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Abstract

This thesis is devoted to three interrelated problems in representation theory. The first problem
concerns the combinatorial aspects of the connection between rational Cherednik algebras at ¢ = 0
and Hilbert schemes. The second problem concerns the critical-level limit of the Suzuki functor, which
connects the representation theory of affine Lie algebras to that of rational Cherednik algebras. The
third problem concerns the properties of certain generalizations of Khovanov-Lauda-Rouquier algebras,
called quiver Schur algebras, and their relationship to cohomological Hall algebras. Let us describe
our results in more detail.

In chapter 3, we study the combinatorial consequences of the relationship between rational Chered-
nik algebras of type G(I,1,n), cyclic quiver varieties and Hilbert schemes. We classify and explicitly
construct C*-fixed points in cyclic quiver varieties and calculate the corresponding characters of tauto-
logical bundles. We give a combinatorial description of the bijections between C*-fixed points induced
by the Etingof-Ginzburg isomorphism and Nakajima reflection functors. We apply our results to ob-
tain a new proof as well as a generalization of a well known combinatorial identity, called the g-hook
formula. We also explain the connection between our results and Bezrukavnikov and Finkelberg’s, as
well as Losev’s, proofs of Haiman’s wreath Macdonald positivity conjecture.

In chapter 4, we define and study a critical-level generalization of the Suzuki functor, relating the
affine general linear Lie algebra to the rational Cherednik algebra of type A. Our main result states that
this functor induces a surjective algebra homomorphism from the centre of the completed universal
enveloping algebra at the critical level to the centre of the rational Cherednik algebra at ¢t = 0. We use
this homomorphism to obtain several results about the functor. We compute it on Verma modules,
Weyl modules, and their restricted versions. We describe the maps between endomorphism rings
induced by the functor and deduce that every simple module over the rational Cherednik algebra lies
in its image. Our homomorphism between the two centres gives rise to a closed embedding of the
Calogero-Moser space into the space of opers on the punctured disc. We give a partial geometric
description of this embedding.

In chapter 5, we establish a connection between a generalization of KLR algebras, called quiver
Schur algebras, and the cohomological Hall algebras of Kontsevich and Soibelman. More specifically,
we realize quiver Schur algebras as algebras of multiplication and comultiplication operators on the
CoHA, and reinterpret the shuffle description of the CoHA in terms of Demazure operators. We
introduce “mixed quiver Schur algebras” associated to quivers with a contravariant involution, and
show that they are related, in an analogous way, to the cohomological Hall modules defined by Young.
Furthermore, we obtain a geometric realization of the modified quiver Schur algebra, which appeared
in a version of the Brundan-Kleshchev-Rouquier isomorphism for the affine ¢-Schur algebra due to

Miemietz and Stroppel.
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Chapter 1

Introduction

Below we sketch the background and the principal motivations behind the problems considered
in this thesis. A more precise, and technical, summary of our main results can be found in the
introductions to the three main chapters: and

General overview. In this thesis we consider three distinct but interrelated problems in representa-
tion theory. The first one revolves around an affine algebraic variety called the Calogero-Moser space.
This variety was introduced in [142] as the completed phase space of the Calogero-Moser (CM) inte-
grable system, and was used to relate the collisions of the Calogero-Moser particles to solutions of the
Kadomtsev-Petviashvili (KP) hierarchy. It later turned out that the Calogero-Moser space admits a
more algebraic construction, which can be generalized to any complex reflection group. Etingof and
Ginzburg [48] associated to any such group an algebra, called the rational Cherednik algebra (RCA),
whose centre, in the symmetric group case, is isomorphic to the ring of functions on the Calogero-Moser
space. Rational Cherednik algebras play an important role in symplectic geometry, representation the-
ory, and combinatorics. For example, they have been instrumental in classifying symplectic resolutions
of orbifold singularities, and generalizing the famous Macdonald positivity conjecture. They also have
fascinating links to other objects such as Hecke algebras, Schur algebras and affine Lie algebras, some

of which we explore in this thesis.

Affine Lie Calogero-Moser Nakajima quiver

algebras system varieties

T | "

Hecke, Schur Rational Cherednik
<7

Resolutions of
‘ —_— orbifold

algebras algebras . o
singularities
Double affine J \
Combinatorics Hilbert scheme

Hecke algebras



2 1. Introduction

The Calogero-Moser space associated to the complex reflection group G(I,1,n), i.e., the semi-direct
product Sy, X (Z/IZ)™, admits yet another, more geometric, construction, as a Nakajima quiver variety.
The interplay between the algebraic and geometric constructions of the Calogero-Moser space is the
main topic of chapter 3. The rational Cherednik algebra is naturally graded, and this grading induces
a C*-action on the Calogero-Moser space, which corresponds to the scaling action on the quiver variety.
By studying the fixed points of these actions, we obtain a new combinatorial formula, which can be seen
as a generalization and a quantization of the classical hook-length formula, expressing the dimension

of a simple module over the symmetric group in terms of hooks in a Young diagram.

quantization replace S,, by ngher level
Hook-length formula |~~~y | g-hook formula | <~y
Sn X (Z)1Z)™ g-hook formula

The main topic of chapter 4 is a variation on another classical theme, namely, Schur-Weyl duality.
It was a great insight, which has, in different guises, guided the development of representation theory
to this day, that the general linear group controls the representation theory of the symmetric group.
We study an affine analogue of this relationship, with the general linear group replaced by the cor-
responding affine Lie algebra, and the symmetric group replaced by the rational Cherednik algebra.
More specifically, we study the classical limit of a functor defined by Suzuki [132], and realize the centre
of the rational Cherednik algebra as a quotient of the centre of the completed universal enveloping
algebra of the affine Lie algebra at the critical level. This allows us to exhibit the Calogero-Moser

space as an explicit closed subset inside a certain moduli space of G-bundles called opers.

Schur-Weyl duality affinization Suzuki functor classical limit
Ay Ry

~ CM — Opers
GL,, «~ S, gl,, ~ RCA space pers

Chapter 5 is devoted to a somewhat different problem, which is not directly related to rational
Cherednik algebras. As our main result, we establish a connection between two well known alge-
bras, which, historically, appeared in very different mathematical contexts and were introduced with
rather different motivations in mind, namely: quiver Schur algebras and cohomological Hall algebras
(CoHA'’s). The former are a generalization of Khovanov-Lauda-Rouquier (KLR) algebras, which play
an important role in the categorification of quantum groups. We study them from a geometric point
of view, focussing on their realization as convolution algebras associated to a certain Steinberg-type
variety. This construction generalizes the well known geometric construction of the (degenerate) affine
Hecke algebra. Our second main player, the CoHA, is, on the other hand, motivated by questions
from physics, including string theory and Donaldson-Thomas invariants. The CoHA can be seen as a
variation on the famous Ringel-Hall algebra, with a finite field replaced by the field of complex numbers
and convolution of functions replaced by convolution of cohomology classes. Our main result gives,
roughly speaking, an action of the quiver Schur algebra on the CoHA, which allows us to realize the

quiver Schur algebra as an algebra of certain explicit operators on the CoHA.
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Rational Cherednik algebras. We will now describe the main ideas of the thesis in more detail.
We start by defining rational Cherednik algebras, and explaining the main motivations behind them.
Let V be a finite dimensional complex vector space with an action of a finite group G C GL(V). The
well known Shephard Todd theorem (see, e.g., [24]) says that the variety V/G = Spec C[V]% is smooth
if and only if G is a complex reflection group. In general, the space V/G is singular. For example, if
V = C? and G is a finite subgroup of SL(C) then the space C2?/G is called a Kleinian (or Du Val)
singularity. The finite subgroups of SL4(C) are classified, via McKay correspondence, by ADE Dynkin
diagrams, and belong to a large class of groups called symplectic reflection groups.

Suppose that (V,w) is a symplectic vector space and G C Sp(V) is a finite subgroup. One may
ask whether the quotient singularity V/G can be resolved via a symplectic resolution. A symplectic
resolution is a birational morphism 7: X — V/G from a smooth symplectic variety X, projective over
V/G, such that the restriction of 7 to the preimage of the smooth locus of V/G is an isomorphism
of symplectic varieties. Verbitsky [140] showed that if such a resolution exists then G is a symplectic
reflection group, i.e., it is generated by elements s satisfying rk(1 — s) = 2.

From now on assume that G is a symplectic reflection group. Namikawa [105] showed that V/G
admits a symplectic resolution if and only if it admits a smooth Poisson deformation. To study such
deformations, it is convenient to pass to noncommutative geometry, i.e., replace the coordinate ring
C[V/G] = C[V]¥ with the noncommutative skew group ring C[V] x G. The two algebras are Morita
equivalent and C[V] is equal to the centre of C[V] < G. The Poisson structure on C[V] x G comes from
its natural quantization, namely the skew group ring A;(V') x G associated to the Weyl algebra A,(V).
Explicitly, A:(V) x G is the quotient of T(V*) x G by the relation [u,v] = tw(u,v) (for u,v € V*).

A Poisson deformation of the algebra C[V] x G, depending on an extra parameter ¢ associated to
conjugacy classes of symplectic reflections, was defined by Etingof and Ginzburg [48]. This Poisson
deformation is known as the symplectic reflection algebra H, (G) associated to G. It is the quotient of
T(V*) x G by the relation

[u, v] = tw(u,v) — 2 Z c(s)ws(u,v) - s,
seS
where S is the set of symplectic reflections and w; is the 2-form which equals w on Im(1 — s) and is
trivial on ker(1 —s). We see directly that H; (G) specializes to A,(V) x G when ¢ = 0, and to C[V] x G
if, additionally, ¢t = 0. As we have already mentioned, the existence of a symplectic resolution of V/G

is equivalent to the existence of a smooth Poisson deformation of V/G. It was proven by Ginzburg
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and Kaledin [62] that such a Poisson deformation exists if and only if Spec Z(Hp ¢(G)) is smooth for
generic ¢. This result was used in, e.g., [101/62}/63] to classify quotient singularities admitting symplectic
resolutions.

We are interested in a special class of symplectic reflection algebras, associated to symplectic re-
flection groups constructed from complex reflection groups. Suppose that G C GL(h) is a complex
reflection group. If we endow V = h @ h* with the natural symplectic structure and the diagonal
G-action, then G, considered as a subgroup of Sp(V), becomes a symplectic reflection group. The
corresponding symplectic reflection algebra H, (G) is called a rational Cherednik algebra. This termi-
nology is motivated by the fact that, when G is a Weyl group associated to a (finite) root system,
H; c(G) is a degeneration of Cherednik’s double affine Hecke algebra.

Quiver varieties. The rational Cherednik algebras associated to complex reflection groups of type
G(l,1,n), i.e., G= 8, x (Z/IZ)™, are especially interesting. As we have already mentioned, the affine
variety defined by the centre of Hy (G) plays an important role in the study of symplectic resolutions.
It turns out that when G is of type G(I, 1, n), the variety Spec Z(Ho (G)) can be realized as a Nakajima
quiver variety [48, Theorem 11.16]. When G is the symmetric group, this quiver variety coincides with
a well known object from the theory of integrable systems, namely the Calogero-Moser space [142]. Let
us consider this example in more detail. We take the double of the framed Jordan quiver, as pictured

below:

X
J
o0 o’\_/o 0 (1'1)
I
Y

The space Rep(Q,d) of representations of this quiver with dimension vector d = (dy = n,do = 1)
is isomorphic to Mat,,»,, (C)®2 @ Mat,, x1(C) @ Matix,,(C) and carries a natural action of GL,,(C) by
conjugation. Since Rep(@, d) is isomorphic to the cotangent bundle on the space of representations of
the (non-doubled) framed Jordan quiver, it carries a natural symplectic structure. The G L,-action is

Hamiltonian and the corresponding moment map is given by the formula
p: Rep(Q,d) —gl,, (X,Y,I,J)— [X,Y]+ JI.
The Calogero-Moser space is the quotient
X(d) = p~Y(—id) J GL,, = SpecC[u~(—id)]%Ln. (1.2)

To the same quiver, but different parameters, one can associate another well known variety, namely
the Hilbert scheme of n points in the plane. We take the fibre of the moment map at 0 (rather than
—id), and replace the naive quotient (|1.2)) with the GIT quotient

Hilb,, = u~*(0) /_1 GL,.

The Hilbert scheme is a smooth irreducible variety parametrizing ideals in C[x,y] of colength n. Even

though the Calogero-Moser space and the Hilbert scheme are very different as algebraic varieties, they



are diffeomorphic if we consider them as hyper-Kéhler manifolds.

The connection between rational Cherednik algebras, quiver varieties and Hilbert schemes has been
generalized by Etingof and Ginzburg [48] as well as Gordon [64] to complex reflection groups of type
G(l,1,n). The quiver gets replaced by the following quiver

-1
[ ) N’7 2
\ X
Consider the space of representations of this quiver with dimension vector d = (dg = n,...,dj—1 =

n,ds = 1), equipped with the conjugation action of G(d) = Hi;é GLg,. This action is Hamiltonian

and gives rise to the moment map
w: Rep(Q,d) — Lie G(d).
Given a parameter 6 € Q', we obtain two quiver varieties

Xp(d) = p~1(0) /) G(d), Mo(d) = p~'(0) Jo G(d).

We will always assume that the parameter 6 is chosen in such a way that these quiver varieties are
smooth. Etingof and Ginzburg (and later Martino, in the non-smooth case) showed that there is a

natural isomorphism of algebraic varieties
Spec Z(Ho,c(G)) = Xy (d),

where 6 is a parameter depending on c. In view of this isomorphism, the spectrum of the centre of
a rational Cherednik algebra is often called a generalized Calogero-Moser space. The variety Xp(d)
turns out to be diffeomorphic to the GIT quotient Magp(d). Moreover, by simultaneously changing
the dimension vector d and the parameter 6 in an appropriate way, one obtains diffeomorphisms
My(d) =2 My (d’) called Nakajima reflection functors. Gordon combined these diffeomorphisms to
produce a map from Spec Z(Hp .(G)) to a certain closed subvariety of the Hilbert scheme of K = ni+m

points in the plane, where m depends on the parameter c. To summarize, we have maps

Spec Z(H07C(G)) — ch (d) — Mggc (d) — Xy (d/) — Hilbg . (13)

Combinatorics. We are interested in the combinatorial applications of the connection between ratio-
nal Cherednik algebras and Hilbert schemes. We pass from geometry to combinatorics by considering
the fixed points of certain C*-actions: the action on Spec Z(Hoc(G)) induced by the grading on the
rational Cherednik algebra, and the natural scaling action on the quiver varieties. The fixed points
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in Spec Z(Hy ¢(G)) are parametrized by [-multipartitions of n, while the fixed points in Hilbg are
parametrized by partitions of K. Since all the maps in ([1.3) are equivariant, we obtain an injective
map

P(l,n) — P(K). (1.4)

The image of this map consists of partitions with a certain fixed l-core, depending on the param-
eter c. We remark that an [-core is a partition from which one cannot remove any hooks of length .
The main goal of chapter 3 is to give an explicit combinatorial description of . Our main result
(Theorem [D] and Corollary [E]in says that (the inverse of) can be characterized as a twist of
a well known map from combinatorics, which assigns to each partition its [-quotient. Since this notion
is somewhat technical, we refer the reader to for a precise definition.

Theorem 1. The bijection
P(l,n) +— P,(K) (1.5)

from the set of l-multipartitions of n to the set of partitions of K with l-core v (depending on c),
induced by (L.3]), is given by a twist of the classical l-quotient bijection.

Our result has several interesting applications. The first one has to do with the g-analogue of the
well known hook length formula |
n!

¥ Mo, hn©) "

which expresses the dimension of the Specht module corresponding to the Young diagram of shape p

in terms of the product of the lengths of all the hooks in this diagram. The ¢g-analogue of this formula,

known as the g-hook formula, relates a certain polynomial depending on the contents of cells in the

Young diagram to so-called fake degree polynomials (which can also be expressed in terms of hook

> =, Y Y (17

Oep AT K q)

polynomials):

As an application of Theorem [I} we obtain a new geometric proof and a “higher level” generalization
of the ¢-hook formula (Theorem |Glin §3.1)):

Z @ = [nl], Z falg) (1.8)

Oep ATQUOt(M)" fM(H)b (q)

Theorem [1] is also an important ingredient in the proofs [16,(95] of Haiman’s wreath Macdonald
positivity conjecture, which is a generalization of the original conjecture concerning the coefficients of
Kostka-Macdonald polynomials, with the ring of symmetric functions replaced by the space of virtual
characters of the complex reflection group of type G(I,1,n). The role our result plays in these proofs

is described in more detail in

Category 0. So far we have focussed mainly on rational Cherednik algebras at ¢ = 0. In order to
explain our next set of results, we also need to mention a few facts about rational Cherednik algebras at

t = 1. Their representation theory has a somewhat Lie-theoretic flavour. The triangular decomposition
H (G) = C[h] @ C[G] @ C[h7]

was used in [61] to define a category O for rational Cherednik algebras, reminiscent of the Bernstein-

Gelfand-Gelfand category O for semisimple Lie algebras. It is the full subcategory of Hi o(G)-mod



consisting of finitely generated modules such that the action of h C C[h*] is locally nilpotent.

Category O is a highest weight category with standard objects given by certain Verma modules,
constructed by induction from representations of the subalgebra C[h*] x G C Hy (G). The standard
objects are in one-to-one correspondence with irreducible representations of the group G. In particular,
if G is of type G(I,1,n), they are labelled by l[-multipartitions of n. In order to define a highest weight
category, one also needs to specify a partial order on the labelling set of standard modules. One such
partial order is given by the so-called c-function. When G is of type G(I,1,n), the c-function admits
an explicit combinatorial description, see . One may ask whether there exist finer partial orders
which still make category O into a highest weight category. This question was answered positively by
Dunkl and Griffeth [42], who showed that O is a highest weight category with respect to a certain
“combinatorial” order <™. This partial order is induced by the dominance order on partitions via the
bijection . Theorern implies that the combinatorial order has a (partial) geometric interpretation
(Corollary [F|in §3.1), i.e., it can be related to the “geometric” order <& on P(l,n) defined by the
closure relations between the attracting sets of C*-fixed points in May(d). More precisely, given
A € P(l,n), we have

w=EA = pu <M

Suzuki functor. Important information about the structure of a highest weight category is con-
tained in the so-called decomposition numbers, which express the multiplicities with which simple
modules occur in standard modules. This information can, for example, be used to calculate the
characters of simple modules. In the case of semisimple Lie algebras, this problem was the subject
of the famous Kazhdan-Lusztig conjectures, proven by Beilinson-Bernstein and Brylinski-Kashiwara,
using D-modules and perverse sheaves techniques (see, e.g., [74]). In the context of rational Cherednik
algebras, there are several approaches to the multiplicity problem. When G is the symmetric group, it
was proven by Rouquier [115] that category O is equivalent to the category of modules over a certain
g-Schur algebra. Multiplicities in the latter category can, by the work of Varagnolo and Vasserot |139),
be described in terms of the ¢-Fock space.

There is another approach to the multiplicity problem, via a certain coinvariants functor defined by
Suzuki [132]. This functor can be seen as a generalization of the classical Schur-Weyl duality relating
the representation theory of gl, to the representation theory of the symmetric group S,. According

to Schur-Weyl duality, the natural actions
gl, ~ (CH®™ A S, (1.9)

centralize each other. Let us abbreviate V = C". Tensoring with (V*)®™ and taking coinvariants gives

rise to a functor
M s Hofal,, (V)™ © M) = (V))& © M/(al, - (V*)" @ M)

from the category of gl,,-modules to the category of S,-modules, sending the simple module of highest
weight A to the Specht module labelled by the corresponding partition.

We are interested in the affine analogue of this functor. One can replace V with the space V|z] of
polynomials with coefficients in V, and replace gl,, with the current Lie algebra gl,,[z]. It was shown

in [132] that, for each smooth g[n—module M of level k, there are actions

ol [z] ~ (VD)®" @ M A~ Hygro1(Sn)-
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These actions no longer centralize each other, but the H, 4, 1(Sy)-action normalizes the gl,[z]-action,
and induces an action on the space of coinvariants. Therefore, we get a functor (called the Suzuki

functor)
Fr: l,-mody sm — Hpppe1(Sn)-mod, M — Hy(gl, [2], (V*[2])®" @ M)

from the category of smooth modules over the affine Lie algebra gA[n of level K to the category of
modules for the rational Cherednik algebra H,4.1(Sp,). It was shown in [138] that, under some
mild assumptions, Suzuki’s functor restricts to an equivalence of highest weight categories between
category O for gA[n and category O for Hyyx1(Sn)-

Suzuki made a crucial restriction on the value of the parameter x - he assumed that « is not critical,
i.e., that it is different from —n, which implies that the parameter ¢ for the rational Cherednik algebra

is different from 0. The main purpose of chapter 4 is to define a limit of the Suzuki functor as
kKk—c=-n, t—0

and study its properties.

The representation theory of the rational Cherednik algebra at t = 0 differs radically from its
representation theory at ¢ # 0, mainly due to the fact that Hy 1(S,,) has a large centre Z. An analogous
pattern occurs in the representation theory of gA[n - the centre of the completed universal enveloping
algebra ﬁ,,i of é\[n is trivial unless the level is critical. In the latter case, the centre 3 of ﬂc is a
completion of a polynomial algebra in infinitely many variables, and, by a theorem of Feigin and
Frenkel [50], it can be identified with the algebra of functions on a certain moduli space of G-bundles
on the punctured disc (decorated with some additional data), called opers.

In general, a functor of abelian categories does not induce a homomorphism between their centres.
In §4.7] we propose various ways to circumvent this problem. The following theorem (Theorems |§|
and |E| in is the main result of chapter 4.

Theorem 2. There exists a surjective algebra homomorphism
©: 3—7Z (1.10)
and a “reasonably big” subcategory C of ﬂc—mod such that the diagram

3 © z

cm{ Jm (1.11)

FC
Endg (M) > Endy, , (s,,)(Fe(M))

commutes for all M € C.

The above theorem has many applications. For example, it allows us to compute the maps between
endomorphism rings of certain Verma-type modules induced by the Suzuki functor (Corollary [A] in
44.1.3). We deduce that every simple module over the rational Cherednik algebra Hg 1(S)) is in the
image of the functor (Corollary [B| in . We remark that these modules are parametrized by
the Calogero-Moser space - in particular, there are uncountably many of them. We also describe
the behaviour of the functor on Arakawa and Fiebig’s restricted category O (Corollary |C|in .
Finally, we use to construct an embedding of the Calogero-Moser space into the moduli space
of opers on the punctured disc, and give a geometric description of this embedding (Corollary |§| in

g44.1.3)). Since the precise statements of some of the above mentioned results are rather technical, we



refer the reader to §4.1] for details.

Convolution algebras. The main topic of chapter 5 is somewhat different from, though not unre-
lated to, the problems we have discussed so far. Rational Cherednik algebras arise as Poisson deforma-
tions of quotient singularities. The algebras to which we now turn our attention are a generalization of
the convolution algebras associated to another famous singularity, the nilpotent cone, and the Springer

resolution.

Let AV C gl,, be the variety of nilpotent n X n matrices, and let G/B be the variety of complete

flags in C™. The Springer resolution is the proper map
T"(G/B) = N.
To this map one can associate a certain variety of triples
Z =T*(G/B) xn T*(G/B)

called the Steinberg variety. The G-equivariant Borel-Moore homology HE (Z) of the Steinberg variety
can be endowed with a convolution product, which turns it into an associative algebra, isomorphic to
the degenerate affine Hecke algebra. It has a faithful representation on the equivariant Borel-Moore
homology of the cotangent bundle to the flag variety, which is isomorphic to the polynomial ring
Clx1,...,xy,]. The degenerate affine Hecke algebra is generated by elements which act by polynomial

multiplication as well as certain divided difference operators called Demazure-Lusztig operators.

It turns out that the geometric construction of the degenerate affine Hecke algebra can be gener-
alized in the context of quiver representations, so that the construction sketched above is the special
case corresponding to the Jordan quiver. More precisely, given a quiver () and a dimension vector d,
we replace the nilpotent cone A/ with the space Rep(Q,d) of representations of the quiver, and the
cotangent bundle T*(G/B) with the space Qq of complete flags of quiver representations. The forgetful
map

Na — Rep(Q,d) (1.12)

plays the role of the Springer resolution. The G(d)-equivariant Borel-Moore homology e (d)(3d) of
the corresponding Steinberg-type variety

3d = Qd XRep(Q,d) Qd

is an associative algebra with respect to the convolution product, and has a faithful representation
on HS@W (Q4), isomorphic to a direct sum of polynomial rings. The convolution algebra g&@ (34)
is generated by elements which act by polynomial multiplication, “crossings” resembling Demazure
operators, and certain idempotents parametrizing the types of complete quiver flags. The algebra
HS (d)(Bd) is also isomorphic to the extension algebra of the pushforward of the constant sheaf on Qq
along , and hence comes equipped with a natural grading.

It was shown by Varagnolo and Vasserot [137] that HS (d)(Bd) gives a geometric realization of
the KLR, or quiver Hecke, algebras R4 introduced independently by Khovanov and Lauda [88] and
Rouquier [114]. These algebras play an important role in the categorification of quantum groups. For
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example, it was shown in [88.[137] that there is an isomorphism

Il

@d Ko(Rd—mOdgp) U;‘(gQ)

{indecomposable projectives} — {Canonical basis}

between the direct sum of the Grothendieck groups of the categories of finitely generated graded
projective modules over Rq, ranging over all the possible dimension vectors, and Lusztig’s integral
form of the positive half of the quantum group associated to the underlying graph of the quiver Q.
Multiplication and comultiplication on U;‘ (gg) corresponds to induction and restriction functors for
KLR algebras.

Quiver Schur algebras and cohomological Hall algebras. If we replace the space Qg of com-
plete flags of quiver representations with the bigger space of all partial flags, we obtain a convolution
algebra Zq, called the quiver Schur algebra. These algebras were introduced by Stroppel and Web-
ster |131] and later studied in [99]. Quiver Schur algebras, just like KLR algebras, play an important
role in categorification. For example, it was shown in [131] that the quiver Schur algebra associated to
the cyclic quiver categorifies the generic nilpotent Hall algebra, and its higher level version categorifies
the higher level ¢-Fock space. It was also shown in [99] that a certain completion of the quiver Schur
algebra is isomorphic to a completion of the g-Schur algebra, appearing naturally in the representation
theory of p-adic general linear groups.

The first goal of chapter 5 is to study the basic structural properties of quiver Schur algebras. We
construct an explicit “Bott-Samelson” basis of Z4, consisting of pushforwards of fundamental classes of
certain vector bundles on diagonal Bott-Samelson varieties, and show that fundamental classes called
merges and splits, together with certain invariant polynomials, form generators of Z4 (Theorem [A]in
. We also explicitly describe the faithful polynomial representation of the quiver Schur algebra
(Theorem and relate it to Demazure operators.

Our second goal is to establish a connection between quiver Schur algebras and cohomological Hall
algebras (CoHA’s). The latter were introduced by Kontsevich and Soibelman [90] as a categorification
of Donaldson-Thomas invariants of three dimensional Calabi-Yau categories. Roughly speaking, the
CoHA can be seen as a generalization of the Ringel-Hall algebra of the category of quiver representations
over finite fields. Multiplication in the Ringel-Hall algebra is defined as convolution of conjugation-

invariant functions via pullback and pushforward along the following diagram

Fla(Repg, (Q))

— T

Repg, (Q) x Repg, (Q) Repp, (Q)

where Flz(Repy, (Q)) denotes the space of flags of length two. If we replace the field Fy by the field of
complex numbers, and invariant functions by equivariant cohomology, we obtain the CoHA. A precise
definition can be found in CoHA’s and their generalizations have found numerous applications
in representation theory, including a new proof of the Kac positivity conjecture [36], as well as new
realizations of the elliptic Hall algebra [124] and Yangians [38}{125/144].

The Kontsevich-Soibelman CoHA is not a bialgebra, but it carries incompatible algebra and coal-
gebra structures. Our main result (Theorem [B|in shows that the relations between multiplication
and comultiplication in the CoHA are controlled by the quiver Schur algebra. This is quite remarkable,
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since quiver Schur algebras and CoHA’s have very different mathematical origins. As an application,
we interpret the description of the CoHA as a shuffle algebra from [90] in terms of Demazure operators
(Proposition [5.6.8)).

The third goal of chapter 5 is to define a generalization of quiver Schur algebras associated to quivers
with a contravariant involution. As we have already mentioned, KLR and quiver Schur algebras can be
realized as convolution algebras, or, equivalently, extension algebras of a certain semisimple complex
of sheaves on the moduli stack of representations of a quiver. If the quiver admits a contravariant
involution 6, this construction can be generalized by replacing the stack of representations of the
quiver with the stack of its self-dual representations. We refer to the resulting Ext-algebra as the
mized quiver Schur algebra.
the ordinary quiver Schur algebra: it has a Bott-Samelson basis (Theorem and is generated
by elementary merges, elementary splits and polynomials (Corollary . Our main result about

The mixed quiver Schur algebra has similar structural properties to

mixed quiver Schur algebras (Theorem@ in establishes a connection between them and a certain
module over the CoHA, called the cohomological Hall module (CoHM), introduced by Young [146]. As
an application, we obtain an explicit description of the faithful polynomial representation of the mixed
quiver Schur algebra, and reinterpret the action of the CoHA on the CoHM in terms of Demazure

operators of type A-D.

categorification

Quantum
group
Uf(gq)

multipl. & comult. goperators

Ringel’s theorem

Cohomological
Hall algebra

Degenerate ) A )
fine Heck nilcone ~ KLR full ~ partial Quiver Schur add Mixed quiver
affine Hecke Ty
leeh quiver reps algebra flags algebra involution Schur algebra
algebra

action & coactiongoperatms

Fg ~ Cé\functions ~» cohomology

Ringel-Hall
algebra

Cohomological
Hall module
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1. Introduction




Chapter 2

Rational Cherednik algebras

2.1 Summary of key definitions and facts

In this section we recall the relevent definitions and facts concerning rational Cherednik algebras.
For an exhaustive treatment of rational Cherednik algebras, we refer the reader to, e.g., [9,49]. We

work over the field of complex numbers throughout.

2.1.1. Definition of rational Cherednik algebras. We start by recalling the definition of com-

plex reflection groups.

Definition 2.1.1. Let § be a finite dimensional complex vector space. An element s € GL(b) is called
a complex reflection if ker(s — Idy) has codimension one in h. A complex reflection group is a finite

subgroup of GL(h) generated by complex reflections.

Complex reflections groups were classified into one infinite family G (I, p,n) and 34 exceptional cases
by Shephard and Todd. For more information about complex reflection groups, we refer the reader to,
e.g., [24].

Given a complex reflection group G C GL(h), let S be the set of complex reflections in G and let

C[S]% be the set of functions ¢: & — C invariant under conjugation, i.e.,

c(gsg™") = c(s)

for all s € S and g € G. Let G act diagonally on h x h*. For each s € S, fix non-zero elements
as € Im(s — 1)

p+ and o) € Im(s — 1), satisfying as(a)) = 2.
Definition 2.1.2 ( [48]). The rational Cherednik algebra Hy (G), associated to the complex reflection
group G and parameters ¢t € C, ¢ € C[S], is the quotient of the cross-product T'(h & h*) x C[G] by the

relations

[1‘,.%'/] =0, [yvy/] =0, [yvx] =t l‘(y) - ZC(S)(% aS)(aZ’x)sv
seS

for all z, 2’ € h* and y,y’ € b.

2.1.2. Main properties of rational Cherednik algebras. We will now recall a number of

fundamental results about the structure of rational Cherednik algebras.
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We start with the so-called PBW theorem. Setting
degz =degy =1, degg=0

for each x € h*,y € h and g € G defines a filtration on H; (G). Let grH; (G) be the associated graded

algebra.
Theorem 2.1.3. The tautological embedding bh @ h* — grH; (G) extends to a graded algebra isomor-
phism

Clh @ bh*] x C[G] = grH:(G) (2.1)
called the PBW isomorphism.
Proof. See |48, Theorem 1.3]. O

The behaviour of rational Cherednik algebras depends crucially on the parameter ¢, which controls

the centre of H; (G). The following theorem collects the most important results about Z(H; o(G)).
Theorem 2.1.4. The following hold.

a) We have: Z(Hyo(G)) = C if and only if t # 0.
b) There is an inclusion C[H]® ® C[h*]¢ C Z(Hoo(G)). The algebra Z(Hoo(G)) is a free
C[h]¢ ® C[h*]%-module of rank |G].

¢) The PBW isomorphism restricts to an isomorphism
Clh @ h*]% = gr Z(Ho,o(G))-
d) There is an algebra isomorphism, called the Satake isomorphism,
Z(Hpc(Q)) = eHp c(GQle, z+> z-e, (2.2)

where e = ﬁ deag is the trivial (or symmetrizing) idempotent.
e) If Spec Z(Hp c(Q)) is smooth then the functor

Hy,c(G)-mod — eHg o(G)e-mod, M — e- M, (2.3)

s an equivalence of categories.

Proof. Part a) is |23 Proposition 7.2], part b) is [48, Proposition 4.15], part ¢) is [48, Theorem 3.3],
and part d) is [48, Theorem 3.1]. For part e), see the proof of |48 Proposition 3.8] and the remark
following it. O

2.2 Rational Cherednik algebras of type G(/,1,n)

In this thesis we are primarily interested in rational Cherednik algebras associated to complex

reflection groups of type G(I,1,n) at t = 0. Below we recall their main properties.

2.2.1. Partitions and multipartitions. We must first introduce some combinatorics. Let k be a
non-negative integer. A partition A of k is an infinite non-increasing sequence (A1, A2, A3, ... ) of non-
negative integers such that > >~ A; = k. We write |\| = k and denote the set of all partitions of k by
P(k). Let £()\) be the positive integer ¢ such that A; # 0 but A\;y; = 0. We say that u = (u1, p2, 3, - - -)
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is a subpartition of A if y is a partition of some positive integer m < k and pu; < \; foralle =1,2,... .
A subpartition g of X is called a restriction of A\, denoted p 1T A, if |u| = k — 1. Let & = (0,0,...)
denote the empty partition.

An [-composition « of k is an I-tuple («p, . .., @;—1) of non-negative integers such that Zﬁ;é o; = k.
An [-multipartition )\ of k is an [-tuple (A%, ..., AI=1) such that each A\’ is a partition and Zi;é IN| = k.
We consider the upper indices modulo . Let P(l, k) denote the set of [-multipartitions of k. We say
that g = (u°...,p') is a submultipartition of A if each p' is a subpartition of A. We call a
submultipartition p of A a restriction of A, denoted p 1 A, if Zi;é i =k — 1.

If X\ is a partition we denote its transpose by M. If A = (A ... A=Y € P(I,k), we call
A= (A9, ..., (A1)!) the transpose multipartition and X’ := (A"1, X172, .. \9) the reverse multi-
partition. Finally, we set

Pi= || Pk), P:= || Pk).

kEZZU kEZZO

2.2.2. Wreath products. Let us fix once and for all two positive integers n,l. We regard the
symmetric group S, as the group of permutations of the set {1,...,n}. For 1 <i < j < nlet s;;
denote the transposition swapping numbers ¢ and j. We abbreviate s; = s; ;41 for i =1,...,n — 1.
Let C; :=Z/IZ = (€) and set

L, :=C1S,=(C)" xSy,

the wreath product of C; and S,,. It is a complex reflection group of type G(I,1,n). For 1 <i <n
and 1 < j<I—1let eg denote the element (1,...,1,¢/,1,...,1) € (C;)™ which is non-trivial only in
the i-th coordinate. Let

en = (I"n!)~* Z g

gelr,
be the symmetrizing idempotent and let triv denote the trivial I',,-module.

We regard S,_1 as the subgroup of S, generated by the transpositions ssz,...,s,_1. We also
regard (C;)"~1 as a subgroup of (C;)™ consisting of elements whose first coordinate is equal to one.
This determines an embedding T',,_; <+ I',,. Note that (CI',,)F'»-t = e, _1CI',, and |(CT,)'»—1| = nl.

Isomorphism classes of irreducible T',,-modules are naturally parametrized by P(l,n). We use the
parametrization given in [115, §6.1.1]. Let S(\) denote the irreducible I',-module corresponding to

the l-multipartition A\. We will later need the following branching rule [108, Theorem 10].

Proposition 2.2.1. Let A € P(I,n). Then

SA)Ir,_, = Resp? | S(A) = P S(w).
pTA

2.2.3. Rational Cherednik algebras of type G(I,1,n). We recall an explicit definition of the
rational Cherednik algebra of type G(I,1,n). Set 1 := €2>™/!. Let h be the n-dimensional representation
of I, with basis y1,...,y, such that ¢;0.y; = n~°

basis of h*.

Loy, for any o € S,,. Let x1,..., 2, be the dual

Definition 2.2.2. Let G = I',,. We will use a different parametrization of the rational Cherednik
algebra from the standard one introduced in Definition 2.1.1] Since there are | conjugacy classes of
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reflections in S, we identify the parameter space with C! via the rule:

-1
C' 5 ClS)'", hecn, cn(f) = Z """ H,,, cn(s1)=h,

m=0

where h = (h, Hy,...,H;—1) € Q' and Hy = —(Hy + ...+ H;_1). The rational Cherednik algebra H; 1,
associated to T, is the quotient of the cross-product T'(h & h*) x CT',, by the relations

o [x;,2;] =[yi,y;] =0foralll <i,j<n,
o [z;,y;]=—h Zi;lo nksiyjefejfk forall 1 <i#j <mn,
o [z yl =t+h); 22_:10 smefe;k + E?;%(Zi;io n~ "k H,, )€k for all 1 <i < n.

We abbreviate Hp := Ho n and Zy = Z(Hp).

Example 2.2.3. When G = S,,, the relations simplify to:
o [z;,y5]=—hsi; (1<i#j<n),

o [Ti,yil =—t+h) s (1<i<n).

2.2.4. The restricted rational Cherednik algebra. From now on we set ¢ = 0. There is a

C*-action on Hy defined by the rule
2T = 2T, R.Yp = z_lyi, z.g=4g,

where 1 < i < n, g € I';, and z € C*. This action defines a Z-grading on Hy, such that degz; = 1,
degy; = —1 and degg = 0. The action restricts to actions on e,Hpe, and Zp, with respect to which
is equivariant.

Notation 1. Given a Z-graded vector space V with finite-dimensional homogeneous components, let
ch,V € Z[[q,q7"]] denote its Poincaré series (or, equivalently, its C*-character).

Definition 2.2.4. Let C[h]}" (resp. C[h*]'") denote the ideal of C[h]™ (resp. C[h*]"") generated
by homogeneous elements of positive (resp. negative) degree, in the grading defined by the C*-action
on Hy. The quotient

Hp, := Hy/(C[h]} +C[p"]2")
is called the restricted rational Cherednik algebra. It is a finite-dimensional algebra.

Let C[p]eotn = C[h]/(C[b].C[b]E_” be the algebra of coinvariants with respect to the I',-action. It
follows from the PBW theorem for rational Cherednik algebras [48, Theorem 1.3] that there is an
isomorphism of graded vector spaces Hy, = C[h]*°'» @ C[h*]°°"» @ CTI,,. Moreover, C[h*]*°F'» x CT,, is
a subalgebra of Hy,.

Definition 2.2.5. Let A\ € P(I,n). The irreducible CI',-module S(\) becomes a module over
C[p*]¢'» x CI',, by means of the projection C[h*]¢*'» x CI', — CI,,. The baby Verma module

associated to A is the induced module

A(A) = ﬁh ®(CU)*]COF"><‘(CFn S(A)

We consider A()) as a graded Hp-module with 1 ® S()) in degree 0.
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Proposition 2.2.6. Let A € P(I,n). The baby Verma module A()) is indecomposable with simple
head L()). Moreover, {L(A) | A € P(l,n)} form a complete and irredundant set of representatives of

isomorphism classes of graded simple Hy-modules, up to a grading shift.

Proof. See |63, Proposition 4.3]. O

2.2.5. The variety ). Let
Yh := Spec Zy,.

We will always assume that the parameter h is chosen so that the variety ), is smooth. A criterion
for smoothness can be found in e.g. [64, Lemma 4.3].

Let Irrep(Hn) denote the set of isomorphism classes of irreducible representations of Hy. If [M] €
Irrep(Hy), let xas : Zn — C denote the character by which Zj, acts on M. By [48, Theorem 1.7], there
is a bijection

Irrep(Hn) +— MaxSpecZp, [M] — ker xps. (2.4)

We are now going to recall another description of ).

Definition 2.2.7. Let Repcr, (Hn) be the variety of all algebra homomorphisms H, — Endc(CT',)
whose restriction to CI';,, C Hy, is the CI'j,-action by left multiplication, i.e., the regular representation.

This is an affine algebraic variety.

Let ¢ € Reper, (Hn). The one-dimensional vector space e, CI',, is stable under all the endomor-
phisms in ¢(e,Hpey,). Therefore, @|c, p, e, composed with the Satake isomorphism (see Theorem d)
yields an algebra homomorphism x4 : Zn = e,Hnhe, — Endc(e,CT,,) = C. We obtain in this way a

morphism of algebraic varieties
7 : Reper, (Hn) — Vh, ¢+ ker xq. (2.5)

The C*-action on Hy induces C*-actions on the varieties Reper (Hn) and Yy, with respect to which 7
is equivariant.

Let Autr, (CT,,) be the group of C-linear I',-equivariant automorphisms of CI',,. The group
Autr, (CI',) acts naturally on Reper, (Hn): if g € Autr, (CI',) and ¢ € Reper, (Hn) then (g9.¢)(2) =
gd(z)g~!, for all z € Hp. By [48, Theorem 3.7], there exists an irreducible component Repgp (Hy) of
Reper, (Hn) such that induces a C*-equivariant isomorphism of algebraic varieties

Repgr, (Hn) / Autp, (CT',) = V. (2.6)

Next, consider the (Hy, e,Hpe,)-bimodule Hye,, together with the C*-action inherited from Hy. The

bimodule Hype, defines a C*-equivariant coherent sheaf H/hZL on Spece,Hpe, = ),. Since we are

assuming that )}, is smooth, [48, Theorem 1.7] implies that this sheaf is locally free.

—~—

Definition 2.2.8. Let Ry denote the C*-equivariant vector bundle whose sheaf of sections is Hpe,,.

The group I',, acts naturally on every fibre of Ry from the left. Let erl"‘l = e,_1Rn be the
subbundle of Ry, consisting of I',,_;-invariants and let (RE"”I) a denote its fibre at x».

2.2.6. C*-fixed points. Let us recall from [63] the classification of C*-fixed points in M, in terms
of I-multipartitions of n. By [48, Proposition 4.15], the subalgebra C[h]'» @ C[h*]'" of Hy, is contained
in Zj, and Zy, is a free C[h)'» ® C[h*]'»-module of rank |T,|. The inclusion C[h]'» @ C[h*]'» — Zj,
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induces a C*-equivariant morphism of algebraic varieties
T:Yn — b/T, x h*/T,,.

The only C*-fixed point in /T, x h* /T, is 0. Since the group C* is connected and the fibre T=1(0) is
finite, Y5 = T~1(0). By Theorem 5.6 in [63], there is a bijection between the closed points of T~1(0)
and isomorphism classes of simple modules over the restricted rational Cherednik algebra Hy,. Hence

there is a bijection
P(l,n) «— (MaxSpecZy)®, A~ ker XL(2)-

We will also write x for xr(y)-



Chapter 3

Rational Cherednik algebras and

Hilbert schemes

3.1 Introduction

In this chapter we consider rational Cherednik algebras Hy := H;—o n(I's) associated to complex
reflection groups I'y, := (Z/IZ) 1 S, of type G(I,1,n) at t = 0.

3.1.1. Rational Cherednik algebras and quiver varieties. As we explained in the general
introduction to this thesis, the rational Cherednik algebra Hy, has a large centre, which can be realized
as the coordinate ring of a certain Nakajima quiver variety. This fact was used by Gordon [64] to
establish a connection between generalized Calogero-Moser spaces and Hilbert schemes of points in the
plane. We will now look at this connection in more detail.

Assume that the variety Y = Spec Z(Hp) is smooth. Etingof and Ginzburg showed in [48] that
Yh is isomorphic to a cyclic quiver variety Xp(nd) (see generalizing Wilson’s construction of
the Calogero-Moser space in [142]. Considering Xy(nd) as a hyper-Kéhler manifold, one can use
reflection functors, defined by Nakajima in [103], to construct a hyper-Kihler isometry Xp(nd) —
X_ 1 (7) between quiver varieties associated to different parameters. Furthermore, rotation of complex
structure yields a diffeomorphism between X1 (7) and a certain GIT quotient M_1(7) (see .
The latter is isomorphic to an irreducible component Hilby of Hilbﬁ/lz, where Hilbg denotes the
Hilbert scheme of K points in C2. The following diagram summarizes all the maps involved:

Refl.Fun.
—_—

Vi =5 Xy(n6) Xy (y) T My (y) - Hilb/ (3.1)

Let us explain the parameters. The affine symmetric group S; acts on dimension vectors and the
parameter space associated to the cyclic quiver with [ vertices (see . We apply this action
to the dimension vector nd and the parameter —% := —2(1,...,1). Fixw € S; and set 6 := w1 (-1)
and v := wxnd. Then v = nd+-yy, where 7y is the I-residue of a uniquely determined [-core partition v.
Set K :=nl + |v|. The relation between the parameters h and 6 is explained in

Both )}, and Hilbg carry natural U(1)-actions with respect to which is equivariant. As we
saw in the closed C*-fixed points in )}, are labelled by [-multipartitions of n. On the other hand,
the C*-fixed points in Hilbg correspond to monomial ideals in C[z,y| of colength K and are therefore

labelled by partitions of K. In particular, the C*-fixed points in Hilb}- are labelled by partitions of K
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with [-core v. Since (3.1) is equivariant, it induces a bijection
P(l,n) +— P, (K), (3.2)

where P, (K) denotes the set of partitions of K with I-core v and P(l,n) the set of l-multipartitions

of n.

3.1.2. Quick summary of the main results and applications. Our main result is an explicit
combinatorial description of . We note that such a description already appeared in [64], but its
proof in loc. cit. is incorrect (see Remark . Our result has a number of interesting applications.
For example, we use it to establish a higher-level version of the ¢-hook formula. Our result has
also recently been used by Bonnafé and Maksimau [18] in their study of fixed-point subvarieties in
Calogero-Moser spaces. Moreover, as we explain in the combinatorial description of
is a key ingredient in several older results, such as Bezrukavnikov and Finkelberg’s [16], as well as

Losev’s |95], proofs of Haiman’s wreath Macdonald positivity conjecture.

3.1.3. Main results. Our first result gives a classification as well as an explicit description of C*-
fixed points in quiver varieties associated to the cyclic quiver. We also consider tautological bundles

on these varieties and calculate the characters of their fibres at the C*-fixed points.

Theorem A. Let u € S, £ := usnd =nd + & and let w be the transpose of the l-core corresponding
to &. Set L :=nl + |w|. Let a € Q' be any parameter such that X, (&) is smooth. Let V,(£) denote
the tautological bundle on X, (&) (see §3.2.3). Then:

a) The C*-fized points in X (§) are naturally labelled by P, (L). We construct them explicitly as
equivalence classes of quiver representations.
b) Let u € P,(L). Then the C*-character of the fibre of V4 (&) at p is given by

chy Va(€), = Res,(q) = Z .
Oep

This theorem combines the results of Theorem [3:4.14] Proposition and Corollary [3:4.10]
below. Let us briefly explain our description of the C*-fixed points. To each partition u € P, (L) we
associate a quadruple of matrices depending on «, ¢ and the Frobenius form of p. Our construction
can be regarded as a generalization of Wilson’s description of the C*-fixed points in the (classical)
Calogero-Moser space [142, Proposition 6.11]. We also expect that, using an appropriate functor from
the category of representations of the infinite linear quiver to that of the cyclic quiver, one can relate
our constructions to earlier work on quiver varieties of type A [58}/118].

Our second result describes the bijection between the C*-fixed points induced by the Etingof-

Ginzburg isomorphism.

Theorem B (Theorem [3.6.18). The map Vn 15N Xg(nd) induces a bijection
P(l,n) — Py(nl), Quot(u)’ — pu,

where Quot(,u)b denotes the reverse of the l-quotient of p (see i and @ is the empty

partition.

The proof of Theorem [B] occupies sections [3.5] and [3.:6] We use the Dunkl-Opdam subalgebra of Hp,
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to construct a commutative diagram

Vh EG Xp(no)

cn/S,

where p; sends a fixed point labelled by A to its residue and ps sends a quiver representation to a
certain subset of its eigenvalues. Given a partition p, we use our description of the corresponding fixed
point from Theorem [Al to obtain an explicit formula for po(u) in terms of the Frobenius form of u. We
then use a combinatorial argument to show that this formula describes the residue of Quot(s)°.

We next consider reflection functors, which were introduced by Nakajima [103] and also studied
by Maffei [96] and Crawley-Boevey and Holland [28}[29]. Assuming smoothness, reflection functors are
U(1)-equivariant hyper-Kéhler isometries between quiver varieties associated to different parameters.
They satisfy Weyl group relations and have been used by Nakajima to define Weyl group representations
on homology groups of quiver varieties.

Let us explain the role reflection functors play in our setting. To each simple reflection o; € S,
we associate a reflection functor R; : X, (§) = Xy, .a(0; *&). One can show that o; x £ = nd + o; * &o,
where o; % &g is the [-residue of a uniquely determined /-core w’. Then the reflection functor R; induces

a bijection between the labelling sets of C*-fixed points
R;: PW(L) - P(w’)t(L/)7 (33)

where L' := nl + |u'|.

Our third result gives a combinatorial description of this bijection. We use the action of S, on the set
of all partitions defined by Van Leeuwen in [94]. This action involves combinatorial ideas reminiscent
of those describing the sl;-action on the Fock space. More precisely, if y is a partition then o; * p is
the partition obtained by simultaneously removing and adding all the removable (resp. addable) cells
of content ¢ mod [ from (to) the Young diagram of u. It is noteworthy that this action also plays a

role in the combinatorics describing the Schubert calculus of the affine Grassmannian [92}93].

Theorem C (Theorem [3.8.11). Let pn € P,(L). Then
Ri(u) = (o p')".

Combining Theorem [B| with (iterated applications of) Theorem [C| allows us to give an explicit
combinatorial description of bijection ([3.2)).

Theorem D (Theorem [3.9.3). The map (3.1) induces the following bijections

Ve — X(nd)" — Ai()Y — (Hilbp)®
P(l,n) — Pgnl) — Pu(K) —  PJK)
Quot(p)® +— i — (wxph)t — wxpl

Moreover, v =w x &.

Let us rephrase our result slightly. Given w € S;, we define the w-twisted I-quotient bijection to be
the map
Tw: P(l,n) = Py (K), Quot(u) — w * pu.
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Corollary E (Corollary [3.9.4). Bijection (3.2)) is given by

A= (A,

3.1.4. Orderings on category O. One of Gordon’s motivations in |64] was to give a geometric
interpretation of highest weight structures on category Oy, for rational Cherednik algebras Hi—1 n(I'y,)

com

at t = 1. Consider the combinatorial ordering <{°™ on P(l,n) defined by
pEPTN = 7, (M) Q7 (ph),

where < denotes the dominance ordering on partitions. It was shown by Dunkl and Griffeth |42}
Theorem 1.2] that Oy is a highest weight category with respect to this ordering. There is also a
geometric ordering <5° on P(l,n), defined by the closure relations between the attracting sets of
C*-fixed points in May(nd). Using Corollary [Ef and the results of Nakajima from |104] we deduce the

following partial geometric interpretation of the combinatorial ordering.
Corollary F (Corollary [3.9.6). Let p, A € P(l,n). Then p <5° X = p =™ A.

