
 Glyndŵr University Research Online 
 
 
 
Journal Article 
 
 

Synthesis of cationic alkylated chitosans and an investigation of their 
rheological properties and interaction with anionic surfactant 
 
 
 
Burr, S., Williams, P.A. and Ratcliffe, I. 
 
 
 
 
 
 
 
 
 
 
 
This article is published by Carbohydrate Polymers.  The definitive version of this article is 
available at: https://www.sciencedirect.com/science/article/pii/S0144861718310142#!  
 
 
 
 
 
 
 
 
 
 
 
 
Recommended citation: 
 
Burr, S., Williams, P.A. and Ratcliffe, I. (2018), 'Synthesis of cationic alkylated chitosans and 
an investigation of their rheological properties and interaction with anionic surfactant', 
Carbohydrate Polymers, vol 201, pp. 615-623. doi: 10.1016/j.carbpol.2018.08.105 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/287589376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.journals.elsevier.com/carbohydrate-polymers/
https://www.sciencedirect.com/science/article/pii/S0144861718310142


Accepted Manuscript

Title: Synthesis of cationic alkylated chitosans and an
investigation of their rheological properties and interaction
with anionic surfactant

Author: S.J. Burr P.A. Williams I. Ratcliffe

PII: S0144-8617(18)31014-2
DOI: https://doi.org/doi:10.1016/j.carbpol.2018.08.105
Reference: CARP 14002

To appear in:

Received date: 25-6-2018
Revised date: 1-8-2018
Accepted date: 24-8-2018

Please cite this article as: S.J. Burr, P.A. Williams, I. Ratcliffe, Synthesis of
cationic alkylated chitosans and an investigation of their rheological properties and
interaction with anionic surfactant, <![CDATA[Carbohydrate Polymers]]> (2018),
https://doi.org/10.1016/j.carbpol.2018.08.105

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

https://doi.org/doi:10.1016/j.carbpol.2018.08.105
https://doi.org/10.1016/j.carbpol.2018.08.105


Page 1 of 19

Acc
ep

te
d 

M
an

us
cr

ip
t

Synthesis of cationic alkylated chitosans and an investigation of
their rheological properties and interaction with anionic surfactant

Burr, S.J.∗, Williams, P.A.∗, Ratcliffe, I.∗

Centre for Water Soluble Polymers
Wrexham Glyndwr University, Wrexham, LL11 2AW, Wales, UK

Abstract

Two methods were used to alkylate high MW chitosan with glycidyltrimethylammonium chloride
(GTAC) in order to produce chitosan derivatives that are water-soluble throughout the pH range.
In addition, a novel chitosan derivative was created by alkylating one of the products with the
GTAC analogue Quab 342 containing C12 alkyl chains. The phase behaviour and rheological
characteristics of the chitosan derivatives were studied in the presence of anionic surfactant. The
derivatives were found to form soluble complexes at low and high SDS concentrations and the
Quab 342 derivative was able to form gels.

Keywords: chitosan, quaternisation, rheology, anionic surfactant interactions

1. Introduction1

Chitin (poly β-(1→4)-N -acetyl-D-glucosamine) is found in arthropod shells (Mao et al., 2017)2

and the cell walls of yeasts and fungi. It is the second most abundant natural polysaccharide3

after cellulose (Dutta et al., 2004), and it is in increasing demand as a raw material for many4

sophisticated applications in medicine, agriculture and other areas (Dutta et al., 2004), (Xia5

et al., 2011), (Pillai et al., 2009), (Hayes et al., 2008b), (Kumar et al., 2004). Chitin’s desirable6

properties include biocompatibility, biodegradability to normal body constituents, safety, non-7

toxicity, binding to mammalian and microbial cells, and antimicrobial activity against bacteria8

and fungi (Bellich et al., 2016), (Sahariah and Másson, 2017). These properties are shared by9

its acid-soluble derivative chitosan, which is prepared by removing at least 50% of the N-acetyl10

groups, and also by a wide variety of chemical derivatives.11

12

Chitin is generally extracted from marine sources, such as shrimp shells and other shellfish13

by-products, although there is also interest in fungal and insect chitin (Sajomsang and Gonil,14

