
 Glyndŵr University Research Online

Conference Poster

Scaling Analysis of Solving Algorithms for Canonical Problem
of Dispatching in the Context of Dynamic Programming

Fedosenko, Y.S., Reznikov, M.B., Plekhov, A.S., Chakirov, R. and Houlden, N.

This is a paper presented at the 7th IEEE Int. Conference on Internet Technologies and
Applications ITA-17, Wrexham, UK, 12-15 September 2017.

Copyright of the author(s). Reproduced here with their permission and the permission of the
conference organisers.

Recommended citation:

Fedosenko, Y.S., Reznikov, M.B., Plekhov, A.S., Chakirov, R. and Houlden, N. (2017) 'Scaling
Analysis of Solving Algorithms for Canonical Problem of Dispatching in the Context of
Dynamic Programming'. In: Proc. 7th IEEE Int. Conference on Internet Technologies and
Applications ITA-17, Wrexham, UK, 12-15 September 2017, pp. 181-184. doi:
10.1109/ITECHA.2017.8101934

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/287589387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract—The paper analyses computational model based on

dynamic programming for platforms with multicore processors

and heterogeneous architectures with FPGA. The models are

applied for solving a canonical problem of dispatching where the

computation time significantly depends on the problem scale

factor. The parallel algorithms of NP-hard problem of

dispatching are complicate and require intensive RAM data

exchange. In order to reduce the computation time, it is

suggested to use FPGA as a coprocessor providing massively

parallel computation and increase the operational performance

of the system in one order.

Keywords—massively parallel calculations, dynamic

programming, dispatching problem, calculations modeling, discrete

optimisation

I. INTRODUCTION

One of the most common method for solving of the
discrete optimisation problems is dynamic programming [1].
However, the optimisation problems related to analysis of
transportation systems are characterised by NP-hardness [2]
leading to an exponential increase in computation time
regarding problem scale factor. The increase in computational
time significantly affects on the operational efficiency of
management systems involved in real-time transportation
control and planning. This paper analyses computational
procedures for solving a canonical problem of dispatching [3]
aimed to reduce the time required for solution finding.

II. MATHEMATICAL MODEL

The analysed model comprises of n-elements of
determined flow Z of independent objects z1, z2, …, zn. Each

object zi (where) is to be a subject of single-stage
servicing stationary processor P and characterised by the
following integer parameters:

ti – the moment of arrival (readiness for servicing),
ti – duration of servicing,

1,i n

ai – penalty value for each time unit when the object is not
 being serviced.

It is assumed that the inequalities 0 ≤ t1 ≤ … ti … ≤ tn are
fulfilled without loss of generality. In the first moment of time
t = 0 processor P is free and ready for servicing the objects of
the flow Z. The servicing object zi can be started by free
processor P in any moment of time t (t ≥ ti) and is executed

without interruptions, . The object can not leave the
flow being unserved. The simultaneous servicing by processor
P of two and more objects is prohibited as well as idle time
spending. The flow Z is accepted as serviced in the only one
case if all its objects become serviced.

The schedule of servicing ρ of flow Z matches permutation
p = (p(1), p(2), …, p(k), …, p(n)) of the set of indexes of
objects and must be compact, i.e. moment t′k of servicing start

for each object zp(k), is defined by following equation
t′1 = tp(1), t′k = max{t′k‑1 + tp(k-1), tp(k)}. The moment t′n of flow Z
servicing finish is defined as the moment of the last object zp(n)
is serviced.

The canonical problem of dispatching consists of
searching for schedule p* which provides minimisation of
overall penalty over all objects of flow Z:

(1)

This task can be solved using methods of Dynamic
Programming (DP).

Let Wk
min(t, S) be the minimal value of overall penalty after

servicing of set S by processor P which becomes free in the

moment t after object p(k) servicing (S Z), when k is the
serial number of serviced object. In this terms the equations of
dynamic programming have the following form:

 (2)

1,i n

1,k n

 () ()1
() min

n

p k i p kk
W p a t t

min min

11..

min

, min , , ...,

, 0

i

k k i i i ii n
z S

n

W t S W t S z a t t

W t S

Scaling Analysis of Solving Algorithms

for Canonical Problem of Dispatching

in the Context of Dynamic Programming

Yuriy S. Fedosenko, Mikhail B. Reznikov

Volga State University of Water Transportation

5 Nesterov Street, Nizhny Novgorod, 603005, Russia

Aleksandr S. Plekhov

Alekseev Nizhny Novgorod State Technical University

24 Minin Street, Nizhny Novgorod, 603155, Russia

Roustiam Chakirov

Bonn-Rhein-Sieg University of Applied Sciences

20 Grantham-Allee, Sankt Augustin, D-53757, Germany

Nigel Houlden

Glyndwr University

Plas Coch, Mold Road, Wrexham, LL11 2AW, UK

978-1-5090-4815-1/17/$31.00 ©2017 IEEE

181

where the solution of the problem (1) will be taken at the stage

Wmin = W0
min(0,).