We remark that the statements of Corollaries [E| and [F| first appeared in [64] (see Proposition 7.10
and its proof). However, the proof of Proposition 7.10 in [64] is incorrect - see Remark for an

explanation.

3.1.5. The higher level g-hook formula. Our results have several interesting applications. One
of them is a new proof as well as a generalization of the g-hook formula, which we now recall.

Given a partition p € P(n), let d,, be the number of standard Young tableaux of shape u. It is equal
to the dimension of the Specht module S(u). The hook length formula states that d,, is related
to the product of the lengths of all hooks in the corresponding Young diagram. Let us abbreviate
h, = HDEM h,(0). The branching rule from Proposition implies that d, = Z)\TH dy, ie., d,
is equal to the sum of dimensions of Specht modules associated to all the Young diagrams obtained
from p by deleting a single cell. Applying to each dy, we get

(n—1)! n!
Z h _E'

A
AT

After dividing both sides by (n — 1)! and rearranging the formula we obtain the formula:
h
n=>y_ - (3.4)

This formula admits the following g-analogue:

> @ =, R (3.5)

Oen Sy

called the g-hook formula. Here ¢(OJ) is the content of O and f,(g) is the fake degree polynomial
associated to p. The RHS of can also be reformulated in terms of Schur functions and hook
length polynomials. The ¢-hook formula has been proven by Kerov [86], Garsia and Haiman [60] and
Chen and Stanley [33] using probabilistic, combinatorial and algebraic methods, respectively. We prove

the following generalization.
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Theorem G (Theorem [3.7.1). Let u € Py(nl). Then:

SOy, Y A (3.6)

Oep ATQuot(p)P fM(#)b (q)

We call the higher-level g-hook formula. Setting [ = 1 we recover the classical ¢g-hook formula.
Our proof of Theorem [G]is geometric in nature. Let us briefly explain the main idea behind it. Let e,,
denote the symmetrizing idempotent in I',,. The right e,Hpe,-module Hye,, defines a coherent sheaf
on )Y,. Since we are assuming that the variety )}, is smooth, this sheaf is also locally free. Let Ry
denote the corresponding vector bundle. It was shown in [48] that there exists an isomorphism of vector
bundles Rfl"’l =5 Vy(nd) lifting the Etingof-Ginzburg isomorphism M, — Xp(nd). Let u € Py(nl).
By Theorem the Etingof-Ginzburg map sends the fixed point labelled by Quot(u)® to the fixed point
labelled by p. We obtain the higher level g-hook formula by comparing the C*-characters of the

corresponding fibres (RE"’I)M(#)b and Vp(nd),,.

3.1.6. Wreath Macdonald polynomials. Let us mention a few other applications of our re-
sults. The first is related to Haiman’s wreath Macdonald positivity conjecture. The original positivity
conjecture, proven by Haiman in [69], asserts that Kostka-Macdonald polynomials, which express the
change of basis between transformed Macdonald functions and Schur functions, have non-negative
coefficients. Haiman [68] later proposed a generalized conjecture, known as the wreath Macdonald pos-
itivity conjecture, in which the ring of symmetric functions is replaced by the space of virtual characters
E4.4(I'y) of the group I',, with coefficients in Q(g,t). This conjecture was proven by Finkelberg and
Bezrukavnikov |16] and Losev [95].

Theorem 3.1.1 ( [16,68,95]). Fiz an l-core v. Let K = nl+ |v|. There exists a basis {H,(q,t)} of
E4.t(Ty) indexed by partitions u € P, (K), characterized by the following properties:

a) H,(q,t) ®3,(—q)" Char(A'h) € Q(g, ) {x=N [ A > A € P, (K)},
b) Hu(a,t) ® 32;(—t)~' Char(A'h) € Q(q, ){x2=N | X < p, A € P (K)},
c) (Hu(g,t),1r,) = 1.

Moreover, the characters H,(q,t) have coefficients in N[g™1,t='] and are the graded characters of the
fibers of the Procesi bundle on Hilb% at the C*-fixed points.

We will now explain the role the description of the bijection from Corollary [Ef plays in the
above-mentioned proofs of the wreath Macdonald positivity conjecture. The key step in Bezrukavnikov
and Finkelberg’s proof is a characterization of the support of certain Verma modules in positive char-
acteristic |16, Proposition 2.6]. Losev’s proof also relies on a calculation of the supports of certain
quotients of Procesi bundles [95, Proposition 5.3]. The proofs of these two statements invoke [16|
Lemma 3.8]. But the latter implicitly uses Corollary [E| (see also [16], §2.3]).

3.1.7. Other applications. We mention two other applications of ours results. Gordon and Mar-
tino |65] gave a combinatorial description of the blocks of the restricted rational Cherednik algebra of
type G(I,1,n) (also for parameters h for which the corresponding Calogero-Moser space ), is singular)
in terms of J-classes of partitions. Corollary [E]is an important ingredient in their proof.

More recently, Bonnafé and Maksimau [18| studied the irreducible components of the fixed point
subvariety under the action of a finite cyclic group on a smooth Calogero-Moser space. They use
Theorem [B] to give an explicit description of these components for Calogero-Moser spaces of type
G(,1,n).
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3.1.8. Structure of the chapter. Let us summarize the contents of the chapter. In sections 2 and
3 we recall some standard material about Nakajima quiver varieties and combinatorics, respectively.
In section 4 we explicitly construct the C*-fixed points in cyclic quiver varieties, and prove Theorem [A]
Sections 5 and 6 are devoted to proving Theorem [B] In section 7 we prove the higher-level version of the
g-hook formula (Theorem . In section 8 we study the bijections between C*-fixed points induced by
reflection functors, and prove Theorem [C] In section 9 we make the connection to the Hilbert scheme
and prove Theorem [D] as well as Corollaries [E] and [F]

3.2 Quiver varieties

In this section we recall the connection between rational Cherednik algebras and cyclic quiver

varieties via the Etingof-Ginzburg isomorphism.

3.2.1. The cyclic quiver. Let Q be the cyclic quiver with [ vertices and a cyclic orientation.
We label the vertices as 0,1,...,] — 1 (considered as elements of Z/IZ) in such a way that there is a
(unique) arrow i — j if and only if 5 =i+ 1. Let Q be the double of Q, i.e., the quiver obtained from
Q by adding, for each arrow a in Q, an arrow a* going in the opposite direction. Moreover, let Q. be
the quiver obtained from Q by adding an extra vertex, denoted co, and an extra arrow as, : 0o — 0.
We write Q, for the double of Q..

Let d = (do,...,d;—1) € (Z>0)!. We interpret d as the dimension vector for Q so that the
dimension associated to the vertex i is d;. For each ¢ = 0,...,l—1 let V; be a complex vector space of
dimension d;. Set V= @i;é V,;. Moreover, let V., be a one-dimensional complex vector space and
set V.=V, o V. Define

-1 -1
Rep(Q..,d) := @ Hom(V;, V1) & @ Hom(V;, Vi_1) @ Hom(Vo, Voo ) @ Hom(Vo, Vo).
1=0 1=0

We denote an element of Rep(Q,,,d) as (X,Y,I,J) = (Xo,...,X;_1,Y0,...,Y;_1,1,J) accordingly.
There is a natural isomorphism of varieties Rep(Q.,,d) = T* Rep(Qa,d), through which we can
equip Rep(Q,,,d) with a symplectic structure.

X X
1 .\2'
2\
° Y, Y, .
Xo 1 3
Y;
J !
o
00 or\_/o 0
! Yo
X
-1 -1
Y1
-2
.-
X2

The algebraic group G(d) := Hi;é GL(V;) acts on Rep(Q.,,d) by change of basis. If g =
(gOa s 7gl—1) € G(d) and (X7Ya [a J) € Rep(@mﬂ d) then

g(Xa Y7 I? J) = (ngogo_la s agOXl—lgli117gl—1Y090_17 s 791—2)/1—191_,11a Ig()_lﬂ gOJ)
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The action of G(d) on Rep(Q,,d) is Hamiltonian. The moment map for this action is given by

a : Rep(Qu,d) = g(d)* = g(d) = LieG(d), (XY, 1,J) = [X, Y] +JI.

3.2.2. Quiver varieties. If d € (Z>o)! and 0 = (0p,...,0,—1) € Q!, we will also write 6 =
(90 idg, #1idq,...,0;_1 idl_l) S g(d), where id; = idvi (7, =0,...,1— 1). Define

Xp(d) := pg'(0) / G(a) = SpecClug " (0)] 9.

We will always assume that the parameter 6 is chosen in such a way that the variety Xy(d) is smooth.
Moreover, define the GIT quotient

Mo (d) := pg'(0) /o G(d) = Proj @C[uc—il(o)]xé’

i>0

where xg : G(d) — C* is the character sending g to [[(det g;)? and (C[/Lgl(O)]Xg denotes the space of
semi-invariant functions on p7'(0), i.e., those functions f satisfying g.f = x4(g)f. By definition, the
space (C[u(;l(O)]Xé is zero unless if € Z!.

Example 3.2.1. Let [ = 1 so that d = d is just a non-negative integer. Then the variety M_;(d)
is naturally isomorphic to the Hilbert scheme of d points in the plane (see for more details),
and the natural map M_;(d) — Mg(d) = Xy(d) = Sym?(C?) can be identified with the Hilbert-Chow
morphism. On the other hand, the variety X} (d) is isomorphic to the classical Calogero-Moser space.

The varieties Xp(d) and My(d) can be endowed with hyper-Kéhler structures (see e.g. [64] §3.6]).
Moreover, the group C* acts on Rep(Q,,,d) by the rule t.(X,Y,I,J) = (¢t 'X,tY,I,J) for t € C*.
This action descends to actions on Xp(d) and My(d). By &y(d)® and My(d)C we will always mean
the sets of closed C*-fixed points.

Let us recall the definition of the tautological bundle on a quiver variety. Assume that the group
G(d) acts freely on the fibre u3'(f) and consider the trivial vector bundle Vo(d) := gt (0) x V on
i7" (0). We regard 99(d) as a C*-equivariant vector bundle by letting C* act trivially on V. Let G(d)
act diagonally on 179(d). The vector bundle Vy (d) descends to a C*-equivariant vector bundle

Vo(d) := g (0) x“ DV = (ug"(0) x V) / G(d)

on Xp(d), which is called the tautological bundle.

Notation 2. We will always consider the subscript i in the expressions d;, Vi, g;, X;, Y;, 0; modulo 1

(unless i = 00 ).

3.2.3. The Etingof-Ginzburg isomorphism. Throughout this subsection we assume d = nd,
where § := (1,...,1) € Z!. Given h as in Deﬁnitionm set

9}1:(6‘0,...,9171):(—h-i—Ho,Hh...,Hl,l). (37)

Since we are assuming that the parameter h is generic, the group G(nd) acts freely on the fibre 61 (0n)
(see |48| Proposition 11.11]). We abbreviate

Ch = X, (nd), Vi := Vg, (nd).
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Example 3.2.2. If [ =1 and h =1, then
Cn = {(X,Y,u,v) € Mat,«,(C)®? x C" x (C")* | [X,Y] + JI = —id} J GL,(C).

This variety is the classical Calogero-Moser space from [142].

Consider (CI',)"'»~* as a module over (€;) = Z/IZ. It decomposes as a direct sum of n-dimensional

isotypic components ((Cl"n)if’l, where y; is the character x; : e; — n’. Fix a linear isomorphism
(CT,)'mt =V (3.8)
mapping each (([:Fn)g;"1 onto V;. It induces an isomorphism of endomorphism algebras
@ : Endc ((CT,,) 1) = Endc(V). (3.9)

Definition 3.2.3. Recall Reper, (Hn) from Definition Each ¢ € Repcr (Hn) defines endomor-
phisms ¢(x1), ¢(y1) : CT'y, — CT,,, where x1,y; € Hy, are as in Definition Set

X(¢) =w <¢($1)‘(Crn)%—1) . Y(¢9)=w (¢(y1)|(cpn)1"n71) .

Consider the maps

U: Reper, (Hn) = Rep(Q,nd), ¢ — (X(¢),Y(9)),

p: Rep(Q.;nd) — Rep(Q,nd), (X,Y,I,J)—~ (X,Y)

—~

3.10)
3.11)

—~

Lemma 3.2.4. The maps ¥ and p are C*-equivariant.

Proof. The equivariance of p is obvious. Let t € C*,¢ € Reper, (Hn) and 2z € H,. We have (t.9)(2) =
H(t1.2), 50 (£:0)(w1) = ¢~ $(z1) and (£.6)(s1) = t6(y). Hence

w(t.0) = (@ (700l er, ot ) @ (10000 icr s )
(17X (0). 1Y (9)) = 1.(X(9). Y (). =

The proof of [48, Proposition 11.24] carries over directly to yield the following generalization.

Theorem 3.2.5. Maps (3.10) and (3.11)) induce a C*-equivariant isomorphism of varieties
EG: yh l) Ch (312)

and vector bundles
Ry 5 Vi (3.13)

We call (3.12)) the Etingof-Ginzburg isomorphism.

3.3 Combinatorics

We recall several combinatorial notions which will be used throughout this chapter.
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3.3.1. Young diagrams. If u is a partition of k, set n(u) := 2121 i pir1. If A is an [-multipartition
of k, define r()) = Zi;} i+ |\|. Recall the notations
1

ple= S =TT (D= (=)= ) (117,

Let = (p1,--, m,0,...) be a partition of k, where 1, ..., pt,, are non-zero. Let Y(u) := {(i,7) |
1<i<m,1<j <A} denote the Young diagram of u. We will always display Young diagrams
according to the English convention. We call each pair (4,j) € Y(p) a cell. We will often use the
symbol O to refer to cells. Sometimes we will also abuse notation and write p instead of Y(u) where
no confusion can arise, e.g., 0 € p instead of O € Y(p). If O = (4,5) € Y(u) is a cell, let ¢(0) :=j — 4
be the content of 0. We call

Res, (t) == Z ™)
Oeun
the residue of p. We also call ¢(00) mod ! the I-content of O and } e, te@)modl the [-residue of p. Tt
is clear that a partition is determined uniquely by its residue.

Now suppose that A is an [-multipartition of k. By the Young diagram of A we mean the [-tuple
Y(A) == (Y(A?),...,Y(AI=1)). By acell O € Y()) we mean a cell in any of the Young diagrams Y(\?).
Let e = (eg,...,e1-1) € Q'. We define the e-residue of A to be

-1
Res$(t) := » % Resy(t).
i=0
For sufficiently generic e, an [-multipartition is determined uniquely by its e-residue.

3.3.2. Hook length polynomials. Let p be a partition and fix a cell (¢,5) € Y(u). By the hook
associated to the cell (4, j) we mean the set {(¢, )} U{(#,7) € Y(u) | &' > i} U{(Z,5) € Y(u) | 5/ > 5}
We call (4, §) the root of the hook, {(¢',7) € Y(u) | ' > i} the leg of the hook and {(i,5") € Y(u) | 5 > 7}
the arm of the hook. The cell in the leg of the hook with the largest first coordinate is called the foot
of the hook, and the cell in the arm of the hook with the largest second coordinate is called the hand
of the hook.

By a hook in Y(u) we mean a hook associated to some cell O € Y(u). If H is a hook, let arm(H)
denote its arm and let leg(H) denote its leg. If O is the root of H, let a,(0) := |arm(H)| and
1,(0) := |leg(H)|. Set h,(O) := 14 a,(0) +1,(0). The hook length polynomial of the partition p is

Hy,(t) = JJ (@ —t"O).

Oep
Hook length polynomials are related to Schur functions by the following equality

()

su(l,t,t2,..) = )
"

3.3.3. Frobenius form of a partition. By a Frobenius hook in Y () we mean a hook whose root
is a cell of content zero. Clearly Y(u) is the disjoint union of all its Frobenius hooks. Suppose that
(1,1),(2,2),...,(k, k) are the cells of content zero in Y(u). Let F; denote the Frobenius hook with root
(i,7). We endow the set of Frobenius hooks with the natural ordering F; < Fy < ... < Fj,. We call Fy

the innermost or first Frobenius hook and Fj, the outermost or last Frobenius hook. Let a; = a,(i,1)
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and b; =1,(¢,%). We call (a1,...,ax | b1,...,bx) the Frobenius form of p.

3.3.4. Bead diagrams. Let us recall the notion of a bead diagram (see e.g. |76 §2.7]). We call
an element (4,7) of Z<_1 x {0,...,1 — 1} a point. We say that the point (i, j) lies to the left of (7,5)
if 7 < 7', and that (7, j) lies above (¢/,7) if i’ < 1.

A bead diagram is a function f: Z<_1 x{0,...,1—1} — {0, 1} which takes value 1 for only finitely
many points. If f(i,7) = 1 we say that the point (¢, j) is occupied by a bead. If f(i,j) = 0 we say that
the point (i, 5) is empty. Suppose that a point (i, 7) is empty and that there exists an i’ < ¢ such that
the point (¢/,7) is occupied by a bead. Then we call the point (¢, j) a gap.

We say that a point (4, ) € Z<_q1 x{0,...,l—1} is in the (—¢)-th row and j-th column (or runner)
of the bead diagram. We call the i-th row full (empty) if every point (i,k) for k = 0,...,1 — 1 is
occupied by a bead (is empty). A row is called redundant if it is a full row and if all the rows above
it are full. A graphical interpretation of the notion of a bead diagram can be found in Example [3:3.6]

We only display the rows containing at least one bead or gap.

Definition 3.3.1. Let u € P and p > £(u). Set
Bl =pi+p—i (1<i<p)

We call {87 |1 <i<p} aset of f-numbers for u. Note that |[{3? | 1 <1i < p}| = p. From each set of
B-numbers one can uniquely recover the corresponding partition u.
Definition 3.3.2. Given a set of S-numbers {3} | 1 < i < p} we can naturally associate to it a bead

diagram by the rule
f,7) =1 —(i+1)-1+je{p|1<i<p}

Let p be as in Definition If p is the smallest multiple of | satisfying p > ¢(u) we denote the
resulting bead diagram by B(x). The diagram B(x) has no redundant rows and the number of beads
in B(u) is a multiple of .

Remark 3.3.3. Conversely, if we are given a bead diagram f, the set {—(i +1) -1+ 7 | f(4,5) = 1}
is a set of S-numbers for some partition. The relationship between bead diagrams, sets of S-numbers

and partitions can therefore be illustrated as follows
{bead diagrams} <— {sets of S-numbers} — {partitions},

where the set of partitions contains partitions of an arbitrary integer.

3.3.5. Cores and quotients. Let f:Z<_1 x{0,...,1—1} = {0,1} be a bead diagram. Suppose
that the point (¢,7) with ¢ < —1 is occupied by a bead, i.e., f(i,j) = 1, and that f(i+1,5) = 0. To
slide or move the bead in position (4,j) upward means to modify the function f by setting f’(i,7) =
0,f(i+1,7) =1and f' = f otherwise.

Definition 3.3.4. Let p be a partition. Take any bead diagram f corresponding to u. We obtain a new
bead diagram f’ by sliding beads upward as long as it is possible. We call the partition corresponding
to the bead diagram f’ the I-core of p, denoted Core(u). Let Q(I) denote the set of all I-cores. We set

Pu(k) :=={p € P(k) | Core(u) = v}.

Definition 3.3.5. Consider the bead diagram B(u). Each column of B(u) can itself be considered as
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a bead diagram for [ = 1. Let Q%(u) denote the partition corresponding to the i-th column. We call
the [-multipartition Quot(u) := (Q°(1), Q* (1), ..., Q" (1)) the I-quotient of .
A partition is determined uniquely by its I-core and I-quotient [76, Theorem 2.7.30]. In particular,

there is a bijection
Pg(nl) — P(l,n), w+— Quot(u).

Example 3.3.6. Consider the partition p = (6,5,3,3,1,1) and take [ = 3. The first-column hook-
lengths are 11,9, 6, 5,2, 1. They form a set of S-numbers. The bead diagram below on the left illustrates
B(u) while the diagram on the right illustrates the effect of sliding all the beads upward.

Cee 00
OO0 e ®eCe
® OO OO0 e
®eOCe

Let us read off the 3-core of p from the diagram on the right. We can ignore all the beads before
the first empty point, which we label as zero. We carry on counting. The remaining two beads get
labels 1 and 4. These form a set of S-numbers, which we can interpret as the first-column hook-lengths
corresponding to the partition (3,1). It follows that Core(y) = (3,1). To determine the 3-quotient of
u we divide the diagram on the left into three columns and consider each separately. We read off the
B-numbers as before - they are 2,3 for the first column, 0 for the second column and 1 for the third
column. It follows that Quot(u) = ((2,2), 2, (1)).

3.3.6. Rim-hooks. The rim of Y(u) is the subset of Y(u) consisting of the cells (7, ) such that
(i+1,741) does not lie in Y(u). Fix a cell (i,5) € Y(u). Recall that by the hook associated to (4, j) we
mean the subset of Y(x) consisting of all the cells (4, k) with k& > j and all the cells (k, j) with k > i. We
define the rim-hook associated to the cell (i, ) to be the intersection of the set {(¢,j') | i > 4,5 > j}
with the rim of Y(u). We call a rim-hook an I-rim-hook if it contains I cells. The [-core of u can also
be characterised as the subpartition p’ of p obtained from p by a successive removal of I-rim-hooks, in
whichever order (see |76, Theorem 2.7.16]).

Lemma 3.3.7 ( [76, Lemma 2.7.13]). Let R be an l-rim-hook in p and set p' := p — R. Then
Quot(y') = Quot(u) — O for some O € Quot(u).

3.3.7. The S-action on partitions. Assume for the rest of this section that { > 1. All subscripts
should be regarded modulo . Let S; denote the affine symmetric group. It has a Coxeter presentation
with generators oy, ...,0;—1 and relations

01'2 = 1, 0;0i410; = 04410041 (0 S 1 S [ — 1)
Let us recall the Sj-action on the set P of all partitions from [94, §4]. We will later use this action

to describe the behaviour of the C*-fixed points under reflection functors. We need the following

definition, reminiscent of the combinatorics of the Fock space.

Definition 3.3.8. Let k£ € {0,...,l — 1}. Consider the Young diagram Y(u) as a subset of the
Z~¢ X Zxo space. We say that a cell (¢,7) € Y(u) is removable if Y(u) — {(¢,7)} is the Young diagram
of a partition. We say that it is k-removable if additionally ¢(i,j) = j — i = k mod I. We call a cell
(i,7) ¢ Y(p) addable if Y(pu) U {(¢,7)} is the Young diagram of a partition. We call it k-addable if
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additionally ¢(i,j) = j —i =k mod I.
We discuss the combinatorics of removability and addability in more detail in §3.8.5] We will, in

particular, require Lemma |3.8.10| proven there.

Definition 3.3.9. Suppose that p € P and k € {0,...,] — 1}. Define Ty (1) to be the partition such
that
Y(Tx(u)) = Y(u) U{O is k-addable} — {OJ is k-removable}. (3.14)

The group S, acts on P by the rule

This action also plays a role in the combinatorics of the Schubert calculus of the affine Grassman-
nian, see (92, §8.2] and [93, §11]. By [93, Proposition 22], we have S; * @ = Q(I). Let us recall how
the Sj-action behaves with respect to cores and quotients. Consider the finite symmetric group S; as
the group of permutations of the set {0,...,l —1}. Let s; € S; (i =1,...,1 — 1) be the transposition
swapping ¢ — 1 and i. Let sg be the transposition swapping 0 and [ — 1. Note that our conventions for
S; differ from those for S, introduced in The finite symmetric group S; acts on the set P of all
[-multipartitions by the rule

w- A= O ATy e g,

Consider the group homomorphism
pr:S’l—»Sl, o s (1=0,...,0—1).
Proposition 3.3.10 ( [94, Proposition 4.13]). Let p € P and o € S,. Then

Core(o * ) = o x Core(p), Quot(o * u) = pr(o) - Quot(w).

3.3.8. Partitions and the cyclic quiver. Let N;(\) be the number of cells of I-content i in Y(\).
Using this notation, the I-residue of A equals Zi;é N;(\)t*. Consider the map

:P = Z A dy = (No(N), ..., Ni_1(N). (3.15)

We interpret this map as assigning to every partition a dimension vector for the cyclic quiver with [
vertices. Let
Zo = {d € (Z>o)' | d = d, for some v € V(I)}

be the set of all dimension vectors corresponding to l-cores. By [76, Theorem 2.7.41] an I-core is
determined uniquely by its [-residue. Hence (3.15|) restricts to a bijection

0:0() «— Zo, v—d,.

There is an Sj-action on Z' defined as follows. Let d € Z!. Then o; *d = d’ with dy =d; (j #1)
and
d;=dis1 +dioy—d; (i #0), dy=di+di-1—do+1 (i=0).

The following proposition follows by an elementary calculation from Lemma



3.4. C*-fixed points in quiver varieties 31

Proposition 3.3.11. The following diagram is S;-equivariant
Pp—2> 7
Q) % Lo

Let o, € S;and v € Q). Then o;*(né+d,) = nd+o;+d, and o;*d, = d(o;*v). By |76, Theorem
2.7.41] any partition A of nl + |o; * v| such that d9(\) = nd + o; * d, has [-core o; * v. Hence

Py (nl 4 o xv|) =071 (nd + 0, xd,).

3.3.9. Reflection functors. The group S, also acts on the parameter space Q! for the quiver Q..
by the rule o; - 8§ = 6’ with

9; = —0;, 6‘;71 =0,_1+6,, 9;+1 = 0i+1 + 0, 9; = 9j (j ¢ {Z —1,4,1+ 1})

Fix i€ {0,...,1 —1}. Let 6 € Q' be such that 6; # 0. Choose v € O(1). Let
Ri: Xp(nd +dy) = Xy.o(nd + o7 dy) (3.16)

be the reflection functor associated to the simple reflection o; € S;. These functors were defined by
Nakajima [103| §3] and Crawley-Boevey and Holland [28 §2], [29, §5]. One can endow the varieties
Xo(nd +d,), Xs,.0(nd + o; x d,) with hyper-Kéhler structures with respect to which the reflection

functor R; is a U(1)-equivariant hyper-Kéhler isometry.

3.4 (Cr*-fixed points in quiver varieties

Assuming smoothness, in this section we explicitly construct the C*-fixed points in the quiver
varieties Xp(nd+d, ) as conjugacy classes of quadruples of certain matrices. Our description generalizes
the work of Wilson, who classified the C*-fixed points in the special case [ = 1 in [142, Proposition
6.11]. Our construction depends on the Frobenius form of a partition. In we define the matrices
representing the fixed points in the special case when a partition consists of a single Frobenius hook.
In we define more general matrices for arbitrary partitions. In we interpret our matrices
as quiver representations and show that the corresponding orbits are in fact fixed under the C*-action.

We finish by computing the character of the fibre of the tautological bundle at each fixed point.

3.4.1. The matrix A(m,r). Fix # € Q. The subscript in §; should always be considered modulo
l. Suppose that M is a matrix. Let M;; denote the entry of M in the i-th row and j-th column.

Definition 3.4.1. Let m > 1 and 1 < r < m. We let A(m) denote the m x m matrix with 1’s on
the first diagonal and all other entries equal to 0. Let A(m,r) denote the m X m matrix whose only
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nonzero entries lie on the (—1)-st diagonal and satisfy

J
> 0 if 1<j<r
A(m,r)j+1’j — i=1

iz
m—j—1

= > O i r<j<m-—1
=0

Lemma 3.4.2. The matriz [A(m), A(m, )] is diagonal with eigenvalues

Or—; if 1<j#r<m

m—r—1

r—1
—Z9r—i— Z O miyryi if
i=1 i=0

[A(m)7 A(mv T)]jJ =

<.
Il
<

Proof. Let oj := A(m,r);41,;. We have A(m)A(m,r) = diag(as, ag, ..., am-1,0) and A(m,r)A(m) =

diag(0, a1, a9, ..., am—1). Hence [A(m), A(m,r)] = diag(a1, a0 — a1, .., Qm—1 — Qp—2, —Qp—1). O

Example 3.4.3. Let [ = 3,m = 8,r = 5. Then A(m,r) is the following matrix

0 0 0 0 0 0 0 0
01 0 0 0 0 0 0 0
0 61+6 0 0 0 0 0 0
0 0 02+ 01 + 6 0 0 0 0 0
0 0 0 02 + 201 + 09 0 0 0 0
0 0 0 0 —0y — 01 — 09 0 0 0
0 0 0 0 0 —6—6 0 0
0 0 0 0 0 0 —6p O

3.4.2. The matrix A(u). Let v € O(l) and u € P,(nl + |v|). Let us write it in Frobenius form
w=(ay,...,ag | b1,...,bx) (see §3.3.3). For each 1 < i < k,let r; = b; + 1, m; = a; + b; + 1 and
Bi =00+ 00 i + T i

Definition 3.4.4. We define A(u) to be the matrix with diagonal blocks A(u)" = A(m,,r;) and
off-diagonal blocks A(u)™, where A(p)* is the unique m; x m; matrix with nonzero entries only on

the (r; — r; — 1)-th diagonal satisfying
A(ml)A(M)” - A(IU’)UA(mJ) = _/BiE(rivrj)? (317)

where E(r;,r;) is the m; x m; matrix with E(r;, ;) = 0 unless s = 74,t = r; and E(r4,75)r, r, = 1.

Explicitly, if i > j then the non-zero diagonal of A(u)%¥ has r; entries equal to f3; followed by m; —r;
entries equal to zero. If i < j then the non-zero diagonal of A(x)¥ has r; — 1 entries equal to 0 followed

by n; —r; 4+ 1 entries equal to —f3;.

Example 3.4.5. Let | = 3 and p = (3,1 | 2,1). Then my = 6,my = 3 and 1 = 3,72 = 2. Set
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h =0y + 61 +6y. Then A(p) is the matrix

0 0 0 0 0 0|0 0 0
02 0 0 0 0 0|0 0 0
0 6y+6; 0 0 0 0|0 0
0 0 —0y — 01 — 09 0 0 010 -2 O
0 0 0 —0,—-6, 0 0[O0 0 —=2hn
0 0 0 0 —0y 0|0 0 0
h 0 0 0 0 0|0 0 0
0 h 0 0 0 06, O 0
0 0 0 0 0 0[]0 -0 0

Definition 3.4.6. Let A(p) = @le A(m;). Setting ¢; = Z;ll ms + 74, let J(p) be the nl x 1 matrix
with entry 3; in the g;-th row (for 1 <4 < k) and all other entries zero. Furthermore, let I(x) be the
1 x nl matrix with entry 1 in the g;-th column (for 1 < i < k) and all other entries zero. Finally, we

set

3.4.3. The fixed points. Let us fix an l-core v and a parameter # € Q' such that the variety
Xy(nd +d;) is smooth, where 7 = vt. Let d, := (do,...,d;—1) and d = nd +d.. Fix a complex vector
space V] of dimension n+d; for each i = 0,...,{—1. Additionally, let V, be a complex vector space
of dimension one. Set V7™ = @i;z‘) VIiand VT = V™ & V.

We are now going to interpret A(u) as a quiver representation. With this goal in mind we choose
a suitable ordered basis of the vector space V7. We show that the endomorphisms of V7 defined by
A(p) with regard to this basis respect the quiver grading and thus constitute a quiver representation.
We next show that this quiver representation lies in the fibre of the moment map at 6. This allows
us to conclude that the conjugacy class of A(u) is a point in the quiver variety Xy(d). We finish by
showing that this point is fixed under the C*-action.

Definition 3.4.7. Consider the sequence Seq := (1,...,m,1,...,ma,....,1,...,my). We call each
increasing subsequence of the form (1,...,m;) the p-th block of Seq and denote it by Seq,,. Let u; be
the j-th element in Seq. Let ¢ : {1,...,nl+ |v|} — {1,...,k} be the function given by the rule

C(j) =p < u; € Seq,,.

For each 1 < j < nl+ |v| let
Y(j) = (r¢¢jy — uj) mod 1.

If p,p) € N, let 6(p,p’) = 11if p = p’ and 6(p,p’) = 0 otherwise. For each 0 < ¢ < [ — 1 and
0 <j <nl+|v|, let w;(j) be defined recursively by the formula

wi(0) =0, wi(j) =wi(j — 1)+ (¢ (j), ).

For each 0 < i <1— 1, fix a basis {v},..., v/ "%} of VI. We define a function
Bas: {1,....nl + [v[} > {vj" [0<i<i—1, 1<e <n+d}, j»—)vZ’(f’;;)(j).
We also define a function Cell : {1,...,nl + [v|} — Y(u') associating to a natural number j a cell in

the Young diagram of . We define Cell(j) to be the u;-th cell in the ((j)-th Frobenius hook of uf,



34 3. Rational Cherednik algebras and Hilbert schemes

counting from the hand of the hook, moving to the left towards the root of the hook and then down

towards the foot.

Lemma 3.4.8. The functions Cell and Bas are bijections.

Proof. The fact that Cell is a bijection follows directly from the definitions. Observe that 1(j) equals

the I-content of Cell(j). We thus have a commutative diagram

Bas

{1,...,nl+ |V|} {vﬁ\OSiSl—l,lgeiSn—l—di}

CeIIJ Jy;m

Y (ut) {0,...,1—1}.

l-content

By |76, Theorem 2.7.41], the I-residue of u' equals Ei

for each 0 <4 <[ — 1 there are exactly n + d; elements j € {1,...,nl + |v|} such that the [-content
of Cell(j) equals 7. By the commutativity of our diagram, we conclude that there are exactly n + d;
elements j € {1,...,nl + |v|} such that Bas(j) € V7.

Now suppose that j < j' and Bas(j),Bas(j’) € V7. Then ¢(j) = #(j’). Since j < j’ and the
function w.y ;) (—) is non-decreasing we have wy,(;)(j') = wy ) (3 = 1) +1 > wyir) (7" = 1) > wy) (4)-

;(l)(n +d;)t* because the I-core of u! is 7. Hence

Hence Bas(j) # Bas(j’). We conclude that the function Bas is injective. Since the domain and

codomain have the same cardinality, Bas is also bijective. O

Definition 3.4.9. Let B := (Bas(1),Bas(2),...,Bas(nl+|7|)). By Lemma[3.4.8] B is an ordered basis
of V7. From now on we consider the matrices A(x) and A(y) as linear endomorphisms of V™ relative
to the ordered basis B. Let us choose a nonzero vector v, € V.. We consider the matrix I(u) as
a linear transformation V7 — Vo relative to the ordered bases {vs} and B. We also consider the

matrix J(z) as a linear transformation Vo, — V7 relative to the ordered bases B and {vs}.

Let p € P,(nl + |v|). Suppose that u = (a1,...,ax | bi,...,bx) is the Frobenius form of p. As
before, set r; = b; + 1, m; = a; +b; + 1 and ¢; = ZKZ- m; + ;.

Lemma 3.4.10. Suppose that 1 < i < k. Then:
o If0<j <a; then A(p)(Bas(qi + ) = Yy cpBas(qy +j + 1),
o if0<j=a; then A(u)(Bas(q: + 7)) = 3p_; ¢pBas(gp +j + 1),
e if 0> j > —b; then A(p)(Bas(q; + 7)) = Zgzl cpl_j<p,+1Bas(g, +j + 1)

Jor some coefficients ¢, € C, where 1_;<p, 11 is the indicator function taking value one if —j < by +1

and zero otherwise. Moreover, for a generic parameter 6 the coefficients c, are all non-zero.
Proof. This is immediate from Definition [3.4.4] O

Lemma has a very intuitive diagrammatic interpretation. We explain it using the following

example.

Example 3.4.11. Consider the partition p = (5,5,4,2). Its Frobenius form is (4,3,1 | 3,2,0). We
have g1 = 4,g2 = 11 and g3 = 15. The diagram below should be interpreted in the following way:
A(p)(Bas(j)) is a linear combination of those vectors Bas(j’) for which there is an arrow Bas(j) —
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Bas(j').
—4 Bas(8
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-3 Bas(7
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/
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[
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\
N\

1 Bas(3

=
vy}
5}
7]

—~
—
(=]

\

2 Bas(2

-
vy}
9]
7]

)

3 Bas(1

~

We have also introduced a numbering of the rows of the diagram. It is easy to see that Bas(j) € VT

if and only if Bas(j) lies in a row whose label is congruent to ¢ mod 1.

Lemma 3.4.12. Let i € P,(nl + |v|). Then A(u) € Rep(Q..,d).

Proof. We need to check that for each 0 < ¢ <1 — 1 the following holds:

-1
Im(A(p)lvy) € Vg, Im(A(7)lvy) € VI, Im(J(w) S VG, V] Cker(I(w).

i=1
Let us first show the first statement. We can draw a diagram as in Example The subspace V7
has a basis consisting of vectors Bas(j) in rows labelled by numbers congruent to ¢ mod [. The diagram
shows that A(u)(Bas(j)) is a linear combination of basis vectors in the row above Bas(j). But that
row is labelled by a number congruent to ¢ — 1 mod I. Hence A(p)(Bas(j)) € VI_;. The argument for

A(p) is analogous.

Let us prove the last claim. Let j € {1,...,nl+ |v|} and suppose that Bas(j) ¢ V. Let 1 <p <k
and set ¢, = Zg;i ms +1p. Since ¢(gp) = 1, —1p = 0 we conclude that p ¢ {qi,...,qr}. But the only
non-zero entries of I(x) are those in columns numbered g, for 1 < p < k. Hence Bas(j) € ker I(p).

The calculation for J(u) is similar. O
Proposition 3.4.13. Let u € P,(nl + |v|). Then A(u) € ug*(6).

Proof. By the previous lemma, we know that A(u) € Rep(Q,,d). Lemma together with (3.17)
implies that [A(u), A(1)] + J ()1 (1) = 0, s0 A(u) € pg " (0). D

Theorem 3.4.14. Let p € P,(nl + |v|). Then [A(p)] := G(d).A(p) is a C*-fized point in the quiver
variety Xp(d).

Proof. Let t € C*. We have t.A(u) = (¢t A(p), tA(u), I(i), J()). We need to find a matrix N in
G(d) such that Nt.A(p)N=! = A(u).
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For every t € C*, let Q(t) = diag(1,¢t~*, ..., ¢t~ "I*1). Conjugating an (nl+|v|) x (nl+|v|) matrix
by Q(t) multiplies the j-th diagonal by /. In particular, we have Q(t)(eafz1 tA(m;,r))Q)~t =
Dy Almi,r) and Q) A(W)Q(E) ™ = Alu).

Now consider the effect of conjugating A(u) by Q(t) on the off-diagonal block A(u)Y (i # 7).
This block contains only one nonzero diagonal. Counting within the block, it is the diagonal labelled
rj —r; — 1. Counting inside the entire matrix A(u), it is the diagonal labelled g; — ¢; — 1. It follows
that conjugation by Q(¢) multiplies the block A(u)¥ by t%~%~1 Hence we have

Q| @ tAwv|ew) T = @ AT,
1<ij<k 1<iZj<k

Let P(t) = @le t% 1d,,,. Conjugating A(u) by P(t) doesn’t change the diagonal blocks but
multiplies each off-diagonal block A(u)¥ by t%~49. We conclude that

PHQMILA)Q) T P(t)™! = A(u).

Since the matrix A(u) contains only diagonal blocks, conjugating by P(t) doesn’t have any impact.
Hence
PR Aw)QW) ™ P() " = Ap).

The nonzero rows of J(p) are precisely rows number ¢, ga, . . ., gx. But the g;-th entry of P(¢) is t% and
the g;-th entry of Q(¢) is t17%. Hence P(t)Q(¢)J(p) = tJ(u). Similarly, I(p)q(t)= P(#)~! =t 11(p).
Let D(t) = t~'Id,4 . Since D(t) is a scalar matrix, conjugating by D(t) doesn’t change A(u) or
A(p). On the other hand, D(t)P(t)Q(t)J(p) = J (i) and I(p)q(t) "1 P(t)"*D(t)~t = I(u).

The matrices D(t), Q(t), P(t) are diagonal, so they represent linear automorphisms in G(d). Hence
A(p) and t.A(p) lie in the same G(d)-orbit, which is equivalent to saying that A(u) is a C*-fixed point
in Xp(d). O

3.4.4. Characters of the fibres of V at the fixed points. Recall the tautological bundle Vy(d)
on Xp(d) from Let us abbreviate V := Vy(d). Let V), denote the fibre of V at the fixed point
(A()] = G(d).Ap).

Proposition 3.4.15. Let pn € P,(nl + |v|). Then

chy V,, = Res,(t) = Z (O,
Oep

Proof. Consider [(A(p),v)] := G(d).(A(1),v) € ug' () xE) V™ =V. We have

t.(A(n),v) = (LA (1), v) ~ (DOPHQE)(EA()(DHPHQH) ™, (DHP(HQH)'v)
= (A1), QW) P D(t) ).

The basis vectors {Bas(1),Bas(2),...,Bas(nl + |v|)} are eigenvectors of (D(t)P(t)Q(t))~! with corre-

sponding eigenvalues

S T e S LT U L h FUUUES e S LIRS A

Moreover, these eigenvalues are precisely the contents of the cells in the Young diagram of u, count-
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ing from the foot of the innermost Frobenius hook upward and later to the right, before passing to
subsequent Frobenius hooks. Hence ch; V, = > u te®), O

Recall that we have assumed that the parameter 8 is chosen so that the variety Xy(d) is smooth.
By [93, Proposition 22] there exists w € S, such that w*d, = 0. Let w = 04, -+ 04, be a reduced
expression for w in S;. Furthermore, let w - 6 = (Jy,...,0;_1) and Hy = O1,...,Hj_1 = U;_1,
h=— Zi;é ¥, h=(h,Hy,...,H;_1). Composing the Etingof-Ginzburg map with reflection functors

we obtain a C*-equivariant isomorphism

Vo =% Ch = Xypo(nd) im0, Xo(d).
Corollary 3.4.16. The map
Po(nl+v)) = X(d),  p [A(p)] = G(d).Ap) (3.18)

s a bijection.

Proof. The C*-fixed points in MaxSpec Zy, are in bijection with [-multipartitions of n, which are them-
selves in bijection with partitions of nl + |v| with l-core v. But )}, is C*-equivariantly isomorphic to
(), 50 ()| = |(MaxSpec )| = [P(L,n)| = [Py (nl + ).

Since a partition is uniquely determined by its residue, u # p’ implies chy V), # ch; V,/, which
in turn implies that [A(u)] # [A(1')]. It follows that is a bijection because it is an injective

function between sets of the same cardinality. O

3.5 Degenerate affine Hecke algebras

In this section we use degenerate affine Hecke algebras and a version of the Chevalley restriction
map to associate to each C*-fixed point in Y, and Cp, a distinct point in C"/S,, in a manner which is

compatible with the Etingof-Ginzburg isomorphism.

3.5.1. Degenerate affine Hecke algebras. Degenerate affine Hecke algebras associated to com-
plex reflection groups of type G(I,1,n) were defined in [109]. Let us recall their definition and basic

properties.

Definition 3.5.1. Let x € C. The degenerate affine Hecke algebra associated to I',, is the C-algebra

H, generated by I';, and pairwise commuting elements z1, ..., z, satisfying the following relations:

EjZZ' = Ziﬁj (]. é ’L,] S n)7 SiZj = ZjSZ' (] 7é Z,Z-l— ].)7

1-1
SiZit1 = 28 + K E e;kef_ﬂ (1<i<n-1).
k=0

Let Z,. denote the centre of H,.

Proposition 3.5.2. The algebra H, has the following properties.
a) As a vector space, H, is canonically isomorphic to Clzy,. .., z,] ® CT,,.
b) There is an injective algebra homomorphism Clzy, ..., 2,]5" < 2.

c) The algebra H, has a mazimal commutative subalgebra €, which is isomorphic
to Clz1,...,2,) @ C(Z/JIZ)™.
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d) Suppose that h = (h,Hy,...,H;_1) € Q' satisfies h = k. Then there exists an injective algebra
homomorphism H, — Hy, defined by

-1 -1 -1
g—g(gely), zi—yzr,+k Z ZSi’jei?E;k + ch Z n~ ke, (3.19)
k=1 0

1<j<i k=0 = =

where the ¢i’s are the parameters obtained from h as in [64, §2.7]. This homomorphism restricts

to a homomorphism
Clz1, ... 2] < Zn. (3.20)

Proof. See Propositions 1.1, 2.1, 2.3 and §3.1 in [40] as well as Proposition 10.1 and Corollary 10.1
in [67). O

Let us recall the construction of some irreducible H ,.-modules.

Definition 3.5.3. Let a = (a1,...,a,) € C" and b = (by,...,b,) € (Z/IZ)". Let C,; be the
one-dimensional representation of the commutative algebra €, = Clzy, ..., z,] ® C(Z/IZ)™ defined by

20 = av, €.0 =n%v for each 1 <i<nandv € Cqp- Define
M(a,b) :=H, ®¢, Cqp.

Proposition 3.5.4 ( [40, Theorem 4.9]). Let a € C" and b € (Z/IZ)". If a; — aj # 0,%lk for all
1 <i# j <n then the H,-module M (a,b) is irreducible.

3.5.2. Restricting Hy-modules to #Hj,-modules. Fix h € Q' such that )} is smooth and set
k = h. We are going to consider the generic behaviour of simple modules over H, under the restriction

functor to Hp-modules.

Definition 3.5.5. Set
D:={a=(a1,...,an) € C" | a; —a; # 0,k for all 1 <i# j <n}.

Observe that D is a dense open subset of C™. Proposition implies that for all a € D and
b€ (Z/IZ)™ the module M (a,b) is irreducible. Consider the diagram

cr 2 /S, L Y,
where ¢ is the canonical map and p; is the dominant morphism induced by (3.20). Set

U = pi ' (4(D)). (3.21)
Lemma 3.5.6. The subset U is open and dense in Y.

Proof. The set U is open because ¢ is a quotient map and p; is continuous. Since the morphism p; is
dominant, p1 () is dense in C"/S,,. Therefore, since ¢(D) is open in C"/S,,, we have ¢(D)Np1(Vn) #
. Hence U is nonempty. The fact that the variety ), is irreducible (see e.g. [49 Corollary 3.9]) now
implies that I/ is dense. O

Let é = ﬁ > ges, acr, 9 and 0 =(0,...,0) € (Z/IZ)". For the rest of this subsection fix an

irreducible H,-module L whose support is contained in U (i.e. x1, € U). Consider L as an Hp-module

using the embedding (3.19)).
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Lemma 3.5.7. There exists an injective homomorphism of Hp-modules M (a,0) < L for some a € D.

Proof. We have a (Z/1Z)"-module decomposition L = €Dy¢(z/17)» L(b), where L(b) is the subspace of
L such that €;.w = nbiw for all w € L(b). Since the z;’s commute with the ¢;’s, each subspace L(b) is
preserved under the action of the z;’s. In particular, z1,..., 2z, define commuting linear operators on
L(0), so they have some common eigenvector v € L(0). Let aq,...,a, be the respective eigenvalues of
the z;’s. Since the support of L is contained in U, we have a = (a1, ...,a,) € D.

Let vq0 € Cq0. Then the map 1 ® v,0 — v defines a non-zero Hp-module homomorphism
M(a,0) — L. Since a = (aq,...,a,) € D, the module M(a, 0) is simple and so this homomorphism is

injective. O

Recall that L'~ is a module over () 2 Z/IZ. Let L7~ denote the isotypic component corre-

sponding to the trivial character.

Lemma 3.5.8. We have éM(a,0) = L\7~". Moreover, éM(a,0) is stable under the action of z1 and

the eigenvalues of z1 on éM (a,0) are aq,...,ay,.

Proof. The action of €5 on M(a,0) is trivial by definition. We have a vector space isomorphism
M(a,0) = CS, ® C,,0. Therefore {és1,; ® v40 |1 < j < n} form a basis of €M (a,0) for any nonzero
Va,0 € Cq 0. In particular, dim éM (a,0) = n. Let us show that each of the basis elements we defined
is fixed under the action of I',,_;. We first note that since for each g € S,,_1 C I';, we have gé = ¢,
the subgroup S,,_1 fixes each és1; ® v4,0. Now consider €;.€51; ® vq,0 With 2 < ¢ < n. We have
€.€51, @ Vg0 = desn_l 951,€i(g) @ Va,0, Where i(g) is an index depending on g. But each ¢;(,) acts
on ve,0 by the identity, so we conclude that ¢; fixes és1 ; ® vq,0. The stability of éM (a,0) under the
action of z; follows from the fact that z; commutes with é. The calculation of the eigenvalues is similar

to the calculation in the proof of |8, Lemma 4.7]. O

3.5.3. Connection to the Etingof-Ginzburg isomorphism. Suppose that L is an irreducible
Hp-module whose support is contained in Y. Let M (a,0) be as in Lemma Using Lemma
and we can identify éM (a,0) = Lyr " = (CI,,) "1 = V. Suppose that EG(yr) = [(X, Y, I, J)].
The embedding sends

-1 -1

—mk _m

z1 = 1713/1+E CkE Ui €1 -
k=1 m=0

Since € acts trivially on M(a, 0), the action of z; on éM (a, 0) can be identified with the action of y; x4
on L;{j’l. Using the Etingof-Ginzburg isomorphism, the latter can be identified, up to conjugation,
with the matrix Y; X.

Definition 3.5.9. Let ps : Cph, — C"/S,, be the morphism sending [(X,Y, I, J)] to the multiset of the

generalized eigenvalues of the matrix Y7 Xg.

Proposition 3.5.10. The following diagram commutes.

yh EG Xg (n6)

c/S,

Proof. Since EG is an isomorphism, it suffices to show there exists a dense open subset of )}, for which
the diagram commutes. Consider the dense open subset U from (3.21)). Since )4, is smooth, for each
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X € U, there exists a unique simple H,-module L such that x = x . Moreover, there is an injective Hp,-
module homomorphism M (a,0) < L for some a € D, by Lemma Set [(X,Y,1,J)] :=EG(x¢r).
The remarks at the beginning of this subsection imply that the matrix Y7 Xy describes the action of z;
on éM (a,0). Hence the eigenvalues of Y1 X are the same as the eigenvalues of the operator 21 |eas(q,0)-
By Lemma these eigenvalues are ay, ..., a,. Hence py o EG(xr) = ¢(a) € C"/S,,.

On the other hand, consider the composition
Clzty. .., 2] = 2 X5 C. (3.22)

By the definition of M (a,0), a symmetric polynomial f(z1,...,2,) acts on 1 ® C, o by the scalar
f(a1,...,ay). Since f(z1,...,2n) is central in Hy, it acts by this scalar on all of L. Therefore, the
kernel of equals the maximal ideal in C[zy, ..., 2,]%" consisting of those symmetric polynomials
f which satisfy f(a,...,a,) =0, which is the vanishing ideal of ¢(a). O

3.5.4. The images of the C*-fixed points in C"/S,,. We are now going to identify the images
of the C*-fixed points under p; and ps. Set e = (eq,...,e;_1) € Q!, where ¢y = 0 and e; = 22:1 H;
fori=1,...,1—1. Set 8 := 0y, as in (3.7). For the rest of this section fix ;1 € Pg(nl). Let us identify
a point (ai,...,a,) € C"/S, with the “polynomial” " t%.

Lemma 3.5.11 ( [98, §5.4]). Let A € P(I,n). Then pi(xa) = Res(t").

