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Abstract—The problem of decomposition of a multi-timescale
systems dynamic model is considered in this paper. The specific 
feature of these systems is the simultaneous presence of processes 
with essentially different speeds of free components of motions.
The description model is represented by a singularly perturbed 
system of differential equations. The conditions are examined
that allow reduction of the order of the system model: the 
checking of these conditions causes the greatest difficulty in 
practice. Research results are given as an iterative procedure
requiring no special knowledge of singularly perturbed systems 
of differential equations.
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I. INTRODUCTION

In problems of dynamic objects control, multi-timescale
systems compose a separate class requiring special 
consideration. The essential feature of these systems is the 
simultaneous presence of  processes with essentially different 
speeds of free components of motions. They are wide-spread, 
for instance, in electromechanical systems, models of which 
combine descriptions of fast-settling electrical processes and 
mechanical processes, this settling of which is determined by 
the inertia of the load [1]. Multi-timescale systems are 
particularly interesting because their models can be 
decomposed under certain conditions and thus the model order 
decreased.

The mathematical description of multi-timescale systems 
is usually expressed in the form of a singularly perturbed 
system of first-order differential equations with small 
parameters at the derivatives in some:

, (1)

where , , ;

and , , are scalar functions of their 

arguments; the parameter is of a higher order of 

magnitude than , so that, as they approach zero, ;

; n + m = s is the total order of the model.

Functions and , , and their 

derivatives with respect to and are assumed to be 
continuous considered in the domain in which their arguments
vary.

The purpose of this paper is to determine the conditions 
under which the order s of the initial model may be decreased 
– replacing it by an approximate (reduced) model of order n,

which can be obtained from (1) when for all .

II. SIMPLIFICATION OF A TWO-TIMESCALE SYSTEM

Initially, we consider a two-time-scale system. This is 
described by model (1) when :

(2)

The possibility of transforming this, as , to the reduced 
model

(3)

is considered in the familiar Tikhonov’s theorem on the 
passage to the limit [2] (or [3] in English). This gives 
sufficient conditions under which the solution of the 

initial system converges to the solution of the reduced 

system as . We consider these conditions. Model (2) is 
considered as the complex of models of two subsystems
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describing the processes with fast and slow speeds of free 
components of motions. The subsystem of the slow variables 
is described in (2) by the first vector equation for ; the 
subsystem of the fast variables is described by the second 
scalar equation for z. The conditions of Tikhonov's theorem 
concern demands on the properties of the fast subsystem.

We set the left part of the second equation in (2) to zero

(4)

and solve this equation with respect to z. This gives the root of
equation (4)

(5)

This contributes to the construction of the reduced system in
its final form

(6)

In the model of the fast motions, we transfer to the new 

independent variable

(7)

where .

Equation (7), where and t are considered as parameters,

is called the associated system. Variables and t can be 
treated as constants because their changes are small (when 
is small) in the time intervals where solutions of (7) are 
investigated for the fulfillment of the conditions of Tikhonov's
theorem. For system (7), the root (5) (when , t – const) is the 
equilibrium point.

According to [2], in order to make the solution of the 
initial system (2) tend towards the solution of the reduced 
system (6), as , two conditions sufficient:

1) The root (5) must be the asimptotically stable
equilibrium point of the associated system (7);

2) The initial value , when ,

, must belong to the domain of influence of the root
(5). 

We now consider each condition.

The fulfillment of the first condition may be confirmed by 
means of Lyapunov's first method on the basis of the transfer 

the Taylor expansion of at the point

(8)

Two cases are possible here [4].

If then the necessary and sufficient 

condition of the asymptotic stability of the root (5) is the 
demand that

(9)

Let and be the 

first non-zero term of the Taylor expansion of the first part of 
the equation (7). In this case the asymptotic stability of the 
root (5) may be so if and only if the following condition is 
fulfilled:

, r – an odd number. (10)

Inequalities (9) and (10) guarantee the stability of the root 
(5) when the deviations of z from it are small.

The second condition of Tikhonov's theorem demands that 
the initial value must be in the domain of influence of 
the stable root. The fulfillment of this condition guarantees 
that the process of the associated system will reach the 
stationary point when a deviation from it is determined by the 
initial conditions.

In the general case equation (4) can have several roots, ,

, with different stability properties. We can prove the 
following assertion:

Let equation (4) have k roots, , arranged in ascending 

order, so that .

Then stable roots alternate with unstable roots.

We can show that there is an unstable root between 
the two nearest stable roots and . According to (9) 
or (10), in some neighborhood of the root when , 
the variable decreases over time and approaches , 

that is: . From (7) this means that . In some 

neighborhood of the root , when , the value of z

increases, i.e. and consequently . Thus in the

interval the function changes its sign. 
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Because the function is continuous this means that a point
exists, such that, at this point, and the same 

value is the root of the equation (4). Consider the behavior of

near the root . If we get , i.e. 

and, consequently, z decreases moving away from . If

, and z increases and moves away from

as well. From equation (8), derived from (7) by means of 
expansion of F in , it follows that such behavior of z in the 
neighborhood of takes place if the derivatives in 
inequalities (9) or (10) are positive. Thus is an unstable 
root. It is easy to prove, in the same manner, that between two 
neighboring unstable roots there is a stable root. Now we show 
that there is only one unstable root between two neighboring 
stable roots and that the stable root that lies between two
unstable is also unique. Let us consider two neighboring stable 
roots and suppose that there is more than one unstable root 
between them. Then, as a result of the statements proved 
above, there should be stable roots between them. It 
contradicts the initial hypothesis that we consider the interval 
of z values between two neighboring stable roots. In the same 
way it can be proved that the stable root between two 
neighboring unstable roots is unique. So the assertion is 
proved.

