), (4.17) for a
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potential F . Then the N = 4 supersymmetry algebra

{Qa, Qb} = {Q̄a, Q̄b} = 0 and {Qa, Q̄b} = −2Hδab , (4.66)

is satisfied if and only if the function F is solution to equations (4.12). Thus relations (4.66)
do not imply WDVV equations for the potential F . Indeed, if F satisfies equations (4.12),
then the statement follows by Theorem 4.2.7 and Lemma 4.2.9. The converse follows from
the proof of Theorem 4.2.7. More precisely, we should have that {Qa, Q̄b} = 0 for a 6= b.
This implies that the term {B,B′} should vanish. Imposing this constraint implies the
statement.

Lemma 4.2.11. Let T ab, Qabc be as above. Then relations (4.5a) hold.

Proof. Firstly, it is easy to see that [T 11, Q21a] = −[K,Qa] = −2ixrψ
ar = iSa, and

[T 11, Q11a] = [K,Sa] = 0, and [T 12, Q11a] = −[D,Sa] = − i
2
Q11a. Moreover, we have

[T 12, Q21a] = [D,Qa] = i
2
Q21a as Qa is homogeneous in x of degree −1. This gives relations

(4.5a) for commutators between K,D and Qa, Sa.
Further, we have

[ψbrψjb ψ̄
l
dψ̄

dk, ψam] =
1

2
ψbrψjb(ψ̄

alδkm + ψ̄akδlm),

therefore
∂rFjlk[ψ

brψjb ψ̄
l
dψ̄

dk, ψam] = ∂rFjlmψ
brψjb ψ̄

al. (4.67)

Note also that
∂rFjlk[ψ

r
b ψ̄

bjδlk, ψam] =
1

2
∂rFlmkψ

arδlk. (4.68)

Hence we get from (4.67) and (4.68) that

∂rFjlk[ψ
brψjb ψ̄

l
dψ̄

dk − ψrb ψ̄bjδlk, ψam] = ∂rFjlmψ
brψjb ψ̄

al − 1

2
∂rFlmkψ

arδlk (4.69)

= ∂mFrjl〈ψbrψjb ψ̄
al〉,

in view of (4.19). Therefore

[H,Sa] = iprψ
ar + xm∂mFrjl〈ψbrψjb ψ̄

al〉 (4.70)

= iprψ
ar − Frjl〈ψbrψjb ψ̄

al〉

= iQa,

as required for (4.5a). Further on, by Theorem 4.2.7 we have T 22 = H = −1
2
{Qa, Q̄a}.

Since (Qa)2 = 0 we get that [H,Qa] = 0 as required. The remaining relations (4.5a) can
be shown using ∼ operation (cf. Lemma B.1.8).
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Lemma 4.2.12. Let T ab, Iab, Jab be as above. Then relations (4.6) hold.

Proof. Let us firstly consider [Iab, J cd]. We have by (4.13) and (4.26) that

[ψjaψ
aj, ψckψ̄dk] = ψdkψck.

Therefore
[I11, J cd] = 2[ψjaψ

aj, ψ(ckψ̄dk)] = 0,

as required. Further, we have by (4.13), (4.14) that

[[ψja, ψ̄
aj], ψckψ̄dk] = 2[ψjaψ̄

aj, ψckψ̄dk]

= 2(ψja[ψ̄
aj, ψckψ̄dk] + [ψja, ψ

ckψ̄dk]ψ̄aj)

= 2(ψjaψ̄
dk{ψck, ψ̄aj} − ψckψ̄aj{ψ̄dk, ψja}) = 0.

Therefore,
[I12, J cd] = [[ψja, ψ̄

aj], ψ(ckψ̄dk)] = 0,

which is the corresponding relation (4.6). In addition we have by (4.13) and (4.26) that

[ψ̄ajψ̄ja, ψ
ckψ̄dk] = −ψ̄ckψ̄dk.

Therefore,
[I22, J cd] = −2[ψ̄ajψ̄ja, ψ

(ckψ̄dk)] = 0,

as required.
Let us now consider relations [Iab, T cd], (a, b, c, d = 1, 2). It is easy to see that for

T 12 = −D and T 11 = K relations (4.6) hold. Further, we have T 22 = H = −1
2
{Qc, Q̄c}.

Then by (4.13) we obtain

[Iab, H] = −1

2
([Iab, QcQ̄c] + [Iab, Q̄cQ

c])

= −1

2
(Qc[Iab, Q̄c] + [Iab, Qc]Q̄c + Q̄c[I

ab, Qc] + [Iab, Q̄c]Q
c)

= −1

2
(−Qĉ[I

ab, Q̄ĉ] + [Iab, Qc]Q̄c + Q̄c[I
ab, Qc]− [Iab, Q̄ĉ]Qĉ),

where ĉ is complimentary to c. Then by Lemma 4.2.6 we have

[Iab, Qc] = −[Iab, Q21c] = − i
2

(ε1aQ2bc + ε1bQ2ac) and [Iab, Q̄c] = − i
2

(ε2aQ2bc + ε2bQ2ac).

Therefore by considering various values of a, b ∈ {1, 2} and by using Lemma 4.2.9 and
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Theorem 4.2.7 we obtain the following:

[I11, H] =
i

2
(QĉQ

ĉ +QĉQĉ) = 0,

[I22, H] =
i

2
(Q̄cQ̄c + Q̄cQ̄

c) = 0,

[I12, H] =
i

2
(QĉQ̄

ĉ +QcQ̄c + Q̄cQ
c + Q̄ĉQĉ) = 0,

which are the corresponding relations (4.6).
Similarly we have

[Jab, H] = −1

2
(−Qĉ[J

ab, Q̄ĉ] + [Jab, Qc]Q̄c + Q̄c[J
ab, Qc]− [Jab, Q̄ĉ]Qĉ).

By Lemma 4.2.5 we have

[Jab, Qc] =
i

2
(εcaQb + εcbQa) and [Jab, Q̄c] =

i

2
(εcaQ̄b + εcbQ̄a).

Therefore by considering various values of a, b ∈ {1, 2} we obtain:

[J11, H] = − i
2

(−εĉ1QĉQ̄
1 + εc1Q1Q̄c + εc1Q̄cQ

1 − εĉ1Q̄1Qĉ), (4.71)

[J12, H] = − i
4

(−εĉ1QĉQ̄
2 − εĉ2QĉQ̄

1 + εc1Q2Q̄c + εc2Q1Q̄c

+ εc1Q̄cQ
2 + εc2Q̄cQ

1 − εĉ1Q̄2Qĉ − εĉ2Q̄1Qĉ), (4.72)

[J22, H] = − i
2

(−εĉ2QĉQ̄
2 + εc2Q2Q̄c + εc2Q̄cQ

2 − εĉ2Q̄2Qĉ). (4.73)

Then by considering various values of c ∈ {1, 2} in (4.71)–(4.73) and by using Lemma
4.2.9 and Theorem 4.2.7 we obtain that

[J11, H] = [J12, H] = [J22, H] = 0,

as required for (4.6).

4.3 The second representation

Let now the supercharges be of the form

Qa = prψ
ar + iFrjkψ

brψjb ψ̄
ak, (4.74)

Q̄c = plψ̄
l
c + iFlmnψ̄

l
dψ̄

dmψnc , (4.75)
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so we do not have anti-symmetrisation in the cubic fermionic terms. Let generators K,
Iab, Jab, and Sa, S̄a be given by formulas (4.21), (4.23), (4.24), (4.25) same as in the first
representation, while the generator D is now given by

D = −1

2
xjpj +

i

2
(α + 1)N. (4.76)

Theorem 4.3.1. For all a, b = 1, 2 we have {Qa, Q̄b} = −2Hδab , where the Hamiltonian
H is

H =
p2

4
− ∂rFjlk

2
(ψbrψjb ψ̄

l
dψ̄

dk − ψrb ψ̄bjδlk) +
i

4
δnmFrmnpr. (4.77)

Proof. Let us denote terms in (4.74), (4.75) as follows:

Qa =

A︷ ︸︸ ︷
prψ

ar +

B︷ ︸︸ ︷
iFrjkψ

brψjb ψ̄
ak, Q̄c =

A′︷︸︸︷
plψ̄

l
c +

B′︷ ︸︸ ︷
iFlmnψ̄

l
dψ̄

dmψnc .

Then, analogues of relations (4.43), (4.44) are

{A,B′} = iψarψ̄ldψ̄
dmψnc [pr, Flmn]− iψ̄alψnc Flnrpr, (4.78)

{B,A′} = iψ̄lcψ
brψjb ψ̄

ak[pl, Frjk]− iψrc ψ̄akFrkjpj. (4.79)

Then using (4.78) and (4.79) an analogue of equality (4.45) is (cf. (4.51))

{A,B′}+ {B,A′} = ∂rFljk(ψ
arψ̄ldψ̄

dkψjc + ψ̄lcψ
brψjb ψ̄

ak)− i

2
δnlFlnrprδ

a
c

= ∂rFjlk(ψ
brψjb ψ̄

l
dψ̄

dk − ψrb ψ̄bjδlk)δac −
i

2
δnlFlnrprδ

a
c

Further on we have {B,B′} = 0 (cf. (4.52)). Therefore in total, we get that

{Qa, Q̄c} = −p
2

2
δac + {A,B′}+ {B,A′}

= −p
2

2
δac + ∂rFjlk(ψ

brψjb ψ̄
l
dψ̄

dk − ψrb ψ̄bjδlk)δac −
i

2
δnmFrmnprδ

a
c , (4.80)

and hence the statement follows.

Lemma 4.3.2. Let T ab be given by (4.76), (4.77) and (4.21). Then relations (4.3) hold.

Proof. Firstly, we have that

[K,H] =
1

4
[x2, p2] +

i

4
δnmFrmn[x2, pr] =

i

2
{xr, pr}+

N

2
(2α + 1) = −2iD,

as required. Moreover we have [Frmnpr, xjpj] = −iFrmnpr + ixj∂jFrmnpr = −2iFrmnpr.
Then it is easy to see that [H,D] = iH, as required. Further on, [K,D] = −1

2
[x2, xjpj] =

iK, which is the corresponding relation (4.3).
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We note that since generators J and I keep the same form as in the first representation,
the statement of the Lemmas 4.2.3, 4.2.4 hold.

Lemma 4.3.3. Let Qabc, Iab, Jab be given by (4.74), (4.75), (4.23), (4.24), (4.25). Then
relations (4.5b), (4.5c) hold.

Proof. Relations (4.5b),(4.5c) are easy to verify by an adaptation of the proof of Lemmas
4.2.5 and 4.2.6 respectively. Indeed let us consider first relations (4.5b) for [Jab, Q21c],
which now takes the form (cf. (4.31))

[Jab, Q21c] =
i

2

(
εbcplψ

al + εacplψ
bl − iεcaFlmnψdlψmd ψ̄bn − iεcbFlmnψdlψmd ψ̄an

)
= − i

2
(εcbQa + εcaQb) = iεc(aQ|21|b),

as required for (4.5b).
Further on, let us consider relations (4.5c) for [Iab, Q21c]. Expression (4.37) now takes

the form
[I22, Q21a] = −i[ψ̄drψ̄rd, Qa] = i

(
plψ̄

al + iFlmnψ̄
l
bψ̄

bmψan
)

= iQ̄a,

as required. The analogue of (4.38) is

[I12, Q21a] =
i

2

(
plψ

al + iFlmnψ
blψmb ψ̄

an
)

=
i

2
Qa,

which matches (4.5c). Finally, it is easy to see that [I11, Q21a] = 0 (see (4.32), (4.33) in
Lemma 4.2.6). Relations (4.5) for Sa take the same form as in Lemmas 4.2.5 and 4.2.6.
The remaining relations can be checked in a similar way.

Lemma 4.3.4. Let Qabc, Iab, Jab, T ab be given by formulae (4.74), (4.75), (4.21), (4.23),
(4.24), (4.25), (4.76), (4.77). Then relations (4.2) hold.