Definition 3.5.12. Let u = (a1,...,ax | b1,...,bx) be the Frobenius form of u. For each 1 <1i <k,
let r; = b; +1 and m; = a; + b; + 1. Recall the matrices A(m;) and A(my,r;) from Definition If

A(m;)A(my, ;) = diag(aq, ag, ..., Qm,—1, G, ), then we define

k
EBig(p,i)= Y t%, Eig(p)= > Eig(p,i).
1<j<ms, i=1

j=ri—1lmodl

Lemma 3.5.13. We have p2([A(n)]) = Eig(u).

Proof. The polynomial Fig(u) picks out exactly the eigenvalues of the restricted endomorphism
A(p)A(p)|v, from all the eigenvalues of A(u)A(p). But these are the same as the eigenvalues of
A(p)A(p)|v,- The fact that po([A(p)]) = Eig(p) now follows immediately from the definition of ps. O

By Proposition |3.5.10] Lemma [3.5.11) Lemma [3.5.13| and the fact that a multipartition is uniquely

determined by its e-residue for generic e, we have

Eig(u) = p2([A(1)]) = p1(xa) = Res§ (") (3.23)

for unique A € P(l,n).
Definition 3.5.14. Define Eig(u) := (Eig(p)°, Eig(p)*, ..., Eig(1)'~') € P(I,n) by the equation

RGS%(M) (th) = Elg(,u)
We thus have a bijection
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Proposition 3.5.15. Let u € Py(nl). The inverse of the Etingof-Ginzburg isomorphism sends the
C*-fized point [A(p)] in Cn to the C*-fized point Xeig(u) in Va-

Proof. This follows directly from (3.23)). O
3.5.5. Calculation of Eig(y). Set e’ = (ej,el,...,e;_;) and €’ = (ej,ef ..., e/ ;) with ej = —h,

e/ 1 =0and
eg=e (i=1,...,1-1), e =h+ Y H; (i=0,...,1-2).

In these notations all the lower indices are to be considered mod I.

Lemma 3.5.16. Let = (a1,...,ax | b1,...,bx) € Py(nl). Then

ST L)
Big(p) =Y | [t D 707D | 4 [ tea Y 07D ) (3.24)
i=1 j=1 j=1

Proof. Tt suffices to show that for each 7 = 1,...,k we have

e sy
Big(p,i) = [t > 7070 g gfo 3" gmDR (3.25)
j=1 j=1

We can write

Big(p,i):= Y, =Y %4 >t (3.26)

1<j<my, 1<j<r;—1, ri <j<my,
j=r;—1lmodl j=r;—1modl j=r;—1lmodl

Note that r; —1 = b; = [-([b;/l] — 1) +d;, where d; is an integer such that 1 < d; <. The j's satisfying
1<j<r;—1and j=r; — 1modl are therefore precisely b;,b; —,b; —2L,...,b; — ([b; /1] — 1) -1 = d;.
Recall that 89 + 61 + ...+ 6,1 = —h. Hence ag,+p = ag; —ph for p=0,...,[b;/l] — 1, by Definition

[B-41l Therefore
[bi/1]

Z 1% — Z = G—Dh
j=1

1<j<ri—1,
j=ri—1lmodl

Observe that d; = b;mod [ if 1 < d; < I. Hence ag, = 371 Op1-5 = .0y Oap1—j = Sy 0 =
ey, = €, - If di =1 then ag, = ay = 22:1 Op, 41— = 22:1 §; = —h = ej. This shows that

[bi /1]

E 105 — %, § t—(—Dh
1<j<ri—1, Jj=1
j=r;—1modl

Let us now consider the second sum on the RHS os (3.26). We have m; —r; +1 = a; + 1 =
- |(a; + 1)/l + ¢; with 0 < ¢; < l. The j's satisfying r; < j < m; and j = r; — 1mod! are therefore

precisely b; + I,b; + 21,...,b; + |(a; + 1)/1] - . Note that b; + [(a; + 1)/I] - I = m; — ¢;. Hence
Qmy—ci—pl = Om;—¢; + ph for p=0,...,|(a; +1)/1] — 1. One computes, in a similar fashion as above,
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that au,, ., = e,,. This shows that

Wt/
o=t Y UTDR O
ri<j<mi, =1

j=ri—1lmodl

3.6 C*-fixed points under the Etingof-Ginzburg isomorphism

We will now identify the multipartition Eig(x) and thereby establish the correspondence between
the C*-fixed points under the Etingof-Ginzburg isomorphism.

3.6.1. The strategy. Our next goal is to show that Eig(y) = Quot(x)”. We will use the following
strategy. Recall Lemma [3.3.7] We first prove that an analogous statement holds for the multipartition
Eig(x). This will allow us to argue by induction on n. We then prove that Eig(u) = Quot(p)® for
partitions p with the special property that only a unique I-rim-hook can be removed from p. We then

deduce the result for arbitrary p € Pg(nl).

3.6.2. Types and contributions of Frobenius hooks. We need to introduce some notation to
break down formula (3.24)) into simpler pieces. Throughout this section fix u € Pg(nl).

Definition 3.6.1. Let u = (a1,...,ax | b1,...,bx) be the Frobenius form of u. Let Fi,..., Fj be the
Frobenius hooks in Y(u) so that (4,4) is the root of F;. Let

type, (L,4) :=b;modl, type,(A,i):=—(a; + 1)modl (i=1,...,k).

We call the number type, (L, i) the type of leg(F;) and the number type,, (A, i) the type of arm(F}). Let
e, ¢ and e’ be as in §3.5.4 and §3.5.5] Define

, [bi/1] ‘ , [(a;+1)/1] .
SHUDEED S NN O P Syt
j=1 j=1

We call E,(L, i) the contribution of leg(F;) and =, (A, ) the contribution of arm(F;).

By (3.25) we have

Eig(p, 1) = Z,(L, 1) + Z,(A4, 0). (3.27)
Lemma 3.6.2. We have
t9 Resgig(uy (") = > Eu(Ad) + > Eu(Li). (3.28)
1<i<k, 1<i<k,
type,, (A,i)=3 type,, (L,i)=3

Proof. Each summand t¢ on the RHS of corresponds (non-canonically) to a cell in the multi-

partition Eig(p) in the sense that it describes that cell’s e-shifted content. For generic e we can write

td = t¢t¢ for unique i = 0,...,0 — 1 and ¢ € Z. The summand ¢ corresponds to a cell in the partition
Eig(u)? if and only if i = j, i.e., t¢ = tt°. Since Big(u) = 22:1 Eig(u,p), formula implies

that there exists an 1 < p < k such that t¢ is a summand in Z,(L,p) or Z,(A,p). In the former
case t? = t%¢¢ if and only if j = bpmodl = type, (L,p). In the latter case t? = t%t¢ if and only if
"

€y = h+ej, which is the case if and only if j = —(a, + 1) mod[ = type, (4, p). O

ap
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3.6.3. Removal of rim-hooks. We will now investigate the effect of removing a rim-hook from
p on the multipartition Eig(u). Let Y, ,o(u) denote the subset of Y(u) consisting of cells of posi-

tive/negative/zero content.

Lemma 3.6.3. Let R be an l-rim-hook in Y(p) and suppose that R C (Yo(u) U Y4 (1)). Suppose that
R intersects r Frobenius hooks, labelled Fyi1, ..., Fpyr so that (i,1) is the root of F;. Let i/ := p— R.
Then

type, (A, j) = type, (A, j+1), Ew(Aj)=Eu(Aj+1) (G=p+1,....p+r—1),

type, (A,p+71) =type, (A, p+1), Eus(Ap+r)=E,(Ap+1)—M,

where M is the (monic) monomial in Z,(A,p) of highest degree.

Proof. Tt is clear that R must intersect adjacent Frobenius hooks. Recall that the residue of R is of
the form Resp(t) = 327201 ¢ with 4y > 0. Moreover, we have

i=1g

irtp—j+1—1
Resprp, ()= >t (3.29)

1=lrtp—j

for some integers ig < i1 < ... <4, = ig + [. One can easily see that these integers satisfy

lrp—j+1 — 1 = ay, (3.30)
where a; = |arm(F})| = maxgep, ¢(0). Set d;j := maxgep;, g c(0). If F; — R = @ set d; = —1. From
(13.29) and (3.30)) we easily deduce that

dj = Gj+1 (j:p—‘r 1,...,p+r—1), dp+T=ap+1 —1. (331)

By definition, the type and contribution of arm(F;) resp. arm(F; — R) depend only on the numbers

a; and d;. The lemma now follows immediately from the definitions. O

One can easily formulate a version of Lemma for R C (Yo(p)UY_(p)). The proof is completely
analogous. Lemma [3.6.3] admits the following graphical interpretation.

Example 3.6.4. The figure on the left shows the Young diagram of the partition (5,5,4,3,3). The
cells of content zero are marked as green. The blue cells form a 4-rim-hook. The figure on the right

shows the same Young diagram rearranged so that cells of the same content occupy the same row.

Using this visual representation we can easily determine the impact of removing the blue rim-hook.
The length of the first arm after the removal equals the length of the second arm before the removal.

Similarly, the length of the second arm after the removal equals the length of the third arm before the



44 3. Rational Cherednik algebras and Hilbert schemes

removal. Finally, the length of the third arm after the removal equals the length of the first arm before

the removal minus four. This is precisely the content of Lemma [3.6.3

Proposition 3.6.5. Let R be a rim-hook in i and set i’ := p— R. Then Eig(p') = Eig(u) — B for
some B € Eig(p).

Proof. There are three possibilities: R C Yo(u) U Yy (1), R C Yo(u) UY_ (1) or RNY 4 (u) # @, RN
Y_(p) # @. Consider the first case. Lemma and Lemma imply that there exists a j €
{0,...,1 — 1} such that Eig(p')" = Eig(p)" if i # j and % Resgig(ur)s (t") = %9 Resgig(nys (t") — t59 M
for some monic monomial M = ¢ € Z[t"]. Hence Eig(y') = Eig(y) — M for some B € Eig(p) with
c(l) =q.

The second case is analogous. Now consider the third case. We claim that =,(A4,:) = 0 for
every Frobenius hook F; whose arm intersects R nontrivially. Indeed, by definition =,(A,i) # 0
only if [arm(F;)| + 1 > I. We have |arm(F;)| = maxgeam(r,) ¢(0) = maxgeam(r,)nr (). Hence
larm(F;)| < maxpeg c(0). However, since R NY_(p) # @, the rim-hook R must contain a cell of
content —1. The fact that Resg(t) = t¢ Z;_:lo tP for some q € Z implies that maxgegc(0d) <1 — 2.
Hence |arm(F;)| +1 < [ — 1 and so Z(A,i) = 0. Therefore the removal of R does not affect the
contribution of the arm of any Frobenius hook.

Now set R’ := RN (Yo(u) UY_ (). We have reduced the third case back to the second case, with
the modification that R’ is now a truncated rim-hook. We can still apply Lemma with minor
adjustments. In particular, equations (3.31]) are still true with the exception that the final equation
becomes dj,1, = 0. Let j be the smallest integer such that leg(F;) N R # @. Using the same argument
as before, we conclude that % Resgig(,r)i (t") = t% Resgig()i (t") — t%~" and Eig(y/)’ = Eig(p)" if
i O

—-

3.6.4. Partitions with a unique removable rim-hook. In this section we show that Eig(u) =

Quot(u)” for a certain class of partitions which we call I-special.

Definition 3.6.6. We say that a partition u is I-special if the rim of Y(u) contains a unique I-rim-hook
R. We call R the unique removable l-rim-hook in Y(u). Let PgF(k) denote the set of partitions of k

which are [-special and have a trivial [-core.

Our goal now is to describe partitions of nl which are I-special and have a trivial [-core. Throughout
this subsection we assume that p € PP (nl). We let R denote the unique removable I-rim-hook in Y(u)
and set p’ := p — R. Sometimes, for the sake of brevity, we will just write "rim-hook” instead of
[-rim-hook.

Lemma 3.6.7. Let u € PP (nl). Then:

a) BEvery column of B(u) contains the same number of beads.
b) Sliding distinct beads up results in the removal of distinct I-rim-hooks from Y(p).
¢) The bead diagram B(u) contains I —1 columns with no gaps and one column with a unique string

of adjacent gaps.

Proof. (a) The empty bead diagram describes the trivial partition. But bead diagrams which describe
the trivial partition and have the property that the number of beads in the diagram is divisible by
! are unique up to adding or deleting full rows at the top of the diagram. Hence any such diagram
consists of consecutive full rows at the top. Since p has a trivial [-core, the process of sliding beads
upward in B(u) must result in a bead diagram of this shape. But this is only possible if every column

of B(u) contains the same number of beads.
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(b) We can see this by considering the quotients of partitions corresponding to the bead diagrams
obtained by moving up distinct beads. If the beads moved are on distinct runners, then a box is

removed from distinct partitions in Quot(u), so distinct multipartitions arise. If the beads are on the

same runner, sliding upward distinct beads implies changing the first-column hook lengths in different
ways in the same partition, so different multipartitions arise as well. But a trivial-core partition is
uniquely determined by its quotient, so these distinct multipartitions are quotients of distinct partitions
of l(n—1).

(c) Since only one rim-hook can be removed from p, only one bead in our bead diagram can be moved
upward. This implies that [ — 1 runners contain no gaps (i.e. they contain a consecutive string of
beads counting from the top). The remaining runner must contain a unique gap or a unique string of

gaps. O

Lemma 3.6.8. The bead diagram B(u) can be decomposed into three blocks A, B and C, counting
from the top. Fach block consists of identical rows. Rows in block A are full except for one bead. Let’s
say that the gap due to the absent bead is on runner k. Rows in block B are either all full or all empty.
Rows in block C are empty except for one bead on runner k. Moreover, the number of rows in block A

equals the number of rows in block C.
Proof. This is an immediate consequence of Lemma [3.6. O

Example 3.6.9. Let [ = 3. According to Lemma the following bead diagrams correspond to

3-special partitions:

o0 o eO o
A{@ O @ A{@e O @
o0 o eO o
B{ooo B{ooo
'YX 00O
oK Xe O @0
C{0O @ O C{0 @ O
SN Xe O @O0

The bead diagram on the left describes the partition (8, 6,4, 37,22, 12) while the bead diagram on the
right describes the partition (14,12, 10, 3,22,12).

In the sequel we will only consider the case where all the rows in block B are full. All the following

claims can easily be adapted to the case of empty rows.

Lemma 3.6.10. Suppose that block A of B(u) has m rows and block B of B(n) has p rows. Then
Y(p) can be decomposed into four blocks A, B,C, D:

o A is the Young diagram of the partition corresponding to the bead diagram A.
e Bisa rectangle consisting of m columns and [ - p rows.

o If k # 0 block C is the Young diagram of the partition corresponding to the bead diagram C.
If k = 0 block C is the the Young diagram of the partition corresponding to the bead diagram
obtained from C' by inserting an extra row at the top, which is full except for the empty point in

column | — 1.

e Block D is a square with m rows and columns.
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We recover Y(u) from these blocks by placing A at the bottom, stacking B on top, then stacking D on
top and finally placing C on the right hand side of D.

Proof. This follows from Lemma [3.6.8] by a routine calculation - one merely has to recover the first

column hook lengths from the positions of the beads. O

Example 3.6.11. Consider the first bead diagram from Example [3.6.9] Below we illustrate the block

decomposition of the corresponding Young diagram as in Lemma [3.6.10

[ Block A g Block B [] BlockC g Block D
We are now ready to investigate the effect of removing the rim-hook R.

Lemma 3.6.12. The partition u can be decomposed into m Frobenius hooks. The unique removable

rim-hook lies on the outermost Frobenius hook.

Proof. By Lemma the 0-th diagonal of the Young diagram of y is contained in D and contains m
boxes. Hence there are m Frobenius hooks. It follows easily from Lemma [3.6.8 and Lemma [3.6.10] that
the outermost Frobenius hook F}, in p is the partition of the form (k+ 1,1°PT=*=1) In particular, it
contains [ - (p+ 1) > cells. Let us first consider F,, as a partition in its own right and check whether
it contains an [-rim-hook. If p = 0 then F}, is itself a rim-hook. If p > 1 then the subset 1/PFi=F-1
of F,, contains a rim-hook. Hence, in either case, F}, contains a rim-hook. But a rim-hook of the
outermost Frobenius hook F, is also a rim-hook of p (because the outermost Frobenius hook is part
of the rim). O

Proposition 3.6.13. We have Eig(u') = Eig(u)—M, where B is the unique removable cell in Eig(p) =%~

with content —p.

Proof. The outermost Frobenius hook F), in p is the partition of the form (k + 1,1PHi=k=1) By
removing the rim-hook R we obtain the partition (k + 1,1°?=k=1) if p > 1 or the trivial partition if
p = 0. Since the rim-hook R is contained in the outermost Frobenius hook, its removal does not affect
the type and contribution of the arms and legs of the other Frobenius hooks.

There are several cases to be considered. Let a,,, = |arm(F},)| and b, = |leg(F},,)|. If k # {—1, then
Eu(Lym) = thmmoat S0 4= and type, (L,m) = by, =1 — k — 1 (while Z,(A,m) =0). fhk=1-1
and p > 0 then Z,(L,m) = Y7_, ¢t~ and type, (L,m) =0 (while Z,(A,m) =1). fk=1-1,p=0
then Z,(A,m) = 1 and type, (A, m) =0 (while Z,(L,m) = 0).

Upon removing the rim-hook the polynomials listed above change as follows. We have 2,/ (L, m)
= (% moat 3P4 i the first case, Z,(L,m) = Y27~ t" in the second case and =, (4, m) = 0
in third case. The types do not change. We observe that in each case a monomial of degree t~P" (up

to a shift) is subtracted, which corresponds to removing a cell of content —p in Eig(u) %1 O
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We obtain an analogous result for the multipartition Quot(u).
Lemma 3.6.14. The following hold:

a) Quot(u) = (Q°(u),...,Q""1(w)) is a multipartition consisting of | — 1 trivial partitions and one
non-trivial partition.

b) Suppose that the k-th column in B(u) is the unique column which contains gaps. Then QF(u)
is the unique non-trivial partition in Quot(w). If that column has a string of m gaps followed
by a string of ¢ = m + p beads then the Young diagram of QF(u1) is a rectangle consisting of m

columns and q rows.

Proof. The I-quotient of p can be deduced directly from the bead diagram B(u). The description of

the latter in Lemma |3.6.8] immediately implies the present lemma. O

Recall that p/ := p — R, where R is the unique rim-hook which can be removed from .

Lemma 3.6.15. We have Quot(p') = Quot(u) — O, where O is the box in the bottom right corner of
the rectangle described in Lemma[3.6.14 That boz has content —p.

Proof. This is the only cell which can be removed from Quot(x) by Lemma [3.6.14} so the claim now
follows from Lemma 3.3.7] O

The lemma implies in particular that Quot(u')” = Quot(x)” — O, where [ is a box of content —p
in the (I — k — 1)-th partition in Quot(u)’.

3.6.5. Induction. We will now use induction on n to show that Quot(u)® = Eig(p). There are two
cases to be considered: p € Pz’ (nl) and pu ¢ P (nl).

Proposition 3.6.16. Suppose that Quot()\)” = Eig()\) for any partition A+ I(n— 1) with trivial l-core.
Let p € PF(nl). Then Quot(u)” = Eig(y).

and Eig(y) arise from Quot(y/)* = Eig(u/) by adding a box of content —p to the (I —k — 1)-th partition.

Hence Quot(u)” = Eig(y). O

Proof. By induction, Quot(u/)” = Eig(y/). But by Proposition|3.6.13{and Lemma 3.6.15/both Quot(u)®

Proposition 3.6.17. Suppose that Quot()\)” = Eig()\) for any partition A - {(n— 1) with trivial l-core.
Let pu ¢ PgF(nl). Then Quot(u)” = Eig(u).

Proof. Since p ¢ PP (1) we can remove two distinct (but possibly overlapping) rim-hooks R’ and R”
from p. Let ' = p— R and p” = p— R”. Then p/ # u” and so Quot(p’) # Quot(p”) (because the
quotient of a partition with trivial core determines that partition uniquely). By Lemma we have

Quot(z')” = Quot(p)’ — O, Quot(u”)” = Quot(n)’ — O

with [ # [J € Quot(u)’. By Proposition we have

Eig(x') = Eig(u) — M,  Eig(u") = Eig(p) — W

for some M, mc Eig(1). We know that Eig establishes a bijection between [-partitions of n — 1 and

partitions of [(n — 1) with a trivial I-core. Hence B # B. By the inductive hypothesis in our lemma,

Quot(y')” = Eig(1/), Quot(n”)" = Eig(s").



48 3. Rational Cherednik algebras and Hilbert schemes

Hence
Quot(p)’ — O = Eig(u) — M,  Quot(n)’ — 0 = Eig(u) — M
and so
Eig(y) = Quot(u)’ — O + M = Quot(p)’ — L+ M.
Since [ # (] and M # B we conclude that [J = B and [J = M. Therefore Eig(1) = Quot(u)’. O

Theorem 3.6.18. Let ju € Py(nl). Then Quot(u)” = Eig(u). The bijection between the labelling sets
of C*-fixed points induced by the Etingof-Ginzburg isomorphism is given by

P(l,n) = Pz(nl), Quot(n)” > p.

Proof. The first claim follows directly from Propositions [3.6.16| and [3.6.17 The second claim follows
from Proposition [3.5.15 O

Remark 3.6.19. As a corollary, we also obtain the following explicit formula for the residue of the
l-quotient of a partition p = (ay,...,ax | b,...,b;) € Py(nl). Let us write Quot(p) = (Q°, ..., Q' 1).
Then

[(ai+1)/1] [b; /1]
D YIS SR RS SR SYRte)
1<i<k, m=1 1<i<k,
—(a;+1) Jmodl b; ]rnodl

where p; =1 fori=0,...,l—2and p;_; = 0 while pj = —1 and p; =0 fori =1,...,/— 1. Indeed, the
RHS of the formula above equals Resgig(,)i (t) by (8-28). But Eig(u)? = Q7= by Theorem [3.6.18

3.7 The higher level ¢-hook formula

We will now use Theorem [3.6.18| to obtain the following “higher level” generalization of the g-hook

formula.

Theorem 3.7.1. Let p € Py(nl). Then

c(d) _ n f>\( )
Zt = [nll Z fQ (3.32)

Oep AQuot(n Quot(p)® ( )

Tno1

Our proof is based on comparing the C*-characters of the vector bundles Vi, and R,""", and
uses Proposition [3.4.15] Theorem |3.6.18| as well as the Etingof-Ginzburg 1somorphlsm The remaming
ingredient is a calculation of the C*-characters of the fibres (RE”’”) (see § . We carry out this
calculation below. We first identify (Rfl"’l) A with a graded shift of en,lL(A). We next recall the
graded multiplicity with which L()) occurs in A()) and calculate the character of e, _;A()\). Finally,

we use the equation ~
chy €n—1A(A)

chyen,—1L(A) = [AQ) : LV)gr

Note that, setting [ = 1 in (3.32)), we recover the usual g-hook formula, so our result also gives a

new geometric proof of this well-known combinatorial identity.

Remark 3.7.2. As explained in the introduction, (3.32)) can be regarded as a quantization of the
classical hook-length formula (|1.6)) or its corollary (3.4). These formulas generalize easily to the wreath
product case. Since irreducible modules over S, ! Z; are defined by induction from modules over
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parabolic subgroups of S,,, we have

dy = H M:

\uzl'

H |Mz n!ﬁ i
Vo P i=0 o

|,LL1

Moreover,

I,
n= L, 3.33
> b 555
A,
N#p
We can regard ([3.32)) as a quantization of (3.33). However, there is a crucial difference between the
classical and quantized formulas. While the classical wreath product formula is derived from the

corresponding formula for the symmetric group, we were not able to derive the higher level g-hook

formula from the ordinary g-hook formula purely by algebraic manipulations.

3.7.1. Coinvariant algebras and fake degree polynomials. The algebra C[h]°*I™ is a graded
[',-module. It is well known that C[h]°' is isomorphic to the regular representation CI',, as an
ungraded I',,-module.

Let C[h]°'»|r _, denote the restriction of C[h]*'" to a I',,_j-module. Let b’ C b denote the
subspace spanned by ¥o,...,y,. We choose a splitting h — b’ with kernel spanned by y;. This

splitting induces an inclusion C[h’'] C Clh].

Lemma 3.7.3. We have an isomorphism of graded I',,_1-modules

C[b]col‘n |F o~ (C[h’]“’r"—l ® U,

n—1

where U is a graded vector space with Poincaré polynomial chy U = [nl];.

Proof. We have a sequence of inclusions of graded I';,_1-modules
C[p]™ = C[p]""~* < C[y]

such that each ring is a free graded module over the previous ring. Hence there is an isomorphism of

graded I'y,_1-modules

C[h]/(C[h]}") = C[h]/(Clh]}" ) @ C[o] = /(C[h)}™).

Observe that there is also an isomorphism of graded I',,_;-modules

1

Chl/(ChIL" ) = Cl1/(Cl'T" ) = Cly o

To prove the lemma it now suffices to find the Poincaré polynomial of the graded vector space
C[h] -1 /(C[h)~ 2"). We know that C[h]'»—* is a polynomial algebra with generators in degrees
1,2l,...,(n—1)l and an additional generator in degree 1. The ring C[h]'" is a polynomial algebra with

generators in degrees [, 21, ...,nl. Hence
SRCTARI, | S ) g
! T—t 41 —pl Ly
Tp—1 _un
It follows that ch, C[h]'»—1/(C[p)}") = Cﬁ;fgﬁﬂrn = =% — [nl],. O
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Definition 3.7.4. Suppose that we are given an l-multipartition A € P(l,n) and the corresponding
irreducible representation S(A) of T',,. We regard S(A) as a graded T',-module concentrated in degree

zero. The fake degree polynomial associated to A is defined as

fa(t) =D _[Cl) " = S [K)e"

a kEZ
Theorem 3.7.5 ( [130, Theorem 5.3]). Let A € P(I,n). We have

L1 yin(AY)

Alt) =t HH @ = ") (¢! HsNul 2.
)\7.

In particular, if X is a partition of n then f\ = (t)n It{;?:) = (t)nsa(1,t,22,...).

3.7.2. Auxiliary calculations. Fix A € P(l,n). Let ¢(A) denote the degree in which the trivial

I',,-module triv occurs in L(A).

Lemma 3.7.6. We have a graded Hy-module isomorphism

R = Hnen @c, e, enly = L(A)[—q(Q)]
and hence a graded vector space isomorphism

(Ry")a = en1Rnx = en 1 L) [=q(A))

Proof. As ungraded Hp-modules, Rp, » and L()A) are clearly isomorphic. Since they are simple, one is
a graded shift of the other. The trivial I',-representation triv occurs in L(A) in degree g(A). On the
other hand, we can identify triv with the subspace e, ®¢, e, enlix 0f Rp x, S0 triv occurs in Ry ) in

degree zero. O

Let us calculate the graded multiplicity of L()) in A(}).
Lemma 3.7.7. Let A € P(l,n). The simple H,-module L()\) occurs in A(X) with graded multiplicity

D IAQ) s LYK = eI ().

kEZ

Proof. By |10l Lemma 3.3], we have

t9) ch, A(N
chy L(A) = f,\(t)()
Hence )  ch, A(A) o
%ZZ[A(A) P LR = E fat). O
Let us calculate the character of e, 1 A()).
Lemma 3.7.8. We have
chyen 1AQN) = [In]e Y fult) (3.34)

S
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Proof. By Lemma [3.7.3 and Proposition [2:2.1] we have isomorphisms of graded I',,_;-modules

A(A)|Fn—1 = C[h]COFn‘an1 ® S(A)Irn—l

Ch)“™ U)o Sk = PApeU

pTA BTA

1

where U is a graded vector space with character ch; U = [In];. Hence

En— 1A @6»” 1A (335)
p#rA

as graded I';,_j-modules. For each u 1 A, we have

chyen 1A () = > [A(p) : triv[k][t" = fu(t). (3.36)

kEZ
The first equality above is obvious, for the second see, e.g., the proof of [63, Theorem 5.6]. Combining

(13.35) with (3.36)) we obtain (3.34]). O

3.7.3. The character of the fibre. We can now put our calculations together to obtain the
character of (RE"”)A.

Theorem 3.7.9. Let A € P(l,n). Then

chy(Ry" ")y = [In],

Proof. By Lemmas [3.7.6} [3.7.7 and [3.7.8] we have

chy (R )a =

—q(}) -chyen_1L(A) = (t—q(A) ~cht en_ 15@))/@-(1(&)&@))

= chyen1AQ)/fa(t)

LTA

Corollary 3.7.10. We have

-1 1 421 -1 l-n(ut l

1 , sui(1,t4 62 00) 1 , ) /oy ()
h Rl—‘n—l — t—’b H )70 ’ — t_z _— 337
C t( h )A 1_tz Z 3/\i(1 ! t2l7'“) 1_152 Z tl~n(/\’l)Hm(tl) ( )

=0 BTA, B 1=0 BT,
AN AN
. . Ty . (1 n(w) H
In particular, if | =1 then chy(Ry," ™)y = 705 > A 722(1 ii == A :Mi) Higg
Proof. This follows immediately from Theorems [3.7.5] and [3.7.9] O

We can now prove Theorem |3.7.1

Proof of Theorem[3.7.1. Choose any parameter h € Q' such that SpecZy, is smooth. By Theorem
the Etingof-Ginzburg map induces an isomorphism of vector bundles RE"’I >~ V. Since the

Etingof-Ginzburg map is C*-equivariant, we have

Fnoy
Cht(Vh)H = Cht(Rh )M(H)b’ (338)
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by Theorem [3.6.18] Proposition [3.4.15| yields the formula for the LHS of (3.38) while Theorem m
yields the formula for the RHS. O

3.7.4. Example. We would like to illustrate the higher level g-hook formula by means of an explicit

example. Set [ = 3 and consider the following partition

of 21. We see directly that

St = (¢t Bt f 2t T P 10) 43, (3.39)
DEM

The reverse of the quotient of u is

T (i

The corresponding hook polynomials are given by
Hyo () = (1= #)(1—19),  Hu(#) = (1—#2)(1 =91 = )2, Hy(#®) = (1-#).

The multipartition Quot(p)” has four submultipartitions, namely:

[y
Il

v- (0. H. 0).
c=CLLLITHLID, «

(.
T

We need the following hook polynomials:
Ho(t*)=(1-1), Ha(t®)=Q1—-t)(1 -t Ha{®)=1-)1-t%(1-t), Hp()=1
The relevant ratios of the hook polynomials entering the formula ([3.37)) are:

Hjo(t?)
o ()

Hy (1) 1=t Hye(83)
Hfl (t3) + tl<n(>\1)H<1 (tg) B H,- (tS)

—(1-19), — (-,
Putting these into (3.37)), we get the equality

= [6]; + [3]st 2 + [12],t 4,

ful) (=15 + (1 -2+ (1 - 1)t
202w Tt

which, after an easy calculation, turns out to be equal to (3.39).
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3.8 (C*-fixed points under reflection functors

Assume from now on that [ > 1. In this section we compute the bijections between C*-fixed points
induced by reflection functors (see §3.3.9).

Fixv € O(l) and let d, = (dyp, . .., d;—1) be the corresponding dimension vector (see . Assume
that # € Q' is chosen so that 6; # 0 and the quiver variety X (nd 4+ d,) is smooth. The reflection
functor

Ri: Xp(nd +dy) = Xy o(nd + do,ur) (3.40)

is a C*-equivariant isomorphism and hence induces a bijection Xy(nd 4+ d, ) +— X, .9(nd +dg,.,)C
between the C*-fixed points. Composing it with the bijections from Corollary we obtain a
bijection

R; : Pt (nl + V') = Ployary (0l + (07 % v)"]). (3.41)

Fix u € Pye(nl + |V']). We are going to show that

where T;(u?) is the partition obtained from u! by adding all i-addable and removing all i-removable
cells relative to ut, as in Definition [3.3.9]

3.8.1. The strategy. Our goal is to describe the action of reflection functors on the C*-fixed
points combinatorially. In we endow the vector space V¥ with a Z-grading, which we call
the “p-grading”. A C*-fixed point is characterized uniquely by this grading. In we compute
the R;(u)-grading on the vector space Vo, In and we use this calculation to give a

combinatorial description of the partition R;(u).

3.8.2. The p-grading. Fix a Z/IZ-graded complex vector space VY= @i;(l) V7 with dim V7 =
n+d;. Set V¥V = VY@ Vo with dimV,, = 1. We are now going to introduce a Z-grading on Vv
which “lifts” the Z/lZ-grading.

Definition 3.8.1. We call a Z-grading VY = &b

tion:

icz Wi a p-grading if it satisfies the following condi-

(C) for each i € Z we have

A(p) (W) SWi, A(p) (W) S Wi, J(p)(Ve) € Wo, I(p)(Wo) =V

where A(p), A(w), J(p) and I() are as in Definition [3.4.6]

Proposition 3.8.2. A u-grading on V¥ ezists and is unique.

Proof. We first prove existence. Let u = (ay,...,ax | b1,...,bx) be the Frobenius form of u. Set
ri =b;+1, m; = a; +b;+1and ¢ = Zj<imj +r; for 1 < i < k. Recall the ordered basis
{Bas(i) | 1 <i < nl+ |v|} of V¥ from 93.4.3, We now define W, by the rule that for each 1 < i < k:

Bas(qi — ]) S Wj (0 S] < bz), Bas(qi +j) S W,j (]. S] < ai). (342)

It follows directly from the construction of the matrices A(p), A(p), J(p) and I(p) that this grading
satisfies condition (C) in Definition[3.8.1] Hence it is a y-grading. Finally we observe that the definition
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of A(y) and Lemma imply that
W= (A(p) (Wo) (j<0),  W;=(A()(Wo) (j>0). (3.43)

We now prove uniqueness. Let VY = D;cz Wi be a p-grading. Choose 0 # vo, € Voo Then by
the definition of J(u) for a generic parameter 6 there exist ¢y, ..., ¢, € C* such that uy := ¢1Bas(q1) +
...+cBas(gr) = J (1) (veo) € W{. Lemmal[3.4.10] together with the fact that the parameter 6 is generic
implies that 0 # (A(u))*(Bas(q1)) = t(A(w))* (uq) for some scalar t € C*. Since u; € W and the
operator A(u) lowers degree by one, we have 0 # (A(x))* (Bas(q1)) € W’_,,. It now follows from the
definition of the matrices A(u) and A(p) and the genericity of 6 that (A(p))* o(A(p))** (u1) = t'Bas(q1)
for some scalar t' € C*. Since the operator A(u) raises degree by one, we have Bas(q1), caBas(g2) +
...+ cxBas(qi) € WY,

We can now apply an analogous argument to the vectors Bas(gz) and ue := coBas(ge) + ... +
¢xBas(gy). By Lemma FLT0 we have 0 # (A(1)" (Bas(g2)) = H(A()" (u) + '(A(u))" (Bas(ay))
for some scalars t,t’ € C*. Since us and Bas(q;) are homogeneous elements of degree zero and A(u)
lowers degree by one, we get 0 # (A(u))**(Bas(q2)) € W’,,. Moreover, Lemma implies that
(A(u))*2(Bas(q2)) is a linear combination of Bas(¢; + a2) and Bas(ga + a2). But Bas(qi + a2) =
(A(p))*2(Bas(g1)) up to multiplication by a non-zero scalar, so Bas(q1 +a2) € W', . Hence Bas(gz +
az) € W., and so Bas(q2) = (A(u))?*(Bas(qz + a2)) € Wi, We conclude that Bas(gz),us :=
csBas(gs) + ... + ckBas(gr) € W{. Repeating this argument sufficiently many times shows that
Bas(q1),...,Bas(gr) € W{. It follows that W} = Wy. Condition (C) and now imply that
Wi, =W, for all i € Z. O

Thanks to Proposition we can talk about the u-grading on V¥. Let us denote it by Vv =
@D,c, Wi We write deg,, v = i if v € W'. Moreover, let P, := Y, dim W' denote the Poincaré
polynomial of V¥ with respect to the u-grading. Consider the function

Xo(nd +d,)C = Z[t,t71], [A(u)] — P, (3.44)
Proposition 3.8.3. We have P, = Res:(t). Moreover, the function (3.44) is injective.

Proof. Fix 7 > 0. By , Bas(¢; — j) € W;L if and only if j < b;, for i = 1,..., k. Moreover,
{Bas(¢; — j) | j < bi} form a basis of W¥. Hence dim W/ = Zle 1,<p,, where 1;<;, is the indicator
function taking value 1 if j < b; and 0 otherwise. But Zle 1<y, is precisely the number of cells of
content —j in y, which is the same as the number of cells of content j in p!. The argument for j < 0
is analogous. This proves the first claim. The second claim follows immediately from the fact that

partitions are determined uniquely by their residues. O

Suppose that we are given a C*-fixed point and want to find out which partition it is labelled by.
Proposition implies that to do so we only need to compute the Z-grading on V¥ associated to

the fixed point and the corresponding Poincaré polynomial.
Lemma 3.8.4. The following hold:

a) The restricted maps

Ap) s WE S W (6 <0), A(p) s WH = W2 (i > 0)

are surjective.
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b) The restricted maps
A(p) : WE =W (i>0), A(p): W — W7I,L+1 (1 <0)

are injective.

c) We have V¥ = @,c, W, for each j=0,...,1—1.

i€z
Proof. The first claim is just a restatement of (3.43)). The second claim follows directly from Lemma
3.4.10] The third claim follows from (3.43]) and the fact that A(u) (resp. A(n)) is a homogeneous

operator of degree —1 (resp. 1) with respect to the Z/1Z-grading on V. O

Remark 3.8.5. We may interpret Lemma c) as saying that the p-grading on V¥ isa lift of the
Z/1Z-grading. Furthermore, we may think of the pu-grading as the grading on the representation of the
Aso-quiver corresponding to the fixed point [A(u)]. More details about the connection between quiver

varieties of type Ao and the C*-fixed points in cyclic quiver varieties can be found in [118] §4].

3.8.3. Explicit definition of reflection functors. Let us recall the explicit definition of reflection
functors from [103, Proposition 3.19] and |29} §5]. Fix a Z/lZ-graded complex vector space Voirv
@é;% V;i*” with dimV;i*V =n+ d;-. Set VOi*¥ .= VotV g V. To simplify notation, set d :=d,
and d’ :=o; *xd,.

Let us first define a map u;§+d(9) — u;§+d, (o - 0) lifting (3.40), which we also denote by ;. Let
p=(XY,I,J) e /1;(51+d(9). The reflected quiver representation

SRl(ﬁ) = (X/7 Y/a I/7 J/)

is defined as follows. Suppose that i # 0. We have maps

vy N vy e vy, ST vy (3.45)
Set ¢; :=Y; — X; and ¢; := X,;_1 + Y;1 (the indices should be considered mod ). The preprojective
relations (i.e. the relations defining the fibre u;;+d(9)) ensure that we have a splitting Vi ; @ Vy, | =
Im; @ ker ¢;. The underlying vector space of the quiver representation 2R;(p) is obtained from V¥ by
replacing V¥ with ker ¢;. We have an isomorphism of vector spaces V7i*¥ = ker ¢; & P ki Vio Ve
preserving the quiver grading. Let us define 2R;(p). We have X = X unless j € {7 — 1,i}. We also
have Y/ = Y; unless j € {i,i+1}. Set I' = I and J' = J. The maps X; and Y; are defined as the

composite maps

Xi: kerg; = kerg; @ Imep; = Vi & Vi —» Vi,
Y/ : ker¢; — ker¢; @ Imyp; = VY, & VY | — VI .

K2
The maps X;_; and Y/, ; are defined as the composite maps

(—0:) v

X/ VI, ——= V!, <V &V =kerd; dIme; — kerg;, (3.46)
Vi Vi S0 v VY @ VY = ker ¢y @ Ima; — ker ¢y —— ker ¢ (3.47)

The minus signs before X; in (3.45)) as well as in the last arrow above come from the fact that our

quiver does not have a sink at the vertex i as in |29, §5] - hence the need for these adjustments. If
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i = 0 one defines R;(p) analogously using maps
VI VY @V B Ve 25 VY (3.48)

With’(/)o:Yo—X0+Iand¢0:Xl,1+Yi+J.

3.8.4. The reflected grading. Let us apply the definitions from to p = A(u). More
ve, Yi = A(p)lvy, I = I(p) and J = J(u). The
reflected quiver representation R;(A(u)) € ,u;lerd, (o - 0) is conjugate under the G(nd + d’)-action to
A(R;(1)). We now compute the R;(p)-grading on Vo,

We have direct sum decompositions

Vi = @1/1{7 ¢i = @d’{, (3.49)

jez JET

specifically, for ¢ = 0,...,1 — 1, we set X; = A(un)

with ! = Gilws, and 6] = dilwr  own (i #0o0r j #0) and ¢ = volwy. Hence VI =

Gl4it1

ker ¢; = P ez ker gbz . Moreover, (3.45) and (3.48)) decompose as direct sums of maps

Pl o}

W;-‘lﬂ. —>W;.‘l+i71 EBW;.‘ZH+1 —>W$fl+i (j #£0ori=#0).

0 0
WE LS WE & WE e Vo, 2% WE

These direct sum decompositions together with the preprojective relations imply the following lemma.

Lemma 3.8.6. Leti € {0,...,0l—1} and j € Z. If i =0 and j = 0 then Im ] @ ker ¢ = W" | @
W4 @ V.. Otherwise Imv] @ ker ¢} = W oW

n
jl+i—1 Gl4it1:
Define

U; =W/ (j#imodl), Uy =ker¢! (j€Z).

Proposition 3.8.7. The Z-grading Voirv = D.., U, is the R;(n)-grading on Vo,

JEL
Proof. Tt suffices to show that Voi*” = @ ez Uj satisfies condition (C) in Definition m Suppose
i # 0. Then for each j € Z we need to check that

AR (1) (Ujigir1) € Ujrgi,  ARi(1))(Ujigi-1) € Ujigis

ARG(11)(Uji44) € Ujrgimt,  ARi(1)(Ujigi) € Ujigigr.

If ¢ = 0 we additionally need to check that I(R;(1))(Ug) = Vo and J(R;(11))(Veo) C U.

All of the inclusions above follow directly from Lemma and the definition of reflection functors.
For example, let us assume that ¢ # 0 or j # 0 and consider the inclusion A(R;(1))(Ujitit1) €
U, = ker gbz The map A(R;(u)) : VI = VY — V7™ = ker ¢; is given by (3.47). Consider
its restriction to the subspace Ujiip1 = W), ., C VY. By Lemma we have W ., C
Wi ®WY, . =ker¢] ©Imvy]. Hence A(R;(u)), restricted to WY, ), is the composition

(—=0:) WH

m
w Jl+i+

e Lo WE L e W = ker ! @ Ime! — ker ¢! - ker ¢,

Glti— Gl4itl

In particular, A(Ri(u))(W;l 4iy1) C ker qbg, as desired. The other inclusions are proven analogously.
O
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We have described the R;(u)-grading on Vi, We are now going to compute the corresponding

Poincaré polynomial PR, ,)-

Lemma 3.8.8. Let V¥ = D, W be the p-grading on VV. Then

i€Z
dimker ¢! = dim W/, | + dim W, | —dim W},
if j #0 ori# 0. Otherwise
dim ker ¢ = dim W{ + dim W" | — dim W}, + 1.

Proof. Assume that j # 0 or i # 0. Recall that ¢/ = A(“”W;‘M - A(M)lw/;“ri. Lemma W

implies that either A(,u)|wgl+_ or A(u)\wul+ is injective. Hence ] is injective. Therefore we have
gl+i Gl+i

dimIm¢y) = dim WY, ;. The equality dimker¢] = dim W/ .., + dimW}. | — dimImy now
implies the lemma. The case i = j = 0 is similar. O

Write P, = Y0, aht? with o = dim W* and Pg, () = 32 a0 with af ¥ = dim W0,
Proposition [3:8.7 and Lemma [3.8.8| directly imply the following.

Corollary 3.8.9. We have af = a?i(#) for j # imodl. Moreover alr;-;(f) =y A Ay,

ifj#0 ori#0 and ag®™ = ok + " | — alf +1 otherwise.

3.8.5. Removable and addable cells. Throughout this subsection let 1z be an arbitrary partition.
Recall the partition Ty (u) from Definition obtained from p by adding all k-addable cells and
removing all k-removable cells. We will now interpret addability and removability in terms of the

residue of .
Lemma 3.8.10. Let us write Res,(t) = >_,cy bjt!. Let k € Z.

a) The following are equivalent: (1) a cell of content k is removable; (2) br—1 = bg,bp+1 = b — 1
(k>0) orbgry =bg,bp—1=br —1 (k<0) orb_; =b1,bp =b1 +1 (k=0).

b) The following are equivalent: (1) a cell of content k is addable; (2) bry1 = bg,bp—1 = b + 1
(k>0) orbg_1=0bg,bgr1=br+1(k<0)orb_1=0by=0; (k=0).

c) The following are equivalent: (1) no cell of content k is addable or removable; (2) [by+1 = b, =
br—1 0or b1 =bg —1=bg_1—2 (k> 0)], or [bpgs1 =bg =br—1 0or b1 =bp +1=br_1+2
(k<0)],or[boy=by=b1+1o0rb=by=b_1+1 (k=0)].

Proof. Let k > 0. Suppose that the cell (i, j) is removable from Y(u) and has content k. Then j—i =k
and (1,k+1),(2,k4+2),...,(i,4) are precisely the cells of content & in Y(u). Since Y(u) has a corner at
k, the cells of content k — 1 in Y(u) are precisely (1,k),(2,k+1),..., (4,5 — 1) and the cells of content
k+1in Y(u) are precisely (1,k 4+ 2),(2,k+3),...,(i —1,7). Hence by = i,bpg—1 = i,bkr1 = ¢ — 1,
which yields the desired equalities. Conversely, suppose that by_1 = by, bx+1 = b — 1. Then the cell
(bg, b + k) is removable. Indeed, by = by implies that (by + 1,bx + k) ¢ Y(u) and b1 = b — 1
implies that (bg,br + k + 1) ¢ Y(u). The proofs of the remaining cases are analogous. O

3.8.6. Combinatorial interpretation of reflection functors. We can now interpret the effect

of applying reflection functors to the fixed points combinatorially.

Theorem 3.8.11. Let € Poe(nl + [vt]) and 0 < k <1 —1. We have Ry (u) = (Tr(pb))t.
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Proof. Tt suffices to show that the residue of Ty (') equals Pg, (). Let us write

Resp, (ut)(t) =: Zaiti, Res,: (t) =: Z bitt, Pr,(n) = Zciti, P, =: Z d;tt.
= i€z icZ =

By Lemma [3.8:3] we have b; = d;. Suppose that i ## kmod . Then a; = b; = d; = ¢;. The first equality
follows from the fact that no cells of content i are added to or removed from p! when we transform p
into T (u!). The third equality follows from Corollary

Now suppose that ¢ = kmod! and ¢ > 0. Then ¢; = d;41 + d;_1 — d; by Corollary Hence
¢; = bit1+b;—1—b;. We now argue that b;41 +0b;—1 —b; = a;. There are three possibilities: a; = b; +1
and one cell of content i is addable to u?, or a; = b; — 1 and one cell of content i is removable from
ut, or a; = b; and no cell of content i is addable to or removable from u’. In the first case we have
b; = b;y+1 and b;—1 = b; + 1. In the second case we have b; = b;_; and b;;; = b; — 1. In the third case
we have b;_1 = b; = bjy1 or b; = b;11 +1 =0b;_1 — 1. These equalities follow immediately from Lemma
In each of the three cases we see that the equality b; 11 + b;—1 — b; = a; holds. Hence a; = ¢;.
The proof for ¢ < 0 is analogous. O

Recall that if A € P then
Quot(\f) = (Quot(\)¥). (3.50)

Corollary 3.8.12. Let pu € Pye(nl + [vt]) and i € {0,...,1 —1}. Then Ri(u) = (0; * u*)'. Moreover,

Core(R;(p)) = (0 xv)"

(Ti(v))",  Quot(Ri(u)) = si—; - Quot(u).

Proof. The first claim follows directly from Proposition [3.8.11| and the definition of the S;-action on
partitions in §3.3.7] The formula for Core(R;(u)) follows directly from Proposition|3.3.10} The formula

for Quot(R;(p)) follows from Proposition and (3.50). Indeed,

Quot(R, (1)) = Quot((ar # 1')") = ((Quot(a » u'))")’
= ((s: - Quot(u))")"
— (s; - (Quot())?)? = s - Quot(s). O

Note that, by Proposition [3.3.10, we also have:

Core((Ri(p))") = o3 # v = Ty(v), Quot((Ri(n))") = pr(os) - Quot(p) = s; - Quot(y). (3.51)

3.9 Connection to the Hilbert scheme

3.9.1. The Hilbert scheme. Let K be a positive integer. We let Hilbg denote the Hilbert scheme
of K points in C2. The underlying set of the scheme Hilby consists of ideals of Clz1, 22] of colength
K, i.e., ideals I C C[z1, z2] such that dim C[zq, 2]/T = K.

We let C* act on C[zy, 23] by the rule t.z7 = tz1,t.20 = t~12z9. This action induces an action on
Hilbg. The C*-fixed points in Hilbg are precisely the monomial ideals in C[z1, z2]. Let A € P(K).
Let Iy be the C-span of the monomials {z¢zJ | (i + 1,7 + 1) ¢ Y(A\)}. We have a bijection

P(K) +— HilbS , X I,
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Let Tk denote the tautological bundle on Hilbg. Its fibre (Tx ) at I is isomorphic to C[z1, 22]/I. The

following lemma follows immediately from the definitions.
Lemma 3.9.1. Let A € P(K). We have chy(Tx)r, = Resxe(1).

There is also a Z/lZ-action on Hilbg induced by the Z/lZ-action on Clz1,z9] given by e.z; =

-1 —
n "Z1,€.20 = 1Z2.

3.9.2. Connection to rational Cherednik algebras. Set —1 := f%(l, ...,1) € Q' and f% =
-4(@1,...,1) € Q. Let w € S; and set 6 := w™t - (—2) € Q' as well as v := w xnd € Z'. We have
v = nd + 79, where vo = w * &. Let v := 07 1(7p) be the [-core corresponding to vg. By [64, Lemmas
4.3, 7.2], the quiver variety Xp(nd) is smooth. Set h := (h,Hy,...,H;—1) with H; =60; (1 <j <1—1)
and h = —0y — Zé;ll H;. Let us fix a reduced expression w = o0y, ---0;, for w in Sl. Composing
reflection functors yields a U(1)-equivariant hyper-Kéhler isometry

R

1

o---0%R :Xg(né) 1>X 1(7). (352)

im 1
By (64} §3.7] there exists a U(1)-equivariant diffeomorphism

X_1(7) = M_1(9). (3.53)

2

Set K = nl + |v|. By |64, Lemma 7.8], there is a C*-equivariant embedding
M_l(")/) — Hlle . (354)

Its image is the component Hilb% of Hilb%(/lZ whose generic points have the form V' (I,) U O, where O
is a union of n distinct free Z/IZ-orbits in C2. Moreover, (Hilb%)C = {Iy | A € P,(K)}. Let

P X 4 (’7) — Mfl(’}/) — Hllbl[/{ (355)

T2

be the composition of (3.53) and (3.54). It induces a bijection between the C*-fixed points and hence

also a bijection between their labelling sets
U:Pu(K)— P,(K), p— A

where the partition A is defined by the equation Iy = ®([A(u)]).
Lemma 3.9.2. Let u € Py:(K). We have ¥(u) = pt.

