
 
 
 
 
 
 
 
 

 

Elliott, Alexander J. (2020) Accurate approximations for nonlinear 

vibrations. PhD thesis. 

 

https://theses.gla.ac.uk/79016/  

 

 

 

Copyright and moral rights for this work are retained by the author  

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge  

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author  

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author  

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 

 
 
 
 

 
 
 
 
 
 
 

Enlighten: Theses  

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 
 

https://theses.gla.ac.uk/78984/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


Accurate approximations for nonlinear vibrations

Alexander J Elliott

Submitted in fulfilment of the requirements for the

Degree of Doctor of Philosophy

School of Engineering

College of Science and Engineering

University of Glasgow

August 2019



Page



Abstract

As global issues such as climate change and overpopulation continue to grow, the role of the

engineer is forced to adapt. The general population now places an emphasis not only on the

performance of a mechanical system, but also the efficiency with which this can be achieved.

In pushing these structures to their maximum efficiency, a number of design and engineering

challenges can arise. In particular, the occurrence of geometric nonlinearities can lead to

failures in the linear modelling techniques that have traditionally been used.

The aim of this thesis is to increase the understanding of a number of widely-used, non-

linear methods, so that they may eventually be used with the same ease and confidence as

traditional linear techniques.

A key theme throughout this work is the notion that nonlinear behaviour is typically

approximated in some way, rather than finding exact solutions. This is not to say that exact

solutions cannot be found, but rather that the process of doing so, or the solutions themselves,

can be prohibitively complicated. Across the techniques considered, there is a desire to

accurately predict the frequency-amplitude relationship, whether this be for the free or forced

response of the system.

Analytical techniques can be used to produce insight that may be inaccessible through

the use of numerical methods, though they require assumptions to be made about the struc-

ture. In this thesis, a number of these methods are compared in terms of their accuracy and

their usability, so that the influence of the aforementioned assumptions can be understood.

Frequency tuning is then used to bring the solutions from three prominent methods in line

with one another.

The Galerkin method is used to project a continuous beam model into a discrete set

of modal equations, as is the traditional method for treating such a system. Motivated by

microscale beam structures, an updated approach for incorporating nonlinear boundary con-

ditions is developed. This methodology is then applied to two example structures to demon-

strate the importance of this procedure in developing accurate solutions.

The discussion is expanded to consider non-intrusive reduced-order modelling techniques,

which are typically applied to systems developed with commercial finite element software.

By instead applying these methods to an analytical nonlinear system, it is possible to com-

pare the approximated results with exact analytical solutions. This allows a number of obser-

vations to be made regarding their application to real structures, noting a number of situations

in which the static cases applied or the software itself may influence the solution accuracy.
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Chapter 1

Introduction

The understanding and modelling of nonlinear vibrations continues to grow in importance as

mechanical structures are designed to perform outside the region in which the observed be-

haviour is effectively linear. While the assumption of linear behaviour has traditionally been

dependable, this tends not to be the case in next-generation technology that requires struc-

tures that are ultralight and flexible, or on a scale that is significantly larger or smaller than

previous systems. As a result of this traditional assumption, a useful framework for modal

analysis and testing has been developed and widely applied as a methodology to predict the

response of a system. At the time of writing, the complex behaviours and models for non-

linear structures have prevented an equivalent scheme from being satisfactorily developed.

That is, in the ideal scenario, it would be possible to be able to understand nonlinear systems

with the same speed and accuracy as traditional modal analysis provides for linear structures.

The complexity introduced by nonlinearity can be observed both in the system behaviour

and the equations of motion through which this is captured. Naturally, the two are inherently

linked. From a modelling perspective, many of the challenges arise from the fact that a

number of key properties exhibited by linear systems are not guaranteed for the nonlinear

case. Principal among these properties is the orthogonality of the linear modes; the practical

implication of this is that energy contained in one mode will remain in this mode, regardless

of the behaviour of other modes. A direct result of this characteristic is that the overall

system response can be found simply by the superposition of the modal responses. Thus, if

the practitioner is able to deduce which modes will contribute significantly to the oscillatory

response, it is possible to produce an accurate model using a very small modal basis.

1
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In contrast to this relatively simple case, a defining feature of nonlinear systems is the

possibility of energy being transferred from one mode to another; this is typically referred to

as modal interaction or internal resonance. Thus, the development of a low-order system of

equations is inhibited by the fact that the inclusion of one mode in the modal basis may lead

to the activation of other modes that have not been included. A number of reduced-order

modelling techniques have been considered for nonlinear structures, though the confidence

that can be placed in their results remains somewhat unclear. This thesis will aim to fur-

ther the fundamental understanding of these methodologies, representing an important step

towards a nonlinear equivalent to modal analysis.

As well as this focus on modal bases, it must be noted that models of just a single mode

may also exhibit nonlinear behaviour. In particular, it can no longer be assumed that the

natural frequency is independent of the response amplitude. The literature has provided a

wide range of examples in which this frequency is seen to change at higher amplitudes,

which can introduce a number of challenges for the aforementioned flexible systems that

continue to be pursued; further details of this will be provided in Chapter 2. As well as

providing further complexity to analytical models, this phenomenon introduces a number

of hysteretic behavioural traits that could cause serious damage to these structures, if they

are not accurately predicted. Examples of this hysteresis include amplitude jumping as the

frequency varies and also contributes to isolated components of the frequency response, as

will be outlined in the following chapter.

Given that models of such a small scale can exhibit nonlinear behaviour, the techniques

involved in their modelling remain an active area of interest. It is often possible to treat these

systems through the numerical continuation of a periodic orbit from the linear regime, though

this can be restrictive in cases that have isolated sections of the response. Furthermore, it has

been observed that the computational expense of such techniques can rapidly increase with

the number of degrees-of-freedom (DOFs), and, in continuous structures (with an infinite

number of DOFs), hyperdimensional torus bifurcations can occur, which are particularly

difficult to continue numerically. To overcome these challenges, a number of analytical

methods have been developed to create an approximation of the response in a more reason-

able timescale. Each technique utilises a number of assumptions in developing a model and,

as such, there can be notable variation in the accuracy of their results. Thus, the choice of the

most appropriate technique can be somewhat unclear for the user. To overcome this issue,

the work of this thesis will thoroughly compare the techniques both in terms of their accu-



1.1. RESEARCH AIMS 3

racy and their applicability, with the intention of providing the user with a clear choice as to

the most practical way of meeting their modelling requirements.

In general terms, the aim of this thesis is to contribute to the development and under-

standing of techniques for approximating nonlinear responses, so that they may eventually

be applied with the same degree of confidence as their linear counterparts. This includes the

comparison of these methods as they currently exist, as well as establishing ways in which

they can be developed to give a more accurate response. The more specific research aims are

explored in the following section.

The major novel contributions of this work can be summarised as follows:

• The performance of the multiple scales technique has been improved through the use

of the frequency detuning applied in the direct normal form method.

• An investigation of the correlation between modal coupling terms and the occurrence

of modal interactions has been undertaken, highlighting trends that could indicate such

behaviour.

• A methodology for the incorporation of nonlinear boundary conditions in the Galerkin

method has been developed, allowing their influence on modal properties to be ex-

plored.

• A fundamental investigation of the implicit condensation and enforced displacement

techniques has been undertaken to further the understanding of their respective merits

and shortcomings, as well as highlighting the influence of commercial software.

• An investigation into disparities between the implicit condensation (IC) and enforced

displacement (ED) techniques in the literature has explained the reasons for this phe-

nomenon, allowing suggestions to be made regarding how this could be overcome.

1.1 Research aims
The aims for this thesis can be summarised as follows:

1. To extend and align the usage of analytical techniques used to approximate nonlinear

system response.
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Given the scope of behaviour that could be predicted using these methods, particu-

larly in reduced-order models (ROMs), it is important that the practitioner of these

techniques is aware of their potential shortcomings, both in terms of accuracy and us-

ability. To this end, a thorough comparison of three of the most widely used of these

methods will be given, initially assessing the accuracy of each method. From this

assessment, attempts will be made to pinpoint the reasons for accuracy in these tech-

niques and apply these in the others, so that the user has the option of selecting any

technique and producing equally accurate results.

2. To further the understanding and application of the Galerkin method, particularly for

micro-/nanoscale electromechanical system (M/NEMS) devices.

As discussed above, the Galerkin method has a key role to play in the understanding

of M/NEMS devices. In this thesis, a new methodology for modelling nonlinear BCs

is introduced and the influence this has on the nonlinear behaviour of the structure is

assessed. The generality of this methodology will allow the modelling of complicated

BC relationships (such as those seen in an atomic force microscope (AFM)), so long

as the mathematical definition of this relationship can be approximated using a Taylor

expansion. Through this, the prediction of complex behaviour, such as modal inter-

action, will be possible; an initial assessment of this behaviour will be given in this

thesis.

3. To investigate the performance of non-intrusive ROM techniques and contribute to

their development.

Although widely used, techniques such as the IC and ED methods require significant

further testing if they are to be applied beyond the academic sphere. In this thesis,

they will first be investigated using the Galerkin method as a “full” model, so that

their coefficients can be directly compared to those in the full system of equations.

The correlation between this prediction and the behaviour of the ROM will then be

investigated. The results from this somewhat artificial implementation of the IC and

ED methods will then be compared with the results from the true application in an

attempt to resolve certain issues that may currently occur in their usage.
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1.2 Thesis outline
Chapter 2 - Literature review

A thorough review of the literature associated with nonlinear vibrations is provided, high-

lighting the areas in which the contributions of this work are necessary. This chapter will not

only review the studies that defined, developed, and applied the techniques studied through-

out the thesis, but will also provide wider context in terms of observed nonlinear behaviour

and methods that are not explicitly considered in this work.

Chapter 3 - Analytical approximation methods

The comparison and alignment of methods used to create analytical approximations of the

system response is a key motivation for this thesis. In Chapter 3, three widely-applied meth-

ods are introduced and derived; namely, these are the harmonic balance, multiple scales,

and direct normal form techniques. To aid the comparison, each of these methods will be

applied to both a single-degree-of-freedom Duffing equation and to a more general two-

degree-of-freedom, lumped-mass oscillator. Based on observations made in the literature,

the frequency detuning applied in the DNF method will be further applied in the MS tech-

nique, to show that it is possible for the two techniques to give identical results with a single,

relatively simple change. This discussion of frequency detuning is further investigated using

a general formulation.

Chapter 4 - The Galerkin method

The recent resurgence of the Galerkin method in the field of M/NEMS modelling has oc-

curred, in part, due to the relative structural simplicity of these devices. That being said,

the often significant slenderness of these structures and increased influence of atomic forces

require careful consideration, if this methodology is to be used accurately. Building on

classical boundary conditions for these structures, these models are initially adapted to be

asymmetrical, so that the prediction of modal interaction behaviour can be assessed. Follow-

ing this, a novel, nonlinear algebraic approach is proposed to develop models in which the

BCs themselves are nonlinear.

Chapter 5 - Non-intrusive reduced-order modelling

Chapter 5 introduces two non-intrusive reduced-order modelling techniques; namely, these

are the implicit condensation and enforced displacement methods. While the techniques are
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typically applied to models developed using specialist finite element software, to provide

further insight into the effect of the underlying assumptions on the final implementation,

they are applied to analytical models in this section. First, they are applied to lumped-mass

systems with cubic nonlinearities, before being used to predict the behaviour of a continuous

Galerkin model for an asymmetric beam configuration at cubic order. This discussion is then

expanded by considering both models up to quintic order, mirroring the more realistic case

in which the order of the approximation is not equal to that of the full model.

Chapter 6 - Understanding reduced-order modelling techniques

In Chapter 6, the nature of the results from the two methods applied in Chapter 5 is observed

to be qualitatively different from results in the literature for similar structures that are mod-

elled using finite element software. The primary focus of this chapter is to investigate these

differences and provide insight that may explain this. Particular attention is given to the

manner in which the static cases associated with each method are implemented in the finite

element software, and the effect that this has on the result.

Chapter 7 - Conclusions and future work

This final chapter presents the conclusions that are drawn from the work of this thesis, out-

lining their potential importance in terms of nonlinear vibrations generally and for the more

specific field of M/NEMS design. The possible ways in which this research could be ex-

panded and applied are also discussed.



Chapter 2

Literature Review

2.1 Overview
Throughout the engineering disciplines, the pursuit of efficiency remains an important

and active goal. As the world looks to engineers for solutions to the rapidly-growing issues

of climate change [3, 4] and population growth [5], this objective becomes increasingly

relevant and substantial. As such, the research and development of mechanical solutions has

recently seen a noticeable shift in focus; where once the aim was solely to push the limits of

performance, there is now a marked interest in the ability to do so in the most energy-efficient

manner. This has been recognised as a key motivation in the field of aeronautics [6, 7].

The engineering challenges associated with developing these highly-efficient structures

are numerous, as the systems are frequently pushed past the performance envelope that has

historically been experienced. Significant decreases in the mass of a mechanical component

can often be associated with dramatic increases in its flexibility, as has been demonstrated

and investigated in a recent collaborative project between researchers at NASA and MIT

investigating fuel-efficient aeroplane wings [8].

Recent developments such as these undoubtedly have the potential to make meaningful

and sustainable changes to countless problems around the globe, but they are frequently

observed to push the behaviour of the structures beyond the limits of traditional modelling

methods. In particular, the classical approach focuses on linear dynamic behaviour and

assumes that the nonlinear characteristics of the response are negligible. This strategy has

the potential to overlook potentially destructive behaviour such as hysteresis and frequency

shifting phenomena that can occur at high-amplitude vibrations of nonlinear systems (see, for

7
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instance, [9]). A real-world example to illustrate the destructive nature of these phenomena

can be observed in the former NASA Hyper-X programme [10], the failure of which has

largely been ascribed to shortcomings of linear modelling techniques [11]. This highlights

the need for accurate, usable methods for calculating the nonlinear dynamics of engineering

structures.

The potential for nonlinear behaviour continues to grow in a number of engineering appli-

cations, such as the development and study of wind turbine blade performance. An example

of this can be found in the study of Ataya and Ahmed [12], which investigated damage to

wind turbine blades on their trailing edge, studying eighty-one 100 kW-rated turbines and

eighteen with a rating of 300 kW. This survey motivated a comprehensive study into the

causes of such a failure [13], concluding that:

“It was shown, both experimentally and numerically, that a geometric non-

linear longitudinal trailing-edge wave can occur in blades, which are designed

to prevent local buckling. Such a wave can have serious consequences for the

integrity of the adhesive trailing-edge joint.”

Failures relating to the aforementioned joints have been observed in failures of the Siemens

B53 wind turbine blade observed at the Ocotillo and Eclipse wind farms [14].

As alluded to above, lightweight, flexible vehicles that require less fuel are actively

sought as a direct consequence of the issues discussed in [6, 7]. The blade vibration ob-

served in these vehicles is qualitatively very similar to the behaviour of the aforementioned

wind turbine blades. As such, the nonlinear behaviour of high-aspect ratio wings remains a

key area of research; a summary of findings in this area is presented in [15].

The aerospace industry provides a number of examples where nonlinear behaviour must

be carefully monitored to ensure that structural failure is not encountered. For example, the

occurrence of landing gear shimmy oscillations, as reviewed in [16], has been connected to

the failure of the Fokker MK-100 aircraft in November 1999 [17]. Further complexity can

be experienced in the consideration of the rotating components of aerospace systems, such

as rotor and blades of a helicopter, as invsetigated in [18].

Even without the addition of long blade components, rotating structures are often seen

to exhibit geometric nonlinearities. Manufacturing and drilling processes often experience
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nonlinear responses, particularly when considered in conjunction with friction effects. The

coupling of the axial and torsional vibration modes is identified as the root cause of the oc-

currence of self-excited oscillations in a drill bit, in [19], and chatter in machining processes,

in [20]. In both cases, the shutdown of the entire process would be required to stop this

unwanted vibration.

Recently, the development of micro- and nanoelectromechanical systems (M/NEMS) has

provided further motivation for investigating nonlinear behaviour. It is often the case that this

behaviour is more pronounced than in similar macroscale structures; for instance, in [21], a

MEMS device with behaviour defined by the nonlinear Mathieu equation is seen to exhibit

five parametric resonances, whereas only one has been observed in larger structures. As

has been reported in the review paper of Rhoads et al. [22], nonlinear behaviour has been

observed in a wide variety of micro- and nanoscale structures and there are a number of

factors that contribute to this.

As can be seen from this discussion, the behavioural traits associated with nonlinear

structures have the potential to cause a great amount of damage. The modelling requirements

to accurately capture and understand these phenomena continue to be of active interest to the

field of mechanical engineering research. One of the key goals is to develop techniques that

avoid giving analytical solutions that are prohibitively complex. It must be noted that strate-

gies for modelling nonlinearities have been developed both for purely analytical systems and

those developed in finite element software. In some cases, it is possible that the structure

could be modelled either numerically or analytically, though the most suitable method is not

always apparent. This thesis aims to contribute to the understanding of a number of these

techniques, allowing the user to make a more informed decision as to the most applicable

methodology for their structure.

2.2 Nonlinear vibrations in engineering structures
As has been observed in §2.1, the potential scope for structures exhibiting nonlinear charac-

teristics is extremely broad, both in terms of the variety and the scale of these mechanical

systems. These range from large, lightweight wind turbines [13, 23] to increasingly small

and intricate micro- and nanoscale devices [22]. Whether this behaviour is desired or not,

the accurate modelling of the associated phenomena presents a significant challenge to engi-

neers.
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In linear dynamic structures, there is an underlying assumption that each linear normal

mode has a natural frequency for its vibration, and that the value of this is invariant to the

behaviour of the system [24]. It can be further observed that these linear modes are orthogo-

nal to one another. Mathematically speaking, this means that it is not possible for one mode

to be written as a linear combination of the others, but the practical implication of this is

that the contribution of one mode to the response has no influence on that of the others. As

such, linear systems follow the principle of superposition, by which the full system response

can simply be found through the summation of the contributions of the linear modes. These

modelling techniques and assumptions undoubtedly provide a useful framework, which has

been used to great effect in the modelling of classical engineering structures. However,

the assumptions of uncoupled modes and of invariant natural frequencies do not hold for

nonlinear structures, so this approach must be developed or replaced to accommodate more

complicated behaviour.

Nonlinearity can be introduced to mechanical structures in a number of ways. The fo-

cus of this thesis will be on geometric nonlinearity, in which the geometry of the structure

changes in deformation, leading to changes in the structural properties and, hence, the system

response. These systems are typically characterised using polynomial expressions, though

the approach differs depending on the size of the deformation, as summarised in [9]. It

must be noted that, although not discussed in this thesis, it is possible for the material of

a structure, or any contact it may have with other bodies (such as impact or friction), may

also lead to nonlinear behaviour. However, in contrast with geometric nonlinearities, it may

not be possible to use a polynomial expression in terms of the displacement to model these

nonlinear effects, particularly in the case of contact nonlinearities. Further details of such

phenomena may be found, for example, in [25]. From this point forward, any references to

‘nonlinear’ behaviour will be taken to refer to geometric nonlinearity.

In nonlinear structures, the natural frequencies have been observed to shift as the re-

sponse amplitude changes [26]. Therefore, the resonance peak will appear at different fre-

quencies for different excitation levels. Although this difference may appear simple, it can

add a great deal of complexity to both the response itself and the mathematical tools re-

quired to capture it. For a linear model, the peak of the response will be exactly at the

linear natural frequency, regardless of the amplitude. Therefore, the locus defined by the

peak of the curve at different displacements is simply a straight, vertical line. In the nonlin-

ear case, the aforementioned shifting of the natural frequency at higher amplitudes creates
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a locus (or backbone curve) that can move away from the linear natural frequency at higher

displacement levels. This can lead to the phenomenon of multistability, in which a single

forcing frequency may induce a stable periodic orbit for more than one amplitude, leading

to systems that exhibit hysteretic behaviour [26]. An example of this has been observed in

the ‘jumping’ phenomenon in aircraft dynamics, as addressed in [27]. Furthermore, if the

modes are not uncoupled, it is possible for an internal resonance to occur between them, in

which energy may transfer from one to another, as remarked in [28].

These behavioural phenomena correspond to nonlinear terms in the equations of motion.

These terms typically result in analytical approximations that are extremely complicated

and, hence, require a great deal of further manipulation to allow the system to be understood.

As such, the typical approach is to approximate the response in some way, either using an

analytical method or by employing a numerical strategy. In either case, the solutions are no

longer exact, and their accuracy is dependent on the assumptions made in the creation of

the approximation. There are a number of methods that may be applied, and the user must

decide which assumptions will lead to an accurate approximation of the system behaviour.

The most suitable and applicable method, and the implications of its assumptions, are not

necessarily known a priori.

For the methods discussed in this thesis to become as reliable as their linear counterparts,

it is important to remove the uncertainty associated with their accuracy and usability. As

summarised in Chapter 1, a key aim of this thesis is to extend the understanding of a number

of nonlinear techniques. As such, the current chapter will address the historical and recent

developments in the field, as well as highlighting those areas in which further research may

be beneficial to the practitioner.

2.3 Numerical approaches

2.3.1 Response approximation techniques
The ability to accurately capture and predict the response of nonlinear structures is an impor-

tant challenge in theoretical and modelling studies. This has been illustrated by the example

structures in §2.1, the success of which can not be guaranteed without a sufficient under-

standing of the system dynamics.

The atypical physical characteristics observed in these structures translate to nonlinear

terms in the equations of motion. It is the inclusion of such terms that leads to overly com-
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plex analytical solutions that provide little insight without significant extra algebraic ma-

nipulation. This leaves the practitioner with two options to predict the behaviour of these

structures. On one hand, an analytical method could be used to approximate the behaviour,

as will be discussed in §2.4.1. Alternatively, the periodic response across a certain frequency

range can be created numerically by selecting an initial periodic orbit in the linear regime

and applying a continuation method. The latter of these options is discussed here.

Numerical continuation programmes, such as the AUTO-07p package1 [29, 30], Mat-

Cont [31, 32], and Continuation Core (COCO) [33, 34], have been widely applied to non-

linear structures. In particular, the work of [18] utilises numerical continuation to assess

the nonlinear dynamics of an autogyro beyond the parameter window that can be achieved

experimentally. A similar methodology was applied in [35], in which experimental results

were supplemented with numerical responses. The lack of detailed knowledge of the basins

of attraction led to some stable solutions being experimentally inaccessible.

Due to the multitude of experimentally-observed nonlinear behaviour in M/NEMS struc-

tures, as addressed above, the use of numerical continuation methods for such systems has

become increasingly common.

A series of studies by Caruntu et al. has utilised AUTO-07p to predict bifurcation be-

haviour in both MEMS cantilever beams [36–38] and circular plates [39, 40]. However, the

continuation had to be applied to a reduced-order model of the structures, since the pro-

cess can be extremely computationally expensive for larger systems. A similar microarch

structure, modelled as a pinned-pinned beam and reduced using the Galerkin method, is

investigated using the same software in [41], which observed both internal resonance and

softening-to-hardening behaviour in the structure. The work of [42] utilised the MatCont

package to analyse the lumped-mass model of a MEMS oscillator; in this case, the multiple

scales method was required to reduce the order of the system. The examples of this para-

graph highlight the fact that, while it is possible to apply numerical continuation techniques

to a variety of real-world structures, it is typically necessary to first approximate the system

dynamics using a small number of equations. This is a result of the rapid increase in com-

putational expense associated with the continuation of large systems of nonlinear equations

and provides motivation both for the pursuit of reduced-order modelling techniques and of

analytical approximation methods that do not have such a steep increase in computation time.

1AUTO-07p is the current version of this software, but the programme has been in development since the
1970s.
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The effectiveness of these general numerical continuation software packages in nonlinear

vibration applications has inspired the development of a number of methodologies that are

aimed specifically at predicting nonlinear behaviour in mechanical structures. The NNMcont

programme is one such example of these [43]; its methodology is described in [44]. The pro-

gramme employs a shooting strategy that allows the continuation of NNMs to be achieved.

Recently, this method has been used to investigate the NNMs of a gong [45], in which the

nonlinear model was shown to match well with experimental results, though only when a

large number of modes was included.

One potential drawback of the NNMcont programme is its dependence on extensive nu-

merical solutions that would introduce a large computational expense for complex structures,

a point which is addressed by Peeters et al. in [44]. To address this, in [46, 47], Kuether et

al. expanded the algorithm through the use of a predictor-corrector step, so that only a single

period was required to be calculated in the finite element software. The methodology begins

by using a single linear mode of the system to produce the required period and expands the

modal basis once the error becomes too great. The results generated using this technique

showed good agreement with those found using the original NNMcont method, but were

found in a matter of minutes, whereas the full model required over four days of calculation

to create.

It should be noted that the continuation concept has also been pursued outside of numeri-

cal and analytical systems, with an experimental strategy being applied in the development of

control-based continuation methods. The theoretical framework for this technique was ini-

tially outlined in [48], which provided a strategy for the continuation of periodic orbits and

bifurcations. The methodology was then successfully applied to a nonlinear energy harvester

in [49] and a cantilever beam with magnetic interaction at the tip in [50]. The application

and understanding of this technique continues to be expanded. In [51], the optimisation of

an impact oscillator was investigated through the introduction of a tuning scheme. The same

system was used to investigate the possibility of calculating the stability of each periodic os-

cillation in [52], with further analysis of both stability and bifurcation for a SDOF oscillator

given in [53]. This discrete system has also been used to calculate the backbone curve of a

physical structure in [54].
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2.3.2 Finite element models and reduced-order modelling
Across the field of engineering, it is common practice to use computer-aided design software

to develop finite element models for real structures. In such systems, the continuous model

is discretised into a set of nodes and elements with well-defined behaviour. The user is

typically given the choice of the most suitable elements to fully characterise the physical

structure. However, the most widely-used and robust finite element software packages tend

to be commercial, which means that the source code is not accessible; in this respect, these

packages must be considered as “black box” systems. While this is not a problem in and of

itself, it does mean that the user interested in the nonlinear behaviour of the system does not

have direct access either to the nonlinear parameters themselves or the process in which the

nonlinearity is treated.

Although these finite element software packages are capable of modelling extremely

complicated structures, the number of elements required to accurately capture the behaviour

can often lead to computations that are prohibitively time-consuming. As such, it is common

practice to approximate this behaviour using a reduced-order model (ROM). In the linear

regime, this is typically achieved by simply retaining the modes that oscillate within the

expected frequency range [24]. However, when nonlinearity arises in the structure, there is

the possibility that energy can transfer between the modes, leading to internal resonances

and vibrations at higher or lower frequencies than those actuated [55]. It is not always clear

as to which modes should be retained; this can be addressed in a number of ways. Often,

only the response of the first mode is of interest, so only one mode will be retained. For

higher-order ROMs, it is possible to select a representative modal basis based on previous

numerical or experimental data. Alternatively, a convergence approach can be taken, with

modes continually added to the basis until the difference from the full-model data is below

some tolerance. When the source code of the software is available, it is possible to create

an intrusive or direct ROM, named as such due to the fact that information regarding the

nonlinearity calculations is taken directly from the finite element source code.

For most commercial software, however, this information is inaccessible and a non-

intrusive or indirect ROM technique is required; a useful overview of such methods is given

in [56]. Broadly speaking, these methods use a series of representative, static cases to ap-

proximate the nonlinear behaviour as a polynomial in terms of the modal displacements.

Hence, they can be used in conjunction with any finite element software or nonlinear solver.

The overarching aim of these indirect methods is to find an analytical approximation for the
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force-amplitude relationship of the structure. It follows that there are two obvious ways in

which this can be achieved. Either a known set of displacements can be applied to the struc-

ture and the forces can be measured, known as the Enforced Displacement (ED) method, or

vice versa, known as the Implicit Condensation (IC) method. In both methods, the nonlinear

component of the ROM is typically approximated by a cubic-order polynomial.

The IC method was originally proposed in [57, 58] and applies a series of static modal

forcing cases. By ensuring that these static forces are of a great enough magnitude, it is

possible to induce the triggering of modes that have not been directly forced, as a result of the

nonlinear nature of the structure. The outputted modal displacements can then be assessed

and applied in a regression analysis to approximate the quadratic and cubic coefficients in the

ROM. The IC method is so called due to the fact that the membrane effects (i.e. deformation

in the plane of the beam) are implicitly condensed into the nonlinear coefficients; this is

possible as the forcing of the linear bending modes leads to both bending and membrane

displacements. More recently, the IC method has been expanded to include membrane modes

[59], which are those normal modes that primarily deform in the plane of the beam or plate;

this updated version is referred to as the implicit condensation and expansion (ICE) method.

Considerable investigation of this method is given in [60], in which it was shown that the

ROMs found can produce results that very closely agree with full-order simulations. A

common theme in the validation of ROMs is through the use of the full finite element model.

This tends to be done on a case-by-case basis, with the literature lacking more fundamental

investigations into the general cases in which the method can be accurately applied and the

range over which the solutions will be valid.

The ED method – introduced in [61] – imposes a series of static displacements comprised

of linear combinations of the modes contained in the ROM basis. Again, it is assumed that

displacements of sufficient magnitude will ensure that the resulting force will consist of more

than one modal contribution, though this displacement level is not necessarily known without

extra testing. These sets of displacements and forces can be considered using regression

analysis that is identical to that used in the IC method. Thus, it can be noted that a large

amount of the methodology of the two techniques is common to both, with the only real

difference arising in the creation of the sets of static cases.

These similarities have, naturally, led to extensive comparison between the two meth-

ods. As well as the aforementioned review paper [56], this comparison is expanded in [62],
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which uses NNMs as a method of evaluating the quality of the ROMs produced. This paper

highlights the influence of the static scale factors used. However, a characterisation of the

relationship between the static cases applied and the accuracy achieved was not given. The

paper considers the convergence of the ROMs, further details of which are given in [63, 64].

The use of a convergence test is often necessary to ensure the accuracy of the ROM, but this

can be a time-consuming process and the dependence upon it should be removed if these

methods are to become widely applied. In the related work of [46, 47], these results are

compared with NNMs found using the full model, with the IC method being shown to give

the more accurate curve. It should be noted that this seems to arise from a key difference

between the methods: when the bending modes are displaced, rather than forced, there is no

activation of the membrane effects. The impact of this is negligible for the systems in this

thesis and is not considered, but provides a potential difficulty for more complex structures.

Although the initial development of the IC method focused on nonlinear beams [57],

a driving force for related research has been the thermo-acoustic loading of aircraft. This

has been motivated by the development of hypersonic vehicles, as it is possible for sonic

fatigue to arise as a result of high temperatures and fluctuating pressures [65]. In contrast,

the ED method was created with this motivation in mind [61]. Historically, investigations of

thermo-acoustic loading have been considered in terms of linear theory [66]. However, this

single-mode approach taken does not allow for modal interaction behaviour to be captured,

so has largely been replaced by the use of the non-intrusive ROM techniques presented in

this section. A further evaluation of these methods can be found in [67], in which the non-

linear ROMs are compared in terms of their power spectral densities and coefficients for a

clamped-clamped beam. Both methods have been shown to provide useful results, with the

IC methods showing good agreement with experimental data in [59], and the ED method

showing agreement with full-order model results in [68]. Once more, the validation of mod-

els must be done on a case-by-case basis.

Hypersonic vehicles often experience very high temperatures and fluctuating pressures,

and must be designed with these conditions taken into consideration. The non-intrusive

methods discussed have also been applied in conjunction with thermal and acoustic models,

allowing the response of hypersonic vehicle panels to be more completely investigated. Ini-

tial research in this area focused on the integration of acoustic effects into ROMs, primarily

doing so by introducing random acoustic loading, as in [69]. Of particular interest in this

study was the selection of the modal basis, confirming the notion that additional membrane
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modes may need to be added in the ED method to capture the behaviour in large-deformation

systems; further investigation is provided in [70]. This work was expanded in [71], devel-

oping the methodology so that acoustic fatigue could be predicted. These ROM techniques

continue to be applied to structural fatigue problems, such as monitoring of cracked panels

in [72]. These studies emphasise the fact that modern engineering structures are not only

designed with nonlinear structural properties, but may also need to be considered as mul-

tiphysics problems. This adds further complexity to the problem, and requires a complete

understanding of the ranges in which they can be considered accurate.

In [73], the ED method is combined with thermal effects for a plate on elastic founda-

tions, demonstrating that the ROM is able to accurately recreate the full model behaviour at

a range of temperatures. However, there is greater deviation between the solutions when this

temperature is increased, an example of the reduction in accuracy that can arise in a mul-

tiphysics problem. The results mirrored those seen in [74, 75], though these also note that

there is also a slight decrease in accuracy at higher frequencies. Further validation of this

model has been provided in [76]. This work was expanded in [77], in which an oscillating

heat flux was introduced to model the thermal effects of an oscillating shock on a panel.

Another key motivating factor for researching these ROM techniques has been the mod-

elling of aircraft with high aspect ratio wings, such as the NASA Helios prototype, which

failed, in part, due to failures in the modelling of nonlinear behaviour [78]. A review of

research in this area can be found in [15]. In [79], the IC method is used to investigate the tip

response of such a wing, modelled through the use of a relatively simple beam model [80].

Once more, a simplification of a real structure is required as the full finite element model is

restrictively complex. A similar system was also considered in [81], which applied the IC

method to investigate modal coupling. The ED method has also been applied to complicated

slender wing models in [82], though this required the model to be reduced first.

In addition to the studies discussed thus far, these techniques have been applied to model

periodic vibrations with large displacements [83, 84] (as well as coupling these with ther-

moelastic effects [85]), and also to investigate acoustic excitation of cylindrical plates [86],

joints [87], and piezoelectric NEMS [88]. They have also been applied in conjunction with

characteristic constraint modes in modal substructuring applications [89–91]. These aca-

demic studies demonstrate industrial applications where these ROM techniques could be

applied. As has already been highlighted, this will require further testing to develop a more
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universal understanding of their accuracy and limitations.
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2.4 Analytical approaches

2.4.1 Response approximation techniques
As has been discussed in §2.3.1, numerical techniques are extremely competent in continuing

the periodic response of nonlinear systems of equations. In spite of this, there a number of

cases in which this ability is not sufficient or able to fully comprehend and predict the full

scope of nonlinear behavioural characteristics. These numerical continuation techniques are

extremely well-suited for predicting the response of small systems of equations, but there

can be a marked increased in the computational expense when larger systems of equations

are required [63]. As such, those users hoping to use this numerical methodology for real-

world structures may have to either invest in a great deal of computational power or apply

some type of model reduction prior to investigating its response.

Furthermore, since these numerical techniques are typically arclength continuation meth-

ods, they require an initial periodic orbit and then incrementally adapt certain parameters to

develop the locus of the frequency response. Therefore, an issue arises in the prediction and

modelling of isolated periodic solution branches that are not attached to the main response

curve, such as those observed experimentally in [92]. The prediction of such responses is

difficult to detect using only numerical techniques, as they tend to require knowledge of the

system dynamics that is not known a priori. However, their prediction can be aided by the

use of techniques that produce analytical approximations of the response curves. For in-

stance, the work of [93] develops a detection technique based on the direct normal forms

(DNF) method, an analytical technique that will be applied in this thesis. In fact, this method

is one of a number of such analytical techniques. Here, the most widely applied of these

methods are introduced and discussed.

In this work, the focus will be on those systems that are weakly nonlinear, which still

leaves an expansive list of possible approximation methods; an introduction and overview

of these can be found in [94]. In the majority of these techniques, a trial solution is applied

to the system, which allows the equations of motion to be expressed analytically in terms of

both frequency and amplitude. Across these techniques, there is a desire to obtain accurate

predictions with the smallest possible amount of calculation. As addressed in [1], this aim

typically leads to an application of these methods with only one or two iterations of the steps.