Proof. We first note that by Theorem 4.3.1 we have {Qa, Q̄c} = εcb{Qa, Q̄b} = −2Hεca

which is the corresponding relation (4.2). The anticommutator {Q21a, Q21b} vanishes since
the terms (4.62), (4.63) cancel each other and the right-hand side of (4.65) vanishes. Fur-
ther on it is immediate that {Q21a, Q11f} is the same as in the first representation. Similarly
for {Q22a, Q22b}, {Q22a, Q12f}. Note also that {Q11a, Q11b}, {Q12a, Q12b}, {Q11a, Q12b} take
the same form as in Lemma 4.2.9.

Further on, let us consider {Q21a, Q12b}. The left-hand side of (4.2) now takes the form
(cf.(4.59) and the change in the generator D)

{Q21a, Q12b} = −2iψarψ̄br + xrprε
ab + 2i(1 + 2α)ψbrψ̄ar, (4.81)
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and the right-hand side of (4.2) becomes (cf. (4.61))

{Q21a, Q12b} = xrprε
ab + 4iαψ(arψ̄br) − 2i(1 + α)εab(ψ2rψ̄1r − ψ1rψ̄2r)

= −2iψarψ̄br + xrprε
ab + 2i(1 + 2α)ψbrψ̄ar,

which is equal to (4.81) as required. The remaining relations can be checked by applying
∼.

Lemma 4.3.5. Let T ab and Qabc be given by (4.21), (4.25), (4.74), (4.75), (4.76), (4.77).
Then relations (4.5a) hold.

Proof. Firstly, it is easy to see that [T 11, Q21a] = −[K,Qa] = −2ixrψ
ar = iSa, and

[T 11, Q11a] = [K,Sa] = 0, and [T 12, Q11a] = −[D,Sa] = − i
2
Q11a. Moreover, we have

[T 12, Q21a] = i
2
Q21a as Qa is homogeneous in x of degree −1.

Let us recall that from the proof of Lemma 4.2.11 (formula (4.69)) we have

∂rFjlk[ψ
brψjb ψ̄

l
dψ̄

dk − ψrb ψ̄bjδlk, ψam] = δkm∂kFrjl(ψ
brψjb ψ̄

al − 1

2
δjlψar).

Therefore an analogue of (4.70) takes the form

[H,Sa] = −1

2
[p2
r, xmψ

am] + xm∂rFjlk[ψ
brψjb ψ̄

l
dψ̄

dk − ψrb ψ̄bjδlk, ψam]− 1

2
δnmFrnmψ

ar

= iprψ
ar − Frjlψbrψjb ψ̄

al = iQa,

as required for the corresponding relation (4.5a). Further on, we have that [T 22, Qa] = 0

and similarly, [T 22, Q̄a] = 0, (cf. Lemma 4.2.11). The remaining relations can be checked
by applying ∼.

Lemma 4.3.6. Let T ab, Iab, Jab be given by (4.21), (4.23), (4.24), (4.76), (4.77). Then
relations (4.6) hold.

The proof of the lemma is the same as the proof of Lemma B.1.9 for the first represen-
tation since Iab and Jab keep the same form, and the proof of commutation relations with
H in Lemma B.1.9 relies only on relations (4.2) which express H as the anticommutator
of the supercharges Qa and Q̄a.

4.4 Hamiltonians

We now proceed to explicit calculations of Hamiltonians appearing in Theorem 4.2.7 and
Theorem 4.3.1. We start with a Coxeter root system case.
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4.4.1 Coxeter systems

In this case we take R to be a Coxeter root system in V ∼= RN (see Chapter 2). More
exactly, let R be a collection of vectors which spans V and is invariant under orthogonal
reflections about all the hyperplanes (γ, x) = 0, γ ∈ R, where (·, ·) is the standard scalar
product in V . Furthermore, let us assume that squared length (γ, γ) = 2 for any γ ∈ R,
and that R is irreducible. Non-equal choices of length of roots in the cases when the
Coxeter group has two orbits on R are covered by considerations in Subsection 4.4.2
below.

The corresponding function F has the form

F (x1, . . . , xN) =
λ

2

∑
γ∈R+

(γ, x)2 log(γ, x). (4.82)

Recall that F satisfies generalised WDVV equations (2.59) (see Subsection 2.5.2). Recall
the following property.

Lemma 4.4.1. [17, Ch. V, p. 125 ] For any u, v ∈ V∑
γ∈R+

(γ, u)(γ, v) = h(u, v),

where h is the Coxeter number of R.

Lemma 4.4.1 has the following corollary.

Lemma 4.4.2. Let F be given by (4.82). Then

xiFijk = λhδjk.

Proof. Let γ ∈ R have coordinates γ = (γ1, . . . , γN). By Lemma 4.4.1 we have

xiFijk = λ
∑
γ∈R+

xiγiγjγk
(γ, x)

= λ
∑
γ∈R+

γjγk = λh(ej, ek) = λhδjk.

The identity stated in the next lemma will be useful below.

Lemma 4.4.3. We have ∑
β,γ∈R+
β 6=γ

(β, γ)

(β, x)(γ, x)
= 0. (4.83)

Proof. Let us consider a pair of roots β, γ. If γ and β are orthogonal, then their contri-
bution in equality (4.83) is zero. Hence, assume that (γ, β) 6= 0. Let γ′ = sβ(γ) ∈ R. We
have

(sβ(γ), x) = (γ, x)− (β, γ)(β, x).
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Therefore
1

(β, x)

((γ, β)

(γ, x)
+

(γ′, β)

(γ′, x)

)
= − (γ, β)2

(γ, x)2 − (β, γ)(β, x)(γ, x)
. (4.84)

Hence, the term (4.84) is non-singular at all the hyperplanes (β, x) = 0, β ∈ R+. This
implies the statement.

Let us choose now
α = −hλ+ 1

2
. (4.85)

Then hλ = −(2α + 1), so by Lemma 4.4.2 function F satisfies the required condition
(4.11). Thus it leads to D(2, 1;α) superconformal mechanics with the Hamiltonians given
by Theorems 4.2.7, 4.3.1. We now simplify these Hamiltonians for the root system case.

Theorem 4.4.4. Let function F be given by (4.82). Then the Hamiltonian H given by
(4.42) is supersymmetric with the superconformal algebra D(2, 1;α), where α is given by
(4.85). The rescaled Hamiltonian H1 = 4H has the form

H1 = −∆ +
∑
γ∈R+

2λ(λ+ 1)

(γ, x)2
+ Φ,

where ∆ = −p2 is the Laplacian in V and the fermionic term

Φ = 2λ
∑
γ∈R+

γiγjγkγl
(γ, x)2

ψbiψjb ψ̄
l
dψ̄

dk − 4λ
∑
γ∈R+

γiγj
(γ, x)2

ψibψ̄
bj. (4.86)

Proof. By formula (4.42) we have that

H =
p2

4
+ Ψ + U,

where potential

U = −1

8
∂iFjlkδ

ijδlk +
1

16
FijkFlmnδ

nmδjlδik

and
Ψ = −1

2
∂iFjlk(ψ

biψjb ψ̄
l
dψ̄

dk − ψibψ̄bjδlk).

Let us firstly simplify U . We have

Fjlk = λ
∑
γ∈R+

γjγlγk
(γ, x)

.

Then

∂iFjlkδ
ijδlk = −λ

∑
γ∈R+

γiγjγlγk
(γ, x)2

δijδlk = −4λ
∑
γ∈R+

1

(γ, x)2
(4.87)
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and
FijkFlmnδ

nmδjlδik = 4λ2
∑

β,γ∈R+

(β, γ)

(β, x)(γ, x)
=
∑
γ∈R+

8λ2

(γ, x)2
(4.88)

because of identity (4.83). The statement follows from formulae (4.87), (4.88).

The following theorem can be easily checked directly.

Theorem 4.4.5. For the function F given by (4.82) the Hamiltonian H given by (4.77)
is supersymmetric with the superconformal algebra D(2, 1;α), where α is given by (4.85).
The rescaled Hamiltonian H2 = 4H has the form

H2 = −∆ +
∑
γ∈R+

2λ

(γ, x)
∂γ + Φ,

where Φ is defined by (4.86).

Proposition 4.4.6. Hamiltonians H1, H2 from Theorems 4.4.4, 4.4.5 satisfy gauge rela-
tion δ−1 ◦H2 ◦ δ = H1, where δ =

∏
β∈R+

(β, x)λ.

The proof follows immediately by making use of the identity (4.83).

Remark 4.4.7. We note that the Hamiltonian H2 is not self-adjoint under hermitian
involution defined by

ψa
j† = ψ̄ja, p†j = pj, x†j = xj, i† = −i, and (AB)† = B†A†

for any two operators A,B. One could have considered another ansatz for Q̄a so that to
obtain self-adjoint Hamiltonian. Namely, let Qa be as in (4.74) and consider hermitian
conjugate (Qa)†. Let Qa, (Qa)† (a = 1, 2) be the ansatz for the supercharges. Then

(Qa)† = prψ̄
r
a + iFrjkψ

k
aψ̄

r
b ψ̄

bj.

Note that since Frjkψkaψ̄rb ψ̄bj = Frjk(ψ̄
r
b ψ̄

bjψka − ψ̄raδkj) we may express (Qa)† in terms of
Q̄a (see (4.75)) as follows

(Qa)† = Q̄a − iFlmnψ̄laδnm.

We then have

{Qa, (Qc)†} = {Qa, Q̄c} − i{Qa, Flmnψ̄
l
c}δnm

= {Qa, Q̄c} − ψarψ̄lc∂rFlmnδnm − ψrc ψ̄akFrklFlmnδnm +
i

2
Frmnprδ

a
c δ

nm,

with {Qa, Q̄c} defined by (4.80). Then supersymmetry algebra constraint {Qa, (Qc)†} =

−2δacH leads to restrictions α = −1
2
, or α = −h+2

4
. In both cases the bosonic part of the
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Hamiltonian H can be seen to be zero. Note that for α = −h+2
4

the rescaled Hamiltonian
4H is given by

4H = p2 +
∑
γ∈R+

γrγjγlγk
(γ, x)2

ψbrψjb ψ̄
l
dψ̄

dk.

Then bosonic part can appear only by reordering of fermionic terms.

4.4.2 General ∨-systems

Let us consider a finite collection of covectors A on V ∼= CN such that the corresponding
bilinear form

GA(u, v) =
∑
γ∈A

(γ, u)(γ, v), u, v ∈ V

is non-degenerate.
Let f be any linear transformation on V , f : V → V and let f ∗ denote the dual map

f ∗ : V ∗ → V ∗ defined by ρ 7→ ρ ◦ f . Then we have that

Gf∗(A)(u, v) =
∑
γ∈A

(f ∗(γ), u)(f ∗(γ), v) =
∑
γ∈A

(γ, f(u))(γ, f(v)) = GA(f(u), f(v)).

Then it is easy to see that f ∗(A) satisfies the ∨–conditions.
Furthermore, since GA is non-degenerate we can assume by applying a suitable linear

transformation f that
GA(u, v) = (u, v)

for any u, v ∈ V . We can then identify vectors and covectors. In particular, in this case A
is a ∨-system if for any γ ∈ A and for any two-dimensional plane π ⊂ V such that γ ∈ π
one has ∑

β∈A∩π

(β, γ)β = µγ,

for some µ = µ(γ, π) ∈ C.
Let F = FA(x1, . . . , xN) be the corresponding function

F =
λ

2

∑
γ∈A

(γ, x)2 log(γ, x). (4.89)

Then F satisfies generalised WDVV equations (4.12). Furthermore, the condition

xiFijk = −(2α + 1)δjk

is satisfied if
α = −1

2
(λ+ 1).
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Therefore this leads to D(2, 1;α) superconformal mechanics with the Hamiltonians given
by Theorems 4.2.7, 4.3.1, which we present explicitly in the following theorem.

Theorem 4.4.8. Let function F be given by (4.89). Then the Hamiltonian H given by
(4.42) is supersymmetric with the superconformal algebra D(2, 1;α), where α = −1

2
(λ+1).