Proof. Let V_1(v) := ;gl(—%) x G V¥ denote the tautological bundle on X_1 (7). The diffeomor-

2

phism (3.55) lifts to a U(1)-equivariant isomorphism of tautological vector bundles

o

Voy() ST, (3.56)

where T} denotes the restriction of Tk to the subscheme Hilb%. Proposition [3.4.15 implies that
chyV_1 (7)1a(u)) = Resy(t). Hence the C*-characters of the fibres of V_1(y) at any two distinct C*-
fixed points are distinct. By Lemma we have chy(7%)7, = Res,t(t). The U(1)-equivariance of

(3.56) implies that ®([A(x)]) = I+ and so U(p) = put. O

We are now ready to collect all our results about the C*-fixed points. We have a sequence of
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equivariant isomorphisms (of varieties or manifolds):

Ry 00R;,,
e

Vo =% Xp(nd) X1 (y) = HilbY . (3.57)

They induce bijections between the labelling sets of C*-fixed points.
Theorem 3.9.3. The map (3.57) induces the following bijections

P(l,n) — Pg(nl) — Pp(K) — P,K)
Quot(p)’® U — (wrph)t o w ok pl

Moreover,
v=wxI=T; o...0T; (2), Quot(w*pu')=pr(w)- Quot(u’).

Proof. The theorem just collects the results of Theorem [3.6.18] Corollary [3.8.12] Lemma [3.9.2] and
(13.51)). O

Let us rephrase our result slightly. Given w € Sy, we define the w-twisted 1 -quotient bijection to be
the map
Tw: Pl,n) = P,(K), Quot(u)— w * u.

Corollary 3.9.4. The bijection P(l,n) — P, (K) induced by (3.57) is given by
A (M), (3.58)

Proof. Suppose that A = Quot(x)°’. Then Theorem implies that ) is sent to w * uf. On the other
hand, \* = (Quot(u)”)* = Quot(x*) by (3.50). Hence 7, (A") = w * pt. O

Remark 3.9.5. The statement of Corollary appears in the proof of [64, Proposition 7.10]. How-
ever, the proof of this statement in [64] is incorrect. The problem lies in an incorrect assumption about
the function ¢y, : P(I,n) x Q' — Q, defined by:

-1 -1
cn(A) = lZ IN|(Hy + ...+ H;) —1 <”(”21) + Zn(x’) - n((x’)t)> h. (3.59)

=0

Given h € Q', the function ¢, induces an ordering on P(I,n), called the c-order, given by the rule
1<nA < cn(p) <cn(d).

Dependence of this order on h decomposes the parameter space Q' into a finite number of so-called
c-chambers. It is stated in [64] §2.5] that the c-order is a total order inside c-chambers. This, however,
is not true. Let us consider counterexamples in which the c-order is not total for all values of h. For
example, take [ = 1. Then

cn(\) = — ("(”2_1) + () — n(At)> h. (3.60)

Tt follows immediately from that cp(A) = cn(p) for all values of h if A and p are two symmetric
partitions in P(n). There are other examples. Take u = (6,3,2,2,2). Then n(u) =3+4+6+8 = 21.
Since p' = (5,5,2,1,1,1) we have n(u') = 5+4+3+4+5 = 21. It follows that u and p' are
incomparable in the c-order for all values of h.
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Gordon’s proof of (3.58) relies on comparing the values of some Morse functions on the quiver
variety Mag(nd) and the Hilbert scheme at the C*-fixed points. This approach would work if the
Morse functions assigned distinct values to each fixed point. However, this isn’t the case because the

Morse function on Maog(nd), evaluated at the fixed points, is given by cy,.

3.9.3. The combinatorial and geometric orderings. In [64, §5.4] Gordon defines a geometric
ordering <8° on P(l,n) using the closure relations between the attracting sets of C*-fixed points in

Mop(nd) (Gordon uses the notation <p). We also have a combinatorial ordering on P(l,n) given by:
BRI A = (A Dre(ph),

where < denotes the dominance ordering on partitions.

Corollary 3.9.6. Let w € S; and A€ P(l,n). Then p =&° X = p 2™\

Proof. Using the closure relations between the attracting sets of C*-fixed points in HilbY, one can also
define a geometric ordering <8° on P,(K). By construction, the isomorphism Mag(nd) — Hilb}
intertwines the two geometric orderings. Hence, by Corollary =R N = 7, (ph) =B 7, (A).
But, by [104, (4.13)], the ordering <& is refined by the anti-dominance ordering on P, (K). O
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Chapter 4

The Suzuki functor

In this chapter we will work with rational Cherednik algebras associated to the symmetric group S,,
at parameters t € C and h = 1. We abbreviate H, := H; 1(S,,) and Z := Z(Hy).

4.1 Introduction

Arakawa and Suzuki [3] introduced a family of functors from the category O for sl,, to the category
of finite-dimensional representations of the degenerate affine Hecke algebra associated to the symmetric
group Sp,. These functors have been generalized in many different ways, connecting the representation
theory of various Lie algebras with the representation theory of various degenerations of affine and

double affine Hecke algebras.

Lie algebra “Hecke” algebra
sl, degenerate affine Hecke algebra Arakawa-Suzuki [3]
sl trigonometric DAHA Arakawa-Suzuki-Tsuchiya [4]
al, rational DAHA (¢ # 0) Suzuki [132]
gA[n cyclotomic rational DAHA (¢ # 0) Varagnolo-Vasserot [138] |

Figure 4.1: Functors relating Lie algebras and “Hecke” algebras in type A

Other generalizations of the Arakawa-Suzuki functor may be found in, e.g., [26,[30144}/47.77./78/106].
Here we are concerned with the third functor in the table above, introduced by Suzuki, and later studied
by Varagnolo and Vasserot |[138], under the assumption that ¢ # 0, and the level & is not critical. It is

a functor
Fr: % — Heyn-mod (4.1)

from the category %, of smooth gA[n—modules of level k to the category of modules over the rational
Cherednik algebra Hyy, associated to S,, and parameters t = x + n, h = 1. It assigns to each

gA[n—module a certain space of coinvariants:
M s Hy(gl,[z],Clz1,...,2m] @ (V)™ @ M).
We study the limit of the functor F, as

kK—c=—-n, t—0.
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As we saw in Theorems and [3:2.5] H; has a non-trivial centre if and only if ¢ = 0, and
Z = Z(Hp) can be identified with the algebra of functions on the classical Calogero-Moser space. An
analogous pattern occurs in the representation theory of § := QA[n - the centre of the completed universal
enveloping algebra ﬁ,{ of g is trivial unless the level  is critical. In the latter case, the centre 3 of ﬁc
is a completion of a polynomial algebra in infinitely many variables, and, by a theorem of Feigin and
Frenkel [50], it can be identified with the algebra of functions on the space of opers on the punctured
disc.

The existence of an interesting connection between the two centres Z and 3, or, equivalently, between
the Calogero-Moser space and opers, is suggested by the close relationship between the Calogero-
Moser integrable system and the KP hierarchy. For example, Ben-Zvi and Nevins [14] investigated this
relationship from the perspective of noncommutative geometry, identifying the Calogero-Moser space
with a certain moduli space of sheaves, called micro-opers, on quantized cotangent bundles. There is
also a more direct connection between Z and 3 via the Bethe algebra of the Gaudin model associated
to g. By the work of Chervov and Talalaev [34], the Bethe algebra can be obtained as the image of 3
under the canonical projection from U, to U(g[t™1]). A surjective homomorphism from the Bethe
algebra to the centre of the rational Cherednik algebra was later constructed by Mukhin, Tarasov and
Varchenko [101].

Inspired by these intriguing connections, we study the relationship between the two centres from a
more algebraic point of view. We consider Z and 3 as centres of the respective categories of modules
and show that the functor F. induces (in a sense which will be made precise below) a surjective algebra
homomorphism ©: 3 — Z. This homomorphism encodes a lot of information about the functor,
allowing us to deduce a number of interesting results (see Corollaries|AE]). For example, we are able to
prove that every simple Hy-module is in the image of F., describe the maps between endomorphism rings
induced by F., and compute the functor on Arakawa and Fiebig’s restricted category O. Furthermore,
we interpret © as an embedding of the Calogero-Moser space into the space of opers on the punctured
disc and provide a partial geometric description of this embedding. We expect that there is a connection
between our approach and the work of Mukhin, Tarasov and Varchenko, but we do not understand

this connection precisely.

4.1.1. Generalization of the Suzuki functor. Our first theorem, which collects the results of
Corollary |4.4.12| and §4.5.2| below, yields a generalization of the functor (4.1)) originally defined by

Suzuki.

Theorem A. For all k € C, there is a colimit preserving functor
F.: IAJN-mod — Hyo4n,-mod.

When k # c, the restriction of this functor to 6, coincides with (4.1]).

Our next result describes the images of some important ﬁn—modules under the functor F,. Let us
briefly explain the motivation for studying these modules. It comes from the representation theory of
the rational Cherednik algebra.

It was proven in [48] that isomorphism classes of simple Hy-modules are in bijection with maximal
ideals in Z := Z(Hp). Moreover, every simple Hp-module occurs as a quotient of a generalized Verma
module Ag(a, A), introduced in [7]. These modules can be defined for any ¢ € C, and depend on a
vector a € C™, together with an irreducible representation A\ of a parabolic subgroup of S,,. When

a = 0, they are the usual Verma modules for H;. The following theorem shows that generalized Verma
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modules as well as the regular module are in the image of the functor F,.

Theorem B (Theorems [4.6.1114.6.13). Let « € C. There exist U,-modules H,, and W, (a,\) such
that
Fo(He) = Hetny, Fru(Wi(a, M) = Axinl(a, ).

Moreowver,
Fr (MR ()‘)) = Afi-i-n ()‘) .

Here M, (\) denotes the Verma module for g. When a = 0, the modules W, (A) := W, (0, )
coincide with the Weyl modules from [84]. Therefore, we call W, (a, A) “generalized Weyl modules”.

4.1.2. Suzuki functor and the centres. From now on assume that n = m. One of our main goals
is to understand how the centres of the categories ﬁc—mod and Hg-mod behave under the functor F..
This is of vital importance because the centres, to a large extent, control morphisms in these categories.
For example, it was shown in [56] that the endomorphism rings of Verma and Weyl modules for U,.(g)

are quotients of 3.

In general, a functor of additive categories does not induce a homomorphism between their centres.
We circumvent this problem by introducing the notions of an F-centre of a category and an F-central

subcategory. More precisely, we consider the canonical maps
32 Z(U,-mod) —% End(F.) <2 Z(Hy-mod) = Z.

from the two centres to the endomorphism ring of the functor F.. Since Hy lies in the image of F,

~

the map f is injective and Z can be identified with the subring Im 8 of End(F.). We call Z¢_(U,) :=
a~1(Z) C 3 the Fo-centre of U.-mod. Restricting a to Zg, (U,) gives a natural algebra homomorphism

Z(Fc) = a|ZFC(ﬁc): ZFC(Uc) — Z

making the diagram

Zr (U.) 2R

canl can (4.2)
Endg (M) —< Endg,(Fe(M))

commute for all U,-modules M. The homomorphism Z(F.) contains partial information about all the

maps between endomorphism rings induced by the functor F..

~

Our next result gives a partial description of Z¢_(U.). We consider the subalgebra
gc = C[id[r],ch+1]rSO c3

consisting of certain first- and second-order Segal-Sugawara operators (see §4.3.5| for a precise defini-
tion).

Theorem C (Theorem 4.7.5). The algebra £, lies in the F.-centre of ﬁc—mod, i.€.,

2. C Zr (U.).
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We give an explicit description of the associated homomorphism
Z(Fo) e, L — 2 (4.3)

in (C70- (7).

It is natural to ask whether Zf, (ﬂc) coincides with 3. Unfortunately, this is far from being the
case. Our solution to this problem is to relax the condition that the diagram should commute for
all ﬁc-modules M. We introduce the notion of a subcategory A of ﬁc-mod being F.-central (see Defi-
nition 4.7.2| “ 2| for details), which has the consequence that there exists a unique algebra homomorphism

Z A(Fe): 3 — Z making the diagram

Za(Fe)

3

Z
can| J (4.4)

Endg (M) — <+ Endg, (Fe(M))

commute for all M € A. Our next result identifies an important F.-central subcategory of ﬁc—mod.

Theorem D (Theorem [4.7.9). The full subcategory 6u of ﬁc—mod projectively generated by H,. is

F.-central.

The category %y contains all the Verma and generalized Weyl modules which are not annihilated

by F.. The associated homomorphism
O = Z‘f}n( ) 3—7Z

plays a key role in our study of the functor F.. The following theorem, whose representation theoretic

and geometric consequences are discussed in the next subsection, is the main result of this chapter.
Theorem E (Theorem 4.9.6). The homomorphism ©: 3 — Z is surjective.

Let us briefly comment on the proof of Theorem [El We first show that © factors through 3<2(g)
(see §4.10.4] for the definition), and that the homomorphism ©: 35%(§) — Z is filtered with respect
to the standard filtration on Z and a certain “height” filtration on 3<2(g) (see and §4.9.1) We
compute the associated graded homomorphism gr © and use it to deduce the surject1v1ty of ©. In our

calculations, we rely heavily on the explicit construction of Segal-Sugawara operators due to Chervov
and Molev [32].

We also consider the Poisson algebra structures on 3 and Z given by the Hayashi bracket [71]. The

map O is not a Poisson homomorphism. However, the following is true.
Theorem F (Theorem [4.10.9). The restriction of © to £, is a homomorphism of Poisson algebras.

The partial compatibility of the Poisson structures on 3 and Z is a shadow of the fact that the
functor F is defined for all levels k. We remark that the Poisson subalgebra .Z. C 3 can be described
quite explicitly. It is isomorphic to a certain subalgebra of S(Heis x Vir), the symmetric algebra on the

semi-direct product of the Heisenberg and the Virasoro Lie algebras.

4.1.3. Applications. Our main result (Theorem D has several applications. First of all, we can

use it to gain more information about the homomorphisms between endomorphism rings induced by F..
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Corollary A (Corollary . The ring homomorphisms
Endg (We(a, A)) — Endy, (Ag(a, A)), Endﬁc(Mc(/\)) — Endy, (Ao(A)).

induced by F. are surjective.

Secondly, we are able to deduce from Corollary [A] that every simple Hp-module lies in the image
of F.. This result is, on the one hand, analogous to similar results |132,/138] in the x # ¢ case. On
the other hand, the situation at the critical level is very different because there are uncountably many
non-isomorphic simple Hy-modules. This is reflected by the fact that our proof relies on completely

different techniques from those used in [132}13§].
Corollary B (Corollary 4.10.3). Every simple Hy-module is in the image of the functor F..

We next connect the functor F. with the work of Arakawa and Fiebig. In [1[2], they studied a
restricted version of category O, obtained by “killing” the action of the centre 3. This category contains
restricted Verma modules M, (\) as well as, analogously defined, restricted versions of Weyl modules

W.()). In our third corollary, we describe the image of these modules under F..

Corollary C (Corollaries 4.10.614.10.7). We have
Fe(Me(A)) = Fe(We(N)) = Fe(I(N) = Ly,

where L(X) (resp. Ly ) is the unique graded simple quotient of M.(\) (resp. Ag(A)).

Fourthly, we give a partial geometric description of the homomorphism ©: 3 — Z in terms of
opers. By a theorem of Feigin and Frenkel [50], 3 is canonically isomorphic to the algebra of functions
on the space Ops(D*) of opers on the punctured disc. Therefore, © induces a closed embedding
©*: SpecZ <=+ Opx(D*). We show that the image of this embedding lies in the space Opg(ID)S? of
opers with singularities of order at most two.

We are also able to obtain some information about the residue and monodromy of the opers in the
image of ©*. To state our results, we first need to recall some facts about the affine variety Spec Z and a
canonical map 7: SpecZ — C"/S,, (see (£.48)). Bellamy showed in [7]8] that each fibre of 7 decomposes
as a disjoint union of subvarieties ), », which can be identified with supports of the generalized
Verma modules Ag(a, ). Moreover, Z surjects onto the endomorphism rings Endg,(Ag(a, A)), and
Spec Endy, (Ao(a, A)) = Qax.

Endomorphism rings of the Weyl modules W, () also admit a geometric interpretation. Frenkel and
Gaitsgory |56] showed that 3 surjects onto Endg (W.(})), and identified the latter with the algebra
of functions on the space Opg(D) of opers with residue w(—X — p) and trivial monodromy.

Using the results of [51], we show that the image of 2, » under ©* is contained in the space
Op?f(D)a of opers with singularities of order at most two and 2-residue a. Moreover, we show that

the image of ) is contained in Opg(]D)).

Corollary D (Corollary [4.10.14). The following hold.

a) The map ©: 3 — Z induces a closed embedding
©*: SpecZ — Opgs (D)2,

b) We have
©*(Qa,n) C OpS*(D)a.
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Hence the following diagram commutes:

SpecZ 2 Opg(D)<2

ﬂl |Res:

C"/S, —>— t/8,

c) Ifa=0 then
©*(2y) C Op} (D).

Finally, we study the behaviour of self-extensions under F..

Corollary E. Suppose that M is a 6c—m0dule with a filtration by Weyl modules. Then F. induces a

linear map
Extg (M, M) — Exty, (Fo(M), Fo(M)). (4.5)

We conjecture (see Conjecture [4.10.17)) that (4.5) extends to a surjective homomorphism between
extension algebras, and that it admits an interpretation in terms of differential forms on opers and the

Calogero-Moser space.

4.1.4. Structure of the chapter. Let us summarize the contents of the chapter. In sections 2-3
we recall the relevant definitions and facts concerning affine Lie algebras and vertex algebras. These
sections contain no new results. In Section 4 we recall Suzuki’s construction of the functor F, and
generalize it to the critical level. In section 5 we further generalize the functor F, to the category of
all U,-modules, proving Theorem [Al Section 6 is devoted to the proof of Theorem [B} In Section 7
we study the relationship between the two centres 3 and Z via the functor F.. Section 7 contains the
proofs of Theorems In Section 8 we define graded and filtered analogues of the Suzuki functor,
which are later used in Section 9 to set up our “associated graded” argument. All of section 9 is devoted
to the proof of Theorem [E] In Section 10 we study the applications of Theorem [E] proving Corollaries
[AHEL

4.2 Preliminaries

4.2.1. General conventions. Fix once and for all two positive integers n and m. The parameter n
refers to the Lie algebra g = gl,, while m refers to the rational Cherednik algebra H; . associated to the
symmetric group S,,. Once again, we work over the field of complex numbers throughout. If V is a
vector space, let T'(V') denote the tensor algebra and S(V') the symmetric algebra on V.

For a unital associative algebra A, with unit 14, we denote by A-mod the category of left A-
modules. Given a left A-module M and a left ideal I in A, let M! := {m € M | I - M = 0} be the set
of I-invariants. We will also work with the full subcategory A-fpmod of A-mod consisting of finitely
presented modules, i.e., modules M such that there exists a short exact sequence A¥ — Al - M — 0
for some k,I > 0. If B is another algebra, let (A, B)-nmod be the full subcategory of A ® B-mod
consisting of modules M with the property that the action of B normalizes the action of A, i.e.,
[A, B] C A in the endomorphism ring of M.

Given a subalgebra B C A, let Z4(B) denote the centralizer of B in A. In particular, Z(A) :=
Z4(A) is the centre of A. Recall that the centre Z(C) of an additive category C is the endomorphism
ring of the identity functor ide. We can naturally identify Z(A) = Z(A-mod), z — {zp | M € A-mod},
where z,; is the endomorphism of M given by the left action of z.
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Suppose that A is a commutative algebra and M is an A-module. Let Anna(M) := {a € A |
a - M = 0} be the annihilator of M in A. The affine variety supp 4 (M) := Spec A/ Anny (M) is called
the support of M in Spec A.

4.2.2. Combinatorics. We will now introduce some combinatorics. We remark that in the present
chapter we follow slightly different notational conventions from those introduced in §2.2.1] Let [ > 1.
We say that v = (v1,...,1) € Zﬁr is a composition of m of length 1 if v1 + ...+ vy = m. Let C;(m)
denote the set of all such compositions. Set v<; = 11 + ...+ v; for each 1 < ¢ <[ with v<o = 0 by

convention.

The symmetric group S, on m letters acts naturally on h = C™ by permuting the coordinates.
If a € b, let Sy,(a) denote its stabilizer in S,,,. We abbreviate s; := s;,41. Given v € C;(m), let
S, =8, x...x S5, denote the parabolic subgroup of &,, generated by the simple transpositions
$1,...,8m—1 with the omission of SucysSucgs e Sugy_y -

A sequence A = (A1,...,A,) € Z%, is a partition if Ay > ... > \,. Let Pn(m) denote the set of
all partitions of m of length n. We call A = (Al,... \) € Hé:l P, (m;) an l-multipartition of m if
Zi’:l m; = m and each m; # 0. We say that A\ has length n if Zé=1 n; = n, and length type p if
(n1,...,n1) = p € Ci(n). We say that X is of size type v if (m1,...,m;) = v € C;(m). Let P,(m) denote
the set of multipartitions of m of length type p and let P, (v) denote the set of all multipartitions of

length n of size type v (where we let [ vary over all positive integers). Set

Puv) :=Pu(m) N Pu(v), Pu:= | | Pulm), Pw):= ] Pulv).

m>0 n>0

In the union on the RHS we identify {-multipartitions A and y whenever each pair of partitions A\* and

x* differ only by the number of parts equal to zero.

If X € P,(m), let Sp(\) denote the corresponding Specht module. Given v € C;(m) and A € P, (v),
set Sp(A) = Sp(\)) ® ... ® Sp(A!). Tt is a S,-module. Let Sp,()\) := CS,, ®cs, Sp(\) be the

corresponding .S,,-module obtained by induction.

4.2.3. Lie algebras. Given a Lie algebra a, let U(a) denote its universal enveloping algebra, with
unit 1, := ly(q) and augmentation ideal U, (a). If M is an a-module and k > 0, let Hy(a, M) denote
the k-th homology group of a with coefficients in M. In particular, Ho(a, M) = M/Uy(a).M =
M/a.M. Given a Lie subalgebra ¢ C a and a c¢-module N, let Ind{ N := U(a) ®uy() N be the
induced module. For a surjective Lie algebra homomorphism d — ¢, let Inf N denote N regarded as

a 0-module.

Let G = GL,(C) be the general linear group and g = gl,,(C) its Lie algebra. Let e be the
(K, )-matrix unit and let id denote the identity matrix. We use the standard triangular decomposition
g =n_ @t n, with respect to the strictly lower triangular, diagonal and strictly upper triangular
matrices, and abbreviate by = t@&ny. For 1 < k < n, let ¢, € t* be the function defined by
ex(en) = O

Given p € C(n), let [, := Hi:l gl,, C g be the corresponding standard Levi subalgebra. We
next recall the connection between multipartitions and weights. A weight A = >, A\je; € t* is called
p-dominant and integral if each \; € Z and \; — A5y € Z>o whenever w(i) > i, for all w € S,,. Let
IL} denote the set of y-dominant integral weights with the property that each \; € Zxo. If p = (n),
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we abbreviate IL} = II*. There is a natural bijection

+
I,

1%

Puy A= (AN, (4.6)

where M\ := ()\MSFlJrl, .. .,)\Mgi). From now on we will implicitly identify weights with partitions

using this bijection.

4.2.4. Schur-Weyl duality. Given X\ € H:[, let L(A) be the corresponding simple [,-module of
highest weight A. Let V = L(e;) be the standard representation of g, with standard basis {e; | 1 <
i < n} and the corresponding dual basis {e} | 1 <i <n} of V*. If n =m, set e, ;=] ®...® ¢}, and,
for w € 5,

€ = €11y ® ... B €1y € (V*)em, (4.7)

Given p € Ci(n) and v € C;(m), let V' be the subspace of V spanned by ey,  1q,...,¢€j,_, and

l
(V)Em, = QVi)& C (Ve

(mov) "
i=1

There is an analogue of classical Schur-Weyl duality (see, e.g., [107, Proposition 9.1.2]) for [, and
Sm X Z" - their actions on V®™ centralize each other (see, e.g., [91, Theorem 6.1]). We will need the

following application, whose proof can be found in [138], Proposition 3.8(a)].
Proposition 4.2.1. Let A € t*. Then

a) Ho(l,, (V*)®™ ® L(\)) = 0 unless A € P, (m).

b) If v € C;(m) and X € P,(v) then

Ho(lu, (V)5 © LIN) 2 Sp(A), Ho(Lu, (VF)®™ @ L(X)) = Sp,, () (4.8)

as CS, - resp. CS,,-modules.
In the case u = (n), classical Schur-Weyl duality also implies the following.
Corollary 4.2.2. Let X\ € t*. Then:
a) Ho(by, (V¥)®™ @ Cy) =0 unless A € Pp(m).
b) If A € P,(m) then there is a natural CSy,-module isomorphism

Ho(b, (VF)®™ ® Cy) = Sp(A). (4.9)

Proof. The space Hy(by,(V*)®™ @ C,) can be identified with the space of lowest weight vectors of
weight A* = (An,..., A1) in (V¥)®™. By Schur-Weyl duality, (V*)™ = @¢cp, () L(§) @ Sp(§).
Hence the space of lowest weight vectors of weight A* is isomorphic to Sp(A) if A € P, (m) and is zero

otherwise. O

4.2.5. The affine Lie algebra. We recall the definition of the affine Lie algebra associated to g.

Definition 4.2.3. Let x € C. The affine Lie algebra g, is the central extension

0—-Cl—g.—9((t)—0 (4.10)
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associated to the cocycle (X ® f,Y ® g) — (X,Y), Resi=o(g0:f), where

(— ) .:{ kTry if K # —n,

—% Kily ifx=-n

and Try and Kilg are the trace form and the Killing form on g, respectively. Note that, if we restrict
to sl,, we have an equality —n Tr = —% Kil. In the gl,, case, we use the trace form when x # —n to
ensure that the centre of the completed universal enveloping algebra (see (4.12))) is trivial. We use the
Killing form when k = —n so that shifts of the identity matrix are in the aforementioned centre - this

has the advantage of simplifying many formulas.

Explicitly, the Lie bracket in §, is given by:
[X ® f7Y ®g] = [XaY] ® fg+ <X7Y>KReSt:0(gatf)1v [X ®fa 1] = [171} =0

for X, Y € gand f,g € C((2)).

We will also use the central extension g, obtained by replacing g((¢)) with g[t*1] in (4.10]). Given
X egand k € Z, set
X[kl =Xothca,, glkl:=g2tFcCa..

We next introduce notation for the following Lie subalgebras of §:
6 maet O, gy =gl ©CL, gsy =g @ O[], e im @t T,
where r > 0. Moreover, we abbreviate
by =f, ®@t®Cl, 1, :=tdj> ®CL.

Let g4, g>r, etc., denote the corresponding Lie subalgebras of g,.

4.2.6. The completed universal enveloping algebra. We are interested in modules on which

1 acts as the identity endomorphism. Therefore we consider the quotient algebra
Us(g) :== U(gx)/(1 = 15,).

Definition 4.2.4. The parameter x is called the level. The value ¢ := —n is called the critical level.

We next recall the definition of a certain completion of Uy(g) (see, e.g., [54, §2.1.2]). There is a
topology on U,(g) defined by declaring the left ideals I, := U,(§).9>» (r > 0) to be a basis of open
neighbourhoods of zero. Let [AI,.g be the completion of U, (§) with respect to this topology. Equivalently,

we can write

U, = m U, (§)/1,- (4.11)

It is a complete topological algebra with a basis of open neighbourhoods of zero given by the left ideals

I, = IAJH.@ZT. The following proposition illustrates the special nature of the critical level.
Proposition 4.2.5 ( [54, Proposition 4.3.9]). Z(U,) = C if and only if r # c.

We abbreviate
3:=Z(U,). (4.12)
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4.2.7. Smooth modules. We will mostly deal with smooth U,.-modules. Let us recall their defi-
nition (see, e.g., [54} §1.3.6] or [84, §1.9]).

Definition 4.2.6. A U,-module M is called smooth if M = Ur>o M1+ Let €, denote the full
subcategory of ﬁﬁ—mod whose objects are smooth modules. Let %, (r) denote the full subcategory of

%, consisting of all modules M generated by M I

One can analogously define smooth U, (g)- and U, (g)-modules. It is easy to see that the cor-
responding categories of smooth modules coincide with %,.. The following lemma, whose proof is
standard, shows that the concept of smoothness defined above is analogous to that familiar from the

representation theory of p-adic groups.
Lemma 4.2.7. Let M be a IAJ,{ -module. The following are equivalent:

a) M is smooth,
b) M, endowed with the discrete topology, is a topological ﬁ,{—module,
¢) Anng (v) is an open left ideal in U, for allv e M.

Proof. Assume (a). Then for every v € M, Anng (v) contains the open ideal I, for some r > 0.
Hence, by |75, Lemma 2.15], Anng (v) is also an open ideal. Conversely, assume (c). Since Anng (v)
is an open neighbourhood of zero, and the ideals I, form a neighbourhood basis of zero, there exists
r > 0 such that fr - Annﬁm (v).

Now assume (b). The singleton {0} is open in the discrete topology on M. For each v € M, the
action map a,,: U, x {v} — M is continuous, so a;({0}) = Annﬁﬁ (v) is open. Conversely, assume
(c) and consider the action map a: U, x M — M. It suffices to check that a~!({0}) is open. But this
holds because a~1({0}) is a disjoint union of the open sets Anng (v) x {v} (v € M). O

4.3 Recollections on vertex algebras

In this section we recall the definition of the vertex algebra associated to the vacuum module
Vac,, :=U(g,)/U(gx)-§+. We also recall the main results about the centre of this vertex algebra and

its connection to 3.

4.3.1. Vertex algebras. Given analgebra R, let f(z) = > o, f(—r—1)2" and g(2) = >, ez 9(—r—1)2"
be formal power series in R|[[z,27!]]. Their normally ordered product :f(z)g(z): is defined to be the

formal power series

f(2)9(2): = f4(2)9(2) + 9(2)[=(2),  f(2) =) fern)2’s f-(2) =) fero1)?".

r>0 r<0

Given fi(z2),..., fi(2) € R[[z,271]], set
f1(2) - fi2): = 2 f1(2) - i (2) (fia(2) f1(2)2)2):

Let W be a vector space. A series f(z) = Y., o, f(—r—1)2" € (Endc W)[[z,271]] is called a field
on W if for every v € W there exists an integer £ > 0 such that f(r).v = 0 for all » > k. Fields are
preserved by the normally ordered product.

A vertex algebra is a quadruple (W, ]0), Y, T') consisting of a complex vector space W, a distinguished
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element |0) € W, called the vacuum vector, a linear map

Y: W = (Ende W)[[z, 27, am Y(a,2) =) ap_1)z"
reZ

sending vectors to fields on W, called the state-field correspondence, and a linear map T: W — W

called the translation operator. These data must satisfy a list of axioms, see, e.g., |13 Definition 1.3.1].

Let us briefly recall the construction of a functor
U: {Z-graded vertex algebras} — {complete topological associative algebras}.

Given a Z-graded vertex algebra W, one considers a completion of the Lie algebra of Fourier coefficients
associated to W, and takes its universal enveloping algebra. To obtain ﬁ(W), one again needs to form a

completion and take a quotient by certain relations. The precise definition can be found in [13, §4.3.1].

4.3.2. The affine vertex algebra. Let x € C. The vacuum module Vac, can be endowed with
the structure of a vertex algebra, as in [13, §2.4]. Let us explicitly recall the state-field correspondence.
Let p : U, (g) — Endc(Vacyk) be the representation of g, on Vac,. The state-field correspondence Y is
given by Y(]0), z) = id and

X(2):=Y(X[-1],2) = Zp(X[r])z_T_l, (4.13)

1 1
07X (2) . 07T X (2): (4.14)

Y(Xl[k’l]...Xl[k‘l],Z) = (71€1 71)! (*klfl)! z

for X, X1,...,X; €gand ky,...,k < —1. Given X € g we also define a power series

X{(z) :=Y(X[-1],2) := ZX[T]Z_T_l.

Applying formula (4.14) with each X;(z) replaced by X;(z) we can associate a power series Y(A, z) =
Yorez Ai—r—1y2" € U..[[z,271]] to an arbitrary element A € Vac,.

4.3.3. The Feigin-Frenkel centre. Let Z(Vac,) denote the centre of the vertex algebra Vac,. It
is a commutative vertex algebra, which is also a commutative ring. A precise definition can be found
in |54, §3.3.1].
Proposition 4.3.1 ( [54] Proposition 3.3.3]). Z(Vac,) = C|0) if and only if k # c.

The commutative vertex algebra 3(g) := Z(Vac,) is known as the Feigin-Frenkel centre. Elements

of 3(g) are called Segal-Sugawara vectors. We are now going to recall an explicit description of 3(g) due

to Chervov and Molev. Identify U(g_) = Vac., X — X -|0) as vector spaces and consider the maps
S(g) = S(g-) & U(a-),

where i(X) = X[—1] for X € g and o is the principal symbol map with respect to the PBW filtration.

Definition 4.3.2 ( [32, §2.2]). One calls Ay,..., A, € 3(8) C U(g_) a complete set of Segal-Sugawara
vectors if there exist algebraically independent generators By, ..., B, of the algebra S(g)? such that
i(B1) = 0(A1),...,i(Bn) = 0(Ap).
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Theorem 4.3.3 ( [55, Theorem 9.6]). If Ay,..., A, are a complete set of Segal-Sugawara vectors then
3(8) =C[T*A, |r=1,...,n, k>0, (4.15)

where T is the translation operator.

Example 4.3.4. Let g, be the extension 0 — §, — g, — C7 — 0 defined by the relations [7, X ® f] =
~X ®0:f and [r,1] = [7,7] = 0. The subspace g_ := g_ @ Cr is a Lie subalgebra of g,.. Consider the
matrix E, € Mat,x,(U(g_)) defined as

T+ 611[—1] 612[—1] tee eln[—l]
E‘T :: 621[.71] T+ 622[*1] s eznkl]
en1[—1] ena[—1] e T4 epn[—1]

~

The traces Tr(E¥) are elements of U(g_). In light of the canonical vector space isomorphism U(g_) =
U(g_) ® C[r], we can regard Tr(E¥) as polynomials in 7 with coefficients in U(g_) = Vac.. Define
Try (0 <1<k <n)to be the coefficients of the polynomial

TI‘(E]TC) = Tk;OTk + Tk;17k71 + .o+ T+ Thp

and set Ty := Ty.x. By [32, Theorem 3.1], the set {T | 1 < k < n} is a complete set of Segal-Sugawara

vectors in 3(§).

4.3.4. The centre of the enveloping algebra. If A is a Segal-Sugawara vector, the coefficients
Ay of the power series Y(A, z) are called Segal-Sugawara operators. Given a complete set of Segal-

Sugawara vectors Ay, ..., A, such that deg A; = —1, let
Z = ClA @It (4.16)

be the free polynomial algebra generated by the corresponding Segal-Sugawara operators. For k& > 0,
let Jy be the ideal in 2 generated by the A; y with [ > ik.

Theorem 4.3.5. There exist natural algebra isomorphisms
U(Vac,) = U,, U(3(8) = 3. (4.17)

Moreover, 3 = lim (Z/Jx) .

Proof. For the isomorphisms (4.17)), see |54, Lemma 3.2.2, Proposition 4.3.4]. For the second statement,
see [b4}, §4.3.2] or [55}, §12.2]. O

4.3.5. Quadratic Segal-Sugawara operators. Let x € C. An important role is played by the

vector 1
L= > ew[—1]ew[~1] € Vac,. (4.18)

1<k,l<n
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Writing Y ("L, z) = >, ., "Ly2~ "1, we have the formula

Lpo="Lppny =5 Y. [ Y eulilewlr — i+ ewlr —ilenli] | € Uk(@). (4.19)

1<k,<n \i<—1 i>0

DN | =

Proposition 4.3.6. If x = c then °L € 3(g) and °L, € 3 for each r € Z. Moreover,
(Lo, X® f]=—(k+n)X @ 0,f
forall X € g and f € C(()).

Proof. The proposition follows from a direct calculation using operator product expansions. This

calculation can be found in, e.g., |54 §3.1.1]. O

4.4 Suzuki functor for all levels

In [132], Suzuki defined a functor F,: €, — Heqn-mod for £ # c. In this section we generalize his
construction to the k = ¢ case. Throughout this section assume that m,n are any positive integers
and x € C unless stated otherwise.

We first need to introduce some notation. Define
Cp]* :=C[p) x CS,,, C[p*]™ :=CS,, x C[h7].

Set § :=[[,<;cjem(i —2;) and 6, = HTzl(z — ;). Let heg C b be the open subset on which S,
acts freely. Define

R = Clbreg] = Clz1, ..., 2,][07'], R*:=RxCS,, R.:=R[][6; "]

4.4.1. Simultaneous affinization. Let V} := Indgi oInfﬁéCl V*, where 1 acts on V* as the
identity endomorphism. We start by recalling (see e.g. [85] §9.9, 9.11]) the construction of a g ® R .-
action on

T.(M):=R® (V)" @ M, (4.20)

for any module M in %,. For that purpose we first recall the definition of an auxiliary Lie algebra & .
Let R be a commutative unital algebra. We fix formal variables t1,...,tm,te. Set g(i)g :=
g® R((t:)), g() := g(i)c. Consider the R-Lie algebra

m

6= P oli)r® a(00)r = 98 (@ R((t)) & R((t))). (4.21)
=1

i=1

We denote a pure tensor on the RHS of (4.21) by X ® (f;), where X € g and f; € R((¢;)) for

i=1,...,m,00. Define QAﬁR,H to be the central extension
O—>R1—>®R,n—>63—>0 (4.22)

associated to the cocycle (X @ (fi),Y ® (g:)) = (X, Y)n 2ic1, m ooy Resti=o(gidfi). If R = C we
abbreviate QAS,{ = QAﬁc,,@. Set

U, (&R) = U(6R,&)/<1 - 1QASR,,C>'
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A U,Q(Q% r)-module M is called smooth if for every vector v € M there exists a positive integer
k such that g ® (@7, t*R((t;)) ® t* R((tx))).v = 0. Suppose that My, ..., M,,, M, are smooth

1=1"

U, (g)-modules. Then R® Q)" M; ® M, is a smooth U,.(6x)-module with the action of the dense

subalgebra R ® U, (®) given by the formula

reXe(f)— Y, reXef)? (4.23)

1=1,...,m,0c0

where (X ® £;)® :=id" ' ®(X ® f;) ®1id™". Note that if R were an infinite-dimensional algebra and

the modules M; were not smooth, the action of R ® U, (&) would not necessarily extend to an action
of U,l€ (épb)

4.4.2. Conformal coinvariants. We next recall the connection between the Lie algebras &g and
g®R,. Consider R, as an R-subalgebra of R(z). We thus view elements of R, as rational functions
which may have poles at x1,...,z,, and co. Set z; := 2z — x;.

Definition 4.4.1. For 1 < i < m, let tg;: R, — R((2:)) (resp. tr.00: R: — R((z71))) be the
R-algebra homomorphism sending a function in R, to its Laurent series expansion at x; (resp. 00).
Let

R Re = D R((t:)) & R((t)) (4.24)

i=1
be the injective R-algebra homomorphism given by (t%.1, .., tR,m, tR,00) followed by the assignment

Zi —r ti,z_l —= too-

The map induces the Lie algebra homomorphism
gOR, = 6r, X&f—X®w(f) (4.25)
which, by the residue theorem, lifts to an injective Lie algebra homomorphism
g R, = Gr.. (4.26)

Let M be a smooth U, (§)-module. The vector space T, (M) is a smooth U, (&x)-module (with
the action given by (4.23)). We consider it as a U(g ® R, )-module via (4.26]). It also carries a natural
R*-action: R acts by multiplication and S,, acts by permuting the factors of the tensor product

(V*)®™ and the z;’s. The next lemma follows directly from the definitions.

Lemma 4.4.2. The R*-action on T (M) normalizes the U(g ® R.)-action. Therefore we have func-

tors

Ty: 6. — (UG R,),R™)-nmod, M +— T.(M), (4.27)
F.: €. — R*-mod, M — Hy(g® R, Te(M)). (4.28)

4.4.3. The Knizhnik-Zamolodchikov connection. We are going to extend the R*-action on
T, (M) and F.(M) to an action of Hyy,,.

Definition 4.4.3. Let k € C. The deformed Weyl algebra Dy, is the algebra generated by z1,..., 2,

and q1,...,qmy subject to the relations

[T, 25) = [¢5,45] = 0, [qi 2] = (k+n)dy; (1 <45 <m).
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Note that D. = Clz1, ..., Zm, q1,- - -, Gm] (Where ¢ := —n). Set

D} =D, xCS;,, D}, :=Dr[07]

K,reg *

Suppose that M is a C[h]™- (resp. R™-) module. A good connection on M is a representation of D

X
K,reg

(resp. D} op) o M extending the given C[h]™- (resp. R*-) module structure.

Lemma 4.4.4. Let M be a C[h]*-module. If p: D) — Endc(M) is a good connection on M, then p',
defined as

1
P(ai) = pla) + :
— T — T
J#i
is a good connection on the R -module Myeg := R @c[p) M.
Proof. The lemma follows by a direct calculation, as in [138| Proposition 1.8]. O

Let M be a smooth U, (g)-module. Consider the R*-module T, (M) and the operators
"W, = (k+n)0s, + "L@l (1<i<m)

on T, (M). The following proposition extends |13, Lemma 13.3.7] to the critical level case.
Proposition 4.4.5. Let xk € C.

a) The assignment
"V:D) — Endc(TR(M)), qi — HVZ'

K,reg

defines a good connection (known as the Knizhnik-Zamolodchikov connection) on T (M).
b) The operators "W ; normalize the g @ R,-action on T(M), i.e., "V, g®R,] Cg®R,. Hence

"W descends to a good connection on F,(M).

Proof. Tt suffices to consider the case kK = c¢. The operators °V; = CL@l act on different factors V3
of the tensor product T.(M) = R ® (V:)®™ ® M, so they commute. Moreover, the operators z;

act only on the first factor R and so they commute with the operators ‘¥, as well. Hence °V is a

X
c,reg”

immediately from the fact that ‘L_; € 3. O

representation of D, which clearly extends to a representation of D The second statement follows

To obtain representations of the rational Cherednik algebra on T, (M) and F,,(M), we are going to

compose the connection *W’ with the Dunkl embedding, whose definition we now recall.

Proposition 4.4.6 ( [48, Proposition 4.5]). There is an injective algebra homomorphism, called the
Dunkl embedding,

1
Hotn = Dpregr  Ti b Ty W= w, y; > Dy =g + Z m(si,j -1), (4.29)
g# Y
with 1 <i<m and w € S,,.

Proposition 4.4.7. Composing ([£.29) with "' yields representations of Hgtn on T,o(M) and Fy(M).
Moreover, the functors (4.27)) and (4.28) extend to functors

Tye: € — (U(gR®R.),Hern)-nmod, Fy: € — Hyeypn-mod.
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Proof. By Lemma and Proposition W'’ is a good connection on T, (M), which descends
to a good connection on F,(M). It therefore yields representations of D, ., on T, (M) and F, (M),
which become representations of Hyy,, via the Dunkl embedding.

Let us check that T, and F, are functors. Let f: M — N be a morphism in %,. It induces a map
T,.(f): To(M) — T.(N). Since the H,,-action doesn’t affect the last factor (as in (4.20)) in these
tensor products, T, (f) commutes with the H,,,-action. The fact that f is a §,-module homomorphism
also implies that T, (f) commutes with the g® R ,-action on T, (M) and T, (N). Hence T, (f) descends

to a H,n-module homomorphism F,;(f): F. (M) — F.(N). O

4.4.4. The current Lie algebra action. Given a smooth U,(g)-module M, set
To(M):=C[h] @ (V)®" @M, T°UM):=R® (V)" o M.
We will show that the functors T, and T'°¢ fit into the following commutative diagram

(U(g[t]), Hytn )-nmod Mol Hy4n-mod

Tw
loc loc
—I—\oc
P

(U(g[t]), Hosn)-nmod — 28 g mod

K ARm_)

(U(g ® R.),Hytn)-nmod

Cr

where loc is the localization functor sending N to Nig := R ®cfp) N. The Suzuki functor is the
composition of T, with Hy(g[t], —). Let us explain this diagram in more detail. The current Lie
algebra g[t] acts on T'°(M) by the rule

Y[k] — Zm:xf @YW 1@ (Y[-K)™ (Y eg, k>0). (4.30)

=1

The R*-action on T!°¢(M) is analogous to that on T, (M). It follows directly from the definitions that
the g[t]-action and the R™-action commute. We next recall how the R*-action can be extended to an
H,.4n-action on TI°¢(M).

Definition 4.4.8. Let 1 < 4,5 <m and p > 0. Consider

Q)= Y- ereld). Qf;fﬁ) =y e enlp + 1],
1<k,l<n 1<k,l<n
0 . Q&9 p%)  mg . 0
L= — Z Ti — T +sz [p+1]° Vi = (/{"‘n)azl + £,
1<g#i<m 7t 7T p>0

as operators on T'%(M). They are well-defined because M is smooth.

Lemma 4.4.9. The assignment
"V: D — Endc(T(M)), ¢ — "V,

defines a good connection on T'°¢(M).
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Proof. One needs to check that *V is a well-defined ring homomorphisms, i.e., show that [*V;,"V,] =0

and [V, z;] = (k + n)d;;. These commutation relations are calculated in [87, Lemma 3.2-3.3]. O

Proposition 4.4.10. Composing [.29) with *V' yields a representation of Huy, on T°S(M). The
element y; acts as the operator

o Oi.4) 00
Gi= (kb m)de D (50~ 1)+ 2ol (4.31)

- Ty —Tj
1<j#i<m p>0

where s; ; acts by permuting the x;’s but not the factors of the tensor product. Moreover, T(M) is a

subrepresentation.

Proof. By Lemma[f.4.4] and Lemma [£.4.9] *V’ is a good connection, which implies the first statement.

For the second part, observe that

= Q) P (8:90)
81’ o + Zx Q[p+1
p>0

"(D;) = "V +Z$z o0 = (K +n)dy, +sz
i

The equality of operators s; ; = Q(i’j)sm implies (4.31)). The third statement follows from the fact
that the operators m_—};f] and 0,, preserve C[h] C R. O
i—Tj

4.4.5. Suzuki functor. We next consider the relationship between the functors T!°¢ and T,. Both
Tlo¢(M) and T, (M) carry representations of D2 given by *V’ and *V’, respectively. The following
result is well known (see, e.g., [138, Proposition 2.18]).

Proposition 4.4.11. The connection "V’ normalizes the g[t]-action on T'°(M) and descends to a

good connection on Hy(g[t], T'°(M)). Moreover, there is a D} -module isomorphism
Ho(g ® R, T(M)) 2= Ho(glt], T(M)). (4.32)

Proof. A detailed proof of the first statement can be found in [87, §3.2], and of the second statement
in (138, Proposition 3.6]). O

By Proposition (4.4.10), composing the Dunkl embedding with the connection *V’ yields a rep-
resentation of H,y, on T,(M). Proposition |4.4.11] implies that this representation descends to a
representation on Hy(g[t], T.(M)).

Corollary 4.4.12. For all k € C, we have functors

T.: 6. — (U(g[t]),Hegn)-nmod, M +— T, (M), (4.33)
Fi: € — Huyn-mod, M — Ho(g[t], T (M)). (4.34)

Moreover, (4.32)) is an Heyn-module isomorphism and the functors F,, and loc o Fy; are naturally iso-

morphic.

Proof. The first statement follows from Proposition and Proposition [f.4.11] as explained above.
The second statement follows directly from (4.32]). O

Definition 4.4.13. Given k € C, we call

Fr.: Gn — Hosn-mod, M v Ho(g[t], C[b] ® (V*)®™ @ M) (4.35)
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the Suzuki functor (of level k).

The functor (4.35)) extends Suzuki’s construction from [132] to the critical level case. Indeed, setting
Kk = ¢, we get the functor
F.: €. — Ho-mod

relating the affine Lie algebra at the critical level to the rational Cherednik algebra at ¢t = 0.

Remark 4.4.14. In [138] Varagnolo and Vasserot constructed functors from %, (x # ¢) to the category
of modules over the rational Cherednik algebra (¢ # 0) associated to the wreath product (Z/IZ)1S,,.
We expect that our approach to extending the Suzuki functor to the kK = ¢, t = 0 case can also be

applied to their functors.

4.5 Suzuki functor - further generalizations

The Suzuki functor has so far been defined on smooth ﬁﬁ—modules. We now extend its definition
to all ﬁ,@—modules using a certain inverse limit construction. Let x € C and ¢t = k + n throughout this

section.

4.5.1. Pro-smooth modules. We are going to define the category of pro-smooth modules and
the pro-smooth completion functor. If .# is an inverse system in some category, we write lim .# or
limas, e.s M;, where the M, run over the objects in .#, for its inverse limit. We start with the following

auxiliary lemma.

Lemma 4.5.1. Let M be any ﬁﬁ—module, N a smooth module and f: M — N a ﬁ,i—module homo-
morphism. Then M/ker f is a smooth module.

Proof. Let v € M and let © be the image of v in M/ ker f. Since N is smooth, there exists » > 0 such
that I, - f(v) = 0. Hence f(fr cv) =0, I,-vC ker f and so I,-5=0. O

Definition 4.5.2. A IAJ,Q—module M is called pro-smooth if M is the inverse limit of an inverse system
of smooth ﬁn—modules. Let ‘gﬁ denote the full subcategory of ﬁﬁ-mod whose objects are pro-smooth

modules.

Definition 4.5.3. Let M be a ﬁn—module. The smooth quotients of M form an inverse system %y,
partially ordered by projections. Let
M :=lim .# M-

Proposition 4.5.4. There exists a "pro-smooth completion” functor
U,-mod > %,, MM, ff (4.36)
left adjoint to the inclusion functor ‘5:0 — ﬁﬁ-mod.

Proof. We first construct f explicitly. Let f: M — N be a homomorphism of ﬁﬁ—modules. Given a
smooth quotient N; of N, let f; be the map M i> N — N;. By Lemma M; := M/ker f; is a
smooth module. Hence, there is a canonical map M — M; as part of the inverse limit data. Consider
the diagram on the LHS below, where IV; is another smooth quotient of N and all the unnamed maps

are part of the inverse system or inverse limit data. Since the outer pentagon commutes, the universal
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property of the inverse limit N implies that there exists a unique map f making the diagram commute.

M Y3 M

YR o it

M; N M M; K M Vi
L N sl 7 N\ Lo VN

Next we construct the adjunction. Let g: M — K be a homomorphism of ﬁ,{—modules, and assume
that K is the inverse limit of an inverse system of smooth modules. Given such a smooth module K,
let g; be the composition of g with the canonical map K — K;. By Lemma g factors through
the smooth module M; := M/ ker g;. An analogous argument to the one above shows that there exists
a unique map ¢’ making the middle diagram above commute. The universal property of the inverse
limit M also yields a unique map ¢; making the diagram on the RHS above commute.

It is easy to check that the maps
Hom.; (M,K) 2= Homg (M,K), hhouy, g <ig (4.37)
are mutually inverse bijections. This gives the adjunction. O

Proposition 4.5.5. The restriction of (4.36) to €, or IAJ',{ -fpmod is naturally isomorphic to the iden-
tity functor.