2010). The extraction process (reviewed by Hayes et al. (2008a) and Younes and Rinaudo (2015))15

consists of demineralisation, deproteination, decolourisation, and in the case of chitosan, deacety-16

lation. It generally involves strong acids and alkali, and may be extended to depolymerise the17

chitosan if low MW products are desired (Mohammed et al., 2013). Alternatively a specific de-18

polymerisation step may be added, such as ultrasound or enzyme hydrolysis (Lodhi et al., 2014).19

20
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Chemically, chitosan is a linear polyamine, basic, carrying reactive amino and hydroxyl21

groups, capable of chelating transition metal ions, and soluble in water below pH 6.5. Its hy-22

droxyl and amino groups can be acylated or alkylated, which is very useful, because its uses23

under physiological conditions are limited by the fact that it precipitates when the pH is raised24

above 6.5 (e.g. (Snyman et al., 2002), (Lim and Hudson, 2004) (Tungtong et al., 2012)). This25

problem can be solved by adding polar or charged groups to the polysaccharide backbone. Hy-26

drophobic groups such as dodecyl moieties are also sometimes added to make chitosan soluble in27

organic solvents (Mourya and Inamdar, 2008) , or enable it to bind to plastics as a biodegradable28

component (Kumar et al., 2004). Chemical derivatives of chitosan have been comprehensively29

reviewed by Mourya and Inamdar (Mourya and Inamdar, 2008) while Sahariah and Másson dis-30

cuss their antibacterial activity (Sahariah and Másson, 2017).31

32

One potentially extremely useful modification is to convert the 2-amino group into a quater-33

nary amine (Mourya and Inamdar, 2008), (Sahariah and Másson, 2017). The quaternary amine34

remains charged throughout the pH range and if the degree of substitution (D.S.) is high enough35

it can render even high MW chitosans completely water-soluble. The simplest quaternised chi-36

tosan is N,N,N-trimethyl chitosan, synthesised by reductive alkylation (Guo et al., 2007), which37

has very promising antifungal (Snyman et al., 2002) and antibacterial activity (Sahariah and38

Másson, 2017). However, because the reductive methylation synthesis requires iodomethane and39

N-methyl pyrrolidine as a solvent, an alternative reaction which can be carried out in aqueous40

solution is often preferred. Glycidyl trimethylammonium chloride (GTAC) alkylates the amino41

groups via its epoxide ring and it already carries a quaternary amine group. The GTAC alkyla-42

tion is well studied, and typically carried out under neutral conditions at temperatures of 70◦C –43

100◦C (Kim et al., 2003), (Lim and Hudson, 2004), (Nam et al., 1999) and (Ruihua et al., 2012),44

and the resulting quaternised chitosan also has antimicrobial activity (Sahariah and Másson,45

2017), (Kim et al., 2003), (Lim and Hudson, 2004) and (Nam et al., 1999).46

47

With its wide solubility range, quaternised chitosan has obvious potential applications in48

a broad range of commercial products, including pharmaceuticals, neutraceuticals, cosmetics49

and personal care products. As Dutta et al point out, chitosan can form a clear elastic skin50

on hair (which is negatively charged), and it can form gels in aqueous alcohol solvents (many51

types of cosmetics, skincare products and pharmeuticals are applied as gels) and furthermore,52

high MW chitosans do not pass through the skin barrier (Dutta et al., 2004). If quaternised53

chitosans share all these chitosan traits, they would be desirable components for these formula-54

tions. In the case of shampoos it would also be desirable for the chitosans to have foaming and55

emulsifying properties, either by themselves or when combined with surfactants in a formulation.56

57

This study was undertaken to synthesise quaternised chitosans with high D.S. using GTAC.58

Two synthetic methods were attempted. 1) Heterogeneous GTAC alkylation at high pH to alky-59

late both the amino and hydroxyl groups on the chitosan backbone. Our first hypothesis was60

that at high pH, the 3– and 6– hydroxyl groups may be alkylated as well, increasing the D.S. and61

the charge density by up to three times. 2) Homogeneous GTAC alkylation in dilute perchloric62

acid by Ruihua’s method (Ruihua et al., 2012). In addition, a second alkylating agent was tested:63