Beyond this, not only is the refinement of the solution often negligible, but the analytical

expressions can become overly complicated and may require the use of symbolic software
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or numerical methods to be solved. This would defeat the purpose of using the analytical

methods.

Perhaps the most widely applied of these is the harmonic balance (HB) method, which

obtains information about the system response by recognising that the coefficients of time-

dependent terms in the equations of motion that respond at the same frequency must be

balanced to obtain a valid solution. An introduction to its use can be found, for example,

in [95–97]. This strategy has proved effective, with the HB method being used to aid the

solution of nonlinear normal modes [98], identify system parameters for nonlinear structures

[99–104], accurately predict the behaviour of very stiff systems [105], model energy har-

vesting devices [106], and identify bifurcations in large systems [107]. This final reference

highlights a number of key issues regarding the application of the HB method. The study

investigates the dynamics of the highly complicated SmallSat spacecraft structure, which re-

quired a reduction to a 37DOF model and the understanding of a large number of harmonics.

In cases such as these, the HB method requires any harmonics of interest to be included in

the trial solution; in [107], five harmonics for each DOF were necessary to achieve an error

of less than 1%. This complexity required the HB solutions to be calculated numerically. In

most cases, the necessary number of harmonics is not known, so they are either required to

assume that the higher-order response is negligible or use a complicated trial solution. This

introduces an uncertainty to the methodology that is not present in the methods discussed

below.

The method of averaging takes a similar approach to that of the HB method, though

it averages first-order differential equations over a cycle of oscillation to remove higher-

frequency vibrations [9, 108, 109]. As such, the method is limited to those cases in which

the higher-order harmonics are negligible; this information may not be known to the user.

For instance, in [110], the method compares favourably to experimental results for a base-

excited cantilever beam, which is a simple model with relatively low contributions from the

harmonics. Although the approach is, in many ways, similar to that of the HB method, it is

possible to introduce time-dependent displacement and phase terms, which would allow the

user to consider transient behaviour.

The multiple scales (MS) method applies perturbations to the time scale, displacements,

and, in some cases, the response frequency. This perturbation is achieved by introducing a

bookkeeping parameter, which is used to track the relative size of each term; further discus-
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sions on the development of this methodology can be found in [9, 25, 94, 111–113]. Despite

some added complexity added by this parameter, the ability to monitor the contribution of

each term and omit those that are negligible can be extremely useful. The user is also able

to capture higher-order dynamics than those present in the trial solution. This capability

has been applied in the investigation of internal resonances in [114–116]. In each of stud-

ies, a single-mode trial solution is used to capture the behaviour of a number of harmonics;

as has already been identified, these would implicitly be considered negligible in the HB

method. Similar remarks can be made regarding the work in [117–119]. More recently, the

MS approach has been used to investigate bifurcations in a system exhibiting a 1:3 internal

resonance in [120], drawing similar conclusions. Despite its wide application, the accuracy

of MS solutions has been brought into question by studies such as [121], which observed

that the solutions obtained for the Duffing oscillator were less accurate than those from the

HB and normal form techniques.

As can be seen, the MS method has been widely applied, and its similarities with the more

classical Lindstedt-Poincaré technique has led to a comparison of the methods in [122]. This

comparison considers two distinct versions of the MS method, reflecting the variable nature

in which this method can be applied. For instance, it is possible to apply the method using

either the derivative expansion [94, 111, 112] or two-timing [9, 26] version of the method,

with the differences arising in which variables are perturbed and to what extent.

Another important family of techniques, which has been widely used for investigating

periodic solutions in nonlinear structures, is that of normal form methods. An overview

of these can be found in [123]. These techniques have typically been applied to the first-

order differential equations, as discussed in [124] and with further examples in [125–128],

but have more recently been applied directly to the second-order equations of motion. For

instance, in [129], such a method was used to accurately capture the nonlinear normal modes

of both discrete and continuous systems, though it could be argued that the complexity of

the analytical coefficients is somewhat limiting. This was overcome by the matrix-based

methodology proposed in [130], referred to henceforth as the direct normal form (DNF)

method. This technique applies a series of coordinate transformations so that only those

resonant terms with a non-negligible contribution to the total system dynamics are retained.

Despite being developed more recently than the other techniques discussed, there have still

been a number of applications of the DNF method. As well as modelling nonlinear behaviour

in complex analytical systems, such as taut cables [131], and identifying such behaviour in
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real structures [55, 132], the technique has also been extensively applied in the investigation

of modal interactions [124, 133–135]. Although the notation used to derive and explain the

DNF technique can often be expansive, the application of the method itself requires a similar

amount of algebraic manipulation as the MS method.

It can be noted that there is a large overlap in the areas of application for this method

and the HB/MS methods, which has led to comparisons being made between their accuracy

and applicability [1, 121]. This is an important theme in the development of this thesis.

The work undertaken aims to offer the user an informed decision into the most suitable

method for their application, as this is not always apparent from the literature. Of particular

interest to this comparison are the results of [136], in which it is noted that it is the detuning

of the DNF method which leads to more accurate results than the first-order normal form

method. Similar discussions regarding frequency detuning in the MS method have been

initiated [137, 138]. These applications used an arbitrary frequency tuning and lacked the

physical motivation observed in [136].

2.4.2 Finite element models
As discussed in §2.3.2, finite element models are ubiquitous in understanding the structural

dynamics of physical structures. While the section above discussed this modelling technique

in terms of software-based methods, it must be noted that finite element models were origi-

nally derived analytically. A thorough guide to the technical implementation of these is given

in [139]. As this reference shows, there are a number of different implementations of the fi-

nite element method. The primary focus of this thesis is the study of beam-like structures,

which can be accurately modelled using the Galerkin method [2, 140]. As such, this will be

the only finite element methodology investigated in this section.

Accurate beam models are of great importance to this thesis, due to their historic use in

modelling macroscale structures and their more recent prominence in M/NEMS devices. As

such, it is necessary to understand the development of various beam theories and the appli-

cability of each. Note that these are continuous models for beams, which will then be dis-

cretised using the Galerkin method. There are two leading linear methodologies employed,

each with its own set of assumptions and associated advantages and disadvantages; namely,

these are the theories of Euler-Bernoulli, as applied in [2], and Timoshenko, as defined in

[140]. The principal difference between the two methodologies is that the Euler-Bernoulli

theory assumes that the cross section of the beam remains perpendicular to the neutral axis,
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whereas Timoshenko theory allows a shear deformation, so that these are no longer perpen-

dicular. As a result of their prevalence, the two methods are regularly compared, for instance

in [141], concluding that there are a number of cases in which the difference in accuracy

resulting from their assumptions is negligible. An example of this can be observed in the

modelling of rotating wind turbine and helicopter blades in [142]. However, the inclusion

of shear deformations and the associated rotation allows a more accurate solution at high

deflections. Note that a number of nonlinear beam methodologies have been developed (see

[143], for a comparison of these), but these are beyond the scope of this thesis, which will

focus on weakly nonlinear structures.

As with the software-based finite element methods above, the analytical structures must

be discretised and appropriately treated. Across the literature, this is commonly achieved

through the use of the Ritz-Galerkin method, henceforth referred to simply as the Galerkin

method [2, 140]. The underlying assumption of this technique is that a continuous function

in terms of two variables can be discretised as an infinite series of products of projection

functions, each of which is then defined in terms of only one variable. For beams, the

transverse displacement, w, is typically expressed as a function of the position along the

beam, x, and time, t. Applying the Galerkin approximation, this displacement is expressed

as

w(x, t) =
∞∑
k=1

φk(x)qk(t),

where the φk and qk terms are functions defining the shape and magnitude of the deflec-

tion, respectively. By truncating this expansion2 and utilising the orthogonality of the linear

mode shapes, it becomes possible to express the equations of motion as a finite system of

second-order differential equations. This approach was used to model coupled-bending tor-

sion vibrations of an asymmetric aerofoil in [144].

The Galerkin approximation is particularly useful for modelling simple continuous sys-

tems, such as beams, plates, shells, and pipes. Extensive consideration has been given to

developing Galerkin models for these structures with a number of classical BCs, an ex-

pression that typically refers to clamped, pinned, free, and sliding beam tips. Derivations
2As an interesting aside, the HB technique discussed above is actually a specific application of the Galerkin

method. By writing

y(t) =

N∑
k=1

Ake+jkωnt + Āke−jkωnt,

the displacement x is expressed in terms of Fourier coefficients, Ak, and time varying components, e±jkωnt.
These are truncated in the same way as the expansion of the displacement.
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and discussions of these cases can be readily found, for example, in [2, 140, 145]. These

BCs have been widely used in the literature. For instance, circular plates have been con-

sidered with free BCs in [146] and with clamped conditions in [39]. This variation can be

seen to noticeably alter the mode shapes and natural frequencies of the plate. Further, the

Galerkin method has been developed to include fluid-structure interactions, largely building

upon these classical BCs [147–152]. While this provides a relatively uncomplicated model,

this technique does not take into account the influence that the pressure induced by the fluid

would have on the accuracy of these BCs.

In spite of this, there are a number of cases in which it is inaccurate to use these classical

BCs, as doing so does not truly reflect the resonant behaviour of the system. The develop-

ment of this approach has been somewhat incremental and has primarily been achieved by

adapting or adding to the traditional cases. For instance, in [153], a cantilever bar model

is expanded with a horizontal spring at its tip, leading to more pronounced hysteretic be-

haviour. In [154], a cantilever beam is considered with a rotational spring at some point

along its length, and this concept is expanded, in [155], through the addition of a linear

compressive spring. These papers derive the mode shapes and frequencies for these con-

figurations, though an investigation into the influence this has on the system dynamics was

prohibited by the lack of sufficient computing power at the time they were written. Sim-

ilar statements can be made regarding the system considered in [156, 157], in which both

beam tips are supported by two springs, one rotational and the other translational. In [158], a

compressive axial load is added to a number of classical beam configurations, revealing that

the relative critical buckling load is consistent across a large number of these combinations,

despite the differences in their resonant behaviour. Furthermore, systems such as these have

been shown to exhibit interactions between the modes [159].

While undoubtedly more complex, the non-classical BCs discussed thus far have a rel-

ative simplicity due to the fact that any additional components have been defined linearly.

Of course, this is not guaranteed to be the case and the inclusion of nonlinear terms leads to

solvability conditions that are markedly more complicated. This has been addressed in the

work of [160], which considers the normal modes of a number of beams with non-classical,

nonlinear BCs. However, the inclusion of a nonlinear term requires the updating of the stan-

dard procedure for finding the mode shapes, instead applying Hamilton’s principle to find

an approximate solution for the mode shapes. This use of an approximation adds some un-

certainty to the model, which could be avoided if the exact mathematical definitions of the
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BCs were used. An important aspect of this work is the conclusion that these nonlinear BCs

influence the mode shapes and natural frequencies of the system. This concept could be

developed further, as will be shown in this thesis.

The methodology of [160] has been expanded to allow the considerations of thin plates

[161, 162], thick plates [163], and complex shell structures [164], as well as to consider the

implications of non-local effects in the free vibrations of M/NEMS in [165]. These com-

plex expansions increase the uncertainty related to the use of an approximation for the mode

shape. In each of these cases, as opposed to assuming that the solution to the fourth-order

equations of motion will comprise some combination of cos, sin, cosh, and sinh functions, it

is proposed that this could be approximated through a truncated Fourier series. The valida-

tion of this proposition would need to be done either numerically or experimentally, which

increases the workload of the user.

Alternatively, it has been demonstrated that, should the cubic term be assumed to be

small, then the analytical approximation methods of the previous section can be used to

calculate the system behaviour. For example the MS method has been used to predict the

behaviour of a beam supported by a nonlinear cubic spring in [166] and a spring with a

magnetic interaction at the tip in [167]. In fact, the application of Hamilton’s principle in

[160] is originally presented as an implementation of the HB method. As has already been

discussed, these methods are themselves approximations based on a series of assumptions,

so it is possible that excessive testing would be required to validate the model.

Numerical solutions for a beam with one nonlinear BC are provided in [168], which

applies an iterative method that converges to a numerically correct mode shapes. This ap-

proach is also applied in [169], which assumes that both BCs can be nonlinear. This iterative

method initially considers the problem from a purely mathematical standpoint, similar to that

in [170]. However, the latter study focuses on the existence of solutions, defining criteria to

ensure that it is possible to obtain a number of mode shapes. This work is expanded in [171]

to demonstrate that infinitely many solutions exist, as is expected from the more traditional

engineering approach. These mathematical studies offer comfort to the engineering user of

these techniques, but do not offer any great insight for their successful application.
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2.5 Nonlinear behaviour in micro- and nanoscale systems
A key aim for this thesis is the development and investigation of nonlinear modelling tech-

niques that can be applied to M/NEMS. The motivation for this is briefly addressed in §2.1,

but is more thoroughly outlined in this section. This discussion includes both occurrence of

nonlinear behaviour in physical structures, as well as the advances that have been made in

modelling these.

2.5.1 Observed nonlinear phenomena
Similarly to the thin, lightweight systems discussed in §2.1, M/NEMS are inherently slender

and typically have very low masses. As such, they exhibit a high degree of flexibility and

this can lead to nonlinear behaviour. When these slender structures are created at the micro-

or nanoscale, this nonlinearity can be further exacerbated by the relative strength of atomic

forces, such as the Casimir force modelled in [172], which can lead to higher deflections than

may be seen in similar macroscale structures. This paper assumes the linear mode shapes

of the structure as basis functions, though it is possible that the boundary reaction may re-

duce the accuracy of this methodology. As well as this increased propensity for nonlinear

behaviour, it has also been observed – for instance, in [173] – that M/NEMS can have a par-

ticularly high quality factor (or Q factor). Given that the damping of a structure is inversely

proportional to this factor, this suggests that it is possible to gain a great deal understanding

of its dynamics simply by computing the free response. This is true to a greater extent than

at the macroscale.

The use of M/NEMS is increasingly widespread. Perhaps primary among the application

of these devices is their use in sensing and measurements, with their negligible influence on

the host structure driving the miniaturisation of measurement devices across the field of en-

gineering. Progress in this area has been reviewed in [174]. In addition, by reducing the size

of a sensor, it is possible to make accurate measurements of a much smaller scale. To be able

to achieve this accuracy, the behaviour and properties of the sensor must be fully understood.

This is made more challenging by the fact that some forces, which are typically ignored at

the macroscale, can no longer be assumed to be negligible. These forces can strongly con-

tribute to nonlinear behaviour. When the influence of electrostatic interactions and thermal

expansion forces must be considered, it is necessary to use a multiphysics approach. As has

been discussed in §2.4.2, this approach can greatly increase the complexity of the problem,

so the reliability of using linear mode shapes must be thoroughly assessed.
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One noteworthy example of such behaviour can be found in the use of dynamic atomic

force microscopes (AFMs). This is particularly true when the method is applied to measure

the surface forces along the liquid-solid interface, as has been summarised in [175]. Initial

observations of this nonlinearity have been made in [176], which observed a hardening be-

haviour of the system as the distance between the sample and the cantilever became very

small. This force is observed at the boundary, so it is possible that it not only hardens the

structure, but also changes the mode shapes themselves. In addition to this, [177] observed

the amplification of higher harmonics due to interaction between the first and second modes.

More recently, in [178], a wide variety of nonlinear behaviour in dynamic AFM has been

reported, including hardening behaviour in the forced response and the separation of the

resonance peak into two distinct peaks. Both of these phenomena occur due to interaction

forces between the tip and the sample, which is not typically considered at the macroscale.

As such, it is important that the traditional modelling methods for these sensors are updated

to accommodate such behaviour.

Due to the intrinsically small dimensions of M/NEMS, they typically have natural fre-

quencies that are several orders of magnitude above those seen in macroscale engineering

structures. This has been utilised in the development of M/NEMS resonators (alternatively

referred to as oscillators) that use the stable nature of these resonant vibrations as a method

for precisely measuring time. This has been recently reviewed in [179]. The stable nature

of these vibrations has seen M/NEMS resonators used in mass detection [180], strain gauges

[181], optical scanning [182], and neurocomputers [183], along with a number of applica-

tions in biological and motion sensing. Thus, it can be seen that there is a broad scope of

measurements that can be made with M/NEMS devices. For these to be reliably applied

in academic and industrial settings, it is necessary for their behaviour to be fully compre-

hended. This provides a strong motivation for the development and refinement of modelling

techniques to predict their system dynamics.

An example of this continuing research is presented in [184], in which it was observed

that polysilicon resonators exhibit unwanted stiffening behaviour about the resonance fre-

quency if the superposition of the d.c. polarization voltage and a.c. drive voltage are in-

correctly configured or the quality factor was too high. This study assessed these structures

experimentally, but also modelled the behaviour using a Galerkin model. The behaviour was

investigated further in [181], in which a hysteresis criterion has been developed to aid the

design of resonant microbridges without hysteretic characteristics. Building on these initial
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studies, the frequency shift that occurs as a result of a hardening nonlinearity has been ex-

ploited, in [180], to monitor the loading of a resonator. The repeated investigation of these

polysilicon resonators has not only continued to reveal nonlinear behaviour that must be

accurately captured, but has also led to novel applications of M/NEMS structures.

The hysteretic properties of M/NEMS resonators continue to be of interest to researchers,

though the focus has shifted away from avoiding the behaviour entirely, with more recent re-

search attempting to understand it more thoroughly, so that these attributes can be embraced.

In [182], a cantilever-type test device was investigated for use in optical scanner applications;

in such structures, higher deflections allow a greater optical scanning window by increasing

the maximum achievable angle of incidence for the laser spot. Given the magnitude of the

deflections, a cubic stiffening effect was observed and this was accurately captured by finite

element simulations. However, the large size of the model restricted the ability to predict the

frequency response. Similar large deflections were explored for a clamped-clamped beam

configuration in [185]. This paper further considered the importance of incorporating the

influence of the Casimir force (as discussed above) and surface energy of the structure into

the model, concluding that these nonlinear effects must be included in the model to accu-

rately capture the fundamental frequencies of the system and its nonlinear behaviour. This

provides further evidence that the boundary effects can have a large influence on the vi-

bration frequency and shape of a model, a phenomenon that may require inclusion in the

eigenanalysis used in the modal analysis.

Another key application of this hysteretic behaviour is in the measurement and process-

ing of time and frequency variables themselves. To this end, in [183], hysteresis has been

used in the experimental synchronisation of two coupled beams, as the stiffening effect is

associated with a widening of the Arnold tongues that characterise the synchronised state.

This is an important result in the development of neurocomputers, which would be expected

to characterise a number of physical properties. Hardening behaviour was again observed in

[186], in which experimental results observing noise squeezing were obtained, which could

be used for noise reduction and signal amplification at high frequencies. The reduction of

noise has also been achieved in [187], where the level of noise in a nonlinear resonator was

seen to be significantly lower than in an equivalent linear system. Along with a large reduc-

tion in noise, the nonlinearity of M/NEMS has also been used to stabilise the frequencies

themselves, as has been demonstrated in [188]. In this study, the coupling of the first two

modes is used to stabilise the first natural frequency; this is only achievable as a result of
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the hardening nonlinearity observed in the first mode. A more general investigation into

the noise reduction and frequency stabilisation of the resonator from [187] is presented in

[189], in which the experimental results not only demonstrate significant noise reduction, but

also provide extensive tunability of the frequency. The examples presented in the paragraph

highlight the precision that can be achieved using M/NEMS and, hence, the importance that

should be placed on the understanding of their nonlinear vibrations.

The tuning of M/NEMS oscillators remains an active area of research, as this ability

would allow the aforementioned nonlinear effects to be either avoided or exploited, depend-

ing on the application. In [190], two parametrically-excited MEMS oscillators are considered

and tuned to have both hardening and softening behaviour, which greatly expands the num-

ber of applications of this technology. Note that parametric excitation is an area of research

that continues to be developed for a number of nonlinear structures [191, 192]. This ability

to tune oscillators has been used to adapt design parameters in [193], so that the linear be-

haviour can be maintained in a case where doing so increases the resolution of the sensor.

These studies primarily utilise SDOF models in the tuning process, and it is possible that

these could be enhanced through the consideration of interactions between the modes.

Along with these studies into particular applications of hysteresis, a number of works

have considered M/NEMS more generally. Both hardening and softening behaviour were

observed in [194]; this work provided initial insight into the observation and modelling of

such trends. A similar study was undertaken in [35], in which a combined experimental and

numerical approach is taken to investigate properties such as hysteresis and internal reso-

nance in electroelastic crystals. Although these structures have been studied less than the

more traditional microbeams of [194] (and the discussion above), this work presents users

with the ability to model a system with both geometric and material nonlinearities, and that

can be used in a number of optical applications. The complexity added by material nonlinear-

ities may require further refinement of the theoretical models, similarly to the consideration

of the multiphysics models discussed in this chapter.

2.5.2 Modelling techniques for M/NEMS devices
The Galerkin method has been widely applied in the modelling of M/NEMS devices, in part

due to the relative simplicity of the structures themselves. In these cases, it is possible to

obtain a strong understanding of the system behaviour analytically, the benefits of which are

addressed in §2.4. An introduction to the application of the Galerkin method in M/NEMS
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cases can be found in [174]. For example, the technique plays an explicit role in the devel-

opment of micro resonant force gauges, as reviewed in [195]. While a number of studies

have used a Duffing equation to characterise the nonlinear behaviour of M/NEMS devices

[196–199], such a model would only ever be able to characterise the hysteretic behaviour of

the device and would not be able to capture internal resonances between the modes.

The study of [200] notes that internal resonances could potentially damage the structure.

A Galerkin approach capable of modelling this phenomenon is applied in conjunction with

the MS method, and the clamped-clamped model is shown to exhibit a 1:3 internal resonance.

This could see energy being transferred to a destructive mode, if the behaviour is not captured

in the modelling process. A similar technique was applied to a microcantilever beam in

[201, 202], though it was only the hysteretic behaviour recorded, as the method of averaging

was applied. The modelling of this behaviour was also the primary focus of the studies in

[203, 204], which utilised the MS method to generate frequency responses.

The use of the Galerkin method to create ROMs for M/NEMS structures has been further

pursued in [205]. This study considered an electrically-actuated MEMS to investigate the

influence of the modal basis size. A similar approach was again applied to an electrically-

actuated microbeam in [206], which investigated the influence of both mechanical shock and

voltage on the stability of the response. More recent investigations of this manner include

the work of Ruzziconi et al., which introduce imperfections to a microbeam in [207] and

validate these results experimentally in [208]. This renewed interest in beam-type structures

is a motivating factor in the decision to primarily pursue this type of system in this thesis,

as it can be seen that they must continually be refined and adapted to meet new engineering

requirements.

As discussed in §2.5.1, the large forces encountered by the tip of AFMs and similar beam

models can easily lead to nonlinear behaviour. The analytical modelling of this behaviour is

outlined in [209] and is investigated both analytically and experimentally using a cantilever

beam model with a tip mass in [210]. The alteration of the BC with a tip mass is an approach

that could be taken for other non-classical boundary interactions. The Galerkin model ap-

plied in the latter study was shown to give good agreement with experimental results. A

review of research in this area is provided in [211].
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2.6 Research motivations

2.6.1 Analytical methods for response approximation
This chapter has included detailed discussions regarding the relative merits of the HB, MS,

and DNF techniques for producing analytical approximations for the free and forced re-

sponse of nonlinear structures. Despite the focus on these techniques, it has also been noted

that there are a number of further techniques that can also provide similar results. While there

have been a number of comparison studies [1, 121, 136–138], it must still be concluded that

it is still not obvious to the user as to which technique they should use. This arises from the

fact that the HB, MS, and DNF method – among others – have been widely applied in the

literature, though there is rarely justification for using one method over others. The general

user could potentially conclude that any method could be used without the decision influenc-

ing the accuracy of their results. However, they may not be aware of, for instance, the fact

that the HB method implicitly disregards harmonics outside of the trial solution. Such as-

sumptions also exist in other methods, with the accuracy of the MS method dependent on the

frequency detuning applied and the DNF method requiring extensive matrix manipulation.

In reality, it is unlikely that there is one technique that should be considered and it is

more plausible that the differences in assumptions and methodologies may be better suited

to different cases. A key motivation of this thesis is to begin to answer this question, in an

attempt to present the practitioner with an informed choice, depending on whether they want

to prioritise accuracy, speed, or any number of other characteristics.

With regard to accuracy, the work presented here aims to expand the results of [136],

which noted that the frequency tuning present in the second-order version of the normal form

method has previously lead to results that are more accurate than the first-order technique.

Given that the use of frequency tuning is not uncommon in the MS method, this thesis will

investigate the introduction of the DNF detuning to the method. As has been discussed, the

MS technique has been observed to be less accurate than the HB and DNF methods at higher

amplitudes and the use of the DNF detuning will be considered as a method for increasing

accuracy.

2.6.2 The Galerkin method
The Galerkin method has been applied across a number of structures, but its recent appli-

cation to M/NEMS beam-type devices motivates a thorough investigation into this type of
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structure. Furthermore, a number of studies have shown that alterations to the system bound-

ary can alter the nonlinear behaviour of a structure, whether this be through the introduction

of a tip mass [210] or an electrostatic interaction [185]. The observations made have typi-

cally been regarding the possible changes to the frequency. Given the inherent link between

natural frequency and mode shape, this thesis aims to address the possibility that these novel

interactions at the boundary may also change the shape in which the system responds. In

M/NEMS settings, the force at the tip of a beam can be dependent on the distance from some

exterior structure. This would lead to a BC that is dependent on the deflection.

As has been observed in a number of studies [155, 160], interactions such as these can be

incorporated to give a more accurate mode shape. However, to the knowledge of the author,

any nonlinear dependence on deflection has only been treated via an approximation, such as

the use of a Fourier series. This thesis will investigate the expansion of this concept through

the use of nonlinear algebra techniques, with the aim of creating more accurate analytical

models for M/NEMS devices. This will allow a greater understanding of the causes and

characteristics of nonlinear behaviour in the rapidly-expanding field of microscale measure-

ment devices.

2.6.3 Non-intrusive reduced-order modelling techniques
Chapter 2 has detailed a wide variety of complex structures in which nonlinear behaviour

has been exhibited. These systems are typically designed and tested through the use of

computational finite element analysis, which can often in result in very large models and

computationally expensive simulations. Attempts to reduce the order of these models in

a way that maintains the nonlinear properties is often inhibited by the fact that commercial

finite element software does not allow the user access to the methodologies used to treat such

phenomena. This chapter has outlined the non-intrusive methods that can be used to create

such ROMs, focussing on the IC and ED techniques. These methods have shown a great deal

of promise in recreating nonlinear behaviour, but require a more fundamental understanding,

if they are to be applied in an industrial setting.

Among the issues that need addressing are the dependence of the solution on the mag-

nitude of the static cases, and the number of modes required in the basis to ensure that the

behaviour is accurately captured. Some initial investigations have been made in this area

[62], but this thesis aims to take a more fundamental approach using analytical nonlinear

systems to eliminate the uncertainty associated with commercial finite element software. By
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understanding the assumptions made in the application of these methods, the user will be

given more confidence in the ROM. This will remove the necessity of extensive comparisons

with cumbersome full-order models.

Finally, it has been frequently noted that the ED method produces a less accurate response

curve, should the two methods be applied to the same order. Given the similarities between

the two methods, this observation appears unusual. This thesis will investigate the reasons

behind this through close examination of the static cases from both methods and will then

address possible ways in which this disparity could be overcome.
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Chapter 3

Analytical approximation methods

In this chapter:

• The harmonic balance, multiple scales, and direct normal form methods are derived

for a general forced, damped, nonlinear system.

• These methods are applied to a single-degree-of-freedom system, namely the Duffing

oscillator, to assess the practicalities of their application, as well as considering their

accuracy.

• The intricacies and difficulties of comparing perturbative solutions with differences in

their analytical form are discussed.

• The detuning of the direct normal form method is applied to the multiple scales method,

to bring their respective frequency responses in line with one another.

• A variable detuning is applied to investigate the impact of specifically selecting the

detuning from the direct normal form.

3.1 Introduction
While it is possible to use numerical techniques to provide solutions to nonlinear problems

that can be considered exact up to numerical tolerances, often, this does not provide the

user with sufficient information to fully understand the behaviour of a nonlinear dynamical

system. To address this issue, it is common practice to apply an analytical approximation

method, which can be used to develop a more thorough appreciation of the influence that

35
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the system parameters have on the system response. In particular, the use of numerical

continuation can produce both the stable and unstable branches of the frequency response,

but requires an initial periodic solution to do so; these techniques typically apply a predictor-

corrector methodology to an initial linear periodic orbit, as outlined in [212, 213]. As such,

it can be extremely difficult to predict phenomena such as isolated branches of the response

(referred to as isolas) [93]. These analytical methods typically require the use of an assumed

trial solution, which can then be applied in the governing equations to determine how the

approximate solution relates to the characteristics of the structure. A key attribute of such

methods is that they include the repetition of a number of steps, which can be iteratively

applied to develop an increasingly accurate solution. Assuming a stable numerical scheme, it

is widely accepted that, as the number of repetitions grows, the error of the solution reduces,

though it is desirable to be able to achieve a sufficiently accurate solution with a minimal

number of these repetitions.

In this work, the focus will be on those systems that are weakly nonlinear, in which

the perturbation from the underlying linear equations is assumed to be small. This somewhat

narrows the selection of analytical approximations which could be considered, but still leaves

a relatively expansive list; further information on this can be found in [94] and has been

discussed at length in Chapter 2. Following this discussion and given their wide applications

in the literature, the HB, MS, and DNF methods have been selected for the examination.

The focus of this discussion will be placed on their respective ability to capture the free and

forced responses of nonlinear systems. Initial consideration of these methods has been given

in [121], though this only considers the free response of the system, and only applies the steps

of these methods once. Here, the forced response is used for a more in-depth discussion, with

two applications of these steps used for the free response.

In this chapter, the results of [136] are brought to the forefront of the discussion, as

it is noted here that it is the detuning of the DNF method which leads to more accurate

results than the first-order normal forms method. This raises an important issue regarding

the comparison of these methods, in that each is dependent on a certain set of assumptions

that, naturally, will influence the accuracy of the results. To address this, the work of this

chapter will consider the possibility of adapting these assumptions and applying the detuning

of the DNF method in the MS technique.

To establish a framework for this comparison, the three methods are first derived and
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discussed in §3.2. The second part of this section will introduce the aforementioned fre-

quency detuning to the MS method, initially considering a general MDOF nonlinear system.

This comparison is then extended to the SDOF Duffing oscillator in §3.3. Both the free and

forced vibrations are initially investigated, with a single iteration of each method being ap-

plied. The backbone curves are then considered after a second iteration of the method, so

that the convergence and accuracy of the techniques can be assessed further.

Publications resulting from this work
Elliott, A. J., Cammarano, A., and Neild, S. A.. (2017). Comparing Analytical Approxi-

mation Methods with Numerical Results for Nonlinear Systems. In Nonlinear Dynamics,

Volume 1, Kerschen, G., ed., Conference Proceedings of the Society for Experimental Me-

chanics Series, 37–49.

– This paper compares the HB, MS, and DNF methods for a 2DOF lumped-mass system. As

in§3.2, the techniques are compared in terms of both their accuracy and their usability, noting

that the divergence of the MS solution at higher amplitudes is as a result of its linearisation

of the frequency.

Elliott, A. J., Cammarano, A., Neild, S. A., Hill, T. L., and Wagg, D.J. (2018). Comparing

the direct normal form and multiple scales methods through frequency detuning. Nonlinear

Dynamics, 94(4):2919–2935.

– This paper compares the HB, MS, and DNF methods in terms of their frequency detuning,

as is presented in §3.3.6. It is demonstrated that, if the detuning from the DNF method is

applied in the MS method, the solutions from the two are identical.

Elliott, A. J., Cammarano, A., Neild, S. A., Hill, T. L., and Wagg, D.J. (2019, accepted).

Using frequency detuning to compare analytical approximations for forced responses. Non-

linear Dynamics.

– This paper again compares the HB, MS, and DNF methods in terms of their frequency

detuning, but expands the discussion to a forced, damped oscillator. The conclusions from

this paper are consistent with the above work, as discussed in §3.2.4.
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3.2 Overview of considered techniques
This chapter presents a thorough outline of the involved techniques. The key reason for doing

so is that, particularly for the HB and MS methods, a number of implementations exist in

the literature, which could potentially lead to confusion in the discussion. In addition, across

the methods discussed, attempts will be made to unify the symbols used, as this will further

simplify the comparison.

The equations of motion for a nonlinear mechanical system can be expressed, in physical

coordinates x, as

Mẍ + (ε)Cẋ + Kx + (ε)Γx(x, r) = (ε)Pxr, (3.1)

where M, C, and K define the N ×N linear mass, damping, and stiffness matrices, respec-

tively, Γx is anN×1 vector of the nonlinear terms, and the dot notation represents derivatives

with respect to time, t. Here, rT = [rp rm] = [e+jΩt e−jΩt] represents the periodic nature of

the forcing generally applied to nonlinear systems, where Px =
[

P̂x
2
, P̂x

2

]
and P̂x is an N × 1

vector of scalar terms defining the magnitude of this forcing. The bookkeeping parameter, ε

– used to denote the relatively small nature of the damping, nonlinear, and forcing terms – is

bracketed to denote the fact that it is not necessarily used in the HB method.

If the Γx term is removed from Eq. (3.1), the system of equations will be completely

linear. This will be referred to as the underlying linear system.

3.2.1 Harmonic balance
The HB method is perhaps the most established technique, with both the MS and DNF

methods applying its core approach of balancing similar terms as part of their steps. As such,

only a brief description will be given, with more thorough details found in the literature [95–

97]. The initial assumption made in this technique is that the response is sinusoidal, with

each component of the displacement taking the form

xk(t) =
n∑
i=1

Ak,i
2

e+ji(ωr,kt+φk) +
Āk,i

2
e−ji(ωr,kt+φk), (3.2)

where Ak,i denotes the response amplitude and φk the phase; n denotes the number of har-

monics in the trial solution. ωr,k denotes the kth response frequency, which is typically

assumed to be equal to the forcing frequency, should the system be forced. Note that there

are some cases in which this will not be the case, such as the occurrence of period-doubling
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bifurcations.

The displacement expression defined in Eq. (3.2) can then be applied in Eq. (3.1) to give

a system of equations in terms of Ak,i, φk, and e+jωrt. It is at this stage that the harmonics are

balanced; the e+jωrt terms are time-dependent, so their coefficients must be balanced for the

equality to hold. Thus, those terms responding at integer multiples of ωr are collected and

equated separately. These new equations govern the harmonic response of the system and can

be algebraically manipulated to produce the amplitude-frequency relationships of interest.

Further, Eq. (3.2) gives a complex definition of the displacement components, hence the

balancing of coefficients can be divided into two equations, for the real and imaginary parts,

respectively. Once these new equations have been defined, it is simply a case of solving them

analytically; further details on the implementation of this will be given for a real example in

Section 3.3.1.

It is worth noting that nonlinear systems are characterised by exponents of ωr that are

greater than 1. As such, the expansion of these terms, when the expressions in Eq. (3.2) are

applied, can result in the emergence terms of the form e+jkωt, with k > n. However, since

these terms are not present in the trial solution, they will only be present in the nonlinear

terms, so their coefficients in the aforementioned expansion will be set to zero. Thus, there

is an implicit assumption that the harmonics of a higher order than n are negligible. This can

be assessed through the inclusion of these harmonics, though this is not common practice.