Proof. If M is smooth then M is the greatest element in the inverse system .#y;, so M = M. Next
suppose that M is finitely presented with presentation

(0% L (0,2 — M — 0.

We first show that (U,) = U,. The inverse system .#’ := {U,/I, | r > 0} is a subsystem of
S = Jg . Suppose that N = IAJ,{/J is a smooth quotient and let 1 be the image of 1 in N. Then, by
smoothness, 1,.1 =0 for some r > 0. Hence I, C J and N is a quotient of IAJK,/IAT. Therefore ¥’ is a

cofinal subsystem of .# and

(U,) :=lim .# =lim.#' = U,.

The fact that limits commute with finite direct sums implies that the pro-smooth completion functor
sends (ﬁﬂ)@a to itself. Hence LD, )@e = id and f = f’, using the notation from (4.37). The adjunction
(4.37), therefore, implies that f = f. By Proposition m the pro-smooth completion functor is left
adjoint and, hence, right exact. Hence (coker f) = coker f = coker f = M. O

We will also need the following lemma.

Lemma 4.5.6. Let M and N be ﬁm-modules. Then

Hom. (M,N) = NhEI%N J\%OGI% Homg (Mj, Ni).

Proof. The equality Hom, > (]T/.f , N ) = limy, c.#, Homg (M , N;) follows from the general properties of
limits. Therefore it suffices to show that, for each N; € Zy,

Homg (M, N;) = J\%Oé% Homg (M;, N;). (4.38)
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Let us check that the LHS of satisfies the universal property of the colimit. Suppose that we are
given a vector space X and linear functions xaz,: Homg (M;,N;) — X, for each M; € &, which
commute with the natural inclusions between the Hom-spaces. We are now going to define a map
X: Homﬁﬁ(]T/[/, N)—=X. If fe Homﬁx(]\?, N;), then, by Lemma the module M := M/ ker f is
smooth. Let f: M — N; be the homomorphism induced by f. We define x by setting x(f) := x37(f)-
One can easily see that x is the unique map making the diagram below commute (where M}, is another

smooth quotient of M and all the unnamed maps are the canonical ones).

Homﬁm (M;, N;) HomfJN (M, N;)

\

X
Homg (M, N;) —~

4.5.2. Extension to all modules. We start by extending the Suzuki functor from Definition
(4.4.13)) to the category IAJK—fpmod. Suppose that M is a finitely presented ﬁ,i—module. By Proposition

we have M = M := lim Zar. Set

where the limit is taken in the category H;-mod. If M is smooth then M is the maximal element in
the inverse system s, so (4.39) is compatible with the previous definition of F.
Proposition 4.5.7. The functor (4.34)) extends to a right exact functor

F.: IAJH-fpmod — H;-mod. (4.40)

Proof. We need to construct maps between Hom-sets. Suppose that N = N is another finitely pre-
sented ﬁn—module. Let N; € Hy. For all M; € _Z), we have maps

(bj: HOIDGN (Mj7 NZ) F—N> HomHt(Fn(Mj)y Fn(Ni)) — HOHIH,L(FH(M), FN(NZ'))

compatible with the transition maps of the direct system {Homg (Mj, N;) | M;j € Zp}. The universal
property of the colimit and (4.38]) yield a canonical map
¢i2 HOmﬁ (M, Nz) = colim }IOIHI:T (Mj,Ni) — HOme(FK(M), F,@(Nl))
& M;e S\ " )
The maps ; are compatible with the transition maps of the inverse system
{Homy, (F,(M),F.(N;)) | N; € #n}. Hence the universal property of the limit yields a canonical

map

Homg (M,N) = NLheIgN HOInﬁN(M7 N;) — Homy, (F.(M),F.(N)). (4.41)

Therefore (4.40)) is in fact a functor.

We now prove right exactness. Suppose that we have a short exact sequence
0+A—-B—->C—=0 (4.42)

in U,-fpmod. By Proposition m these modules are pro-smooth, and there exists a short exact



4.5. Suzuki functor - further generalizations 83

sequence of inverse systems of smooth quotients
{024, - B, - C; = 0|i€Zx}

whose limit is (4.42). Since we are dealing with inverse systems of smooth quotients, the structure
maps are all epimorphisms. Next, note that the functor F, is right exact on smooth modules since T,
is exact and taking coinvariants is right exact. Hence, after applying F,;, we get a short exact sequence

of inverse systems of H;-modules
{FK(Az) — FH(BZ) — FK<Cl) — 0 | 1€ Zzo},

where the structure maps are still epimorphisms. By [133, Lemma 10.86.1], after taking the inverse
limit, we get the sequence
Fr(4) = Fu(B) = F(C) =0,

proving right-exactness. O

Corollary 4.5.8. The space F,.(U,) is a (Hy, Uy)-bimodule. There exists a natural isomorphism of
functors
Fo(—) = FH(IAJ'R) Qg —: U,.-fpmod — H;-mod. (4.43)

3

Proof. If we take M = N = U,. then (4.41) is an algebra homomorphism
U% — Endg, (F.(U,),F.(U,))

giving the right U,.-module structure.

The second statement is proven in the same way as the Eilenberg-Watts theorem (see, e.g., [112}
Theorem 5.45]). Let us briefly summarize the argument. One first uses the fact that F, preserves
finite direct sums to show that the isomorphism holds for the category of finitely generated free
ﬁ,{—modules. One then concludes that holds for arbitrary finitely presented modules by using
the right exactness of F, together with the five lemma. O

We now introduce the final and most general definition of the Suzuki functor.

Definition 4.5.9. The functor (4.40), in the realization (4.43)), extends to the functor

Fo(—):=F.(U,) ®5 — : Ug-mod — H-mod. (4.44)

3

From now on we will refer to (4.44)) as the Suzuki functor.

Remark 4.5.10. In Corollary we had to restrict ourselves to the category ﬁn—fpmod because
inverse limits do not commute with infinite coproducts. However, the functor (4.44) preserves all
colimits because it is left adjoint to the functor N — HomHt(FK([AJK), N).

4.5.3. A generic functor. Considering t as an indeterminate, one obtains flat C[t]-algebras ﬁC[t]
and Hepy) such that

ﬁcm/(t - f)ﬁtcm >~ Ue_,, Hepy/(t — &)Hepy = He
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for all £ € C. More details on the algebra Hcpy, often called the generic rational Cherednik algebra,

can be found in [19, §3]. We have specialization functors

spec,_¢: Ugg-mod — Ug_p-mod, M > M/(t —€) - M,
spec;_¢: Hepg-mod — He-mod, Mw— M/(t—=¢) - M.

One can easily verify that our construction of the functor F, still makes sense if we treat ¢ as a variable

throughout. Therefore, we obtain the generic Suzuki functor
F(C[t] : ﬁc[t]—mod — Hc[t]—mod,

which commutes with the specialization functors, i.e., spec,_¢ o Fcg = Fe—p, 0 spec,_.

4.6 Computation of the Suzuki functor

In this section we compute the Suzuki functor on certain induced U, (g)-modules, showing that
the regular module H; as well as certain generalized Verma modules (Definition [4.6.6)) are in the image
of F. Let k € C and t = k + n throughout.

4.6.1. Induced modules. We start by recalling the definition of Verma modules for the affine Lie
algebra.
Definition 4.6.1. Let A € t* and let C, 1 be the one-dimensional t® C1-module of weight (A, 1). The

corresponding Verma module is

M. () = Indd* oInf’s, Cy 1.

We next define certain induced modules which generalize the Weyl modules from [84] §2.4] (see
also [54, §9.6]). Given ! > 1 and p € C;(n), define

=1, 081®C1C§y, Lo=1L/j,, (4.45)

where j, ;== n_[1] & ni[1] & (1] N [l,, L][1]) @ §>2.
Lemma 4.6.2. The subspace j,, is an ideal in the Lie algebra i;‘ Moreover, there is a Lie algebra

isomorphism 1, =1, ® 3,[1] ® C1, where 3, denotes the centre of |,,.

Proof. Since j, C g>1, we have [g>1,i,] C §>2 C ju. Therefore it suffices to show that [(,,j.] C j,.
This follows from the fact that j, = [[,,[,][1] ® t[1] ® g>2, where t is the direct sum of the nilradical
of the standard parabolic containing [, and the nilradical of the opposite parabolic, together with the
following three inclusions. Firstly, we have [[,,, §>2] C g>2 C j,. Secondly, [, [,[1]] C [[u, ][1] Cip-
Thirdly, [[,,,t[1]] C ¢[1] C j,. The second statement of the lemma follows immediately. O

Let Uy(1,) :== U(I,)/(1 — 1). Consider the functor
. i+ _
Ind,, . = Indi: oTnf" : Uy (I,)-mod — €. (4.46)

In the case u = (1") we abbreviate Ind, := Ind(;n) .. Note that A[E”ln) =ty Seti=jun =n_[1]®

ny[1] @ g>2 and t:= t; /i. By Lemma [4.6.2] we have t = t @ [1].
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Definition 4.6.3. Let € Ci(n), A € IL} and a € ({[1])* with S, (a) = S, (with respect to the usual

Weyl group action). Extend L(A) to an U;([,)-module L(a, \) by letting 3,[1] act via the weight a.
We define the Weyl module of type (a, A, k) to be

We(a,A) :=Ind, (L(a, A)).

Remark 4.6.4. As a special case, when a = 0, we obtain modules W,; () := W, (0, A) which coincide
with the Weyl modules from [84] §2.4].

Definition 4.6.5. Assume that n = m. Let J, be the left ideal in U(g,) generated by e; — 15, (1 <
i<n),1—1; andi:=n_[1]®ny[l] ® g>2. Define

H, = U(§,)/3n = Ind,.(T),

where Z := Indf@«:1 Cany = S(H1]).
The module H is cyclic, generated by the image 1y of 15, € U(gs). From now on, whenever

n = m, let us identify
I=S{H1]) = Cb*], eufl] = —yi. (4.47)

4.6.2. Generalized Verma modules for rational Cherednik algebras. We will now recall
the definition of generalized Verma modules for the rational Cherednik algebra H; from [7]. Let [ > 1,
veC(m), A € Pn(v) and a € h* with S,,(a) = S,. Extend the CS,-module Sp(A) to a CS, x C[h*]-
module Sp(a, \) by letting each y; act on Sp(A) by the scalar a; := a(y;).

Definition 4.6.6 ( [7, §1.3]). The generalized Verma module of type (a, A) is
Ai(a, \) == Hy @cs, xcppe] SP(a, A).

We abbreviate A¢(A) := Ay(0, A).
Remark 4.6.7. When t # 0, the modules A;(\) play the role of standard modules in the category

O(H;) defined in [61]. Using the results of [12], Bonnafé and Rouquier [19] also defined a highest weight
category for Hy with graded shifts of Ag(A) as the standard modules.

Theorem 4.6.8 ( [7, Theorem 2]). The following hold.

a) The canonical map Z — Endg, (Ao(a, \)) is surjective.
b) The ring Endy, (Ao(a, X)) is isomorphic to a polynomial ring in m variables.
c) The Endy,(Ao(a, N))-module eA(a, \) is free of rank one.

Theorem [.6.8| allows us to construct simple Hy-modules as quotients of generalized Verma modules.

Lemma 4.6.9. Let L be a simple Hy-module. Then there existl > 1, v € C;(m), A € Pp(v) and a € b*
with Sy, (a) = S, such that L = Ag(a, X)/I - Ao(a, A) for some mazimal ideal I < Endy,(Ao(a, A)).

Proof. The commuting operators yi, ..., ¥, have a simultaneous eigenvector v € L. Let a € h* be
the corresponding eigenvalue. Without loss of generality, we may assume that S,,(a) = S, for some
v € C;(m). The subspace S, - v C L is C[h*]-stable and decomposes as a sum of simple S,-modules.
Suppose that this sum contains a simple module isomorphic to Sp(A). Then there is a surjective
homomorphism Ag(a, A) - L. Let K denote its kernel.

We abbreviate E(a, ) := Endg,(Ag(a,A)). Since, by part a) of Theorem Z surjects onto
E(a, ), all endomorphisms in E(a, A) preserve eK. Hence eK is an E(a, A)-submodule of eAq(a, \).
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But, by part ¢) of Theorem eAg(a,\) is a free E(a,A\)-module of rank one. Hence eK =
I-eAg(a,\) = el - Ag(a, ) for some ideal I <1 E(a, N).
By the definition of K and part d) of Theorem there is a short exact sequence

0— el Ag(a,\) = eAg(a,\) — eL — 0.

Since, by part €) of Theorem el = C, it follows that I is a maximal ideal. The fact that (2.3])

is an equivalence implies that the sequence
0—1-Ag(a,\) = Ap(a,A\) =L —0
is exact as well. Hence K = I Ag(a, A). O

By [8, §1.1], the support of the module Ag(a, ) only depends on a := w(a), where w: h* — h*/S,,

is the canonical map. Therefore we can define
Qa,)\ = SuppZ(AO(a7 )‘))

Let
m: SpecZ — " /S, (4.48)
be the morphism of affine varieties induced by the inclusion C[h*]%m — Z.

Proposition 4.6.10. We have

W_l(a)red = |_| Qa,)\

AEP(v)

with Qa » = Spec Endy, (Ap(a, A)) = A™.

Proof. The first statement follows from [8, Proposition 4.9] and the second statement from Theorem
4.6.8b). U

4.6.3. Statement of the results. We state the three main results of this section. The first one

implies that the regular module appears in the image of the Suzuki functor.

Theorem 4.6.11. Let n = m. The map

T:H = F.(H,), (4.49)
flar, .. xn)wg(yr, . yyn) = [f(@1, .. x0) Qe @ g(—enn[1], .- ., —enn[1])1m] (4.50)

s an isomorphism of Hy-modules.

The next theorem states that the Suzuki functor sends generalized Weyl modules to generalized

Verma modules.

Theorem 4.6.12. Letn =m. Takel > 1, pp € Ci(n), X € Pu(p) and a € b* = (4[1])* with S, (a) = S,.

There is an Hg-module isomorphism
Fu(We(a,\)) = Ag(a, A).

We remark that the a = 0 case of the preceding theorem also follows from [138, Proposition 6.3].

Our third theorem shows that the Suzuki functor sends Verma modules to Verma modules.
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Theorem 4.6.13. Let m,n € Z>q and A € t*. Then F, (M, (X)) # 0 if and only if A € P,(m). If

X € P,(m) then there is an Hi-module isomorphism

Fr (MHO‘)) = At()‘)~

4.6.4. Partial Suzuki functors. The proof of Theorems |4.6.1114.6.13| requires some preparation.

We start by recalling a few facts about induction.
Lemma 4.6.14. Let 0 C a be Lie algebras, M a 9-module and N an a-module.

a) There exists a linear isomorphism Ho(a,Indy M) = Hy (0, M).

b) There is an a-module isomorphism
mdj(N®@ M) = N@Indy M, a®@n®@m— Za1n®a2®m,

called the tensor identity, where Y a1 @ as is the coproduct of a € U(a). It restricts to the linear

isomorphism
Clya@(N®M) S N®(Cly®@ M), 1,@n@m—n® l,@m.

Proof. The first part of the lemma follows directly from the definitions. For the proof of the second
part see, e.g., [89, Proposition 6.5]. O
We next define “partial Suzuki functors”. Let [ > 1 and u € C;(n). Suppose that M € U;(I,)-mod.
The diagonal g-action on
T(M) := (V)®" @ M

restricts to an action of the Lie subalgebra [,. The symmetric group acts on T(M), as usual, by
permuting the factors of the tensor product. We extend this action to an action of C[h*]* by letting

each y; act as the operator

g Y epeni[1)). (4.51)
1<k<n

Lemma 4.6.15. The [,-action and the C[h*|*-action on T (M) commute.

Proof. The fact that the S,,-action commutes with the [,-action follows from Schur-Weyl duality.
Therefore we only need to show that the operators (4.51) commute with the [,-action. Let e,s € [,.
We have an equality of operators on T(M):

Yi Z el) = Z Ze JeW ey [1]) (4.52)

j=1,...,n,00 j#i,00 k=1
+ Y eeDer 109 + 3 efler[1]el). (4.53)
k=1 k=1

Consider the first summand in (4.53)):

Zeklzem exk[l Z e£ ey ekk 110 el (e, [1](%) — e, [1])). (4.54)
k=1

Since M is an [,-module, e,,[1] — egs[1] = 0 as operators on M and the second summand on the RHS
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of (4.54)) vanishes. Next consider the second summand in (4.53)):
> exnens[1]™e Ze( Dl ei[1]) + (el — el)e, [1)() (4.55)
= k=1

If r = s then the second summand on the RHS of (4.55)) vanishes. If r # s it vanishes as well since M

is an [,-module and e,[1] acts trivially on M. O

By Lemma [4.6.15 there is an induced C[h*]*-representation on Hy(l,, T(M)) and, therefore, a
functor
F": U,(1,)-mod — C[p*]*-mod, M — Ho(l,, T(M)),

which we call a partial Suzuki functor. For u = (1™) we also write F := F". Set
Hindt: C[f)*]x—mod — Ht—mod, N — H ®(C[b*]>< N.
Proposition 4.6.16. The diagram

©,. S N H;-mod

THindt

U1(1,,)-mod ., Clh*]" -mod

commutes, i.e., there exists a natural isomorphism of functors F, oInd, ,, = Hind; oF". Ezxplicitly, for

each M € Uy (l,)-mod, this isomorphism is given by

¢: Hind, (F"(M)) = C[h] @ Ho(l,,, T(M)) =5 F.(Ind,,..(M)) (4.56)
f@1,. o zm) @ veu]l = [f(21,. .., 2m) @V i(u)], (4.57)

where v € (V*)®™ w e M andi: M — Ind?j M is the natural inclusion.
i

Proof. We first show that (4.56) is an isomorphism of C[h]*-modules. Since the first equality in (4.56)
follows directly from the PBW theorem ([2.1]), we only need to prove the second isomorphism. Consider

Ind?j M as a g[t]-module using the Lie algebra homomorphism

alt] = alt™ '] = §., X[k] — X[—K]. (4.58)

The map ([4.58)) induces a g[t]-module isomorphism Ind?f M= Ind[g“[t] M. Hence, by Lemma |4.6.14{b),

we have a g[t]-module isomorphism

Indf{* (Cly] © (V)*™ & M) = Clo] @ (V9)*" @ (Indf" Ar), (4.59)
where g[t] acts on the LHS as in (4.30)), sending

Ly @ f(T1, s Tm) @UOu i f(T1,. 00, Tm) ®V® 1y @ u. (4.60)
Next notice that, by Lemma a), we have linear isomorphisms

~

Ho(alt], Indf" (C[p] @ T(M))) = Ho(L,,, Clb] @ T(M)) = Clb] @ Ho(l,,, T(M)). (4.61)
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Applying Hy(g[t], —) to the inverse of (4.59) and composing with (4.61]), we obtain an isomorphism
Fr(IndS: M) =5 Clb] ® Ho(ly,, T(M)). (4.62)

It is clear from that sends the equivalence class [f (1, ..., Zm)@vRi(u)] to f(z1,...,Zm)®
[v ® u]. This implies, in particular, that is C[h]™*-equivariant.

We next prove that is an isomorphism of Hi-modules. Since H; is generated as a C-algebra by
C[p)* and C[h*], it suffices to show that ¢ intertwines the C[h*]-actions. Moreover, since the subspace
W = l¢py ® Ho(l,, T(M)) generates Hind, (F"(M)) as a C[p]*-module, it is enough to check that ¢|y
intertwines the C[h*]-actions.

Consider the subspace U := 1¢p®@(V*)®™ @M C T, (Ind,, .(M)) and its image U in F.(Ind,, . (M)).
By , ¢ restricts to a linear isomorphism ¢|y : W = U. The element y; € H; acts on Fr(Ind, .. (M))
as the operator "7, (see ([£.31)). The operators 9,, and (1 —s; ;) vanish on the subspace U. Moreover,
QE;’_S]) (p>1) and ej[1]%) (k # 1) act trivially on all of F,(Ind,, . (M)). Therefore

T= 0 = Y elidend ] (163

1<k<m
as operators on U. On the other hand, the action of y; on W is given by ({.51)). It now follows directly
from (4.57) that ¢ is C[h*]-equivariant. O

4.6.5. Proofs of Theorems |4.6.1154.6.13[ We now prove the theorems from E

Proof of Theorem[{.6.11 Combining the left CS,,-module isomorphism
CSy = (V") (c1,m1), W e, (4.64)

with (4.47)) allows us to identify
T:F(I) = ((V)*")(-1,.,-1) ®T = CS, x C[h7] (4.65)

as CS),,-modules. We claim that also intertwines the C[h*]-actions.

Let us prove the claim. Consider the subspace U :=e;®Z C (V*)®" ® T and its image U in F(Z).
The map T restricts to a linear isomorphism T : U 2 C[p*]. Since C[h*] generates CS,, x C[h*] as an
Sp-module, it suffices to show that T is C[b*]-equivariant. The action of y; on F(Z) is given by formula
(451). Observe that e,(j,g.e?;j = —0 e}y and egx[l] acts as multiplication by egx[1] on Z = Sym(t[1]).
Hence y; acts on U as multiplication by —e;;[1]. On the other hand, y; acts on C[h*] € CS,, x C[h*]
as multiplication by y;. It is clear from that T intertwines these two actions, which completes
the proof of the claim.

We now prove the theorem. By definition, F, (H,) = F.(Ind.(Z)) and, by Proposition
F.(Ind.(Z)) = Hind;(F(Z)). The claim above implies that Hind;(F(Z)) & Hind;(CS,, x C[h*]) = H;.
Formula also follows from Proposition O

Proof of Theorem[{.6.12 Set P;(u) = {p<j—1,...,p<;} so that {1,...,n} = |_|é.:1 P;(u). Write r ~ s
if and only if there exists j such that both r,s € P;j(u). By Proposition there is a natural

CS),-module isomorphism

Yoot F'(L(a,\) = C[h*]* ®cs, wclp+] SP(a; A) =: Sp,(a, ). (4.66)
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We claim that is an isomorphism of C[h*]**-modules.

It suffices to show that T, , is an isomorphism of C[h*]-modules. Consider the subspace U :=
(V*)%fu) ® L(a,\) C (V*)®" @ L(a, \) and its image U in F"'(L(a,\)). The map T,.o restricts to a
CS,,-module isomorphism Y, .: U = Sp(a,\). Since Sp(a, \) generates Sp,(a,\) as an Sp-module, it

pa
suffices to show that T:W is C[h*]-equivariant. The action of y; on F' (L(a,)\)) is given by formula
@EEI). Let v =1, ®...®@v, € (V*)a”u). Suppose that ¢ € Pj(u). Observe that e,(:,z.v = 0 unless

k~iand } pcp o, e,(flg.v = —v. Moreover, the elements ex[1] (k € P;(1)) act on L(a, A) by the same
scalar —a; := —a(y;). Hence y; acts on U as multiplication by a;. This agrees with the definition of
the y;-action on Sp(a, A), completing the proof of the claim.

We now prove the theorem. By definition, F..(W,(a, X)) = F.(Ind,, .(L(a,\))) and, by Proposition
Fo(Ind,, .(L(a,\))) = Hind,(F"(L(a,\))). The claim above implies that Hind,(F"(L(a,\))) =
Hind;(Sp,(a,\)) = As(a, A). O

Proof of Theorem[{.6.13, In analogy to Proposition one can show that, for each \ € t*, there

is a C[h]*-module isomorphism

Clh) ® Ho (b, T(Cx)) = Fu(Ind?” Cx1) = Fr(Me(N)) (4.67)

f@1,. 0 zm) @ eul = [f(z,...,2m) @ v i(u), (4.68)

where v € (V*)®™ 4 € Cy and i : Cy — Ind%i Ca,1 is the natural inclusion.

The first statement of the theorem now follows directly from and Corollary So consider
the second statement. Let A € P,(m). By Corollary and (2.I), we can identify A;(\) =
C[h] ® Ho(b4, T(Cy)) as C[h]*-modules. Let T be the composition of this isomorphism with (4.67).
We need to check that T, intertwines the C[h*]-actions. Observe that, by , T, restricts to a
linear isomorphism Sp(\) — U, where U is the image of U := l¢pp @ (V*)®™ @ Cy 1 in F. (M, (N)).
Since Sp(A) generates A¢(A) as a C[h]*-module, it suffices to show that Tx|sp(») intertwines the C[h*]-
actions. By definition, each y; acts trivially on Sp(A). On the other hand, since each ey[1] acts trivially

on C, 1, the operator "g; also vanishes on U. O

4.7 Relationship between the centres

Assume that n = m throughout this section. The fact that the algebras ﬁc and Hy have large
centres has many implications for their representation theory. For example, Verma-type modules have
large endomorphism and extension rings (see for a more detailed discussion). To understand
how these behave under the Suzuki functor, we must, therefore, understand the relationship between
the centres of the categories ﬁc—mod and Hg-mod. In general, a functor of additive categories does not
induce a homomorphism between their centres. In §4.7.1] below we propose two ways to get around
this problem. In and we apply them to the Suzuki functor, and construct a map 3 — Z

between the two centres.

4.7.1. Centres of categories. Suppose F': A — B is an additive functor between additive cat-
egories. Recall that the centre Z(A) of Z is the ring of endomorphisms of the identity functor id 4.
An element of z € Z(A) is thus a collection of endomorphisms {zp; € End4(M) | M € A} such that
fozy =zyo f forall f € Homy(M,N).
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The functor F' does not necessarily induce a ring homomorphism Z(A) — Z(B). For example, if
F is not essentially surjective, then the collection {F(zps) € Endg(F(M)) | M € A} does not contain
an endomorphism for every object of B. If F' is not full, then the endomorphisms F'(zp;) may fail
to commute with some of the morphisms in B. Hence {F(zp) € Endg(F(M)) | M € A} is not
necessarily an endomorphism of the identity functor idg. We remark that some sufficient conditions
for the existence of a canonical homomorphism Z(A) — Z(B) are known - for instance F' being a Serre
quotient functor (see |[111, Lemma 4.3]).

We therefore pursue a different approach to construct a sensible ring homomorphism Z(A) — Z(B)

encoding information about the functor F. There are canonical ring homomorphisms
Z(A) -2 End(F) <2~ Z(B)
with o taking {zps | M € A} to {F(zn) | M € A} and B taking {zx | K € B} to {zpm) | M € A}

We assume that § is injective, and identify Z(B) with a subring of End(F).
Definition 4.7.1. We call Zp(A) := a1 (Z(B)) C Z(A) the F-centre of A. If A = A-mod is the

category of modules over some algebra A, we will also write Zr(A) := Zp(A).

Restricting a to Zp(A) gives a natural algebra homomorphism from the F-centre of A to the centre
of B:
Z(F) = a|ZF(A): ZF(.A) —>Z(B) (469)

For any object M € A, the homomorphism Z(F) fits into the following commutative diagram

Ze(A) — 2 7(B)

ml lca

End (M) —£— Endg(F(M))

(4.70)

Therefore, Z(F) contains partial information about all the maps between endomorphism rings induced
by the functor F.

In general, Zp(A) # Z(A). In that case, we would like to extend Z(F) to a homomorphism
Z(A) — Z(B). Of course, there is a price to pay - such a homomorphism cannot make the diagram
(4.70) commute for all objects M € A. Instead, we impose the condition that the diagram should

commute for all M from some subcategory of A.

Given a full additive subcategory A’, let F': A’ — B be the restricted functor. Restriction to
objects in A’ yields canonical homomorphisms ¢: Z(A) — Z(A’') and End(F) — End(F’). We assume
that the canonical map 8': Z(B) — End(F”) is injective, and identify Z(B) with a subring of End(F").

The following commutative diagram illustrates all the maps we have just defined:

Z(A) —2 End(F) «2— Z(B)

L any

Z(A) — End(F') <2 7(B)

Definition 4.7.2. We say that a full subcategory A’ of A is F-central if Im(a/ o q) C Z(B).

If A’ is F-central, then there is a natural algebra homomorphism

Za(F):=ad' oq: Z(A) — Z(B)
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extending (4.69)), and making the diagram

72(A) —22E) . 7B)

ml lca

End (M) —£— Endg(F(M))

commute for all M € A’. The homomorphism Z 4/ (F') contains partial information about all the maps

between endomorphism rings induced by the restricted functor F’.

4.7.2. The F.-centre. For the rest of this section, we will use the canonical identifications
32 Z(Uesmod), Z= Z(Hy-mod), UP = Endg (Uy).

Let us apply the framework developed in E to the functor F.: ﬁc—mod — Hp-mod. We have

canonical maps

3 -2 End(F,) <> z.

By Theorem the regular module Hy is in the image of F.. The fact that Z acts faithfully on Hy
implies that 8 is injective.

Our first goal is to give a partial description of the F.-centre of ﬁc—mod. For any k € C, define

~

Ly = ("Lyy1,idlr] | r < 0) € U, (4.72)

When x = ¢, it follows from Theorem and §4.3.4] that the generators on the RHS of (4.72)) are
algebraically independent. Hence
Ze = C[°Ly41,1d[r]]r<0- (4.73)

We will show that .Z, is a subalgebra of the F.-centre of ﬁc—mod. The proof requires some preparations.

Let  be arbitrary and set ¢t = k4 n. Let 15 denote the unit in U,.. Consider the image [1 e 1;]

~ ~ ~

of I®efy @15 € To(Uy) in F(Uy). Let K, be the Hi-submodule of F(U,) generated by [1® ey @ 15].

Lemma 4.7.3. There is an Hi-module isomorphism K; = H;.

Proof. Since F, is right exact, it induces an epimorphism
Fro(Uy) — Fo(Hy) 2 H, [1®@ef®15]) - [1®eh@ lg] = 1y,

which restricts to an isomorphism K; = H;. O

Let N, be the subalgebra of Endy, (F, (IAJ,.;)) consisting of endomorphisms which preserve the sub-
module K;. Let ps: Ny — Endy, (K;) = H” be the map given by restriction of endomorphisms of

~

F.(Ux) to those of K;.
Lemma 4.7.4. The following hold.

a) The image of £ under Endg (U,) LEN Endﬂt(FK(ﬁH)) is contained in Ny.
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b) The map p; o Fr|pov is given by:

id[r] — ix._r (r <0), (4.74)

i
1=1

1—
"L, — Zacl Ty + ZC_ T, )8, + n 5 T)in_r (r<1), (4.75)

i<j i=1

where c_,(x;, ;) is the complete homogeneous symmetric polynomial of degree —r in x; and x;,
if 1 <0, and c_1(x;,x;) = 0.
c) When k = c, the image of F.| ¢, lies in the image of Z in EndHO(FC(ﬁC)).

Proof. A homomorphism from K; to F (ﬁ,{) is determined by where it sends the generator [1®ef;®154].
Let z be any of our distinguished generators (see ([£.72)) of .%,,. The corresponding endomorphism of
F.(U,) sends [1 ® el ®15] to [1®ejy ® z- 15]. We are going to use the g[t]-action to show that
1® ey ® z- 13 is in the same equivalence class in F (ﬂn) as an element of the form or .
First take z = id[r] with r < 0. By (4.30)), we have

I®ey@idlr]- 15 = > [2;" @ ey @ 1g].
i=1

This yields formula (4.74). Secondly, take z = *L, with » < 1. By (4.30), we have the following
equalities of operators on F.(U,) evaluated at [1 ® ey ® 14

E E er[r — slew(s E EHUSTE eklelk OO)Z—E zi "y,
7

s>1 k,l s>1 1

n

Z Z(ekl[s]elk[r—s])(oo): Z Zw o TQ(”)—2ZC, xz,acj)s”—l—n(l—r)Zac "

r<s<0 k,l r<s<0 ,j 1<J i=1
yielding formula (4.75). We have thus shown that the endomorphisms in F.(.Z°P) send the generator
[1® ey ® 1] of Ky to other elements of K;. Hence F,.(Z) C Ny, proving parts a) and b) of the
lemma. Part ¢) can be checked by a direct calculation - it suffices to compute that the elements on
the RHS of (4.74) and (4.75) lie in Z. It also follows from Theorem [4.7.9] which has a more conceptual
proof. O

Theorem 4.7.5. We have £, C Zf, (U.). Moreover, Z(F,) is given by formulae [@.74) and ([@.75).

Proof. We need to check that, for any M € U,-mod and = € Z., the endomorphism F.(zps) lies in
the image of Z in Endy, (F.(M)). By Definition Fo(M) = F(U,) ®g, M. The corresponding
endomorphism F.(zps) of Fo(M) sends r@m — r®@z-m =r-z@m, form € M and r € F,,(U.). Hence
Fe(em) = Fe(zg,) ®id. But Fe(zg ) lies in the image of Z in EndHO(FC(ﬁC)) by part c¢) of Lemma
4.7.4 Hence F.(zpr) lies in the imaée of Z in Endy, (F.(M)), proving the first statement. The second
statement follows directly from part b) of Lemma m O

4.7.3. An F.-central subcategory. The following lemma shows that the F.-centre of ﬁc—mod is
a proper subalgebra of 3.

Lemma 4.7.6. We have Z¢_(U,) # 3.
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Proof. Consider the element id[1] € 3. It follows from that —a(id[1])f,(m,) is the endomorphism
of F.(H,) = Hy given by multiplication with y; + ...+ y,. On the other hand, take, for example, the
quotient M of U.(g) by the left ideal generated by g>3. One sees easily from that —a(id[1])r, (ar)
does not coincide with the endomorphism of F.(M) induced by y1 + ... + yn. O

Our next goal is to find a reasonable F.-central subcategory of U.-mod.

Definition 4.7.7. Let %y be the full subcategory of ﬁc—mod containing precisely the quotients of

direct sums of H.. Let Fy be the restriction of F. to %p.

As the lemma below shows, category %u contains interesting objects such as Verma and Weyl

modules.
Lemma 4.7.8. The following hold.

a) If X € Py(n), then the Verma module M.()\) is an object of €.
b) Letl>1, p € Ci(n), A € Pu(un) and a € C™ with S,(a) = S,. Then the Weyl module W.(a, \)
is an object of 6n.

Proof. Let us prove b). The definition of H, implies that

Homg (He, We(a,A)) = We(a, Ny 1),

.....

where i = n_[1] @ ny[1] ® g>2. The subspace L(a, \) C W,(a, A) is annihilated by i. It is easy to check
that, since A € P,(u), the difference A — (1,...,1) is a sum of positive roots of [,,. Since (1,...,1)
is a dominant weight, it follows that L(a,A)q,.. 1) # {0}. Since L(a,\) is simple as an [,-module,
any non-zero vector generates W.(a, \) as a ﬁc—module. It follows that there exists an epimorphism
H. - Wc(a, A). Hence W.(a, A) € €u. The proof of a) is analogous. O

To state the next theorem, we need to introduce some notation:

(I)ZB—)EndﬁC(HC), 2= zm,,
. EndfJC (H.) — Endg, (Ho) 2 H?, ¢ — F.(9),

©:=Vod.

These maps fit into the following commutative diagram.

3 —2 5 Z(6n) —2— End(Fy) +—— Z

H | | H (4.76)

3 —2 Endg (H,) —>— H z

where the vertical arrows send an endomorphism of the identity functor (resp. Fy) to the corresponding
endomorphism of H, (resp. Hp).

The following theorem is the main result of this section.
Theorem 4.7.9. The subcategory 6y is Fe-central and Zy, (F.) = ©.

The proof of Theorem will be presented in §4.7.4, We note the following corollary, which will
be useful later.

Corollary 4.7.10. Let M € ¢y and z € 3. Then ©(2)r, vy = Fe(zar). In particular, ©(Annsz(M)) C
Annz(F.(M)).
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Proof. By Theorem we have Fo(zpr) = (o 0 q(2))y = O(2)p. If 2 € Annz (M), then zpy = 0
and so ©(2)r,(a) = Fe(zar) = 0. O

4.7.4. Proof of Theorem The proof of Theorem requires some preperations. We
first prove the following lemma.

Lemma 4.7.11. The two vertical arrows in (4.76)) are injective.

Proof. Let M be an object of %. Since M is a quotient of HZ (direct sum over some index set I),
there exists an epimorphism p: HZ — M. Suppose that z € Z(%x). Then zp; 0p = po zgr and it
follows that 2/ is uniquely determined by zp:. But 2mr = @12m,, so 2y is in fact uniquely determined
by zm.. This proves the injectivity of the left vertical arrow.

Now suppose that ¢ € End(Fy). Let ¢ be the corresponding endomorphism of F.(M). Since F.
is right exact, F.(p): B} — F.(M) is also an epimorphism. Since ¢ is a natural transformation, we
have F.(p) o ¢ur = ¢ar o Fe(p). It follows that ¢y is determined uniquely by ¢gr. But ¢ = ©rém,,
so ¢y is uniquely determined by ¢p_ . This proves the injectivity of the right vertical arrow. O

Theorem [4.7.9 states that 4y is F.-central, i.e., Ima’ o ¢ C Z. By Lemma [4.7.11] this is equivalent
to showing that Im© C Z. The rest of this subsection is dedicated to this goal. The main idea is to
establish the following two facts: Im © C Zyor (C[h*]*) and Zyer (C[h*]*) = Z.

We start by recalling some information about the G((t))-action on U,. There is an adjoint action

G((1) x a((t)) = a((®), (9,X) = g(X) := gXg~"

of G((t)) on its Lie algebra g((¢)). It extends to an action on g. if we let G((¢)) act trivially on 1. This
action induces an action on the universal enveloping algebra U.(§) and its completion U..
Proposition 4.7.12 ( [54, Proposition 4.3.8)). The G((t))-action on 3 C U, is trivial.

The G((t))-action restricts to an Sy,-action on U,, where we identify the symmetric group S, with
the subgroup of permutation matrices in G C G((t)). The Sy,-action preserves the ideal J. C U(g.)
and, hence, induces an action on the module H..

We now define an induced action on F.(H.). Let S, act on (V*)®" by the rule e ® ... ® e}

wiiy—1 ))®. Q€L )’ One easily checks that w-eX =e*  _,, where ef is asin (4.64). Combining
w11 w 7’w*1 n wTw
the S,,-actions on H, and (V*)®" defined above with the natural permutation action on C[h] we obtain

an action
Sp X T (H,) = T.(H,), (w,fQulh)—w-fQuw-ulw-h. (4.77)

It is easy to check that if X[k] € g[t] and w € S,, then wo X[k] = w(X)[k] ow as operators on T.(H,).
Hence the subspace g[t].T.(H,) is S,-stable, and (4.77)) descends to an action

xSy % Fo(H,) = Fo(H,). (4.78)

Note that this action is different from the S,-action defined in §4.4.4]

There is also a natural conjugation action
S, x Hy — Hy, (w,h) — whw™ . (4.79)

In the next lemma we compare the induced actions on endomorphism algebras.

Lemma 4.7.13. The map © is Sy, -equivariant.
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Proof. We factor © as a product of the maps @, Endg (Hc) — Endy, (Fc(H.)) and the isomorphism
Endy, (F.(H,)) = Endg, (Hp) induced by T from (4.49). The first two maps are S,-equivariant by con-
struction. So we only need to check that Y intertwines the two actions (4.78) and (4.79). Abbreviating

er ‘= epr, we have

Y(wf(@1, . zp)ug(yr, - yn)w ™) = T(F(@w)s - Tum)) Wuw ™ gYuw@): - Yu(n)))

= [[(Tw1), - Twm)) @ Epuw-1 @ g(—ewm[1], -+ —ewm)[1])-1m]
and
wk V(f(z1,. ., Tn)ug(yn, .-, yn)) = wk [f(z1,...,2n) @€l @ g(—ei[1],...,—en[1]).1n]
= [f(@w), - Twm)) @ Epyw-1 @ g(—ewm[l], .-, —ewm)[1])-1m],
as required. O

Proposition 4.7.14. We have Zy, (C[h*]*) = Z.

Proof. Write Hreg := C[hreg X h*] x CS,,. We first prove that
ZHreg(C[h*} X CSy) = Z(Hreg) = Clbreg X b*]SWV

We only need to show that Zy, (C[h*] x CS,) C Z(Hg), the other inclusion being obvious. Let
z € Zy,(Clh*] x CS,). We can uniquely write 2 = > g fow with f, € Clhreg x h*]. Since,
by assumption, z commutes with CS,,, for any v € S,, we have z = uzu~! = Zwesn ufpwut =
Ywes, fioip,w, where f“(a) = f(u™!-a). Hence f; = f{* for all u € Sy, ie., fi € Clhreg x h*]°".
Next, since z commutes with C[h*], 0 = [z,9] = > c5 fu(g” — g)w for all g € C[h*]. But S, acts
faithfully on h C C[h*], so for each w € S,, there exists a € b such that w=!(a) # a. This forces f, = 0
for each w # 1.

Using the Dunkl embedding (see (4.29)), we view Hy as a subalgebra of Hyg. The following are
obvious:

Zuo (C[h*] % CSp) = Z, (C[6*] % CS,) NHo, Z(Heg) NHo C Z.

reg

Since Hyeg = Ho[67'] and 6! is central in Heg, we also have Z C Z(Heg) N Ho. O

Remark 4.7.15. Proposition [£.7.14] generalizes to rational Cherednik algebras at ¢ = 0 associated to

any complex reflection group.

Proposition 4.7.16. We have Im© C Z.

Proof. Lemma {4.7.13 and Proposition [4.7.12 imply that Im© C Zyor(CS),). Therefore, it suffices to
show that Im© C Zyor (C[h*]), because then Proposition (4.7.14) implies that Im© C Zyer (C[h*]*) = Z.

By the definition of H, there is a natural isomorphism
Endg (He) = (He){y,...1)- (4.80)

Observe that Sym(t[1]).1g C (Hc)i(l,__ﬂl). Indeed, Sym(t[1]).1g has t-weight (1,...,1), and since i is
an ideal in t; and 1y is annihilated by i, so is Sym(t[1]).1g. Hence elements of Sym([1]).1x define
endomorphisms of H,.

By construction, In® C Z (EndfJr (H,)), and so Im & commutes with the endomorphisms defined by
Sym(t[1]).1g. Hence Im© = ¥(Im (I’)< must commute with the image of these endomorphisms under .
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But Theorem (4.6.11| implies that they are mapped to C[h*] C HP. It follows that Im© C Zyer (C[h*]),

as required. O
We are now ready to complete the proof of Theorem

Proof of Theorem[{.7.9. By Proposition [£.7.16] Im© C Z. Lemma [£.7.11] and the commutativity of
diagram (4.76)), therefore, imply Im(a’ o ¢) C Z. The second statement of the theorem also follows

directly from the commutativity of the diagram. O

4.8 Filtered and graded versions of the Suzuki functor

Our next goal is to show that Im © = Z. The proof in §€.9| relies on a filtered version of the Suzuki
functor, which we construct in this section. We also introduce a graded version. Assume that k € C

and m,n are arbitrary unless indicated otherwise.

4.8.1. Background from filtered and graded algebra. We refer the reader to [5] and |129] for
basic definitions from filtered and graded algebra. All filtrations we consider are increasing, exhaustive
and separated. If M is a graded vector space (or module or algebra) we denote the i-th graded piece
by M;. If M is a filtered vector space (or module or algebra), we denote the i-th filtered piece by M<;.

Now suppose that A is a filtered algebra and M, N are two filtered A-modules. An A-module
homomorphism f: M — N is called filtered of degree i if f(M<,) C N<,4; for all r € Z. We say that
f is a filtered isomorphism if f is an isomorphism of A-modules and f(M<,) = N<, for all r € Z. Let
Hom 4 (M, N)<; denote the vector space of filtered homomorphisms of degree i and set Hom'y (M, N) :=
Uiez Homa (M, N)<;. If M is finitely generated as an A-module then Hom4 (M, N) = Hom'i (M, N).
Observe that Homﬁ,' (M, N) is a filtered vector space and Homg'(M , M) is also a filtered algebra.

We next define two categories whose objects are filtered (left) A-modules. The first category,
denoted A-fmod, has Hom-sets of the form Homi'(M ,N). The second category, denoted A-fmody,
has Hom-sets of the form Hom4 (M, N)y. We regard A-fmod as a category enriched in the category
C-fmody of filtered vector spaces (where C is endowed with the trivial filtration).

Analogous definitions make sense in the graded setting. In particular, if A is a Z-graded algebra
then we have two categories of graded modules A-gmod and A-gmod,. We regard A-gmod as a category
enriched in the category C-gmod, of graded vector spaces.

If A is a filtered algebra, with associated graded gr A, let o: A — gr A be the principal symbol
map. For v € A, set degv :=dego(v). If f: A — B is a degree zero filtered algebra homomorphism,
let gr f: gr A — gr B be the associated graded algebra homomorphism.

4.8.2. Filtrations and gradings. We consider two filtrations and a grading on U,/(g).

Definition 4.8.1. Suppose that | > 0, X1,...,X; € g and ji1,...,5; € Z. An expression of the form
m = Xi[j1]... Xi[ji] € Uk(g) is called a monomial of length 1, height ji + ...+ j; and absolute height
|71] + ...+ |71]. For r € Z, define:

(a) Uu(g)r = ( monomials of height r ),
(b) UPP"(§)<, = ( monomials of length < r ),

(c) Us(g)<, = ( monomials of absolute height < r ),



98 4. The Suzuki functor

where the brackets denote C-span. Observe that (a) defines a grading while (b) and (c) define filtrations
on U,(g). Filtration (b) is the usual PBW filtration. We call filtration (c) the absolute height filtration.
Denote by UPP"(g) and U2P%(g) the corresponding filtered algebras.

Definition 4.8.2. Let €25 (resp. €2*(r)) be the full subcategory of U2"*(g)-fmod whose objects are
filtered modules with the property that the underlying unfiltered module is an object of €, (resp.
%,.(r)). Similarly, let €2 be the full subcategory of U, (g)-gmod whose objects are graded modules
with the property that the underlying ungraded module is an object of .

Remark 4.8.3. Consider the associated graded algebra gr U2Ps(g). It is easy to see that the relation
(X @), 0(Y @ t1)] = 8jppspuyfrryo ([X, Y] @ 7H)
holds in gr U2%%(g). Hence
gr U (§>0) = U (§20), grU™(g<o) = U™(g<0).

Moreover, we have [gr U%s(g>1), gr U?**(g<_1)] = 0.
We next consider a family of filtrations and a grading on rational Cherednik algebras.

Definition 4.8.4. Setting degz; = —1, degy; = 1 and deg .S,,, = 0 defines a grading on H;. We denote
the corresponding graded algebra simply by H;. For each k > 1, setting degx; = 1, degy; = k and
deg S,, = 0 yields a filtration on H;, and we denote the corresponding filtered algebra by Hgk). When
k = 1, the resulting filtration is known as the PBW filtration, and we abbreviate H; := Hgl). We
consider C[h], C[h]* and C[h*] as graded (resp. filtered) subalgebras of Hy.

4.8.3. Filtered lift of the Suzuki functor Let M be a filtered module in €25%. We equip (V*)®™
with the trivial filtration and T, (M) with the tensor product filtration. Explicitly,

T.(M)<r = Y Clhl<x @ (V)®" @ M. (4.81)
k+l=r
Consider the quotient map
Y: To(M) — F (M). (4.82)

We endow F. (M) with the quotient filtration given by F.(M)<, = ¥(Tw(M)<,). The following
proposition connects the absolute height filtration on U,(g) with the filtrations on Hy .

Proposition 4.8.5. For each r > 2, the functor F, lifts to a functor
FO): 625 (r) — B ¥ fmod

enriched in C-fmody.

Proof. Let M € €2(r). We first show that F, (M) is a filtered H,(f_:;g)—rnodule. The only non-trivial
thing to show is that y;F.(M)<s € Fo(M)<syor—3 for s € Z and 1 < ¢ < m. Recall that the action
of y; is given by (@.31). Clearly each of d,, and Q09 (x; — ;)71 (1 — s;;) either vanishes or lowers
degree by one. Hence it is enough to show that for each p > 0, the operator z? QE;E])

at most 2r — 3. Observe that zP raises degree by p and egjl) doesn’t change degree. Therefore it is in

raises degree by

fact enough to show that each ej.[p + 1](>) changes degree by at most —p + 2r — 3.
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If p < r — 2 then the fact that M is a filtered module implies that e;[p + 1] raises degree by at
most r—1. Butr—1< (r—1)+(r—2—p) = —p+2r—3. So assume p > r — 2. Let v € M. Because
M € €25(r), we can assume without loss of generality that v = X;[a1]. .. X,[a.].u, with u satisfying
g>ru=0,X1,...,X, €gand a; <... < a, <r. We argue by induction on z (i.e. by induction on
the PBW filtration). If z =1 then

ew[p + 1].v = Xqfar]ew[p + 1].u + e, Xal[p + 1 + a1].u = [ew, Xa][p + 1 + a1].u. (4.83)

Note that [ej, X1][p + 1+ a1].u = 0 unless a; < —p +r — 2. Let us now calculate the difference in
degree between v and (4.83)). First assume a; < —p—1. Then [p+1+ai|—|a1| = —(p+1+a1)+a; =
—p—1. But —=p—1 < —p+ 2r — 3 since » > 2. Next assume —p < a3 < —p+r — 2 < 0. Then
lp+1+ay|—l|ai| = p+2a; +1 < —p+2r—3. Hence ey.[p+ 1] changes degree by at most —p+2r —3,
as required.

Now let z > 1. We have

ewlp + 1w = Xqla]ew[p + 1).0" + [ew, Xa][p + 1 + a1].0,

where v’ = Xs[as] ... X, [a,].u. By induction we know that e;;[p+1] changes the degree of v’ by at most
—p+2r—3. Hence deg X [a1]ei[p+1].0" < degv'+a; —p+2r—3 < degv—p+2r—3. Moreover, since
M is a filtered module, [ejx, X1][p+ 1+ a1] changes the degree of v’ by at most |p+ 1+ a1|. By triangle
inequality, [p+14a1|—|a1| < |p+1| = p+1, so degley, X1][p+1+a1].v" < degv—p—1 < degv—p+2r—3.
It follows that e [p + 1](00) changes degree by at most —p + 2r — 3, as required.

‘We now show that F,(f) is an enriched functor. Suppose that M and N are two filtered modules
in €2%(r). Let h: M — N be a filtered homomorphism of degree i. We need to show that F,(h) is
also a filtered homomorphism of degree i. So let v € F.(M)<s. Recall the projection . Since
F.(M) is endowed with the quotient filtration, we can choose ¢ € T, (M)<, with ¥(9) = v. We can
assume without loss of generality that © = f(z1,...,Z,) ®u® 2z with u € (V¥)®™ >z € M and f some
polynomial. Since h is filtered of degree 4, we have T, (h)(?) = f(z1,...,Zm) @u h(2) € T (N)<sts-
However, 9’ o T,(h)(0) = Fi(h)(v), where ¢’ is the projection ¢’ : T;(N) — F(N). It follows that
Fi.(h)(v) € Fo(N)<s+4, as required. O

In the following proposition assume that x = ¢, m = n and consider the module H, = U2>(g)/(J.N
Ubs(g)) as a filtered U2P(g)-module endowed with the quotient filtration.

Proposition 4.8.6. The isomorphism Y: Hy — F.(H.) from (&.49)) lifts to an isomorphism in the
category Ho-fmodg. Moreover, the map V: Endg_ (H.) — Endg,(Ho) is a filtered algebra homomor-
phism.