Quab 342, a GTAC analogue which carries a dodecyl chain in place of one of the quaternary64

amine’s methyl groups.The second hypothesis was that this quaternised chitosan derivative (with65

hydrophobic groups in addition to the positively charged substituents) would have enhanced rhe-66

ological characteristics due to intermolecular hydrophobic interaction and that the interactions67

could be enhanced by the presence of anionic surfactants. Hydrophobically associating polymers,68

which are predominately non-ionic or anionic, are finding increasing application in commercial69

2
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formulations in many industrial sectors and since the formulations invariably include surfactants70

a knowledge of the polymer-surfactant interactions is important (Williams, 2003), (Goddard and71

Ananthapadmanabhan, 1998), (Langevin, 2009).72

73

2. Materials and Methods74

2.1. Materials75

High molecular weight chitosans Chitopharm TM S (S#2265, 17% Degree of Acetylation, DA)76

and Chitopharm TM L (L#2272, 16% DA) were supplied by Chitinor AS, Norway. Quab 342 (3-77

chloro-, 2-hydroxypropyl-N,N,N -dimethyllaurylammonium chloride) was a gift from Croda Ltd78

UK. Glycidyl trimethylammonium chloride (GTAC) was obtained from Sigma Aldrich; sodium79

dodecyl sulphate and all other chemicals were from Sigma-Aldrich or Fisher.80

2.2. Alkylation of chitosan with Quab reagents81

Figure 1: a) Reaction of GTAC or Quab 342 with chitosan monomer either by the high pH method: 1.75M NaOH,
60◦C, 6h or Ruihua method: 0.038M perchloric acid, 80◦C, 8h.b) Location of protons on the GTAC- or Quab
342- alkylated glucosamine monomer (R = Methyl, R = Dodecyl, respectively).

For the high pH GTAC alkylation reaction, the following method was used: 20g of high82

molecular weight chitosan S#2265 was suspended in 400g deionised water under mechanical stir-83

ring. 35 g sodium hydroxide pellets were dissolved in 100g distilled water, which was then added84

dropwise to the chitosan slurry. The vessel was then purged with inert nitrogen gas and the85

temperature raised to 60 ◦C. 12.08g of GTAC was added via a pressure equalising funnel over86

20 minutes at 0, 2 and 4 hours. At 6 hours the sample was allowed to cool, and neutralised with87

32% HCl. The sample (G-2265) was subsequently washed with isopropanol.88

89

To produce the G- and GQ-chitosan samples (see Table 2), the method of Ruihua et al90

(Ruihua et al., 2012) was employed. 5g of chitosan L#2272 was suspended in 750ml ultrapure91

water, and dissolved by dropwise addition of 4.75ml perchloric acid, with stirring. The sample92

was then heated to 60◦C, with mechanical stirring. 12.5g of GTAC was added at 0, 30 and 6093

minutes, then the temperature was raised to 80◦C and the reaction continued for 8 hours. For the94

3
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G-chitosan, the product was then extracted by precipitation in acetone. For the GQ-chitosan,95

the pH was raised to 11.2 with 1M NaOH and the alkylation procedure was repeated, using Quab96

342 reagent in place of GTAC. The reactions are shown in Figure 1.97

2.3. Characterisation of derivatised chitosans98

FT-IR spectra of chitosans and chitosan derivatives were measured by the KBr disc method on99

a Perkin Elmer Spectrum RX1 FT-IR Spectrophotometer. Proton NMR spectra were recorded100

in D2O on a Bruker Spectrophotometer at 400MHz, 298.2K, 256 scans and the fid files were101

analysed in MestReNova 9.0 software for Windows. Noise was removed by apodisation along t1102

(Exponential 0.3 and Gaussian 5.0) and background correction by Whitaker Smoother. Phase103

correction was applied as necessary. Peaks were integrated manually and normalised to the104

chitosan N-acetyl peak at 1.94 ppm. The degree of acetylation (DA%) was calculated from the105

areas of the N-acetyl group and the combined areas of H2 and H 3 –6 in equation 1.106

δHNAc/3

δH2−6/6
= DA% (1)

The degree of substitution of GTAC (DG%) for the G-chitosan was calculated from the areas107

of the N-acetyl protons and the single methine proton (b) on the 2-hydroxypropyl moiety in108

equation 2.109

δHb

δHNAc/3
∗DA% = DG% (2)