The rescaled Hamiltonian H1 = 4H has the form

H1 = −∆ +
λ

2

∑
γ∈A

(γ, γ)2

(γ, x)2
+
λ2

4

∑
γ,β∈A

(γ, γ)(β, β)(γ, β)

(γ, x)(β, x)
+ Φ,

where ∆ = −p2 is the Laplacian in V and the fermionic term

Φ =
∑
γ∈A

2λγrγjγlγk
(γ, x)2

ψbrψjb ψ̄
l
dψ̄

dk −
∑
γ∈A

2λγrγj(γ, γ)

(γ, x)2
ψrb ψ̄

bj. (4.90)

Furthermore, the Hamiltonian H given by (4.77) is also supersymmetric with the super-
conformal algebra D(2, 1;α), where α = −1

2
(λ+1) and the rescaled Hamiltonian H2 = 4H

has the form

H2 = −∆ + λ
∑
γ∈A

(γ, γ)

(γ, x)
∂γ + Φ.

The proof is similar to the one in the Coxeter case. The following proposition can also
be checked directly.

Proposition 4.4.9. Hamiltonians H1, H2 from Theorem 4.4.8 satisfy the gauge relation
δ−1 ◦H2 ◦ δ = H1, where δ =

∏
β∈A(β, x)

λ
2

(β,β).

4.5 Trigonometric version

In this section we consider prepotential functions F = F (x1, . . . , xN) of the form

F =
∑
α∈A

cαf((α, x)), (4.91)

where A is a finite set of vectors in V ∼= CN , cα ∈ C are some multiplicities of these
vectors, and function f is given by

f(z) =
1

6
z3 − 1

4
Li3(e−2z)

so that f ′′′(z) = coth z.
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We are interested in the supercharges of the form

Qa = prψ
ar + iFrjk〈ψbrψjb ψ̄

ak〉,

Q̄c = plψ̄
l
c + iFlmn〈ψ̄ldψ̄dmψnc 〉,

a, c = 1, 2, which is analogous to the first representation considered in Section 4.2.
Function F should satisfy conditions

FrjkFkmn = FrmkFkjn, (4.92)

for all r, j,m, n = 1, . . . , N but we no longer assume conditions (4.11). Then we have the
following statement on supersymmetry algebra.

Theorem 4.5.1. Let us assume that F satisfies conditions (4.92). Then for all a, b = 1, 2

we have
{Qa, Qb} = {Q̄a, Q̄b} = 0 and {Qa, Q̄b} = −2Hδab ,

where the Hamiltonian H is given by

H =
p2

4
− ∂iFjlk

2
(ψbiψjb ψ̄

l
dψ̄

dk − ψibψ̄bjδlk +
1

4
δijδlk) +

1

16
FijkFlmnδ

nmδjlδik.

Furthermore, the rescaled Hamiltonian H1 = 4H has the form

H1 = −∆ +
1

2

∑
α∈A

cα(α, α)2

sinh2(α, x)
+

1

4

∑
α,β∈A

cαcβ(α, α)(β, β)(α, β) coth(α, x) coth(β, x) + Φ,

(4.93)
where ∆ = −p2 is the Laplacian in V and the fermionic term

Φ =
∑
α∈A

2cααiαj

sinh2(α, x)

(
αlαkψ

biψjb ψ̄
l
dψ̄

dk − (α, α)ψibψ̄
bj
)
. (4.94)

The proof of the first part of the theorem is the same as the proof of Theorem 4.2.7
together with the proof of the relevant part of Lemma 4.2.9. The proof of formula (4.93)
is similar to the proof of Theorem 4.4.4.

Let us now consider supercharges of the form

Qa = prψ
ar + iFrjkψ

brψjb ψ̄
ak,

Q̄c = plψ̄
l
c + iFlmnψ̄

l
dψ̄

dmψnc ,

a, c = 1, 2, which is analogous to the second representation considered in Section 4.3. Then
we have the following statement on supersymmetry algebra.
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Theorem 4.5.2. Let us assume that F satisfies conditions (4.92). Then for all a, b = 1, 2

we have
{Qa, Qb} = {Q̄a, Q̄b} = 0 and {Qa, Q̄b} = −2Hδab ,

where the Hamiltonian H is given by

H =
p2

4
− ∂rFjlk

2
(ψbrψjb ψ̄

l
dψ̄

dk − ψrb ψ̄bjδlk) +
i

4
δnmFrmnpr. (4.95)

Furthermore, the rescaled Hamiltonian H2 = 4H, has the form

H2 = −∆ +
∑
α∈A

cα(α, α) coth(α, x)∂α + Φ, (4.96)

where Φ is the fermionic term defined by (4.94).

The proof of the first part of the theorem is the same as the proof of Theorem 4.3.1
together with the proof of the relevant part of Lemma 4.3.4. Then formula (4.96) can be
easily derived from the form (4.95) of H.

Proposition 4.5.3. Hamiltonians H1, H2 from Theorems 4.5.1, 4.5.2 respectively satisfy
gauge relation

δ−1 ◦H2 ◦ δ = H1,

where δ =
∏

α∈A sinh(α, x)
cα
2

(α,α).

Let us now assume that A = R is a crystallographic root system, and that the multi-
plicity function c(α) = cα, α ∈ R is invariant under the corresponding Weyl groupW . For
a general root system R the corresponding function F does not satisfy equations (4.92).
For example, if R = AN−1 then relations (4.92) do not hold (see Remark 4.5.7) . But for
some root systems and collections of multiplicities relations (4.92) are satisfied.

In the rest of this section we consider such cases when prepotential F satisfying (4.92)
does exist. The corresponding root systems R have more than one orbit under the action
of the Weyl group W . We start by simplifying the corresponding Hamiltonians H1 given
by (4.93).

Proposition 4.5.4. Let us assume that prepotential F given by (4.91) for a root system
R with invariant multiplicity function c satisfies (4.92). Then Hamiltonian (4.93) can be
rearranged as

H1 = −∆ +
∑
α∈R+

c̃α

sinh2(α, x)
+ Φ̃, (4.97)

where

c̃α =

{
cα(α, α)2

(
1 + cα(α, α)

)
, if 2α /∈ R,

cα(α, α)2
(
1 + (α, α)(cα + 8c2α)

)
, if 2α ∈ R,
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Φ̃ = Φ + const, with Φ given by (4.94) and R+ is a positive subsystem in R.

Indeed, it is easy to see that for the crystallographic root system R the term∑
β,α∈R
β 6∼α

cαcβ(α, α)(β, β)(α, β) coth(α, x) coth(β, x)

is non-singular at tanh(α, x) = 0 for all α ∈ R, hence it is constant. One can show that
the Hamiltonian H1 given by (4.93) simplifies to the required form.

We now show that solutions to equations (4.92) exist for the root systems R = BCN ,
R = F4 and R = G2, with special collections of invariant multiplicities.

Let R+ be a positive subsystem in the root system R. For a pair of vectors a, b ∈ V
we define a 2-form B(a,b)

R+
by

B(a,b)
R+

=
∑

β,γ∈R+

cβcγ(β, γ)Bβ,γ(a, b)β ∧ γ, (4.98)

where Bα,β(a, b) = α ∧ β(a, b) = (α, a)(β, b) − (α, b)(β, a). The form B(a,b)
R+

has good
properties with regard to the action of the corresponding Weyl group W . Namely, the
following statement takes place.

Proposition 4.5.5. The 2-form (4.98) is W -invariant, that is

wB(a,b)
R+

= B(wa,wb)
R+

= B(wa,wb)
wR+

, (4.99)

for any w ∈ W .

Proof. Let us choose a simple root α ∈ R+. It is sufficient to prove the statement for
w = sα. Let us rewrite B(a,b)

R+
as

B(a,b)
R+

= 2cα
∑
β∈R+

cβ(α, β)Bα,β(a, b)α ∧ β +
∑

β,γ∈R+\{α}

cβcγ(β, γ)Bβ,γ(a, b)β ∧ γ.

It is easy to see that for any β, γ ∈ R

Bβ,γ(sαa, sαb) = Bsαβ,sαγ(a, b) (4.100)

since (u, sαv) = (sαu, v) for any u, v ∈ V . Let us now apply sα to equality (4.98). Since
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sα(R+ \ {α}) = R+ \ {α} we have

sαB(a,b)
R+

= −2cα
∑
β∈R+

cβ(α, β)Bα,β(a, b)α ∧ β +
∑

β,γ∈R+\{α)

cβcγ(β, γ)Bβ,γ(a, b)sαβ ∧ sαγ

= 2cα
∑
β∈R+

cβ(α, β)Bsαα,sαβ(a, b)α ∧ β +
∑

β,γ∈R+\{α)

cβcγ(β, γ)Bsαβ,sαγ(a, b)β ∧ γ

= B(sαa,sαb)
R+

,

by the relation (4.100). This proves the first equality in (4.99). In order to prove the
second equality (4.99) let us notice that in fact∑

β∈R+

cβ(α, β)Bα,β(a, b)α ∧ β = 0.

Hence sαB(a,b)
R+

= B(sαa,sαb)
sαR+

.

Below we will denote B(a,b)
R+

= B(a,b) since by Proposition 4.5.5, B(a,b)
R+

does not depend
on the choice of root system. Let us derive some conditions for a function F to satisfy
equations of the form (4.92). Let Fi be the N × N matrices of third derivatives of F ,
(Fi)lm = ∂3F

∂xi∂xl∂xm
, and for any vector a = (a1, . . . , aN) ∈ V let us denote Fa =

∑N
i=1 aiFi.

Theorem 4.5.6. Let a, b ∈ V . Then the equations

FaFb = FbFa

are satisfied if and only if
B(a,b) = 0. (4.101)

Proof. We have
(Fa)lk =

∑
α∈R

cα(α, a)αlαk coth(α, x),

and therefore

FaFb =
∑
α,β∈R

cαcβ(α, a)(β, b)(α, β) coth(α, x) coth(β, x)α⊗ β.

Hence the equations [Fa, Fb] = 0 are equivalent to∑
α,β∈R

cαcβBα,β(a, b)(α, β) coth(α, x) coth(β, x)α⊗ β = 0,
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which can be easily checked to be equivalent to∑
α,β∈R+

cαcβBα,β(a, b)(α, β) coth(α, x) coth(β, x)α ∧ β = 0. (4.102)

It is easy to see that the sum in the left-hand side of the equality (4.102) is non-singular at
tanh(α, x) = 0 for all α ∈ R+, hence this sum is always constant. In an appropriate limit
in a cone coth(α, x) → 1 for all α ∈ R+, and therefore the equality (4.102) is equivalent
to the equality ∑

α,β∈R+

cαcβBα,β(a, b)(α, β)α ∧ β = 0,

as required.

Let ei, i = 1, . . . , N be the standard orthonormal basis in V . We may express B(a,b) in
the basis ei ∧ ej of Λ2V ,

B(a,b) =
∑

1≤i<j≤N

gijei ∧ ej, (4.103)

for some scalars gij = gij(a, b). Then linear independence of the basis vectors and condition
(4.101) give rise to

(
N
2

)
equations gij(a, b) = 0. If AN−1 ⊂ R then by Proposition 4.5.5

we should have that gij(a, b) = ±gσ(i)σ(j)(σ(a), σ(b)) for any transposition σ ∈ SN which
acts on vectors a, b by the corresponding permutation of coordinates. This shows that
the condition (4.101) reduces to a single equation gij = 0 for any fixed i, j and general
a, b ∈ V . For convenience we will write below Bei,ej(a, b) as Bij(a, b).

Remark 4.5.7. Let R = AN−1. Then relations (4.92) do not hold.

Proof. Let the positive half of the root system AN−1 be

ei − ej, 1 ≤ i < j ≤ N.