Again, this will be further illustrated in Section 3.3.1.

3.2.2 Multiple scales
As discussed in §3.1, the MS method has been widely used throughout the literature, which

has led to some variation in its definition and implementation. Although the underlying

concept remains the same, the fact that it is a perturbation method allows for variation in both

the variables that are perturbed, and the order of these perturbations. In this overview of the

technique, the derivative-expansion version [112] will be used. However, it is first noted that,

while less commonly used, other versions have been applied in the literature. In particular,

the two-timing version of the MS method (see, for example, [26]) makes the assumption that,

while it may be advantageous to perturb the displacement in the typical way, it is sufficient

to define only two time-scales, referred to as slow- and fast-time. During this investigation

of the equivalence of analytical techniques, both techniques have been used. Initially, the

derivative-expansion method is applied to the general system, and is also used to investigate
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the ε1-order MS solutions. An expanded version of the two-timing methodology will be

used to find the ε2 solution, to demonstrate the fact that the choice of implementation does

not influence the discussion.

In the derivative-expansion version, the following standard perturbations (in terms of

bookkeeping parameter, ε) of displacement and time are used:

t = t+ εt+ ε2t+ . . . = T0 + T1 + T2 + . . . . (3.3)

x = x0 + εx1 + ε2x2 + . . . , (3.4)

Here, the notation Tn = εnt has been introduced. As such, the time perturbation given in

Eq. (3.3) leads to the following expressions for the derivatives

d
dt = D0 + εD1 + ε2D2 + . . . ,

d2
dt2 = D2

0 + ε(2D0D1) + ε2(D2
1 + 2D0D2) + . . . .

(3.5)

where Dk = ∂
∂Tk

.

Although the MS technique is typically applied directly to the physical coordinates of a

system, the matrix formulation for a general system, such as that in Eq. (3.1), can quickly

become unwieldy. To prevent the discussion from becoming overly complicated, it is possi-

ble to consider the same system projected onto modal coordinates, without loss of generality.

This step will be explained in the description of the DNF method.

The conversion into modal coordinates results in equations of motion given by

q̈ + Λq + εΓq(q, q̇, r) = εPqr, (3.6)

where q denotes the transformed modal form of x, Λ is the modal stiffness matrices, with ith

diagonal ω2
n,i, Γq(q, q̇, r) collects the modal projections of Γx(x, r) and Cẋ, and Pxr. These

terms are more thoroughly outlined in the definition of the DNF method.

The modal coordinates are now perturbed in the same way as the physical coordinates in

Eq. (3.4) to give

q = q0 + εq1 + ε2q2 + . . . . (3.7)

In Eq. (3.6), the forcing term is assumed to be weak, i.e. small in comparison to the acceler-
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ation and displacement terms; this is denoted using ε. Similar assumptions have been made

for the damping and nonlinear terms, which are collected in εΓq(q, q̇, r).

By applying the perturbations given by Eqs. (3.3), (3.5), and (3.7) in Eq. (3.6) leads to

the equation

((D2
0 + ε(2D0D1) + ε2(D2

1 + 2D0D2) + . . . ) + Λ)(q0 + εq1 + ε2q2 + . . . )

+ εΓq(q0 + εq1 + ε2q2 + . . . ,

(D0 + εD1 + ε2D2 + . . . )(q0 + εq1 + ε2q2 + . . . ), r) = εPqr,

(3.8)

It is immediately apparent that the perturbed parameters in Γq would lead to a complex set

of calculations. To simplify this, a Taylor expansion is applied, leading to the following

ε-expansion for the equations of motion:

ε0 : (D2
0 + Λ)q0 = 0, (3.9)

ε1 : (D2
0 + Λ)q1 = −2D0D1q0 − Γq(q0,

d
dt

(q0), r) + Pqr, (3.10)

ε2 : (D2
0 + Λ)q2 = −2D0D1q1 − (D2

1 + 2D0D2)q2 −
[
∂

∂q0

Γq

]
q1 (3.11)

−
[
∂

∂q̇0

Γq

]
q̇1,

...

This equation makes use of the notation ∂
∂q0

= ∇q0
Γq(q0, q̇0, r) and ∂

∂q̇0
= ∇q̇0

Γq(q0, q̇0, r).

Similarly to the HB method, the MS technique assumes a sinusoidal form for the response,

which is found by solving the ε0-order equation and is given by

q0,k =
A0,k(T1, T2, . . . )

2

(
e+j(ωr,kT0+φ0,k(T1,T2,... )) + e−j(ωr,kT0+φ0,k(T1,T2,... ))

)
, (3.12)

where A0,k and φ0,k denote the amplitude and phase of the fundamental response, respec-

tively. The trial solution used for the MS method takes a similar form to that in the HB

method, with the key difference being that the amplitude and phase terms are functions of

the slower time scales, allowing transient behaviour to be captured; this feature is undoubt-

edly useful, but is not pursued further in this thesis.

Applying the solution defined in Eq. (3.12) in Eq. (3.10) leads to the following form for
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the ε1-order equation:

(D2
0 + ω2

n,k)q1,k + 2D0D1

(A0,k

2

(
e+j(ωn,kT0+φ0,k) + e−j(ωn,kT0+φ0,k)

))
+ Γq,k

(A0,k

2

(
e+j(ωn,kT0+φ0,k) + e−j(ωn,kT0+φ0,k)

)
,

jωn,k
A0,k

2

(
e+j(ωn,kT0+φ0,k) − e−j(ωn,kT0+φ0,k)

)
, e+jΩt + e−jΩt

)
= Pq,k

⇔ (D2
0 + ω2

n,k)q1,k + jωn,k
(

(D1A0,k + A0,kD1φ0,k)e
+j(ωn,kT0+φ0,k)

+ (D1A0,k − A0,kD1φ0,k)e
−j(ωn,kT0+φ0,k)

)
+ Γq,k

(A0,k

2

(
e+j(ωn,kT0+φ0,k) + e−j(ωn,kT0+φ0,k)

)
,

jωn,k
A0,k

2

(
e+j(ωn,kT0+φ0,k) − e−j(ωn,kT0+φ0,k)

)
, e+jΩt + e−jΩt

)
= Pq,k.

(3.13)

Here, to simplify the expression, the dependence of the amplitude and phase on the faster

time scales is not displayed. Considering the homogeneous case of Eq. (3.13), given by

(D2
0 + ω2

n,k)q1,k = 0, it can be seen that the complementary function will take the same form

as that of q0,k. The presence of this form in the particular integral will result in terms that will

grow with time and, therefore, will no longer represent the steady-state dynamics required.

This is easily resolved by setting these resonant, or secular, terms to zero. For the general

system under consideration here, this is given by

jωn,k
(

(D1A0,k + A0,kD1φ0,k)e
+j(ωn,kT0+φ0,k) + (D1A0,k − A0,kD1φ0,k)e

−j(ωn,kT0+φ0,k)
)

+ Res
{

Γq,k

(A0,k

2

(
e+j(ωn,kT0+φ0,k) + e−j(ωn,kT0+φ0,k)

)
,

jωn,k
A0,k

2

(
e+j(ωn,kT0+φ0,k) − e−j(ωn,kT0+φ0,k)

)
, e+jΩt + e−jΩt

)
− Pq,k

}
= 0,

(3.14)

where Res{•} denotes the resonant terms of •. By first separating the real and imaginary

parts of the equation, then setting the coefficients of e±j(ωn,kT0+φ0,k) in each of those to zero,

it is possible to solve Eq. (3.14) to define the frequency-amplitude relationship and phase

information. Once these equations have been solved, the values of A0,k and φ0,k can be

applied in the non-resonant equation:

(D2
0 + ω2

n,k)q1,k = −NRes
{

Γq,k

(A0,k

2

(
e+j(ωn,kT0+φ0,k) + e−j(ωn,kT0+φ0,k)

)
,

jωn,k
A0,k

2

(
e+j(ωn,kT0+φ0,k) − e−j(ωn,kT0+φ0,k)

)
, e+jΩt + e−jΩt

)}
,

(3.15)
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where NRes{•} denotes the non-resonant terms of •. This equation can then be solved to

find an expression for q1,k. The process for solving Eq. (3.15) is not expanded upon here, as

it is dependent on the definition of Γq. To find solutions for a higher order of ε, it is simply

necessary to repeat the above steps.

3.2.3 Direct normal forms
The final method under consideration here is a normal form method. In particular, the direct

normal form method will be used, so called due to its direct application to the second-order

differential equations. The use of normal form techniques is common in the field of nonlinear

dynamics and, in earlier applications, it was first necessary to convert the equations into first-

order form before applying the technique [130]. However, more recent developments have

seen the method applied directly to the second-order equations; as such, the DNF method

has also been referred to as the second-order normal forms method. This nomenclature is

avoided here as there is potential for confusion when ε-order is also considered.

The initial stages of this method comprises three coordinate transforms that ensure that

only the resonant modal responses are calculated. These transforms are summarised as:

• Modal transform

– The physical equations of motion are projected onto the coordinate system de-

fined by the mode shapes of the underlying linear system.

• Forcing transform

– The terms in the response which oscillate at frequencies close to the forcing fre-

quency are isolated.

• Nonlinear near-identity transform

– The non-resonant nonlinear terms are removed.

These steps are now illustrated using the general nonlinear system considered above.

First-order normal form method

For the sake of completeness, a brief overview of how the first-order version of the normal form

technique differs from the DNF method is given. In this case, Eq. (3.1) must be first written as a
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first-order differential equation. This is achieved by the introduction of the phase-space parameter

y = [x, ẋ]. The equations of motion are then given by

ẏ = Ay + Γy(y, r) + Pyr, (3.16)

where

A =

 0 I

−M−1K −M−1C

 , Γy =

 0

−M−1Γx(y, r)

 , and Py =

 0

−M−1Px

 . (3.17)

Once the system has been transformed into this form, the steps are the same as those of the DNF

method, so are not repeated here.

Modal Transform: This step makes use of the linear modeshape matrix, Φ, found by solving

the eigenanalysis problem defined by ΛΦ = M−1KΦ. The matrix is applied as a change of

basis matrix to project the physical coordinates onto a set of modal displacements. Thus, the

transform is written as x = Φq, where q is an N × 1 vector of modal contributions. This can

be applied in Eq. (3.1) and the resultant equation can be pre-multiplied by ΦT to give

(ΦTMΦ)q̈ + (ε)(ΦTCΦ)q̇ + (ΦTKΦ)q + (ε)ΦTΓx(Φq, r) = (ε)ΦTPxr. (3.18)

In this dicussion, it will be assumed that Φ is mass-normalised. In this case, ΦTMΦ = I and

ΦTKΦ = Λ, where Λ is a diagonal matrix with the kth diagonal element given by ω2
n,k, the

square of the kth linear natural frequency. This leads to the simplified equation:

q̈ + Λq + εΓq(q, q̇, r) = εPqr, (3.19)

Here, the function Γq = ΦT[CΦq̇ + Γx(Φq, r)] now includes both the projection of Γx into

modal space and the projected damping term. Pq = ΦTPx is the modal projection of the

forcing amplitudes.

Forcing transform: This takes the form q = v + [e]r, where v is an N × 1 vector of resonant

forced terms and [e] is anN×2 matrix that isolates the resonant forcing terms. The transform

can then be applied in the modal equations of motion to give

v̈ + [e]WWr + Λv + Λ[e]r + εΓv(v, v̇, r) = εPvr, (3.20)
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where W is a 2× 2 diagonal matrix with entries +jΩ and−jΩ. The purpose of this step is to

monitor which forcing terms are close to resonance, which, for the kth mode, will be taken

to mean ωn,k ≈ Ω.

It is desirable to write Eq. (3.20) in a similar form to Eq. (3.19), i.e. with the non-

resonant forcing terms have been removed. As suggested by its name, this type of normal

form is repeatedly used in the DNF method. In the current coordinate system, this would be

written as

v̈ + Λv + εΓv(v, v̇, r) = εPvr. (3.21)

In order to achieve this normal form, the following functions are defined:

Γv(v, v̇, r) = Γq(v + [e]r, v̇ + [e]Wr, r) (3.22)

Pv = Pq − (Λ[e]− [e]WW). (3.23)

These expressions assure that Γv and Pv contains only the resonant entries of Γq and Pq,

respectively. The second definition in Eq. (3.22) can be rewritten using the definition of W

to give the kth row as

Pv,k = Pq,k − (ω2
n,k − Ω2)[e]k. (3.24)

From this, it is possible to define the kth row of [e] as

[e]k =

[0 0] if ωn,k ≈ Ω,

Pq,k/(ω
2
n,k − Ω2) otherwise.

(3.25)

Therefore, Pv,k can be defined as

Pv,k =

Pq,k if ωn,k ≈ Ω,

[0 0] otherwise.
(3.26)

Nonlinear near-identity transform: In this step, the response is separated into its fundamental

and harmonic components. This is achieved by implementing the following expression for

v:

v = u + h(u, u̇, r), where h(u, u̇, r) = εh1(u, u̇, r) + ε2h2(u, u̇, r) + . . . . (3.27)
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Here, u is anN×1 vector of resonant nonlinear terms and h captures the remaining harmonic

content of the response. Similarly to the nonlinear and damping terms, the harmonics have

been perturbed, which formalises the assumption that higher-frequency harmonics will be of

less consequence to the behaviour of the system.

Furthermore, the assumption is made that the expression for u is sinusoidal. In the DNF

method, this is written in exponential form, with separate vectors for the positive and negative

exponents; this is expressed as u = up + um, where the subscripts denote the sign of the

exponent. Furthermore, the kth element of u is now written as

uk = upk + umk =
Ak
2

e+j(ωr,kt+φk) +
Ak
2

e−j(ωr,kt+φk), (3.28)

where Ak, φk, and ωr,k denote the amplitude, phase, and response frequency of uk, respec-

tively.

Once again, the desired form for the equations of motion in this step, with the non-

resonant nonlinear terms removed, is given by

ü + Λu + εΓu(u, u̇, r) = εPur. (3.29)

By differentiating Eq. (3.28) twice and then applying it in Eq. (3.29), it is possible to remove

the differential term and write the system as

(Λ−Υ)u + εΓu(u, u̇, r) = εPur, (3.30)

where Υ is an N × N diagonal matrix with kth diagonal term ω2
r,k. Thus, once the system

defined by Eq. (3.29) has been obtained, it is possible to reduce the equations to a set of

time-independent expressions.

By applying the transform defined in Eq. (3.27) to Eq. (3.21), and implementing the

expression in Eq. (3.29), it is possible to eliminate the ü to give

(εḧ1 + ε2ḧ2 + . . . ) + (εΥh1 + ε2Υh2 + . . . ) + εΓv − (εΓu,1 + ε2Γu,2 + . . . )

+ εPur− εPvr = 0.
(3.31)

This equation applies the perturbation Γu(u, u̇, r) = Γu,1(u, u̇, r) + εΓu,2(u, u̇, r) + . . . .

The perturbed variables in the Γv expression inhibit the ability to balance the ε terms in this
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current state. As such, a Taylor expansion is applied:

Γv(u+εh1 + . . . , u̇ + εḣ1 + . . . , r)

= Γv(u, u̇, r) + ε[∇u′Γv(u′, u̇, r)]u′=uh1 + ε[∇u̇′Γv(u, u̇′, r)]u̇′=u̇ḣ1 + . . . ,
(3.32)

where∇y represents the gradient of some vector y.

Implementing this Taylor expansion and Eq. (3.30) allows Eq. (3.31) to be written, up to

ε2-order, as

εḧ1 + ε2ḧ2 + εΥh1 + ε2Υh2 + ε2(Λ−Υ)h1 + εΓv + ε2

[
∂

∂u
Γv

]
h1

+ ε2

[
∂

∂u̇
Γv

]
ḣ1 − εΓu,1 − ε2Γu,2 + εPur− εPvr = 0.

(3.33)

This equation makes use of the notation ∂
∂uΓv = ∇uΓv(u, u̇, r) and ∂

∂u̇Γv = ∇u̇Γv(u, u̇, r),

and also applies the perturbation εΓu(u, u̇, r) = εΓu,1(u, u̇, r) + ε2Γu,2(u, u̇, r) + . . . .

Furthermore, the following detuning expression has been employed:

Λ = Υ + ε∆ = Υ + ε(Λ−Υ). (3.34)

This step is traditionally applied in the DNF method and is explored in [130, 136]. The first

equality here demonstrates the fact that, instead of simply detuning around the natural fre-

quency, its square is detuned. This is consistent with the form in which the frequency arises

in the equations of motion. The second expression makes use of the fact that, although Λ is

not necessarily equal to Υ, the dynamics are considered within some close neighbourhood

of the natural frequency. Therefore, their difference will be small (and hence of order ε).

The resultant ε balance of Eq. (3.33), the components of which are referred to as the

homological equations, is now given by

ε0 : Pur = Pvr,

ε1 : ḧ1(u, u̇, r) + Υh1(u, u̇, r) + Γv,1(u, u̇, r) = Γu,1(u, u̇, r),

ε2 : ḧ2(u, u̇, r) + Υh2(u, u̇, r) + Γv,2(u, u̇, r) = Γu,2(u, u̇, r),
...

(3.35)

where Γv,1(u, u̇, r) = Γv(u, u̇, r) and Γv,2(u, u̇, r) = (Λ−Υ + ∂
∂uΓv)h1 + ( ∂

∂u̇
Γv)ḣ1.
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Balancing the ε0 terms in Eq. (3.35), it can be seen that Pu = Pv. In the ε1-order balance,

the Γu,k terms are used to manage resonant terms, which respond at ωr,k. The hk terms are

included to denote harmonic terms. Naturally, these contain those components which do

not respond at ωr,k. These expressions typically comprise polynomials in terms of up =

{upk},um = {umk}, and r. As such, the expanded forms of Eq. (3.35) can quickly become

unwieldy and it is convenient to represent them in terms of the vector u∗k(up,um, r), which

is an Nk× 1 vector consisting of all the potential product combinations of these elements. In

doing so, the expressions in Eq. (3.35) can now be written as

Γv,k(u, u̇, r) = [Γv,k]u
∗
k(up,um, r),

Γu,k(u, u̇, r) = [Γu,k]u
∗
k(up,um, r),

hk(u, u̇, r) = [hk]u
∗
k(up,um, r),

(3.36)

where [Γv,k], [Γu,k], and [hk] areN×Nk matrices of time-invariant coefficient for the products

of parameters that comprise u∗k. Thus, for k ≥ 1, the εk homological equation is given by

[hk]ü
∗
k + Υ[hk]u

∗
k + [Γv,k]u

∗
k = [Γu,k]u

∗
k. (3.37)

Careful consideration of the u∗k vectors is necessary to find a solution for u. This begins by

writing the `th element of u∗k as

u∗k,` = r
mp,k,`
p r

mm,k,`
m

N∏
n=1

u
sp,k,`,n
pn u

sm,k,`,n
mn = U∗k,`e

j(ω∗k,`t+φ
∗
k,`), (3.38)

where

U∗k,` =
N∏
n=1

(
Un
2

)(sp,k,`,n+sm,k,`,n),

φ∗k,` =
N∑
n=1

(sm,k,`,n − sp,k,`,n)φn,

and

ω∗k,` = (mp,k,` −mm,k,`)Ω +
N∑
n=1

(sp,k,`,n − sm,k,`,n)ωr,n.

These new variables can be applied in Eq. (3.37) so that element {i, `} of [Γv,k] to be written

as

[Γv,k]i,` = [Γu,k]i,` + βk,i,`[hk]i,`, (3.39)
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where

βk,i,` = [ω∗k,`]
2 − ω2

r,k (3.40)

defines the N ×Nk matrix βk. Therefore, if [ω∗k,`]
2 = ω2

r,k, then βk,i,` = 0. This allows βk to

be considered as a matrix that determines whether the elements of [Γv,k] are coefficients of

resonant or harmonic terms. Now,

[Γv,i]k,` = [Γu,i]k,`, [hi]k,` = 0, if βi,k,` = 0, (3.41)

[Γv,i]k,` = 0, [hi]k,` =
[Γu,i]k,`
βi,k,`

, otherwise. (3.42)

These expressions can be applied in Eq. (3.36) to find Γu, and hence Γv, leading to the kth

resonant equation

[
(ω2

n,k − ω2
r,k)Ake

−jφk + Γ+
u,k − P

+
u,k

]
e+jωr,kt

+
[
(ω2

n,k − ω2
r,k)Ake

+jφk + Γ−u,k − P
−
u,k

]
e−jωr,kt = 0,

(3.43)

where P+
u,k and P−u,k denote elements {k, 1} and {k, 2} of Pu, respectively. The variables

Γ+
u,k and Γ−u,k arise in the decomposition

Γu,k = Γ+
u,ke

+jωr,kt + Γ−u,ke
−jωr,kt. (3.44)

The square bracketed terms in Eq. (3.43) are complex conjugates of one another and, for the

equality to hold, it is necessary for both of these to be equal to zero. As such, the frequency-

amplitude relationship is simply given by

(ω2
n,k − ω2

r,k)Ake
−jφk + Γ+

u,k = P+
u,k, (3.45)

which can be solved to find the frequency-amplitude relationship of the system once values

for Ak and φk are found.

Additionally, the harmonics can be found using Eqs. (3.27) and (3.35), allowing the

physical response to be given by

x = Φ(u + h(u, u̇, r) + [e]r). (3.46)

Note that the bookkeeping term, ε, has been dropped, as it is no longer necessary to keep
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track of the relative size of each term.
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3.2.4 Comparison through frequency detuning
It is common practice to apply a frequency detuning to increase the accuracy of the MS

method, although it is not strictly an integral part of its methodology. In the literature [122,

214–216], these detunings are proposed as arbitrary perturbations:

ω = ω0 + εω1 + ε2ω2 + . . . . (3.47)

However, although it is rarely used, a detuning of the square of the linear natural frequency

has also been suggested [214]:

ω2 = ω2
0 + εω1 + ε2ω2 + . . . . (3.48)

Once the expression in Eq. (3.48) has been truncated to ε1-order, it takes the same form as

the detuning given in Eq. (3.34). The difference between Eq. (3.48) and the DNF detuning is

the physical motivation and interpretation of that in the DNF method. As opposed to using

the arbitrarily defined frequency ω0, Eq. (3.34) can be interpreted as a series expansion about

the stiffness term, which is expressed as the square of the linear natural frequency:

ω2
r,k = ω2

n,k + εδ = ω2
n,k + ε(ω2

n,k − ω2
r,k), (3.49)

as has been seen in the previous section. The procedure for applying this detuning in the MS

method (henceforth referred to as the detuned Multiple Scales (dMS) method) is identical to

the previous section up to the ε-expansion given in Eq. (3.9), which now takes the form

ε0 : (D2
0 + Υ)q0 = 0,

ε1 : (D2
0 + Υ)q1 = −2D0D1q0 − (Λ−Υ)q0 − Γq,k(q0, D0q0, r) + Pqr,

ε2 : (D2
0 + Υ)q2 = −2D0D1q1 − (Λ−Υ)q1

−(D2
1 + 2D0D2)q2 −

[
∂
∂q 0

Γq,k

]
q1 −

[
∂
∂q̇0

Γq,k

]
q̇1,

...

(3.50)
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It remains necessary to remove the secular terms, initially from the ε1-order equation, and

set them to zero. These are now given by

jωr,k
(

(D1A0,k + A0,kD1φ0,k)e
+j(ωn,kT0+φ0,k)

+ (D1A0,k − A0,kD1φ0,k)e
−j(ωn,kT0+φ0,k)

)
+ (ω2

n,k − ω2
r,k)
(
A0,k

(
e+j(ωn,kT0+φ0,k) + e−j(ωn,kT0+φ0,k)

)
+ Res{Γq,k

(A0,k

2

(
e+j(ωn,kT0+φ0,k) + e−j(ωn,kT0+φ0,k)

)
,

jωr,k
A0,k

2

(
e+j(ωn,kT0+φ0,k) − e−j(ωn,kT0+φ0,k)

)
,

e+jΩT0 + e−jΩT0
)
} = Pq,k

(
e+j(ΩT0) + e−j(ΩT0)

)
.

(3.51)

Comparing Eq. (3.51) with Eq. (3.14), it can be seen that, by no longer assuming that the

response frequency is equal to the linear natural frequency, new terms arise in the ε1-order

equation. The inclusion of the term (ω2
n,k − ω2

r,k)
(
A0,k

(
e+j(ωn,kT0+φ0,k) + e−j(ωn,kT0+φ0,k)

))
can be thought of as a detuning term that accounts for the influence that those terms which

are close to resonance have on the free vibrations of the system.

Collecting coefficients for the e±jωr,kT0 , Eq. (3.51) can be written as

[
A0,k(ω

2
n,k − ω2

r,k)
(

e+jφ0,k
)

+ (D1A0,k + jωr,kA0,kD1φ0,k)e
+jφ0,k

+ Res{Γq,k
(A0,k

2

(
e+j(ωn,kT0+φ0,k)

)
, jωr,k

A0,k

2

(
e+j(ωn,kT0+φ0,k)

)
,

e+jΩT0
)
} − Pq,k

]
e+j(ωr,kT0)

+
[
A0,k(ω

2
n,k − ω2

r,k)
(

e−jφ0,k
)

+ (D1A0,k − jωr,kA0,kD1φ0,k)e
−jφ0,k

+ Res{Γq,k
(A0,k

2

(
e−j(ωn,kT0+φ0,k)

)
, jωr,k

A0,k

2

(
e−j(ωn,kT0+φ0,k)

)
,

e−jΩT0
)
} − Pq,k

]
e−j(ωr,kT0) = 0.

(3.52)

Similarly to the DNF method, the bracketed terms in Eq. (3.52) are complex conjugates, both

of which must be equated to zero. As such, the frequency-amplitude equation can be written

as

(ω2
n,k − ω2

r,k)
(
A0,ke

+jφ0,k
)

+ (D1A0,k + jωr,kA0,kD1φ0,k)e
+jφ0,k

+ Res{Γq,k
(A0,k

2

(
e+j(ωr,kt+φ0,k)

)
, jωr,k

A0,k

2

(
e+j(ωr,kt+φ0,k)

)
, e+jΩt

)
}

= Pq,k.

(3.53)

By considering the real and imaginary parts of Eq. (3.53) separately and equating each to



3.2. OVERVIEW OF CONSIDERED TECHNIQUES 53

zero, it is possible to solve the system for A0,k and φ0,k.

Recall that the equivalent expression in the DNF method, Eq. (3.45), is written as

(ω2
n,k − ω2

r,k)Ake
−jφk + Γ+

u,k = Pu,k.

Now, it is possible to equate the equations found using the two techniques. In addition, recall

from Eq. (3.24) that Pq,k = Pv,k + (ω2
n,k − Ω2)[e]k; for the resonant equation, [e]k = [0 0].

Therefore, Pu,k = Pq,k.

By definition, Γ+
u,k denotes the resonant terms of Γu, which includes the damping and

nonlinear terms. In the dMS case, this is represented by the term

Res{Γq,k
(A0,k

2

(
e+j(ωr,kt+φ0,k)

)
, jωr,k

A0,k

2

(
e+j(ωr,kt+φ0,k)

)
, e+jωr,kt

)
}.

However, the additional term, jωr,k(D1A0,k + A0,kD1φ0,k)e
+jφ0,k , is now also required to

account for the fact that time and derivatives are now expressed as expansions in terms of

bookkeeping parameter ε. Given that Ak and A0,k both denote the fundamental response, it

can be concluded that the two expressions represent identical dynamics.

The solution for q1 can be determined in a similar way to the standard MS method by

solving

(Λ−Υ)q1 = −NRes{Γq}. (3.54)

Recall that the corresponding ε1-order equation for the DNF method is

ḧ1 + Υh1 + Γv = nu1. (3.55)

It can be further noted that ḧ1 = −Λh1 and that Γv − nu1 = βh1 = −NRes{Γq}, so that

the expression in Eq. (3.55) can be rewritten as

(Λ−Υ)h1 = −NRes{Γq}. (3.56)

It is immediately clear that the solutions of Eqs. (3.54) and (3.56) must be identical.
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3.3 Application to a forced Duffing oscillator
While the rigour of the comparison made in the previous section is important, the impact

of this detuning is more easily visualised through the consideration of an example nonlinear

structure. To this end, the current section will consider the application of these methods to

a forced Duffing oscillator, a system that has been used extensively to investigate analytical

approximations for nonlinear dynamical structures [217].

The Duffing oscillator can be thought of as a mass-spring system, in which the lumped

mass is grounded by a spring with linear and nonlinear stiffness parameters, k = ω2
n and α,

respectively. Additionally, the system contains a dashpot with damping coefficient c = 2ζωn

and experiences a periodic forcing with equation F (t) = P cos(Ωt). The mass is taken to be

unitary – i.e. m = 1 – and its time-dependent displacement is denoted x(t). Therefore, the

Duffing equation is written as

ẍ+ 2ζωnẋ+ ω2
nx+ αx3 = P cos(Ωt). (3.57)

3.3.1 Harmonic balance
As previously mentioned, the first step of the HB method is to assume a harmonic form for

the trial solution, as demonstrated in Eq. (3.2). To ensure the same level of accuracy as in the

MS and DNF methods, a single harmonic will be used in the trial solution for each technique.

Therefore, the HB trial solution will takes the form

x =
A

2
e+j(Ωt+φ) + c.c., (3.58)

where c.c. denotes the complex conjugate terms. Applying this solution in Eq. (3.57) gives

[
(ω2

n − Ω2)A+ 2jζωnA+
3α

4
A3
]
e+j(Ωt+φ) +O(e+3j(Ωt+φ)) + c.c. = P e+jΩt, (3.59)

Note that, in the full expansion of Eq. (3.59), there are terms that respond at frequencies of

3Ω. Since these frequencies are not included in the trial solution, it is implicitly assumed

that their influence on the system dynamics is negligible, so they are omitted henceforth.

For Eq. (3.59) to hold, the coefficients of the time-varying components must be balanced.

Ignoring the complex conjugate terms, the expression in Eq. (3.59) gives rise to the balanced
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equation: (
ω2
n − Ω2

)
A+ 2jζωnΩA+

3α

4
A3 = P e−jφ, (3.60)

It is possible to observe the fact that the inclusion of forcing and damping terms gives rise

to a complex equation. Therefore, the real and imaginary parts can be thought of as two

separate equalities. Bearing this in mind, and returning to trigonometric notation, Eq. (3.60)

can be expressed as

(
ω2
n − Ω2

)
A+

3α

4
A3 = P cos(φ),

2ζωnΩA = P sin(φ).

(3.61)

By squaring and summing these expressions, it is possible to establish an equation which is

independent of the phase, φ; this strategy is used across all three techniques to find a single

expression for the forced response. For the HB method, this is given by

[(
ω2
n − Ω2

)
A+

3α

4
A3
]2

+ [2ζωnΩA]2 = P 2. (3.62)

It is now possible to analytically solve Eq. (3.62) to give an expression for Ω in terms of A,

or vice versa; that is, to express the forcing frequency and response amplitude in terms of

one another. That being said, it is important to recall the trial solution given in Eq. (3.2),

which assumes that the displacement, x, can be expressed as a series of harmonic terms. The

fact that the expression in Eq. (3.62) can be solved analytically is, in part, due to the relative

simplicity of the trial solution used. Therefore, the ease with which higher-order, analytical

solutions can be found is likely to decrease when a greater number of harmonics is used. As

such, it may prove necessary to utilise numerical methods to evaluate the forced response,

see [107], for instance.

The steps in this section can be repeated, with the forcing and damping terms omitted,

to find the backbone curves of this system. Alternatively, one can simply set ζ = P = 0 in

Eq. (3.62) to give (
ω2
n − Ω2

)
+

3α

4
A2 = 0. (3.63)

Now, the response of the system can be defined by Eq. (3.58), with Ω defined by solving

either Eqs. (3.62) or (3.63).
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3.3.2 Multiple scales
In the current, initial comparison, the MS and DNF methods will be considered up to ε1-

order, with higher-order behaviour considered later in this chapter. Therefore, the initial

perturbations will be defined as

t = T0 + T1 = t+ εt,

x = x0(T0, T1) + εx1(T0, T1).
(3.64)

The multiple time scales defined in Eq. (3.64) lead to the following perturbed derivative

expressions.
d
dt = D0 + εD1,

d2
dt2 = D2

0 + ε(2D0D1).
(3.65)

Implementing the perturbed expressions in Eqs. (3.64) and (3.65) in the equations of motion

given in Eq. (3.57) results in the updated expression

(D2
0+2εD0D1)(x0 + εx1) + 2εζωnΩ(D0 + εD1)(x0 + εx1)

+ ω2
n(x0 + εx1) + εα(x0 + εx1)3 = εP cos(Ω(T0 + T1)).

(3.66)

When this equation is expanded, terms with order higher than ε1 will naturally occur. There-

fore, by choosing to omit these, an assumption is made that the influence of higher-order,

harmonic terms on the system dynamics is negligible.

It can also be noted that, in Eq. (3.66), the damping, nonlinear, and forcing terms are

assumed to be weak, as denoted by the inclusion of ε in their coefficients. Balancing the

terms of the ε-expansion in Eq. (3.66) leads to the following system of equations

ε0 : D2
0x0 + ω2

nx0 = 0,

ε1 : D2
0x1 + ω2

nx1 = −2D0D1x0 − 2ζωnD1x0

−αx3
0 + P cos(ΩT0).

(3.67)

It is immediately clear that a solution for the ε0-order equation will take the form

x0 =
A(T1)

2

(
e+j(ωnT0+φ(T1)) + e−j(ωnT0+φ(T1))

)
, (3.68)

where a and α denote the response amplitude and phase, respectively. At this point, it is

worth highlighting the fact that these parameters are functions of T1 = εt, allowing the user

to model transient changes in the system dynamics. Although this is not pursued further in
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this work, this ability is not present in the HB and DNF methods in their classical definition.

The emphasis of this study is on the comparison of steady-state behaviour. As such, the

resonant, secular terms – i.e. those terms that respond at frequency ωn – must be isolated and

set to zero. Furthermore, as is often the case when considering the forced dynamics of a non-

linear structure, the frequency interval of interest is that close to the linear natural frequency,

ωn. Hence, it is useful to consider the forcing frequency in terms of some small deviation,

σ, from this value, writing Ω = ωn + εσ. Implementing this detuning and separating the real

and imaginary components, the secular terms are given by

3α

4
A(T1)3 − 2ω2

nA(T1)(D1φ(T1)) = P cos(φ(T1)),

−2ζω2
nA(T1)− 2ωn(D1A(T1)) = P sin(φ(T1)).

(3.69)

For these equations to represent steady-state dynamics, one must enforce the fact that there

are no changes in amplitude and phase with respect to T1. Doing so is relatively straight-

forward for A(T1), but the phase term must be considered in conjunction with the detuning

parameter, σ, since ΩT0 = (ωn + εσ)T0 = ωnT0 + σT1. To this end, it is useful to define the

following linear transformation of the phase angle

ψ = σT1 − φ(T1). (3.70)

Thus, the conditions for steady-state behaviour are

D1A(T1) = 0,

D1ψ(T1) = 0.
(3.71)

From Eq. (3.71), it can be seen thatA(T1) = A is constant, and thatD1φ(T1) = σ. Eq. (3.69)

can now be rewritten in terms of these expressions

3α

4
A3 − 2ω2

nAσ = P cos(α),

−2ζω2
nA = P sin(α).