The degree of substitution of Quab 342 (DQ%) for the GQ-chitosan was calculated from the110

areas of the N-acetyl protons and the methylene protons of the dodecyl chain in equation 3.111

δHmethylene/18

δHNAc/3
∗DA% = DQ% (3)

The degree of substitution of GTAC (DG%) for the GQ-chitosan calculated from the areas of112

the N-acetyl protons and the single methine proton (b) on the GTAC 2-hydroxypropyl moiety,113

with the methine proton of the Quab 342 2-hydroxypropyl group substracted (equation 4). (It114

was assumed to be the equivalent of 1/ 18 th of the δHmethylene signal.)115

δHb − (δHmethylene/18)

δHNAc/3
∗DA% = DG% (4)

2.4. Molecular mass determination116

The molar mass of the chitosan samples was determined using Gel Permeation Chromoatog-117

raphy (GPC). The system consisted of a TSK G5000 PWxL and TSK G6000 PWxL column118

connected in series, with a TSK G3000 PWxL guard cartridge, equipped with an Optilab DSP119

interferometric refractometer and a Dawn EOS enhanced Multi Angle Laser Light Scattering120

detector (Wyatt Technology, Santa Barbara). The elution buffer was 0.1M sodium acetate, ad-121

justed to pH4.8 with 0.2M acetic acid, and the flow rate was 0.5ml/min. Chitosan samples were122

dissolved in 1% acetic acid (10mg/ml) and diluted in 1:1 0.1M sodium acetate / 0.2M acetic123

acid. MW values were calculated in Astra 4.9 software using a Debye model using first order124

polynomial results fitting (measured dn/dc value of 0.151)(Mohammed et al., 2013).125

126

The Degree of Polymerisation (DP) was calculated for the S#2265, L#2272, G 2265 and127

G-chitosans from the chitosan MW divided by the monomer masses of N-acetylglucosamine (203128

4
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Da), glucosamine (161 Da), and GTAC-labelled glucosamine (277 Da), multiplied by their re-129

spective monomer percentages DA%, DD% and DG%.130

131

DA% ∗ 203 +DD% ∗ 161 +DG% ∗ 277 = MW (Monomer) (5)
132

MW

MW (Monomer)
= DP (6)

2.5. Rheology133

The steady shear viscosities and storage and loss moduli (G’ and G”) were measured on a TA134

Advanced Rheometer AR2000 (TA Instruments, New Castle, DE), using standard sized recessed135

end concentric cylinders (for dilute solutions) and 6 cm diameter 2◦ stainless steel cone and plate136

geometry (for gels). Viscosity measurements included a 3 minute preconditioning step at 25◦C,137

followed by a single measurement at 1 s-1 or a stepped flow measurement from 0.01 - 1000 s-1.138

Mechanical spectra were recorded from 0.1 - 100 Hz at 25◦C, 10% strain, which was determined139

to be in the linear viscoelastic region by performing a strain sweep. Solution pH was adjusted140

to 3 using 1M HCl, or to 10 using 1M NaOH.141

2.6. Interaction with anionic surfactant142

Aqueous solutions of G-Chitosan and GQ-Chitosan at pH∼6.5 were added to aqueous SDS143

solutions to obtain a range of concentrations from 0.02% to 1% chitosan and 0.1mM to 350mM144

SDS. The phase behaviour of the mixtures were observed visually (solution, gel or precipitate),145

and viscosities, G’ and G” were subsequently measured at 1 s-1 and 1 Hz, 10% strain if the146

mixture formed a solution or a gel.147

3. Results148

3.1. Synthesis of G-2265, G- and GQ-chitosan149

The initial GTAC alkylations tested a method designed for the synthesis of N,N,N-trimethyl-150

3-amino-2-hydroxypropyl glucosamine, i.e. for the derivatisation of the monosaccharide on the151

high MW polysaccharide. The protocol is similar to established methods applied to chitosan152

oligosaccharides (Kim et al., 2003), and polysaccharides (Nam et al., 1999) and (Lim and Hud-153

son, 2004)), except that sodium hydroxide was used to deprotonate the hydroxyl groups and154

a nitrogen atmosphere was used to prevent oxidation. This method produced products (e.g.155