Let s be the multiplicity of the vectors in AN−1 and let us use Theorem 4.5.6 in order to
deal with conditions (4.92). We consider the coefficient g12(a, b) at e1 ∧ e2 by collecting
respective terms in the corresponding form B(a,b) given by (4.98), (4.103). The non-trivial
contribution to g12 comes only from the following pairs of vectors {β, γ} in the expansion
(4.98):

{e1 − e2, e1 − ej}, {e1 − e2, e2 − ej}, {e1 − ej, e2 − ej}, 3 ≤ j ≤ N.
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Let αk = (N − 2)ek −
∑N

i=3 ei, k = 1, 2. Then since α1 − α2 = (N − 2)(e1 − e2) we have

g12(a, b) = 2s2
(
Be1−e2,α1(a, b)−Be1−e2,α2(a, b) +

N∑
j=3

Be1−ej ,e2−ej(a, b)
)

= 2s2

N∑
j=3

Be1−ej ,e2−ej(a, b). (4.104)

Then it is easy to see that the right-hand side of g12 (4.104) is generically non-zero. The
statement then follows.

Theorem 4.5.8. Let R = BCN . Let the positive half of the root system BCN be

ηei, 2ηei, 1 ≤ i ≤ N ; η(ei ± ej), 1 ≤ i < j ≤ N,

where η ∈ C× is a parameter. Let r be the multiplicity of vectors ηei, and let s be the
multiplicity of vectors 2ηei. Let q be the multiplicity of vectors η(ei±ej). Then the function

F =
N∑
i=1

(rf(ηxi) + sf(2ηxi)) + q
N∑
i<j

f(η(xi ± xj)) (4.105)

satisfies conditions (4.92) if and only if r = −8s − 2(N − 2)q. The corresponding super-
symmetric Hamiltonians given by (4.96), (4.97) take the form

H1 = −∆ + η4

N∑
i=1

((8s+ 2(N − 2)q)(2(N − 2)qη2 − 1)

sinh2 ηxi
+

16s(4sη2 + 1)

sinh2 2ηxi

)
(4.106)

+ η4

N∑
i<j

4q(2qη2 + 1)

sinh2(η(xi ± xj))
+ Φ̃,

and

H2 = −∆ + 2η3

N∑
i=1

(
8s coth 2ηxi − (8s+ 2(N − 2)q) coth ηxi

)
∂i (4.107)

+ 4qη3

N∑
i<j

coth(η(xi ± xj))(∂i ± ∂j) + Φ,
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with Φ given by

Φ = 4η4

N∑
i=1

(−(8s+ 2(N − 2)q)

sinh2 ηxi
+

16s

sinh2 2ηxi

)(
ψbiψibψ̄

i
dψ̄

di − ψibψ̄bi
)

+ 4η4
∑

ε∈{1,−1}

N∑
m<t

∑
i,j,l,k

qdmtidmtj

sinh2(η(xm + εxt))

(
dmtldmtkψ

biψjb ψ̄
l
dψ̄

dk − 2ψibψ̄
bj
)
,

where dmtk = dmtk(ε) = δmk + εδtk, and Φ̃ = Φ + const.

Proof. Let us use Theorem 4.5.6 in order to deal with conditions (4.92). Let us consider
the coefficient g12(a, b) at e1 ∧ e2 by collecting respective terms in the corresponding form
B(a,b) given by (4.98), (4.103). The non-trivial contribution to g12 comes only from the
following pairs of vectors {β, γ} in the expansion (4.98):

(1) {ηe1, η(e1 ± e2)}, (2) {2ηe1, η(e1 ± e2)}, (3) {η(e1 ± e2), η(e1 ± ej)}, 3 ≤ j ≤ N,

since contributions from pairs {η(e1 ± e2), η(e2 ± ej)} and {η(e1 ± ej), η(e2 ± ej)} is zero
each. Pairs (1) contribute 4rqη6B12(a, b), pairs (2) contribute 32sqη6B12(a, b) and pairs
(3) contribute 8q2(N − 2)η6B12(a, b). Therefore

g12(a, b) = 4q(r + 8s+ 2(N − 2)q)η6B12(a, b).

By Proposition 4.5.5, gij = 0 for all 1 ≤ i < j ≤ N if and only if r = −8s − 2(N − 2)q.
The form of the Hamiltonians H2, H1 follows from Theorem 4.5.2 and Proposition 4.5.4
respectively. Then the statement follows.

Remark 4.5.9. We note that for the multiplicity s = 0 Theorem 4.5.8 is contained in [49].
Indeed, Theorem 2.3 in [49] states that the function F given by formula (4.105) with root
system R = BN satisfies WDVV equations. It also follows from the proof of Theorem 2.3
in [49] that the corresponding metric is proportional to the standard metric δij. Therefore
WDVV equations are equivalent to equations (4.92).

More generally, it is shown in [2] that the function (4.105) satisfies WDVV equations
if and only if the relation r = −8s − 2(N − 2)q for the multiplicities r, s, q in Theorem
4.5.8 takes place. Thus, a metric from the third derivatives of F is constructed which is
proportional to the metric δij, and in this way a generalisation of Theorem 2.3 in [49] is
obtained. In fact, one can consider a generalisation of the configuration BCN and show
that the corresponding function also satisfies WDVV equations (see [2] for details).

Theorem 4.5.10. Let R = F4. Let the positive half of the root system F4 be

ηei, 1 ≤ i ≤ 4; η(ei ± ej), 1 ≤ i < j ≤ 4;
η

2
(e1 ± e2 ± e3 ± e4),
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where η ∈ C× is a parameter. Let r be the multiplicity of short roots ηei, η2(e1±e2±e3±e4)

and let q be the multiplicity of long roots η(ei ± ej). The function

F = r
4∑
i=1

f(ηxi) + r
∑

εi∈{1,−1}

f(
η

2
(ε1x1 + ε2x2 + ε3x3 + x4)) + q

4∑
i<j

f(η(xi ± xj))

satisfies conditions (4.92) if and only if r = −2q or r = −4q. The corresponding super-
symmetric Hamiltonians (4.97), (4.96) take the form

H1 = −∆ + r(1 + rη2)η4
( 4∑
i=1

1

sinh2 ηxi
+

∑
εi∈{1,−1}

1

sinh2(η
2
(ε1x1 + ε2x2 + ε3x3 + x4))

)

+ η4

4∑
i<j

4q(1 + 2qη2)

sinh2(η(xi ± xj))
+ Φ̃,

and

H2 = −∆ + rη3
∑

εi∈{1,−1}

coth(
η

2
(ε1x1 + ε2x2 + ε3x3 + x4))(ε1∂1 + ε2∂2 + ε3∂3 + ∂4)

+ 2rη3

4∑
i=1

coth ηxi∂i + 4qη3

4∑
i<j

coth(η(xi ± xj))(∂i ± ∂j) + Φ

with Φ given by

Φ = 4η4

4∑
i=1

r

sinh2 ηxi

(
ψbiψibψ̄

i
dψ̄

di − ψibψ̄bi
)

+ 4η4
∑

ε∈{1,−1}

4∑
m<t

∑
i,j,l,k

qdmtidmtj

sinh2 η((xm + εxt))

(
dmtldmtkψ

biψjb ψ̄
l
dψ̄

dk − 2ψibψ̄
bj
)

+ 4η4
∑

εi∈{1,−1}

∑
i,j,l,k

rdidj

sinh2(η
2
(ε1x1 + ε2x2 + ε3x3 + x4))

(
dldkψ

biψibψ̄
i
dψ̄

di − ψibψ̄bi
)
,

where r = −2q or r = −4q, di = di(ε1, ε2, ε3) = ε1δ1i+ε2δ2i+ε3δ3i+δ4i and Φ̃ = Φ+const.

Proof. Since B4 ⊂ F4 we have the contribution to the coefficient g12 of the form (4.98),
(4.103) from the pairs of vectors {β, γ} ∈ B4 which is equal to 4q(4q + r)η6B12(a, b). The
remaining contribution to the coefficient g12 comes from the following pairs of vectors
{β, γ} in the expansion (4.98):

(1) {ηe1,
η

2
(e1 ± e2 ± e3 ± e4)}, (2) {η(e1 ± e3),

η

2
(e1 ± e2 ± e3 ± e4)},

(3) {η(e1 ± e4),
η

2
(e1 ± e2 ± e3 ± e4)}.
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Indeed, let us demonstrate why pairs of vectors of the form

η

2
(e1 ± e2 ± e3 ± e4) (4.108)

contribute trivially to the coefficient g12 of the form (4.98), (4.103). Let β = η
2
(e1 + λe2 +

µe3+νe4) and β̃ = η
2
(e1+λe2−µe3−νe4), where λ, µ, ν = ±1. Non-trivial contribution with

this β to g12 can only come from the two pairs {β,±γ}, where γ± = η
2
(e1−λe2±(µe3+νe4)).

The same holds for β̃. The contribution from the two pairs {β, γ±} is −λr2

4
η6Be1+λe2,µe3+νe4

while the contribution from the two pairs {β̃, γ±} is λr2

4
η6Be1+λe2,µe3+νe4 . Hence altogether

contributions to g12 from pairs of vectors of the form (4.108) cancel. Similarly, one can
check that contributions from pairs {ηe2,

η
2
(e1± e2± e3± e4)} and {η(e1± e2), η

2
(e1± e2±

e3 ± e4)} is zero.
Then pairs (1) contribute 2r2η6B12(a, b) and pairs (2), (3) contribute 4rqη6B12(a, b)

each. Therefore in total

g12(a, b) = 2(8q2 + 6rq + r2)η6B12(a, b).

By Proposition 4.5.5, gij = 0 for all 1 ≤ i < j ≤ 4 if and only if r = −2q or r = −4q. The
form of the Hamiltonians H2, H1 follows from Theorem 4.5.2 and Proposition 4.5.4. Then
the statement follows.

Theorem 4.5.11. Let R = G2. Let the positive half of the root system G2 considered in
three dimensional space be

α1 = η(e1 − e2), α2 = η(e1 − e3), α3 = η(e2 − e3),

α4 = η(2e1 − e2 − e3), α5 = η(e1 + e2 − 2e3), α6 = η(e1 − 2e2 + e3),

where η ∈ C× is a parameter. Let s be the multiplicity of the short roots αi, i = 1, 2, 3 and
let r be the multiplicity of the long roots αj, j = 4, 5, 6. Then the function

F = s

3∑
i<j

f(η(xi − xj)) +
r

2

∑
σ∈S3

f(η(2xσ(1) − xσ(2) − xσ(3)))

satisfies conditions (4.92) if and only if s = −3r or s = −9r. The corresponding super-
symmetric Hamiltonians (4.97), (4.96) take the form

H1 = −∆ + η4

3∑
i<j

4s(1 + 2sη2)

sinh2(η(xi − xj))
+ η4

∑
σ∈S3

18r(1 + 6rη2)

sinh2(η(2xσ(1) − xσ(2) − xσ(3)))
+ Φ̃,
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and

H2 = −∆ + 4sη3

3∑
i<j

coth(η(xi − xj))(∂i − ∂j)

+ 6rη3
∑
σ∈S3

coth(η(2xσ(1) − xσ(2) − xσ(3)))(2∂σ(1) − ∂σ(2) − ∂σ(3)) + Φ,

with Φ given by

Φ = 4η4

3∑
m<t

∑
i,j,l,k

sd−mtid
−
mtj

sinh2(η(xm − xt))

(
d−mtld

−
mtkψ

biψjb ψ̄
l
dψ̄

dk − 2ψibψ̄
bj
)

+ 2η4
∑
σ∈S3

∑
i,j,l,k

rdσi d
σ
j

sinh2(η(2xσ(1) − xσ(2) − xσ(3)))

(
dσl d

σ
kψ

biψjb ψ̄
l
dψ̄

dk − 6ψibψ̄
bj
)

where s = −3r or s = −9r, d−mti = δmi−δti, dσi = 2δσ(1)i−δσ(2)i−δσ(3)i, and Φ̃ = Φ+const.