(3.72)

As in the HB section, it is possible to collate these equations into a phase-independent ex-

pression by squaring and summing them. Recalling that the detuning parameter is given by
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σ = 1
ε
(Ω− ωn), the final solution for the forced response is given by

[
2ωn(ωn − Ω)A+ ε

3α

4
A3
]2

+ [2εζω2
nA]2 = (εP )2, (3.73)

and the free vibration is defined by

2ωn(ωn − Ω) + ε
3α

4
A2 = 0. (3.74)

It can be seen that, in these final equalities, the weak nature of the damping, nonlinear, and

forcing terms is maintained. Solving either Eq. (3.73) or (3.74) allows the user to define the

forced or free frequency-amplitude relationship, respectively. Solving either of these, it is

possible to find an expression for Ω, which can be immediately applied in the trial solution

to give the ε0-order approximation for x.

To find the solution for x1, it is necessary to solve the non-resonant part of the ε-

expansion. For the free response, this is given by

D2
0x1 + ω2

nx1 = NRes
{
− αx3

0

}
=
α

4
A3e+3j(Ωt+α) + c.c.. (3.75)

Once this equation has been solved, it is possible to find the following ε1-order solution for

the free vibration of x:

x = x0 + εx1 = A cos(Ωt+ α) + ε
α

32ω2
n

A3 cos(3(Ωt+ α)). (3.76)

3.3.3 Direct normal form
The initial stages of the DNF method are defined by three transforms: modal, forcing, and

nonlinear near-identity. However, the Duffing oscillator contains only a single DOF, and the

forcing frequency is assumed to be close to the linear natural frequency. Therefore, the first

two transforms are simply the identity transform. As such, the displacement can be directly

defined as

x = q = v = u+ h, where u = up + um =
A

2
e+j(ωrt+φ) +

A

2
e−j(ωrt+φ), (3.77)

where ωr denotes the system response frequency; henceforth, it will be assumed that ωr = Ω.

It can be recalled that the general frequency response from the DNF method is given by
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Eq. (3.45). Thus, to understand the nonlinear behaviour, it only remains to find Γ+
u and u∗.

These are found in the expansion of Γq(q, q̇, r). For the current structure, this is given by

Γq(q, q̇, r) = Γu(u, u̇) = 2ζωnu̇+ αu3. (3.78)

By applying Eq. (3.77) and converting to matrix notation, it is possible to express Eq. (3.78)

as

Γu(u, u̇) = [Γu]u
∗ = [−2jζωn,−2jζωn, α, 3α, 3α, α]



up

um

u3
p

u2
pum

upu
2
m

u3
m


. (3.79)

Recalling the expression in Eq. (3.37) and the subsequent discussion thereof, the vectors β,

[Γu,1], and [h1] are given by

β =
[
0, 0, 8Ω2, 0, 0, 8Ω2

]
=⇒ [Γu,1] =

[
− 2jζωn,−2jζωn, 0, 3α, 3α, 0

]
,

[h1] =

[
0, 0,

α

8Ω2
, 0, 0,

α

8Ω2

]
.

(3.80)

Implementing these definitions in Eq. (3.45) and treating the real and imaginary parts in the

familiar way leads to the following expression for the forced response

[
(ω2

n − Ω2)A+ ε
3α

4
A3
]2

+ [2εζωnΩA]2 = (εP )2. (3.81)

In addition, the free response is given by

(ω2
n − Ω2) + ε

3α

4
A2 = 0. (3.82)

Now, the free ε1-order solution for x is given by

x = u+ ε[h1]u∗ = A cos(Ωt+ φ) +
α

32Ω2
A3 cos(3(Ωt+ φ)). (3.83)

3.3.4 Frequency detuning of the multiple scales method
As outlined in Section 3.2.4, the use of frequency detuning is commonplace in the application

of the MS method, with the use of the physically-motivated detuning applied in the DNF
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method identified as a potential candidate to refine the process. It has been demonstrated

above that, for an arbitrary nonlinear system, the use of this detuning can bring the MS

solution in line with that of the DNF technique. Here, this is illustrated for the Duffing

oscillator.

Up until Eq. (3.67), the steps in the dMS method are identical to those in the classical

MS method. It is at this point that the DNF detuning is applied; it should be noted that, in

the forced case, this is given by Ω2 = ω2
n + εδ. The ε-expansion in Eq. (3.67) is now given

by

ε0 : D2
0x0 + ω2

nx0 = 0,

ε1 : D2
0x1 + ω2

nx1 = −δx0 − 2D0D1x0 − 2ζωn(D0x1 +D1x0)

−αx3
0 + P cos(ΩT0).

(3.84)

Once more, since it is the steady-state dynamics that are of interest, the conditions in Eq. (3.71)

are applied. Separating the real and imaginary parts now leads to the following steady-state

equations

3α

4
A3 + aδ = P cos(α),

2ζωnΩa = P sin(α).

(3.85)

Combining these equations in the standard way results in forced and free responses which

can be expressed as

[
(ω2

n − Ω2)a+ ε
3α

4
A3
]2

+ [2εζωnΩa]2 = (εP )2,

(ω2
n − Ω2) + ε

3α

4
A2 = 0,

(3.86)

respectively. It can immediately be noted that, for both cases, the response is identical to that

given in the DNF method (see Eqs. (3.81) and (3.82)); these will be compared further in the

following section. The process for finding the ε1 component of the solution is identical to

that in the MS method, though with a frequency-amplitude relationship identical to that of

the DNF method.

3.3.5 Comparison of results at ε1-order
Before comparing the results from these methods, it is first necessary to remove any ambi-

guity that could arise in doing so. It is widely accepted that, should any perturbation method

consider a high enough order of ε or include enough harmonic terms in the trial solution, it
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is theoretically possible that it produces results that are considered exact up to some small

tolerance. However, it should be noted that a high number of iterations could actually be

detrimental to the insight provided by these analytical methods; this is true for a number

of reasons. Firstly, it could be argued that, if it is only the accuracy of the curve that is of

interest, then numerical continuation is likely to be simpler and more accurate. Secondly,

the complexity of the analytical solutions found using a large number of iterations can be

extremely complex, and do not offer a great deal of insight to the user. Thus, it is desirable to

obtain accurate curves with only a small number of iterations, which is the motivating factor

for the comparison at ε1-order in this section.

Technique Free Forced

HB Ω2 = ω2
n + 3α

4
A2

[
(ω2

n − Ω2)A+ 3α
4
A3
]2

+ [2ζωnΩA]2 = P 2

MS Ω = ωn + ε 3α
8ωn

A2
[
2ωn(ωn − Ω)A+ ε3α

4
A3
]2

+ [2εζω2
nA]2 = (εP )2

DNF/dMS Ω2 = ω2
n + ε3α

4
A2

[
(ω2

n − Ω2)A+ ε3α
4
A3
]2

+ [2εζωnΩA]2 = (εP )2

Technique Phase Displacement

HB φ = sin−1
(

2ζωnΩA
P

)
A cos(Ωt+ φ)

MS φ = sin−1
(

2εζω2
nA

P

)
A cos(Ωt+ φ) + ε α

32ω2
n
A3 cos(3(Ωt+ φ))

DNF/dMS φ = sin−1
(

2εζωnΩA
P

)
A cos(Ωt+ φ) + ε α

32Ω2A
3 cos(3(Ωt+ φ))

Table 3.1: Summary of approximate solutions and expressions for backbone curves for the
undamped, unforced Duffing oscillator.

The expressions for the free and forced dynamics from each method, as well as the forced

phase and displacement expressions, are displayed in Table 3.1. Although the MS and DNF

methods employ a bookkeeping parameter that is not typically present in the HB method,

it is common practice to discard this once a truncation of the solution has been made. In

doing this, it can be seen that the HB free and forced responses are identical to those found

using the DNF method, but this is not the case for the MS method. In Table 3.1, the free

vibration solutions have been formatted to represent the detuning nature of these expressions.

However, it is useful to reconsider their original representations:
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HB : (ω2
n − Ω2) +

3α

4
A2 = 0,

MS : 2ωn(ωn − Ω) + ε
3α

4
A2 = 0,

DNF : (ω2
n − Ω2) + ε

3α

4
A2 = 0.

(3.87)

Now, the nonlinear terms are identical across all three equations; the only difference is the

first term in the MS expression. However, if one takes a Taylor expansion of the term (ω2
n −

Ω2) at the point Ω = ωn, the linear term is exactly 2ωn(ωn−Ω), as seen in the MS expression.

As such, for the case in hand, the MS solution can be thought of as a linearisation of the

quadratic detuning of ωn seen in the HB and DNF methods.

The influence of the difference in detunings – as summarised in Table 3.1 – can be noted

in both the backbone curves and forced responses, as displayed in Fig. 3.1. This figure

considers the expressions in Eq. (3.87), so that A is given as a function of Ω. Here, the

parameter values are as follows: ωn = 1, α = 0.6, with ζ = 0.005, P = 0.0015 in the first

case and ζ = 0.0015, P = 0.005 in the second. Note that the bookkeeping parameter, ε, has

been removed once the solutions has been truncated at the same order.
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Figure 3.1: Free and forced responses at ε1-order, for the HB, DNF, and MS methods, and
numerically continued solutions. Case 1: ζ = 0.005, P = 0.0015; Case 2: ζ = 0.0015,
P = 0.005.

In the first panel of Fig. 3.1, the smaller value of P naturally leads to a lower response ampli-

tude. It can be seen that the results from all three methods give very close approximations to

the black curve, which has been numerically continued using the software AUTO-07p [29].

In fact, it is difficult to categorically determine which analytical technique gives the better ap-

proximation. The differences are much clearer in the higher amplitude response displayed in

the second panel, in which it can be seen that all of the methods eventually diverge from the

true solution, though this happens at a much lower amplitude for the classical MS technique.

This directly correlates with the previous discussion regarding the Taylor expansion in the
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MS method. That is, as the amplitude increases, the validity of the linearised approximation

decreases.

In Fig. 3.1, only the fundamental response is displayed, so the DNF curve is identical to

both that of the dMS method (as, it has been shown, is always the case) and the HB method

(which is specific to this example). However, Table 3.1 demonstrates the fact that the HB

method does not produce any harmonic component when only a single term is used in the

trial solution. Therefore, should harmonic behaviour be important to the user, it would be

necessary to add an extra layer of complexity to the application of this technique.

3.3.6 Higher-order investigation of backbone curves
A key feature of perturbation methods is the possibility to iteratively apply their steps to

achieve a more accurate solution. As previously discussed, with enough iterations of such

techniques, the solution can potentially increase in accuracy to the extent that it can be con-

sidered exact up to some small tolerance. However, a primary motivation for using analytical

approximation techniques is to gain a greater insight into the system dynamics than can be

achieved by using numerical methods. As such, it is inconvenient to include too many ε

terms, as this can make the solution needlessly complicated. As such, it is common practice

to limit any perturbations to ε2-order.

To investigate the influence that this may have on the obtained results, this higher-order is

obtained for the methods shown here. However, it can clearly be seen that the forced response

remains close to the corresponding backbone curve at any amplitude, so only the latter will

be discussed. Note that the steps applied at ε1-order are simply repeated here, so they will

only be briefly outlined. Further, given that the HB method does not produce information

regarding the harmonic content of the response, only the DNF and MS techniques will be

given further consideration.

3.3.6.1 Multiple scales

The MS method can be applied in a number of ways, with variations seen in the assumptions

made regarding the time scales, as well as in the notation. To demonstrate the generalised na-

ture of the results presented here, a different MS variant will be used in this section. Namely,

an expanded version of the two-timing MS method [26] will be applied. This method typ-

ically includes a fast time scale, τ = ωt, and a slow time scale, T = εt. Here, this has

been updated to allow ε2-order solutions to be found by adding the extra slow time scale,



3.3. APPLICATION TO A FORCED DUFFING OSCILLATOR 65

Ts = ε2t. The derivatives with respect to these time scales will be given by

dx

dt
= ω

∂x

∂τ
+ ε

∂x

∂T
+ ε2 ∂x

∂Ts
,

d2x

dt2
= ω2∂

2x

∂τ 2
+ 2ωε

∂2x

∂T∂τ
+ ε2

( ∂2x

∂T 2
+ 2ω

∂2x

∂Ts∂τ

)
.

(3.88)

We introduce the following, more succinct notation for these derivatives: •† = ∂•
∂τ

, •‡ = ∂•
∂T

,

and •∗ = ∂•
∂Ts

. Now, for the unforced, undamped system, the ε-expansion is given by

ε0 : ω2
nx
††
0 + ω2

nx0 = 0,

ε1 : ω2
nx
††
1 + ω2

nx1 = −2ωnx
†‡
0 − αx3

0,

ε2 : ω2
nx
††
2 + ω2

nx2 = −2ωnx
†‡
1 − x

‡‡
0 − 2ωnx

†∗
0 − 3αx2

0x1.

(3.89)

The ε1-order steps are not repeated here; however, it is useful to recall that the frequency-

amplitude relationship for free vibration is given by

ωr = ωn + ε
3α

8ωn
A2, (3.90)

where ωr now denotes the response frequency, rather than the forcing frequency. It can also

be noted that the solutions for frequency and displacement can be implemented to give the

following expressions for the free vibration solution at ε1-order

X0 = A(Ts) cos (ωrt+ φ(Ts)) ,

X1 =
α

32ω2
n

A(Ts)
3 cos(3(ωrt+ φ(Ts))),

with: ωr = ωn + ε
3α

8ωn
A(Ts)

2,

(3.91)

Here, the very slow time scale has been reintroduced to allow higher-order solutions to be

found. These solutions can now be utilised in Eq. (3.89). It is further possible to reapply

these steps for the ε2-order components of Eq. (3.89). Considering the right hand side and

balancing the coefficients of cos(ωrt + φ(Ts)) and sin(ωrt + φ(Ts)) gives the following

equations

φ‡(Ts) =
3α2A(Ts)

4

256ω4
n

,

A‡(Ts) = 0,

(3.92)
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respectively. Solving these in parallel leads to the following solutions for displacement and

phase

A(Ts) = A, φ(Ts) = −15α2A4

256ω3
n

Ts + φ. (3.93)

Now, the updated form of Eq. (3.91) is given by

X0 = A cos (ωrt+ φ) ,

X1 =
α

32ω2
n

A3

(
1− ε 21α

32ω2
n

A2

)
cos(3(ωrt+ φ)),

X2 =
α2A5

1024ω4
n

cos(5(ωrt+ φ))

with: ωr = ωn + ε
3α

8ωn
A2 − ε2 15α2

256ω3
n

A4.

(3.94)

3.3.6.2 Direct normal form

Although there have been other applications of the normal form technique to second-

order equations [218], these are qualitatively different to the current DNF method, so are not

considered here.

Similarly to the MS method, the frequency and amplitude expressions can be combined

to give the following forms for the ε1-solution

X0 = A cos(ωrt+ φ),

X1 =
α

32ω2
r

A3 cos(3(ωrt+ φ)),

with: ω2
r = ω2

n + ε
3α

4
A2
c ,

(3.95)

Now, it can be recalled, from Eq. (3.37), that the ε2-order homological equation is given by

[h2]ü∗2 + ω2
r [h2]u∗2 + [Γv,2]u∗2 = [Γu,2]u∗2. (3.96)

We now consider the excitation of these equations, as it is this that defines the vector u∗2.

These are given by

ε1 : [Γu,1]u∗1 = αu3,

ε2 : [Γu,2]u∗2 = δ[h1]u∗1 + 3αu2[h1]u∗1.
(3.97)

Here, the δ[h1]u∗1 term arises as a result of the detuning present in the DNF method. Now,
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by considering the excitation of the ε2 equation in relation to the matrix formulation, it is

possible to write

[Γu,2] =
α

8ω2
r

[
δ δ 3α 6α 3α 3α 6α 3α

]
,

u∗2 =
[
u3
p u

3
m u5

p u
4
pum u3

pu
2
m u2

pu
3
m upu

4
m u5

m

]T
,

∴ [h2] =
α

64ω4
r

[
δ δ α 6α 0 0 6α α

]
.

(3.98)

Therefore, the ε2-order expression for free vibration is given by

q =A cos(ωrt+ φ)+

ε
α

32ω2
r

A3

(
1 + ε

3α

32ω2
r

A2

)
cos(3(ωrt+ φ))

+ ε2 α2

512ω4
r

A5 cos(5(ωrt+ φ)).

with ω2
r = ω2

n + ε
3α

4
A2 + ε2 3α2

128ω2
r

A4.

(3.99)

3.3.6.3 Detuned multiple scales

To approximate the higher order exponents of ε, it is actually necessary to perturb δ, so that

δ = δ0 + εδ1 + . . . ; this prevents the resulting system of equations from being over-defined.

As such, the ε-expansion is now defined by

ε0 : ω2
rx
††
0 + ω2

rx0 = 0,

ε1 : ω2
rx
††
1 + ω2

rx1 = δ0x0 − 2ωrx
†‡
0 − αx3

0,

ε2 : ω2
rx
††
2 + ω2

rx2 = δ0x1 + δ1x0 − 2ωrx
†‡
1 − x

‡‡
0 − 2ωrx

†∗
0 − 3αx2

0x1.

(3.100)

In trigonometric form, the ε0-order solution is simply given by x0 = A(T, Ts) cos(τ +

φ(T, Ts)). This can be applied in the ε1-order equation and, as has been done previously,

the coefficients of cos(τ + φ(T, Ts)) and sin(τ + φ(T, Ts)) – i.e. the secular terms – can be

balanced to give

2ωrφ
‡(T, Ts) = δ0 +

3α

4
A(T, Ts)

2,

A‡(T, Ts) = 0.

(3.101)

Note that it will again be assumed that the phase is constant. Furthermore, it can be seen from

the second of these equations that A is constant with respect to T . Therefore, the detuning



68 CHAPTER 3. ANALYTICAL APPROXIMATION METHODS

parameter is given by

δ0 = −3α

4
A(Ts)

2. (3.102)

Applying this equality in the non-resonant part of the ε1-order equation allows x1 to be

defined by

x1 =
αA(Ts)

3

32ω2
r

cos(3(τ + φ)). (3.103)

Considering the ε2-order equation in the same manner, the balance of the first harmonic

terms gives

δ1 =
3α

128ω2
r

A(Ts)
4,

A∗(Ts) = 0.

(3.104)

As such, the second harmonic displacement is defined by

x2 =
α2A5

1024ω2
r

(3 cos(3(τ + φ)) + cos(5(τ + φ))). (3.105)

Now, it is possible to define the full ε2-order solution, which is given by

x =x0 + εx1 + ε2x2 = A cos(ωrt+ φ)+

ε
α

32ω2
r

A3

(
1 + ε

3α

32ω2
r

A2

)
cos(3(ωrt+ φ)) + ε2 α2

512ω4
r

A5 cos(5(ωrt+ φ)).

with ω2
r = ω2

n + εδ0 + ε2δ1 = ω2
n + ε

3α

4
A2 + ε2 3α2

128ω2
r

A4.

(3.106)

3.3.6.4 Comparison of solutions

As in the previous section, the comparison of these methods assesses their ability to repro-

duce the numerical backbone curves within one or two applications of the steps of each re-

spective method. The fundamental and harmonic projections for the Duffing oscillator back-

bone curves are given in Fig. 3.2, considering both the ε1- and ε2-order frequency-amplitude

relationships. A comparison of the ε2-order free response and displacement expressions is

also given in Table 3.2.
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Numerical Continuation

Direct Normal Form

Multiple Scales

Figure 3.2: Comparison of first-order accurate (ε1) and second-order accurate (ε2) response
curves found using approximate methods and numerical continuation for the undamped
Duffing oscillator in terms of (a) the fundamental amplitude, (b) the third harmonic and
(c) other harmonics, using ωn = 1 and α = 0.5. This figure has been reproduced from [1].

Technique Free

HB ω2
r = ω2

n + 3α
4
A2

MS ωr = ωn + ε 3α
8ωn

A2 − ε2 15α2

256ω3
n
A4

DNF/dMS ω2
r = ω2

n + ε3α
4
A2 + ε2 3α2

128ω2
r
A4

Technique Displacement

HB A cos(ωrt+ φ)

MS A cos (ωrt+ φ) + ε α
32ω2

n
A3

(
1− ε 21α

32ω2
n
A2

)
cos(3(ωrt+ φ))

+ε2 α2

1024ω4
n
A5 cos(5(ωrt+ φ))

DNF/dMS A cos(ωrt+ φ) + ε α
32ω2

r
A3
(

1 + ε 3α
32ω2

r
A2
)

cos(3(ωrt+ φ))

+ε2 α2

512ω4
r
A5 cos(5(ωrt+ φ))

Table 3.2: Summary of approximate solutions and expressions for backbone curves for the
undamped, unforced Duffing oscillator.
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Of particular note is the range of frequencies and amplitudes over which the analytical ap-

proximations remain close to the numerical solution, which has, again, been found using

Auto 07p [29]. It can be seen, across all four panels, that the DNF (and, therefore, dMS)

backbone curves remain accurate across the considered region. Although there is a minor

improvement in this when the ε2-order terms are considered, the ε1-order curve gives a strong

approximation, even as ωr approaches 2ωn.

In contrast, this trend does not hold true for the MS method. At ε1-order, the curve begins

to noticeably diverge from the numerical solution at ωr ≈ 1.2. When the MS procedure is

reapplied up to the ε2-order, this increases to ωr ≈ 1.4 in the fundamental backbone curve,

as shown in panel (c). Beyond these points, the approximations diverge from the numeri-

cal curve. Interestingly, there is a variation in the qualitative behaviour of the MS solution

as the considered order changes. More specifically, the ε1-order approximation underesti-

mates the fundamental backbone, but overestimates the harmonic response; further, it can

be noted that the rate of divergence is greater in the latter of these. On the other hand, the

ε2-order approximation overestimates the fundamental response and underestimates the har-

monic component, though it can be seen that the behaviour is more complicated in this case.

In panel (c), there is a turning point in the MS response at ωr ≈ 1.6, after which the approx-

imation is noticeably distant from the numerical solution. In the harmonic contribution, this

phenomenon manifests as a curve which appears to diverge at ωr ≈ 1.2 and then reaches

zero at ωr ≈ 1.45.

3.4 Investigating alternative detunings
Up until this point, the consideration of detunings in analytical approximation methods has

been limited to the application of the DNF detuning in the MS method. However, it is

possible and enlightening to investigate this notion more generally. As such, this section

will consider the implementation of arbitrary frequency detunings in both the MS and DNF

methods. This section considers the equations up to ε1-order for the sake of simplicity.

3.4.1 Direct normal form
First, it is necessary to define a general detuning that can be varied to investigate a number

of scenarios. In [219], such a detuning was applied to the square of the natural frequency,

as in the DNF method; i.e. ω2
n = ω2

d + δd, where ωd is the detuned frequency and δd is the

corresponding detuning parameter. The paper concludes that, at ε1-order, the fundamental
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response found using the DNF method is independent of the choice of δd. This can be

explained by considering the updated form of Eq. (3.35), which is now given by

ε0 : Pur = Pvr,

ε1 : ḧ1(u, u̇, r) + Υdh1(u, u̇, r) + Γv,1(u, u̇, r) = Γu,1(u, u̇, r),
(3.107)

where Υd takes the same form as Υ, but with diagonal entries ω2
d,k, as opposed to ω2

r,k. It

is evident that the ε0-order equation is the same as in the traditional application of the DNF

method, so the fundamental response will be unaltered by the change in frequency detuning.

Recalling that ḧ1 = −Λh1, it can be seen that the ε1-order equation contains (Υd−Λ)h1

as one of its terms. Therefore, in this updated application, the elements of β are defined by

βk,i,` = [ω∗k,`]
2 − ω2

d,k, (3.108)

as opposed to βk,i,` = [ω∗k,`]
2 − ω2

r,k, as in Eq. (3.40). As such, the role of the updated β

matrix can be thought of as capturing those terms which respond at approximately ωr, as

opposed to exactly. This accounts for the fact that ωd is within some neighbourhood of ωr.

Thus, there is a difference between the updated and classical applications of the DNF method

in the ε1-order homological equation, which may lead to a difference in the harmonic terms.

To explore this further, it is possible to apply this altered DNF method to the Duffing

oscillator. In Eqs. (3.39) and (3.40), the definitions of [Γu,k] and [hk] are dependent on

whether βk,i,` = 0. In applying the updated definition in Eq. (3.108) to the Duffing oscillator,

the fundamental and harmonic vectors become

[Γu,1] =
[
0 3α 3α 0

]
, [h1] =

[
α

9ω2
r − ω2

d

0 0
α

9ω2
r − ω2

d

]
, (3.109)

respectively. Note that the entries of [Γu,1] (with the damping terms now removed) remain

unaltered, as predicted. However, while the fundamental response is invariant to changes in

ωd, this is not true of the harmonic response, which is now given by

A3 =
αA3

4(9ω2
r − ω2

d)
. (3.110)

To investigate the influence of the choice of ωd, the following parameterised frequency is

introduced

ωd = ωr + γ(ωn − ωr), (3.111)
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where γ ∈ [0, 1]. The case γ = 0 represents the traditional DNF detuning, whereas γ = 1

leads to the case where no detuning is applied, as in the classical MS method. In Fig. 3.3,

γ is varied between 0 and 1. As previously predicted, panel (a) shows no variation in the

fundamental backbone curve, but it can be seen that, as γ increases, the A3 response moves

further from the true solution. It can be concluded that the DNF detuning is more accurate

than any other parametrised detuning.
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Figure 3.3: (a) Fundamental and (b) third harmonic amplitude response curves for the un-
damped Duffing oscillator, with variations in the DNF detuning, using ωn = 1, α = 0.5, and
γ ∈ [0, 1]. This figure has been reproduced from [1].

3.4.2 Multiple scales
Similar consideration is now given to the MS method, in which we will define the fast time

as τ = ωdt. As such, the ε-balance is now given by

ε0 : ω2
dx
††
0 + ω2

dx0 = 0,

ε1 : ω2
dx
††
1 + ω2

dx1 = δdx0 − 2ωnx
†‡
0 − αx3

0,
...

(3.112)

where it has been noted that εiω2
nxi = εiω2

dxi+εi+1δdxi. Further, ωn has been removed from

the slow dynamics term, 2ωnx
†‡
0 , through the Taylor expansion ωn = ωd + ε δd

2ωd
. Solving the

ε0-order equation now results in the trial solution x0 = A(T ) cos(ωd + φ(T )), which can be
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implemented in the ε1 equation to give

φ‡(T ) =
δd

2ωd
+

3αA(T )2

8ωd
,

A‡(T ) = 0,

(3.113)

from which it can be deduced that

A(T ) = A, φ(T ) =

(
δd

2ωd
+

3αA2

8ωd

)
T + φ. (3.114)

Implementing Eq. (3.114) in the trial solution results in the following ε0-order expression

x0 = A cos(ωt+ φ), with ω = ωd + ε

(
δd

2ωd
+

3αA2

8ωd

)
. (3.115)

At this point, one can recall that δd = ω2
n−ω2

d and ωd = ωr+γ(ωn−ωr), so that the response

frequency equation is given by

(1− γ2)ω2
r + (2ωnγ

2)ωr −
(
ω2
n(1 + γ2) +

3αA

4

)
= 0. (3.116)

Further, by solving the ε1 expression, the corresponding harmonic response amplitude is

given by

A3 =
αA3

32ω2
d

=
αA3

32(ωr + γ(ωn − ωr))2
. (3.117)

The ε1-order solution is now plotted, in Fig. 3.4, for a set of distributed values of γ ∈ [0, 1].

As predicted, it can be seen that increasing γ from 0 to 1 transforms the response from that

of the DNF/dMS method to that of the classical MS technique. Although the values of γ are

equally spaced, this is not true of the backbone curves, which reflects the quadratic nature

of Eq. (3.116). It can be further concluded that this parameterised solution represents a

continuum between the two limit cases.
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Figure 3.4: (a) Fundamental and (b) third harmonic amplitude response curves for the un-
damped Duffing oscillator, with variations in the MS detuning, using ωn = 1, α = 0.5, and
γ ∈ [0, 1]. This figure has been reproduced from [1].

3.5 Summary
In this chapter, the derivation and application of three analytical approximation methods

have been considered. Namely, the harmonic balance, multiple scales, direct normal form

methods have been applied to a general nonlinear system, before being applied to the forced,

damped Duffing oscillator. To aid the comparison of these techniques, particular attention

has been given to the manner in which the natural frequencies are detuned. In light of the

assessment of the DNF detuning given in [136], this has been applied to the MS method,

with more general detunings then being applied to both the MS and DNF techniques.

All three methods are able to produce good approximations of the numerical solution,

though it has been seen that there are also limitations to each. Perhaps the strongest attribute

of the HB method is its simplicity. By assuming a trial solution for the displacement and

implementing this in the equations of motion, it is then only necessary to balance the coef-

ficients of the time-dependent terms to find a solution. In fact, this step is ubiquitous across

all three techniques. However, the equations found in the classical application of the HB

method can include terms which are of a higher order than those in the trial solution. There-

fore, it must be assumed that any components of the response that responds at a frequency

different from those in the initial expression are negligible. This is shown not to be the case

in the two more complex techniques. The relative size of the terms is managed through the

use of a bookkeeping parameter, the coefficients of which are balanced in a similar way to
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the aforementioned time-dependent terms. As well as this, the use of this parameter for the

time scale allows the MS method to capture transient behaviour, a feat which is not typi-

cally achieved in the other two methods. In spite of this, the discussion of the steady-state

dynamics given in this chapter reveals the disparity between the MS method and numerical

solutions at higher amplitudes, which is significantly less pronounced for the DNF method.

This increased accuracy after the same number of iterations occurs due to the aforementioned

detuning, which is given considerable attention in this chapter.

In practice, although it is not strictly dictated in its definition, the MS method is regularly

applied in conjunction with a detuning of the natural frequency. However, in this chapter, the

detuning from the DNF method is introduced to remove the arbitrary nature in which this has

typically been done, instead using a physically-interpretable expression – a series expansion

about the square of the natural frequency – to advise this decision. With this simple change

to the MS method, which only results in a minor change to the ε-balance in the method, it

has been seen that the resulting free and forced responses are identical to those given by the

DNF method itself. By considering a more general detuning, it has been shown that this

detuning is a limit case of the accuracy for both methods.

This chapter provides agreement between the results of two prominent analytical ap-

proximation methods for nonlinear dynamical systems. Detuning techniques of the classical

formulation have been developed and applied to allow the user to achieve identical results re-

gardless of the choice of technique. This result goes some way to removing the doubt that the

user may have when choosing an analytical approximation technique. It is possible to pro-

pose some potential rules-of-thumb that could be used. As has been observed in this chapter,

the HB method assumes any harmonics higher than those in the trial solution are negligible,

so this method can be most confidently used if the behaviour of these higher-order compo-

nents are either not of interest or known to be negligible. Following the equivalence of results

presented here, the MS and DNF method can effectively be used interchangeably. Thus, the

user can make a decision based on the unique capabilities of each, such as the time-varying

components of the MS method (which can be used for predicting time-dependent phenomena

that may occur in acceleration), or the matrix formulation of the DNF technique.
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Chapter 4

The Galerkin method

In this chapter:

• The Ritz-Galerkin method is introduced and applied to an Euler-Bernoulli beam.

• Particular attention is given to the way in which boundary conditions are treated and

used to determine the mode shapes and natural frequencies.

• The importance of numerical accuracy in the calculation of these properties is dis-

cussed.

• Further, the influence that these attributes have on the system response, particularly in

terms of the occurrence of modal interactions, is studied.

• A novel approach for defining the mode shapes and natural frequencies of beams with

nonlinear boundary conditions is introduced.

• This methodology is then applied to a cantilever beam with a magnetic interaction

at the tip to investigate the most appropriate way to approximate nonlinear boundary

conditions.

4.1 Introduction
As seen in Chapter 3, complex dynamics can arise in even the simplest of nonlinear systems.

In continuous structures, it is possible for this complexity to become even more pronounced,

and the mathematical modelling required to fully capture such behaviour is a key challenge

in the field. Commercial FE software can be used to address this issue, but these are typically

77
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“black box” programmes, which do not allow the user to have total control and understand-

ing of the way in which the nonlinear behaviour is treated. Furthermore, these commercial

programmes can be computationally expensive for nonlinear structures, and their calcula-

tion in the time domain does not always allow for complete comprehension of the frequency

behaviour. As such, it can be beneficial to adapt an analytical methodology for the struc-

ture, modelling the nonlinearities by considering the physical principles associated with the

development of the model.

The focus of this chapter is on the Galerkin technique. This method is more thoroughly

defined in the subsequent sections, but its underlying assumption (for the present application)

is that a continuous function in terms of two variables can be discretised as an infinite series

of products of projection functions. Each of these functions is then defined in terms of

only one of the aforementioned variables. By truncating this expansion and utilising the

orthogonality of the linear mode shapes, it becomes possible to express the equations of

motion as a finite system of second-order differential equations.

As outlined in Chapter 2, the Galerkin approximation is particularly useful for modelling

simple continuous systems, such as beams, plates, shells, and cables. Extensive consider-

ation has been given to developing Galerkin models for these structures with a number of

classical BCs, an expression that typically refers to clamped, pinned, free, and sliding beam

tips. Further, the discussion outlined the notion of nonlinear BCs, in which the relationship

is defined by a polynomial in terms of the deflection. This extends the mathematical com-

plexity of the problem and has typically required an approximation approach to be taken.

This chapter aims to address this issue and prevent such a step from being necessary.

This chapter will begin by discussing these classical BCs, allowing both the deriva-

tion and investigation of Galerkin methods to be established in §4.2. This provides a ba-

sis from which more complicated systems can be considered, allowing the introduction of

non-symmetric BCs, so that the modelling of modal interactions can be investigated in §4.3.

This discussion will pay particular attention to the relationship between the modal basis and

the ability to predict internal resonances between modes. §4.4 briefly outlines an example

of linear, non-classical BCs, so that the methodology can be expanded through the use of

nonlinear algebraic techniques in §4.5. This final section proposes a methodology that can

be applied to any nonlinear BC that can be approximated using a Taylor expansion, as will

be demonstrated for a general spring-supported beam, and one with a magnetic BC.
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Publications resulting from this work
Elliott, A. J., Cammarano, A., and Neild, S. A.. (2018). Investigating Modal Contributions

Using a Galerkin Model. In Nonlinear Dynamics, Volume 1, Kerschen, G., ed., Conference

Proceedings of the Society for Experimental Mechanics Series, 199-210.

– This paper investigates a Galerkin model for a clamped-clamped beam. As well as develop-

ing algebraic expressions for the cross-coupling terms, this study investigates the relationship

between the order of the truncation and the accuracy of the solutions (discussions relating to

this paper are presented in §4.2).

Elliott, A. J., Tartaruga, I., Cammarano, A., Dobson, P. S., and Neild, S. A.. (2018). In-

vestigating reduced order models for nanoscale nonlinear structures. In Proceedings of

ISMA2018.

– This paper applies the novel methodology derived in §4.5 as a nanoscale beam exam-

ple. This example is used as the “full” model for the non-intrusive methods discussed in

Chapter 5; this is due to the complex behaviour arise in systems with nonlinear BCs. It is

concluded that, at this scale, the backbone curves give a close approximation for the forced

response.

4.2 Overview of the Galerkin method
As this discussion has alluded to, the Galerkin method has been applied in a wide variety

of systems. However, in this thesis, the primary focus will be on beam models, due to their

broad application, most recently in micro- and nanoscale systems, but also in the more tra-

ditional exploration of structures such as bridges, wind turbine blades, and aeroplane wings.