G-2265) which were soluble in acid solution but not in water, in contrast to the neutral GTAC156

alkylations in the reports listed above. They were observed to precipitate when the pH was raised157

above 6.5, as was the case of the unmodified chitosans. By contrast, the method of Ruihua et158

al (Ruihua et al., 2012) yielded derivatised chitosan samples (G- and GQ-chitosan) which were159

soluble at all pH values tested, from pH3 - 11.This suggested that the Ruihua method had pro-160

duced chitosans with a degree of substitution (DG%) higher than the solubility threshold, but161

that the alkaline method failed in this regard. This is probably due to the fact that the chitosan162

substrates were soluble in the reaction medium, as opposed to the high pH alkylation method,163

where they were merely dispersed.164

165

Figures 2(a) and 2(b) show the FT-IR spectra of the unmodified chitosans S#2265 and166

L#2272 and their GTAC derivatives. The most important peaks in the chitosan IR spectrum167

are listed by Kasaai (Kim, 2010). The -NH2 peak at 1590 cm−1 is clearly visible in the S#2265168

spectrum of Figure 2(a) (black line) but in the spectrum of GTAC-derivatised S#2265 it has169

5
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(a)

(b)

Figure 2: a) FT-IR spectra of unmodified chitosan S#2265 (solid), and GTAC-modified chitosan S#2265 (G-
2265) (dashed). b) FT-IR spectra of unmodified chitosan L#2272 (solid), G-chitosan (dashed) and GQ-chitosan
(dotted). The C-H stretch is at 2930 cm−1 and the amide I and chitosan NH2 bands at 1650 and 1590 cm−1,
respectively.

6
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(a) Chitosan S#2265

(b) G-2265

Figure 3: 1H-NMR spectra for (a) unmodified S#2265 and (b) G-2265.

7



Page 8 of 19

Acc
ep

te
d 

M
an

us
cr

ip
t

(a) Chitosan L#2272

(b) G-chitosan

(c) GQ-chitosan

Figure 4: 1H-NMR spectra for (a) unmodified L#2272, (b) G-chitosan, and (c) GQ-chitosan

8
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diminished to a shoulder (dashed line). The initial GTAC alkylation method has reduced the170

amount of -NH2 detectable, probably by alkylating the 2-amino group. When Ruihua’s method171

was used, the 2-amino peak vanished entirely (Figure 2(b), dashed and dotted lines). Also of172

interest is the 2930 cm−1 C–H stretch, which shows a noticeable increase in the GTAC-modified173

chitosan in Figure 2(a) (dashed) and the G-chitosan in Figure 2(b) (dashed) due to the presence174

of the trimethyl-ammonium groups. The GQ-chitosan in Figure 2(b) (dotted line) has a greater175

peak at 2930 cm−1 than the G-chitosan, due to the presence of the dodecyl group. This data176

suggests that the reason the G- and GQ-chitosans had become soluble at neutral and alkaline pH177

was that they were more highly substituted with quaternary amine than the G-chitosan S#2265,178

because the second derivatisation method was more efficient than the first.179

180

NMR spectra are shown in Figures 3 and 4, NMR peaks and peak areas in Table 1 and181

the structure of the G-chitosan monomer in Figure 1. GTAC δHb was chosen for the DG%182

calculations because it was relatively isolated from the chitosan peaks, unlike GTAC δHd, which183

occurs between the H3 –6 complex and H2 of the glucosamine monomer.184

Peaks ppm protons I(G-chitosan) I(GQ-chitosan) I(G-2265)
Chitosan δHNAc 1.94 3 1.00 1.00 1.00
Chitosan δH2(GluNH) 3.1 1 6.08 5.88 1.71
Chitosan δH2(GluNAc), δH3−6 3.83, 3.65 5 13.21 16.42 9.36
GTAC δHb 4.46 1 2.32 3.28 0.69
GTAC δHd 3.13 9 19.5 21.21 5.06
Quab 342 δHmethylene 1.17 18 2.34

Table 1: 1H-NMR peak intensity (I) used to calculate degrees of substitution for G- and GQ-chitosans.