Proof. The coefficient at e1 ∧ e2 in the form B(a,b) given by (4.98), (4.103) is

g12(a, b) =
6∑
i<j

2cαicαj(αi, αj)Bαi,αj(a, b)(αi ∧ αj, e1 ∧ e2) =
5∑
i=1

Ai,

where (αi∧αj, e1∧e2) = det(c1, c2) where ck are the column vectors ck = ((αi, ek), (αj, ek))
ᵀ,

k = 1, 2, and

Ai =
6∑

j=i+1

2cαicαj(αi, αj)Bαi,αj(a, b)(αi ∧ αj, e1 ∧ e2).

We have

A1 = 6srη6Bα1,α5(a, b),

A2 = 2sη6
(
sBα2,α3(a, b)− 3rBα2,α6(a, b)

)
,

A3 = 0,

A4 = 18r2η6Bα4,3α3(a, b),

A5 = 18r2η6Bα5,α6(a, b).

Simplifying we obtain

g12(a, b) = 2η6(27r2 + 12rs+ s2)(B12(a, b)−B13(a, b) +B23(a, b)).

By Proposition 4.5.5, gij = 0 for all 1 ≤ i < j ≤ 3 if and only if s = −3r or s = −9r.
The form of the Hamiltonians H2, H1 follows from Theorem 4.5.2 and Proposition 4.5.4
respectively. Then the statement follows.
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Remark 4.5.12. The bosonic part of the supersymmetric Hamiltonians (4.96), (4.97)
becomes Calogero–Moser Hamiltonian in the rational limit. For example let us consider
the case of the root system BCN and let us introduce rescaled multiplicities ŝ = η2s,
q̂ = η2q and r̂ = η2r in Theorem 4.5.8. Then in the limit η → 0 bosonic parts of
Hamiltonians H1 and H2 given by (4.106), (4.107) become the rational BN Hamiltonians
Hb,r

1 , Hb,r
2 with two independent coupling parameters, namely,

Hb,r
1 = −∆ +

N∑
i<j

4q̂(2q̂ + 1)

(xi ± xj)2
+

N∑
i=1

l(l − 1)

x2
i

,

and

Hb,r
2 = −∆ +

N∑
i<j

4q̂

xi ± xj
(∂i ± ∂j)−

N∑
i=1

2l

xi
∂i,

where l = 2((N − 2)q̂ + 2ŝ). Thus supersymmetric Hamiltonians (4.106), (4.107) can
be viewed as η-deformation of the rational superconformal Hamiltonians considered in
Theorems 4.4.4, 4.4.5 for the root system R = BN .



Chapter 5

Concluding remarks and open questions

5.1 Determinant of restricted Saito metric

In this work we considered the Saito metric η defined on the Coxeter orbit spaceMW . We
studied the restriction of this metric on discriminant strata inside the discriminant ofMW

and obtained a formula for its determinant which is described in terms of the underlying
Coxeter geometry of root systems and corresponding arrangements of hyperplanes.

Comment 1. Main Theorems 1 and 2 are proved for exceptional Coxeter groups by case
by case considerations (except for codimensions one and two, and dimension one). It
would be more illuminating if a proof for all Coxeter groups can be obtained uniformly,
perhaps via a different route.

Comment 2. It would be interesting to study other properties of the metric ηD on the
strata D. For example, the scalar curvature may be of interest. Initial considerations
suggest that it may have a factorised form, similarly to the determinant of ηD.

Comment 3. Frobenius manifold structures on the orbit spacesMW̃ of extended affine
Weyl groups W̃ were considered firstly by Dubrovin and Zhang [26]. A non-degenerate
flat metric (analogous to the Saito metric onMW ) can be defined on these orbit spaces.
It would be interesting to see if the restriction of this metric to the corresponding strata
inside the discriminant ofMW̃ has a similar property to the restricted Saito metric, that
is whether determinant has a nice form in suitable coordinate system.

Comment 4. T. Dourvopoulos recently informed us about their conjecture with C. Stump
on freeness of a new class of multi-arrangements (see [73] book for the theory of free
arrangements). These are restricted Coxeter arrangements and multiplicities come from
the multiplicities of factors of the determinant of the restricted Saito metric considered
in this work. It would be interesting to analyse this conjecture possibly, in relation with
methods developed in this thesis.

184
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5.2 Supersymmetric ∨–systems

Since work [88] there were extensive attempts to define superconformal N = 4 Calogero–
Moser type systems for sufficiently general coupling parameters and suitable superconfor-
mal algebras. Some low rank cases were treated in [40], [41]. A number of works were
devoted to the superconformal extensions of Calogero–Moser systems where extra spin
type variables had to be present (see [32] for a discussion and the review). In the cur-
rent work we presented superconformal extensions of the ordinary Calogero–Moser system
with scalar potential as well as its generalisations for an arbitrary ∨-system, which in-
cludes Olshanetsky–Perelomov generalisations of Calogero–Moser systems with arbitrary
invariant coupling parameters, and without introduction of extra bosonic variables. The
superconformal algebra is D(2, 1;α) where parameter α is related to the coupling parame-
ter(s). It is crucial for our considerations that we deal with quantum rather than classical
Calogero–Moser type systems.

We also presented supersymmetric non-conformal deformations of the trigonometric
Calogero–Moser–Sutherland type systems related with the root system BN (which may
be thought of as the Calogero–Moser–Sutherland system with boundary terms) as well as
with some other exceptional root systems.

Comment 5. It would be very interesting to see if there are any relations of consid-
ered systems with black holes (cf. [42] for the conjectural relation with supersymmetric
Calogero–Moser systems and e.g. [60], [68] and references therein for non–conformal de-
formations of AdS2 black hole geometry). We note that it is also suggested that the
superconformal algerba D(2, 1;α) may be relevant to multi-black hole systems (see [32]
and references therein).

Comment 6. We dealt with BCN trigonometric prepotentials which were recently shown
in [2] to satisfy generalised WDVV equations. It would be interesting to see whether there
are more Frobenius manifold structures associated to this solution of WDVV equations.

Comment 7. It may also be interesting to clarify integrability of considered supersym-
metric Hamiltonians.



Appendix A

One-dimensional strata: the cases F4,
H4

It can be checked directly with the help of Mathematica (see [5]) that the metric ηD is non-
zero for any one-dimensional stratum in the following Coxeter groups: F4, H4, E6, E7, E8.
All the remaining cases are considered in Chapter 3.

Let us give some details here only for the cases when R = F4 and R = H4. The cases
when R = E6, E7, E8 are similar. Basic invariants and Saito polynomials for the groups
of type E6 and E7, E8 can be found in [1, 78] and [1, 83] respectively. Let us introduce
coordinates x = (x0, x1, x2, x3) ∈ R4.

Let R = F4 ⊂ R4. The polynomials

Ik =
3∑
i<j

(xi − xj)k + (xi + xj)k, k = 2, 6, 8, 12,

are basic invariants. Saito polynomials can be chosen as follows [35,78]:

t1 =
1

144
I2, t2 = −1

6

(
− 1

8
I6 +

15

16

(I2

6

)3)
, t3 =

1

6

(
− 3

40
I8 +

21

80

(I2

6

)
I6 −

77

64

(I2

6

)4)
,

t4 = − 1

60
I12 +

209

960
I8

(I2

6

)2

+
77

480

(I6

6

)2

− 2959

960

(I6

6

)(I2

6

)3

+
2211

1280

(I2

6

)6

.

Note that normalisation of these polynomials is chosen such that ηαβ(t) = δα+β,5. There
are two non-equivalent one-dimensional strata in F4 which have types B3 and A2×A1. In
the former case we obtain ηD = −2x12

1 dx
2
1, with D : x0 = x1, x2 = x3 = 0 and in the latter

ηD = −576x12
1 dx

2
1, with D : 1

3
x0 = x1 = x2 = x3.

Let us now consider the case R = H4 ⊂ R4. The corresponding root system is
given by cyclic permutations of the vectors (±2, 0, 0, 0) and (±τ,±(τ − 1),±1, 0), where
τ = 1

2
(1 +

√
5) (independent choices of signs) [27, 78]. A simple system can be chosen as

186
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follows:

α1 = (0, 2, 0, 0), α2 = (0,−τ, τ − 1,−1), α3 = (0, 0, 0, 2), α4 = (τ − 1, 0,−τ,−1)

with corresponding Coxeter graph

5

α1 α2 α3 α4

In the notations of [78, p. 405] Saito polynomials are defined as

t1 =
1

60
z2,

t2 = − 1√
30

(z12 +
4

45
z6

2),

t3 =
1√
30

(z20 +
1

3
z4

2z12 +
8

405
z10

2 ),

t4 = z30 −
4

15
z5

2z20 −
2

3
z3

2z
2
12 −

56

405
z9

2z12 −
104

18225
z15

2 ,

where z2, z12, z20, z30 are particular polynomials of degrees 2, 12, 20, 30 respectively, in
the variables x0, x1, x2, x3. They are defined explicitly in [78, p. 403] but there seem to
be typos in the expressions for the polynomials z12 and z30. We give correct expressions
below. We also normalised the polynomials t1, t2, t3 so that ηαβ = δα+β,5.

There are four non-equivalent one-dimensional strata D in H4 which have type H3, A3,
I2(5) × A1 and A1 × A2. In the following table we give the determinant det ηD(x) of the
restricted Saito metric ηD for these strata. We use the notation {αi1 , αi2 , αi3} to denote
the stratum D = Di1,i2,i3 .

Table A.1: Restricted Saito metric ηD, dimD = 1, R = H4

Type of stratum det ηD(x)

H3, {α1, α2, α3} 23 · 3−4 · 5−1
(√

5− 3
)
x30

0

A3, {α2, α3, α4} 238 · 3−4 · 5−1
(
7− 3

√
5
)
x30

2

I2(5)× A1, {α1, α2, α4} 238 · 3−4 · 5
(
72
√

5 + 161
)
x30

2

A1 × A2, {α1, α3, α4} −27 · 3 · 5−1
(
121393

√
5 + 271443

)
x30

2

Let us now give expressions for the polynomials z12 and z30. They are defined in terms
of polynomials X2, X6, X10 (which are denoted by x2, x6, x10 in [78, p. 401]). These



APPENDIX A. ONE-DIMENSIONAL STRATA: THE CASES F4, H4 188

polynomials have the form

X2 = p1,

X6 =
√

5p4 + p1p2 − 11p3,

X10 = 3
√

5p4p2 + 2p3
1p2 − 32p2

1p3 − 5p1p
2
2 + 95p2p3,

where

p1 =
3∑
i=1

x2
i , p2 =

3∑
i=1
i<j

x2
ix

2
j , p3 =

3∏
i=1

x2
i , p4 =

3∏
i=1
i<j

(x2
i − x2

j).

In these notations one gets

z12 =− 2x10
0 X2 + 6x8

0X2
2 + x6

0

(
33X6 − 14X2

3
)
− x4

0

(
33X2X6 − 6X2

4
)

+ x2
0

(
11X10 − 2X2

5
)
−X10X2 +

3

2
X6

2,

z30 =
32

3
x24

0 X
3
2 − x22

0

(
80X4

2 + 120X2X6

)
+ x20

0

(
360X10 +

1344

5
X5

2 + 672X2
2X6

)
+ x18

0

(
− 2880X10X2 −

1328

3
X6

2 − 1608X3
2X6 + 1080X2

6

)
+ x16

0

(
10024X10X

2
2

+ 272X7
2 + 1248X4

2X6 − 5628X2X
2
6

)
+ x14

0

(
− 16856X10X

3
2 − 7620X10X6

+ 272X8
2 + 18588X2

2X
2
6

)
+ x12

0

(
14216X10X

4
2 + 23508X10X2X6 −

1328

3
X9

2

− 1248X6
2X6 − 27396X3

2X
2
6 − 5796X3

6

)
+ x10

0

(
3240X2

10 − 7160X10X
5
2 − 25332X10X

2
2X6

+
1344

5
X10

2 + 1608X7
2X6 + 19968X4

2X
2
6 + 7350X2X

3
6

)
+ x8

0

(
− 3232X2

10X2 + 2144X10X
6
2

+ 10908X10X
3
2X6 − 906X10X

2
6 − 80X11

2 − 672X8
2X6 − 6924X5

2X
2
6 − 1956X2

2X
3
6

)
+ x6

0

(
1168X2

10X
2
2 − 344X10X

7
2 − 2172X10X

4
2X6 − 1908X10X2X

2
6 +

32

3
X12

2

+ 120X9
2X6 + 1332X6

2X
2
6 + 288X3

2X
3
6 + 2394X4

6

)
+ x4

0

(
− 152X2

10X
3
2 + 348X2

10X6

+ 16X10X
8
2 + 60X10X

5
2X6 + 408X10X

2
2X

2
6 − 84X7

2X
2
6 + 84X4

2X
3
6 − 909X2X

4
6

)
+ x2

0

(
8X2

10X
4
2 − 42X10X

3
2X

2
6 − 87X10X

3
6 − 6X5

2X
3
6 + 135X2

2X
4
6

)
+

4

3
X3

10 − 3X10X2X
3
6 +

9

5
X5

6 .