As such, it is necessary to begin by deriving a mathematical model for the behaviour of

beams. Depending on the application, the user has the option to use either Euler-Bernoulli

or Timoshenko beam theory, the key difference between them being that the latter takes into

account shear deformation and rotational bending. An in-depth outline of the derivation and

application of these can be found in [2, 140], for example, and a thorough discussion of their

respective performance is given in [141]. Although this comparison concludes that the Timo-

shenko model is applicable across a wider range of systems, the Euler-Bernoulli beam theory

is applicable for small deformations, as would be found in the weakly nonlinear structures

considered in this thesis.
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4.2.1 General beam theory
In this chapter, a general beam is considered to allow both the Euler-Bernoulli beam theory

and the application of the Galerkin method to be illustrated more clearly. This beam will have

length `, Young’s modulus E, second moment of intertia I , density ρ, and cross-sectional

area Â. For this system, the deflection curve is given by

EI
∂2w

∂x2
= −M, (4.1)

where M is the bending moment, which is proportional to the curvature, w(x, t) is the trans-

verse displacement, which is dependent on the position along the beam x and time, t. By

twice differentiating this equation with respect to x, the expression becomes

∂

∂x
(EI

∂2w

∂x2
) = −∂M

∂x
= −V,

∂2

∂x2
(EI

∂2w

∂x2
) = −∂V

∂x
= f,

(4.2)

where V is the shearing force applied to the beam and f is a continuous load, with variable

intensity along the beam. This force will be defined by

f = −ρÂ∂
2w

∂t2
. (4.3)

Applying f in Eq. (4.2) gives the general equation for transverse vibration:

EI
∂4w

∂x4
+ ρÂ

∂2w

∂t2
= 0. (4.4)

Alternatively, by introducing the parameter a, it is possible to rearrange this system as

∂2w

∂t2
+ a2∂

4w

∂x4
= 0, where a2 =

EI

ρÂ
. (4.5)

4.2.2 Galerkin approximation
In the Galerkin method, it is further assumed that the transverse displacement can be ex-

pressed as a series of functions with distinct spacial and temporal parts, writing

w(x, t) =
∞∑
j=1

φj(x)qj(t), (4.6)
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where φj(x) are the linear mode shapes of the system and qj(t) denotes the contribution of

φj to the physical displacement; these modal coordinates are time-dependent and capture the

periodic nature of the response. As such, they can be written in the form

qj(t) = A cos(pjt) +B sin(pjt), (4.7)

where pj are constants that depend on the BCs; values for these are typically found numer-

ically. Applying an arbitrary mode shape, φ(x), and the harmonic form in Eq. (4.7) allows

the system equations of motion to be written as

d4φ

dx4
−
p2
j

a2
φ =

d4φ

dx4
− κ4φ = 0, (4.8)

where the variable κ has been introduced so that sin(κx), cos(κx), sinh(κx), and cosh(κx)

are particular solutions to Eq. (4.8), with

κ =
p2
j

a2
=

4

√
p2
jρÂ

EI
. (4.9)

Now, the general solution to Eq. (4.8) allows the j th mode shape to be written as

φ(y) = c1 cos(κy) + c2 sin(κy) + c3 cosh(κy) + c4 sinh(κy). (4.10)

Therefore, to find the mode shapes, it is simply necessary to apply the BCs and solve for the

constants, cn.

4.2.3 Constrained beam considerations
Up until this point, the derivation has been independent of the BCs used. In this section, it

will be demonstrated that those supports which constrain the beam – and, therefore, cause

the beam to stretch – can actually introduce an additional term to the equations of motion,

which is associated with the geometric nonlinearity of the system. In constrained beams, if

the deflection is great enough, the stretching of the beam leads to a non-negligible change in

its geometry. Associated with this is an alteration of the vibration characteristics, particularly

in terms of the natural frequencies. This also introduces a tension force, T , in the equations

of motion, where it had previously been assumed that such a force would be negligible. The

process of finding T begins with the consideration of a small length of beam, denoted ∆s,
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which can be approximated by

∆s ≈
√

∆x2 + ∆w2  
∂s

∂x
=

√
1 +

(
∂w

∂x

)2

. (4.11)

Thus, the stretched beam length, L, is approximated by

L =

∫ `

0

∂s

∂x
dx =

∫ `

0

√
1 +

(
∂w

∂x

)2

dx. (4.12)

By invoking the small deflection assumption, it is possible to apply a Taylor expansion to the

square root, so that Eq. (4.12) can be expressed as

L ≈
∫ `

0

1 +
1

2

(
∂w

∂x

)2

dx = `+
1

2

∫ `

0

(
∂w

∂x

)2

dx. (4.13)

Therefore, the change in length can be written as

L− ` =
1

2

∫ `

0

(
∂w

∂x

)2

dx. (4.14)

Now that a solution for (L−`) has been obtained, it can be applied directly in the calculation

of the tension, T :

T = EÂ
(L− `)

`
=
EÂ

2`

∫ `

0

(
∂w

∂x

)2

dx. (4.15)

Further details on this are given in [9]. The tension force arises due to the updated form of
∂2M
∂x2

(see Eq. (4.2)), which is now given by

∂2M

∂x2
= Fz − P

∂2w

∂x2
. (4.16)

Here, P is the compressive loading of the beam at the BCs, given by P = −T cos(ψ(0)),

where ψ(x) is the rotation at point x. As such, this term can be approximated by P = −T for

relatively small deflections. Further, Fz is used to denote the combined external and internal

forces, which are now expressed as

Fz = −ρÂ∂
2w

∂t2
+ fext, (4.17)
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where fext denotes an external force. Recalling thatM = ∂2w
∂x2

and applying this in Eq. (4.16),

the equation of motion may now be written as

EI
∂4w

∂x4
+ ρÂ

∂2w

∂t2
− EÂ

2`

∫ `

0

(
∂w

∂x

)2

dx
(
∂2w

∂x2

)
= 0. (4.18)

Comparing Eq. (4.18) with the expression in Eq. (4.4), it is possible to note that the third

term of Eq. (4.18) arises as a direct consequence of the constrained BCs and associated

geometric nonlinearities. Applying the Galerkin decomposition from Eq. (4.6), this system

can be rewritten as

EI

∞∑
j=1

d4φj
dx4

qj +ρÂ
∞∑
j=1

φj q̈j−
EÂ

2`

∞∑
j=1

∞∑
i=1

∞∑
k=1

∫ `

0

dφi
dx

dφk
dx

dx
(
d2φj
dx2

)
qiqjqk = 0, (4.19)

where •̈ denotes the second derivative with respect to t. To simplify this equation, one

can make use of the orthogonality of the mode shapes. By multiplying this equation by an

arbitrary mode shape, φn, and integrating across the beam length, the system can be written

as

EI
∞∑
j=1

∫ `

0

d4φj
dx4

φndxqj + ρÂ
∞∑
j=1

∫ `

0

φjφndxq̈j

− EÂ

2`

∞∑
j=1

∫ `

0

[
∞∑
i=1

∞∑
k=1

(∫ `

0

dφi
dx

dφk
dx

dxqiqk

)(
d2φj
dx2

)
qjφn

]
dx = 0.

(4.20)

By considering the various integrals in Eq. (4.20) separately, it is possible to decouple the

system, so that the equation for the nth modal coordinate is given by

q̈n +
EIα4,n

ρÂ`
qn +

Eα2,j

2ρ`2

N∑
i=1

N∑
j=1

N∑
k=1

α2,k,nβi,jqiqjqk = 0, (4.21)
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where N is the order of the truncated model. The α and β terms are defined as follows

∫ `

0

φnφjdx =

`, if n = j,

0, otherwise,∫ `

0

φn
d2φj
dx2

dx = α2,n,j,

∫ `

0

φn
d4φj
dx4

dx =

α4,j, if n = k,

0, otherwise,∫ `

0

dφi
dx

dφj
dx

dx = βi,j.

(4.22)

Therefore, once the mode shapes have been found, it is possible to define the dynamics of

the system in terms of a set of N equations in modal coordinates.

4.2.4 Example: clamped-clamped beam
Initially, the Galerkin methodology will be demonstrated for a relatively simple clamped-

clamped beam (as displayed in Fig. 4.1), a structure which has been widely used across the

literature and, more recently, for M/NEMS. Returning to Eq. (4.10), it is now possible to

apply the BCs associated with this structure. These are given by

φ(0) = 0, φ′(0) = 0, φ(`) = 0, φ′(`) = 0. (4.23)

`

x

z

w(x, t)

Figure 4.1: A diagram of a clamped-clamped beam. The physical coordinates x, z are
defined; it is assumed that the beam only deflects in this plane.

By applying the first two conditions in Eq. (4.10), it can be noted that c3 = −c1 and c4 = −c2.

As such, it is possible to express the mode shape, φ, as
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φ(y) = c1

[
cos(κy)− cosh(κy)

]
+ c2

[
sin(κy)− sinh(κy)

]
. (4.24)

Implementing this updated mode shape in the two remaining BCs, it is now possible to write

φ(`) = c1

[
cos(κ`)− cosh(κ`)

]
+ c2

[
sin(κ`)− sinh(κ`)

]
= 0, (4.25)

φ′(`) = −c1

[
sin(κ`) + sinh(κ`)

]
+ c2

[
cos(κ`)− cosh(κ`)

]
= 0. (4.26)

From either of these equations, it is now possible to express c2 in terms of c1. Choosing

Eq. (4.26), this is given by

c2 = c1
sin(κ`) + sinh(κ`)

cos(κ`)− cosh(κ`)
. (4.27)

This solution for c2 can be applied in Eq. (4.25) to give the transcendental equation

cos(κ`) cosh(κ`) = 1. (4.28)

This equation can now be solved numerically to find values of κ` that correspond to mode

shapes of the structure.

4.2.4.1 A note on numerical precision

The solution of Eq. (4.28) introduces an interesting discussion regarding the numerical ac-

curacy with which it should be solved. In [2], these values are given to 8 decimal places for

the first five modes, with the approximation κ` ≈ 2k+1
2
π for modes k > 5. The rational term

in Eq. (4.27) is also numerically approximated at this level. These values are implemented

in the clamped-clamped beam in Fig. 4.2. It can be seen, for modes 7 and 9, that φ(`) 6= 0,

even though this condition was explicitly imposed.
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Figure 4.2: The first five symmetric mode shapes for the clamped-clamped beam, as found
using the numerical values in [2].
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Further investigation into this artefact is given in Fig. 4.3. Here, instead of the erroneous

approximation of κ for modes k > 5, a numerical solution is used for all modes. As can be

seen, focus is shifted solely to the relationship between the precision of numerical approx-

imation and the accuracy with which the BC is captured. When 5 decimal places are used,

the BC is approximately the same as that for the aforementioned approximation. There is

a substantial increase in the accuracy once this is increased to 10 decimal places, with the

true behaviour being captured once 15 are used. Note that the level of accuracy required

is dependent on the mode shape under consideration, a point which is accounted for in the

remainder of this thesis.

5 d.p.

10 d.p.

15 d.p.

Figure 4.3: Variations in the numerical precision used to derive the seventh mode shape of
the clamped-clamped beam. This figure displays the right-hand end of the beam.

4.2.4.2 Backbone curves and forced responses

Throughout this section, to allow numerical results to be generated, the following param-

eters will be assigned: ` = 0.25 m, E = 193 GPa, I = 10−11 m4, ρ = 8000 kg/m3,

and I = 3 × 10−5 m2. Applying these values, it is possible to obtain the first backbone

curve, and related forced responses, of the system, given in Fig. 4.4; this is achieved through

the numerical continuation of the appropriate equations of motion. It can be seen that the

clamped-clamped beam exhibits a distinct hardening behaviour, caused by the stretching of

the beam that is induced by the constraining of the BCs. This type of behaviour has already

been seen Fig. 3.1, and is common in nonlinear structures. In the following section, a more

complex nonlinear system is introduced, so that more complicated behavioural phenomena

can be investigated.
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Figure 4.4: Backbone curve and a number of forced responses for the clamped-clamped
beam, found using the Galerkin method.

4.3 Investigating modal interactions

4.3.1 Example: pinned-pinned beam with rotational spring
The clamped-clamped beam in the previous section provides an insight into the hysteretic

nature of nonlinear systems, though further interesting, and potentially damaging, behaviour

can be exhibited if the symmetry of the system is broken. To investigate this, the boundary

conditions of the beam are changed. At both ends, the beam will rest upon pinned supports,

so that the displacement is fixed, but the rotation is not. To break the symmetry, a rotational

spring of stiffness k̂ is added at the right-hand end. The schematic for this system is shown

in Fig. 4.5.

w(x, t)

x = 0

k̂

x = `

ρ, Â, E, I

Figure 4.5: Schematic for a pinned-pinned beam with rotational spring at the right-hand tip.

This system has been more thoroughly derived in [159], and the approach taken in that paper
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is summarised here. The equations of motion are now defined by

ρÂ
∂2w

∂t2
+ EI

∂4w

∂x4
−

[
EÂ

2L

∫ `

0

(
∂w

∂x

)2

dx

]
∂2w

∂x2
+ δ(x− `)k̂ψ(`, t) = 0, (4.29)

where ψ(x, t) denotes the rotation of the beam and δ(•) is the Dirac delta function, used here

to represent the fact that there is only a spring at the tip. The spring stiffness, and associated

asymmetry, can be incorporated into the mode shapes of the system, so that the ith mode is

defined by

φi(x) =

√√√√ 2

1− 2EI

k̂`
sin2(κ`)−

(
sin(κ`)

sinh(κ`)

)2

(
sin(κx)− sin(κ`)

sinh(κ`)
sinh(κx)

)
. (4.30)

This result is taken directly from [159], which also defines the solvability condition for κ,

given by

cot(κ)− coth(κ) +
2EIκ

k̂
= 0. (4.31)

By projecting the system onto these mode shapes and applying the Galerkin approximation,

the equations of motion in Eq. (4.30) can be written, in modal coordinates, as

q̈n +
EIα4,n

ρÂ`
qn +

E

2ρ`2

N∑
i=1

N∑
j=1

N∑
k=1

βi,jα2,k,nqiqjqk = 0, (4.32)

where α4,n has been updated to include the linear stiffness provided by the spring. As in

the previous case, the terms denoted α and β are nonlinear coefficients that can be found

by integrating products of mode shapes and their respective derivatives. Depending on the

number of equations included in the model, N , these equations can now easily be solved

either by the analytical methods discussed in Chapter 3 or via numerical continuation. The

latter has been used to create the backbone curves in Fig. 4.6.

In [159], a two-mode model is used and a 1:3 internal resonance is observed, in which energy

is transferred from the first to the second mode. In Fig. 4.6, an expanded modal basis is used

and it can be seen that, as ωr approaches 155 Hz, energy is actually transferred to the third

and fourth mode. However, it should be noted that energy transfer to the former is relatively

minimal.

This interaction between the modes is a behaviour that is not exhibited by the clamped-

clamped beam, as seen in Fig. 4.4. Although not shown here, this absence of internal res-
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Figure 4.6: Modal contributions of the first four modes in the first backbone curve.

onance is also the case for the pinned-pinned beam without the rotational spring (see [9],

for example). It is, therefore, possible to conclude that such an interaction is caused by the

introduction of the symmetry-breaking, rotational spring. Further confirmation of this has

been found by considering a pinned-pinned beam with identical rotational springs at both

ends, which also shows no sign of such an interaction; due to this response and that of the

clamped-clamped beam, it is not shown here.

Given that the only difference in these models is the BCs, it is the terms of Eqs. (4.21)

and (4.32) defined by these expressions that must be investigated. Here, it should be noted

that
EIα4,n

ρÂL
= ω2

n. (4.33)

The only remaining terms to be considered are the nonlinear coupling terms and, in partic-

ular, the α2 and β parameters by which these are defined. The values of α2,i,j and βi,j are

given in Tables 4.1 and 4.2 for the coupling between the first five modes in the pinned-pinned

model, both with and without the rotational spring.

Since the only difference between these systems is the addition of the spring, the nature of

these matrices offers some enlightening insight. This is summarised as follows:

• Although the order of the α2 coefficients are consistent between the two systems, there
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Table 4.1: Parameter values for α2,i,j for i, j ∈ {1, 2, 3, 4, 5}.

Pinned-pinned
8.8877E+09 -3.3059E+09 -2.9327E+09 -2.5354E+09 -2.2060E+09
-3.3059E+09 3.3116E+10 -6.0361E+09 -5.9017E+09 -5.5322E+09
-2.9325E+09 -6.0365E+09 7.2597E+10 -8.6215E+09 -8.7148E+09
-2.5354E+09 -5.9017E+09 -8.6209E+09 1.2732E+11 -1.1143E+10
-2.2060E+09 -5.5322E+09 -8.7155E+09 -1.1143E+10 1.9728E+11

Pinned-pinned with spring
1.5183E+09 2.6873E+09 3.1945E+09 2.7973E+09 1.3608E+09
2.9764E+10 4.0117E+10 2.3824E+10 1.0268E+10 4.4290E+10
2.2281E+10 1.7504E+10 8.0044E+09 2.3590E+10 1.4446E+10
3.0198E+10 2.6464E+09 3.0099E+10 5.4013E+09 2.9842E+10
3.6546E+10 2.7304E+10 3.2184E+10 3.9700E+10 2.7516E+10

Table 4.2: Parameter values for βi,j for i, j ∈ {1, 2, 3, 4, 5}.

Pinned-pinned
4.6050E+01 -1.7129E+01 -1.5195E+01 -1.3137E+01 -1.1430E+01
-1.7129E+01 1.7159E+02 -3.1276E+01 -3.0578E+01 -2.8664E+01
-1.5195E+01 -3.1276E+01 3.7615E+02 -4.4668E+01 -4.5158E+01
-1.3137E+01 -3.0578E+01 -4.4668E+01 6.5967E+02 -5.7735E+01
-1.1430E+01 -2.8664E+01 -4.5158E+01 -5.7735E+01 1.0222E+03

Pinned-pinned with spring
2.6216E+04 4.5241E+04 3.4668E+04 -1.8453E+04 -1.6901E+05
4.5241E+04 7.8698E+04 6.0091E+04 -3.2040E+04 -2.9316E+05
3.4668E+04 6.0091E+04 4.6125E+04 -2.4564E+04 -2.2437E+05
-1.8453E+04 -3.2040E+04 -2.4564E+04 1.3155E+04 1.1940E+05
-1.6901E+05 -2.9316E+05 -2.2437E+05 1.1940E+05 1.0937E+06

are differences in their signs. In particular, in the no-spring system, only the lead

diagonal terms are positive and the others are negative. In the spring case, all of the

terms are positive.

• Furthermore, for each i, it is true that max
j
{|α2,i,j|} = α2,i,i in the classical model, but

this is not necessarily the case once the spring is added.

• The pinned-pinned α2 matrix is symmetric, but the spring removes this symmetry.

• For the β matrix, there is a noticeable difference in the order of the terms, of the

magnitude 102 − 104.

• Once more, the only positive terms are on the lead diagonal for the pinned-pinned

beam, but this is not true of the spring case.

The equivalent terms for the clamped-clamped beam are not given, though all of the prop-

erties of the pinned-pinned model listed here remain true for that case. As previously men-
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Table 4.3: Linear natural frequencies for the clamped-clamped, pinned-pinned, and pinned-
pinned with rotational spring beam configurations.

Mode C-C ωn,k/ωn,1 P-P ωn,k/ωn,1 P-P w/ spring ωn,k/ωn,1
1 1015.1 1 699.6 1 977.0 1
2 2798.3 2.757 2267.0 3.241 3246.8 3.323
3 5485.7 5.404 4730.0 6.761 6470.8 6.623
4 9068.1 8.933 8088.5 11.653 10557.9 10.806
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Figure 4.7: Forced responses for three forcing cases.

tioned, it is a 1:3 internal resonance in the spring beam, so the response frequency of the

second mode is approximately three times that of the first. In fact, as shown in Table 4.3,

ωn,2 is slightly greater than 3ωn,1 for both pinned configurations, and there is minimal differ-

ence between the extent to which this is the case. As such, this highlights the importance of

the nonlinear coupling coefficients, as discussed above.

The influence of the modal interaction on the forced response is presented in Fig. 4.7. The

forcing levels, P, are varied and displayed in the figure, and the damping level across all three

cases is ζ = 1e-3. The forcing in panel (b) is four times that in panel (a), but it can be seen

that the maximum value of q1 is only fractionally greater. This suggests that, for this beam,

the internal resonance introduces some limiting behaviour in the modal displacement, so that

the amount of energy required to reach the higher amplitudes of the fundamental tongue is

greater than in the symmetric case with no rotational spring.
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4.4 Linear, non-classical boundary conditions

4.4.1 Example: cantilever beam with linear compression spring sup-

port
In this section, the procedure for finding the natural frequencies and mode shapes of a can-

tilever beam supported by a linear spring (with spring constant k̂) at the tip, as defined in

[155], is recapped. This is necessary as it provides a useful starting point for the formulation

of beams with nonlinear BCs, as will be shown in Section 4.5.

The clamped end of this beam retains the classical BCs, given by

φ(0) = φ′(0) = 0. (4.34)

Applying these conditions allows Eq. (4.10) to be written in the form

φ(y) = c1(cos(κy)− cosh(κy) + sin(κy)− sinh(κy)) + 2c2(sin(κy)− sinh(κy)) (4.35)

For the linear spring support, the BCs are

φ′′(L) = 0, φ′′′(L) = f = K̂Lφ(L), where K̂L =
kLL

3

EI
. (4.36)

Here, K̂L is the non-dimensionalised linear spring constant. Defining φ as in Eq. (4.35), the

tip BCs can be written as

(cos(κ) + sin(κ) + cosh(κ) + sinh(κ))c1 + 2(sin(κ) + sinh(κ))c2 = 0,

(κ3[− cos(κ)− cosh(κ) sin(κ)− sinh(κ)]

+ K̂L[− cos(κ) + cosh(κ)− sin(κ) + sinh(κ)])c1

− 2(κ3[cos(κ) + cosh(κ)] + K̂L[sin(κ)− sinh(κ)])c2 = 0.

(4.37)

Both of these equations are linear expressions in terms of c = [c1, c2]T , so it is possible to

express this system as

Ac =

 a11 a12

a21 a22

 c1

c2

 =

 0

0

 , (4.38)

where A is defined by the coefficients in Eq. (4.37); for instance, a11 = (cos(κ) + sin(κ) +
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cosh(κ) + sinh(κ)). The system has non-trivial solutions if, and only if,

det A = 0. (4.39)

This equation is defined solely in terms of κ, so it can be solved numerically to define the

natural frequencies and mode shapes. The results of doing so are given in [155].

4.5 Nonlinear, non-classical boundary conditions
The final section of this chapter investigates the behaviour of beam configurations in which

the BCs can not be expressed in terms of a linear function of the displacement and its deriva-

tives. Boundary conditions such as these have a number of practical applications at the

microscale, such as in non-contact atomic force microscopy. In addition, attention will be

given to the influence these have on the natural frequencies and mode shapes of such a beam,

as well as the possible issues that could arise if the linear mode shapes are used. BCs of

this type can be found in systems with magnetic interactions at the tip, beams supported by

springs with nonlinear stiffness, and in M/NEMS, as will be discussed in subsequent chap-

ters.

The methodology proposed here is developed for a beam with two nonlinear BCs. In

reality, it is perhaps more likely that one of them will be linear (clamped or pinned), but the

general case is considered first to demonstrate the applicability of the technique. The BCs

for this beam can be written as

φ′′(0) = φ′′(`) = 0, φ′′′(0) = f0(φ(0)), φ′′′(`) = f`(φ(`)), (4.40)

where f0 and f` are the functions defined by the nonlinear BCs. In the proposed technique,

it is necessary to apply a Taylor expansion to both f0 and f`. If these are assumed to be

truncated at order N0 and N`, respectively, then the only requirements on these functions are

that f0 ∈ CN0 and f` ∈ CN` . Applying these Taylor expansions, it is possible to rewrite the

BCs in Eq. (4.40) as

φ′′(0) = φ′′(`) = 0, φ′′′(0) =

N0∑
m=0

µ0,mφ(0)m, φ′′′(`) =

N∑̀
n=0

µ`,nφ(`)n, (4.41)

where µ0,m and µ`,m denote the coefficients that arise in the respective Taylor expansions of

f0 and f`. By implementing the general form given in Eq. (4.10), the first two equalities in
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Eq. (4.41) can be written as

κ2(c3 − c1) = 0,

κ2(c3 cosh(κ)− c1 cos(κ) + c4 sinh(κ)− c2 sin(κ)) = 0.
(4.42)

Thus, the expressions for c3 and c4 are given by:

c3 = c1,

c4 =
c1(cos(κ)− cosh(κ)) + c2 sin(κ)

sinh(κ)
.

(4.43)

These expressions can be used to define φ(y) using only κ, c1, and c2, so that it is given by

φ(y) = c1

[
cos(κy) + cosh(κy) +

cos(κ)− cosh(κ)

sinh(κ)
sinh(κy)

]

+ c2

[
sin(κy) +

sin(κ)

sinh(κ)
sinh(κy)

]
.

(4.44)

By representing the mode shape functions in this way, it is possible to massively simplify the

polynomial series terms in Eq. (4.41), since the displacements at the boundaries can now be

given by

φ(0) = 2c1, φ(`) = 2(c1 cos(κ) + c2 sin(κ)). (4.45)

Further simplification is possible as the third derivatives can be written as

φ′′′(0) = κ3

[
c1

cos(κ)− cosh(κ)

sinh(κ)
+ c2

sin(κ)− sinh(κ)

sinh(κ)

]
,

φ′′′(`) = κ3

[
c1

(
(cos(κ)− cosh(κ) cosh(κ))

sinh(κ)
+ (sin(κ) + sinh(κ))

)

+ c2

(
sin(κ)

tanh(κ)
− cos(κ)

)]
.

(4.46)

Here, it is possible to note that these expressions take the form λ1
BC(κ)c1 + λ2

BC(κ)c2. There-

fore, their contributions to the polynomial BCs will be linear and the full equations will be

given by

x = 0 : λ1
0c1 + λ2

0c2 =

N0∑
m=0

[ ∑
k1+k2=m

µk1k20 ck11 c
k2
2

]
,

x = ` : λ1
`c1 + λ2

`c2 =

N∑̀
n=0

[ ∑
k1+k2=n

µk1k2` ck11 c
k2
2

]
,

(4.47)
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where the notation µk1k2BC = µBC,k1 has been used. The coefficients λBC are equivalent to

the coefficients of c1 and c2 in Eq. (4.46). The expressions in Eq. (4.47) correspond to the

linear conditions in Eq. (4.38), though tensors are now required, as opposed to matrices.

Similarly to the linear case, it is useful to rewrite these equalities in the form f(c1, c2) = 0.

For Eq. (4.47), this is done by writing

x = 0 :

N0∑
m=0

[ ∑
k1+k2=m

µ̂k1k20 ck11 c
k2
2

]
= 0,

x = ` :

N∑̀
n=0

[ ∑
k1+k2=n

µ̂k1k2` ck11 c
k2
2

]
= 0,

(4.48)

where

µ̂k1k2BC =

µ
k1k2
BC − λ

j
BC if k1 + k2 = 1,

µk1k2BC otherwise.
(4.49)

The linear algebra methods used in the previous section must now be replaced by the non-

linear algebra equivalents. These are thoroughly explained in [220], though it can be noted

that the key difference is that the tensor resultant – an expansion of the matrix determinant

– must now be used. Eq. (4.48) is now a non-homogeneous tensor system, which can be

solved by applying Cramer’s rule [220], which is outlined here.

Initially, it is assumed that (X, Y ) represents a solution to the system in Eq. (4.47). Es-

sentially, this is given by (X, Y ) = (c1, c2), though this will not be immediately implemented

to avoid overcomplicating the discussion. By assuming this solution and applying a dummy

variable, it is possible to rewrite the system in terms of two new variable pairs, namely (z, y)

or (x, z). The variable z is the dummy variable that allows the system to be written in terms

of one of the solutions from (X, Y ). More explicitly, Eq. (4.48) can now be written either as

x = 0 :

N0∑
m=0

[ ∑
k1+k2=m

µ̂k1k20 Xk1zk1yk2

]
= 0,

x = ` :

N∑̀
n=0

[ ∑
k1+k2=n

µ̂k1k2` Xk1zk1yk2

]
= 0,

(4.50)
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or

x = 0 :

N0∑
m=0

[ ∑
k1+k2=m

µ̂k1k20 Y k2xk1zk2

]
= 0,

x = ` :

N∑̀
n=0

[ ∑
k1+k2=n

µ̂k1k2` Y k2xk1zk2

]
= 0.

(4.51)

Eqs. (4.50) and (4.51) are necessarily solved by (z, y) = (1, Y ) and (x, z) = (X, 1), re-

spectively. It can be noted that these systems must both lead to the same overall solution;

therefore, only Eq. (4.50) will be considered from this point forward.

As this derivation considers two independent nonlinear BCs, it is not necessarily true that

N0 = N`. To aid the solution of this system, it is useful to define Nmax = max{N0, N`},

allowing the system to be written as two polynomials of order Nmax:

x = 0 :
Nmax∑
m=0

[
m∑
k=0

µ̂
k,(m−k)
0 X(m−k)

]
z(Nmax−m)ym

=
Nmax∑
m=0

ν
m,(Nmax−m)
0 z(Nmax−m)ym = 0,

x = ` :
Nmax∑
m=0

[
m∑
k=0

µ̂
k,(m−k)
` X(m−k)

]
z(Nmax−m)ym

=
Nmax∑
m=0

ν
m,(Nmax−m)
` z(Nmax−m)ym = 0.

(4.52)

Here, the assumed constant solution, X , is incorporated into the new tensor coefficients, νBC,

to allow a simpler polynomial form to be used. These coefficients are now defined in terms

of c1 and κ. For the polynomial that was originally of a lower order, the coefficients of the

new higher-order terms are zero, but it is beneficial to leave them in as it allows a simpler

resultant expression to be used.

As previously mentioned, nonlinear algebraic systems can be solved through the use of

the resultant, a formal definition of which can be found in [220]. The current procedure

makes use of the fact that Eq. (4.52) comprises only two equations in two variables, each

of order Nmax. For such a system, one simply needs to find the ordinary resultant [221] of

two polynomials in a single variable and can be solved using linear algebra in the following
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fashion [220]

R2|Nmax(ν) = det
2Nmax×2Nmax

(νaug) =

det
2Nmax×2Nmax



ν0,Nmax
0 ν1,Nmax−1

0 . . . νNmax−1,1
0 νNmax,0

0 0 . . . 0

0 ν0,Nmax
0 . . . νNmax−2,2

0 νNmax−1,1
0 νNmax,0

0 . . . 0

. . .

0 0 . . . ν0,Nmax
0 ν1,Nmax−1

0 ν2,Nmax−2
0 . . . νNmax,0

0

ν0,Nmax
` ν1,Nmax−1

` . . . νNmax−1,1
` νNmax,0

` 0 . . . 0

0 ν0,Nmax
` . . . νNmax−2,2

` νNmax−1,1
` νNmax,0

` . . . 0

. . .

0 0 . . . ν0,Nmax
` ν1,Nmax−1

` ν2,Nmax−2
` . . . νNmax,0

`



= 0,

(4.53)

where Rn|s(•) is the tensor resultant of a system, •, of n polynomials of order s, and νaug is

the notation used for the augmented matrix defined in Eq. (4.53). It can now be recalled that

the coefficient tensor νBC is defined in terms of c1 and κ. Given that this model assumes that

the mode shapes of the system will be scaled as the system vibrates, it is possible to obtain

values for κ by setting c1 = 1. In doing so, Eq. (4.53) provides a solvability condition that

can be numerically solved, as has been seen in the linear BC models.

Although a numerical solution to Eq. (4.53) is possible, as Nmax increases, it can become

difficult to ensure the accuracy of the solution to a sufficient number of decimal places.

As such, it can be useful to express this large determinant in terms of elementary, 2 × 2

determinants, called Plücker relations, as outlined in [220].

4.5.1 Example: nonlinear spring-supported beam
To further assess the ability of the proposed method for treating nonlinear BCs, it is useful

to consider a model in which both BCs are nonlinear. To that end, the following beam

configuration is introduced, in which both ends of the beam are supported by springs with

linear, quadratic, and cubic stiffnesses. Although the consideration of this beam may seem

somewhat theoretical, in reality, it can simply be thought of as an investigation into the
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applicability of the method, giving insight into its validity for more complicated systems.

In particular, there are multiple microscale BCs that can easily arise, and this methodology

introduces an efficient way of investigating the associated dynamics. The BCs for this beam

are given by

φ′′(0) = φ′′(`) = 0, φ′′′(0) = K̂
(0)
1 φ(0) + K̂

(0)
2 φ(0)2 + K̂

(0)
3 φ(0)3,

φ′′′(`) = K̂
(`)
1 φ(`) + K̂

(`)
2 φ(`)2 + K̂

(`)
3 φ(`)3,

(4.54)

where K̂(x)
n defines the nth-order spring stiffness at x.

By first addressing the second derivative BCs, it is possible to rewrite the mode shape

equation in Eq. (4.10) as

φ(y) = c1

(
cos(κy) + cosh(κy) +

[
cos(κ)

sinh(κ)
− coth(κ)

]
sinh(κy)

)
+c2

(
sin(κy) +

sin(κ)

sinh(κ)
sinh(κy)

)
.

(4.55)

The BCs defined in Eq. (4.54) take the exact form given in Eq. (4.41), so the derivation

is qualitatively identical to the general form given in Section 4.5 and is not repeated here.

Instead, it is possible to immediately consider the system in the form given in Eq. (4.52).

Once more, the coefficients in ν0 and ν` are complicated expressions in terms of K̂(x)
n and κ,

but can be easily treated using symbolic mathematical solvers, such as Wolfram Mathematica

or Maple. The explicit terms for these are as follows:

ν0,3
0 =

[
2K̂

(0)
1 + κ3

(
coth(κ)− cos(κ)

sinh(κ)

)]
X + 4K̂

(0)
2 X2 + 8K̂

(0)
3 X3,

ν1,2
0 = κ3

(
1− sin(κ)

sinh(κ)

)
,

ν2,1
0 = 0,

ν3,0
0 = 0,

ν0,3
` = (2K̂

(`)
1 cos(κ) + κ3[(cosh(κ)− cos(κ)) coth(κ)− sin(κ)− sinh(κ)])X

+ 4K̂
(`)
2 cos2(κ)X2 + 8K̂

(`)
3 cos3(κ)X3,

ν1,2
` = κ3(cos(κ)− sin(κ) coth(κ)) + 2K̂

(`)
1 sin(κ) + 8K̂

(`)
2 sin(κ) cos(κ)X

+ 24K̂
(`)
3 sin(κ) cos2(κ)X2,

ν2,1
` = 4K̂

(`)
2 sin2(κ) + 24K̂

(`)
3 sin2(κ) cos(κ)X,

ν3,0
` = 8K̂

(`)
3 sin3(κ).

(4.56)
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The expressions in Eq. (4.56) are more algebraically complicated than in previous exam-

ples, leading to a resultant that can be particularly intensive to solve numerically. As an

initial investigation into the validity of the proposed methodology, it is useful to consider

the symmetric case of this beam, so that it may be compared to the classical free-free and

pinned-pinned models. To that end, the beam stiffnesses will be set to K̂(0)
n = K̂

(`)
n = K̂n,

with the value of these constants being varied so that the classical cases can be approached.