The expression (t, S) can be considered as servicing system
state, since according to Bellman’s principle of optimality it
matches the minimal possible penalty in case of realisation of
any partial schedule p. Same values Wk

min(t, S) can be
calculated once even if present in states hierarchy multiple
times. This treat is used for realization of dynamic
programming method either by classical scheme or special
scheme with preliminary markup.

The problem (1) belongs to a class of strongly NP-
hard [2, 3] tasks where the calculation complexity is 2n. As
result, with common single thread realisation of algorithm, the
duration θ of optimal schedule p* solution is exponentially
grows up to ten-fifteen minutes even for values n > 26.

For many logistics tasks, for example, planning and
control in transportation systems, the problem size n can be
significantly higher. However, due to technical circumstances
a regular time-limit θ for synthesis of the schedule p* is
defined as a value of same order n [4]. Therefore, the effective
solution methods and special computing architectures are
required to provide fast computation of dispatching tasks
under time-limit constrain.

The state of art in solving hard computing problems is
parallelisation of works over the array of calculation resources
[5, 6]. The effectiveness of such approach is usually estimated
with ratio of performance grown in relation to increase of
computing resources involved in calculation process.

III. ESTIMATION OF PARALLELISATION EFFECTIVENESS OF

DP ALGORITHM

Fig. 1a shows a DP algorithm to be estimated in terms of
calculation complexity by the number of possible values of the
states (t, S) of the system. After limiting integer value t by
some maximum moment of time T (discretisation could be
selected for desired accuracy) the overall number of states is
estimated as О(T2n). The calculation of penalty function for
each state requires no more than n iterations. The memory

required for the calculation is found using similar way. The
algorithm flowchart (Fig. 1a) shows that up to n operations of
access to memory by random address (RAM) are required for
calculation of penalty function in each state (t, S). Step by step
from n to 0, the process of calculation of the penalty function
for k provides accessibility of all values Wk+1

min(t, S) on the
step k.

In order to provide a parallel algorithm of DP, the
computational process is realised in several independent
calculation threads. The algorithm is synchronised for
independent and sequent calculation of penalty function
values for each k step. The graph “operations-operands” of the
algorithm is similar to graph of states shown in Fig. 1b. It
demonstrates impossibility of algorithm representation as
several independent graphs of calculations (threads), i.e.
algorithm requires to share memory or intensive data
interchange between the threads. Therefore, the performance
of parallel DP algorithm will be limited by the memory
volume [7], because the increase of number of threads brings
the linear increase in the number of memory operations.

For quantitative estimation of effectiveness of the parallel
algorithm execution, it was realised using GPU Nvidia
GeForce 680 1 GHz with the number of cores 1600 and 4 Gb
RAM DDR5 and CUDA [8] with the CPU Intel i5 2 GHz as
host. For the parallel resource usage, each core process
calculations of Wk

min for part of all set of possible states. The
values for duration of schedule synthesis are shown in Fig. 2.
The synthesis provides calculation of all states by m cores for
T = 32 и n = 22.

The results of experiment have showed that:

 the effect of involved core number grows is present if it
is less or equal to 352 which is about quarter of
available calculation resources;

 overall benefit of GPU usage in comparison to CPU is
less than 2 times while GPU has magnitude of order
more cores.

The estimation of algorithm complexity shows that the
calculation of Wk

min for 268`435`456 states requires n times

Fig. 1. a) Algorithm of Wk
min(t, S) calculation, b) Example of states (t, S) graph for n = 4.

182

more commands to RAM. For the RAM frequency equal to
2 GHz the best estimation of processing time is about
5 seconds. Taking in to account that the standard technologies
rely on atomic reading of 64/128 bytes for CPU (256 bytes for
GPU) while needs only about 4 bytes, the overhead increases
the time of calculations in ten times [9]. Thus, the presence of
scaling limit for CPU and GPU technology confirms the
assumption about inefficiency of using super multicore
processor for realization of DP algorithm.

IV. REALIZATION OF DP ALGORITHM USING FPGA

Let’s consider special computational system as alternative
to multicore processor. The main requirements for this system
are:

 no waiting time for reply on memory commands while
calculating minimal value of penalty function over all
objects available for servicing;

 ability to work with memory using 8 byte (64 bit)
words.

Such calculation platform could be developed using FPGA
with connected RAM DIMM module. Calculation process,
like in common algorithm, consists of sequence of n stages,
each is providing calculation of all correspondent values Wk

min

(t, S) while k changes from n to 0. The value W0
min of the final

stage is minimal possible overall penalty after servicing of all
objects of flow Z. For preparing the process, the n arrays
formed in RAM (for number of stages), each consists of all
possible states (t, S) and uninitialised value of minimal
possible penalty Wk

min for following calculation. For
transportation systems the following dimensions will be
enough: t – 8 bit, S – 32 bits, Wk

min – 16 bits (overall element
size is 8 bytes).