Polynomials z2 and z20 are the same as in [78, p. 403]. They have the form

z2 = x2
0 +X2,
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z20 = 4x16
0 X

2
2 − x14

0

(
20X3

2 + 30X6

)
+ x12

0

(
44X4

2 + 138X2X6

)
+ x10

0

(
180X10 − 44X5

2 − 402X2
2X6

)
+ x8

0

(
−464X10X2 + 44X6

2 + 402X3
2X6 + 294X2

6

)
+ x6

0

(
296X10X

2
2 − 20X7

2 − 138X4
2X6 − 306X2X

2
6

)
+ x4

0

(
−76X10X

3
2 − 114X10X6 + 4X8

2 + 30X5
2X6 + 168X2

2X
2
6

)
+ x2

0

(
4X10X

4
2 − 21X3

2X
2
6 +

57

2
X3

6

)
+X2

10 −
3

2
X2X

3
6 .



Appendix B

One particle systems

In this appendix we include our considerations for one particle systems for reader’s con-
venience. Namely, we construct two representations of the algebra D(2, 1;α) which are
particular cases of considerations from Sections 4.2, 4.3. Relations (4.7) for one particle
take the form (j, k = 1, 2)

[x, p] = i, {ψk, ψ̄j} = −1

2
δkj , and {ψj, ψk} = {ψ̄j, ψ̄k} = 0. (B.1)

Relations (4.9) take the form

{ψk, ψ̄j} =
1

2
δjk, {ψk, ψ̄j} =

1

2
εkj, {ψk, ψ̄j} =

1

2
εjk, (B.2)

since εjlεlk = δkj . We consider a potential of the form (4.82) with λ = −2α+1
2

.

B.1 The first representation

Let the supercharges be of the form (4.16), (4.17), namely

Qa = pψa + i
2α + 1

x
〈ψkψkψ̄a〉, (B.3)

Q̄b = pψ̄b + i
2α + 1

x
〈ψ̄kψ̄kψb〉. (B.4)

Note that by (4.18) we have that

〈ψkψkψ̄a〉 =
1

6
(ψkψ

kψ̄a + ψ̄aψkψ
k + ψkψ̄aψk − ψkψ̄aψk − ψ̄aψkψk − ψkψkψ̄a)

=
1

3
(ψkψ

kψ̄a + ψ̄aψkψ
k − ψkψ̄aψk), (B.5)

since for any φ we have that
ψkφψk = −ψkφψk. (B.6)

190
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Note also that by (B.1), (B.2) we get

ψ̄aψkψ
k = ψkψ

kψ̄a + ψa, ψkψ̄
aψk = −ψkψkψ̄a −

1

2
ψa. (B.7)

Hence it follows from (B.5) and (B.7) that

〈ψkψkψ̄a〉 = ψkψ
kψ̄a +

1

2
ψa. (B.8)

Similarly,

〈ψ̄kψ̄kψb〉 = ψ̄kψ̄kψb +
1

2
ψ̄b.

Let also
K = x2, D = −1

4
{x, p}, (B.9)

I11 = −iψmψm, I22 = iψ̄mψ̄m, I12 = I21 = − i
2

[ψm, ψ̄
m], (B.10)

Jab = J ba = 2iψ(aψ̄b), (B.11)

Sa = −2xψa, S̄a = −2xψ̄a. (B.12)

Note that under the operation ∼ defined by (4.10) we obtain the following relations:

Q̃a = −Q̄a,
˜̄Qa = −Qa, S̃a = S̄a,

˜̄Sa = Sa, (B.13)

Ĩ11 = I22, Ĩ12 = I12, (B.14)

H̃ = H, D̃ = −D, K̃ = K. (B.15)

Note also that
Jab = εaâεbb̂J

âb̂ = J̃ab, (B.16)

since ψ̄aψb + ψ̄bψa = −(ψaψ̄b + ψbψ̄a) by (B.2), where â, b̂ are complimentary to a and b
respectively. Let us first check relations (4.4) involving generators Jab and Iab. Note that
the statement of Lemma B.1.2 appears also in [31] and we include it here for completeness.

Lemma B.1.1. Let Jab be as above. Then the relations (4.4a) hold.

Proof. We have the following commutator by applying (4.13), (4.14)

[ψaψ̄b, ψcψ̄d] =
1

2
εcbψaψ̄d +

1

2
εdaψcψ̄b.
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Thus,

[Jab, J cd] =
1

2
εbc(ψaψ̄d + ψdψ̄a) +

1

2
εad(ψbψ̄c + ψcψ̄b)

+
1

2
εbd(ψaψ̄c + ψcψ̄a) +

1

2
εac(ψbψ̄d + ψdψ̄b),

which implies the lemma.

Let us now check relations involving generators Iab.

Lemma B.1.2 (cf. [31]). Let Iab be as above. Then relations (4.4b) hold.

Proof. Relations (4.4b) read as follows:

[I11, I22] = 2iI12, [I11, I12] = iI11, [I22, I12] = −iI22.

We have
[I11, I22] = [ψaψ

a, ψ̄bψ̄b]. (B.17)

By applying (4.13), (4.14) we rearrange expression (B.17) as

[I11, I22] = ψa[ψ
a, ψ̄bψ̄b] + [ψa, ψ̄

bψ̄b]ψ
a

= ψaψ̄
a + ψ̄aψ

a = ψaψ̄
a − ψ̄aψa

= 2iI12,

as required. Moreover, using the Jacobi identity we have

[I11, I12] = −1

2
[ψaψ

a, [ψb, ψ̄
b]] =

1

2
[ψb, [ψ̄

b, ψaψ
a]].

We have [ψ̄b, ψaψ
a] = ψb. Thus,

[I11, I12] = ψbψ
b = iI11.

Similarly,

[I22, I12] =
1

2
[ψ̄aψ̄a, [ψb, ψ̄

b]] = −1

2
[ψ̄b, [ψ̄aψ̄a, ψb]],

and [ψ̄aψ̄a, ψb] = −ψ̄b. Thus,

[I22, I12] = ψ̄bψ̄b = −iI22,

which is the corresponding relation (4.4b) and hence the statement follows.

Lemma B.1.3. Let Qabc, Jab be as above. Then relations (4.5b) hold.
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Proof. We have by (B.2) and (4.14) that

[ψaψ̄b, ψj] = ψa{ψ̄b, ψj} =
1

2
εjbψa. (B.18)

By (4.13), (4.14) and (B.2) we have that

[ψaψ̄b, ψkψ
kψ̄j] = −ψkψk[ψ̄j, ψaψ̄b]− [ψkψ

k, ψaψ̄b]ψ̄j

= −ψkψkψ̄b{ψ̄j, ψa} − ψk[ψk, ψaψ̄b]ψ̄j − [ψk, ψ
aψ̄b]ψkψ̄j

=
1

2
εjaψkψ

kψ̄b − ψbψaψ̄j. (B.19)

Note that since Jab is symmetric in a and b, it follows from (B.18), (B.19) that

[Jab, ψc] =
i

2
εcbψa +

i

2
εcaψb, (B.20)

[Jab, ψkψ
kψ̄c] =

i

2
εcaψkψ

kψ̄b +
i

2
εcbψkψ

kψ̄a. (B.21)

Therefore, the left-hand side of (4.5b) for [Jab, Q21c] is

[Jab, Q21c] = −[Jab, Qc] = −[Jab, ψc]p− i(2α + 1)

x
[Jab, ψkψ

kψ̄c +
1

2
ψc]. (B.22)

Then by formulae (B.8), (B.20) and (B.21) we obtain

[Jab, Q21c] =
i

2
εbcpψa +

i

2
pεac +

i(2α + 1)

x
(
i

2
εacψkψ

kψ̄b +
i

2
εbcψkψ

kψ̄a +
i

4
εbcψa +

i

4
εacψb)

=
iεbc

2

(
pψa +

i(2α + 1)

x
〈ψkψkψ̄a〉

)
+
iεac

2

(
pψb +

i(2α + 1)

x
〈ψkψkψ̄b〉

)
(B.23)

=
i

2
(εbcQa + εacQb) =

i

2
(εcbQ21a + εcaQ21b),

that is
[Jab, Q21c] = iεc(aQ|21|b), (B.24)

as required. Applying ∼ to (B.24) and by (B.13), (B.16) we obtain

[Jab, Q̄c] = − i
2
εcbQ̄a −

i

2
εcaQ̄b.

Therefore we have

[Jab, Q22c] = −[Jab, Q̄c] = −εaâεbb̂εcĉ[Jâb̂, Q̄ĉ] =
i

2
(εbcQ̄a + εacQ̄b) = iεc(aQ|22|b),
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as required. Further on using (B.18) we obtain

[Jab, Q11c] = [Jab, Sc] = −2x[Jab, ψc] = iεbcxψa + iεacxψb

=
i

2
(εcbSa + εcaSb) = iεc(aQ|11|b). (B.25)

Applying ∼ to [Jab, Sc] and using (B.13) we get that [Jab, S̄c] = i
2
(εbcS̄a+εacS̄b) from which

it follows that

[Jab, Q12c] = [Jab, S̄c] = εaâεbb̂εcĉ[Jâb̂, S̄ĉ] =
i

2
(εcaS̄b + εcbS̄a) = iεc(aQ|12|b).

The statement follows.

Lemma B.1.4. Let Qabc, Iab be as above. Then relations (4.5c) hold.

Proof. Let us first consider the commutator [I11, Q21f ] = i[ψmψ
m, Qf ]. Note that

[ψmψ
m, ψf ] = 0, and [ψmψ

m, ψkψ
kψ̄f ] = −ψkψk[ψ̄f , ψmψm] = −ψfψkψk = 0.

Therefore [I11, Q21f ] = 0, as required. Now let us consider the commutator [I22, Q21f ]. By
(4.14) and (B.1), (B.2) we get

[ψ̄mψ̄m, ψ
f ] = −ψ̄f . (B.26)

By (4.13) we get
[ψ̄mψ̄m, ψkψ

kψ̄f ] = −[ψkψ
k, ψ̄mψ̄m]ψ̄f . (B.27)

We have by (4.13) and (B.26)

[ψkψ
k, ψ̄mψ̄m] = ψk[ψ

k, ψ̄mψ̄m] + [ψk, ψ̄
mψ̄m]ψk = ψkψ̄

k − ψ̄kψk, (B.28)

where we also used (B.6). Note that by (B.2) we obtain

ψkψ̄
kψ̄f = ψ̄kψ̄fψk +

1

2
ψ̄f , (B.29)

and
ψ̄kψkψ̄

f = −ψ̄kψ̄fψk +
1

2
ψ̄f . (B.30)

Therefore we get from (B.28), (B.29) and (B.30) that

[ψkψ
k, ψ̄mψ̄m]ψ̄f = 2ψ̄kψ̄fψk. (B.31)

Note that

ψ̄kψ̄fψk =

{
ψ̄2ψ̄2ψ

1, if f = 1,

ψ̄1ψ̄1ψ
2, if f = 2.