To aid this investigation, a single parameter, γ, will be used to express the spring stiffnesses

as

K̂1 = γ, K̂2 = 10γ, K̂3 = 100γ. (4.57)
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Figure 4.8: Normalised mode shapes of the first mode of the nonlinear spring-supported
beam for γ ∈ [1e-9, 1e-6, 1e-3, 1].

Figs. 4.8–4.10 display the first, second, and third mode shapes, respectively, for a number of

values of γ. Namely, these are γ ∈ [1e-9, 1e-6, 1e-3, 1]. As γ → ∞, it is expected that the

behaviour should become increasingly similar to that of the pinned-pinned beam. This trend

is visible in Figs. 4.8–4.10, in which, for the case γ = 1, the mode shapes are very close

to those expected from the fully pinned beam. Interestingly, although the beam tip supports

are symmetric, the positions of the tips in the mode shapes are not. This suggests that the

variable position of the beam tips allows the beam stiffness to influence the symmetry of

the modes. This holds true even when the spring stiffnesses are extremely high. However, it
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Figure 4.9: Normalised mode shapes of the second mode of the nonlinear spring-supported
beam for γ ∈ [1e-9, 1e-6, 1e-3, 1].

should be noted that, as γ is increased, they become closer to one another, suggesting that the

pinned-pinned beam represents an upper limit case for this configuration. At the other end

of the scale, one might expect the behaviour to tend to that of a free-free beam. However, it

can be seen that the spring stiffnesses still have a significant influence. In fact, these shapes

are qualitatively similar to those found if the spring-supported beam is assumed to be rigid,

as there is negligible bending of the beam when γ = 1e-6 or 1e-9.

The influence that the value of γ has on the free response of the system is investigated

in Fig. 4.11 through the consideration of the backbone curves for γ ∈ [1e-9, 1e-6, 1e-3]. As
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Figure 4.10: Normalised mode shapes of the third mode of the nonlinear spring-supported
beam for γ ∈ [1e-9, 1e-6, 1e-3, 1].

expected, the extent to which the system behaves nonlinearly increases with γ. Not only does

the variation in frequency at higher amplitudes become more pronounced, but interactions

between the modes also arise. In the previous section, it was noted that the introduction of a

rotational spring at one end of a pinned-pinned beam leads to substantial changes in the α and

β matrices, causing internal resonances to arise. In the current arrangement, the beam itself

is symmetric. Therefore, it might understandably be assumed that it is unlikely that such a

resonance would occur. However, the asymmetric nature of the mode shapes has a similar

effect on the γ and β matrices. As such, it should be concluded that, in the initial discussion
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Figure 4.11: Backbone curves for the spring-supported beams with γ ∈ [1e-9, 1e-6, 1e-3].

and prediction of modal interactions, it is important that the mode shapes are calculated, as

opposed to simply considering the system configuration.

4.5.2 Example: cantilever beam with magnetic tip interaction
An immediate application of this method is to a beam configuration with a magnetic interac-

tion at the tip. In this example, the magnet at the tip is aligned with an iron stator, at distance

D from the beam tip. In this approximate model, the magnet and stator will be assumed to

be covered by equally-distributed ideal charges. The stator charges facing the beam will be

opposite to those of the magnet at the tip, so that the interaction is attractive. This example

is illustrated in Fig. 4.12.

Stator

Beam hb

hs

w di,j

δi

δj

qi

qj

D

Figure 4.12: Schematic of a cantilever beam with a spring support at the free end.

Due to the complex nature of this BC, it is necessary to make a number of assumptions to

investigate its dynamics. A summary of these is given here:

• The deflection of the beam will be small and, therefore, can be approximated as a pure
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translation.

• Therefore, the faces of both magnet and the stator will always be parallel.

• Only the face of the stator facing the magnets is responsible for the attractive force.

• The magnetic properties of the magnet are concentrated at the face parallel to the stator.

• The attractive forces between the magnet and the stator are Coulomb-like in nature, so

that FM ∝ 1
d2ij

.

We now consider two charges, qi and qj , which are from the beam and stator, respectively;

these points are denoted by the red dots in Fig. 4.12. The attractive force between these

charges is given by

Fi,j =
Km

|di,j|3
di,j, (4.58)

where Km is a constant that accounts for the characteristics of the magnets and di,j is the

radius vector applied from the ith charge to the j th charge. It can be seen, in Fig. 4.12, that

the distance between these charges is given by

di,j =
√
D2 + (w + δi + δj)2, (4.59)

where δi denotes the distance of charge qi from the vertical centre of the beam and δj is the

equivalent for charge qj , as depicted in Fig. 4.12. Therefore, Eq. (4.58) can now be expressed

as

Fi,j = Km

[
D

(D2 + (w + δi + δj)2)
3
2

i +
w + δi + δj

(D2 + (w + δi + δj)2)
3
2

j

]
, (4.60)

where i and j are unitary vectors that are orthogonal to and parallel to the vertical motion,

respectively. The i-direction term in Eq. (4.60), although typically of greater magnitude

than the parallel term, is largely counterbalanced by the longitudinal stresses in the beam.

Therefore, its effect on the lateral displacement of the beam is small compared to the parallel

term. As such, it is possible to neglect the orthogonal term and focus solely on the force

component that is parallel to the motion of the beam.

Up until this point, the magnetic force calculations have considered the interaction be-

tween a single charge from each magnet. Considering that this type of interaction occurs

between any such pair, it is necessary to calculate the net force that arises due to the mag-

netic BC. To do this, we integrate in the j-direction in Eq. (4.60) over the width of both the
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beam and the stator:

FM(w) = Km

∫ hb/2

−hb/2

∫ hs/2

−hs/2

w + δi + δj√
D2 + (w + δi + δj)2

dδjdδi. (4.61)

Here, hb and hs are the width of the beam and stator, respectively. It is possible to consider

this double integral analytically, resulting in the following expression

FM(w) = Km log

[(
hs + hb − 2w +

√
4D2 + (hs + hb − 2w)2

)(
hs − hb − 2w +

√
4D2 + (hs − hb − 2w)2

)
×
(
hs − hb + 2w +

√
4D2 + (hs − hb + 2w)2

)(
hs + hb + 2w +

√
4D2 + (hs + hb + 2w)2

)]. (4.62)

Now that the tip forces have been quantified, it is possible to write the BCs for this system as

φ(0) = φ′(0) = φ′′(`) = 0, φ′′′(`) = FM(φ(`)). (4.63)

Therefore, we now have a classical, clamped BC at the left end and a nonlinear BC at the

right, as alluded to at the beginning of this section. As suggested in the previous section,

since FM ∈ C∞, the function can be approximated through the use of a Taylor expansion.

Due to the symmetry of the system, the coefficients of the even powers of φ(w) are seen to

be zero, FM can be approximated by

FM(φ(w)) = K1φ(w)−K3φ(w)3 +K5φ(w)5 − . . . , (4.64)

where Kn are the coefficients that arise in the Taylor expansion about the equilibrium point,

φ(w) = 0. By truncating the expression in Eq. (4.64), this model can be considered as

an expansion of the linear spring-supported cantilever in [155], where, now, the supporting

spring has higher order stiffness terms. In the subsequent calculations, the cubic truncation

of Eq. (4.64) are utilised.

Given that the BCs at x = 0 are linear, it is immediately possible to recall, from

Eq. (4.35), that the mode shape can be parametrised as

φ(y) = c1(cos(κy)− cosh(κy) + sin(κy)− sinh(κy)) + 2c2(sin(κy)− sinh(κy)). (4.65)
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Considering the BCs at x = ` leads to the equations

(
cos(κ) + sin(κ) + cosh(κ) + sinh(κ)

)
c1 + 2

(
sin(κ) + sinh(κ)

)
c2 = 0,(

κ3
[
− cos(κ)− cosh(κ) + sin(κ)− sinh(κ)

]
+ K̂L

[
− cos(κ) + cosh(κ)− sin(κ) + sinh(κ)

])
c1

− 2
(
κ3
[

cos(κ) + cosh(κ)
]

+ K̂L

[
sin(κ)− sinh(κ)

]
)c2

+ (
[

cos(κ) + sin(κ) + cosh(κ) + sinh(κ)
]
c1 + 2[sin(κ) + sinh(κ)]c2

)3
= 0.

(4.66)

Expanding this expression, it is possible to collect the cn terms, so that the system can be

written as

0 = σ1
0c1 + σ2

0c2,

µ111
` c3

1 + µ112
` c2

1c2 + µ122
` c1c

2
2 + µ222

` c3
2 = σ1

` c1 + σ2
` c2,

(4.67)

where σiBC and µijkBC are the collected coefficients from Eq. (4.66). Although it is possible to

find the resultant of this tensor system, the process is aided by introducing dummy terms to

the first of these equations, so that the system is written as

µ111
0 c3

1 + µ112
0 c2

1c2 + µ122
0 c1c

2
2 + µ222

0 c3
2 = σ1

0c1 + σ2
0c2,

µ111
` c3

1 + µ112
` c2

1c2 + µ122
` c1c

2
2 + µ222

` c3
2 = σ1

` c1 + σ2
` c2,

(4.68)

where µijk0 are dummy coefficients that allow Eq. (4.67) to be written in the form given in

Eq. (4.47). By introducing the change in notation given in Eqs. (4.48) and (4.49), Eq. (4.68)

can be written as

µ̂111
0 c3

1 + µ̂112
0 c2

1c2 + µ̂122
0 c1c

2
2 + µ̂222

0 c3
2 = 0,

µ̂111
` c3

1 + µ̂112
` c2

1c2 + µ̂122
` c1c

2
2 + µ̂222

` c3
2 = 0,

(4.69)

It has been seen that, by assuming that (c1, c2) = (X, Y ) is a solution to this system, it is

possible to express it in the following homogeneous form

(µ̂111
0 X3)z3 + (µ̂112

0 X2)z2y + (µ̂122
0 X)zy2 + (µ̂222

0 )y3 = 0,

(µ̂111
` X3)z3 + (µ̂112

` X2)z2y + (µ̂122
` X)zy2 + (µ̂222

` )y3 = 0,
(4.70)

which is solved by (z, y) = (1, Y ). As such, the solvability condition for this system is found
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by calculating

R2|3(µaug) =

det



µ̂111
0 X3 µ̂112

0 X2 µ̂122
0 X µ̂222

0 0 0

0 µ̂111
0 X3 µ̂112

0 X2 µ̂122
0 X µ̂222

0 0

0 0 µ̂111
0 X3 µ̂112

0 X2 µ̂122
0 X µ̂222

0

µ̂111
` X3 µ̂112

` X2 µ̂122
` X µ̂222

` 0 0

0 µ̂111
` X3 µ̂112

` X2 µ̂122
` X µ̂222

` 0

0 0 µ̂111
` X3 µ̂112

` X2 µ̂122
` X µ̂222

`


= 0.

(4.71)

Although somewhat complicated, Eq. (4.71) can be solved through the use of algebraic soft-

ware. As previously discussed, it it useful to utilise the Plücker relations to simplify this

expression. For a system of two cubic polynomials, this is given by [220]

R2|3(µ) = U3
3 − U2U3U4 + U2

2U5 − 2U1U3U5 − U1V3U5, (4.72)

where

U1 =

∣∣∣∣∣∣
∣∣∣∣∣∣ µ̂

122
0 X µ̂222

0

µ̂122
` X µ̂222

`

∣∣∣∣∣∣
∣∣∣∣∣∣ , U2 =

∣∣∣∣∣∣
∣∣∣∣∣∣ µ̂

112
0 X2 µ̂222

0

µ̂112
` X2 µ̂222

`

∣∣∣∣∣∣
∣∣∣∣∣∣ ,

U3 =

∣∣∣∣∣∣
∣∣∣∣∣∣ µ̂

111
0 X3 µ̂222

0

µ̂112
` X3 µ̂222

`

∣∣∣∣∣∣
∣∣∣∣∣∣ , V3 =

∣∣∣∣∣∣
∣∣∣∣∣∣ µ̂

112
0 X2 µ̂122

0 X

µ̂112
` X2 µ̂122

` X

∣∣∣∣∣∣
∣∣∣∣∣∣ ,

U4 =

∣∣∣∣∣∣
∣∣∣∣∣∣ µ̂

111
0 X3 µ̂122

0 X

µ̂112
` X3 µ̂122

` X

∣∣∣∣∣∣
∣∣∣∣∣∣ , U5 =

∣∣∣∣∣∣
∣∣∣∣∣∣ µ̂

111
0 X3 µ̂112

0 X2

µ̂112
` X3 µ̂112

` X2

∣∣∣∣∣∣
∣∣∣∣∣∣ .

(4.73)

4.5.2.1 Results

As an initial investigation, the following system parameters will be used: ` = 0.25 m, E =

193 GPa, I = 10−11 m4, and ρ = 8000 kg/m3. Both the beam and the stator will have height

hb = hs = 0.002 m and width wb = ws = 0.015 m, resulting in Â = 3 × 10−5 m2. The

distance between the beam and the stator will be set toD = 0.04 m and we chooseKM = 10.

Fig. 4.13 shows the first, second, and third mode shapes for the cantilever beam with
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magnetic BC at the tip. Three approximations for FM are utilised; namely, these are

Free: FM(φ(w)) = 0,

Linear: FM(φ(w)) = K1φ(w),

Cubic: FM(φ(w)) = K1φ(w)−K3φ(w)3.

(4.74)

It can clearly be seen that each of these cases represents a truncation of the Taylor series for

FM .
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Figure 4.13: Normalised mode shapes for the first mode of the clamped-free, clamped-
pinned, and clamped-spring support beams.
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The mode shapes presented in Fig. 4.13 provide interesting insight into the variations in the

model, should the system nonlinearity be included in the BCs, as opposed to simply the

equations of motion. The disparity between the free, linear, and cubic approximations are

noticeable across all three modes presented here (as well as those that are not shown), though

these are most distinguishable for the first. Here, it can be seen that, while the linear trunca-

tion is close to the classical clamped-free mode shape, the cubic truncation is much closer to

that of the clamped-pinned configuration, which is also shown for comparative purposes. The

fact that both the free and linear cases are so dissimilar to the cubic approximation indicates

that there are potentially concerning implications of using either of these approximations as

a modal basis. That is, by either omitting the magnetic interaction from the modal calcula-

tions entirely, or by truncating it prematurely, the system could be vibrating in a shape that

is considerably different to that predicted.

Of further interest is the fact the linear mode shapes approach those of the free cantilever

as the mode number increases, suggesting that the influence of the magnetic BC is lost for

higher modes. In contrast, this is not true for the cubic approximation, which remains close

to the pinned cantilever model, but without approaching it. To investigate this further, it is

useful to define a projection mode shape matrix for each mode number, n. This matrix is

simply comprised of the nth mode shape for the free and pinned cantilever, so that the relative

contribution of each can be assessed. The matrix is given by:

Φcomb,n =
[
φfree,n, φpinned,n

]
, (4.75)

where φBC,n is the nth mode shape of a particular BC. Therefore, by pre-multiplying the mag-

netic mode shapes in Fig. 4.13 by the pseudo-inverse of Φcomb,n, it is possible to assess the

relative contribution of each classical BC. The results of doing so are presented in Table 4.5.

Table 4.4: Relative contributions of the free and pinned cantilever mode shapes in the mag-
netic tip model.

Approximation Projection Model Mode Number
1 2 3

Linear
Free 0.9921 0.9964 0.9993
Pinned 0.0079 0.0036 0.0007

Cubic
Free 0.1389 0.1227 0.1546
Pinned 0.8611 0.8773 0.8454

Table 4.4 provides support for a number of the points presented thus far. In particular, it can

be seen that there is a large contribution of the free mode shape in the linear case, with the
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same being true of the pinned mode shape in the cubic case. Furthermore, it can be seen that

the contribution of φfree,n in φlinear,n grows as n is increased, whereas this is not true for the

cubic BC expansion.

This difference in the mode shapes directly corresponds to a variation in their natural

frequency, as displayed in Table 4.5. This is potentially more significant than the aforemen-

tioned issue regarding the shape of vibration. This comparison suggests that, by neglecting

the influence of the cubic nonlinearity, the first natural frequency of the system could be over

three times greater than predicted.

Table 4.5: Natural frequencies of the approximations of the cantilever with magnetic tip BC.

Approximation ωn,1 ωn,2 ωn,3
Free 159.53 999.76 2799.4
Linear 174.80 1002.3 2800.3
Cubic 664.58 2146.2 4471.9
Pinned 699.56 2276.0 4730.0

The variation in mode shapes and natural frequencies can be observed in the free and forced

responses. The nature of these responses in a neighbourhood of the first natural frequency

are displayed in Fig. 4.14. Not only does the varying nature of ωn,1 change the frequency at

which the backbone curves initiate, but it can be seen that the changes in the mode shapes

influence the modal interaction behaviour which is predicted. The classical cantilever is

completely linear, due to the lack of constraining and associated stretching. In the consid-

ered region, the linear truncation predicts a weak softening behaviour, in contrast with the

hardening behaviour predicted by including the cubic term of the Taylor expansion. In addi-

tion, the linear approximation fails to predict the 1:3 modal interaction that is revealed in the

higher-order model.

The importance of capturing modal interactions is highlighted in Fig. 4.15. Here, it

can be seen that the transfer energy from the first to the second mode leads to a significant

increase in its modal displacement. In can be further noted that this remains true away from

the initial interaction. Therefore, for any higher amplitude response in this region, there will

be a contribution of the second mode to the overall displacement.
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Figure 4.14: Free and forced responses for the considered beam configurations.
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Figure 4.15: Modal projections of the forced response when P = 3e-1.
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4.6 Summary
This chapter introduces and examines the Ritz-Galerkin method as a tool for modelling the

nonlinear dynamical behaviour of beams. Since the focus of this thesis is on weakly nonlinear

systems, Euler-Bernoulli beam theory is used to define the underlying beam equations to

which the Galerkin approximation can be applied. It has been demonstrated, through the

consideration of a number of configurations, that a standardised approach can be taken, with

the only variation in the models resulting from the differences in their BCs. A primary focus

of this chapter is the influence that these BCs have on the dynamics of the system and the

best methodology for incorporating them into the equations of motion. This is particularly

important for constrained beams, in which axial stretching results in cross-coupling terms

between the modes, as these are defined entirely in terms of the mode shapes and, therefore,

the BCs.

Of primary concern for nonlinear systems is the possibility that energy can be transferred

between the modes as a result of an internal resonance. In §4.2.4, it has been shown that, al-

though the clamped-clamped system exhibits a hardening nonlinearity at higher amplitudes,

there is no modal interaction involving the first mode. It has been posited that this is a result

of the symmetry of the system. To investigate this further, a pinned-pinned beam with rota-

tional spring at the tip is also examined. With the symmetry broken, there is a 1:3 internal

resonance between the first and second modes, which manifests as a tongue on the backbone

curves. As such, the influence of the modal interactions on the forced response is entirely

dependent on the balance between the forcing and damping levels. When the latter of these

dominates, the amplitude at which the interaction occurs is not reached, so the system sim-

ply exhibits the hardening behaviour seen in the clamped-clamped case. As the interaction

region is approached, a damping effect is introduced, increasing the forcing level at which

the modal interaction is overcome.

As has already been established, there is a causal link between the BCs and the occur-

rence of modal interactions, which is captured by the cubic cross-coupling terms that arise in

the equations of motion. These terms are defined as part of the Galerkin procedure and are

calculated by taking integrals of products of particular derivatives of the mode shapes. By

comparing the pinned beam with rotational spring with the unaugmented pinned beam, it is

possible to give further insight into this discussion. It has been seen that the ratio ωn,2/ωn,1

is very similar between the two models, with values of 3.323 and 3.241, respectively. Given

that no modal interaction is seen in the classical model, it can be concluded that the modal
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ratio alone is not enough to predict an internal resonance. To aid this process, the α and β

matrices have been considered, with attention given to the qualitative differences between

them. A number of points have been made in §4.3, though chief among these is the observa-

tion that, in the classical case, all values of α2,i,j are negative, unless i = j.

An updated version of the Galerkin approximation for beams is used to treat complicated

BCs in this chapter. Motivated by the need for an accurate methodology to investigate the

complex BC interactions that can occur in microscale structures, this procedure assumes that

the BC force function can be accurately represented by a Taylor expansion. By doing so, it

is possible to reduce the solvability condition to a tensor resultant. The application of this

procedure has been illustrated initially through the investigation of a beam with both tips sup-

ported by identical, nonlinear springs. Despite its symmetry, the mode shapes of the system

are asymmetric. At lower spring stiffnesses, the behaviour of the first mode is qualitatively

similar to the spring-supported, rigid beam, whereas the behaviour converges to that of the

fully pinned beam at higher stiffness values. This system also introduces an interesting case

in which the symmetric structure exhibits similar internal resonance behaviour to that in the

aforementioned non-symmetric beams, due to the asymmetry of the mode shapes.

In §4.5.2, this novel method is explored using a cantilever beam with a nonlinear, mag-

netic BC at the tip. Particular attention has been given to the impact of including the magnetic

force in the BC, as opposed to in the equations of motion. This effect has been shown to be

significant, changing both the shape and frequencies of vibration. Furthermore, when ei-

ther the modal basis of the free cantilever or the linear truncation of the magnetic BC was

used, the 1:3 modal interaction in the model was not captured. Finally, the importance of

these modal interactions has been demonstrated, as higher amplitudes of vibration include

modal contribution from the second mode, even when the frequency has moved away from

the modal interaction region.



Chapter 5

Non-intrusive reduced-order modelling

In this chapter:

• The Implicit Condensation and Enforced Displacement reduced-order modelling tech-

niques are introduced and assessed.

• The methods are applied to discrete systems to illustrate the differences in their ap-

proach, as well as to investigate the trends that arise in their application to a well-

defined system.

• A cubic-order Galerkin model is used as a full nonlinear system to examine these

trends in a continuous model.

• Higher-order nonlinear terms are then included in both the discrete and the continuous

model, allowing the investigation of a case in which the order of the reduced-order

model nonlinearities is lower than that of the full model.

5.1 Introduction
In the examples shown up to this point, the nonlinear components of the equation of motion

have been well-defined, in that they are simply polynomial expressions in terms of the system

displacements. When more complex structures are considered, this is not necessarily the

case. The size and intricacy of mesh required to fully capture the physics of the system

can lead to a significantly increased number of DOFs. Furthermore, while it is technically

possible to use analytical finite element techniques to model such a system, for the most part,

this will be prohibitively cumbersome. As such, it can be necessary to utilise bespoke finite

115
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element software to develop the full model. Doing so allows a much simpler treatment of

complex mechanical structures, but can require substantial computational expense when fine

meshes or large systems are investigated.

As well as this increase in calculation time, there is also another drawback for nonlinear

structures, as the full methodology used by commercial finite element software to calcu-

late nonlinear behaviour is, typically, not provided to the user. When the source code of

the software is available, it is possible to create an intrusive or direct ROM, as discussed in

Chapter 2. For most commercial software, however, this information is inaccessible and a

non-intrusive or indirect ROM technique is required; a useful overview of such methods is

given in [56]. Broadly speaking, these non-intrusive ROM methods use a series of repre-

sentative, static cases to approximate the nonlinear behaviour as a polynomial in terms of

the modal displacements. Given that the evaluation of static cases is commonly available

in commercial finite element software these techniques can be used in conjunction with any

such programme or nonlinear solver.

The overarching aim of these indirect methods is to find an analytical approximation

for the force-amplitude relationship of the structure. It follows that there are two obvious

ways in which this can be achieved. Either a known set of displacements can be applied

to the structure and the forces can be measured, known as the Enforced Displacement (ED)

method, or vice versa, known as the Implicit Condensation (IC) method. In both methods,

the nonlinear component of the ROM is approximated by a cubic-order polynomial. This

assumption appears logical because, as shown in the previous chapters of this thesis, it is

possible to capture a wide variety of nonlinear structural behaviour with such terms.

An overview of the development and, in particular, the application of these methods has

been presented in Chapter 2, but they are more comprehensively defined in §5.2. Typically,

the methodology with which commercial packages treat geometrically nonlinear structures

is not know by the user. Thus, the purpose of these techniques is to allow this to be approxi-

mated using polynomial expressions. However, to further the fundamental understanding of

these techniques, this chapter sees their application to analytical systems, so that any uncer-

tainty pertaining to the opaque nature of finite element software is removed. In §5.3, 2- and

3DOF lumped-mass systems with cubic nonlinearities are considered, and this discussion is

extended to a Galerkin model in §5.4. In both sets of examples, the order of the nonlinearity

is cubic and, therefore, the same as that in the ROMs. Although this provides useful insight,



5.2. OVERVIEW OF CONSIDERED TECHNIQUES 117

§5.5 expands these models up to quintic order, so that the ROM techniques are forced to con-

dense the higher-order behaviour in a manner that may more closely mirror the application

to software-based models.

Publications resulting from this work
Tartaruga, I., Elliott, A. J., Cammarano, A., , Hill, T. L., and Neild, S. A. (2019). The

effect of nonlinear cross-coupling on reduced-order modelling. International Journal of

Non-Linear Mechanics, 116:7-17.

– This paper applies the IC and ED method to three systems, two of which is discrete, the

other is a continuous Galerkin model of a beam structure. This allowed the true values

of the nonlinear coefficients to be know and compared to those found using the two ROM

techniques. Discussions related to this work are presented throughout this chapter.

5.2 Overview of considered techniques
As mentioned above, the focus of this chapter will be on indirect ROM methods, as their

compatibility with commercial FE software has led to their wide application across the liter-

ature. Namely, the techniques under consideration are the previously-discussed IC and ED

methods, both of which apply a series of static cases and use regression analysis to approxi-

mate the nonlinear components, as will be outlined in this section.

These methods begin with the assumption that the equations of motion for the system

can be written as

Mẍ + Cx + Kx + FNL(x) = F, (5.1)

where, once more, M, C, and K are the linear mass, damping, and stiffness matrices, re-

spectively. F is an external force and FNL denotes the function defining the nonlinearity of

the model, in terms of displacement x. This latter function is defined by the full FE model

and, therefore, its form is not necessarily known by the user. As such, it is FNL which is

approximated in these non-intrusive methods.

In order to allow the size of the model to be reduced, it is important to project the phys-

ical equations of motion in Eq. (5.1) onto a modal basis, defining x = Φq. This step is

particularly important in the development of ROMs as it is the reduction of the modal basis,

Φ, which allows the model to be reduced. The columns of Φ – that is, the individual mode
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shapes, φk – and the corresponding linear natural frequencies, ωn,k, must necessarily solve

the eigenvalue problem (K − ω2
n,kM)φk = 0. The eigenvectors are then mass-normalised,

so that ΦTMΦ = I. Now, by implementing the modal projection and premultiplying the

expression in Eq. (5.1) by ΦT , the modal equations of motion are given by

q̈ + Λq + FNL,q(q) = Fq. (5.2)

Here, Λ is the mass-normalised, modal stiffness matrix, as defined in Chapter 3 and FNL,q

and Fq are the modal projections of the nonlinear and external forces, respectively. As

with the physical nonlinear force, FNL,q is not necessarily known, such as in the case where

commercial software is used to define the full model. To overcome this issue, it is useful to

assume that the function can be accurately approximated by a polynomial, similar to the Tay-

lor expansion applied in §4.5. Therefore, the nth modal equation in Eq. (5.2) is approximated

by

q̈n + ω2
nqn +

N∑
i=1

N∑
j=1

N∑
k=1

A
(n)
ijkqiqjqk +

N∑
i=1

N∑
j=1

B
(n)
ij qiqj = Fq,n, (5.3)

where the A and B terms are the coefficients of the cubic and quadratic terms in the expan-

sion, respectively. Further, these coefficients are the only parameters in Eq. (5.3) which are

not necessarily defined by the full model. It is at this stage that the aforementioned static

cases are applied. In doing so, the q̈n term becomes zero, and the qn and Fq,n are simply

numerical values, meaning that Eq. (5.3) is reduced to a linear equation in A and B, and

each load case gives rise to a system of N such equations. As there are multiple summations

in these expressions, the number of unknown coefficients exceeds N . Thus, it is necessary

to impose a number of these static cases, so that regression analysis can be applied. In [60],

it has been shown that the number of quadratic and cubic coefficients (denoted N2 and N3,

respectively) are given by

N2 =


1 if N = 1,

3 if N = 2,

N +
(
N
2

)
if N ≥ 3,

N3 =


1 if N = 1,

4 if N = 2,

N2 +
(
N
3

)
if N ≥ 3.

(5.4)
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The values in Eq. (5.4) represent upper limits to the number of unique coefficients. In fact,

it is possible to reduce this number by considering the energy of the system, achieved here

through the use of its Lagrangian. This is defined by the function L = T −U , where L is the

Lagrangian, T is the kinetic energy, and U is the potential energy. Considering Lagrange’s

equation for the nth mode, given by

d

dt

(
∂L

∂q̇n

)
− ∂L

∂qn
= 0, (5.5)

the following equation is obtained

L =
1

2
m1q̇

2
1 +

1

2
m2q̇

2
2 −

1

2
k1q

2
1 −

1

2
k2q

2
2 − κ1q

4
1 − κ2q

4
2

− λ1q
3
1q2 − λ2q1q

3
2 − µq2

1q
2
2 − ν1q

3
1 − ν2q

3
2 − ξ1q

2
1q2 − ξ2q1q

2
2.

(5.6)

Here, the mn and kn represent the nth mass and stiffness terms, respectively. The κ, λ, µ, ν,

and ξ terms denote the coefficients of the various polynomial terms that arise in the expansion

of Lagrange’s equation. This expression can be applied, for both modes, in Eq. (5.5). The

resulting expressions are then given by

m1q̈1 + k1q1 + 4κ1q
3
1 + 3λ1q

2
1q2 + 2µq1q

2
2 + λ2q

3
2 + 3ν1q

2
1 + 2ξ1q1q2 + ξ2q

2
2 = 0, (5.7)

m2q̈2 + k2q2 + λ1q
3
1 + 2µq2

1q2 + 3λ2q1q
2
2 + 4κ2q

3
2 + ξ1q

2
1 + 2ξ2q1q2 + 3ν2q

2
2 = 0. (5.8)

Comparing these expressions with Eq. (5.3), it is possible to deduce the following relation-

ships between the nonlinear coefficients

A
(1)
112 = 3A

(2)
111 = 3λ1, A

(1)
122 = A

(2)
112 = 2µ, 3A

(1)
322 = A

(2)
122 = 3λ2,

B
(1)
12 = B

(2)
11 = 2η1, 2B

(1)
22 = B

(2)
12 = 2η2.

(5.9)

5.2.1 Reduced-order modelling techniques
The static cases that determine the nonlinear coefficients are defined by linear combinations

of the N mode shapes in the ROM basis. In any of these cases, the nth mode can give a

contribution of magnitude aN in either the positive or negative direction, or not be included.

Thus, the static case will take the form

σ = a1φ1 + · · ·+ aNφN . (5.10)
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Note that σ defines a modal shape, which could either be applied as a force or a displacement,

depending on which method is used; this will be further reflected in the definition of the

scaling factors, ak. Now, the number of prescribed static cases can be given by

Nstatic = 3N − 1, (5.11)

where N is the number of modes in the ROM basis. Each of these modes can have either a

positive or negative contribution to the static case, or can not be included at all. Thus, the

total number of static cases would be 3N . The negative unit term corresponds to the trivial

case in which the contribution of all modes is zero.

At this stage, it is worth verifying that Nstatic > N2 + N3; this is easily done using proof

by induction. The statement is clearly true for the cases N = 1, 2 and is also true for N = 3,

since

(N2 +N3)|N=3 = 3 +

(
3

2

)
+ 32 +

(
3

3

)
= 18 ≤ 33 − 1 = Nstatic

∣∣
N=3

. (5.12)

To allow the proof by induction to be continued, it is necessary to assume that, for an arbitrary

k > 3,

(N2 +N3)
∣∣
N=k
≤ Nstatic

∣∣
N=k

. (5.13)

The proof continues by considering these expressions when N = k + 1, as follows

(N2 +N3)
∣∣
N=k+1

= (k + 1) +
(k + 1)!

2!(k − 1)!
+ (k + 1)2 +

(k + 1)!

3!(k − 2)!

= (k2 + k) + 2(k + 1) +
(k + 1)

(k − 1)

k!

2!(k − 2)!
+

(k + 1)

(k − 2)

k!

3!(k − 3)!
.

(5.14)

Note that, since k > 3, it must hold that 2(k + 1) < k(k + 1) and 1 < (k+1)
(k−1)

, (k+1)
(k−2)

≤ 2.

Therefore, Eq. (5.14) can be developed to give

(N2 +N3)
∣∣
N=k+1

≤2

(
k2 + k +

k!

2!(k − 2)!
+

k!

3!(k − 3)!

)
≤ 2(3k − 1) ≤ 3(3k − 1) + 2 = 3(k+1) − 1 = Nstatic

∣∣
N=k+1

,

(5.15)

as was required. Thus it can be concluded that defining the static cases in this manner guar-

antees that there are sufficient terms for the regression analysis. This analysis is discussed in

subsequent sections, but it is first necessary to define the IC and ED methods used to create
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these static cases.

Implicit condensation

Originally defined in [57], the IC method imposes a set of static, modal forces on the system

and records the modal displacement. In this case, the modal shape defined in Eq. (5.10) is

applied as a force. In this work, it will be assumed that the contribution of each mode will

be equal, so that the force can be written, in physical coordinates, as

F =
N∑
k=1

Ck
Nactive

φk, (5.16)

where Nactive denotes the number of modes with non-zero contributions to F , and Ck is the

scale factor of the kth mode, defined by

Ck =
tR

maxdisp(|φk|)
ω2
k. (5.17)

Here, tR is a variable, referential scale factor and maxdisp(|φk|) denotes the maximum de-

flection of the kth mode. This referential scale factor is introduced so that the forcing level

can be updated if the displacement does not fall in the desired region, as demonstrated in

Fig. 5.1. This is important, as the nonlinear nature of the system means that the process of

ensuring a specific displacement can be hampered by the indirect triggering of modes.

Enforced displacement:

The approach of the ED method is very similar to that of the IC technique, but, as suggested

in its name, it is modal displacements that are imposed, as opposed to forces. As such, the

definition of these displacements closely resembles the form of Eq. (5.16):

x =
N∑
k=1

Ck
Nactive

φk. (5.18)

However, it must be noted that the scale factors, Ck, are now defined by

Ck =
tR

maxdisp(|φk|)
. (5.19)

The application of the ED method is summarised in Fig. 5.2.
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Define System
q̈ + Λq + FNL,q(q) = Fq

Create static forces, Fq, with
scale factor defined in Eq. (5.17)Select ROM basis

Apply forces in full model

Check displacement is within
neighbourhood of that desired;

i.e. maxdisp |x| ∈ [x̂ − ε, x̂ + ε]?

Update scale factor:
tR,new = |x̂|

maxdisp(|x|)tR

Perform regression analysis to
find nonlinear coefficients, A,B

Yes

No

Figure 5.1: Flowchart for the iterative implementation of the IC method.