Proof. Since it is difficult to work with quotient filtrations, we first show that F.(H,.) is isomorphic
to another module with a more explicit filtration. Consider the Hp-module T.(H.). One easily checks
that the subspace M = C[h] @ ((V*)®")(_1,...,_1)®T is a Hy-submodule of T.(H,). Moreover, it follows
from Theorem that T.(H.) = M @ g[t] - Te(H,) and F.(H.) = M. The latter isomorphism is
filtered if we endow F.(H.) with the quotient filtration and M with the subspace filtration. It follows
from that composing Y with F.(H.) & M yields an Hy-module isomorphism Hy 2 M given by

flze, . xn)wg(yn, - Yn) — f(X1, .. 20) @ el @ g(—enn[1], - .., —enn[l]) 1m.

This formula together with the definition of the filtration on Hy and (4.81) imply that the isomorphism
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Hop = M is in fact filtered. This proves the first part of the proposition.
The filtered isomorphism Y ~! induces a filtered isomorphism of endomorphism rings Endy, (F.(H..)) =
Endy, (Ho). But ¥ is a composition of the latter with the homomorphism F.: Endg (H.) — Endg, (Fc(H.)),
O

which is filtered by Proposition [4.8.5

4.8.4. Graded lift of the Suzuki functor. Suppose that M is a graded module in €8". Consider
(V*)®™m as a graded vector space concentrated in degree zero. Endow T, (M) with the tensor product
grading in analogy to ([£.81). It follows immediately from that F, (M) is a quotient of T, (M)
by a graded subspace. Hence the grading on T, (M) descends to a grading on F,(M).

Proposition 4.8.7. The functor F, lifts to a functor
F&: €& — Hitn-gmod
enriched in C-gmod,.

Proof. Let M € €. We first prove that F,(M) is a graded H,,-module. It suffices to show that
yiF(M)s CFo(M)s for s € Z and 1 < i < m. Recall that the action of y; is given by (4.31)). Clearly

Oy, and Q) (z; — ;)7 (1 — s, ;) either vanish or raise degree by one. Since M is a graded U,(g)-

(4,00)
[p+1]
enriched functor is analogous to the proof of Proposition [4.8.5 O

module, the same holds for 27Q for each p > 0, as required. The proof of the fact that F& is an

4.9 Surjectivity of ©

In this section we show that Im © = Z. Assume that n = m and k = ¢ throughout.

4.9.1. The associated graded map. Consider the following commutative diagram in the category

of vector spaces.

v>—>1c[h]®ei’g®v

HIe H., To(H.) —— F(H.)
ZT 2l'r—1
Endg (H.) L Ends, (Ho) 2Ho (4.84)
Im @ v z

Note that the fact that ¥(Im ®) C Z follows from Proposition [4.7.16f We endow each of the vector

spaces above with a filtration:

o H,. = UPs(g)/(3. N UP5(g)) carries the quotient filtration and H2¢ C H. has the subspace

filtration,

e Endg (Hc) carries the filtration induced by the one on H. and Im®© C Endg (H.) has the

subspace filtration,
e T.(H,) has the filtration from (4.81)) and F.(H,) has the corresponding quotient filtration,

e Hp has the PBW filtration, Endy, (Ho) carries the induced filtration and Z C Hy the subspace
filtration.
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Lemma 4.9.1. Fach map in the diagram (4.84)) is filtered.

Proof. Every map is filtered by definition except for ¥ and Y—'. The fact that the latter two are
filtered follows from Proposition [£.8.6 O

We will show that Im © = Z by computing the associated graded algebra homomorphism
gr¥: grim® — grZ. (4.85)

We split the task of computing (4.85) into two parts. We first compute the principal symbols of
the images of Segal-Sugawara operators in H,.. We then compute the images of these principal symbols
under the associated graded of the map H. — Hy arising from the upper right corner of the diagram
(14.84)).

4.9.2. Calculation of principal symbols. The ideal (U(g_)(n;®tC[t~1]))NU(g_)*d*in U(g_)2d*

is two-sided (see e.g. [100]). Hence the corresponding projection
AHC: U(§_ )t - Ut e tClt™1))

is an algebra homomorphism, often called the affine Harish-Chandra homomorphism. Note that AHC

is, moreover, a filtered homomorphism with respect to the PBW filtrations.

Lemma 4.9.2. Let 1 < k <n. The Segal-Sugawara vector Ty from Ezample can be written as
Ty =Py + Qr + Qj,
where Py, := (e11[—1))* + ... + (enn[-1])F,
Qr € (U@-)—,x NU(3_)<k-1)*"", Q€ (U(F-)—x NUP(g_)<x)™"
and @, € ker AHC.

Proof. Consider the algebra U(g_) from Example equipped with a modified PBW filtration in
which 7 has degree zero. One easily sees that the principal symbol of Tr(EF) equals Tr(E(~1) where
ECY = (ei;[—1])7";—, is a matrix with coefficients in S(g_). But gr AHC(Tr(E(D)¥) = Py. O

Definition 4.9.3. Suppose that A € U(g_). We write A; := A(_;_qy so that Y(A4,2) = > ,., A7
(note that the same notation was used with a different meaning in (4.19))). In particular, for 1 < k <n,
we write Ty := Ty (—;—1) (not to be confused with T4, from Example m ). We also write

A\l = (/IS(AI), Zl = O’abs(A\l),

where 02 : H, — grH, is the principal symbol map with respect to the absolute height filtration and
D ﬁc —» ﬁc/ﬁc.jc = M, is the canonical map. If v € H,, set degv := deg 0> (v).

The proof of the following key proposition is rather technical and has been relegated to the appendix.
Proposition 4.9.4. Let 1 <k <n. Then:

n

'i‘k,l =0 (I<—-2k), '/I\‘k,fzk = f’kﬁzk = Z(eii[l])k-lH,
i1
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n
Th,—okt2+b = Ph—oktotp = kz eii[—b—1)(ex[1) g + (H)<gyp—1 (b>0).
=1

Proof. See Appendix [A] O

4.9.3. The main result. Recall from Theorem that grZ = C[h@h*]5~. The latter is known as
the ring of diagonal invariants or multisymmetric polynomials. Given a,b € Z>(, the multisymmetric
power-sum polynomial of degree (a,b) is defined as pgp := iyl 4+ .. 4+ 2%yt We call a + b the total

degree of pgp.

Proposition 4.9.5. The polynomials p,, with a +b < n generate C[h @ h*]5~ .
Proof. See, e.g., [116, Corollary 8.4]. O

We are ready to prove our main result: the surjectivity of ©. We also partially describe the kernel
of ©, compute © on Segal-Sugawara operators corresponding to T; and T, and compute the principal

symbols of the images of “higher-order” Segal-Sugawara operators under ©.

Theorem 4.9.6. The map ©: 3 — Z is surjective with
(1) O(Try) =0 (I < —2k),
(i) O(T11) = piy10 (1 20),
(i11) ©(T2;) = —2p1+31 + ZKJ- 2¢142(xi )8+ (n+ 1)1 +3n+1)>0" CEi+2 (1> -2),
(iv) O(Tk,—ar) = (—1)"po i,
(v) o(O(Th,—2k4245)) = (—1)  kppy1p—1  (b>0),
where 1 < k < n, c.(z;,x;) is the complete homogeneous symmetric polynomial of degree r in x; and

x;, and o: Z — grZ is the principal symbol map.

Proof. Part (i) follows directly from Proposition while (ii)-(iii) follow from Lemma and the
fact that Ty = 2 - °L 4 id[—2]. Proposition m together with (4.50)) implies that T—! sends

[lep ® eq ® Tk —ok] = [lep) ® eiq ® Z(eii[l])k~1H] = (=1)"po,x,
i=1
which proves (iv). Moreover, Proposition m together with (4.30) and ([4.50) implies that gr Y—!

sends

[1C[h] ® ey ®Tk,f2k:+2+b] = kzw?+1 ® ey ® (eii[l])k_l.l[[-ﬂ — (—1)k_1kpb+1’k,1,
i=1
which proves (v) because gr ¥(Ty ) = 0(O(Ty,)) for r > —2k + 2.

It follows from (iv) and (v) that the multisymmetric power-sum polynomials of total degree < n
all lie in the image of gr ¥. But, by Proposition these polynomials generate C[h @ h*]5» = grZz.
Hence the map gr¥: grim® — grZ is surjective. By [129] Lemma 1(e)], the map ¥: Im© — Z is
surjective as well because the filtration on Z is exhaustive and discrete. The surjectivity of © = U o &
follows. 0O
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4.10 Applications and connections to other topics

We present several applications of Theorem Assume that n = m throughout.

4.10.1. Endomorphism rings and simple modules. We prove that the homomorphisms be-
tween endomorphism rings of Weyl and Verma modules induced by the Suzuki functor are surjective

and use this fact to show that every simple Hy-module is in the image of F..

Corollary 4.10.1. The functor F. induces surjective ring homomorphisms:
Fe: Endg (We(a, A)) — Endy, (Ao(a, M), (4.86)
fori>1,veC(n), A€ P,(v) and a € b* with S, (a) = S,; and
Fe: Endg (Mc(A)) — Endy, (Ao (M), (4.87)
for A € P(n). Moreover, the homomorphisms are graded.

Proof. The existence of the ring homomorphisms (4.86)) and (4.87) follows from the fact that F.(W.(a, A)) =

Ag(a, A) (Theorem [4.6.12) and F.(M.())) = Ag(A) (Theorem [4.6.13)). Let us prove their surjectivity.
Corollary [£.7.10] implies that we have a commutative diagram

3 © z

can lcan

Endg (W.(a,\)) — Endg,(Ao(a, \))

c

By Theorem O is surjective, and, by Theorem b), the right vertical map is surjective as
well. Hence the lower horizontal map must be surjective, too. The proof in the case of the Verma
modules M, ()) is analogous. The fact that (4.87) is a graded homomorphism follows from Proposition
it O

We need the following lemma.

Lemma 4.10.2. Let M be a U.-module and A C Endg (M) be a vector subspace. Then
FC(M/AM) = FC(M)/FC(A)FC(M)'
Proof. Let B be a basis of A. By definition, M/AM = M/ EfeB Im f. Consider the exact sequence

Dy 2L M MY T f 0.
feB fen

By Remark|4.5.10} the functor F. preserves colimits. In particular, it preserves (possibly infinite) direct

sums and cokernels. Hence

Fe(M/ 3 pepIm f) = Fe(coker(®renf))
= coker(®renFc(f)) = Fe(M)/ > sep ImFe(f).

But 3 e ImFo(f) = Fo(A)F (M), 0
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Corollary 4.10.3. FEvery simple Hy-module is in the image of the functor F..

Proof. Let L be a simple Hyp-module. By Lemma there exists a generalized Verma module
Ag(a, \) such that L = Ag(a,\)/I - Ag(a, \) for some ideal I C Endy,(Ag(a, \)). Let J := F_1(I) C
Endg (We(a, A)). Corollary {4.10.1] implies that F.(J) = I. Hence, by Lemma

Fo(We(a,\)/J - Wo(a, \)) = Ag(a, N)/T - Ag(a, ) = L. 0

Remark 4.10.4. When & # ¢, it has been shown (see [132, Theorem 4.3] and [138, Theorem A.5.1])
that, under some mild assumptions, every simple Hy,-module in category O(H,4,,) is in the image
of F,.. It is noteworthy that the proofs in [132] and [138] employ very different techniques from those

used by us in the k = ¢ case.

4.10.2. Restricted Verma and Weyl modules. We are going to compute the Suzuki functor
on restricted Verma and Weyl modules as well as the simple modules in category O.
Consider the algebra % from (4.16]) equipped with the natural Z-grading induced from U.(g).

In |2 §3.2], Arakawa and Fiebig consider the restriction functor

oG, M M:=M/ > 2-M. (4.88)
0#4i€Z

This functor is right exact because it is left adjoint to the invariants functor M — M := {m € M |
z-m =0 for all z € 25,1 # 0}. Given u € t*, in [2, §3.5], Arakawa and Fiebig define the corresponding
restricted Verma module as M, (u1). By |2, Lemma 3.5],

M (1) = Me(p)/ Z- - Me(p),

where 27 =@, _, Zi.

Consider M, (i) as a graded g.-module with the subspace Cy 1 C Imd%jr Cx,1 lying in degree zero,
or, equivalently, as a module over the Kac-Moody algebra §. x C°Lg, with the Segal-Sugawara operator
Lo (see ([@.19)) acting by zero on Cy 1. It is known (see, e.g., [79, Proposition 9.2.c)] that M. () has

a unique graded simple quotient L(u).

Lemma 4.10.5. If i ¢ P(n) C t* then F.(L(u)) = 0.

Proof. By Theorem |4.6.13} the module M, () is killed by F.. Since F. is right exact, its quotient L(u)
is killed as well. O

We also consider Ag()), for A € P(n), as a graded Hyp-module. It follows from [63 Proposition 4.3]
that Ag(\) has a unique graded simple quotient Ly (not to be confused with L(\) from §4.2.4).

Corollary 4.10.6. Let A € P(n). Then Fo(M.(\)) =2 F.(IL(\)) & L.

Proof. Consider the short exact sequence
0 — K — M.(\) = L()\) — 0.

By [1}, Lemma 4.2(5)], K has a (possibly infinite) filtration with each subquotient isomorphic to a graded
shift of a simple module of the form L(w-\), where e # w € S,, and w- A = w(A+ p) — p. In particular,
none of the weights w - A are dominant. Therefore, there exists a surjective homomorphism from a

direct sum of graded shifts of Verma modules of the form M,(w - A), one for each subquotient in the
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filtration, to K. By Theorem [£.6.13] this direct sum of Verma modules is killed by F.. Right exactness
implies that F.(K) = 0. Hence, by another application of right exactness, F.(M.()\)) 2 F.(L()\)).

We next prove that F.(M.()\)) = Ly. Abbreviate Ey := Im 2 C Endg (Mc(A) and Ey =
Endg, (Ao(N)). These rings are Z<o-graded. Let Ey <Ey and E; < E) denote their maximal graded
ideals. It follows from the proof of Corollary that the restriction of to E, is surjective (in
fact, by [54, Theorem 9.5.3], Ex = Endg_(M.(})), but we do not need to use this fact). Since (4.87)

is a graded homomorphism, it follows that F.(E}) = Ej . Therefore, Lemma implies that
Fe(Me(A)) = Fe(Mc(N)/Ey - Me(X) = Ao(A)/Ey - Ao(N).
Arguing as in the proof of Lemma one concludes that Ag(N\)/Ey - Ag(N) = L. O

Given A € P(n), we define the corresponding restricted Weyl module to be W.(\). Since 2, =
@,-( Zi annihilates W.()), we have

Wc(/\) = Wc()‘)/fff Wc()‘)
Corollary 4.10.7. Let A € P(n). Then Fo(W.(\)) = L.

Proof. Let M(\) denote the Verma module over g with highest weight A. The canonical surjection
M(X\) — L(\) induces a surjection M.(\) = Indg:’“r L(\) — Indgi M(X) = W.(N\). Let K denote its
kernel. The functor F. sends the exact sequence 0 — K — M (\) = W.(A) — 0 to the exact sequence
F(K) — Ao(X) ERN Ag(A) = 0. But Ag(A) is a cyclic Hy-module, so f must be an isomorphism. It
follows that F.(K) = 0. Moreover, F.(K) = 0 because K is a quotient of K.

Since the restriction functor is right exact, we also have an exact sequence K — M.()\) —

W.(A) — 0. The functor F. sends it to the exact sequence 0 = F.(K) — Ly — F.(W.(\)) — 0 because
Fo(M.()\)) = Ly, by Corollary [4.10.6] Tt follows that F.(W.()\)) = Ly. O

4.10.3. Poisson brackets. Suppose that A is an algebraic deformation of an associative algebra
Ay, i.e., A is a free C[h]-algebra such that A/RA = Ay. Then there is a canonical Poisson bracket on
Z(Ap), called the Hayashi bracket, given by

{a,b} := =[a,b] mod A,

St =

where &,l; are arbitrary lifts of a and b, respectively. This Poisson bracket was introduced by Hayashi

in [71]. Applying this construction to U, and H;, we get Poisson brackets on 3 and Z.

Lemma 4.10.8. The vector space spanned by 1, id[r] and °L, is, under the Poisson bracket, a Lie
subalgebra of 3 isomorphic to the semidirect product of the Heisenberg algebra with the Virasoro algebra.

Moreover, the subspace spanned by id[r] and °L,4+1 (r <0) is a Lie subalgebra.
Proof. This follows from, e.g., [54} (3.1.3)]. O

By Lemma [4.10.8] the algebra .Z,. from (4.72) is a Poisson subalgebra of 3. Since the generators
"“Lyi1, id[r] (r < 0) of %, are defined for any k, they have canonical lifts to ﬁC[t]. Let Z¢py be the
C[t]-subalgebra of ﬁ([:[t] generated by them. The map p; oF,|gor from Lemma also lifts to a map

pclt) © F(C[t] |=r£g[z;] : fé{;] — H(?ZI[)t]'

Theorem 4.10.9. The map ©: %, — Z is a homomorphism of Poisson algebras.
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Proof. 1t follows from Lemma ¢), Theorem and Theorem that we can identify O]«
with pgoF.|#, . Since O is an algebra homomorphism, it suffices to check that © preserves the Poisson
bracket on multiplicative generators of .%Z,. Let a., b. be any two of the generators °L,.1, id[r] (r < 0)
and let a and b be their canonical lifts to f(gﬁ]. Let us interpret a. and b. as endomorphisms of ﬁc.
Then

9({a07 bc}) = pPo © Fc({aa bc})

__ pyoF, <spect_o (1[a, b]))

1
= —spec,_ (t[p([l[t] o Fe(a), peryg © Fem (b)]>

{PO o Fe(ae), po © FC(bC)} = {@(ac)7 @(bC)}

The second equality follows from the definition of the Poisson bracket. The third equality follows
from the easily verifiable fact that spec,_q o pcpy © Fepg = po o Fe o spec,_g. The fourth equality follows
from part b) of Lemma m which implies that pcpy o Fepy(a) and pepy o Fep(b) are, respectively,
lifts of pg o Fe(a) and pg o F.(b) to H%’Et]. The minus signs in the second and third lines arise because

we work with lifts in the opposite algebras. O

Remark 4.10.10. It would be interesting to know whether there exists a bigger subalgebra %, C
A C 3 such that ©] 4 is a homomorphism of Poisson algebras.

Remark 4.10.11. The image of the “grading element” Ly under © is the so-called Euler element eu
in Z. Moreover, since “Ly, —2°Lg, —°L_; form an sly-triple under the Poisson bracket, we obtain an
sly-action on Z. This action is not integrable, in contrast to the well-studied ( [11L|15]) action of the
slo-triple Y, 27, eu, >, y?. For example, the subspace of Z spanned by Y., z7 (r > 0) is isomorphic
to the contragredient Verma module of weight zero while the subspace spanned by ©(°L,) (r < 1)
is isomorphic to the contragredient Verma module of weight two. It would be interesting to know in

more detail how Z decomposes under our sls-action.

4.10.4. A description of © in terms of opers We are going to show that © induces an embed-
ding of the Calogero-Moser space into the space of opers on the punctured disc and describe some of
its properties. Let us first introduce some notation. Set D := Spec C[[t]] and D* := Spec C((t)). Let
B C G be the standard Borel subgroup and N := [B, B].

The notion of a G-oper on D* was introduced by Drinfeld and Sokolov in [41]. It was later
generalized by Beilinson and Drinfeld in [6] for arbitrary smooth curves. Roughly speaking, a G-oper
is a triple consisting of a principal G-bundle, a connection as well as a reduction of the structure group
to B, satisfying a certain transversality condition.

We will work with an explicit description of G-opers on D* from [41} §3] in terms of certain operators

(see also [54, §4.2.2]), which we now recall. Let Locg(D*) be the space of operators of the form
V=0 +u(t), ult)eg((t)

There is an action of G((t)) on Locg (D) by the rule g- (9; + A(t)) = 0y +gA(t)g~! — g~ 10;g. Elements
of the orbit space Locg(D*) = Locg (D*)/G((t)) are called G-local systems on D*. Let Opg(D*) be

the space of N((t))-equivalence classes of operators of the form

V=0 +p_1+o(t), ov(t)eb((t),
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where p_1 = €21 + ... + epn_1 € g. Elements of Op,(D*) are called G-opers on D*. There is a
natural map Op(D*) — Locg(D*) sending an N((t))-equivalence class to a G((t))-equivalence class.
An oper has trivial monodromy if it is in the G((t))-orbit of the local system 9. Let Opg(D*)° denote
the subspace of opers with trivial monodromy.

A G-oper on D with singularity of order at most r (see |6, §3.8.8]), where r > 1, is an N|[[t]]-

equivalence class of operators of the form
V=0 +t"(p_1+v(t), wv(t)eblt]. (4.89)

Let Opér(]]])) be the space of all such G-opers. By [6, Proposition 3.8.9], the natural map Opér (D) —
Ope (D) sending an N{[t]]-equivalence class of operators to their N((¢))-equivalence class is injective.
The space Opg’ (D) can be endowed with the structure of a scheme and Opg(D*) with the structure
of an ind-scheme (see, e.g., (6, §3.1.11]).

For an operator (4.89), its r-th residue (r > 1) is defined in [51} §4.3] as Res,(V) := p_1 + v(0).
Under conjugation by an element A(t) € N|[[t]], Res,(V) is conjugated by A(0). Hence the projection
of Res, (V) onto g/G = t/5,, (identified via the Chevalley isomorphism) is well defined, and we have a
map

Res,: Opg' (D) — t/8,,.

For each z € t/S,,, let Ops" (D), := Res; *(2).

Let G denote the Langlands dual of G. Let Ope(DX) be the space obtained by replacing all the
algebraic groups and Lie algebras by their Langlands duals in the definitions above. Noting that { = t*,
let

ottt/ =1/S,, V:g"—g"/G2t")S,=1/S,

be the canonical projections. For A € II, we abbreviate
A <1
Opg(D) := Ops (D)% (_x_p)-

We are next going to recall the connection between opers and the algebra 3. Consider 3 as a
graded algebra, with the grading induced by the grading on ﬁm and, moreover, as a filtered algebra,
with the filtration induced by the PBW filtration on U,. Let 3S7(§) be the quotient of 3 by the ideal
topologically generated by elements of graded degree i and PBW degree j, satisfying —i < j(1 — r).

Theorem 4.10.12. The following hold.

a) There is a canonical algebra isomorphism
32 C[Opg (D)), (4.90)
b) The isomorphism induces, for each v > 0, isomorphisms
357(g) = C[Opy (D)]
c) For each A € II", the canonical map 3 — Endg (W.()\)) is surjective. Moreover,
Endg (W.())) 2 C[Opy(D)].

Proof. Part a) is [54, Theorem 4.3.6], part b) is |6, Proposition 3.8.6] and part c¢) is [54, Theorem
9.6.1]. 0
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For x € g* = g[r—1]*, let I, , := Indg;,l@m Cy, with §>,_1 acting on Cy via §>,_1 — glr—1] %
C and 1 acting as the identity. Set U, := I, 0.

Theorem 4.10.13 ( |51, Theorem 5.6.(1)-(2)]). We have
supps U, € OpS" (D),  supps I, € OpS (D) y(y)-

Let us identify t* = h* via (4.47) and t = {[1], z — z[1]. Recall the map 7 and the varieties {24 x
from The following corollary gives a partial description of © in terms of opers.

Corollary 4.10.14. The following hold.

a) The map ©: 3 — Z induces a closed embedding
©*: SpecZ — Opg(D)S2.
b) Letl>1, v eCi(n), A € Py(v), a € b* with S,(a) =S, and a = w(a). We have
0*(Qanx) € Op5*(D)a.
Hence the following diagram commutes:

SpecZ SICAIN OpC;VUD))<2
ﬂ’l J{RQSQ (491)
b*/S, ———— t*/S,
c) Ifa=0 then

0*(2y) C Op}(D). (4.92)

Proof. By Theorem (4.9.6), © is surjective, so it induces a closed embedding ©*: SpecZ — Opx(D*).
Corollary implies that

©*(SpecZ) = ©*(supp,(Hp)) € supp; H.
Since H, is a quotient of Us, it follows from Theorem that
supps H C supps Uz € OpS* (D).
This proves part a). Let us prove part b). Corollary implies that
O©* (suppz(Ao(a, A)) C supps We(a, ). (4.93)

If we take x € g[1]* with X|n_pjen, ] = 0 and x| = a then We(a, A) is a quotient of I ,. Hence
Theorem [4.10.13| implies that

supps We(a,\) C supps I, C OpéQ(D)a.

The commutativity of the diagram (4.91])) now follows directly from Proposition |4.6.10} Let us next
prove part c). As a special case of (4.93), we have ©*(supp;(Ag(A)) € suppsz W.(A). Theorem
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4.10.12/¢) implies that
supp3 We(A) = Opg (D),

completing the proof. O

4.10.5. Extensions and differential forms. Let kK € C. We are going to show that the first
derived functor of F, vanishes on modules which admit a filtration by Weyl modules. We also formulate
a conjecture that F. induces a map between certain extension algebras.

We say that a ﬁﬂ—module has a A-filtration if it has a finite filtration with each subquotient
isomorphic to W, () for some A € P(n). Let Uy-moda be the full subcategory of U,-mod consisting

of modules with a A-filtration.

Proposition 4.10.15. We have L'F (M) = 0 for all M € IAJ',{—modA. Hence F, is exact on ﬁﬁ—modA.

Proof. Consider the augmentation map e: U(g) — C. Tensoring with C over U(sl,,) we obtain a map
¢': U(g) ®u(sr,) C = C. Let K := kere’. By [72, Proposition VI.16.1], adapted to the Lie algebra

homology setting, we have a long exact sequence
Hy(sl,, N) == Hi(g,N) = N ®u(g) K — Ho(sl,, N) == Ho(g,N) = 0 (4.94)

for any U(g)-module N, where cores is the corestriction map. If IV is finite-dimensional then, by White-
head’s first lemma (see e.g. |72, Proposition VIL.6.1]), Hi(sl,, N) = 0. If, moreover, the corestriction
map Hy(sl,, N) — Hy(g, N) is an isomorphism, the long exact sequence forces Hy(g,N) = 0.
Now let A € P(n) and take N = (V*)®" @ L(\). We claim that the corestriction map is an
isomorphism. We need to show that sl, - N = g- N, which is equivalent to showing that any trivial
sl,,-submodule of N is also trivial as a g-module. If y = >~ a;¢; is a weight of (V*)®" then ¢(u) :=
>; a; = —n. Similarly, if 41 is a weight of L(X), then ¢(u) = n. Hence, for any weight p of N, we must
have ¢(u) = 0. But a non-trivial g-module which is trivial when restricted to sl,, must have weights
of the form x = a ), ¢; for 0 # a € Z, which implies that ¢(x) # 0. This proves the claim. It follows
that
Hi(g, (V*)®" @ L()\)) = 0. (4.95)

Since homology commutes with induction, using the tensor identity and arguing as in the proof of
Proposition [4.6.16] one shows that

L'F (W (X)) = Hi(g[t], T(W.(N)) = Clh] @ Hi(g, (V*)®" @ L(\)).

Together with (4.95)), this implies that L'F,(W,(\)) = 0. One shows that L'F,(M) = 0 for all
M € IAJH-modA by induction on the length of the A-filtration. O

Corollary 4.10.16. The functor F, induces a linear map
Exty (M, M) — Exty_, (Fo(M),Fy(M))

for all M in IAJN-modA.

Proof. This follows from Proposition |4.10.15| because the category ﬁﬁ—modA is closed under one-step

extensions. O
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Corollary [£.10.16] admits, at least conjecturally, a geometric interpretation when x = c. Frenkel
and Teleman consider in [57] the category of (U, G[[t]])-bimodules. They conjecture, for p € It
(and prove for p = 0), that Ext%mc[[t”(WC(,u),WC(u)) is isomorphic to the algebra of differential
forms on Op‘é(]]])). Note that if this conjecture holds, the algebra of self-extensions is generated by
Ext'. An analogous result for rational Cherednik algebras is proven in [8, Corollary 4.2], stating that

Extg, (Ao(A), Ao(A)) is isomorphic to the algebra of differential forms on Qy, for A € P(n).

Conjecture 4.10.17. Let A € P(n). The functor F. induces a surjective algebra homomorphism

Bty o (WeX). We(N) = Extf, (A0(3), Ao(N),

c,G[[t]](

which is given by the restriction of differential forms via the inclusion (4.92)).

4.11 Conclusion and open problems

As noted in Remark Varagnolo and Vasserot [138] constructed a generalization of the Suzuki
functor, relating a certain (non-critical) parabolic version of category O for the affine Lie algebra to
category O for the rational Cherednik algebra Hy n(I'y,) of type G(I,1,n) (for ¢t # 0). We expect that
this functor can also be extended to the k = ¢, ¢ = 0 case. Depending on the choice of parameters,
Spec Z(Hp n(I'y)) is not necessarily smooth. In that case, Ho n(I'y,) is not Morita equivalent to its centre.
In particular, baby Verma modules A()) for Hy ,(I';,) may have non-isomorphic simple modules L(y) as

composition factors. The (graded) multiplicities [A()A) : L(p)] are in general still unknown. It would be
interesting to investigate whether this problem can be solved using the Suzuki functor. Unfortunately,
there are two major obstacles this approach faces. Firstly, parabolic category O at the critical level is
presently not very well understood. Secondly, there is no reason to expect that the restriction of the
Suzuki functor to this category is an exact functor. Indeed, even when the level is not critical, the

functor from [138] fails to be exact (see |[138, Remark 7.11.a}).



Chapter 5

Quiver Schur algebras and

cohomological Hall algebras

5.1 Introduction

Our goal in this chapter is to establish a connection between two algebras, which, historically,
appeared in very different mathematical contexts and were introduced with rather different motivations
in mind, namely: quiver Schur algebras and cohomological Hall algebras.

Quiver Schur algebras are a generalization of Khovanov and Lauda’s [88] and Rouquier’s [114]
quiver Hecke algebras, nowadays also known as KLR algebras. The latter can be described alge-
braically by generators and relations, or in terms of a certain diagrammatic calculus. However, the
passage from KLR algebras to quiver Schur algebras is easiest to understand from a geometric point
of view. Varagnolo and Vasserot [137] (and later Kang, Kashiwara and Park [81], in a somewhat more
general setting) constructed KLR algebras as extension algebras of a certain semisimple complex of
constructible sheaves on the moduli stack of representations of a quiver. These extension algebras
can also be described as convolution algebras in the equivariant Borel-Moore homology of a certain
variety of triples, reminiscent of the classical Steinberg variety. The triples consist of a pair of full flags
together with a compatible quiver representation. By incorporating partial flags into this construction,
Stroppel and Webster [131] arrived at the definition of a quiver Schur algebra. Later, these algebras
were studied from a more algebraic point of view in [99).

One of the main motivations for introducing KLR algebras was to construct a categorification
of quantum groups and their canonical bases. For results in this direction, we refer the reader to,
e.g., [80}88/113}[137]. Quiver Schur algebras also play an important role in this context. For example,
quiver Schur algebras associated to the cyclic quiver provide a categorification of the generic nilpotent
Hall algebra 131, Proposition 2.12], and their higher level versions categorify a higher level ¢-Fock
space |131 Theorem C].

The second protagonist of our story, the cohomological Hall algebra (CoHA), was introduced by
Kontsevich and Soibelman [90] as a categorification of Donaldson-Thomas invariants of three dimen-
sional Calabi-Yau categories. One of the primary original motivations for studying the CoHA was to
provide a rigorous mathematical definition of the algebra of BPS states from string theory. CoHAs
and their generalizations have found numerous applications in representation theory, including a new
proof of the Kac positivity conjecture [36], as well as new realizations of the elliptic Hall algebra [124]
and Yangians [38}125}/144].
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We restrict ourselves to the relatively simple case of CoHAs associated to quivers with the trivial
potential. For more information about this special case, including explicit examples, we refer the reader
to, e.g., [4353,/110]. One of our main results, described in more detail below, says that the relations
between algebra and coalgebra structures on the CoHA can be understood in terms of actions of quiver
Schur algebras. It would be interesting to know whether one can associate KLR-type algebras to more
general categories than those of quiver representations, and whether the connection between quiver
Schur algebras and the CoHA described by us could be extended to such categories.

We also remark that similar connections arise in other settings. For example, Nakajima’s original
proposal [102 §7] for the mathematical definition of Coulomb branches in terms of the vanishing cycle
associated to the Chern-Simons functional was inspired by Donaldson-Thomas theory. On the other
hand, the ultimate definition of Coulomb branches from [20] involves a convolution algebra which can
be viewed as an infinite dimensional example of Sauter’s generalized quiver Hecke algebras from [119]
(see |20, Remark 3.9.4]).

5.1.1. Main results. We will now describe our results in more detail. Given a quiver ) and a
dimension vector c, we consider the space . of flagged representations of () with dimension vector c,
together with the forgetful map onto the space R, of unflagged representations. In contrast to KLR
algebras, we allow arbitrary partial flags instead of full flags only. The quiver Schur algebra Z is the

equivariant Borel-Moore homology of the corresponding Steinberg-type variety
Zc = HSC(QC XRe Qc)7

equipped with the convolution product as in [35]. We remark that our construction differs slightly from
the construction of Stroppel and Webster [131] - they impose the additional condition on the space Q.
that each flagged quiver representation is nilpotent and its associated graded must be semisimple. To
distinguish the two constructions, we refer to their convolution algebra Z5" as the Stroppel-Webster
quiver Schur algebra, and reserve the simpler name “quiver Schur algebra” for Z.

Our first result deals with the basic structural properties of quiver Schur algebras. It is well known
that KLR algebras are generated by certain distinguished elements, called idempotents, polynomials
and crossings, and that they admit a PBW-type basis. We prove an analogous result for quiver Schur

algebras, with crossings replaced by fundamental classes called (elementary) merges and splits (see

Definition [5.3.4]).
Theorem A (Theorem [5.3.25] Corollary [5.3.27). The following hold:

a) The quiver Schur algebra Z. has a “Bott-Samelson” basis consisting of pushforwards of funda-
mental classes of certain vector bundles on diagonal Bott-Samelson varieties.

b) Elementary merges, elementary splits and polynomials generate Z. as an algebra.

The quiver Schur algebra Z. has a natural faithful representation Qg, called the “polynomial rep-
resentation”, on the direct sum of rings of partial invariants. We give an explicit description of this
representation (Theorem and interpret it in terms of Demazure operators (Proposition .
In the special cases of the A; quiver (i.e., the quiver with one vertex and no arrows) and the Jordan
quiver, we give a complete list of defining relations for the associated reduced quiver Schur algebra (see
Theorems [5.4.14| and [5.4.17] as well as [127]), which is defined as the subalgebra of Z. generated by
merges and splits, without the polynomials. The reduced quiver Schur algebra of the A; quiver turns
out to be related to the green web category from [27[135] (see Corollary, which arises naturally
in the context of skew Howe duality.
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Our next result establishes a connection between quiver Schur algebras and the CoHA associated to
the same quiver Q). We first need to introduce some notation. Let Z = €, Zc be the direct sum of all
the quiver Schur algebras associated to @ (summing over all dimension vectors c¢) and let Q = @ Q.
be the direct sum of their polynomial representations. We call Z the total quiver Schur algebra. Let us
now briefly recall a few facts about the CoHA. It is defined as the direct sum of equivariant cohomology
groups

H =P He, (Re),

equipped with multiplication via a certain pullback-pushforward construction. The CoHA can also be
endowed with a coalgebra structure. However, the natural coproduct on the CoHA (see [90, §2.9]) is
not compatible with the multiplication in the sense that H is not a bialgebra. This problem can be
remedied at the cost of passing to a localization of H and working with a localized version of the natural
coproduct (see [37]). We do not pursue this approach here. Instead, we are interested in gaining a
better understanding of the relations between the natural coalgebra and algebra structures on . The

following theorem shows that these relations are controlled by the total quiver Schur algebra Z.

Theorem B (Theorem [5.6.6). The faithful polynomial representation Q of the total quiver Schur
algebra Z can be naturally identified with the tensor algebra T(H4) on the augmentation ideal Hy of

the CoHA. This identification induces an injective algebra homomorphism

sending elementary merges in Z to CoHA multiplication operators and elementary splits in Z to CoHA

comultiplication operators.

The CoHA admits a description as a shuffle algebra [90, Theorem 2] in the sense of Feigin and
Odesskii [52]. We interpret this description in terms of Demazure operators (Proposition [5.6.8)), con-
necting it to our description of the polynomial representation Q of the quiver Schur algebra Z. We
expect that the relationship between shuffle algebras and Demazure operators carries over to more gen-
eral settings. For example, we expect that multiplication in the formal version of the CoHA, defined
by Yang and Zhao [143] for any equivariant oriented Borel-Moore homology theory, can be rephrased

in terms of the formal Demazure operators from |73].

5.1.2. Geometric realization of the modified quiver Schur algebra. One of the exciting
features of KLR algebras (associated to finite and affine type A quivers) is that, after passing to
suitable completions or cyclotomic quotients, they are isomorphic to affine Hecke algebras [25,[114],
and endow the latter with interesting gradings. This isomorphism, known in the literature as the
Brundan-Kleshchev-Rouquier isomorphism, was later generalized to Schur algebras in [97,/99/131] (see
also [141]).

The main result of [99] says that the convolution algebra ZZW from [131] is, after completion,
isomorphic to the affine ¢g-Schur algebra appearing naturally in the representation theory of p-adic
general linear groups. The proof of this result relies on the fact that both of these algebras are
isomorphic to a certain intermediate algebra Z29 called the modified quiver Schur algebra, which
is defined in purely algebraic terms. We show that the modified quiver Schur algebra also admits a

geometric realization as a convolution algebra.

Theorem C (Theorem [5.4.10). There is a natural algebra isomorphism Z, = ZMS between our quiver
Schur algebra Z. and the modified quiver Schur algebra ZMS.
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As an application, we deduce that our quiver Schur algebra Z, is also isomorphic to the Stroppel-
Webster quiver Schur algebra Z5" (Theorem [5.4.12)).

5.1.3. Mixed quiver Schur algebras. As we have already mentioned, KLR and quiver Schur
algebras can be realized as convolution algebras, or, equivalently, extension algebras of a certain
semisimple complex of sheaves on the moduli stack of representations of a quiver. If the quiver
admits a contravariant involution 6, this construction can be generalized by replacing the stack of
representations of the quiver with the stack of its self-dual representations.

This idea was pursued by Varagnolo and Vasserot in |[136]. They obtained generalized KLR algebras
which are Morita equivalent to affine Hecke algebras of type B, and provide a categorification of highest
weight modules over By(gq), the algebra introduced by Enomoto and Kashiwara [4546] in the context
of symmetric crystals. The type D case is considered in [33][128].

Sauter [119H121] took the idea of generalizing KLR algebras further, and replaced the stack of
self-dual representations of a quiver with the stack of generalized quiver representations in the sense
of Derksen and Weyman [39]. In this generalization, the gauge group acting on the space of quiver
representations is no longer a classical group, but an arbitrary reductive group.

We define a generalization of quiver Schur algebras which is close in spirit to the above-mentioned
generalizations of KLR algebras. Given a quiver () with a contravariant involution 8 and an extra da-
tum, called a duality structure (see Definition , we consider the stack of a certain type of self-dual
representations of @, introduced by Zubkov [147] under the name of supermixed quiver representations.
We refer to the resulting Ext-algebra as the mized quiver Schur algebra and denote it by YZ.. The
mixed quiver Schur algebra has similar structural properties to the ordinary quiver Schur algebra: it
has a Bott-Samelson basis (Theorem and is generated by elementary merges, elementary splits
and polynomials (Corollary .

The idea of replacing ordinary quiver representations by self-dual representations has also been ex-
ploited in the representation theory of Hall algebras (in the finite field setting) [145] and cohomological
Hall algebras |146] by Young. In the finite field case, Young defined a “Hall module” over the Hall
algebra of , and showed that it carries a natural action of the aforementioned Enomoto-Kashiwara
algebra By(gg). In the cohomological case, he introduced a “cohomological Hall module” 9 M over
the cohomological Hall algebra H associated to the same quiver () without the involution 6. The

module M is defined as the direct sum of equivariant cohomology groups
"M= D Hig, ("Re)
Cc

of the spaces R, of self-dual quiver representations, equipped with an H-module structure via certain
geometric correspondences. The module M also carries a natural H-comodule structure, but it fails to
be a Hopf module. Our next result shows that the relations between multiplication and comultiplication
in the CoHA, as well as its action and coaction on the cohomological Hall module, are controlled by
the total mixed quiver Schur algebra ¢Z = D. 0Z,.

Theorem D (Theorem [5.6.12)). There is an injective algebra homomorphism
92 < End(T(Hy) ® M)

sending elementary merges in °Z to CoHA multiplication and action operators and elementary splits

in °Z to CoHA comultiplication and coaction operators.
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As an application of Theorem [D] we obtain an explicit description of the faithful polynomial repre-
sentation of a mixed quiver Schur algebra (Theorem . Moreover, we reinterpret the description
of the CoHM as a shuffle module [146, Theorem 3.3] in terms of Demazure operators of types A-D
(Corollary [5.6.19).

Mixed quiver Schur algebras are also related to the Hall modules defined in the finite field setting.
The direct sum ?Z-pmod of the categories of finitely generated graded projective modules over all
the mixed quiver Schur algebras carries a natural action of the monoidal category Z-pmod, and
its Grothendieck group Ko(?Z) is a module as well as a comodule over Ky(Z) (Proposition .
We expect that, via the standard technique of sending the class of a semisimple perverse sheaf to the
function given by the super-trace of the Frobenius on its stalks (see, e.g., [122]), K¢(Z) can be identified
with a subalgebra of the Hall algebra of Q. For example, in the special case of a Dynkin or cyclic quiver,
Ky(Z)°P is naturally isomorphic to the generic nilpotent Hall algebra (Proposition . We also
expect that Ky (Y Z) can be identified with a subspace of the Hall module associated to the category of
self-dual representations of @, and that Ky(?Z) is a semisimple module over the Enomoto-Kashiwara

algebra By (gg)-

5.1.4. Structure of the chapter. Let us summarize the contents of the chapter. In section 2,
we recall some basic material about combinatorial and geometric objects associated to quivers. In
section 3, we define the quiver Schur algebra, and prove Theorem [A] about its basis and generators.
In section 4, we describe the faithful polynomial representation, prove Theorem [C| and give explicit
relations for the quiver Schur algebra for the A; and Jordan quivers. In section 5, we define mixed
quiver Schur algebras. In section 6, we establish a connection between quiver Schur algebras and
CoHA'’s, and prove Theorems [B] and

5.2 Preliminaries

In this section we introduce notation and basic definitions which will be used throughout the
chapter. We begin by setting up the notation for quivers and associated combinatorial objects such
as dimension vectors and their compositions. We then recall the definitions of some geometric objects
associated to quivers, such as quiver flag varieties and the corresponding Steinberg-type varieties. We

finish by recalling a few facts about equivariant cohomology and convolution algebras.

5.2.1. Quivers and associated combinatorics. Let us fix for the rest of this section a quiver
@ with a finite set of vertices Qg and a finite set of arrows (. In particular, we allow multiple edges
and edge loops.

If a € @y is an arrow, let s(a) be its source and #(a) its target. Let a;; denote the number of arrows
from vertex ¢ to j. Let I' := Z>¢Qo denote the free commutative monoid of dimension vectors for @
and let I'y :=T\{0}. If ¢ =3, c(i)-i €T, write [c[ =}, (i) € Z. Given a Qop-graded vector
space V, let dimg, V' € I' denote its Qo-graded dimension.

Let n be a positive integer. We say that 8 = (B1,...,8¢,) € (Zs1)* is a composition of n if
Zj B = n. Let Com(n) denote the set of compositions of n. Given 5 € Com(n), let Bj =b0i+...+05;
for 1 < j < /{s, with 5y = 0.

Definition 5.2.1. Let ¢ € T'y. We say that d = (dy,... ydyy) € F% is a wvector composition of c,
denoted d & ¢, if (d) := Zﬁil d; = c. We call {4 the length of d. Let Com, denote the set of vector
compositions of ¢ and let Com, denote the subset of vector compositions of length n. The symmetric
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group Sym,, acts naturally on Comyg from the right by permutations. For each i € Qg, we have a map

Com, — Com(c(i)), dw d(i):= (di(i),...,dq,(i)).

Given two vector compositions d > a and e b, let dUe = (dy, ..., degy, €1, .., egg) c a+ b be their

concatenation.

Definition 5.2.2. Suppose that § € Com({q). Define
lg
V) = (dypendy)s Aa(d) = (V@) (VE (D).

In particular, if 8 = (1*~1,2,1%a7%=1) for some 1 < k < g — 1, then we abbreviate Ax(d) := Ag(d).
We define a partial order on Com, by setting

d>e < e=ng(d)

for some 8 € Com(4q). If d = e, we call d a refinement of e, and e a coarsening of d.

Example 5.2.3. Consider the Az quiver

e — o — o
i1 i i3

Let ¢ = 411 +322 +313 and Q = (’Ll +i37 211 +i2, 2i3, il +i2,i2) ¢ ¢ so that fg = 5. We have /\(5)(Q) =cC
and A(1,1,1,1,1)(d) = d. Moreover,

3i1 + ig + 43,11 + 2ia + 2i3)
3i1 + io + i3, 203, i1 + 2ia)

N(2,3)

N(2,1,2)

A(d) = A@21,1,1)
A3(d) = Aa,1,2,1)

(d) =(
(d) =(
(d) = (3i1 + ip + i3, 201 + in, 203, i1 + in, 42),
(d) = (i1 + i3, 201 + iz, i1 + o + 23, i2).

Next we assign some products of symmetric groups to the combinatorics developed above. Given

a positive integer n and « € Com(n), let Sym,, = Hﬁ‘;l Sym,,,. Furthermore, set
W, = H Symeeiys  Wa = H Symg(;y € Syme.
i€Qo 1€Qo

We consider the groups W, and Wq as Coxeter groups in the usual way. In particular, they are endowed
with a length function ¢ and a Bruhat order. Let s;(¢) (i € Qo,1 < j < (i) — 1) be the standard

generators of W¢. Given e, f > d & c, let

d .
Dy := [We\Wa/We]™

C =3
denote the set of minimal length double coset representatives. If d = (c), we write ¢Df := ¢Df. When

W, is trivial, we abbreviate ng := ¢Dr.

5.2.2. Quiver representations and flag varieties. Let c € I';. Fix a Qp-graded C-vector space
Ve =®icq, V(i) with dim V(i) = c(i). Let us fix a basis {vy(i) [ 1 <k < c(i)} of V(i) for each
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1€ Qo. Let
Re == @ Homg¢(Ve(s(a)), Ve(t(a))), Ge:= H GL(V¢(4)).

a€Q: 1€Qo
The group G¢ acts naturally on fi¢ by conjugation. Let T, be the standard maximal torus in G, with
fundamental weights w; (i) (for i € Qo, 1 < j < ¢(i)), and let B be the standard Borel subgroup.
Let RY C Rc be the associated (positive) root system. We identify the associated Weyl group with
We. Given w € W, let Re(w) = {a € R | w(a) € —RS}. If a € Re, let U, be the corresponding
unipotent subgroup of G, and set U,, = HaERc(w) Ua-

We call a sequence V, of Qy-graded subspaces

{o}=WocVicWecC...CVy, =V,

La

a flag of type d € Com, if dimg, V;/V;—1 = d;. We refer to the flag Vq = (iji)j:w

a where Vé =
(we(d) |1 <k <di(d) +...+d;(i),7 € Qo), as the standard flag of type d. Let

P4 := Stabg, (Va), La:=I]%, Ga,-

be the parabolic and Levi subgroups, respectively, associated to d, and let RE C R be the corre-
sponding subset of positive roots. Let §q4 = G./P4 be the projective variety parametrizing flags of
type d.

Definition 5.2.4. Let p = (p,) € Re. We say that a flag V, is:

o p-stable it p,(V;(s(a))) C V;(t(a)),
o strictly p-stable if p,(V;(s(a))) C Vi_1(t(a)),

foralla e @1 and 1 < j < /4.
Given d = e and Vi, a flag of type d, let V,|e denote its coarsening to a flag of type e. Let

Qde :={(Ve,p) € Fa X Rec | Vale is p-stable}, Qg4 := Qqa- (5.1)

be the space of flags of type d together with suitably compatible quiver representations. There is a

canonical G¢-equivariant isomorphism
Ge x9N = Qae, (9,0) (9 Va.g-p), (5.2)
where Rq := {p € Rc | Vaq is p-stable}. Let
Fa <& Q4 5 Re

be the canonical projections. The first one, 74, is a vector bundle while the second one, 74, is a proper

map. We abbreviate

Fe = |_| Fa, Qc:= |_| 4, Te:=Umg: Qe = Re.

dcc doc

Definition 5.2.5. Let 93 and M3 be the varieties obtained by replacing “p-stable” with “strictly
p-stable” in the definitions of Qg4 and Mg, respectively. Set Qg =| |4 Qg-

Remark 5.2.6. We make a few remarks about the relationship between Qg and Q3.
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(i) The variety Qq is isomorphic to the variety of representations ¢ of @) with dimension vector ¢
together with a filtration by subrepresentations ¢; C ... C ¢y, such that the dimension vectors
of the subquotients form the vector composition d. If we impose the additional condition that

the subquotients in a filtration are nilpotent and semisimple, we obtain Q.

(ii) If the quiver @ has no edge loops and each dimension vector di, ..., dy, in the vector composition

d is supported only at one vertex, then Qg = ng.

(iii) The variety Qg is a generalization of the universal quiver Grassmannian defined in [126].

5.2.3. The Steinberg variety. Given d,e & c, set

3ed = Qe X, A1, 3e=Qc X0, Qe = | | 3ea

d,ecc

where the fibred product is taken with respect to m.. We call 3¢ the quiver Steinberg variety. Let

ed = Qg Xm, Q3 and 3¢ := Q¢ xm, Qg be the corresponding strictly stable versions.

Example 5.2.7. Let Q be the Jordan quiver, ¢ = n and d = (1*). Then RS = N is the nilpotent
cone, Q3 = N = T*(GL,/B) is the cotangent bundle to the flag variety, mq: N = N is the Springer

resolution and 33 4 is the usual Steinberg variety. On the other hand, R, = g = gl,, Qa = g =
GL, xP b and 7q: g — g is the Grothendieck-Springer resolution.

We next define a relative position stratification on Z.. Consider the projection
Ted: ded — Je X Td

C
remembering the flags and forgetting the quiver representation. Given w € ¢Dg, let (’)ﬁ = G -

(ePe, wPq) C Fe X §a be the diagonal Ge-orbit corresponding to w, and set

1A <w _ _ =<
304 =72a(00), 35a= || 3ta 354=354\3¥a (5.3)

where ©v < w stands for the Bruhat order.

<w

[
Lemma 5.2.8. For each w € (Dg, the subvariety 359 is closed in 3e.a, and the inclusion ded < ded

1S an open 1Mmmersion.

Proof. By the usual Bruhat decomposition, we have O3 = | | O2. Hence 3?3 =7, 3(0B) is

1o
Oo
[
w

10
ol
—

uLw

<w

closed in 3¢ 4. Since O% is open in (’)71%, the preimage 3¢ 4 = OA) is also open in 354 O

5.2.4. Cohomology. Below we will always deal with complex algebraic varieties which are also
smooth manifolds or admit closed embeddings into smooth manifolds. Let X be a complex algebraic
variety with an action of a complex linear algebraic group G. We denote by EG the universal bundle
and by BG the classifying space associated to G. The quotient Xg := EG x¢ X = (EG x X)/G
by the diagonal G-action is called the homotopy quotient of X by G. Let H%(X) := H*(X¢) denote
the G-equivariant cohomology ring and HY (X) := He(X¢g) the G-equivariant Borel-Moore homology
of X, with coefficients in C. If Y C X is a closed G-stable subvariety, let [Y] € HF(X) denote its
G-equivariant fundamental class. Given a G-equivariant complex vector bundle V on X let eug(V) =

eu(EG x9 V) € H&(X) denote its top G-equivariant Chern class, i.e., the equivariant Euler class of
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the underlying real vector bundle. More information about equivariant homology and cohomology may
be found in, e.g., [21}22].