(B.32)
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Since ψ̄1ψ̄1 = ψ̄2ψ̄2, we get from (B.32) that

ψ̄kψ̄fψk =
1

2
ψ̄kψ̄kψ

f ,

for any f = 1, 2. Therefore it follows that expression (B.31) takes the form

[ψkψ
k, ψ̄mψ̄m]ψ̄f = ψ̄kψ̄kψ

f . (B.33)

From the forms of I22 and Q21f and using (B.26), (B.27), (B.33) we obtain

[I22, Q21f ] = −i[ψ̄mψ̄m, Qf ]

= −i
(
− pψ̄f + i

(2α + 1)

x
(−ψ̄kψ̄kψf −

1

2
ψ̄f )
)

(B.34)

= iQ̄f ,

which is the corresponding relation (4.5c).
Further on, let us consider [I12, Q21f ]. Note that [ψm, ψ̄

m] = 2ψmψ̄
m − 1 and

[ψmψ̄
m, ψf ] =

1

2
ψf , [ψ̄f , ψmψ

m] = ψf , (B.35)

where we use (4.14) to get the latter expression. Now we have by (4.13)

[ψmψ̄
m, ψkψ

kψ̄f ] = [ψmψ̄
m, ψkψ

k]ψ̄f + ψkψ
k[ψmψ̄

m, ψ̄f ]

= ψm[ψ̄m, ψkψ
k]ψ̄f + ψkψ

k[ψmψ̄
m, ψ̄f ]

=
1

2
ψkψ

kψ̄f , (B.36)

where in the last equality we applied (B.35) and the formula [ψmψ̄
m, ψ̄f ] = −1

2
ψ̄f . Since

Qf is a linear combination of ψf and ψkψkψ̄f with bosonic coefficients it follows from the
first formula in (B.35) and (B.36) that [ψmψ̄

m, Qf ] = 1
2
Qf , therefore [I12, Q21f ] = − i

2
Q21f ,

as required. Using formulae (B.13), (B.14) and ∼ operation, it follows that relations (4.5c)
hold for the supercharge Q22f as well.

Finally, let us consider [Iab, Q11f ]. Firstly, note that

[I11, Q11f ] = −i[ψmψm, Sf ] = 2ix[ψmψ
m, ψf ] = 0,

as required. Moreover, we get from (B.26) that

[I22, Q11f ] = i[ψ̄mψ̄m, S
f ] = −2ix[ψ̄mψ̄m, ψ

f ] = 2ixψ̄f = −iQ12f ,
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and from the first formula in (B.35) that

[I12, Q11f ] = −i[ψmψ̄m, Sf ] = 2ix[ψmψ̄
m, ψf ] = ixψf = − i

2
Q11f ,

which are the corresponding relations (4.5c). Using formulae (B.13), (B.14) and ∼ op-
eration, it follows that relations (4.5c) for [Iab, Q12f ] (a, b, f = 1, 2) hold as well. The
statement follows.

We will use the following relations below. By (4.15) we have

{pψa, 1

x
ψ̄b} = ψaψ̄b[p,

1

x
] +

1

x
{ψa, ψ̄b}p

=
i

x2
ψaψ̄b −

δab
2

1

x
p, (B.37)

and similarly

{pψ̄b,
1

x
ψa} =

i

x2
ψ̄bψ

a − δab
2

1

x
p.

Further on, by (4.14), (4.15) we have that

{ψ̄b, ψmψmψ̄a} = −ψmψ̄a{ψm, ψ̄b}+ ψmψ̄a{ψm, ψ̄b}

=
1

2
δmb ψmψ̄

a − 1

2
εmbψ

mψ̄a

= ψbψ̄
a, (B.38)

and similarly
{ψa, ψ̄mψ̄mψb} = ψ̄aψb. (B.39)

Let us now compute the Hamiltonian of the system. We will use the following formulae
below

〈ψmψmψ̄kψ̄k〉 = ψmψ
mψ̄kψ̄k − ψmψ̄m +

1

4
. (B.40)

Theorem B.1.5. For a, b = 1, 2 we have {Qa, Q̄b} = −2Hδab , where the Hamiltonian H

is given by

H =
p2

4
− (2α + 1)

2x2
〈ψmψmψ̄kψ̄k〉+

(2α + 1)2

16x2
. (B.41)

Proof. By (4.15) and (B.38), (B.39) we have

{pψa, i(2α + 1)

x
〈ψ̄mψ̄mψb〉} = i(2α + 1)

( i

x2
ψaψ̄mψ̄mψb + ψ̄aψb

1

x
p+

i

2x2
ψaψ̄b −

δab
4

1

x
p
)
,

(B.42)
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and similarly,

{pψ̄b,
i(2α + 1)

x
〈ψkψkψ̄a〉} = i(2α + 1)

( i

x2
ψ̄bψkψ

kψ̄a + ψbψ̄
a 1

x
p+

i

2x2
ψ̄bψ

a − δab
4

1

x
p
)

(B.43)

Finally, we have

{〈ψ̄mψ̄mψb〉, 〈ψkψkψ̄a〉} =
1

8
δab . (B.44)

Indeed,

{〈ψ̄mψ̄mψb〉, 〈ψkψkψ̄a〉} = {ψ̄mψ̄mψb, ψkψkψ̄a}+
1

2
{ψ̄mψ̄mψb, ψa}+

1

2
{ψkψkψ̄a, ψ̄b}

+
1

4
{ψa, ψ̄b}, (B.45)

where it is easy to see that the first term in equality (B.45) is zero and then by (B.38),
(B.39) formula (B.44) follows.

Therefore in total, we get from (B.42)-(B.44) that

{Qa, Q̄b} = −δ
a
b

2
p2 +

(2α + 1)

x2

(δab
4
− ψaψ̄mψ̄mψb − ψ̄bψkψkψ̄a

)
− (2α + 1)2

x2

δab
8
.

Now let us try to simplify the above expression. We have by applying (B.2) that

ψ̄mψ̄mψb = ψbψ̄
mψ̄m − ψ̄b, (B.46)

and by (B.1), (B.2) that
ψ̄bψkψ

k = ψkψ
kψ̄b + ψb. (B.47)

It follows from (B.46), (B.47) that

ψaψ̄mψ̄mψb + ψ̄bψkψ
kψ̄a = (ψaψ̄mψ̄mψa + ψ̄aψkψ

kψ̄a)δab ,

where there is no summation over a in the right-hand side. Note that ψaψa = ψâψâ and
ψ̄aψ̄a = ψ̄âψ̄â (no summation). Let us fix a and let b = a. Then we get from (B.46), (B.47)
that

ψaψ̄mψ̄mψa = −ψâψâψ̄mψ̄m − ψaψ̄a, (B.48)

and
ψ̄aψkψ

kψ̄a = −ψkψkψ̄âψ̄â + ψaψ̄
a, (B.49)
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where â is complementary to a. With summation over m only we have

ψmψ
mψ̄aψ̄a = ψaψ

aψ̄aψ̄a + ψâψ
âψ̄aψ̄a

= ψâψ
âψ̄aψ̄a + ψâψ

âψ̄âψ̄â

= ψâψ
âψ̄mψ̄m. (B.50)

Hence we get from (B.48)-(B.50) that for any fixed a,

ψaψ̄mψ̄mψa + ψ̄aψkψ
kψ̄a = −ψmψmψ̄kψ̄k + ψmψ̄

m, (B.51)

which is equal to 1
4
− 〈ψmψmψ̄kψ̄k〉 by (B.40). Hence,

{Qa, Q̄b} = −δ
a
b

2
p2 +

(2α + 1)

x2
〈ψmψmψ̄kψ̄k〉δab −

(2α + 1)2

x2

δab
8
. (B.52)

This concludes the proof.

It is easy to check that the following lemma holds.

Lemma B.1.6. Let H, K, D be as above. Then relations (4.3) hold.

The following relations will be useful below. Firstly, by (B.40) it is easy to see that

ψa〈ψmψmψ̄kψ̄k〉 = −ψaψmψ̄m +
1

4
ψa. (B.53)

Further, by using (B.1), (B.2) and (B.40) we obtain (for any fixed a) that

〈ψmψmψ̄kψ̄k〉ψa = ψmψ
mψ̄kψ̄kψ

a − ψmψ̄mψa +
1

4
ψa

= −ψmψmψ̄a − ψaψmψ̄m −
1

4
ψa. (B.54)

Hence by (B.8), (B.53) and (B.54) we have that

[ψa, 〈ψmψmψ̄kψ̄k〉] = 〈ψmψmψ̄a〉. (B.55)

Lemma B.1.7. Let Qabc, Iab, Jab, T ab be as above. Then relations (4.2) hold.

Proof. Let us check at first that {Qa, Qb} = 0. We have

{ψa, ψkψkψ̄b}+ {ψb, ψkψkψ̄a} = 0, (B.56)

since
{ψa, ψkψkψ̄b} =

1

2
εabψkψ

k. (B.57)
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Hence (B.56) follows. Similarly, {Q̄a, Q̄b} = 0. Moreover, by Theorem B.1.5 we have
{Q21a, Q22c} = {Qa, Q̄c} = εcb{Qa, Q̄b} = −2Hεca as required.

Now, let us consider {Q21a, Q11f}. Then

{pψa, xψf} = −iψaψf = − i
2
εafψkψ

k,

since ψ1ψ1 = ψ2ψ2. Further on we have

{〈ψkψkψ̄a〉, ψf} = −1

2
εafψkψ

k,

by formulae (B.8) and (B.57). Therefore,

{Q21a, Q11f} = −{Qa, Sf} = −2i(1 + α)εafψkψ
k = 2(1 + α)εafI11,

as required by (4.2). By applying ∼ to {Q21a, Q11f} and using (B.13), (B.14) we obtain

{Q̄a, S̄f} = 2(1 + α)εafI
22,

which matches with (4.2). Furthermore, it is easy to see that {Q11a, Q11b} = {Sa, Sb} = 0,
{Q12a, Q12b} = {S̄a, S̄b} = 0 and that {Q11a, Q12b} = {Sa, S̄b} = 2εabT 11 as required by
(4.2).

Finally, we consider the anti-commutator {Q21a, Q12b}. The left-hand side of (4.2)
takes the following form in view of relations (B.38) and (4.15):

{Qa, S̄d} = −2{pψa, xψ̄d} − 2i(2α + 1)({ψkψkψ̄a, ψ̄d}+
1

2
{ψa, ψ̄d}) (B.58)

= 2iψaψ̄d + xpδad − 2i(2α + 1)(ψdψ̄
a − δad

4
).

Therefore

−εbd{Qa, S̄d} = −2iψaψ̄b + xpεab + 2i(2α + 1)ψbψ̄a +
i(2α + 1)

2
εab. (B.59)

We have
{Q21a, Q12b} = −{Qa, S̄b} = −εbd{Qa, S̄d}.

The right-hand side of (4.2) equals

2
(
εabT 12 + αJab + (1 + α)εabI12

)
= xpεab − εab i

2
+ 2αJab + 2(1 + α)εabI12

= xpεab − εab i
2

+ 2αi(ψaψ̄b + ψbψ̄a)− i(1 + α)εab[ψm, ψ̄
m].

(B.60)
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Note that
[ψm, ψ̄

m] = 2ψ2ψ̄1 − 2ψ1ψ̄2 − 1.

By considering various values of a and b one can see that the expression (B.60) takes the
form

xpεab +
i(2α + 1)

2
εab − 2iψaψ̄b + 2i(1 + 2α)ψbψ̄a, (B.61)

which is equal to expression (B.59) as required.
Finally, applying ∼ to {Qa, S̄b} we obtain

{Q̄a, Sb} = 2(εabT̃ 12 + αJ̃ab + (1 + α)εabĨ12)

= 2(−εabT 12 + αJab + (1 + α)εabI
12),

as required by (4.2). The statement thus follows.

Lemma B.1.8. Let T ab be as above. Then relations (4.5a) hold.