Therefore, Ck can be more generally written as

Ck =


tR

maxdisp(|φk|)
ω2
k, for IC,

tR
maxdisp(|φk|)

, for ED,
(5.20)

In both methods, the magnitude of these static cases must be carefully selected to obtain

accurate values for the nonlinear coefficients. It has been theorised, in [60], that, if the

displacements achieved are too low, the nonlinear contributions will not be great enough for

the least-squares method to accurately capture the coefficients. However, higher amplitudes

may lead to static cases that are unrealistic, in terms of the physical system. Essentially,

the static loads must be great enough to trigger the influence of the modal cross-couplings,

but without potentially damaging the structure itself. To this end, it is useful to follow the

rule of thumb proposed in [60], which suggests that “a displacement of one panel thickness

is sufficient for the primary modes to become nonlinear”. The first of the aforementioned

points is naturally guaranteed in the ED method, regardless of the displacement, though this

is not necessarily the case for the IC technique. To achieve this, tR can be iteratively adapted

so that the displacement is within some neighbourhood of this value, as can be noted in

Fig. 5.1.
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Define System
q̈ + Λq + FNL,q(q) = Fq

Create static displacements, q, with
scale factor defined in Eq. (5.19)Select ROM basis

Perform regression analysis to
find nonlinear coefficients, A,B

Figure 5.2: Flowchart for the iterative implementation of the IC method.

5.3 Application to a discrete system
To investigate the application of these techniques, it is useful to first consider a discrete sys-

tem, in which the nonlinearities are known exactly. This initial step will allow the results of

these non-intrusive methods to be considered without the uncertainty introduced through the

use of commercial FE software. The system in question is shown in Fig. 5.3. The structure

comprises three identical lumped masses, m, connected by springs with linear stiffness com-

ponent k; such springs also ground the first and third masses. Nonlinearity is introduced to

the system through the inclusion of cubic stiffnesses, kNL, in the first two springs.

m m

(k, kNL) k

x1 x3

(k, kNL)

m

k

x2

Figure 5.3: Schematic of a 3DOF mass-spring system with nonlinear springs grounding the
first mass and connecting the first two.

The physical equations of motion for this system are of the form given in Eq. (5.1), with the

various matrices defined by

M =


m 0 0

0 m 0

0 0 m

 , K =


2k −k 0

−k 2k −k

0 −k 2k

 , FNL(x) = kNL


(x2 − x1)3

−x3
2

0

 .

(5.21)

As in §5.2, the system can be expressed in modal coordinates, giving the equations of motion
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in Eq. (5.2). For the present system, the mass-normalised matrices are given by

Λ =
1√
m


√

(2−
√

2)k 0 0

0
√

2k 0

0 0
√

(2 +
√

2)k

 =


ω2
n,1 0 0

0 ω2
n,2 0

0 0 ω2
n,3

 ,

Φ =
1√
2m


1√
2

1 1√
2

1 0 −1

1√
2
−1 1√

2

 ,

(5.22)

The full form of the nonlinear term, FNL,q = ΦTFNL, is not shown here, but can be expressed

as

FNL,q =



∑
ρi+ρj+ρk=3

A
(1)
ρiρjρkq

ρi
i q

ρj
j q

ρk
k∑

ρi+ρj+ρk=3

A
(2)
ρiρjρkq

ρi
i q

ρj
j q

ρk
k∑

ρi+ρj+ρk=3

A
(3)
ρiρjρkq

ρi
i q

ρj
j q

ρk
k

 , (5.23)

where ρi denotes the exponent of qi in a particular nonlinear term and
∑

ρi+ρj+ρk=3

denotes the

summation of any terms in which ρi + ρj + ρk = 3. Implementing the matrix definitions

in Eqs. (5.22) and (5.23) in this way, the static case in the IC and ED methods can now be

written as

ω2
1q1 +

∑
ρi+ρj+ρk=3

A(1)
ρiρjρk

qρii q
ρj
j q

ρk
k = Fq,1, (5.24)

ω2
2q2 +

∑
ρi+ρj+ρk=3

A(2)
ρiρjρk

qρii q
ρj
j q

ρk
k = Fq,2, (5.25)

ω2
3q3 +

∑
ρi+ρj+ρk=3

A(3)
ρiρjρk

qρii q
ρj
j q

ρk
k = Fq,3. (5.26)

Considering this example in more general terms, these equations represent the full model,

which would typically be calculated using FE software. Treating Eqs. (5.24-5.26), a number

of sets of q and Fq will be applied, so that a ROM can be created. If a SDOF ROM were

desired, it would be written in the form

¨̃q1 + ω2
1 q̃1 + Ã

(1)
300q̃

3
1 = F̃q,1, (5.27)

where the notation •̃ is used to highlight the approximate nature of the ROM; the static case

is found by simply removing the ¨̃q1 term. This equation can be used to investigate the two

non-intrusive methods considered in this chapter. In the ED method, a SDOF model will
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result in static displacements of the form q = [q̂, 0, 0]T . Applying this displacement in

Eq. (5.27) leads to the specific static case

ω2
1 q̂ + A

(1)
300q̂

3 = Fq,1. (5.28)

Comparing this expression with the static form of Eq. (5.27), it can be seen that the forms

of both are identical. Therefore, if the displacement and force from the full static case are

applied in the ROM static case, it can be concluded that Ã(1)
300 = A

(1)
300. Thus, in the correct

implementation of the ED method in this model, there should be no variation in the nonlinear

coefficients if the scale factor is varied.

The IC method prescribes a set of static modal forces, as opposed to displacements.

Therefore, each static force will be of the form Fq = [F̂ , 0, 0]T . Noting that this system is

weakly nonlinear, it can be assumed that A(n)
0ρjρk

≈ A
(n)
1ρjρk

≈ 0. That is, for any cubic term

in which ρ1 = 0 or 1, it holds that ρ2 + ρ3 ∈ {2, 3}. This term will be negligible due to the

small nature of q2 and q3. As such, the static cases will now take the form

ω2
1q1 + A

(1)
300q

3
1 + A

(1)
210q

2
1q2 + A

(1)
201q

2
1q3 = F̂ , (5.29)

ω2
2q2 + A

(2)
300q

3
1 + A

(2)
210q

2
1q2 + A

(2)
201q

2
1q3 = 0, (5.30)

ω2
3q3 + A

(3)
300q

3
1 + A

(3)
210q

2
1q2 + A

(3)
201q

2
1q3 = 0. (5.31)

Eqs. (5.30) and (5.31) can be solved as a separate system to give q2 and q3 in terms of

q1. Further, if these displacements and forces are applied in the ROM, it is possible to

approximate Ã(1)
300 as

Ã
(1)
300 ≈ A

(1)
300 −

A
(1)
210A

(2)
300q

2
1

A
(2)
210q

2
1 + ω2

n,2

+
q2

1(A
(1)
210A

(2)
201q

2
1 − A

(1)
201(A

(2)
210 + ω2

n,2))(−A(2)
300A

(3)
210q

2
1 + A

(3)
300(A

(2)
210 + ω2

n,2))

(A
(2)
210q

2
1 + ω2

n,2)((A
(2)
210q

2
1 + ω2

n,2)(A
(3)
201q

2
1 + ω2

n,3)− A(2)
201A

(3)
210q

4
1)

.

(5.32)

It can be seen, in Eq. (5.32), that any term containing A(n)
0ρjρk

or A(n)
1ρjρk

has been omitted.

This approximation is compared with the true IC coefficients, as well as the ED coefficients,

in Fig. 5.4. It can be seen that the approximation is accurate across the considered region of

C1, so it can be concluded that, if the static cases are too large, the IC will give an inaccurate

prediction of the nonlinear coefficients. Further, this figure confirms the invariant nature of
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the ED coefficients.
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IC Approximation

Figure 5.4: Calculated values for the first coefficient using the ED and IC method, as well as
using the IC approximation.

The discussion in this section alludes to an inherent difference between the IC and ED meth-

ods. Namely, in the IC method, the ROM for the 3DOF system is highly dependent on the

maximum displacement permitted, whereas this is not the case in the equivalent ED model.

This can be attributed to the calculation of the modal displacements and the condensation of

membrane effects in the IC technique. For the ED method, it is the displacements that are

prescribed, so that the only active modes are those in the ROM, and in-plane deflections are

not included. However, for the IC method, applying a modal force can trigger the deflection

of modes which are not directly forced, due to modal coupling. While this may appear pro-

hibitive in this case, it may be useful for cases in which the exact nature of the nonlinearity

is unknown.

The influence of these differences on the 3DOF system can be seen in Fig. 5.5, in which

the backbone curves for a number of IC ROMs are compared with those of the ED ROM

and the full model. As expected from the nonlinear coefficients, the ED method produces

a curve which remains close to the full model in a close neighbourhood of the linear natu-

ral frequency, though begins to diverge at ∼0.9 Hz, as the influence of the coupled modes

becomes more prominent. For lower scale factors (given in the legend), the IC backbone

curves remain close to the ED model. However, it can be seen that, as this factor is in-

creased, there is a rapid divergence from the correct behaviour, with higher scale factors

incorrectly predicting a softening nonlinearity. The second panel of Fig. 5.5 provides an in-

teresting discussion point with regard to the judgement of accuracy in ROMs. As has been
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mentioned, the coefficients diverge from the A(1)
30 at higher amplitudes, as forcing one mode

can trigger the displacement of others. This influence is now reflected in the backbone curve.

For a maximum displacement of 0.7, it can be seen that the predicted backbone curve actu-

ally diverges at a later point. Although the region in which the backbone is captured exactly

(up to a certain tolerance) is reduced in the IC method, the overall region in which it predicts

a reasonable prediction of the response is expanded.
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IC, 0.01

IC, 0.5

IC, 1

IC, 1.5

IC, 2

0.8 0.9 1 1.1 1.2 1.3

0

1

2

3

4

5

6

Full

ED
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IC, 0.5

IC, 0.6

IC, 0.7

Figure 5.5: Backbone curves for the 3DOF spring-mass model, generated using the full
model, as well as with the IC and ED methods.

To further investigate this behaviour, it is useful to consider the same system, but with only
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two masses. In this case, the approximation for the IC coefficient is given by

Ã
(1)
30 ≈ A

(1)
30 −

A
(1)
21 A

(2)
30 q

2
1

A
(2)
21 q

2
1

. (5.33)

It can be seen that this is similar to the corresponding expression in the 3DOF model – as

presented in Eq. (5.32) – but without the complicated final term. The relative simplicity of

this expression leads to reduced variation in the coefficients of the system for higher scale

factors, as is reflected in the backbone curves displayed in Fig. 5.6. This decreased difference

suggests that the addition of the third mass strengthens the coupling of the modes.

In the inset plot in Fig. 5.6, it can be seen that, at lower amplitudes, the IC model created

with a scale factor of 1 actually remains closer to the true solution than the ED model. This

highlights the fact that the IC method has greater potential to capture the influence of modal

couplings, which is particularly important for those systems in which the exact nature of the

nonlinearity is not known a priori.
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Figure 5.6: Backbone curves for the 2DOF spring-mass model, generated using the full
model, as well as with the IC and ED methods.
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5.4 Continuous systems
Although the theoretical example in §5.3 provides useful insight into the mechanisms of these

techniques, the true motivation for their use is the ability to reduce the order of complex,

continuous models. As has been discussed earlier in this chapter, this approach is typically

applied using commercial FE software, meaning that the treatment of nonlinearities can not

be directly assessed. Although there have undoubtedly been interesting results using this

methodology, this section looks to bridge the gap between these studies and the knowledge

obtained for the discrete system above, allowing the IC and ED methods to be applied to a

more complex system. To do so, the Galerkin method, discussed in the previous chapter, will

be used as the “full” model1.

Of particular interest is the ability of the IC and ED methods to accurately predict and

capture internal resonances between the modes. The motivation for this is that, if they are

unable to accurately model this type of behaviour for systems in which the nonlinearity

is completely understood, it is difficult to place a great deal of confidence in those models

developed using commercial software. To this end, the relatively simple pinned-pinned beam

model with an asymmetric rotational spring configuration at the tips (see §4.3.1) will be used,

due to the 1:3 modal interactions that occur.

As with the discrete case, initial consideration is given to the calculation of the coeffi-

cients for a range of scale factors. The process is identical to that of the previous section and

is not repeated; the results are displayed in Fig. 5.7. It can be seen that the trends are similar

to those in the mass-spring system. In particular, the ED method coefficients are invariant to

changes in the static displacement. However, at higher amplitudes the IC diverges from the

correct solution as modes not included in the modal basis are triggered. It can further noted

that, for static displacements higher than 10−3 m, there is minimal variation in the calculated

value of the coefficient.

As demonstrated in Fig. 4.6, it is modes 1, 2, and 4 that are involved in the internal resonance

behaviour of this system. The influence that these modes have on the ROM is investigated,

for both techniques, in Fig. 5.8. Here, the single-thickness rule of thumb from [60] is used

in each case. Naturally, the single-mode ROM is unable to capture the modal interaction.

Interestingly, the addition of the second mode to the modal basis is not sufficient to fully

1Recall that this “full” model is technically still a truncated version of the infinite system defined by the
Galerkin approximation.
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Figure 5.7: Calculated values for the first coefficient using the ED and IC method. The red
line denotes the invariant value obtained using the ED method, with the red crosses being
specific comparison points. The blue plus symbols denote values from the IC method.

capture the modal interaction tongue. The true behaviour is only successfully encapsulated

once the fourth mode is included. The reason for this is that there is a second 1:3 modal

interaction between modes 2 and 4. As such, this transfer of energy can not be captured

by the modal basis [1,2]. This behaviour is, arguably, more readily observed through the

consideration of Fig. 5.8, as opposed to Fig. 4.6.
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Figure 5.8: Variation in the first backbone curve for the beam with changes in the number of
modes in the ROM in the (a) IC and (b) ED methods.
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Figure 5.9: Variation in the first backbone curve for the beam with changes in the second
mode selected for the ROM in the (a) IC and (b) ED methods.
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This discussion is further investigated in Fig. 5.9, in which all three ROMs include the first

mode and one other mode. As expected, the only model capable of capturing the internal res-

onance behaviour is the model including both of the first two modes. This confirms the fact

that energy can not be directly transferred from mode 1 to mode 4 without the intermediary

energy transfer between modes 1 and 2.

In addition, a visual representation of the ED cubic coefficients is given in Fig. 5.10, so

that the trends can be more easily explored. The left column of this figure displays the full

matrix, as it is applied in the ROM, whereas the right column shows the absolute value of

this matrix so that the relative magnitude of the coefficients can be compared.

Perhaps the most intriguing behaviour is found in the [1,3] model, in which it can be seen

that there are no negative coefficient values, in stark contrast to the other two ROMs. The

reason for this is not immediately clear, though it is likely to be related to the fact that there is

no way in which energy can be transferred from mode 1 to mode 3. In these models, there is

an alternating pattern of positive and negative values between adjacent coefficients. Interest-

ingly, considering Fig. 5.9, it can be seen that there is negligible difference between ROMs

[1,3] and [1,4], despite this contrast. What is consistent across these models is the value

of A(1)
30 , once more highlighting the fact that only the accuracy of this leading coefficient is

important for modelling the main tongue.

Considering solely the left column, the qualitative similarity of the [1,2] and [1,4] matri-

ces might suggest that the backbone curves from these ROMs would be similar. However,

this trend is less true in the right hand column, though there are some similarities. The vari-

ation in the magnitude of the coefficients is more pronounced in the latter of these, and there

is also some change in the relative magnitudes of the coefficients. For instance, A(1)
21 and

A
(1)
03 are of similar magnitudes in the first ROM, but this is not true when mode 4 is used in

place of mode 2. This demonstrates the fact that these ROM methods adapt the coefficients

in an attempt to fully capture the system behaviour, but are unable to do so when the relevant

modes are not included.
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Figure 5.10: Graphic representation of the value (left column) and magnitude (right column)
of the nonlinear coefficients for two-mode ROMs.
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5.5 Application to higher-order systems
At this point, it is important to note that both models considered have only included non-

linearities up to the cubic order. The motivating factor for this decision is that it simplifies

the model and provides a theoretical ideal to test the full capabilities of the techniques, even

though it is highly unlikely that these exact results will occur in more complex models. With

this in mind, the current section will use an expanded model with higher-order nonlinear

terms. Although this expansion does not necessarily provide a perfect parallel to the non-

linear solvers found in commercial FE software, it will still offer an initial insight into the

capabilities of the two ROM methods to condense higher-order behaviour in their quadratic

and cubic terms.

5.5.1 Higher-order discrete system
The most simple implementation of higher-order terms can be achieved by introducing quin-

tic terms to the nonlinear springs in the discrete system in §5.3. As such, the nonlinear force

term will be refined as

FNL(x) = k3


(x2 − x1)3

−x3
2

0

+ k5


(x2 − x1)5

−x5
2

0

 , (5.34)

where k3 and k5 are constant coefficients. As in the lower-order example, these will be

projected onto the modal basis to give
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(5.35)

where the R and S coefficients arise in the conversion to modal coordinates.

It is now possible to examine the calculation of coefficients at varying maximum static

displacements. The results from doing so are presented in Fig. 5.11. In this figure, the

system has the same parameter values as the cubic model, with the values chosen for the

newly-introduced nonlinear coefficient given in the title of the figure panels. While the
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coefficients of the ED method were previously invariant to changes in the static displacement,

it can be seen that this is no longer the case. Now, as the displacement is increased, the

magnitude of the cubic coefficient also increases to account for the additional nonlinear

stiffness introduced by the quintic term.

The trend is similar for the IC results, though the difference between these and the lower-

order model results is much less significant than for the ED method. This can be explained

by the fact that the IC coefficients are influenced not only by the S(n)
11111q

5
1 term introduced

(as is the case for the ED technique), but also by the aforementioned triggering of multiple

modal displacement from a single modal force. This similarity not only explains why the

IC coefficients diverge at a higher rate than the corresponding ED values, but also suggests

that it is the coupling of modes by the lower-order nonlinear terms which has the greater

influence on the definition of the IC ROM.
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Figure 5.11: Variations in the coefficients approximated by the IC and ED methods for a
3DOF mass-spring system with cubic and quintic nonlinearities.

The backbone curves of the SDOF ROMs when k5 = 1 are shown in Fig. 5.12. The stiffening

behaviour of these curves mirrors the increasing magnitude of the cubic coefficient seen in

Fig. 5.11. In particular, the rate at which this shift takes place is slightly higher for the IC

method. At the base of the backbone curves, the approximation of the full model behaviour

is accurately approximated by both methods, though there is some variation in the frequency

interval in which this is true. In the cubic model, at lower amplitudes, the ROM curves
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remained close to the full solution, before diverging as the frequency increases. In the higher-

displacement ROMs, there is a similar behaviour, but with a more rapid rate of divergence.

However, the curve then intersects that of the full model once more at a higher frequency;

beyond this point, the models will again diverge.

At this point, it is useful to consider the manner in which these backbone curves are assessed.

The decreased rate of divergence in the cubic model leads to an initial frequency range over

which the ROM could be considered ‘exact’ to some very small tolerance. This is not true

of the faster divergence in the quintic model. However, if this tolerance was increased, the

interval in which the quintic model ROM is considered accurate is greater than in the cubic

case, due to the fact that the curves intersect at a higher frequency. This second example

better illustrates the more realistic scenario in which higher-order nonlinear attributes are

condensed into the quadratic and cubic ROM terms.
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Figure 5.12: Backbone curves for the 3DOF spring-mass model, generated using the full
model, as well as with the IC and ED methods.
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5.5.2 Higher-order Galerkin model
In this section, the same beam configuration as above will be used here, but with the Taylor

expansion in Eq. (4.13) now expanded to give

L ≈
∫ `
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1 +
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2
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− 1

8

(
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dx = `+
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2
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0

(
∂w

∂x

)2

− 1

8

∫ `

0

(
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∂x

)4

dx. (5.36)

Thus, the higher-order tension force is given by

T = EÂ
(L− `)

`
=
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2`

∫ `

0

(
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)2

dx− EÂ

8`

∫ `

0

(
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)4

dx. (5.37)

The full Galerkin model is developed in the same way as in §4.2.3, so is not repeated here.

The final form of the model is now given by

q̈n +
EIα4,n

ρÂ`
qn −

E

2ρ`2

N∑
i=1

N∑
j=1

N∑
k=1

α2,k,nβi,jqiqjqk

+
E

8ρ`2

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

N∑
m=1

α2,m,nγi,j,k,lqiqjqkqlqm = 0,

(5.38)

where

γi,j,k,l =

∫ `

0

dφi
dx

dφj
dx

dφk
dx

dφl
dx

dx. (5.39)

Although the scope of this model has now been expanded, the number of terms and, hence,

the computational expense have also been dramatically increased. For the 19-mode “full”

model considered previously, there are now 195 = 2, 476, 099 possible values for α2,m,nγi,j,k,l.

As such, it is useful to address the way in which these quintic terms are implemented. For the

newly-defined cross-coupling term, γi,j,k,l, the value is equal for any permutation of the set

I = {i, j, k, l}. Therefore, for any fixed index, m, there are potentially 4! = 24 coefficients

which will contribute to the coefficient of qiqjqkqlqm. When it is further noted that this m

could also be one of the indices of γ, it can be seen that there is a great deal of repetition in

the definition of the quintic coefficients.

To simplify this, it is useful to calculate a single coefficient for any quintic product of

modal displacements. Consider the set of indices J = {i, j, k, l,m}. Then, considering the

possible combinations discussed above, the coefficient for
∏

x∈J qx can be defined by
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ηJ =
∑
x∈J

4!

(NJ\{x})!
α2,x,nγJ\{x}, (5.40)

where \ denotes the set difference operator, and (N{a,b,c,d})! = Na!Nb!Nc!Nd!, with Ny

denoting the number of element of A = {a, b, c, d} that are equal to y. As an example, for

the set {1, 2, 1, 1}, this value would be 3! × 1!, since N1 = 3 and N2 = 1. Effectively, this

term is used to capture the number of unique permutations of the index set.

Incorporating this notation, Eq. (5.38) can be rewritten as
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η{i,j,k,l,m}qiqjqkqlqm = 0,

(5.41)

The number of coefficients can now be calculated as
(

19+5−1
5

)
= 33, 649, i.e. only 1.4% of

the total possible calculations.

This system can now be considered as the “full” nonlinear model, in place of the non-

linear solver in commercial FE software. As mentioned previously, this new model provides

a case in which the nonlinearities are of a higher order than those in the proposed ROM.

While it is technically possible to expand this ROM to include quartic and quintic terms,

this would require a significantly greater number of static solutions, reducing the utility and

saving provided by the use of a ROM technique. As such, the original quadratic and cubic

terms will be used, as in the traditional application of the techniques. However, it is likely

that these coefficients will differ from those in the full model, as they must adapt to capture

the higher-order behaviour.

The results from the pinned-pinned beam with rotational spring, as applied above and

with the same system parameters, are displayed in Fig. 5.13. For the IC method, as shown

in the first panel, the results are largely consistent with those from the original model, which

is unsurprising, as the influence of the quintic terms is unlikely to be of the same magnitude

as that of the cubic terms. More interestingly, it can be seen that these higher-order terms

introduce a divergent behaviour in the ED method, as the influence of these terms is captured

in the ROM. ED ROMs created with higher static displacements are displayed in the second

panel. Here, it can be seen that, at very high amplitudes, it is possible to achieve nonlinear

coefficients that are several orders of magnitude greater than those found at lower deflection



5.5. APPLICATION TO HIGHER-ORDER SYSTEMS 139

levels. This presents a potentially hazardous possibility for the accuracy of the ROMs. That

is, when the stiffness is overestimated, the prediction of the hysteresis behaviour may be

incorrect, as this greater stiffness will lead to lower amplitudes. In this case, where there is a

difference by several orders of magnitude, the real displacement could be significantly larger

than that predicted, which could lead to unexpected levels of stress in the system.
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Figure 5.13: Calculated values for the first coefficient using the ED and IC method for the
higher-order Galerkin model.

The backbone curves produced using these ROMs found are given in Fig. 5.14; note that the

behaviour of the IC curves is qualitatively similar to the cubic case and is, therefore, not pre-

sented. As predicted, the ROMs with smaller deflections produce a more accurate prediction

of the ‘Full’ curve (found using numerical continuation [29]). All of the ROMs utilised in

this figure are able to accurately predict that a modal interaction occurs at a frequency of

around 145-150 Hz, though this does not ensure that the behaviour will be captured accu-

rately, as can be seen at very high amplitudes. That being said, because the ROMs shown

only include the first two modes, the model is unable to correctly predict the 1:3 internal res-

onance between the second and fourth modes. The ED method seems to implicitly capture

this behaviour, as the inset figure shows the internal resonance tongue moving towards that of

the numerical curve when the static displacement initially increases. However, the predicted

ROM tongue then begins to move away from the true solution, before the behaviour changes
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completely when the static displacement is greater than 1e-2 m. Therefore, as predicted, at

higher amplitudes, the over-prediction of the nonlinear coefficients introduces a stiffening

effect that does not accurately represent the system behaviour. In addition, the seemingly in-

complete curves in Fig. 5.14 are due to the fact that the numerical continuation software used

[29] was unable to proceed past the end point, even though the continuation parameters used

were consistent in each case. Therefore, it can be concluded that, at these higher amplitudes,

it is no longer possible to assume that the membrane effects are negligible.
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Figure 5.14: Backbone curves calculated by applying the ED method to the higher-order
Galerkin model.

5.6 Summary
An analytical consideration of two non-intrusive reduced-order modelling techniques is pre-

sented in this chapter; namely the implicit condensation and enforced displacement methods

are explored. While these techniques have been used extensively in the literature, they are

typically used in conjunction with commercial finite element software. Given that the source

code of these software packages is not commonly available, any discussion regarding the
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application of these ROM techniques is limited by the uncertainties relating to the nonlinear

solver. That is, it can be difficult to isolate the characteristics which are dependent solely on

the methods, as opposed to being influenced by the software in some way. It is for this reason

that the analytical discussion in this chapter is given, as the use of a fully-defined algebraic

system eliminates this lack of clarity.

This discussion begins with a simple mass-spring system, similar to those examined in

Chapter 3, this time comprising three masses connected by linear springs, with two cubic

stiffnesses introduced to the first two springs, mirroring the type of nonlinearities that might

occur in a continuous system. Initial analytical investigations into the application of the non-

intrusive methods in this model predict that the coefficients would be invariant to changes in

the static case in the ED method. However, the approximation to the IC solutions predicts

that the value would actually diverge from that of the real coefficient as the static displace-

ment (or scale factor) is increased. This prediction has been shown to be true when the

method is applied, with the reason being that higher levels of forcing can trigger displace-

ments in multiple modes, some of which may not be included in the ROM modal basis. The

influence of this modal coupling is then condensed into the coefficients of the ROM. This

discussion raises an interesting point regarding the assessment of these techniques. While

the ED method has been shown to accurately capture the corresponding cubic coefficient

for this example, there is no guarantee that this will necessarily lead to the most accurate

backbone curves, especially in cases where the influence of higher modes play a major role

in defining the system dynamics.

For the structures considered in this chapter, the prediction of the backbone curves is

used as a metric for comparing the accuracy of the ROMs, as is common practice across the

literature. In the 3DOF system, both methods were used to create SDOF ROMs. In each of

these, regardless of the static displacement, there is a point at which the predicted backbone

curve diverges from the full solution. The invariant ED curve gives an accurate prediction

of the dynamic behaviour at low amplitudes, but then diverges from the full solution as

the influence of other modes increases. This remains true for the IC method, if the static

displacements are sufficiently low. However, when these displacements are increased, it can

be seen that the ROM becomes largely inaccurate, leading to softening behaviour, as opposed

to hardening.

This theoretical, discrete system provides a motivation for investigating whether similar
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conclusions can be drawn for continuous systems. A Galerkin model for a pinned-pinned

beam with a rotational spring at one tip is used, the motivation for doing so being the in-

ternal resonances that the structure was shown to exhibit in the previous chapter. This adds

a further criterion by which the accuracy of ROMs can be assessed, as any model which is

unable to capture this modal interaction behaviour must be considered inaccurate to some

extent. Initially, the effect of the static displacement on the coefficients has been investi-

gated, displaying the invariant behaviour in the ED method and divergent behaviour in the

IC method that was seen in the discrete model. However, it must be noted that the rate of

this divergence is diminished when the size of the ROM basis is increased.

In discretising the continuous system and transforming the model into modal coordinates,

a much larger “full” model is produced, though it has been remarked that this model is not

full in the true sense, as the Galerkin method technically produces an infinite system. Due

to this increased model magnitude, it has been possible to compare the responses predicted

by ROMs of different sizes. In this case, even with only a single DOF, it is possible to

accurately capture the primary tongue of the backbone curve. This is a reassuring result

for those models that either do not possess internal resonances, or will not be excited to a

great enough displacement to trigger them. When predicting the resonance tongue, it has

been seen that it is only necessary to include those modes involved in the aforementioned

interaction to accurately predict the behaviour of the full model. As an interesting aside, this

model includes two 1:3 modal interactions, between the first and second, and second and

fourth modes, respectively. However, this may not necessarily be recognised by predicting

the full model response. Alternatively, by first comparing the full model behaviour with that

of the ROM consisting of modes 1 and 2, the difference in the resonance tongue is indicative

that a third mode is required to fully capture the behaviour of this frequency range.

As has already been addressed, elements of the discussion in this chapter could be con-

sidered somewhat artificial. More precisely, the use of a system in which the nature of the

nonlinearities is identical to that of the ROM provides a useful setting for a fundamental

examination of the techniques, but the extent to which these results may be generalised is

not necessarily obvious. In particular, the order of the polynomials defining the full non-

linear model is equal to that included in the IC and ED methods, meaning that there are no

higher-order effects that must be captured by the low-order terms. As a preliminary inves-

tigation, the Galerkin model has been expanded by using a higher-order Taylor expansion

in its derivation. The divergent trends seen in the IC method were largely similar to those
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in the lower-order case, albeit slightly more pronounced as a result of the additional terms.

More intriguingly, although perhaps expectedly, the invariant nature of the prediction of the

coefficients is no longer true for the updated ED model. It has been demonstrated that the

higher-order terms can dramatically increase the stiffness of the cubic terms, as they attempt

to capture the membrane effects of the beam stretching. Furthermore, it has been shown that

this may actually be detrimental to the model prediction: if the higher displacement leads to

very large amounts of stretching, the overcompensation that this leads to in the cubic coeffi-

cients can lead to large under-predictions of the system displacements and, hence, the levels

of stress observed.
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Chapter 6

Understanding reduced-order modelling

techniques

In this chapter:

• The discussion of the Implicit Condensation and Enforced Displacement is expanded

to address pronounced differences between their results in finite element software.

• Observations are made regarding the challenges faced in attempting to prescribe a

static displacement in finite element software.

• An explanation is given for the discontinuous forces observed in the Enforced Dis-

placement method

• An iterative application of modal forces is applied to improve the results of the En-

forced Displacement method

• The modal composition of the static cases in the two methods is varied to investigate

the influence this has on the reduced-order model

6.1 Introduction
While the previous chapter introduced an analytical framework in which to apply and assess

ROM techniques, the current chapter returns to the more traditional case, in which they

are applied in finite element software. The comparison made here has been motivated by

observations that were initially made in [46], where a numerical continuation method for full

145
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finite element models was used to determine the “true” system response; this method is an

expansion of the NNMcont method defined in [44]. It was seen that the ED method solution

deviated from the true backbone curve much faster than that of the IC method. Similar

trends to those in [46] are observed in [47, 62], with the IC ROMs providing a more accurate

approximation of that found using numerical continuation. Since this result contrasts the

analytical findings of the previous chapter, in which it was seen that the solutions of the

two techniques were reasonably consistent, this chapter will explore the reasons behind the

disparity. Note that results from [46, 47] have been used to verify the application of the IC

and ED methods in this thesis.

The discussion in this chapter notes that both ROM methods can be considered some-

what artificial. In particular, the static cases suggest that either a modal displacement or a

modal force can be statically applied to the structure, when, in reality, the realisation of this

presents a number of significant challenges and uncertainties. For instance, the enforcement

of static modal displacements would likely require the introduction of further machinery or

equipment to maintain the desired shape. However, the inclusion of these constraints would

effectively introduce a complex set of BCs to the structure, which would undoubtedly alter

its structural response. Should the same be true of the finite element model, as will be in-

vestigated in this chapter, the methodology and its associated applicability would be brought

into question.

A further, implicit assumption of these techniques is that a modal input would necessarily

lead to a modal output; this conclusion can be drawn from the fact that the physical forces

and displacements are projected onto the modal basis prior to the regression analysis. While

this assumption seems intuitive, it neglects the discussion above regarding, for instance, the

alteration of the structure as a result of effectively enforcing a displacement by introducing

a set of BCs. This chapter will investigate the effect of this implementation and its influence

on the results found by each method.

An initial overview of the differences observed between the analytical and traditional

applications of the IC and ED methods is given in §6.2. The reasons behind this are investi-

gated in §6.3, which addresses the shortcomings of the application of these methods in finite

element software, proposing ways in which these could influence the accuracy of the model.

These hypotheses are investigated in §6.4 and are used to verify the reasons for the disparity

suggested in §6.2.
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6.2 Qualitative differences between analytical and numer-

ical nonlinear models
As discussed above, the FE software implementation of these ROM methods is more com-

plicated than the analytical counterpart, due to the opaque nature of the source code and

iterative methods applied to capture nonlinearity. As a result, this section begins with a qual-

itative comparison between results for the same beam modelled in both ways. This will allow

an initial insight into the key differences and will direct the subsequent research.

To this end, the clamped-clamped beam defined in [46] is used, as this paper provides

validation for the software implementation of these methods. The results from both applica-

tions are presented in Fig. 6.1, in which a single beam thickness has again been used as the

static displacement. It can be seen that, as in the previous chapter, the difference between the

two methods is negligible for the Galerkin model. However, as was also seen in [46], this is

not the case when FE software is used. In fact, the ED method can be seen to over-predict

the cubic stiffness, so that the amplitude is under-calculated at higher frequencies. This trend

is present across the literature [46, 47] and warrants further investigation into the causes and

treatment of this disparity.

The results of [46] are expanded in Fig. 6.2. In this figure, the static displacement is varied,

considering the cases when the scale factor is half and double a single beam thickness. Since

the Galerkin model used only contains cubic terms, the ED curve in this case is invariant

to the static displacement, though there is some minor variation for the IC method. In the

results from the Abaqus model, the discrepancy between the two methods, observed in [46],

is shown to hold true in all three cases.

It can be further noted that, while there is some variation as a result of varying the static

case scale factor, this is relatively minimal. Interestingly, it is the ED method that shows the

greatest variation, in contrast with the invariant results seen in the Galerkin panel. Although

this difference is minor, it further suggests that there is a fundamental difference in the treat-

ment of the structure when it is considered using Abaqus software, rather than analytically.
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Figure 6.1: Backbone curves of a clamped-clamped beam predicted by ROMs obtained using
the IC and ED methods in analytical and software based frameworks.

6.3 Appropriating forces in finite element software

6.3.1 Overview of force calculations
In light of this discussion and the apparent disparity between the IC and ED results, further

consideration is given to the relationship between forces and displacements in the two meth-

ods. It is useful to keep in mind the fact that both of these can be considered somewhat

artificial when compared to a physical system. In particular, the application of a modal force

or the enforcement of a modal displacement is difficult to realise for a physical structure

and doing so statically would require the use of external equipment which would alter the

structural characteristics of the structure. The use of FE software allows these drawbacks

to be overcome numerically to provide useful insight that could not otherwise be obtained.

However, as is discussed in this section, this can still lead to difficulties.

