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Abstract—The paper analyses computational model based on 

dynamic programming for platforms with multicore processors 

and heterogeneous architectures with FPGA. The models are 

applied for solving a canonical problem of dispatching where the 

computation time significantly depends on the problem scale 

factor. The parallel algorithms of NP-hard problem of 

dispatching are complicate and require intensive RAM data 

exchange. In order to reduce the computation time, it is 

suggested to use FPGA as a coprocessor providing massively 

parallel computation and increase the operational performance 

of the system in one order. 

Keywords—massively parallel calculations, dynamic 

programming, dispatching problem, calculations modeling, discrete 

optimisation 

I. INTRODUCTION

One of the most common method for solving of the 
discrete optimisation problems is dynamic programming [1]. 
However, the optimisation problems related to analysis of 
transportation systems are characterised by NP-hardness [2] 
leading to an exponential increase in computation time 
regarding problem scale factor. The increase in computational 
time significantly affects on the operational efficiency of 
management systems involved in real-time transportation 
control and planning. This paper analyses computational 
procedures for solving a canonical problem of dispatching [3] 
aimed to reduce the time required for solution finding. 

II. MATHEMATICAL MODEL

The analysed model comprises of n-elements of 
determined flow Z of independent objects z1, z2, …, zn. Each 

object zi (where ) is to be a subject of single-stage 
servicing stationary processor P and characterised by the 
following integer parameters: 

ti – the moment of arrival (readiness for servicing), 
ti – duration of servicing, 

1,i n

ai – penalty value for each time unit when the object is not 
       being serviced. 

It is assumed that the inequalities 0 ≤ t1 ≤ … ti … ≤ tn are 
fulfilled without loss of generality. In the first moment of time 
t = 0 processor P is free and ready for servicing the objects of 
the flow Z. The servicing object zi can be started by free 
processor P in any moment of time t (t ≥ ti) and is executed 

without interruptions, . The object can not leave the 
flow being unserved. The simultaneous servicing by processor 
P of two and more objects is prohibited as well as idle time 
spending. The flow Z is accepted as serviced in the only one 
case if all its objects become serviced. 

The schedule of servicing ρ of flow Z matches permutation 
p = (p(1), p(2), …, p(k), …, p(n)) of the set of indexes of 
objects and must be compact, i.e. moment t′k of servicing start 

for each object zp(k),  is defined by following equation 
t′1 = tp(1), t′k = max{t′k‑1 + tp(k-1), tp(k)}. The moment t′n of flow Z 
servicing finish is defined as the moment of the last object zp(n) 
is serviced. 

The canonical problem of dispatching consists of 
searching for schedule p* which provides minimisation of 
overall penalty over all objects of flow Z: 

(1) 

This task can be solved using methods of Dynamic 
Programming (DP). 

Let Wk
min(t, S) be the minimal value of overall penalty after

servicing of set S by processor P which becomes free in the 

moment t after object p(k) servicing (S  Z), when k is the 
serial number of serviced object. In this terms the equations of 
dynamic programming have the following form: 
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where the solution of the problem (1) will be taken at the stage 

Wmin = W0
min(0, ). 

The expression (t, S) can be considered as servicing system 
state, since according to Bellman’s principle of optimality it 
matches the minimal possible penalty in case of realisation of 
any partial schedule p. Same values Wk

min(t, S) can be 
calculated once even if present in states hierarchy multiple 
times. This treat is used for realization of dynamic 
programming method either by classical scheme or special 
scheme with preliminary markup. 

The problem (1) belongs to a class of strongly NP-
hard [2, 3] tasks where the calculation complexity is 2n. As 
result, with common single thread realisation of algorithm, the 
duration θ of optimal schedule p* solution is exponentially 
grows up to ten-fifteen minutes even for values n > 26. 

For many logistics tasks, for example, planning and 
control in transportation systems, the problem size n can be 
significantly higher. However, due to technical circumstances 
a regular time-limit θ for synthesis of the schedule p* is 
defined as a value of same order n [4]. Therefore, the effective 
solution methods and special computing architectures are 
required to provide fast computation of dispatching tasks 
under time-limit constrain. 

The state of art in solving hard computing problems is 
parallelisation of works over the array of calculation resources 
[5, 6]. The effectiveness of such approach is usually estimated 
with ratio of performance grown in relation to increase of 
computing resources involved in calculation process. 

III.  ESTIMATION OF PARALLELISATION EFFECTIVENESS OF 

DP ALGORITHM  

Fig. 1a shows a DP algorithm to be estimated in terms of 
calculation complexity by the number of possible values of the 
states (t, S) of the system. After limiting integer value t by 
some maximum moment of time T (discretisation could be 
selected for desired accuracy) the overall number of states is 
estimated as О(T2n). The calculation of penalty function for 
each state requires no more than n iterations. The memory 

required for the calculation is found using similar way. The 
algorithm flowchart (Fig. 1a) shows that up to n operations of 
access to memory by random address (RAM) are required for 
calculation of penalty function in each state (t, S). Step by step 
from n to 0, the process of calculation of the penalty function 
for k provides accessibility of all values Wk+1

min(t, S) on the 
step k. 