Proof. It is easy to see that relations (4.5a) hold for T 12 = −D and for T 11 = K. Let us
consider relations (4.5a) with T 22 = H, and Qa. Note that by Theorem B.1.5

T 22 = −1

2
{Qa, Q̄a}.

Since (Qa)2 = 0 we get that [H,Qa] = 0 as required. Similarly, [H, Q̄a] = 0.
Let us now consider relations (4.5a) with H and Sa. We have by (B.55) that

[H,Sf ] = −1

2
[p2, xψf ] +

(2α + 1)

x
[〈ψmψmψ̄kψ̄k〉, ψf ] (B.62)

= ipψf − (2α + 1)

x
〈ψkψkψ̄f〉 = iQf ,

which is the corresponding relation (4.5a). Using (B.13), (B.15) and ∼ operation, it follows
that relations (4.5a) hold for S̄a. Hence the statement follows.

Let us now check relations (4.6).

Lemma B.1.9. Let T ab, Iab, Jab be as above. Then relations (4.6) hold.

Proof. Let us first consider [Iab, J cd]. We have by (4.13) and (4.14) that

[ψaψ
a, ψcψ̄d] = ψc[ψaψ

a, ψ̄d] = ψdψc.

Therefore

[I11, J cd] = 2[ψaψ
a, ψ(cψ̄d)] = 0,
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as required. Further we have by (4.13), (4.14) that

[[ψa, ψ̄
a], ψcψ̄d] = 2[ψaψ̄

a, ψcψ̄d]

= 2(ψa[ψ̄
a, ψcψ̄d] + [ψa, ψ

cψ̄d]ψ̄a)

= 2(ψaψ̄
d{ψc, ψ̄a} − ψcψ̄a{ψ̄d, ψa}) = 0.

Therefore,
[I12, J cd] = [[ψa, ψ̄

a], ψ(cψ̄d)] = 0,

which is the corresponding relation (4.6). In addition we have by (4.13) and (4.14) that

[ψ̄aψ̄a, ψ
cψ̄d] = [ψ̄aψ̄a, ψ

c]ψ̄d = −ψ̄cψ̄d.

Therefore,
[I22, J cd] = −2[ψ̄aψ̄a, ψ

(cψ̄d)] = 0,

as required.
Let us now consider relations [Iab, T cd] (a, b, c, d = 1, 2). It is easy to see that for

T 12 = −D and T 11 = K relations (4.6) hold. We have T 22 = H = −1
2
{Qc, Q̄c}. Then by

(4.13) we obtain

[Iab, H] = −1

2
([Iab, QcQ̄c] + [Iab, Q̄cQ

c])

= −1

2
(Qc[Iab, Q̄c] + [Iab, Qc]Q̄c + Q̄c[I

ab, Qc] + [Iab, Q̄c]Q
c)

= −1

2
(−Qĉ[I

ab, Q̄ĉ] + [Iab, Qc]Q̄c + Q̄c[I
ab, Qc]− [Iab, Q̄ĉ]Qĉ),

where ĉ is complimentary to c. By Lemma B.1.4 we have

[Iab, Qc] = −[Iab, Q21c] = − i
2

(ε1aQ2bc + ε1bQ2ac) and [Iab, Q̄c] = − i
2

(ε2aQ2bc + ε2bQ2ac).

Therefore by considering various values of a, b ∈ {1, 2} and by using Lemma B.1.7 and
Theorem B.1.5 we obtain the following:

[I11, H] =
i

2
(QĉQ

ĉ +QĉQĉ) = 0,

[I22, H] =
i

2
(Q̄cQ̄c + Q̄cQ̄

c) = 0,

[I12, H] =
i

2
(QĉQ̄

ĉ +QcQ̄c + Q̄cQ
c + Q̄ĉQĉ) = 0,

which are the corresponding relations (4.6).
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Similarly we have

[Jab, H] = −1

2
(−Qĉ[J

ab, Q̄ĉ] + [Jab, Qc]Q̄c + Q̄c[J
ab, Qc]− [Jab, Q̄ĉ]Qĉ).

By Lemma B.1.3 we have

[Jab, Qc] =
i

2
(εcaQb + εcbQa) and [Jab, Q̄c] =

i

2
(εcaQ̄b + εcbQ̄a).

Therefore by considering various values of a, b ∈ {1, 2} we obtain:

[J11, H] = − i
2

(−εĉ1QĉQ̄
1 + εc1Q1Q̄c + εc1Q̄cQ

1 − εĉ1Q̄1Qĉb), (B.63)

[J12, H] = − i
4

(−εĉ1QĉQ̄
2 − εĉ2QĉQ̄

1 + εc1Q2Q̄c + εc2Q1Q̄c

+ εc1Q̄cQ
2 + εc2Q̄cQ

1 − εĉ1Q̄2Qĉ − εĉ2Q̄1Qĉ), (B.64)

[J22, H] = − i
2

(−εĉ2QĉQ̄
2 + εc2Q2Q̄c + εc2Q̄cQ

2 − εĉ2Q̄2Qĉb). (B.65)

Then by considering various values of c ∈ {1, 2} in (B.63)-(B.65) and by using Lemma
B.1.7 and Theorem B.1.5 we obtain

[J11, H] = [J12, H] = [J22, H] = 0,

as required.

B.2 The second representation

Let the supercharges be of the form

Qa = pψa + i
2α + 1

x
ψkψ

kψ̄a, Q̄b = pψ̄b + i
2α + 1

x
ψ̄kψ̄kψb. (B.66)

Let generators K, Iab, Jab and Sa, S̄a be given by the corresponding formulae (B.9),
(B.10), (B.11) and (B.12) same as in the first representation, while the generator D is now
given by

D = −xp
2

+
i(1 + α)

2
.

Let us also note that

Q̃a = −Q̄a,
˜̄Qa = −Qa, D̃ = −D.

Theorem B.2.1. For any a, b ∈ {1, 2} we have {Qa, Q̄b} = −2Hδab , where the Hamilto-
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nian H is given by

H =
p2

4
− i(2α + 1)

4

1

x
p+

(2α + 1)

2x2
Θ,

with Θ = 1
4
− 〈ψmψmψ̄kψ̄k〉.

Proof. Analogues of expressions (B.42), (B.43) are

{pψa, i(2α + 1)

x
ψ̄mψ̄mψb} = i(2α + 1)

(
ψaψ̄mψ̄mψb[p,

1

x
] + {ψa, ψ̄mψ̄mψb}

1

x
p
)

= i(2α + 1)
( i

x2
ψaψ̄mψ̄mψb + ψ̄aψb

1

x
p
)
, (B.67)

and

{pψ̄b,
i(2α + 1)

x
ψkψ

kψ̄a} = i(2α + 1)
( i

x2
ψ̄bψkψ

kψ̄a + ψbψ̄
a 1

x
p
)
, (B.68)

respectively. Further on, the analogue of (B.45) is

{ψ̄mψ̄mψb, ψkψkψ̄a} = 0. (B.69)

Therefore in total, we get from (B.67)-(B.69) (see also (B.51)) that

{Qa, Q̄b} = −p
2

2
δab +

i(2α + 1)

2

1

x
pδab −

(2α + 1)

x2
(
1

4
− 〈ψmψmψ̄kψ̄k〉)δab , (B.70)

and hence the statement follows.

It is easy to check that the following lemma holds.

Lemma B.2.2. Let T ab be as above. Then relations (4.3) hold.

Lemma B.2.3. Let Qabc, Jab, Iab be as above. Then relations (4.5b), (4.5c) hold.

Proof. Relations (4.5b), (4.5c) can be shown to hold by an adaptation of the proofs of
Lemmas B.1.3 and B.1.4 respectively. Indeed let us first consider [Jab, Q21c]. It now takes
the form (cf. (B.22))

[Jab, Q21c] = −[Jab, Qc] = −[Jab, ψc]p− i(2α + 1)

x
[Jab, ψkψ

kψ̄c].

Therefore similarly to (B.23) we have

[Jab, Q21c] =
i

2
εbcpψa +

i

2
pεac +

i(2α + 1)

x
(
i

2
εacψkψ

kψ̄b +
i

2
εbcψkψ

kψ̄a)

=
iεbc

2

(
pψa +

i(2α + 1)

x
ψkψ

kψ̄a
)

+
iεac

2

(
pψb +

i(2α + 1)

x
ψkψ

kψ̄b
)

=
i

2
(εbcQa + εacQb) = iεc(aQ|21|b), (B.71)
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as required. Applying ∼ to (B.71) we obtain the corresponding relation for [Jab, Q22c].
The rest of the relations in (4.4a) are shown to hold in Lemma B.1.3.

Further on, let us consider [Iab, Qf ]. Relation (B.34) now takes the form

[I22, Q21f ] = −i[ψ̄mψ̄m, Qf ]

= −i
(
− pψ̄f − i(2α + 1)

x
ψ̄kψ̄kψ

f
)

= iQ̄f ,

which is the corresponding relation (4.5c). Similarly, it is easy to see that [I12, Q21f ] = i
2
Qf

and that [I11, Qf ] = 0, as required. Applying ∼ to [Iab, Qf ] we obtain the corresponding
relation for [Iab, Q̄f ]. The rest of the relations in (4.4b) are shown to hold in Lemma B.1.3
and therefore the statement follows.

Lemma B.2.4. Let T ab, Qabc be as above. Then relations (4.5a) hold.

Proof. It is easy to see that relations (4.5a) hold for T 12 = −D and for T 11 = K. Similarly
it is easy to see that expressions [T 22, Qa] and [T 22, Q̄a] take the required form.

Let us now consider relations (4.5a) with H and Sa. In view of (B.55) relation
[T 22, Q11f ] now takes the following form (cf. (B.62))

[H,Sf ] = −1

2
[p2, xψf ] +

i(2α + 1)

2
ψf [

1

x
p, x] +

(2α + 1)

x
[〈ψmψmψ̄kψ̄k〉, ψf ]

= ipψf +
(2α + 1)

2x
ψf − (2α + 1)

x
(ψkψ

kψ̄f +
1

2
ψf ).

Therefore, [H,Sf ] = iQf , as required. Applying ∼ to [H,Sf ] we obtain the corresponding
relation for [H, S̄f ] = iQ̄f in (4.5a). Hence the statement follows.

Lemma B.2.5. Let Qabc, Iab, T ab, Jab be as above. Then the relations (4.2) hold.

Proof. We first note that by Theorem B.2.1 we have {Qa, Q̄c} = εcb{Qa, Q̄b} = −2Hεca

which is the corresponding relation (4.2).
Moreover the expressions {Q21a, Q21b}, {Q22a, Q22b}, {Q21a, Q11f}, {Q22a, Q12f}, {Q11a, Q11b},

{Q12a, Q12b}, {Q11a, Q12b} take the same form as in Lemma B.1.7.
Let us consider the anti-commutator {Q21a, Q12b}. The left-hand side of (4.2) now

takes the form (cf. (B.58), (B.59))

{Q21a, Q12b} = xpεab − 2iψaψ̄b + 2i(2α + 1)ψbψ̄a. (B.72)

The right-hand side of (4.2) equals (cf. (B.60) which has different constant in the right-
hand side)

−2εabD + 2αJab − i(1 + α)εab[ψm, ψ̄
m] = xpεab + 2αJab − 2i(1 + α)εab(ψ2ψ̄1 − ψ1ψ̄2),
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which takes the form

xpεab + 2αi(ψaψ̄b + ψbψ̄a)− 2i(1 + α)εab(ψ2ψ̄1 − ψ1ψ̄2). (B.73)

By considering various values of a and b one can see that the expression (B.73) can be
rearranged (cf. (B.61)) as

xpεab − 2iψaψ̄b + 2i(2α + 1)ψbψ̄a,

which is equal to expression (B.72) as required. Using ∼ operation we obtain the remaining
relations. This concludes the proof.

Finally, we note that the statement of Lemma B.1.9 holds in this case as well, and the
corresponding proof keeps the same form.
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