From this assertion it follows that the domain of  influence 
of the stable root is the initial values of which are in the 
interval limited by the values of the neighboring greater and 
lesser unstable roots. If the stable root is minimal then its 

domain of influence enlarges upon values, . If 

the root is maximum then processes converge to it when 

.

The proved assertion provides the final answer regarding
the fulfillment of the second condition of the theorem. The 
interval D of the initial condition values, providing the 
inclusion of the chosen initial value of in the domain of 
influence of some stable root, depends on the stability 
properties of minimal and maximal roots and . If 
and are both stable roots then ; if is a 

stable root and is an unstable root then ; if

is an unstable root and is a stable root then

; if and are both unstable roots then

. The second condition of the theorem will be 

fulfilled if the dynamic system is being considered with the 
initial condition of belonging to one of the aforementioned 
intervals D. In this case the very stable root in the domain of
influence of which the initial condition lies will enter into 
the expression for the reduced system (6). Otherwise the 
condition of the theorem will not be fulfilled.

III. A PROCEDURE FOR MULTI-TIMESCALE SYSTEM ORDER 

REDUCTION

We now consider the initial problem of the construction of 
a reduced model for system (1). A general algorithm for its 
solution is given in [2] ([5] in English).  This assumes a
procedure of sequentially decreasing the reduced system 
dimension from the (s - 1)th to the nth value. In each step of the
reduction, the equation for iz , with parameter , having the 
largest order of magnitude is considered to be the equation of 
the fast subsystem. Other equations for iz together with the 

equations for comprise the subsystem of the slow variables. 
The problem of the construction of the reduced model at this 
step of decomposition is solved in a similar way to the process 
described above from the initial model (2) to the reduced 
model (6). The resultant reduced model, after reducing from it 
the equation with of the largest order of magnitude, is 
considered as the initial one for the following step of its order 
reduction as the process repeats. At each step, the fulfillment
of the conditions of the theorem [2] is checked for the 
associated system obtained during this step, as was described 
above. 

Thus, at the first step, the system (1) is considered as the 
initial model. Its fast subsystem is determined by the equation 

with . The remaining equations for and ( ) 
refer to the subsystem of the slow variables.

The roots are obtained from the equation

and the associated system is the following:

(11)

where , ( ), t are parameters determined by 

their initial values, . The fulfillment of the conditions 

of the theorem [2] is checked when the initial condition of the 
solution . If they are fulfilled, we chose the root,

, in which the domain of influence of 

the given initial condition, , lies. As a result, we obtain the 
reduced system of the first step:

(12)

At the second step, the initial system is the system (12),
where the fast subsystem is described by the previous equation 
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with and so on. For the all associated systems received in 
steps 1 … m, the fulfillment of conditions (1) and (2) is 
checked. In this case, the associated system received in the kth

step is the following:

(13)

, ,

where all variables on the right-hand side, except , are 

considered as parameters, , functions depend on

t, , , ..., , and m - j functions , ..., 
.

(Here, for brevity, we do not write down the dependence of all
functions on their variables: replacing it by " " where this 
dependence is unambiguous.)

If the conditions described above are satisfied for all 
associated systems (i.e. for systems (13), when ), then
the following reduced model corresponds to the initial model 
(1):

(14)

where , , are the chosen roots.

IV. CONCLUSION

In conclusion, let us represent the results obtained as a 
procedure for finding the reduced model for model (1), 
requiring no special knowledge of singularly perturbed 
systems of differential equations. 

In system (1) let us distinguish the equation for . From 

equation , we obtain roots

, . For each of these, the 

stability or instability properties for small deviations are
investigated. The root is stable if one of the inequalities (9) or 
(10) holds for it; otherwise it is unstable. In inequalities (9)
and (10) the partial derivatives of function are considered 

at points . According to the rule given above, the limits of 
the interval D and its division into domains of stable root

influence are determined. The belonging of the initial 
condition to the received interval D is checked. If the 

result of the check is positive, the root is refined in the 

influence domain in which it lies. The nearest to the
stable root, which is not separated from the initial condition by 
the unstable root, is chosen. Substituting this value 

into the initial system (1) we obtain

the reduction for the first step of the procedure model with the 
reduction of its order by one. 

The reduced model obtained is then the initial one for the 
this step, equation

, and roots

, , of equation are

considered.

Let us assume that, at each step of the degeneration of the 
reduced model order, the presence of the stable root, to the 
domain of which influence the initial value for this step (for 
example, for i-th step it is ) belongs, is confirmed. 

Then, in m steps, system (1) will be represented by a system of 
n differential equations with respect to variables and t, 
which represent the description of the completely reduced 
model corresponding to the initial model with the reduction of 
its dimension by m orders. The description of processes , ..., 

is found by successive substitution of the known variables 

in the expressions for stable roots distinguished on each 

step, beginning with .
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