We will now introduce notation for various equivariant cohomology groups. Define
Pe = H*(BTc) = (X) Cla1 (i), ..,z (i),
1€Qo

where (i) := eu(0;(¢)) is the first Chern class of the line bundle
B (i) := ETe x*) C. (5.4)

For each d & c, set

Ag =P Ac:=EPAa.

doc

The canonical map BT, — BP4 induces an injective algebra homomorphism
H*®*(BPq4) — H*(BT,)

whose image is Aq. Given any d = e, we use the homotopy equivalence Q4 >~ §q and the fact that
(8a)c. = BP4q to identify
HE (Qae) = HE, (Sa) = Aa.

We next introduce notation for various equivariant Borel-Moore homology groups. Set
Qa:=HJ*(Qa), Qe:=HJ(Qc),  Zea:=H(3ea) Ze:=Hi*(3c)- (5.5)

Since the varieties Qg4 and Q. are smooth, Poincaré duality yields isomorphisms

1%

Qu = HE (Qa) = Aa, Qe = HE(Q0)

Ac. (5.6)

Moreover, set
vy =HE(32q), 2= 25a- (5.7)

dcc

5.2.5. Convolution. We recall the definition of the convolution product from [35]. Let G be a
complex Lie group, X;, X5, X3 be smooth complex G-manifolds, and let Z15 C X7 X X5 and Zs3 C
X2 x X3 be closed G-stable subsets. Let p;;: X1 X X x X3 = X; x X; be the projection onto the i-th
and j-th factors. Assume that the restriction of p13 to Z12 X x, Za3 is proper. Set Z13 = Z12 0 Zaz =
p13(Z12 X x, Zo3). Given c1o € HE(Z15) and co3 € HE (Za3), their convolution is defined as

c12 % €23 1= (p13)«((P12C12) N (P33€23)) € H.G(Zl3)>

where N denotes the intersection pairing. We will often need to compute the convolution of fundamental

classes in the following special case.

Lemma 5.2.9. Assume that Z15 C X1 X Xy and Zs3 C Xo X X3 are complex submanifolds. Further,
suppose that either of the canonical projections Zyo — Xo < Za3 is a submersion, and that the map

Dp13: Z12 X x, Zaz — Z13 is an isomorphism. Then [Z13] x [Za3] = [Z13].

Proof. The submersion assumption implies that the intersection of py (Z12) and pys' (Za3) is transverse
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(see |35, Remark 2.7.27.(ii)]). Hence, by |35, Proposition 2.6.47], we have pi,[Z12] Npss[Zos] = [Z12 X x,
Za3). Since p13, restricted to Z12 X x, Za3, is an isomorphism onto Zi3, we get (p13)«[Z12 X x, Z23] =
[Z13]. O

Let X be a smooth complex G-manifold, let Y be a possibly singular complex G-variety and
let 7: X — Y be a G-equivariant proper map. Set X7 = Xy = X3 = X, Z = Z15 = Zo3 =
X xy X. Convolution yields a product HS (Z) x HE(Z) — HE (Z), which, by [35, Corollary 2.7.41],
makes HE (Z) into a unital associative H®(BG)-algebra. The unit is given by [Xa], the G-equivariant
fundamental class of X diagonally embedded into Z. Next, let X; = Xo = X and X3 = {pt}. Then
convolution yields an action HS(Z) x HE(X) — HE(X), which makes HS(X) into a left HE(Z)-

module.

5.3 Quiver Schur algebras

In this section we define the quiver Schur algebra Z. and construct a “Bott-Samelson basis” for Z..

We deduce that Z. is generated by certain special elements called merges, splits and polynomials.

5.3.1. The quiver Schur algebra. Fix c € I'. We apply the framework of & to the vector
bundle X = Q. on the quiver flag variety ., the space of quiver representations ¥ = R and the
projection m = .. Then Z = 3. is the quiver Steinberg variety, and we obtain a convolution algebra
structure on its Borel-Moore homology Z. = H®(3.) and a Z.-module structure on Q. = HS(Q.).
By , Q. can be identified with the direct sum A, of rings of invariant polynomials.

Definition 5.3.1. We call Z. the quiver Schur algebra associated to (Q,c), and Q. its polynomial

representation.

Remark 5.3.2. Our quiver Schur algebra can be seen as a modification of the quiver Schur algebra
introduced by Stroppel and Webster in [131, §2.2]. There are two differences between our construction
and theirs. Firstly, Stroppel and Webster only consider cyclic quivers with at least two vertices, while
we work with arbitrary finite quivers. Secondly, we use the quiver Steinberg variety 3. while they use
its strictly stable version 35. We will refer to the algebra from [131] as the “Stroppel-Webster quiver

Schur algebra” and denote it by Z5W.

The following standard result follows from the general theory of convolution algebras (see, e.g., [35,
Proposition 8.6.35]).

Proposition 5.3.3. There are canonical isomorphisms
Z. 2 Exte_((me)«Ca,, (1e)+Ca,), Qe = Exte_(Cox,, (me)«Ca.) (5.8)

intertwining the convolution product with the Yoneda product, and the convolution action with the

Yoneda action, respectively.

5.3.2. Merges, splits and polynomials. We will now introduce notation and a diagrammatic
calculus for certain special fundamental classes in Z.. We begin by observing that Z¢ C Z. is a

subalgebra and that there is an algebra isomorphism

ZE = HE (Q0) = A (5.9)
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For this reason, we refer to Z¢ as “the polynomials” in Z.. Next, observe that the fundamental classes
eq = [BE,Q] form a complete set of mutually orthogonal idempotents in Z.. The definition below

introduces two other kinds of fundamental classes, which, following [131], we call “merges” and “splits”.

Definition 5.3.4. Given d > e & ¢, we call
* Aa = [3¢al € Zea a merge,

. Yg = [3gq.e) € Zd,e a split.
We say that a merge or split is elementary if e = Ap(d) (see Definition[5.2.2)) for some 1 < k < £q—1.

We will depict elementary merges and splits diagrammatically in the following way. To the elementary

k
merge 3 @) e associate the diagram
dy + dgy1 d; dr—1 di + di41 L P deg

di di+1 d; di—1 di dit1 dryo dey

and to the elementary split Y%k( a4 the diagram

d. di+1 d; dr—1 d. dr+1 dis2 deg

Y

di +dgy1 d; di—1 dp +dr41 diq2 dey

The diagram on the LHS should be understood as shorthand notation for the full diagram on the RHS.
Multiplication of elementary merges and splits is depicted through a vertical composition of diagrams.
We always read diagrams from the bottom to the top.

We call
di41 d

o=

dj dir+1

a crossing.
Proposition 5.3.5. We list several basic relations which hold in Z..

a) Letd = e = f & c. Merges and splits satisfy the following transitivity relations:
£ £ d d
Ae*ha=Aa: YexYe=Yi-
b) Letdec and 1 < k < {q — 2. Elementary merges satisfy the following associativity relation:

dp +diy1 +diy2 di +dgy1 +dig2

dy dry1 dig2 dy, dit1 diye
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Elementary splits satisfy the following coassociativity relation:

dy dipy1 drgo dy diy1r drge

dp +drt1 +diye di +dey1 +di2

Proof. Part a) follows via an easy calculation from Lemma [5.2.9] Part b) follows immediately from
part a). O

5.3.3. Relation to KLR algebras. We would like to connect the quiver Schur algebra to the well
known quiver Hecke (or KLR) algebra (associated to the same quiver @), defined diagrammatically by
Khovanov and Lauda [88], and algebraically by Rouquier [114]. Let us recall its geometric construction

and some generalizations. Define

Q= || Qa, 3K =R xpm, QKR ZER = HE(35F). (5.10)
QECOIIILC‘

Note that the set Comlfl contains precisely the vector compositions of ¢ of maximal length, i.e., those
parametrizing the types of complete quiver flags. Let ZK'R:s be the strictly stable version of ZKWR
obtained by replacing each Qg with Qf in .

In the case when the quiver Q has no edge loops, it was proven by Varagnolo and Vasserot [137] that
the convolution algebra ZX'R gives a geometric realization of the KLR algebra associated to (Q, c).
Note that in this case Remark ii) implies that ZXK'R# coincides with ZXLR.

The case when @ may contain edge loops was studied by Kang, Kashiwara and Park [81]. They
showed that the convolution algebra ZXR# gives a geometric realization of the generalized KLR algebra
from [82] associated to a symmetrizable Borcherds-Cartan datum.

Let Q be an arbitrary quiver. The following proposition describes ZXR as a subalgebra of Z..

Proposition 5.3.6. The convolution algebra ZK'R is a subalgebra of Z.. It is generated by the poly-
k
nomials 23 4 and the crossings XQ (for d € Coml®! and 1 <k <|c|—1).

Proof. The natural inclusion BELR < 3. is an inclusion of connected components, and hence induces
an inclusion of the corresponding convolution algebras. This proves the first claim. Given d € Comlfl,
let us identify W with the subgroup of Sym| preserving d. It follows easily from Lemma that
Xg = [35,).a) If sk(d) # d and Xg = [33a) if sx(d) = d. But these fundamental classes, together
with the polynomials Z§ 4 2 Ag, generate ZER by (a straightforward generalization of) [137, Theorem
3.6]. O

5.3.4. The combinatorics of refinements. Our next goal is to construct a basis for the quiver
Schur algebra which is natural both from algebraic and geometric points of view. Algebraically, the
basis elements are certain products of merges, splits and polynomials. Geometrically, they will be
realized as pushforwards of vector bundles on diagonal Bott-Samelson varieties. In we develop
the combinatorial tools needed to define the basis. We state the basis theorem in and prove it
in (535

Definition 5.3.7. Given i € Qo, let N¢(i) := {(1,4),...,(c(i),4)}, and set N¢ := [ |;.5 Ne(i). By
a partitioning of c of length n = ¢5 we mean a function A\: No — Z>q such that Im\ = [1,n] :=
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{1,...,n}. Let \; be the restriction of A to N¢(7). Let Par denote the set of all partitionings of ¢ of

length n and let Par. :=| |, <n<le| Par_. The following lemma follows directly from the definitions.
Lemma 5.3.8. There is a bijection between Par. and the set of coordinate flags in V., sending X\ to
the flag Vo with V,. = (vg(i) | (k,i) € A71([1,7])).
Partitionings are related to vector compositions of ¢ through functions
Par, i Com,
P
defined in the following way. If A € Par., then C()\) = (di,...,dy)) is given by dy (i) = I\ (k)| I
e € Comg, then P(e) = \ is given by A\, (k) = {(éx_1(3) + 1,), ..., (éx(4),9)}.
Example 5.3.9. Consider Q,c and d € Com], from Example Let A = P(d). Then

)‘_1(1) = {(1’i1)7 (1’i3)}a )‘_1(2) = {(Z’il)v (3’i1)7 (17i2)}’ /\_1(3) = {(27i3)7 (37i3)}’
)‘_1<4) = {(4’i1)? (2’i2)}7 )‘_1(5) = {<3al2)}

Next, let p € Parﬁ be given by

wo { p {
p3) = {(2,01), (1,d2), (L,43), (3,43) ), p'(4) = {(L,41), (3,01)}-

Then C(u) = (202 + i3,41, 41 + 92 + 213, 207).

We let W, act on N from the left and Sym,, act on [1, n] from the right. This means that Sym,, acts
by permuting places rather than numbers. We get induced actions on Fun(Ng, [1,n]), which preserve
Par], viewed as the subset of Fun(Ne, [1,n]) consisting of surjective functions. Note that the resulting

Sym,,-action on Pary, is free. The following lemma follows directly from the definitions.
Lemma 5.3.10. The functions C and P have the following properties:

a) The function C is surjective and C o P = id.

b) We have Lc(xy = £x and Lpq) = La, for all X € Par. and d € Com,.

c) The fibres of C are precisely the We-orbits in Par.. Hence C induces a set isomorphism
Par./W. = Com,.

d) We have Stabw, (P(d)) = Wq for any d € Com,.

e) The map C|parn is Sym,,-equivariant, for each 1 < n < |c|.

f) We have s;- P(d) = §;- P(s;j-d) with 5; being the longest element in DSA_;_(;), for any d € Com,

and 1 < j <{lq —1 (note that s; € Symeg while 55 € We).

Next, we define a binary operation § on Pare.
Definition 5.3.11. Given \,p € Pare, let Ry = A1 (k)np= (1) and Sy, = {Rk, # 2 | 1 <k <
[Al, T <1< |ul}. We define a total order on the set Sy, by declaring that Ry; < R, , if and only if
r>korr=kandl <s. Wethen define the ordered intersection A ) u = v of partitionings A and g
by setting

“1(m) m-th element of Sy , in the total order defined above, if 1 <m <|Sy .|,
v (m) =
g, if m > |S/\7H




124 5. Quiver Schur algebras and cohomological Hall algebras

One can immediately see that v is in fact a partitioning of c. The operation §} is not symmetric.

However, the following holds.
Lemma 5.3.12. Let A\, u € Par.. Then:

a) ASQu and p §Q A are of the same length and lie in the same orbit of Symgmu.
b) C(A§ ) = C(N) (but in general C(A §Q 1) # C(u)).
¢) Stabw, (A Q ) = Stabw,_ (A\) N Stabw, (1).
d) w-AQp) =(w-A)§ (w-p) for allw e We.

Proof. Part a) follows immediately from the fact that the sets Sy, and S, are the same if we
forget their orderings. Part b) is obvious. For part c), observe that if v € Par. then Stabw,(v) =
Ni<r<e, Stabw, (¥~ (r)), where Stabw, (v~ (r)) is the subgroup of W, fixing v~"(r) setwise. If z € We
stabilizes all the subsets A71(k) and p~1(1) then z also stabilizes all their intersections Ry ;. Hence it
stabilizes A {3 p. Conversely, note that Sy, is a partition of the set N¢, which refines the partitions
Sx,xand S, ,. Hence, if x stabilizes all the sets Ry, ; in S ,, then it must also stabilize all the preimages
A7L(k) and p=1(1). Part d) is clear. O

Example 5.3.13. Suppose that @)y is a singleton. We can then identify I' with Z>(. Let ¢ = 8 and
take A = [1,2,3][4,5][6,7,8] and u = [1,2,4,5][6,7][3,8]. This notation means that, e.g., u=1(1) =
{1,2,4,5} and p~1(2) = {6,7} and p~*(3) = {3,8}. Then

A Sy =[1,2][3][4,5][6,7][8], p§2 A= I[1,2][4,5][6,7][3][8].

Again suppose that @ is a singleton, and take ¢ = 10, A = [3,5,6][1,4][2,8][7,9,10] and pu =
[1,5,9,10][2,3,4,6,7,8]. Then

A § = [5](3, 6][1][4][2, 8][9,10][7],  p §2 A = [5][1][9, 10]3, 6][4][2, 8][7].

We see that A §Q p and p 2 A are of the same length and differ only by a permutation.

Example 5.3.14. Suppose that @ is the Az quiver from Example (.2.33] and ¢ = 51 + 4is + 3is.
Let A be given by A1 (1) = {(L, 1), (2,1), (3,i2), (1,3s), (2, i)}, A2(2) = {(L,2), (2,42), (3,5)} and
AL(3) = {(4,41), (5,41), (3,42), (4,i2)}. We assign the colour black to vertex iy, blue to iy and red to
i3 and rewrite A in the following more readable notation: A = [1,2,3,1,2][1, 2, 3][4,5, 3,4]. Let p be a
second partitioning given by p = [1,4,1, 3,4, 3][2,3,5,2,1,2]. Then

A = 11[2,3,1,2][1,3][2][4,3,4][5], 2 A= [1][1,3][4,3,4][2,3,1,2][2][5]

C
Definition 5.3.15. We call a triple (e,d,w), consisting of e,d € Com, and w € ¢Dq, an orbit
datum. This name is motivated by the fact that orbit data naturally label the G¢-orbits in §Fe X §e.
Abbreviating A = P(e) and u = w - P(d), we also define

—CAQp), di=CuaN.

By Lemma [5.3.12|b), € is a refinement of e and a is a refinement of d. By Lemma [5.3.12|a), the
partitionings p 3 A and A § p are of the same length n and lie in the same orbit of Sym,,. Since the
Sym, -action on Par, is free, there exists a unique permutation u € Sym,, which sends A § u to u §3 A

We call the triple (€, d, u) the refinement datum corresponding to (e, d, w).
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Example 5.3.16. Let Qg be a singleton, ¢ = 8, e = (3,2,3), d = (4,2,2) and w = s3548586. Then

A= P(e) =11,2,3][4,5][6,7,8] and p = w - P(d) = [1,2,4,5][6,7][3, 8], i.e., A and p are as in the first
case considered in Example |5.3.13] Hence € = (2,1,2,2,1), a =(2,2,2,1,1) and u = s3s9 € Sym;.

Example 5.3.17. Let @ be the A3 quiver, ¢ = biy + 4iy + 3is, € = (3i1 + 2i3, 2i9 + i3, 241, 2i2),
d = (2i1, 3i2 + 13,31 + 42 + 2i3) and w = (s352)(S253)(s251) € We = Symg x Sym, x Syms. Then A =
P(e)=11,2,3,1,2][1,2,3][4,5,3,4] and p = w- P(d) = [1,4,2,3,4,3][2,3,5,1,1,2], i.e.,, A and p are as
in Example[5.3.14] Hence @ = (i1, 2i1 +2is, ia+is, i, i1+2is,11), d = (i1, ia-+is, i1+ 2in, 201 +2is, 2, 1)
and u = s38284 € Symg. We rewrite the vector compositions € and a in the following more readable
notation

~

e=(1,242,141,1,142,1), d=(1,14+1,14+2,2+2,1,1).

Again, we see that € and a are of the same length and differ only by a permutation.

Lemma 5.3.18. Let A = P(e) and p = w - P(d) as in Definition|5.3.15. Then P(€) = A §) p.

Proof. A partitioning v is in the image of P if and only if for all 1 < r < ¢, — 1,7 € Qo and
(z,4) € v; *(r), (y,i) € v~1(r + 1), we have = < y. Since X is in the image of P, and w is a shortest
coset representative, A § u satisfies this condition. Hence A ) u = P(f) for some f € Com.. But
then P(€) = PoC(AQ ) =PoCoP(f)=P(f) = A p. O

Definition 5.3.19. Given a refinement datum (€, a, u), let us choose a reduced expression u = s;, -
...+ 8, where k = £(u). Set u; = s, - ... sj, and let e* = w(€), e*~1 = A;,(e?72), for 1 < <k,

with €® = @. Observe that e2F = a We call (e°,...,e%) a crossing datum associated to (&, a, u).

The following diagram illustrates the relationships between the different vector compositions in a
crossing datum. Vector compositions in the same row (possibly except for e and d) are of the same
length.
2k—1 d

Yoo Yy o7 ¥ i
e2k

@

Example 5.3.20. Consider the first case from Example [5.3.16| Given the reduced expression u =
5382 € Syms, we have e! = (2,3,2,1), €? = (2,2,1,2,1), e = (2,2,3,1). Next, consider Example
5.3.17l Given the reduced expression u = s3sas4 € Symg, we have et = (1,2 + 2,1+ 1,1 + 3,1),
e?=(1,2+2,1+1,1+2,1,1), e3> = (1,2+1+3,1+2,1,1), e* = (1,1 + 1,2+ 2,1+ 2,1,1) and
e =(1,1+1,3+2+2,1,1).

We will now explain the connection between w € W and u = s, - ... s;, € Sym,,. Let w; denote

the longest element in Diziil and let w=wy - ...  wg.
Proposition 5.3.21. The following hold:
a) L(u) = L(wy) + ...+ L(wy) and wy - ... - wy € DSy, for all 1 <1 < k.

b) u=w.

¢) Weo = We N (wWqw™1).

Proof. We start by proving the first statement in part a). To simplify notation, we assume (without
loss of generality) that Qg is a singleton. We divide the interval [1, c] into blocks (i.e. subintervals) of
size €1,...,€,. Let B1,..., B, be the blocks. The permutation u acts by permuting these blocks. Let
Inv = {(i,j) € [1,¢]? | i < j, u(i) > u(j)} and Invg = {(i,j) € [1,n]* | B; < Bj, u(B;) > u(B;)}.
The length of @ equals the number of inversions, i.e., £(@) = |Inv|. Since @ permutes blocks but does

not change the order inside blocks, we have |Inv| = 3" 1, € -€;. We can identify each inversion
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(,7) in Invp with some simple transposition s;, in the reduced expression u = s;, -...-s;j,. But then
€; -€; = {(w;), proving the statement. For the second statement in part a), note that wy - ... w; also
permutes blocks but does not change the order inside blocks. But any x € W2 permutes numbers
within blocks, increasing the number of inversions. Hence f(w; - ... w;-x) > €(wy - ... w;), which
implies that wy - ... -w; € Dgzl

Let us prove part b). We have the following chain of equalities
w-Pd)=w-P(d) Ple)=u-P@) =i-Pu-&)=iu-Pd). (5.11)

For the first equality, note that d = C(w - P(d) § P(e)) = C(P(d)  w~' - P(e)). Hence, switching
the roles of e and d in Lemma we get P(d) = P(d) Q w=! - P(e). After acting on both sides
by w we get the first equality. The second equality follows directly from the definition of u, while the
third equality follows from a repeated application of Lemma f). The final equality holds since
u-e=u-C(P(e) Qw- P(d)) = C(u(-P(e) Qw- P(d))) = C(w- P(d) § P(e)) = d. The claim that
% = w now follows from (5.11)), the fact that Stabw, (P(d)) = W5 and that both w and @ are in DC

Part ¢) follows from the following chain of equalities
Weo = Stabw, (P o C(A § 1)) = Stabw, (A §2 1) = We N (wWaqw™ 1),

where A\ = P(e) and u = w - P(d). The first equality follows from the fact that, by definition,
e’ =e=C(\§ p), and Lemma [5.3.10ld). The second equality follows from Lemma [5.3.18| while the

third equality follows from Lemma ¢) and Lemma [5.3.10}d). O

We have so far treated the ordered intersection operation {3 on partitionings as a combinatorial
device. However, as indicated in Lemma partitionings also have a geometric meaning since they
correspond to coordinate flags in V.. Based on this observation, we will extend the operation §? to all

flags in §e.

Definition 5.3.22. Let F = (Fi)fio € §e and F' = (Fj)jio € §a be two flags. Let R;; = F; N Fj
and Sppr = {R;; |0 <1i</ls, 0<j<{lq}. We put a total order on the set S by declaring that
R, ; < R, if and only if 7 > ¢ or r = ¢ and j < s. We then define the ordered intersection F ) F' of
flags F' and F’ by setting (F' §3 F')m to be the m-th element of Sp p with respect to the total order

defined above, and deleting all the repeated occurrences of subspaces.
It is clear that F' ) F’ is a flag in §.. Moreover, if (F, F') € O2 then F ) F' € Ss-
Lemma 5.3.23. Let p € Re. If F € Fe and F' € Fq are p-stable, then so are F §Q F' and F' ) F'.

Proof. Since F' and F" are p-stable, each intersection R; ; = F; N F] is preserved by p, which implies
that F' §Q F' and F’ §) F are also p-stable. O

5.3.5. Basis and generators. In this section we state a basis theorem for the quiver Schur algebra

and use it to find a convenient generating set for our algebra.

Definition 5.3.24. Let (e, d, w) be an orbit datum with the corresponding refinement datum (€, a, u).
Let us fix a reduced decomposition v = s, -...-s;,, which determines the corresponding crossing datum
(€, ...,e?*). Define

d—e = Ag* ez* *XeZk*Yd GZed
w

g0
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Given ¢ € Z;k@% = Ag2k, also define
c e J1 Jk ek
d=e = AorAg T et *cxYq € Zed- (5.12)
w = = e d
We now state the basis theorem for the quiver Schur algebra.

Theorem 5.3.25. If we let (e, d,w) range over all orbit data and c range over a basis of Mgz« then
the elements d == e form a basis of Ze.
Remark 5.3.26. We make a few remarks regarding the theorem.

(i) The basis in Theorem [5.3.25| depends on the choice of a crossing datum, i.e., the choice of a
reduced expression for u. One would also obtain other bases by letting ¢ range over a basis of
Z&y1 gu, for any 1 <1 <k, and redefining the elements (5.12) appropriately.

e

(ii) The basis in Theorem is natural from a geometric point of view. As we will see in
it is related to certain generalizations of Bott-Samelson varieties. For this reason, we call it a
Bott-Samelson basis of the quiver Schur algebra. Our basis also admits a natural interpretation
in terms of cohomological Hall algebras (see Theorem .

(iii) Theorem is analogous to the basis theorem [131, Theorem 3.13] for the Stroppel-Webster
quiver Schur algebra. However, the combinatorics of residue sequences developed in [131] is not
sufficient to correctly characterize the refined vector compositions used in the definition of the
basis. Our combinatorics of partitionings (§5.3.4) fixes this problem.

Using Theorem [5.3.25] we can find a generating set for the quiver Schur algebra.

Corollary 5.3.27. Elementary merges, elementary splits and the polynomials Z$ generate Z. as an

algebra.

Proof. This follows directly from Theorem [5.3.25 and Proposition [5.3.5 O

5.3.6. Proof of the basis theorem. We begin by proving four technical lemmas. Set O, :=
PewPq/P4. Consider the following parabolic analogue of the Bott-Samelson variety:

%Gg,gﬁw = Pg XPEO Pg1 Xpe2 . Xpe%_2 P§2k71 Xpe% PQ/PQ.
We have a commutative diagram

PEX Pgl XPESX...XPemc—l XPQL) GC

canll lcang (5.13)
BGed,w Sd

where m is the multiplication map and ¢ is the induced map.

Lemma 5.3.28. The map ¢ is proper, its image equals O, and it restricts to an isomorphism

over Q.

Proof. The proof is similar to the proof for the usual Bott-Samelson resolution, where the parabolics
Pe and Pq are replaced with a Borel subgroup. Since we could not find an explicit reference, and since
the proof relies on the combinatorics from we sketch it below.

It is clear that can; and cany are proper. The multiplication map (G¢)**2? — G is proper and

hence its restriction to the closed submanifold Pe X Pg1 X ... X Pg2s—1 X Pq is proper as well. Since can;
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is a locally trivial fibration, and properness is a local property, it follows that ¢ is proper, as required.

This proves the first statement in the lemma.

By the Bruhat decomposition, we have

P§2171 = |_| chPEZZ.

20—-1

meDim
Proposition [5.3.21]a) implies that
Pzt - Peziin = | ] BeaPgais = | ] BeaPgaita.
repsl” P €D
By induction and Proposition b), we get
Po-Pei-...-Pguici -Pa= | | PezPa. (5.14)

c
r<wE€eDg

This implies that the image of cany o m is O,,. Since can; is surjective, this is also the image of ¢.

This proves the second statement of the lemma.

Next, we claim that

PewPa = | BeywPa= | | BeywPa. (5.15)
yEWe yeDi0

Let us first show that the union on the RHS of (5.15)) is disjoint. Suppose that y;w = yawzx for
some Y1,y € Dﬁo and x € Wq. Then y;1y1 = wzw~!, which, by Proposition |5.3.21|c), implies that
y;lyl € We NwWqw ™ = Weo. Hence y; = yo, so the union is indeed disjoint. The first equality in

(5.15) follows from the Bruhat decomposition of Pe and the fact that w € ¢Da. Next, if y € We, we
can write it as y = ab with a € DS, and b € Weo. But then ywPgq = awPgq, which yields the second

equality in ([5.15)).
Given y € DEO, let I_'ny = U,y x le—1U)1 X ... X Uw;nuk. Set U = LlyEDio Tj'y and U = canl(l_'N]).

It is easy to check that m maps ﬁy isomorphically onto U(y,)-1yw. It is also well known that the map
U(yw)*1 X PQ — chwpgv (U7p) — U(yw)p7

is an isomorphism. Hence cang o m maps U isomorphically onto O,,. By the commutativity of the
diagram (5.13)), ¢|y is also an isomorphism onto O,,. An easy argument again based on the Bruhat
decomposition also shows that U = ¢~1(0,,). This completes the proof of the lemma. O

Let 02 := G - (ePe, wPq) be the diagonal G.-orbit corresponding to w and define
A
%Gg,g,w = 3790 X3§1 ng Xf‘§§3 X3§2k71 8:92k.

Let p: %6§g7w — Seo — Je and g: BGL — Se2¢ — Ta be the canonical maps. Set ¢ := p X q.

ed,w
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Consider the following diagram of G¢-equivariant maps.

BELy . —2 Fo X Ta

e, d,w

N o

Lemma 5.3.29. The map ¢ is proper, its image equals O

2, and it restricts to an isomorphism
A
over Oy

Proof. 1t is easy to check that p is a locally trivial fibration with fibre BGe 4. Let F. = p~!(ePe/Pe).
Lemma implies that |, is proper, ¢¥(F.) = {(ePe¢/Pe,z) | # € O, } and that the restriction of
Y to F, Ny~ 1(O%) is an isomorphism onto {(ePe/Pe, ) | € O, }. The lemma now follows from the
fact that v is Ge-equivariant. O

Next consider the following iterated fibre product
— A
%697g7w = QEO XQ§1 Q§2 ngs e XQ§2k71 ngc.

The closed points of %6

conditions) together with a quiver representation p with respect to which each flag is stable. This
~ —A

implies that ¢ lifts to a map 1: BS, 4, — 3ea (sending (FO,... ,F? p) — (FOg, F?*|q,p)), iec.,

there is a commutative diagram

o.d,w correspond to sequences of flags F 0 F2 ..., F?F (satisfying appropriate

BEoq. — ' 3ed

e Ted (5.16)
e ) l

BSE

ed,w
where 7o g is the map forgetting the quiver representation.

Lemma 5.3.30. The map 1/) 1s proper, its image is contained in 38 d and it restricts to an isomor-

phism over 3% 4

Proof. Tt is easy to see that %6
over §e X §d. S0 1/) is the restriction of a base change of a proper map to a closed subset, and is
therefore proper. By Lemma Imy = , SO Imw - ﬂ'e_(lj((’)A) ng

It remains to prove the third statement. Let (F,F',p) € 3¢4. By Lemma we know
that there exists a unique sequence of flags (F°, F2, ... F?F) ¢ ‘BGe 'a. Such that F = F°|g and
F' = F?*|4. Since FO = F § F' and F?* = F' ) F, Lemma implies that FO and F2* are

is a closed subset inside the fibre product of %69 dw and 3ed

e d,w

p-stable. Let 1 <1 < k—1. Since F'? is in relative position wi-...-w; to FO, F?F is in relative position
Wity - ... wy to F2 and, by Prop081t10n l(w) = E(wl cawy) F L(wigy - wy), F2 s also

p-stable. Hence (F°, F2,... F?t p) ¢ %Ge d,w and SO 1/) is surjective. This clearly implies that 7,[1 is

an isomorphism. O
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We have the following Cartesian diagram.

L <
Jeda — 34
) ¥
- A

Let qo: Qe0 X Qg2 X ... X Qe2t —+ Ne2r be the canonical map.
Lemma 5.3.31. Let B(Aqo) be a basis of Ago = HE*(Qq0) and ¢ € B(Ago). Then:

~ —A .
a) ¢* (ch N [%Gg,g,w]) = Q :w> €.
b) {ti(d == e)|c€ B(Ago)} is a basis of 234

Proof. The first part of the lemma follows directly from Lemma and the fact that

A
~Y e [ [ e [
BGedw = e e0 X0 3e0 et X9 3ot g2 XQg2 + -+ X2k 392"'*1,92’“ X9k dezk g

For the second part, we have

c 7 /% o=A Tk ok <A % - w
LT (Q :w> 9) = Lﬂ/’*(‘]ocm [%Gg,g,w]) = 1/1*L2(QOC N [%Gg,g,w]) = ’l/)* (QOC N [’l/) 1( g,é)]%
where the second equality follows by proper base change. It now suffices to check that g5cn [{/}1( ed)]
form a basis of HZ_ (b= aa)). Since the variety =1 o a) is an affine bundle over 05 = G /(w™Pewn
Pa), which itself is an affine bundle over §qo, the restriction of ¢ to 15_1( o g) is a homotopy equiv-
alence. Hence the map Ago — HE_ (Y ed)) sending ¢ — ggeN [hL( oa)| 18 an isomorphism, and

sends the basis B(Ago) to a basis of HE_ ("' (3% 4)), as required. O
We are now ready to prove Theorem [5.3.25

Proof of Theorem[5.3.25, Refine the Bruhat order on (D4 to a linear order, which we denote by <.

C

. 4 g . . .
Given w € ¢Dg, let 355 := | S g 3u 4 and 33 = 3-54\3%,4. Consider the inclusions
ed e.d Dasuw Yed e,d e,d \Je,d

%

Ca 354 38 (5.17)

s

It follows from Lemma that ¢ is an open embedding and j is a closed embedding. Since the
odd cohomology of Sgg and ngfi vanishes, the long exact sequence in Gc-equivariant Borel-Moore

homology associated to ([5.17)) becomes a short exact sequence of H¢_(pt)-modules

0— HE(33%) — H,Gc(sgg) — HE*(3%4) — 0.

Since, by equivariant formality, the HZ_(pt)-module HS( oa) is free, the short exact sequence splits.

Arguing by induction on the refined Bruhat order, we conclude that

Zed = @ Zela- (5.18)
wEeDg

€eD

By Lemma [5.3.31} the elements d == e € Z. 4 (c € B(Agqo)) pull back to a basis of Z2. Therefore,
» ed d ed
(5.18) implies that, if we let (e,d,w) range over all orbit data, the elements d == e indeed form a

w
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basis of Z.. 0

5.4 The polynomial representation

In this section we compute the polynomial representation of the quiver Schur algebra Z., and use it
to show that Z, gives a geometric realization of the “modified quiver Schur algebra” from [99], thereby
connecting Z. to the affine ¢-Schur algebra. We also give a complete list of relations for the quiver

Schur algebra associated to the A; and Jordan quivers.

5.4.1. Tc-equivariant cohomology and localization. We first recall some facts about T.-

equivariant cohomology of flag varieties. By [134, Theorem 3], there is a ring isomorphism
Pq: H*(BT.) ®pe(pc.) HE, (Fa) = H (Fa), a®br (v7a)(13D),

where 7y, is the projection of Fq onto a point and 2 is the canonical map (F4)1, — (Fa)c.- Let us write
a polynomial f in variables x;(¢) as f(Z). We abbreviate x; (i) := ®4(z;(1)®1) and f(¥) := ®a(10f(Z))
(we substitute variables y; (i) for z;(7)).

Definition 5.4.1. For d > e, we define the following polynomials in Aq:

tasy  d(d) c(4)

sa:= ][ I 1 I[I @@ —a(@), sg=

A it
Qo =l ()41 1=d, (i) 1

(5.19)

& [

Note that Sq is indeed Wq-invariant and Sﬁ is a polynomial. Explicit examples of these polynomials
for specific quivers and dimension vectors can be found in [99, £8].

It is well known that the fixed points 3} are parametrized by D§. Given w € Dg, let 4,,: {w} — Fa
be the inclusion of the corresponding ﬁxedipoint, and let ¢, = [w] cH Je(Fa) denote the Tc-equivariant
fundamental class of this fixed point.

The theorem below summarizes the key facts about the Tc-equivariant cohomology of flag varieties.
Theorem 5.4.2. The following hold:

a) The T¢-equivariant cohomology of Fa is equal to the quotient

Ht (Sa) = (Pe ® ®a(Aa))/1,

where I is the ideal generated by p(y) — p(Z) as p ranges over all We-invariant polynomials of
positive degree.
b) The pullback iy,: Hy (Fa) — H*(BT.) is given by

b2 (D) = 2;(0), i, (f(7) = f(@).
c) The Te-equivariant Euler class of the normal bundle to the fixed point w is given by
eut, (T{w18a) = w - Sq.
Proof. See, e.g., [134, Theorem 11]. O

Next, we recall the localization theorem for equivariant cohomology (see, e.g., [22]). Let K. denote
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the fraction field of P. = H*(BT,).

Theorem 5.4.3. Let X be a smooth quasi-projective T.-variety and let Y be the set of connected
components of the fixed point set X e. Suppose that Y is finite. Then the maps

Ke @p, Hy (X) 5 Ke @p, H3 (XT) 5 Ko @p, HE (X)
are isomorphisms and
iy )50 (1
w3 iz
i euT. (T, X)
for allu € Hy (X). Herei: XTe — X and iy: y — X are the natural inclusions.

5.4.2. The polynomial representation. In this subsection we describe the polynomial represen-

tation Q¢ of Z.. The following result is standard.
Proposition 5.4.4. The Z.-module Q¢ is faithful.

Proof. The proof is standard - similar proofs may be found in, e.g., [138, Lemma 1.8(a)] and [136]
Proposition 3.1]. Therefore we restrict ourselves to summarizing the main idea of the proof. Consider

the following commutative diagram.

ICC P, H.T°(3c) —— ICC P, Ench (HJ—C(QC))

| [
HT(3e) —————— Endp, (HI*(90)

| I

HEC (3c) EE— EndHfC (pt) (H(.;c (Dc))

It is well known (see, e.g., [22, Proposition 1]) that a is injective. Since the T.-variety 3. is equivariantly
formal, b is injective as well, and the injectivity of ¢ follows from a direct calculation of the convolution
product on the torus fixed points. Since the diagram is commutative, we conclude that the lower

horizontal map must be injective, as required. O

We will now calculate the action of the generators of the quiver Schur algebra on its polynomial

representation. As preperation, we first compute the Euler classes of certain normal bundles.

Definition 5.4.5. For d - e & ¢, we define the following polynomials in Ag:

tass  d,(i) c(j)

Bar= [[ I I II @) -m@).  E5=

, (5.20)

& &

where a;; is the number of arrows from vertex ¢ to j.

It is easy to see that Eq is Wg-invariant and E% is a polynomial. Explicit examples of these

polynomials can be found in [99) §8].
Lemma 5.4.6. We have eug,(Ta,Q4,(c)) = Ea-

Proof. We identify Tn, Q4 (c) = Ge x4 (Re/Ra) and (Ge x4 (Re/Re))c, = (Re/Re)py- The pullback
of the latter vector bundle on BP4 along the canonical map BT, — BPg4 equals (Re/Re)T.. Observe
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that
La_1 d, (4) c(4)
O/ P D D D |
1,j€Qo T=1

§) @ By, (1)) %3,
k=d,_1(i)+1 l=d,(j)+1

where 2;(j) is the line bundle from (5.4). By definition, the T¢-equivariant Euler class of the bundle
on the RHS equals Eq. Since Euler classes commute with pullbacks, it follows that

eug, (Ta.Q4,(c)) = eut.((Re/Re)1.) = Eq,
as desired.

We also need the following “shuffle operator

z = Z w € We.

wEDi
Theorem 5.4.7. Letd - ecc
a) The action of \§

4 on Qc = A¢ is given by

e e E(gi e

A5 A — Ao, fro My R AS la, =0
d

b) The action of Y&

e is given by the inclusion

if b#d.

YeihewAa, fof Yol =0 i bte

c) The action of Z4.a on Ay is trivial unless b = d. In the latter case, if we identify Zg 4 = Aa
as in , then Z3 4 acts on Aa by usual multiplication

Proof It is obvious that A\ |, =0 unless b =d. In the latter case, we observe that 3¢ 4 X, Qa =
¢d = Qq and that, under this identification, pi,(Ag) Np3sf = f (with pi; as in §5.2.5). Hence \gxf
equals the pushforward of f along the canonical map p13: Q4 — Qe, which factors as follows

L q
P13 Qg — Qg_’e —» 0
We first compute ¢4

(5.21)
By [35, Corollary 2.6.44], we have ¢, f = eug, (Tn Qd.e)f. The short exact
sequence 0 — T Qe (c) = T042d,(c) = T0qaQd,e — 0 implies that
eug, (T Qd.e) = euc, (T0,94,(c)) /6. (Ta,Qe,(c))
It now follows from Lemma [5.4.6] that

L*f:Eif.

(5.22)
We will next compute g.h, where h:=Ejf. Since Qq.e = §a X5, Qe calculating the pushforward
¢ reduces to calculating the pushforward along g: 4 — Se. By Theorems [5.4.2) and [5.4.3] we have
. (iw) 13, ((9)) w - h(T) 1 v-h(Z)
M= D o Tga) — 2 G u),
d) “hd ueDe - Se

e Suv
v.

w€D§ euT. (Tws
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since v - S = Se. Let g(¥) := G« (h(¥)). Since §.(yv = Cu, We have

. 1 v-h(Z
o =Y oy M
u€Dg = veDs d

On the other hand, Theorem implies that

9@ =Y () (9(9)) _ 3 M@.

wepe SUTe (Tugf) wepe - Se

Hence

8

o) = 3 v MO

s -
vED% Sd

Combining (5.22) with (5.23]) yields the first part of the theorem.

An argument analogous to the one at the beginning of the proof shows that Yg |, = 0 unless

(5.23)

b = e, and that convolving Yg with a function f € A, is the same as taking the pullback with respect
to . A calculation using the localization theorem, similar to the one above, shows that ¢* is given
by the inclusion of the invariants A¢ < Aq, while the second pullback ¢* is just an isomorphism. This
yields the second part of the theorem. The third part is standard - see, e.g., [35, Example 2.7.10(1)]. O

We will now relate the action of the merges to Demazure operators.

Definition 5.4.8. Given s;(i) € W, let

1—s;(1)
Aj(i) = —— 1
M= D e
be the corresponding Demazure operator. Given d > e & c, let wi be the longest element in Di.

Choose a reduced expression wi =5j,(i1) - ...+ 5j,(ix) and define
AE = Aj1 (Zl) 0...0 Ajk (Zk)

It is well known that Ag does not depend on the choice of reduced expression for wg. Let rg = |[R —R]|
and rq = RS — RY|.

Proposition 5.4.9. We have an equality of operators
mi(si)*l = (—1)TQA§.
Proof. See |99} Proposition 8.13]. O

5.4.3. Application: geometric realization of the modified quiver Schur algebra. We now
deduce some consequences from Theorem [5.4.7] in the special case when @ is the cyclic quiver with
at least two vertices or the infinite (in both directions) linear quiver A, connecting our quiver Schur
algebra Z, to exisiting constructions.

Miemietz and Stroppel introduced in |99 Definition 8.4] a modified quiver Schur algebra. Let us
denote it by ZM9 (in |99] the notation Cj is used). It is defined, purely algebraically, as the subalgebra
of End¢(A.) generated by certain linear operators, called idempotents, polynomials, splits and merges.
These operators are defined by explicit formulas. We will refer to them as “algebraic”, in order to

distinguish them from the fundamental classes in Definition [5.3.4]
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We must first deal with a minor technical issue. The algebraic merges are defined using “reversed
Euler classes”, denoted in [99] by Ey,, and “symmetrisers”, denoted by Sy, (see [99, (8.1-2)]). Both
of them are given by certain product formulas. We define sign-corrected algebraic merges to be the
operators obtained by multiplying E,,, and S,,, by —1 if number of factors in the corresponding product
is odd.

The main result of [99] says that the geometrically defined Stroppel-Webster quiver Schur algebra
Z5W s, after completion, isomorphic to the affine g-Schur algebra [66], which naturally appears in
the representation theory of p-adic general linear groups. The proof of this result relies on the fact
that both of these algebras are isomorphic to the modified quiver Schur algebra ZM<. The following
theorem shows that ZM* also admits a geometric realization as a convolution algebra, and that this

realization is afforded by our quiver Schur algebra Z..

Theorem 5.4.10. There is an algebra isomorphism Z. = ZM3. Ezplicitly, this isomorphism sends
Yg, Ai, ea and a polynomial in 23 4 (where d = e & c) to the corresponding algebraic split, sign-

corrected merge, idempotent and polynomial, respectively.

Proof. Corollary says that Y§7 Ai and Z§ 4 generate Zc. In fact, the corollary makes the
stronger statement that it is enough to take polynomials together with elementary splits and merges
to get a generating set. However, since the definition of ZM9 involves arbitrary algebraic splits and
merges, we only need the weaker form of Corollary [5.3.27) here. By Proposition [5.4.4] the polynomial
representation Q. = A, of Z. is faithful. Hence Z. is isomorphic to the subalgebra of Endc(Ac)
generated by the linear operators representing splits, merges and polynomials. To complete the proof,
one only has to compare the description of these operators from Theorem with the definition of
their algebraic counterparts in [99, Definition 8.4]. O

Corollary and Theorem directly imply the following statement about the generators

of the modified quiver Schur algebra ZM* | which is not obvious from its algebraic definition.

Theorem 5.4.11. The modified quiver Schur algebra ZM*® is generated by algebraic polynomials and

elementary algebraic splits and merges.

Note that combining Theorems [5.3.25| and [5.4.10] also gives us a basis of ZM5.

Moreover, we can relate Z. to the Stroppel-Webster quiver Schur algebra.

Theorem 5.4.12. Let Q be an arbitrary quiver. Then our quiver Schur algebra Z. is isomorphic to
the Stroppel-Webster quiver Schur algebra Z5W = HE(3%).

Proof. The definition of the modified quiver Schur algebra ZM together with Theorem |5.4.10, gen-
eralize straightforwardly to arbitrary quivers. We also observe that the proofs of [99, Propositions 9.4,
9.6] do not depend on the choice of cyclic quiver, and hence generalize to arbitrary quivers, yielding

the desired isomorphism. O

5.4.4. Examples: the A; and Jordan quivers. In this subsection we discuss the examples
of the A; quiver (i.e. one vertex with no arrows) and the Jordan quiver. It is well known (see,
e.g., [88./1141/121]) that the corresponding KLR algebras are isomorphic to the affine Nil-Hecke algebra
and the degenerate affine Hecke algebra, respectively. While it is quite hard to give a presentation by
generators and relations for the entire quiver Schur algebra, even for the A; and the Jordan quiver,

we are able to give a complete list of relations for the following subalgebra.

Definition 5.4.13. Let Z. be the subalgebra of Z. generated by all merges and splits. We call it the

reduced quiver Schur algebra.
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We first consider the case where @ is the A; quiver. Let d = e = c¢. Note that since the quiver has
only one vertex, c is just a positive integer and d and e are compositions of this integer. Since the
quiver has no arrows, Eﬁ =1 and AE = mi(sg)—l. Therefore, by Lemma we have Ai = Ai,
i.e., merges coincide with Demazure operators. Let us look at the special case when d = (m,n) and
e = (c) = (m+n). Then

m m—n m m-+n
SE = Sg = H ((El — {L‘k), Ai = Z H H w - (l'l — xk)_l. (524)
k=1l=m+1 weD;k:l l=m+1

We will now give a complete list of defining relations in the reduced quiver Schur algebra. We call

di + di41
AN
dy divr = 0 (R3)
he
di + drt1
the hole remowal relation, and
dr +dr+2 dig1 +diss dr +dr+2  dis1 +diss
N A
di +dry2  drys diy3 dz diy2 diy1 + diss
dp +dgs1 +drye dias = dp  digy1 +deg2 +dirgs (R4)
di +dr+1 drs2 diy3 dz diy1 diy2 + diss
Y >
dp +diyr diye +dias dp +diy1 dpye +dras

the ladder relation.

Theorem 5.4.14. The reduced quiver Schur algebra Z! associated to the Ay quiver is generated by

elementary merges and splits, subject to the relations (R1)), (R2), (R3) and (R4).
A detailed proof of Theorem [5.4.14] can be found in [127]. Below we will sketch the main ideas of

the proof. We first need to recall some material about the green web category oco-Web,, from [135].
Definition 5.4.15. We define a certain full subcategory %, of the green web category co-Web,,.

a) One first defines the free web category €. Its objects are compositions of ¢ and its morphism
spaces Hom(gcf (d,e) are generated by elementary merge and split diagrams (which we denote
by AE and Yg, respectively) via vertical composition.

b) We define a filtration on the morphism spaces by setting deg Ai = deg Yg = dg + dp4q if
d>eccand e = Ag(d) for some 1 < k < {4.

c) The category %, is the quotient of € obtained by imposing certain relations on morphisms,

called the associativity, coassociativity, digon removal and square switch relations [135] (2-6)-

(2-8)].
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We remark that co-Weby, is defined in [135] as a C(g¢)-linear category. For our purposes, however, it

is enough to work with the C-linear category obtained by setting ¢ = 1.
Consider the filtered algebra

Mor (€)= @ Homg(d, e).

d,e€Com,

Let Iy, be the kernel of the canonical map Mor(%/) — Mor(%.). We endow I, with the subspace
filtration and Mor(%,) with the quotient filtration. Then the sequence 0 — I, — Mor(%J) —
Mor(%,) — 0 is strict exact and so, after taking the associated graded, we obtain the short exact

sequence
0 — grI4, — grMor(€) — grMor(%,) — 0. (5.25)

Note that the rule in Definition [5.4.15b) also defines a grading on Mor (%), so Mor(%.) is isomorphic
as an algebra to its associated graded gr Mor(%).

Proof of Theorem[5.4.14 Firstly, we need to check that the relations — hold in Z/. By Propo-
sition the relations and hold in any quiver Schur algebra (associated to any quiver).
Relations and follow easily from the properties of Demazure operators.

Secondly, we need to check that the relations (RI))-(R4) generate all the relations in Z.. Let z!
be the quotient of the free algebra f g":, generated by elementary merges and splits, by the ideal I.
generated by the relations — so that we have a short exact sequence

01— Z,— Z. - 0. (5.26)

It follows from the definitions that grMor(%}) = Mor(€/) = /Z/. One also easily sees that after
taking the associated graded the relations (2-6)-(2-8) from [135] become the relations (R1)-(R4). Hence

I. = gr I . Comparing (5.25) with (5.26]) now implies that Z’ = gr Mor(%e).
Next, [135, Theorem 3.20] implies that there is a vector space isomorphism

d e
Home, (d, e) = Homg__ /\ ,/\(C°°

where A2C® = AT C® @ ... ® A C>. Hence

C

dim 2} , = dim Homg_(A® C>, A°C>) = |gDe| = dim Zq.,

where the second equality can be deduced from Schur-Weyl duality and the last equality follows from
Theorem [5.3.250 We conclude that the natural map 2; — Z is an isomorphism. O

Let us record the following corollary of the proof of Theorem [5.4.14]
Corollary 5.4.16. If Q is the Ay quiver, then there is an algebra isomorphism Z. = gr Mor(%.).

Next suppose that @Q is the Jordan quiver. We can interpret merges as symmetrization operators

between rings of invariants. Indeed, S% = E.% and so
Aa =g (5.27)

We will now describe the relations in the reduced quiver Schur algebra. We use the following modifi-
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cation of (R3) (with e = A*(d)):

di + dr41

A\

dg dk+l =

~y

dp +diy1

. (R3%)

Da

Theorem 5.4.17. The following hold:

a) The reduced quiver Schur algebra algebra Z. associated to the Jordan quiver is generated by
elementary merges and splits, subject to the relations , , and .

b) The algebra Z¢ is isomorphic to the convolution algebra @ p pr C[P\Ge/P'] of complex valued
functions on double cosets, where (P,P") runs over all pairs of standard parabolic subgroups

of Ge.