In order to provide a parallel algorithm of DP, the 
computational process is realised in several independent 
calculation threads. The algorithm is synchronised for 
independent and sequent calculation of penalty function 
values for each k step. The graph “operations-operands” of the 
algorithm is similar to graph of states shown in Fig. 1b. It 
demonstrates impossibility of algorithm representation as 
several independent graphs of calculations (threads), i.e. 
algorithm requires to share memory or intensive data 
interchange between the threads. Therefore, the performance 
of parallel DP algorithm will be limited by the memory 
volume [7], because the increase of number of threads brings 
the linear increase in the number of memory operations. 

For quantitative estimation of effectiveness of the parallel 
algorithm execution, it was realised using GPU Nvidia 
GeForce 680 1 GHz with the number of cores 1600 and 4 Gb 
RAM DDR5 and CUDA [8] with the CPU Intel i5 2 GHz as 
host. For the parallel resource usage, each core process 
calculations of Wk

min for part of all set of possible states. The 
values for duration of schedule synthesis are shown in Fig. 2. 
The synthesis provides calculation of all states by m cores for 
T = 32 и n = 22.  

The results of experiment have showed that: 

 the effect of involved core number grows is present if it 
is less or equal to 352 which is about quarter of 
available calculation resources; 

 overall benefit of GPU usage in comparison to CPU is 
less than 2 times while GPU has magnitude of order 
more cores. 

The estimation of algorithm complexity shows that the 
calculation of Wk

min for 268`435`456 states requires n times 

Fig. 1. a) Algorithm of Wk
min(t, S) calculation, b) Example of states (t, S) graph for n = 4.  
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more commands to RAM. For the RAM frequency equal to 
2 GHz the best estimation of processing time is about 
5 seconds. Taking in to account that the standard technologies 
rely on atomic reading of 64/128 bytes for CPU (256 bytes for 
GPU) while needs only about 4 bytes, the overhead increases 
the time of calculations in ten times [9]. Thus, the presence of 
scaling limit for CPU and GPU technology confirms the 
assumption about inefficiency of using super multicore 
processor for realization of DP algorithm. 

IV.  REALIZATION OF DP ALGORITHM USING FPGA 

Let’s consider special computational system as alternative 
to multicore processor. The main requirements for this system 
are: 

 no waiting time for reply on memory commands while 
calculating minimal value of penalty function over all 
objects available for servicing; 

 ability to work with memory using 8 byte (64 bit) 
words. 

Such calculation platform could be developed using FPGA 
with connected RAM DIMM module. Calculation process, 
like in common algorithm, consists of sequence of n stages, 
each is providing calculation of all correspondent values Wk

min

(t, S) while k changes from n to 0. The value W0
min of the final 

stage is minimal possible overall penalty after servicing of all 
objects of flow Z. For preparing the process, the n arrays 
formed in RAM (for number of stages), each consists of all 
possible states (t, S) and uninitialised value of minimal 
possible penalty Wk

min for following calculation. For 
transportation systems the following dimensions will be 
enough: t – 8 bit, S – 32 bits, Wk

min – 16 bits (overall element 
size is 8 bytes). 

At each calculation stage k all elements {(t, S), Wk
min} of 

array sequentially arrives to FPGA. In the process of 
calculations the new array {(t, S), Wk-1

min} is formed in FPGA 

Fig. 3.  The principle scheme of realization of DP algorithm for FPGA. 

Fig. 2. Duration (sec.) of schedule synthesis by DP algorithm depending on m. 

Fig. 4.  The relation of synthesis time to the FPGA internal memory size. 
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and later is uploaded to RAM will be the source for next stage. 
Thus, as result of iterative process on the final stage in RAM 

we have last array of one element {(0, ), W0
min} which is

required as task solution. 

Calculation process shown in Fig. 3 requires usage of 
internal FPGA memory for saving array of size T×Ck

n of
elements with size 8 bytes. 

The work problem considered in this paper has sizes 
n = 22 and T = 32. At the stage k = 11, FPGA requires internal 
memory size of 180 Mb. Currently mass production FPGA 
contains significantly lower amount of internal memory 
(BRAM). This limitation could be avoided by sequent 
repeating of one calculation stage for computing different 
intervals of output array {(t, S), Wk-1

min} where the considered 
example requires 32 repetitions. FPGA devices of last 
generation such as Xilinx Ultrascale+ contain significantly 
more BRAM – from 57 MB to 8 Gb [10]. 

Fig. 4 shows the results of estimation of synthesis duration 
for FPGA-based DP algorithm depending on internal memory 
size. If the system utilises FPGA with the internal memory 
size equal to 35 Mb it is expected that system performance is 
increased in one order in comparison to GPU realisation.  

V. CONCLUSION

The realisation of parallel algorithms of computation of 
NP-hard problem of dispatching is extremely complicate due 
to requirement of intensive RAM data exchange. The increase 
in processor cores involved in the computational process 
provides insignificant synthesis time reducing for dynamic 
programming algorithm. It has been shown that an alternative 
model based on FPGA as coprocessor to provide massively 
parallel calculations increase the operational performance of 
the computational system in one order. 
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