In the IC method, the application of a modal force leads to displacement that can also

be considered modal, even though the relative contributions of each mode in the two cases
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Figure 6.2: Backbone curves of a clamped-clamped beam predicted by ROMs obtained us-
ing various scaling factors in the IC and ED methods in analytical and software based frame-
works. Red lines denote solutions found with the ED method, whereas blue lines denote the
IC method. Thin, solid lines use a single beam thickness for the static case, dashed lines use
half a beam thickness, and dot-dashed lines use twice the beam thickness.

may differ. However, the ED technique relies on the ability of the FE software to resolve

forces. As demonstrated in Fig. 6.3, this can lead to a discontinuous force profile, as ob-

served in panel (b). This section explores the theory of FE modelling to explain the unusual

force distribution. The original application of both methods in this thesis utilises Matlab

code that writes the necessary Abaqus input file (.inp) for the static cases and, then, runs

the file; Matlab files have also been developed to read the data file (.dat). The static cases

themselves either apply a force or displacement field. The former simply uses the Abaqus

*FORCE function, whereas the latter requires the use of the *BOUNDARY function to de-

fine the displacement or moment of each DOF as a BC; see [222] for further details on this

implementation.

It is first necessary to outline the appropriation of forces for a general FE beam model;

this is presented in Fig. 6.4. This methodology can be thought of both in terms of a system
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Figure 6.3: A transverse displacement applied to a clamped-clamped beam in Abaqus, and
the resultant outputted forces.

of elements or a system of nodes. The forces in a FE model are calculated first in terms

of the elements, and then converted into nodal coordinates. The shape functions, i.e. the

coloured lines denoted Ni, represent interpolations between the values at the nodes; in this

example, these interpolations are linear, though this does not necessarily have to be the case.

It can be seen that, since these are both representations of the same system, we must have

N2(x) = N
(1)
2 (x)+N

(2)
1 (x). That is, for any node along a beam which is not on the boundary,

the nodal shape functions is the sum of contributions of the element shape function on either

side. Similarly, for any node on the boundary, the nodal and element shape functions are

equal.

By extension, the same relationship occurs for the stiffness matrix and, in particular, the

force vector. In summary, the force in any node, uk, is the sum of the forces in the elements

either side of it. This can be written as

Fk = F e
k + F e

(k+1) (6.1)
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The linear force and displacement vectors are related by the equation

Kw = F + r, (6.2)

where r denotes the vector of residual forces, i.e. the out-of-balance forces conjugate to each

element. This vector is minimised in the resolution of the forces and, for the sake of this

discussion, it will be assumed to be zero.

Therefore, we assume that the forces can be calculated as F = Kw, which appears to be

a relatively straightforward calculation. However, it must be noted that this becomes less

straightforward as the ED method is applied. The stiffness matrix, K, is calculated based on

the elements and constraints of the undeformed beam.

An enforced static displacement is effectively achieved by ensuring that each node is not

allowed to translate or rotate in any direction. Thus, the process is identical to imposing a

fully-clamped BC at each node. This leads to an updated stiffness matrix for the deformed

beam, which will be used in the FE software calculations.

By considering the simple four-element beam in Fig. 6.5, it can be seen that these pseudo-

BCs can be used to explain the unusual force profile seen in Fig. 6.3. In this beam, the end

points are not displaced, but an enforced displacement is applied to nodes 2, 3, and 4; their

new position is denoted using the prime (•′) notation. Focus is now given to the central node,

3’, which is displaced by a force F3 in panel (a). This represents the force that would displace

the node from its unperturbed position. However, in panel (d), it must be noted that nodes

2’ and 4’ are fixed, and the dotted line represents a new undeformed beam configuration

consisting of only two elements. This emphasizes the difficulty that arises due to the lack of

a physical parallel for this methodology. That is, the force required displace node 3 in panel

(d) may be more representative, while the force in panel (a) is recorded. Note that, depending

on the software used, it could be the case that the force in (d) is recorded. Regardless of which

of these is true, this downward force applied to node 3’ must be some fraction of F3, which

can be denoted δ3,3F3.

This issue is made more complex when panels (b) and (c) are introduced. Similarly to

(d), each of these subfigures can be considered as a two-element beam, due to the fixed nature

of nodes 1 and 3’ (nodes 3’ and 5). The vertical force required to displace node 2’ (node 4’)

must be balanced in nodes 1 and 3’ (nodes 3’ and 5). Therefore, denoting these two forces
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by −δ3,2F2 and −δ3,4F4, the balanced force at node 3’ must be given by

f3 = δ3,3F3 − δ3,2F2 − δ3,4F4. (6.3)

More generally, any interior node k (i.e. a node that is not at the boundary) will experience

the force

fk = δk,kFk − δk,k−1Fk−1 − δk,k+1Fk+1. (6.4)

At the boundary, there is no force applied directly to the nodes, so the only force in the

balance is the reaction to the displacement of the first internal node; i.e. f1 = −δ1,2F2. This

can be seen in Fig. 6.3. Given that F2 is in the negative x direction, it holds that f1 is positive.

For the second node, Eq. (6.4) is simply given by

f2 = δ2,2F2 − δ2,3F3. (6.5)

Now, it can be seen that the sign of f2 is defined primarily by the δ terms. Similar conclusions

can be drawn regarding the expression for fk in Eq. (6.4). At this point in the discussion, it is

useful to return to Fig. 6.4 and recall that the nodal forces are defined by the element forces,

which are in turn defined by the stresses. For element (k), the shape functions are defined so

that N (k)
1 (x) = −N (k)

2 (x); effectively, the magnitude of the elemental force at each end of

the element is the same, but in opposite directions.

Considering a series of such elements, particularly in the complicated ED configuration,

it can be noted that the δ terms must be dictated by the relative contributions of the elements

either side of each node. Therefore, if the stress of an element is particularly large, it will

give a large positive contribution at one node and an equally large negative contribution at

the other. This stress will be inherently linked to the beam deflection, which provides a

reasonable explanation for the seemingly erratic force profile in Fig. 6.3, particularly as the

magnitude of the deflection increases toward the centre of the beam.
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Figure 6.4: Nodal and element overview of shape functions in a FE beam.
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Figure 6.5: Overview of the distribution of forces in a FE beam model.
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This discussion is now investigated further in Fig. 6.6. In this figure, cantilever beams con-

sisting of nodes {1, 2, . . . , n} are subjected to transverse displacement vectors of the form

w = −[0, 1/1000, . . . , (n − 1)/1000]. In Fig. 6.6, it is only the boundary nodes in which

the resultant force is non-zero. This can be explained by the linearity of the enforced dis-

placements. For any interior node, the relative displacement of the adjacent modes will be

of equal magnitude, but in opposite directions. Therefore, the sum of these forces must be

zero, as can be seen in the figure.

1 2
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Figure 6.6: Reaction forces of cantilever beams consisting of an increasing number of nodes,
subjected to linear displacements.

Fig. 6.7 focuses on a five-node cantilever beam with two sets of enforced displacements.

Namely, these will be a linear case, wlin = −1/1000[0, 1, 2, 3, 4], and an incremental case,

winc = −1/1000[0, 1, 3, 6, 10]. From these, it is possible to define a parameterised combina-

tion of the two, given by wi = iwlin + (1 − i)winc, where i ∈ [0, 1]. Increasing the value of

i from 0 to 1 moves the displacements from the linear case to the incremental case. While

the former is identical to the behaviour in Fig. 6.6, the latter introduces a force profile which

more closely resembles the behaviour seen in Fig. 6.3. The force at the tip increases incre-

mentally, as expected. Since the distance between nodes 4 and 5 is now greater than that
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between nodes 3 and 4, the reaction to F5 in node 4, δ4,5F5,is now greater than the force

required to displace the node, δ4,4F4. In fact, it can be seen that |δ4,4F4| < |δ4,5F5 + δ4,3F3|,

which explains why the balanced force at node 4 is negative. Furthermore, this becomes

more pronounced as i is increased.
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Figure 6.7: Reaction forces of a five-node cantilever beam subjected to a displacement de-
fined by wi = iwlin + (1− i)winc.

At this stage, it is important to recall that a key step in both techniques is projection of

both the forces and the displacements onto the modal basis. As has been addressed above,

this does not necessarily arise if it is the displacements that are imposed, in which case the

force can be considered highly non-modal. If we consider static cases for a single-mode

ROM in which the deflections are below a certain level, then, up to some tolerance, both

methods will produce static displacements with only a single mode triggered. Assume that

this displacement is the same in each case. For the IC method, the corresponding static

force will be modal, by definition. However, in the ED technique, we have already seen

that there will be a discontinuous force outputted by the FE software. Thus, there are two

forces that are vastly difference in both appearance and magnitude, but that result in the

same displacement, as can be seen in Fig. 6.8. This means that the relationship between

static forces and displacements is not bijective and, naturally, the force used will lead to

differences in the ROM produced, as discussed above.
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Figure 6.8: Static displacements and forces for two cases with displacements that can be
considered equal up to a small tolerance.

6.4 Resolving issues in the ED method
With these results in mind, the ED method is more thoroughly considered in terms of the

relationship between its displacements and forces. In particular, the influence of this rela-

tionship on the apparent underperformance of the technique is investigated. The most logical

initial test is to concoct a methodology that will allow a modal force to be obtained in the

ED method, while maintaining its other aspects. There are a number of ways in which this

could be achieved, with varying degrees of complexity and time expense. In an initial test,
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the efficiency of the methodology is not a priority, as it is first simply necessary to establish

whether there is any change in behaviour as a result of altering the force.

To achieve this, the modal forcing is applied iteratively until the correct displacement has

been achieved. The first applied load is comprised by a unitary forcing of a single mode; for

instance, in the calculation of a two-mode ROM, this would take the form Fq,n = [1, 0]T ,

where n denotes the iteration in which the force is applied. Thus, the applied, physical force

in the nth iteration is given by

Fn = ΦFq,n. (6.6)

Having applied this load, the corresponding displacement, xn, is then found and the greatest

difference between the current and desired displacements is recorded; the latter is denoted

xdes. If this difference is smaller than a certain tolerance, the modal force can be used in the

linear least-squares method. If not, the force must be updated. This is done by introducing

the updating parameter αn, defined as

αn =
qdes − qn
|qn|

, (6.7)

where qdes = Φ+xdes and qn = Φ+xn, and •+ denotes the Moore-Penrose pseudoinverse.

This parameter can then be used to update the force, writing

Fq,n+1 = Fq,n +
αn
|αn|

max{Fq,n}
N

. (6.8)

In essence, it is the ratio of the elements of αn that is important in the updating of the force.

This ratio dictates the relative change of each modal contribution, which can then be scaled

according to max{Fq,n} and some value N , used to control the rate of convergence. As

mentioned above, the optimisation of this process is not a priority. The convergence of this

procedure is illustrated for a single-mode force in Fig. 6.9.
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Figure 6.9: Progression of iterative methodology for approximating a modal displacement
with a modal force.
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This approach has been applied to a clamped-clamped beam to create both single-mode and

two-mode ROMs. The cubic coefficients from the two models are as follows:

Single-mode:

AIC = 4.2648e+13, AED = 5.8852e+13, AED,iter = 4.3913e+13. (6.9)

Two-mode:

AIC =


−4.0317e+13 −3.1217e+13

−9.3651e+13 −3.7232e+14

−3.7232e+14 −7.5240e+14

−2.5080e+14 −2.6765e+15

 , AED =


−5.8872e+13 −4.1093e+13

−1.2328e+14 −9.4978e+14

−9.4978e+14 −1.9495e+15

−6.4982e+14 −4.1655e+15

 ,

AED,iter =


−3.9760e+13 −3.1246e+13

−9.3739e+13 −3.87834e+14

−3.87834e+14 −7.4046e+14

−2.6640e+14 −2.6640e+15

 .
(6.10)

It can now be noted that the percentage differences between AIC and AED,iter are much smaller

than between AED and AED,iter:

A%,IC =


−1.38 −0.09

−0.09 −4.03

−4.03 −1.59

−1.59 −0.47

%, A%,ED =


−32.2 −24.2

−24.2 −59.3

−59.3 −62.0

−62.0 −36.0

%, (6.11)

In these matrices, each entry denotes the percentage change of the respective coefficient

between Amethod and AED,iter.

In the derivation of AED and AED,iter, the displacements used are identical, while the forces

differed significantly, as was observed in Fig. 6.8. This suggests that it is the non-modal

forcing outputted from finite element software that leads to the apparent underperformance

in the ED method. Furthermore, the highest percentages errors, relative to the classical ED

method, occur in the cross-coupling coefficients. As has been demonstrated in Chapter 5,

these terms are particularly important in the modelling of modal interactions. Thus, a failure

to address this difference in force may lead to the inaccurate prediction of internal resonance



6.5. SUMMARY 161

behaviour.

6.4.1 Varying the modal composition of the static cases
Further investigation of the static cases can be achieved by varying the relative contributions

of each mode in the modal shape (force or displacement). This variation is performed in

the development of a two-mode model using both the IC and ED methods. As has been

discussed, the modal shape in each of these currently takes the form

Σ = a(φ̂1 + φ̂2), (6.12)

where φ̂k is the displacement-normalised form of the kth mode shape and a is some scaling

factor used to ensure the displacement is within the desired region. Recall that this modal

shape can be applied as a force or a displacement, depending on the choice of ROM method.

In the current investigation, the shape in Eq. (6.12) is updated, so that it takes the form

Σ = a(φ̂1 + γφ̂2), (6.13)

where γ is used to vary the relative contributions of the two modes.

Interestingly, it can be seen that the coefficients from both methods are invariant to changes

in the static modal composition, even when the contribution of one is relatively small. This

implies that it is the modal nature of the forces in the ED method that is important for ob-

taining accurate results, as opposed to the specific modal structure thereof.

6.5 Summary
An expanded investigation into discrepancies between the IC and ED methods is presented in

this chapter. This discussion has been motivated by the fact that the fundamental steps of the

two techniques are largely the same. In particular, the two methods both create corresponding

sets of static forces and displacements, to which a linear regression procedure is applied.

Given that the two methods both apply the static case using a modal shape and then assume

a modal output, there is no apparent reason as to why there should be differences between

the results. Although some variation between the methods was observed in Chapter 5, the

distinction is much more pronounced in the software-based models.

Given these observations, the cause of the differences could be isolated to the acquisition
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Figure 6.10: Nonlinear coefficients for a 2DOF ROM, found by varying the relative contri-
butions of the two modes in the static cases.

of output data from the finite element software. Since the prescribed forces or displacements

are necessarily modal by definition, it can be concluded that the leading cause of the de-

viations must be the treatment and calculation of the outputs by the nonlinear solver; this

holds particularly true as this methodology is not readily available to the user. It has been

concluded that, while a modal force leads to a modal displacement, the same can not be said

when it is a linear displacement that is applied.

The displacements acquired in the ED method were observed to be largely discontinu-

ous, an unexpected result, given that the displacements prescribed were smooth. Building

on the fundamental theories underpinning the development of finite element models, this

chapter proposes an explanation as to why this seemingly sporadic result occurs. This expla-

nation is inherently linked to the notion that there is no physical equivalent to some of the

steps proposed in this methodology. In particular, the application of a static displacement

would require the constraining of a number of points along the beam. These are qualitatively
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no different from the application of BCs and would, therefore, have a similar influence on

the mechanical properties of the system; that is, the structure in the constrained and uncon-

strained configurations must be considered as separate systems, rather than different cases

of the same system. Further, this discussion proposes that the introduction of BCs along the

span of the beam effectively discretises the structure into a series of systems that are largely

independent of one another.

To investigate this hypothesis, the ED is applied twice, with the recorded force acquired

differently in both cases. Of course, the first, benchmark case is the traditional finite element

application. In the latter, identical displacements are used, however, an iterative approach to

calculate purely modal forces is introduced and applied. The predicted coefficients from the

two applications are not identical, despite the similarity of their displacements. The results

found using the novel, iterative approach are shown to be the same as those found using the

IC method. Thus, it can be concluded that it is the attainment of the forces directly from the

finite element software that leads to the inaccuracy.

A separate, but related, study into the modal composition of the static cases has also

been undertaken. By varying the relative contributions of the two modes in a 2DOF ROM,

it was concluded that the coefficients obtained in both techniques is independent of the these

contributions, so long as they are both active to some extent. It is noted that these results may

not hold true for more complicated structures; this would provide a beneficial expansion of

this work.
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Chapter 7

Conclusions and future work

In this thesis, a number of modelling techniques for nonlinear vibrations have been investi-

gated and expanded. This has helped to further understand their theoretical understanding

and has contributed to their ability to accurately and efficiently understand complex dynamic

phenomena that may occur. This chapter provides a summary of the findings presented in

this thesis, before outlining a number of ways in which the research could be expanded.

7.1 Conclusions
As discussed in Chapter 1 and throughout this thesis, the work presented aims to contribute

to the understanding and modelling of nonlinear vibrations, so that they may, eventually, be

predicted with the same ease and accuracy as linear modal analysis. This would allow the

safe and practical design of nonlinear systems, resulting in great savings in efficiency. The

key ways in which this has been achieved can be outlined as follows.

• By focusing on frequency tuning in the multiple scales method, it has been possible to

bring its solutions in line with those of the direct normal form method. This allows the

user to choose either technique without having to compromise on accuracy.

• Through the consideration of the modal coupling parameters in Galerkin models, it

has been possible to ascertain a number of trends that could alert the user to possible

modal interactions. This is extremely useful in predicting destructive behaviour that

could occur, for instance, in ultralight or microscale mechanical structures.

• A novel method for incorporating nonlinear boundary conditions into Galerkin models

165
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has been developed. Given the strong influence of such interactions at the microscale

– for instance, in atomic force microscopy – this methodology could prevent damage

to highly expensive systems.

• The implicit condensation and enforced displacement techniques have been funda-

mentally assessed through their application to an analytical nonlinear system. These

methods present exciting reduced-order modelling techniques for structural engineers,

but their use is predominantly observed in academic studies. As such, the discussions

of this work further the understanding of the methods, contributing to their potential

to be used on a much wider scale.

7.1.1 Analytical approximation methods
In Chapter 3, the harmonic balance, multiple scales, and direct normal form methods were

derived and compared in terms of the accuracy of their predicted response found using only

one or two iterations of the methodology. Although it has been shown that all three tech-

niques are capable of producing accurate results, the discussion in this chapter highlights a

number of benefits and limitations associated with the application of each, using two lumped-

mass systems to demonstrate these via comparison with numerical solutions. The HB method

is by far the simplest of those considered, as it effectively only requires a single major step,

in which a trial sinusoidal solution is applied and the coefficients of the harmonic expansion

are balanced. This means that results can quickly be found, but higher-order terms that occur

in nonlinear structures are implicitly assumed to be negligible as they are not represented in

the trial solution. As such, the method lacks the ability to model structures with significant

harmonic responses without expanding this initial solution.

The MS and DNF methods both address this issue, though they do so using different

strategies. The MS technique applies perturbations to key parameters, such as time and

displacement, using a bookkeeping parameter to monitor the relative contribution of each

term. In applying this parameter, it becomes possible to predict the aforementioned harmonic

components of the response without making changes to the trial solution. Furthermore,

the inclusion of time-dependent displacement parameters allows the modelling of transient

behaviour, which is not possible in the standard implementation of the other techniques. In

addition, this thesis has demonstrated that a key aspect in simplifying the methodology of

this technique is to linearise the frequency term; this step is not utilised in the other methods

considered.
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Finally, the DNF method applies the classical normal form method directly to the second-

order equations of motion of a nonlinear system, applying three transformations to ensure

that only those terms that are resonant are retained. This method also uses a bookkeeping

parameter to monitor the contribution of each term, though these are only included in the

equations of motion, rather than in parameter perturbations. Chapter 3 outlined two major

advantages of using the DNF method. The first is the matrix framework, used to track the

fundamental and harmonic components of the response. The second is the frequency de-

tuning applied during the technique, which has been shown in previous studies to explain

the greater accuracy observed, compared to similar applications to the first-order system of

equations.

In Chapter 3, it has been demonstrated that, if this detuning is chosen as the tuning

applied in the MS method, it is possible to make the solutions of the two techniques identical

to one another. This presents the user with the possibility of using either of these widely-

applied techniques and the accuracy being independent of this choice. This also presents the

opportunity to combine the accurate results typically obtained using the DNF method with

the ability to model transient behaviour.

7.1.2 Analytical finite element modelling
While the previous discussion focused on lumped-mass systems, Chapter 4 addressed the

development and application of analytical models for continuous structures, focussing par-

ticularly on the Galerkin method, due to its recent applications in M/NEMS structures. The

development of an Euler-Bernoulli beam model is used to illustrate the implementation of

the Galerkin assumption and the dependence of the model on its BCs. Particular focus was

given to the comparison between symmetric and asymmetric beam configurations, in light

of observations made in the literature, in which asymmetric systems have exhibited internal

resonances between the modes. A key component of this investigation was the in-depth com-

parison between two similar models by studying a pinned-pinned beam with and without a

rotational spring at one end. Confirmation of a 1:3 modal interaction between the first two

modes, in the former case, is presented and supplemented by the observation of a second in-

ternal resonance between the second and fourth modes. This study outlined a number of key

observations regarding the nonlinear coefficients, as well as the influence on the structure of

the natural frequencies when the symmetry is broken.

Following this discussion, Chapter 4 addressed the notion that it may not be possible
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for all physical structures to be accurately modelled using a combination of classical BCs

and linear springs, particularly as the method is applied to M/NEMS structures. To this end,

a novel, nonlinear algebraic approach for treating BCs defined by polynomial expressions

of the displacement is introduced. As such, the technique can be used to approximate any

system in which the behaviour at the boundary can be accurately represented by a Taylor ex-

pansion. This methodology can effectively be considered as a nonlinear algebra extension of

the linear methods traditionally used, utilising the tensor resultant in place of the matrix de-

terminant to develop the solvability condition; a number of results from the field of nonlinear

algebra are utilised to simplify this step.

A practical example of the implementation of this method is presented, using a symmetric

beam supported at both ends by springs with quadratic and cubic stiffnesses. The calculation

of the elastic properties for this structures demonstrates that, while the system itself may be

symmetric, the mode shapes may not be, as is seen in this case. It is further concluded that

this asymmetry arises as a result of the relative contributions to the stiffness from the beam

and the supports. By increasing the spring stiffnesses, the first mode shape varies from that

of a rigid, spring-supported beam to that of a pinned-pinned beam. The mode shapes of a

pinned-pinned beam can therefore be considered as a limit case as the spring stiffnesses tend

to infinity. Note that, within this transition, a large amount of modal interaction behaviour is

observed.

Following this theoretical example, a cantilever beam with an attractive magnetic reaction

at the tip is modelled. The interaction itself actually takes a complex, logarithmic form, so

this is approximated by a cubic truncation of its Taylor expansion. The mode shapes found

using this approximation are compared with those found using a linear truncation and those

of the underlying linear equations. A number of interesting observations are made from

this comparison. First, it must be noted that both the underlying linear natural frequency

and the ability to predict modal interactions are inhibited by the exclusion of higher-order

terms. Further, the higher frequency mode shapes found using the linear approximation are

effectively identical to those of the linear system. In contrast, no such trend is observed for

the cubic approximation. These observations highlight the importance of properly including

boundary interactions in the calculation of the elastic properties, if the nonlinear behaviour

is to be accurately captured.
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7.1.3 Reduced-order modelling
The work of Chapters 5 and 6 undertook a fundamental investigation into non-intrusive

reduced-order modelling technique, focussing particularly on the implicit condensation and

enforced displacement methods. The derivation and application of these techniques were

initially outlined and it was noted that a key motivation for their use is their ability to ap-

proximate the nonlinear behaviour without requiring access to the source code. To provide

more fundamental insight into the abilities and shortcomings of these methods, Chapter 5

considers their application to analytical nonlinear systems, as opposed to the typical imple-

mentation, in which the static cases are applied using finite element software; the motivation

for doing so is that it removes the uncertainty that is introduced due to the lack of access to

the source code in commercial software.

Initially, a 3DOF lumped-mass system with cubic nonlinearities was used to demonstrate

and explain a case in which the coefficients found using the ED method are invariant to

changes in the scaling of the static cases, whereas the IC method deviates from the full model

value as the scaling factor is increased. While this example may be considered somewhat

artificial, it provides a useful explanation of how the IC method condenses the effect of the

interaction between the modes. These results suggest that the ED is less suited to capturing

such effects. This poses the user with an interesting decision to be made. It has been shown

that, for this case, the ED backbone curve is initially closer to the numerical solution, but

deviates from this at higher amplitudes. In contrast, the IC curve initially appears to be

less accurate, but the difference in its curvature provides a close representation of the true

behaviour for a longer period. This is a result of the aforementioned ability of the method

to condense the membrane effects that arise as a result of applying a force instead of a

displacement.

This investigation was expanded by applying the two methods to the Galerkin model of

the previously-discussed asymmetric pinned-pinned beam with rotational spring. Not only

does this provide the ability to vary the size of the ROM, but it also allows the investigation

of modal interaction behaviour. With regard to the former, it has been demonstrated that the

condensation effect observed for the IC method in the lumped-mass system holds true in the

continuous case, though it becomes less pronounced as more modes are added to the basis.

It was further demonstrated that only those modes involved in an internal resonance need to

be included in this basis for the behaviour to be captured almost exactly. However, this also

highlighted an element of uncertainty, should such interactions not be known a priori. As
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mentioned above, there was a second modal interaction between modes two and four, but the

ROM is unable to predict this with only the fourth mode included, despite the structure of

the nonlinear coefficient matrices being similar to that of the model including modes 1 and

2.

Both of the analytical models discussed in this section have been expanded further through

the inclusion of higher-order nonlinear terms; more precisely, they were expanded up to quin-

tic order. These updated models provide a case that is qualitatively closer to the traditional

implementation, in that the ROM is not of the same polynomial order as the full model. In

both cases, the invariance property previously observed in the ED method was no longer

present and it followed a similar, albeit less pronounced, trend to that seen in the IC method.

There were, however, some key differences between the two cases. For the lumped-mass

system, both the IC and ED method exhibited a stiffening of the coefficients as the maxi-

mum static displacement was increased. This trend remained true when the IC method was

applied to the continuous system (as was the case in the cubic model), but the opposite was

true for the ED method.

The influence of these trends on the system behaviour was also observed. Naturally, the

condensation of the nonlinear effects that were originally observed in the discrete model for

the IC method were also seen to hold true for the ED technique, though the variation between

the three cases considered was less obvious. While this was also initially true for the beam

model, it has been observed that the presence of a modal interaction can somewhat hinder

this procedure, if the displacements enforced are too great. In particular, the typical tongue

observed on the backbone curve instead manifests as a hardening-to-softening behaviour,

which is unrepresentative of the true response.

7.2 Future work
As has been demonstrated in §7.1, this thesis has presented a number of important results

for the understanding, development, and refinement of nonlinear modelling techniques. As

the field of nonlinear dynamics expands, it is important that this process continues to adapt

to new challenges, with the ultimate goal being for nonlinear modal analysis techniques to

be applied with the same confidence and understanding as corresponding linear techniques.

This section presents a number of ways in which the research of this thesis could be continued

to move towards this target.
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7.2.1 Expanding the use of analytical approximation methods
In this thesis, it has been demonstrated that results from the MS and DNF methods can be

identical to one another, should the frequency detuning from the second be used in both

cases; it has been concluded that this allows the user to choose either technique and still be

able to ensure the same level of accuracy. This development highlights the fact that, although

there are a number of established methods, it is important to remember that these are not

perfect. In fact, it is possible that they could be improved and refined by considering the

positive aspects of other techniques. Although not pursued in this thesis, a key attribute of the

MS method is the ability to capture transient behaviour, as a result of the inclusion of time-

dependent displacement variables. This quality continues to be a benefit, for instance in the

introduction of time-varying temperature dependence, so it is proposed that the introduction

of a temporal component to the displacements of the DNF method would expand its potential

scope.

The simplicity of the HB method has allowed its application to large-scale nonlinear

systems, though the complexity of the MS and DNF method currently limits their use to

much smaller-scale applications. While the possibility of developing similar automations of

these techniques is valid, it should be noted that non-intrusive ROMs have been shown to

provide accurate results using systems that closely resemble those seen in Chapter 3. As

such, it may be much less computationally expensive to develop an integrated application

of these techniques with analytical methods. So long as the necessary modes are included

in the basis, these analytical methods (particularly DNF) offer the possibility of predicting

isolas without the need for extensive full-model computation.

7.2.2 Developing the role of Galerkin models
The nonlinear algebra approach outlined in Chapter 4, as well as the associated results re-

garding the influence of nonlinear BCs on the system dynamics, present an interesting de-

velopment of analytical methods, particularly as they continue to be applied to the relatively

young field of micro- and nanomechanical structures. It must first be noted that these devel-

opments are currently limited to beam structures, so an obvious initial expansion should be

to apply the same procedure to more complex mechanical elements, such as plates, shells,

and pipes. As well as this, although some preliminary validation has been provided by the

consideration of parameter limit cases, the stature of this procedure would benefit from ex-

perimental confirmation. This could be readily provided by the cantilever with magnetic
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interaction at the tip, as outlined in Chapter 4, and further investigated for M/NEMS devices.

Chapter 4 also highlights a number of trends in the integral terms that define the non-

linear behaviour (the α and β terms) that occur when the symmetry is broken and modal

interactions occur. Further investigation into these trends may lead to the development of a

rigorous framework for predicting such behaviour without the need to run any simulations of

the system response; it may also be possible to isolate the modes that would be involved in

these interactions. Although these trends have only been considered for analytical models,

it is a distinct possibility that they may hold true more generally and could also be inves-

tigated. Furthermore, for engineers developing designs that actively utilise nonlinearities

(such as nonlinear tuned-mass dampers), these trends may represent a useful initial tool to

ensure the correct nonlinear properties; therefore, further development of their understanding

could reduce the computational expense of the design process.

7.2.3 Refining the application of non-intrusive reduced-order models
Despite the increasing application of the non-intrusive ROM techniques discussed, this tends

to be in academic studies that aim to contribute to the development of the technique by

comparing the results with those of the full model. As such, it is possible to conclude that, for

the methods to become widely used for design purposes (as they have the potential to do), a

more fundamental understanding of the intricacies of their methodology must be developed.

The work of this thesis has aided this process by introducing the application of the methods

to analytical structures, in which the full model is completely understood. That being said,

there are a number of ways in which this discussion could be applied. For instance, although

higher-order terms are added to the analytical systems, the results are qualitatively different

to the application in commercial software. It may be beneficial to develop an analytical (or

semi-analytical) system that more closely approximates the treatment of nonlinearities by

these programmes. This could be achieved, for example, through the piecewise linearisation

of the nonlinear components, or by utilising open source finite element software.

A number of studies have observed that solutions found using the ED method are some-

what less accurate than those found using the IC method. This thesis concludes that this is a

result non-modal response forces in finite element software, an issue which appears to arise

a consequence of the method used by commercial finite element software in their calcula-

tion. The unavailability of the source code, therefore, suggests that the ED method could be

refined by establishing a reliable methodology for finding modal forces. While the iterative
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method proposed in Chapter 6 provides one such strategy, it is time-consuming and effec-

tively removes any benefit of using the ED method instead of the IC technique. A summary

of potential alternative strategies is now provided:

• If translation at the BCs is restricted, the only reaction force observed at these nodes

would be as a result of the displacement of the adjacent node. If, further, it is possible

to characterise the relationship between relative displacement and the distribution of

the associated reaction force, the ‘true’, modal force could be isolated through the

simple application of matrix operations.

• If a force is applied at each node in turn, it should be possible to create a database of the

relative contributions to the displacement of all the nodes. Thus, the force appropria-

tion would be reduced to a surface fitting problem that could be solved numerically.

• An initial approximation could be obtained by applying each nodal displacement in

turn and then scaling the resultant force. However, initial investigations into this strat-

egy suggested that this may overestimate the force close to the boundary.

7.2.4 Final thoughts
The suggestions made in this final section summarise some of the simplest and most effective

ways in which the work of this thesis could be expanded to the aforementioned confidence

and reliability required of nonlinear modal analysis. To truly achieve this goal, a final sug-

gestion for future work would be the unification of these techniques, both among themselves

and with the other methods that continue to be developed. The results and methodology of

this thesis provide a useful starting point for achieving this.
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vation of coherent energy transfer in nonlinear micromechanical oscillators. Nature

Communications, page 15523, 2017.

[29] E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, F. Dercole, B. E.

Oldeman, R. C. Paffenroth, B. Sandstede, X. J. Wang, and C. Zhang. Auto-07p:

Continuation and bifurcation software for ordinary differential equations, Montreal,

Concordia University, Canada, 2008. Available at: http://cmvl.cs.concordia.ca.

[30] E. J. Doedel. Auto: A program for the automatic bifurcation analysis of autonomous

systems. Congressus Numerantium, 30:265–384, 1980.

[31] W. Govaerts, Y. A. Kuznetsov, O. De Feo, A. Dhooge, V. Govorukhin, R. K. Ghaziani,

H. G. E. Meijer, W. Mestrom, A. Riet, and B. Sautois. Matcont continuation software

in matlab. Available at: http://www.matcont.ugent.be/.



178 BIBLIOGRAPHY

[32] A. Dhooge, W. Govaerts, and Y. A. Kuznetsov. Matcont: A matlab package for nu-

merical bifurcation analysis of odes. ACM Transactions on Mathematical Software,

29:141–164, 2003.

[33] F. Schilder and H. Dankowicz. Continuation core (coco). Available at:

https://sourceforge.net/projects/cocotools/.

[34] H. Dankowicz and F. Schilder. Recipes for Continuation. Philadelphia, PA: Society

for Industrial and Applied Mathematics., 2013.

[35] C. R., Kirkendall, and J. W. Kwon. Multistable internal resonance in electroelastic

crystals with nonlinearly coupled modes. Scientific Reports, 6:22897, 2016.

[36] D. I. Caruntu and I. Martinez. Reduced order model of parametric resonance of elec-

trostatically actuated mems cantilever resonators. International Journal of Non-Linear

Mechanics, 66:28–32, 2014.

[37] D. I. Caruntu and L. Luo. Frequency response of primary resonance of electrostati-

cally actuated cnt cantilevers. Nonlinear Dynamics, 78:1827–1837, 2014.

[38] D. I. Caruntu, M. Botello, C. A. Reyes, and J. Beatriz. Voltage–amplitude response

of superharmonic resonance of second order of electrostatically actuated mems can-

tilever resonators. Journal of Computational and Nonlinear Dynamics, 14:031005,

2019.

[39] D. I. Caruntu and R. Oyervides. Frequency response reduced order model of primary

resonance of electrostatically actuated mems circular plate resonators. Communica-

tions in Nonlinear Science and Numerical Continuation, 43:261–270, 2017.

[40] M. Botello, J. Beatriz, and D. I. Caruntu. Voltage response of circular plate mems

resonators under superharmonic resonance. In Proceedings of the ASME 2018 Inter-

national Mechanical Engineering Congress and Exposition, 2018.

[41] H. Farokhi and M. H. Ghayesh. Nonlinear size-dependent dynamics of microarches

with modal interactions. Journal of Vibration and Control, 22:3679–3689, 2016.

[42] D. J. Skubov, A. V. Lukin, and L. V. Shtukin. Nonlinear dynamics of micro-

electromechanic element. International Journal of Mathematics and Computers in

Simulation, 12:88–95, 2018.



BIBLIOGRAPHY 179

[43] M. Peeters, L. Renson, and G. Kerschen. Nnmcont: A matlab pack-

age for the continuation of nonlinear normal modes. Available at:

http://www.ltasvis.ulg.ac.be/cmsms/index.php?page=nnm.
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Simulia Corp, United States, 2009.



196 BIBLIOGRAPHY