At each calculation stage k all elements {(t, S), Wk
min} of

array sequentially arrives to FPGA. In the process of
calculations the new array {(t, S), Wk-1

min} is formed in FPGA

Fig. 3. The principle scheme of realization of DP algorithm for FPGA.

Fig. 2. Duration (sec.) of schedule synthesis by DP algorithm depending on m.

Fig. 4. The relation of synthesis time to the FPGA internal memory size.

183

and later is uploaded to RAM will be the source for next stage.
Thus, as result of iterative process on the final stage in RAM

we have last array of one element {(0,), W0
min} which is

required as task solution.

Calculation process shown in Fig. 3 requires usage of
internal FPGA memory for saving array of size T×Ck

n of
elements with size 8 bytes.

The work problem considered in this paper has sizes
n = 22 and T = 32. At the stage k = 11, FPGA requires internal
memory size of 180 Mb. Currently mass production FPGA
contains significantly lower amount of internal memory
(BRAM). This limitation could be avoided by sequent
repeating of one calculation stage for computing different
intervals of output array {(t, S), Wk-1

min} where the considered
example requires 32 repetitions. FPGA devices of last
generation such as Xilinx Ultrascale+ contain significantly
more BRAM – from 57 MB to 8 Gb [10].

Fig. 4 shows the results of estimation of synthesis duration
for FPGA-based DP algorithm depending on internal memory
size. If the system utilises FPGA with the internal memory
size equal to 35 Mb it is expected that system performance is
increased in one order in comparison to GPU realisation.

V. CONCLUSION

The realisation of parallel algorithms of computation of
NP-hard problem of dispatching is extremely complicate due
to requirement of intensive RAM data exchange. The increase
in processor cores involved in the computational process
provides insignificant synthesis time reducing for dynamic
programming algorithm. It has been shown that an alternative
model based on FPGA as coprocessor to provide massively
parallel calculations increase the operational performance of
the computational system in one order.

ACKNOWLEDGMENT

This work was financially supported by the Russian Fund
for Fundamental Research (Project 15-07-03141) and the
Russian Scientific Fund (Project 15-19-10026).

REFERENCES

[1] S.E. Dreyfus, and R.E. Bellman, Applied Dynamic Programming.
Princeton, N.J.: Princeton Univ. Press, 1971.

[2] M.R. Garey, and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: W.H. Freeman and Co.,
2003.

[3] D.I. Kogan, and Yu.S. Fedosenko, “The discretization problem: analysis
of computational complexity and polynomially solvable subclasses,”
Discrete Mathematics and Applications, vol. 6, no. 5, pp. 435–447,
1996.

[4] D.I. Kogan, and Yu.S. Fedosenko, “Optimal servicing strategy design
problems for stationary objects in a one-dimensional working zone of a
processor,” Automation and Remote Control, vol. 71, no. 10, pp. 2058–
2069, Oct. 2010.

[5] S. Lang. (2015). Parallel Computer Architecture I [Online]. Available:
https://conan2.iwr.uni-heidelberg.de/old-site/teaching/phlr_ws2015/
lecture02.pdf.

[6] P.N. Mehra, “Massively parallel processing: Architecture and
technologies,” in Handbook of Systems Development, P.C. Tinnirello,
Ed. Boca Raton, FL: Auerbach Publications, 1998, pp. 483–503.

[7] L.M. Silva, and R. Buyya, “Parallel programming models and
paradigms,” in High Performance Cluster Computing: Architectures and
Systems, R. Buyya, Ed. Upper Saddle River, NJ: Prentice Hall, 1999, pp.
4–27.

[8] R. Hochberg. (2012). Dynamic Programming with CUDA. Part I
[Online]. Available: http://www.shodor.org/media/content//petascale/
materials/UPModules/dynamicProgrammingPartI/
dynProgPt1ModuleDoc.pdf

[9] S. Settle, “High-performance dynamic programming on FPGAs with
OpenCL,” in Proc. IEEE 17th Annual Conference on High Performance
Extreme Computing, Waltham, MA, 10-12 Sept. 2013. [Online].
Available: http://ieee-hpec.org/2013/index_htm_files/29-High-
performance-Settle-2876089.pdf

[10] Xilinx. (2017). UltraScale Architecture and Product Data Sheet:
Overview. Preliminary Product Specification [Online]. Available:
https://www.xilinx.com/support/documentation/data_sheets/ds890-
ultrascale-overview.pdf

184

	Conference Paper cover sheet
	3007-1570367981