Proof. The fact that the relations and hold in Z. follows easily from the properties of
symmetrization operators. One can define a filtration on Zvé analogous to the filtration on Mor(%.). It is
clear that gr Zl & gr Mor(%.). Hence one can use the same argument as in the proof of Theorern
to show that (RI)), (R2), and generate all the relations. This proves the first statement of

the theorem. The second statement follows from the description of Z as the algebra of symmetrization

operators in (5.27). O

5.5 Mixed quiver Schur algebras

In this section we define and study a generalization of quiver Schur algebras, depending on a quiver
together with a contravariant involution and a duality structure. We call these new algebras mized
quiver Schur algebras. From a geometric point of view, our generalization arises by replacing the
stack of representations of a quiver with the stack of its supermixed representations in the sense of
Zubkov [147].

5.5.1. Involutions and duality structures. We begin by recalling the notion of a contravariant
involution and a duality structure. These ideas, in the context of quiver representations, were first
studied in [39,/147]. We use the formulation from [146].

Definition 5.5.1. A (contravariant) involution of a quiver @) is a pair of involutions 6: Qy — Qo and
0: Q1 — Q1 such that:

a) s(6(a)) = 0(t(a)) and t(8(a)) = 0(s(a)) for all a € @1,

b) if t(a) = 0(s(a)) then a = O(a).
A duality structure on (Q,0) is a pair of functions o: Qo — {£1} and ¢: Q1 — {%1} such that
o(0(i)) = o(i) for all i € Qo and ¢(a) - <(0(a)) = o(s(a)) - o(t(a)) for all a € Q1.
Example 5.5.2. Let n > 1 and suppose that @ is the A, quiver

al as An—1

[ )
i1 2 in
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There is a unique involution 6 on Q. We have 0(iy) = ip_gtq for 1 < k < n and 6(a;) = a,—; for
1 <1< n—1. Ifniseven then Q) = @ and Qf = {a,/2}. If nis odd then QY = @ and QY = {i(n41)/2}-

There are two inequivalent duality structures: ¢ =1 and ¢ = -1 or 6 = —1 and ¢ = —1.

Example 5.5.3. Suppose that @ is the quiver with one vertex and m > 0 loops. There is a unique
involution on Q. It fixes the vertex and fixes all the loops as well. A duality structure is given by
a choice of sign o and a choice of sign ¢(a) for each arrow a. Hence there are 2™*! possible duality

structures.

For the rest of this section let us fix a quiver @) together with an involution 8 and a duality structure
(0,¢). We will now introduce some combinatorics necessary to describe isotropic flag varieties. Let us

fix partitions
Qu=QyUQIUQ, Q=0Q7uQiuQf

such that 0(QF) = Qp and 6(QF) = Q7. The involution # induces an involution §: I' — I' on the
monoid of dimension vectors. Let I'? be the submonoid of §-fixed points. We consider I'? as a I'-module

via the monoid homomorphism
D:T' =T% c—c+6(c).

Definition 5.5.4. Let c € . We call a sequence d = (dy, ... ydgy,doo) € I‘% x I'? (where £q may
equal zero) an isotropic vector composition of ¢, denoted d & ¢, if (d)g := des +>_; D(d;) = c. We
call £q the length of d. Let Com, denote the set of all isotropic vector compositions of ¢, and let
?Com[" denote the subset of compositions of length m. Consider Z, ! Sym,, as the group of signed
permutations of the set {£1,...,+m} with s,, changing the sign of m. We endow *Com!" with a
right Zy ! Sym,,,-action so that Sym,, acts by permuting the first m dimension vectors and s,, acts by
changing dy, to 0(dg,). Set

D(d) := (di,...,ds,, doc, 0(dey), ... 0(d1)), df =(di,...,dq,).

Given 8 € Com(lgq + 1), let

A(d) = ((VE(d)), ..., (Vg (@), (V5 (d))e).

In particular, if 8 = (1¥~1,2,1%~%) for some 1 < k < {4, then we abbreviate Af(d) := Nz(d).

Example 5.5.5. Consider the A3 quiver together with its unique involution. Let ¢ = 4iy + 3ip +
4iz € T? and d = (i1 + 4a,i3,2i1 + iz + 2i3) & c. Then AY = (iy + iy + i3,2iy + ig + 2i3) and
/\g = (i1 + 19,311 + 12 + 3i3).

In analogy to Definition we define a partial order on ?Com, by setting

drze < e=ANj(d)

for some B € Com(fg + 1). If s, = doo, then we write d =7 e. If d = d' Ud” and (d")y = e, we

write d = e.

5.5.2. Isotropic flag varieties. In this subsection we introduce the notation for isotropic flag

varieties, isotropic Steinberg varieties and related objects.

Definition 5.5.6. Let ¢ € T?. If i € Qf and o(i) = —1, we assume that c(i) is even. Fix a Qo-
graded C-vector space Ve = @, Ve(i) with dim V(i) = c(i) and a nondegenerate bilinear form
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(-,-): V¢ x Vo — C such that:

a) V(i) and V(j) are orthogonal unless i = 6(j),

b) the restriction of (-,-) to V(i) + V(0(7)) satisfies (u,v) = o(i){v,u),
for i,j € Qo and u,v € V(i) + V(6(3)). Set

"Re :={p € Re | (pa(w),v) = s(a)(u, pocay(v)) Ya € Q1,u € Ve(s(a)),v € Ve(t(a))}.
There is a vector space isomorphism

"R = P Home(Ve(s(a)), Ve(t(a) & @ BT (v (s(a))),

aEQi" aEQ‘f

where Bil®(V(s(a))) is the vector space of symmetric (¢ = 1) or skew-symmetric (¢ = —1) bilinear
forms on V(s(a)).

Definition 5.5.7. Let G, be the subgroup of G, which preserves the bilinear form (-,-). We have

%= T 6L(Ve() x T[T O(Ve(@) x [I Sp(Ve(d). (5.28)
i€eQd i€Qf, i€Qy,
o(1)=1 o(i)=—1

The group ?G., acts naturally on “9R. by conjugation. Let G, C ?G. be the subgroup obtained from
(5.28) by replacing O(V(¢)) with SO(V(i)) whenever c(7) is odd.

Example 5.5.8. Let Q be the Jordan quiver and ¢ = 2n. Let ¢ = 1 so that ?Gg = Og,,. If ¢ = —1
then ?R. = 09, while if ¢ = 1 then ?%. = Sym? C2" as Og,-modules. Next, let ¢ = —1 so that
9Ge = Spay,- If ¢ = —1 then R, = sp,,,, while if ¢ = 1 then R, = /\2 C2" as Sp,,,-modules.
Definition 5.5.9. Let T, C B, C ?G. be the standard maximal torus (with fundamental weights
w;(i)) and Borel subgroup in ?Gc. Let “W, = Nog_(?Tc)/?Tc be the corresponding Weyl group. There
is an isomorphism

"We = TT Symeqiy x TT Z22Symieqiy -
ieQt i€Qf

[
Given d € Com,, let GWQ = Wyr X 0Wdoo c 'W,. If e,d € “Comy,, let ng denote the set of the
shortest representatives in W, of the double cosets W \?W,./*Wq.

Definition 5.5.10. Given d € ?Com,, we call a sequence V, of Qu-graded isotropic subspaces
{0} =WhcVicVoC...CVp CV,

an isotropic flag of type d if dimg, V;/V;_1 = d; and dimg, Véj/Vgg = dy.. Any isotropic flag V,
can be extended to a flag D(V,) € §p(q) of length 2/ + 1 by setting Vag, 141 = Vit fork=0,...,0q
(if doo = 0 then Vi 41 = Vi, is Lagrangian). Let 9V 4 denote the standard isotropic flag of type d

(consisting of coordinate subspaces with respect to some fixed basis). Define
‘%q = {p € "Rc | D(?Vy) is p-stable}, “Pg :=Stabog,("Va), ‘La =[], Ga, x “Ga...

Let 9Fq = 9G./?Pq be the projective variety parametrizing isotropic flags of type d. Given d = e & c,
define
994 == {(Ve,p) € %Fa x *Re | D(VL) is p-stable}.
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Let
0~ Ta g ‘ma g
Sa «— "Qqa — "RAc

be the canonical projections. Note that QTQ is a vector bundle while 97@ is proper. We abbreviate

HSC = |_| GSQ, GDC = |_| QQQ, 97rc = |_|9’/Tg2 QQC — Giﬁc.

dec dec

Definition 5.5.11. Given d,e & c, set

6 (4 6 4 6 0 6
3aei="Qa xom, "Qe, "3 =" xom, e = | | e,

d,eec

where the fibred product is taken with respect to %m.. We call 3. the isotropic quiver Steinberg
variety. We define the YGe-equivariant Borel-Moore homology groups ?Q4,%Qc,%Z4 e,? Z¢ in analogy

to (5.5)), and 933@ 0ze .= @gec QZig in analogy to (5.3 and (5.7)), respectively.

Furthermore, define

"Pe = H*(B"Te) = Q) Clz1(i), ... 7e(1)(1)] @ (X) Cla1 (d),- -,z e ()],

i€y i€Qf

where x;(i) := c1(?%0;(4)) is the first Chern class of the line bundle %9, (i) := E’T, x*() C. For each
d e c, set
6
Ag =P, OAc:= ) Aa.

dec

As in (5.6) and (5.9)), we can identify GZEQ >004207\g and 928 299, = OA,.

5.5.3. Quiver Schur algebras for quivers with an involution. We apply the framework of
45.2.5/to the vector bundle X = Q. on the isotropic quiver flag variety 3., the space of self-dual quiver
representations Y = YR, and the projection = = ®m.. Then Z = 93, is the isotropic quiver Steinberg
variety, and we obtain a convolution algebra structure on its Borel-Moore homology ? Z. = H., f Ge(93,)

and a ? Z.-module structure on Q. = HfGC (’Q.).

Definition 5.5.12. We call Y Z, the mized quiver Schur algebra associated to (Q,6,0,s,c), and Y Q.

its polynomial representation.

Remark 5.5.13. We would like to remark on the connection between our mixed quiver Schur algebra
9 Z. and existing constructions.

(i) In the case when @ is a loopless quiver and 6 is an involution with no fixed vertices, the KLR

analogue of ?Z., associated to complete (rather than partial) isotropic flags, was defined and

studied by Varagnolo and Vasserot in [130].

(ii) Our algebra ? Z, is also related to the parabolic Steinberg algebras defined by Sauter [119-121].
On the one hand, Sauter’s construction is somewhat more general since she also works with
non-classical gauge groups. On the other hand, Sauter’s construction is different from ours since
she only allows parabolic flags of a certain fixed type, while we consider all the possible types at
once. In effect, special cases of Sauter’s parabolic Steinberg algebras appear as subalgebras in
Z,.

The following result carries over, with analogous proof, from the no-involution case.
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Proposition 5.5.14. The ? Z.-module ° Q. is faithful. There are canonical isomorphisms
02, = Extfg_(("me)+Coq,, (“me):Coq,),  ?Qc 2 Extlg (Cog,, (“me).Cog,) (5.29)

intertwining the convolution product with the Yoneda product, and the convolution action with the

Yoneda action.

Definition 5.5.15. We have the following analogues of merges, splits, idempotents and crossings from
Definition in 92,

(4
e d e e k 1 (d AL(d
hi =13l Yo =134 fear=130al  Xa="Yg* " A"

ford > ee cand 1 < k < fg. We say that a merge or split is elementary if e = /\Z(Q). If

1 <k <{q—1, we depict elementary merges and splits diagrammatically in analogy to the elementary

k
merges and splits in Definition [5.3.4L More precisely, to the elementary merge ¢ A(/i\ @ we associate

the diagram

dy + drt1 d; di—1 di + dr41 diy2 deg doo

K- A

dg dit1 d; di—1 d diy1 drso dey doo

and to the elementary split ? Y%k( Q) the vertically reflected diagram.

"
If k = £q, we associate to the elementary merge 0 AQ @ the new diagram

D(dég) +doo dl dlifl D(dfg) +doo

A

doo dl d[g— 1 déd doo

and to the elementary split ? Y%k( Q) the vertically reflected diagram.

We have the following analogue of Proposition which also follows directly from Lemma|5.2.9
Proposition 5.5.16. We list several basic relations which hold in ° Z,.
a) Letd > e = f & c. Merges and splits satisfy the following transitivity relations:
£ £ d d
e *ha="Aa “Ye x°YE="Y¢.
b) Let d & c. Elementary merges satisfy the relations (R1) and the following new relation

D(deg—1 +dey) +doo D(deg—1 +dey) +deo

deg—1 dey doo deg-1 dgy deo
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Elementary splits satisfy the relations (R2|) and the following new relation

Ly -

D(deg—1 +dey) + D(deg—1 +dey) +

5.5.4. Basis and generators. We want to construct a basis for ?Z. analogous to the Bott-
Samelson basis of Z. from Theorem [5.3.25] We begin by adapting the combinatorics of refinements
(see §5.3.4) to the present setting.

Let 6: N. — N¢ be the involution defined by

(i) (k,0(3)) ifi € Qf and 1 <k < c(i),
! (c(i) —k+1,4) ificQfand1<k<c(i).

If A\ € Parl, we say that \ is an isotropic partitioning of c of length %¢y = [n/2] if A\=1(k) =
O(A" (n —k+1)) for 0 < k < n. Let “Par. C Par, denote the set of isotropic partitionings of ¢, and

let “Par” denote the subset of those isotropic partitionings which have length m.

Let C and ?P be the unique functions making the following diagram commute

c
Par. . 7 Com,

[
D
’c
’Par, > 9Com,
o
P

The set “Par]" is endowed with natural Zy ! Sym,,- and *W,-actions. It is easy to check that Lemma
5.3.10] still holds if we replace Par., Com., C, P, Sym,,, W, and Wq by their isotropic analogues.

The following lemma follows directly from the definitions.
Lemma 5.5.17. If A\, u € “Par, then \ §) p € ‘Par,.

Definition 5.5.18. We call a triple (e,d,w), consisting of e,d € Com, and w € ZBQ, an isotropic
orbit datum. This name is motivated by the fact that orbit data naturally label the ?Ge-orbits in
0%, x 9%.. We define the corresponding refinement datum (€, i u) in analogy to Definition
More precisely, if we abbreviate A = Y P(e) and p = w - * P(d), then

e:="CAQu), d:="Cuq A

and u € Zso Symegmu is the unique permutation sending A §2 u to p §3 A. We also choose a reduced

expression u = sj, - ... s;, and define the associated crossing datum (€°,...,e?")

in Definition [5.3.19]

in the same way as

Example 5.5.19. Let @ by a quiver such that Qg is a singleton. Then there is a unique involution
on ). Let ¢ = 14 and choose any duality structure on Q). We identify 74+ k = —k for 1 < k < 7 so
that N = {£1,...,£7}. Let sy € "W, = Z3 1 Sym- be the element swapping 7 and —7. Suppose that
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e=(3,2,4),d = (4,2,2) and w = $5565756555354555¢. Lhen

A = [1,2,3][4,5][£6, £7][-5,-4][-3,-2,-1], = [1,2,4,-5][6, 7][£3][-7,-6][5,-4,-2, -1],
A = [1,2][3][4][5][6, 7][-7,-6][-5][-4][-3][-2,-1], w2 A = [1,2][4][-5][6, 7][3][-7,-6][-3][5][-4][-2, -1].

Hence

~

e=1(2,1,1,1,2,0), d=1(2,1,1,2,1,0), u = $48352848554 € Z21Syms.

Definition 5.5.20. Given an isotropic orbit datum (e, d, w), the corresponding refinement and cross-

ing data, and c € 9A92k, we define elements d == e in analogy to Definition [5.3.24] i.e.,

w

c e J1 Jk ek
d=e := Ohe *x O NG xx O NG ke x OYG €0Zea

We have the following analogue of Theorem [5.3.25

Theorem 5.5.21. If we let (e,d,w) range over all isotropic orbit data and c¢ range over a basis
of ¥ Agzr, then the elements d == e form a basis of * Z,.
- w

Proof. The proof of Theorem [5.3.25 uses only three ingredients: the Bruhat decomposition, Proposition
and Lemma|[5.3.23] The Bruhat decomposition of course generalizes to reductive groups of type
B, C and D. Lemma [5.3.23] also generalizes straightforwardly. To generalize Proposition one
only needs to modify its proof by replacing inversions associated to the symmetric group by inversions

associated to the Weyl group of type B (see, e.g., |17, Proposition 8.1.1]). O

Theorem [5.5.21] and Proposition directly imply the following analogue of Corollary

Corollary 5.5.22. Elementary merges, elementary splits and the polynomials * Z¢ generate ® Z. as an

algebra.

5.5.5. Monoidal structure and categorification. We now consider the relationship between
the categories of modules over ¢ Z, and Z,. In this subsection we view ? Z, and Z. as graded algebras,
with the gradings imported from the gradings on the corresponding Ext-algebras via the isomorphisms
and . We begin by recalling the monoidal structure on the direct sum Z-pmod of the
categories of finitely generated graded projective modules over quiver Schur algebras Z, for all dimen-
sion vectors ¢ € I'.  We then show that the monoidal category Z-pmod acts on the corresponding
category ?Z-pmod of modules over the algebras ?Z.. Passing to Grothendieck groups, we obtain a
Ko(2)-module and -comodule structure on Ky(? Z), which we relate to the Hall module of the category
of self-dual representations of the quiver @ introduced by Young in [145].

One can easily show (as in, e.g., [131, §2.4] or [88, §2.6]) that there are canonical (non-unital)

injective graded ring homomorphisms
oot Ze® Zer = Zoyer, (5.30)
for all ¢c,c¢’ € T', induced by inclusions of the corresponding polynomial representations
Qc ® Qe = Qoo (5.31)

Diagrammatically, these inclusions are depicted by a horizontal composition of diagrams. They define

an associative algebra structure on the direct sums Z = @ . Zc and Q = P Qc, which is referred
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to as the horizontal multiplication. The inclusions ((5.30) also give rise to induction and restriction

functors
Indeer: Zc ® Zo-mod — Zeqe-mod, Resger: Zeqeor-mod — Zc ® Zor-mod, (5.32)

where by, e.g., Z.-mod, we mean the category of finitely generated graded left Z.-modules. These

functors restrict to subcategories of projective modules. Setting
MQN = Zeqer ®Zc®3c/ MXN

for M € Z.-pmod and N € Z.-pmod, and 1 = Z; defines a monoidal structure on the direct sum of
categories

Z-pmod = @ Ze-pmod.
cel’

Let Ko(Z2) = Ko(Z-pmod) be its Grothendieck group, considered as a Z[g™']-module. The functors
(5.32) induce maps

which turn Ky (Z) into a I'-graded Z[q*!]-bialgebra. For special choices of the quiver @, the bialgebra
Ky(Z) can be identified with (the opposite of) the generic nilpotent Hall algebra associated to the
category of representations of () over finite fields. For more information about this algebra we refer
the reader to, e.g., [123].

Proposition 5.5.23. Let Q be one of the following quivers: a Dynkin quiver, the Ay, quiver, the
Jordan quiver or a cyclic quiver. Then Ko(Z)°P is canonically isomorphic to the integral form of the

generic nilpotent Hall algebra of the quiver Q.

Proof. By Theorem [5.4.12] there is an isomorphism of algebras Z, = Z5W for each ¢ € T'. The explicit
description of this isomorphism from [99, Proposition 9.4, 9.6] implies that there is a commutative

diagram of ring homomorphisms

S S S
ZC/W ® ZC w —> Zc—&‘-/‘(/:/
ZTflip

I

Zc ® Zc’ — Zc+c’

~

Passing to Grothendieck groups, we see that Ko(Z)% = Kq(Z5") as algebras. The proposition now
follows from [131, Proposition 5.12]. O

We now bring the mixed quiver Schur algebras ? Z. into the picture.

Lemma 5.5.24. Ifa € T, b € I'? satisfy D(a) + b = c, then there is an injective (non-unital) ring

homomorphism
ia,b: Za oy GZb — Gan Ai & 0 Ai/ = 0 Ai//, Yg ® 0 Aiz — 0 g//, (533)

sending a polynomial f ® g € Aq @ Agqr to f-g € Agr, whered” =duUd’ and d” - €" & c.
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Proof. Let 93a’b := | |34 e, where the disjoint union ranges over all d”,e” & c¢ which can be
expressed as a concatenation dud’, for some de~a and d’ & b (and analogously for €”). Clearly GZa,b =
HfG°(93a7b) is a convolution subalgebra of ?Z.. The forgetful maps Q4 — Qg (remembering only
the first ¢gq steps in an isotropic flag) and (’qu — QQQ/ (remembering only the last £q- + 1 steps)
induce a map ?3, , = 3a x ?3p. The pullback Z, ® ?Z, — ?Z, with respect to the latter is injective,

and it is easy to check that it is compatible with the convolution product and that, explicitly, it is

given by (5.33). O

As before, the inclusions (5.33]) are depicted diagrammatically via a horizontal composition of

diagrams. They give rise to functors
Inda,b: Za ® sz— med — GZD(a)er— med, Resa,b: GZD(a)er— med — Za & HZb—med. (534)
Let Y Z-pmod be the direct sum of categories

% Z-pmod = @ % Z.-pmod

cer?

and let Ko(°Z) = Ko(? Z-pmod) be its Grothendieck group. The following proposition, whose proof

is standard, summarizes the relation between the categories Z-pmod and ¢ Z-pmod.
Proposition 5.5.25. The following hold.
a) The monoidal category Z-pmod acts (see, e.g., [70]) on ? Z-pmod via

M*N="°Zp)4b ®z,g0z, MEN,

for M € Zo-pmod and N € ? Z,-pmod.
b) The functors (5.34) induce maps

Ko(2)2 Ko(*2) = Ko(°2), Ko(?2) = Ko(2) @ Ko(?2),

which turn Ko(° Z) into a T?-graded Ko(Z)-module and -comodule.

Remark 5.5.26. In [145], Young defined a Hall module associated to the category of self-dual repre-
sentations of a quiver with an involution. The Hall module is a module as well as a comodule over the
Hall algebra associated to the same quiver. We expect that, for a general quiver ) with an involution
6, Ko(Z) is isomorphic to a subalgebra of the Hall algebra of @ and K(? Z) is isomorphic to a subspace
of the Hall module of (Q,8) stable under the action and coaction of Ky(Z). Since Ky(Z) contains
the composition subalgebra associated to @, [145, Theorem 3.5] implies that K¢ (’Z) is also a module
over By(gg), the algebra introduced by Enomoto and Kashiwara [4546] in the context of symmetric
crystals. The KLR analogue of K¢(? Z) was studied by Varagnolo and Vasserot [136], who showed that

it is isomorphic to a certain highest weight module over By(gg).

5.6 Connection to cohomological Hall algebras

In this section we relate quiver Schur algebras to the cohomological Hall algebra (CoHA) of a quiver
Q@ (without potential) introduced by Kontsevich and Soibelman [90]. More specifically, we interpret
merges and splits as iterated multiplication and comultiplication in the CoHA. This gives an action of

quiver Schur algebras on the tensor algebra of the CoHA, which we identify with the direct sum of the
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polynomial representations of all the quiver Schur algebras associated to . In the case of a quiver
endowed with an involution and a duality structure, we relate mixed quiver Schur algebras to the
cohomological Hall module (CoHM) introduced by Young [146], realizing merges and splits as action
and coaction operators. An algebraic manifestation of these connections is a new interpretation of the

shuffle description of the CoHA and the CoHM in terms of Demazure operators.

5.6.1. The cohomological Hall algebra. We start by recalling the definition of the CoHA from
[90L §2.2]. Let @ be a finite quiver. Given ¢ € I and d & ¢, set

He = HE (Re), Ha= Q@)% Ha, Hi=Deer He

The Kiinneth map and the homotopy equivalences Rq — [];Ra; and Pg — Lqg yield canonical
isomorphisms

Ha = He, (IT, Ra,) = Hp, (Ra). (5.35)

Definition 5.6.1. Given d >~ e, we have a closed embedding (Rq)p, ‘i> (Re)py and a fibration
(Re)ry 5 (Re)p, With smooth and compact fibre. Using the identification (5.35]), we get operators

mg: Ha Py e, comE: He s Hy. (5.36)
We abbreviate m§ = mfic), etc. Let m: H® H — H and com: H — H ® H be the operators defined
by the condition that m|y, = mg, and that the projection of com|s, onto Hq equals com%7 for all
dimension vectors ¢ € T' and vector compositions d € Com? of length two.
Definition 5.6.2. The cohomological Hall algebra associated to the quiver @) is the I'-graded vector
space H together with multiplication given by m. By [90, Theorem 1], (#, m) is indeed an associative
algebra. The operation com also makes H into a coassociative coalgebra. However, the multiplication

and comultiplication are in general not compatible, i.e., (H, m,com) is not a bialgebra.

In light of Definition the operators (5.36)) can be viewed as multifactor versions of multipli-

cation and comultiplication in H.

Definition 5.6.3. Let T(H) := T(H4) be the tensor algebra of Hy = P

I'-graded vector space in the following way:

cer, Hce. We regard it as a

T(H) = @ecr Te(H),  Te(H) := Bace Ha- (5.37)

We consider mg and comg as operators on T¢(H). Given v € Hg, let Uy = yU- : Hqg — Hq be the
operator given by taking the cup product with ~.

5.6.2. The CoHA and quiver Schur algebras. We will now explain the connection between

the cohomological Hall algebra H and quiver Schur algebras associated to the same quiver Q.

Lemma 5.6.4. For each c € T, there is a vector space isomorphism
Te(H) — Qe (5.38)

Proof. It is easy to see that the Borel constructions (Rq)p, and (Q4)c, are naturally isomorphic. Com-
posing (5.35) with the induced isomorphism of equivariant cohomology groups Hp_ (Ra) = HE_ (Qa)
yields an isomorphism Hgq —> Qq4. The lemma follows by summing over all d & c. O
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Remark 5.6.5. If we sum over all dimension vectors ¢ € I', the identification ([5.38)) gives rise to
an isomorphism between the entire tensor algebra T(#) and the direct sum Q = @ . Qe of the
polynomial representations of all the quiver Schur algebras associated to the quiver @. Under this

isomorphism, multiplication in the tensor algebra corresponds to the horizontal multiplication on Q

defined by the inclusions (5.31)).
Since, by Proposition [5.4.4) the Z.-module Q. is faithful, (5.38]) induces an injective algebra ho-

momorphism
Z. — Ende(Te(H)). (5.39)

The following theorem gives an explicit description of this homomorphism.

Theorem 5.6.6. The algebra homomorphism (5.39) is given by
e e d d
Ag»—> My YQ = comg, ¥ — U,
whered = ec>c andy € Qq = Haq.

Proof. By Corollary Z. is generated by merges, splits and polynomials. Therefore, it suffices

to describe the image of these elements. We have a commutative diagram

(Ra)ps —— (Re)py —— (Rep,
I I I (5.40)
(Qa)e, —— (Qae)o. —— (Qe)s

c

where ¢ and ¢ are as in . As explained in the proof of Theorem the action of Ai is given by
the pushforward along the two lower horizontal maps in . But this is the same as the pushforward
along the two upper horizontal maps, which is, by definition, m%. Similarly, the action of Yg is given
by the pullback along the two lower horizontal maps in ,7and this is the same as theipullback

along the two upper horizontal maps, which is, by definition, comg. The third statement is clear. [

Remark 5.6.7. We make several remarks about Theorem [5.6.6]

(i) In light of Theorem the associativity of the merges (R1) and the coassociativity of the
splits (R2) relations in the quiver Schur algebra express the fact that H is an associative algebra

and a coassociative coalgebra, respectively.

(ii) When @ is the A; quiver, A is isomorphic to the exterior algebra in infinitely many variables
(see |90l §2.5]). This fact explains the connection between quiver Schur algebras associated to

the A; quiver and web categories, discussed in §5.4.4
Next, we interpret multiplication in the cohomological Hall algebra in terms of Demazure operators.

Proposition 5.6.8. Let a,b € T, c = a+ b and d = (a,b). Given f € Ha and g € Hp, the
multiplication of f and g is given by

m(f,9) = (=1)"¢- AG(f - g - Ea),
where « stands for polynomial multiplication (i.e., the cup product).

Proof. The proposition follows directly from Proposition [5.4.9|and the shuffle formula for multiplication
in H from [90, Theorem 2]. O
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Remark 5.6.9. Yang and Zhao defined in [143] a formal version of the CoHA associated to any
equivariant oriented Borel-Moore homology theory and described multiplication in the formal CoHA
in terms of a shuffle formula depending on a formal group law. We expect this formula can be rephrased

in terms of the formal Demazure operators from [73].

5.6.3. Cohomological Hall modules. We recall the definition of the cohomological Hall module
from 146} §3.1]. Suppose that Q admits an involution # and a duality structure (o,5). Given ¢ € I'?

and d & c, let
"Me = Hig ("Re), "Mai= @ Ha, ® " Mar, "M i=Becrs "Me.
In analogy to , we have canonical isomorphisms
"Ma = H3, (T2, Ra, x “Ra.) = Hip, ("Ra). (5.41)

Definition 5.6.10. Given d = e, we have a closed embedding %i: (Q%Q)Qpi — (99‘{9)643g and a
fibration p: ((’9‘i§)epg —» (eﬁg)epg. Using the identification (5.41)), we get operators

9p. 0%, 0

0 % *
d i*o
mS: O Mg 25 O M, PcomB: OMe —2 O M. (5.42)

Let act: H ® M — 9 M and coact: M — H ® ? M be the operators defined by the condition that
act|op, = mg, and that the projection of coact|os, onto Mg equals coms, for all ¢ € I’ and
de aciomi. -

Definition 5.6.11. The cohomological Hall module associated to (Q,6,,s) is the I'%-graded vector
space Y M together with the H-action given by act. By [146, Theorem 3.1], (M, act) is indeed an
H-module. The operation coact also makes ? M into an H-comodule. However, the action and the

coaction are in general not compatible, i.e., (9./\/17 act, coact) is not a Hopf module.

Let us interpret the operators (5.42) in the two special cases when d ~feord >« €. If d >7 e
then Gm% and 9comg are multifactor multiplication and comultiplication operators, respectively. On
the other hand, if d >, e then emﬁ and ecomg can be interpreted as iterated action and coaction

operators, respectively.

5.6.4. The CoHM and mixed quiver Schur algebras. Let T(° M) := T(H)® %M. We regard

it as a I'?-graded vector space as follows:
TOM) = @eers Te*M), Tel'M) i= Bygoe "Ma.
In analogy to Lemma one easily shows that there is a vector space isomorphism
T M) = ?Q,. (5.43)
Since the Z.-module Q. is faithful, induces an injective algebra homomorphism
2, < Endc(Te (P M)). (5.44)

Theorem carries over, with analogous proof (using Corollary [5.5.22)), to our current setting,
yielding an explicit description of this homomorphism.
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Theorem 5.6.12. The algebra homomorphism (5.44) is given by
g mg ° Yg — fcomd, v+ Us,
where d & ¢ and v € QQd 9Md

Remark 5.6.13. Summing over all ¢ € T, (5.43) gives an identification of T(H) ® Y M with the
direct sum of the polynomial representations of all the mixed quiver Schur algebras associated to
(Q,0,0,5). Moreover, the relations ("RI)-("R2) express the fact that M is an H-module and -

comodule, respectively.

5.6.5. The polynomial representation. We will now use Theorem |5.6.12 to deduce an explicit
description of the polynomial representation ?Q. of ¢Z, from the corresponding description of the

cohomological Hall module Y M as a shuffle module in [146].

Definition 5.6.14. Let d = (a,b) & c. We first define an analogue of the classes Sq from (5.19).

If i € QF, then let

If i € QY then

’8a(i) = gi(@1 (i), way (@) []  (—ak()) —au(i H T @) =),

1<k<I<a(i) k=11=a(i)+1

where
a(i)

1)2® H zk(i) if o(i) =1 and c(7) is odd,

gi(x1(1), - .., Ta@ (1) = a0

a(l ka if o(i) = —1,

1 if 0(i) = 1 and c(¢) is even.

Next, we define an analogue of the classes Eq from (5.20)). To simplify exposition, let us write
2 (0(i)) = —agi)rw(i)+x(0) if i € QF and 24(6(i)) = 24 (i) if i € QF.
Ifi%je Q7 , then let

a(0(j)) a(l)
“Ea(a) :="Ea(a,i)’E;(a,5) ][] — (1)),
m=1 k:l
where
a(i)+b(i) a 9(1))
=a(i)+1 m=1

0 S\
Ea(0,i) = 3 '[o/a) a6)

[T @u00G)? = 2@ (—em () ifie Qf,

I=a(i)+1 m=1



5.6. Connection to cohomological Hall algebras 151

(2i(j) — (i) if j ¢ QF,
. k=1 l=a(j)+1
"Ba(.9) = § ) 1ot/
(wr())* — 21(5)*) (=2 ()Y if j € QS
k=1l=a(j)+1

and €(i) = 1 if c(7) is odd, and €(i) = 0 if c(7) is even.
If 0(i) = i € QY, then let

’Eq(a) := "Eq(a) 11 (—zk(0(7)) — 2:(0(4))),

- 1<h< 0 (o[ <a(0(0))
where <; = < and <_; = <, and

a(i)+b(i) a(6())
[T @) —2m(66)) if i ¢ Q3

o~ _ ) i=a)+1 m=1
Ea(a) = ¢ a0) Leti)/2)

II II @u@® -2 @@) @ ifieQf.

m=1l=a(i)+1

Finally, define

094 := H QSd(i), OEq = H %E4(a), 9(17;:: Z w e 'We.

1€QILQY acQiuQ? we’Dg
Theorem 5.6.15. Let d = e & c. The action of the generators of °Z, on Q¢ =2 YA admits the

following description.

a) The action of ¢ Yg is given by the inclusion
OYe: e PNg, f o S, OYelon, =0 if f#e

b) The action ongig on 9 Ag is trivial unless £ = d. In the latter case, if we identify Ga = A4,
then QZ;Q acts on QAQ by usual multiplication.
c¢) The action of \§ on 9A¢ is trivial unless f = d. In the latter case, if d =7 e, then

f
O NG long = A5 [ays © Llona

Ifd = (a,b) and e = (c) then

e c (%E
o Aé eAg — eA(c), f — erhg ((gsjf) .

Proof. Parts a) and b) are proven in the same was as in Theorem m Part ¢) follows directly from
Theorem [5.6.12| and [146, Theorem 3.3]. O

We would like to illuminate the formulas from Definition [5.6.14] by relating them to Demazure

operators, generalizing Proposition [5.4.9

Definition 5.6.16. Let d & c. Let YR and GRX denote the set of positive roots corresponding to
(?Be, ?Ge) and (Bc,?Pq), respectively. We abbreviate rq = |YRf — Y R}|. Define Aq = HQEQRZ o

and Ac = A(c). Given w € *We, let ?A,, be the corresponding Demazure operator. Let wq and w§ be
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the longest elements in GWQ and 9D§, respectively. We set we = w(c), HAQ =7, " A, =?A,, and
GAE = 9Aw§.
Lemma 5.6.17. Letd & c.

a) The Demazure operator ®Aq is given by the following explicit formula

"Aa= ) wiagh. (5.45)

b) There exists some polynomial h € *P. such that *Aq(h) = 1.
c) If h€ %P, and f € PAq, then PAq(fh) = f-9Aa(h).
d) Ifd = (a,b), then Ae = (—1)"79 - Aq -S4 and 984 € Y A4.

Proof. Part a) is proven as in [59, Lemma 12]. The proof of part b) is analogous to the proof of
[99, Lemma 8.12] and requires only the following modification: one needs to replace the equality
Ac(z a2 oy =1 by —9Ac(w23 - ... - 22"71) = (=2)". The latter can be easily proven by
induction. Part ¢) is a standard property of Demazure operators. Part d) follows directly from the

observation that ?Sq = HaEQRi_(,RI —a. 0

Proposition 5.6.18. There is an equality of operators on ?Ag:
?hg ("sa) Tt = (1) "4 -AG.
Proof. Let f € “Aq. We claim that
"AG(F) =A%(f 1) ="AG(f - Aa(h) = "AG("Aa(fh)) = *Ac(fh)

for some h € ?P.. Indeed, the second equality follows from part b) of Lemma [5.6.17} the third equality
from part c) and the last equality from the fact that we = wjwa and £(we) = £(wg) + £(wg). Next,

implies that
"Ac(fh) = Z Z wo(fh- aZh).

ueeDg vEWq

Since f and 9S4 are Wg-invariant, part d) of Lemma [5.6.17|implies that

"No(fh)= (1) ST u(f-(sa)) u Y ulh-agh).

ueeDa vEPWq

By (5.45) and the choice of the polynomial h, we have
> v(h-agh)="Aa(h) =1,
’UESWQ
Hence

CAG(f) = De(fh) = (1) -0 0 (f - ("Sa) V). O

Proposition yields a new interpretation of the action of the cohomological Hall algebra H on

the cohomological Hall module Y M in terms of Demazure operators.

Corollary 5.6.19. Letac ', becTI? c=D(a)+b andd = (a,b). Given f € Ha and g € "My,
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the action of f on g is given by
- Org O AcC 0
act(f,g) = (=1) "¢ - "Ag(f - g - "Ea),

where - stands for polynomial multiplication (i.e., the cup product).

Proof. The corollary follows directly from [146, Theorem 3.3] and Proposition [5.6.18 O

5.7 Conclusion and open problems

There are several new research directions and open problems arising from our work. Firstly, it would
be interesting to obtain a more comprehensive description of the structure of the quiver Schur algebras
Z. and YZ.. In particular, we would like to gain a better understanding of the relations in these
algebras, with view to giving a complete description by generators and relations. Such a description
already exists for KLR algebras. In the case of KLR algebras associated to a quiver with an involution,
a description by generators and relations can be deduced from the work of Sauter [119, Proposition
2]. However, as far as quiver Schur algebras are concerned, we have so far only been able to solve the
same problem only in the special cases of the A; and Jordan quivers (see Theorem [5.4.14] and [5.4.17)).

We expect that, for general quivers, this is a very hard problem.

Secondly, we would like to develop the theory of the mixed quiver Schur algebras ? Z.. In particular,
it would be interesting to understand their relation to Hecke and Schur algebras associated to p-adic
classical groups other than GL,(Q)).

Thirdly, it is natural to ask whether our results concerning the connection between quiver Schur
algebras and cohomological Hall algebras can be generalized to other settings. At present, the theory
of cohomological Hall algebras appears somewhat richer than the theory of KLR and quiver Schur
algebras. For example, there exist cohomological Hall algebras associated to quivers with potential [90],
preprojective algebras [143], Hilbert schemes [124] and Higgs sheaves on a curve [117]. It would be
interesting to investigate whether one can associate KLR-type algebras to the aforementioned objects,
and whether one could fruitfully use such algebras to categorify existing Hopf algebras or to construct

new ones.



154 5. Quiver Schur algebras and cohomological Hall algebras




Appendix A

Proof of Proposition 4.9.4

We work in the following setup. Let 1 <a <k, j1,...,jo > 1 and j1 + ...+ j, = k. Consider an

element C' = X1[—j1]... Xo[—Jja] € U(g-), where X; € {e,s |1 <r,s <n}.
Lemma A.0.1. The following estimates hold:
e C;=0 if I <—(k+a),
o deg 67(k+a) < a,
e deg 6—(k+a)+1 <a-1,
o degC_(krayrasp <a+p (p>0).
Moreover, if C € ker AHC C U(g_)*d* then 6'_(k+a) =0 and deg 5_(k+a)+2+p <a+p-—2.

Proof. We proceed by induction on a.

1. The base case. Let us first tackle the base case a = 1. Then C' = X;[—k| and, by definition,

(i+1)(i+k—1)

_ 1 k—1 _ _ 11
Y(C,z) = (kil)!az Y (X1] 1]7z>_i€ZZ G0 Xi[—i — k]2".
Hence (41 (it k1)
t+1)--(0+k— ;
C; = = 1) X1[—i— k. (A.1)
In particular,
Ci=0 if i=-1,...,—k+ 1 (A.2)

We now consider the four cases in the lemma. First suppose that ¢ < —(k + 1). Since —i — k > 1 and
X1 [b].1g = 0 for b > 1, formula implies that C; = Cj.1y = 0.

In the second and third cases we have C_(y41) = (—1)*7'kX1[1] and C_; = (—1)*7*X;. Hence
deg CA',(;CH) < 1 and deg é,k < 0. Finally suppose that i = —k 4+ p + 1 with p > 0. Formula
implies that C; is a multiple of X;[—p — 1] and so deg C;<p+1.

2. The inductive case - notation. Assume a > 2. Let us set ¥’ = jo + ...+ j, and '’ = a — 1. Set

A= X]—j1] and B = Xa[—ja] ... Xa[—Ja]. By definition of the normally ordered product we have

Ci= Y AB.+ Y BA. (A.3)

r+s=lI, r+s=lI,
r>0 s<0
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Set Cjf = Sorts=t ArBy and Cf" = Ty yomt By A, so that Ci = Cft +C7 . Also set CF := (C;F) and

CAT = </I;(Cf).

3. The inductive case - C’l+. First suppose that | < —(k + a) + 2. Consider any monomial A, By in
C;r. Since r > 0, we have s = —7 < —(k +a) + 2 < —(K’ + a’). Therefore, by induction, B, = 0.
Hence @* = 0. This takes care of the first three cases.

Now assume that [ = —(k+a) + 2+ p with p > 0. Since r > 0, we can write r = —(j1 + 1) +2+p’
with p’ = 7+ j1 —1 > 0. Then, by the base case, we know that deg A\T < 7+ 71. We now estimate
the degree of By, We have s =1 —r = —(k/ +a’) + 2+ p — (r + j1 + 1). There are four situations to
consider. Firstly, suppose that p > r + j; + 1. Then, by induction (the fourth case), we conclude that
deg By < a/+p—(r+j1+1). Hence deg ®(A, B) < deg A, +deg By < (r+j1)+ (@' +p—(r+j1+1)) =
a'+p—1 = a+p—2. Secondly, suppose that p = r+7;. Then s = —(k'+a’)+1 and so, by induction (the
third case), we have deg ES < a’—1. Hence deg @(ATBS) < deg gﬂrdeg ES < (r+j1)+a' -1 =a+p-2.
Thirdly, suppose that p = r + j; — 1. Then s = —(k’ + /) and so, by induction (the second case), we
have deg B, < o’. Hence deg &\)(ATBS) < deg A, +deg B, < (r+j1)+d = a+p. Finally, if p < r+j;—1
then s < —(k’ + a’). Hence B, =0 and @(ATBS) = 0. Overall we conclude that deg Ci<a+ p.

4. Auxiliary induction. Let us call an expression of the form M Z[b], with M € U.(g),Z € g and
b> 1, a good word. A good word is thus an element of the left ideal in U.(g) generated by g @ t2C[t].

We will now prove the following claim:

(C) Suppose that I < —(k + a). Then C; vanishes or can be written as a (possibly infinite) sum of

good words.

We proceed by induction on a. The base case a = 1 follows immediately from formula . So
assume that ¢ > 2. We first consider CZJr . Take any monomial A,.B; in C’l+ . Since r > 0, we have
s=1l—-r<—(k+a)+2<—(k+a'). Therefore, by induction, B, can be written as a sum of good
words. The same obviously applies to A, B, and, consequently, to C’fr .

We now consider C;". Take any monomial B, A, in C;. If —j; +1 < s < 0 then Ay, = 0
by (A2). If s < —j; — 2 then, by (Al), A, is a scalar multiple of X;[b] with b > 2. Hence
in both of these cases B,As; can be written as a sum of good words. There remain two cases to
consider. First suppose that s = —j;. Then A is a multiple of X; by . We also have
r=1—s < —(k+a+s) = —(k'+a’)—1. Hence, by induction, B, can be written as a sum of good words.
Take any such good word M Z[b]. Then M Z[b| X1 = MX1Z[b]+ M|[Z, X1][b]. Hence B, A, can also be
written as a sum of good words. Secondly, suppose that s = —j; — 1. Then Ay is a multiple of X [1].
We also have r =1 — s < —(k+a+s) = —(k' + a’). Hence, by induction, B, can be written as a sum
of good words. Take any such good word M Z[b]. Then M Z[b]X1[1] = MX;[1]Z[b] + M[Z, X4][b + 1].

Hence B, A, can also be written as a sum of good words. This proves (C).

5. The inductive case - C; . First suppose that [ < —(k + a). Then, by (C), C;” vanishes or can
be written as a sum of good words. But every good word annihilates 1y, so @_ =0.

We now consider the remaining three cases. Regard C; as a sum of monomials B, A, as in .
Given that s < 0, we have 121\5 #0onlyifs=—j, or s =—j; — 1, by and . So suppose
that s = —j;. Then A, = (—=1)171X; and so deg A, = 0. Firstly, assume that | = —(k + a).
Then r =1 —s = —(k' +d’) — 1. Hence, by (C), B, can be written as a sum of good words.
Take any such good word MZ[b]. Then MZ[b|X, = MX,Z[b] + M[Z, X1][b] and so ®(B,A,) = 0.
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Secondly, assume that | = —(k +a) + 1. Then r = | — s = —(k + a’). Hence, by induction,
deg B, < @’ = a—1 and so we can conclude that deg %(BTAS) < deg B, < a— 1. Thirdly, assume that
l=—(k+a)+2 Thenr=1—s=—(k' +a')+ 1. Hence, by induction, deg B, < a’ — 1 =a — 2 and
so deg @(BTAS) < deg B, <a-2<a. Fourthly, assume that [ = —(k + a) + 2 + p with p > 0. Then
r=1l—s=—(k+a)+2+ (p—1). Hence, by induction, degB, <a +p—1=a+p—2and so
degEI;(BTAS) < degér <a+p-—-2<a-+p.

Now suppose that s = —j; — 1. Then Ay = (—1)71715; X;[1] and so degﬁs < 1. Firstly, assume
that { = —(k+a). Thenr =1 — s = —(k’ + a’). Hence, by induction, deg B, < @’ = a — 1 and so
deg ®(B,A,) < deg B, + deg A, < a. Secondly, assume that [ = —(k+a)+1. Thenr =1 —s = —(k/ +
a') + 1. Hence, by induction, deg B, <a —1=a—2and so deg %(BTAS) <deg B, +deg A, < a— 1.
Thirdly, assume that | = —(k+a) +2+p with p > 0. Thenr =1 —s = —(k' +a') + 2 + p.
Hence, by induction, deg B, <a +p=a+p—1and so deg @(BTAS) < deg B, + deg A, < a+ p. This
proves that él_ satisfies the required constraints and completes the proof of the first part of the lemma.

6. Another auxiliary induction. We claim that
(C) If X; eny @n_ for some 1 < i < a then 5_(k+a) =0.

If a = 1 then 5_(k+1) = (=1)* 'k X;[1].1g = 0 since X; € ny ®n_. So suppose a > 1. Then, by part 3
of the proof, éj(k+a) = 0. Let us show that 6;(k+a) 4
it suffices to consider the monomial B, A, in C:(k+a) with s = —j; — 1. Since A, = (—=1)7171j; X4 [1],
we have &)(BTAS) =0if X; € ny @n_. Otherwise, X; € t and X; € n; ®n_ for some 2 <i < a. By
induction, B, = 0. Hence B, € J. and B, can be written as a (finite) sum > Z,Y, with Z, € U.(g)
and Y, € ior Y, = egq — 1 for some 1 < ¢ < n. In the first case, we use the fact that, by Lemma [£.6.2]
i is an ideal in t;. Since A, € t[1], we get [V}, As] € i. In the second case, [Y;, As] = 0. Tt follows that

[B,, As] € Je.

vanishes as well. Part 5 of the proof implies that

7. Second part of the lemma. We now prove the second statament of the lemma. First observe
that in many parts of the proof so far we have established the stronger inequalities in the second
statement of the lemma without even using the assumption that C' € ker AHC. Let us consider all
the remaining cases. The first such case appears in part 3 of the proof: | = —(k + a) + 2 + p with
p=r+7j1 — 1. In that case s = —(k’ + a’). Since C € ker AHC, B; satisfies the hypothesis of (C?),
from which we conclude that Es =0 and so ff(ATBS) =0.

The second case appears in part 5 of the proof: s = —j; — 1 and | = —(k + a). It follows directly
from (C’) that Cf(B,«AS) = 0. The third case also appears in part 5 of the proof: s = —j; — 1 and
| = —(k+a)+2+p with p > 0. In that case A; = (—1)7*71j; X;[1]. There are two possibilities. Either
X1 €ny ®n_ or B, € ker AHC. In the first case &)(B,.As) = 0 and in the second case, by induction,
degB, <d' +p—2=a+p—3and so deg(I;(BTAS) < deg B, + deg A, < a+ p — 2. This was the last

case to consider. We have therefore completed the proof of the lemma. O

Lemma [AZ0.1] directly implies the following.

Corollary A.0.2. Suppose that either (i) C € U(g_)_x N UPY(§_)<p_1 or (i) C € (U(g_)_x N
Upb""(@_)gk)ad" and C € ker AHC. Then:

Cr=0 (1<-2k), degCopiopy<k—2+p (p>0).

Lemma A.0.3. We have:
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o Pry=0ifl <2k, o P o = Y0 (ess[1])* 1u,
(] f’k’,gk+1 = I{‘Z?:l(eii[l])k_l.lﬂ, e if b >0 then:
Pr_oktots = kzeii[_b —1)(ex[1)* g + (He)<hip1-
i=1

Proof. The first case follows directly from Lemma [AZ0.1] So consider the remaining three cases. Fix
1<i<n. Let A=ey[-1], B = (e;[-1])*! and C = AB. By Lemma we have B;.1ly = 0 for
s < —2k+2 and As.1g = 0 for s < —2. Hence (A.3) implies that

C_op = B_opioA 5.1y, Co_oprr = BoograA 1.0g + B_opi3A .15

By induction we know that B_or4o = (e;[1])¥™ and B_ox3 = (k — 1)(es[1])¥~2 modulo ﬁc.gzg.
Hence 6_% = A_QB_2k+2.1H = (eii[l])k.lH and

Coop1 = BopyoA 1.1y + Bopy3A o1y
= B opiody + A 9B opys.dy = k(e [1])F 1y,

This proves the second and third cases. Finally consider the fourth case. We have

Copyop = Z AsB _apqo4b—s-1m + B_opq3ppA_1.1m + B_opyaipA_2.1g.
0<s<b

Lemma implies that AyB_og12.1g + B_okt+4+bA—_2.1g is the leading term of 672k+2+b- By
induction we know that oabs(§,2k+4+b) = (k—1eyu[—b—1](es[1])* 2.1z and §,2k+2 = (ex[1])F 1 1g.

Hence 0®5(C_gpi04s) = kegi[—b — 1](ei;[1])* 1.1z, Summing over i = 1,...,7n yields the lemma. [
We can now prove Proposition [£.9.4]

Proof of Proposition[{.9.4 By Lemma[1.9.2] we can write
T = Qrt+ Qky + Py,

where Qr € (U@-)-r N UPY(g)<p—1)™, @ € (U@-)-r N UPY(g-)<x)** and
AHC(Q},) = 0. Hence Corollary implies that Q,; = Q;c,l =0 for | < —2k and

deg Qk,72k+2+p = deg Q2,72k+2+p S k +p -2

for p > 0. On the other hand, we know from Lemma that f’kJ =0 for | < —2k, deg f’k,_gk =k
and deg Py _opi24p = k4 p for p > 0. It follows that Ty, = 0 if | < —2k, Tk, _ox = Pk _ox and that
lgk,l is the leading term of Tk)l if | > —2k + 2, as required. O
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