Table 2 shows the degrees of substitution for the derivatised chitosans, their molecular weights185

(as calculated from GPC results using the Debye method), and DP values.186

Chitosan DA% DG% DQ% MW (Da) Monomer average (Da) DP
L#2272 16% N.A. N.A. 1.70 x105 167.7 1013.7
S#2265 17% N.A. N.A. 1.68 x105 168.1 999.4
G-chitosan 10.4% 72.4% N.A. 1.69 x105 250.1 676
GQ-chitosan 9.0% 85.1% 3.5% 273.8
G-2265 18.1% 23.0% N.A. 5.86 x104 195.3 300

Table 2: DA%, DG%, DQ% and MW for chitosans alkylated by the perchloric acid method (G- and GQ-chitosan)
and the alkaline method (G-2265). Equations 5 and 6 give the average monomer size and DP.

The NMR data corroborates the solubility data and the FT-IR data. The perchloric acid187

method has produced higher yields in terms of substituted chitosan monomer : >70% compared188

to 23%, and the result is a derivatised chitosan polysaccharide soluble throughout the aqueous189

pH range. The DA% appears to have declined for the G- and GQ-chitosans. It was difficult190

to determine the relative abundances of H3 and H6 from the NMR spectra, but the fact that191

DQ% remained low and DG% did not increase above 100% in the GQ-chitosan suggests that few192

hydroxyl groups were alkylated at high pH. The intensity of the alkylated chitosans increased193

dramatically, presumably due to their increased solubility.194

195

9
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3.2. Molar Mass196

The weight-average molecular weights of the S#2265 and L#2272 chitosans were determined197

by GPC to be 1.68 x 105 Da and 1.70 x 105 Da, respectively. The G-chitosan’s MW was found to198

be 1.69 x 105 Da. The average monomer size equation (5) has to take into account the presence199

of the substituent DG% (72.4% for G-chitosan as shown in Table 2) as well as the DA%. The200

DP equation (6) gives a figure of 1013.7 monomer units per chain for the unmodified chitosan201

L#2272, 999.4 for unmodified S#2265, and 676 for the G-chitosan: a significant decline in degree202

of polymerisation due to GTAC alkylation. The G 2265 chitosan had declined to 5.86 x 104 Da.203

Given an average monomer size of 174.2 gmol-1 the DP had declined to 336.4 monomer units204

per chain. It was not possible to determine the molar mass of GQ-chitosan since it was found to205

interact with the GPC column substrate.206

207

3.3. Rheology208

Figure 5: Viscosity v. shear rate for a) L#2272 (closed circles) and S#2265 (open circles); b) G-chitosan (triangles)
at pH 3 (white), pH 6 (grey) and pH 10 (black); c) GQ-chitosan (squares) at pH 3 (white), pH 6 (grey) and pH
10 (black).

The steady shear viscosities for 1% solutions of chitosans L#2272 and S#2265 at pH3 (the209

samples are insoluble at neutral and alkaline pHs) are plotted as a function of shear rate in210

Figure 5 a) Similar plots for the G-chitosan and the GQ-chitosan at pH 3, 6 and 10 are shown211

in Figure 5 b) and c). The unmodified chitosans and G-chitosan have very low viscosities and212

are essentially Newtonian in behaviour.The fact that the viscosity of the G-chitosan is lower213

than the parent chitosan is due to the fact that it has a lower DP as shown in Table 2. In214

the case of the GQ-chitosan, the solutions have higher viscosities than the parent chitosans215

despite that fact that the DP is reduced slightly and exhibit shear thinning as the shear rate216

10
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is increased. This is evidence of intermolecular hydrophobic association which gives rise to a217

weak three-dimensional intermolecular network. Interestingly the viscosity of the GQ-chitosan218

increases with increasing pH. This may be due to a slight increase in the ionic strength caused219

through pH adjustment which would inhibit intermolecular electrostatic repulsions and promote220

intermolecular hydrophobic association.221

222

3.4. Interaction with anionic surfactant223

The phase behaviour of the highly substituted G- and GQ-chitosans is summarised in Figure224

6. For the G-chitosan (Figure 6 a) and c)) solutions containing up to 1% (w/v) G-chitosan and225

0.5mM SDS remained as clear solutions. At higher SDS concentrations precipitation occurred226

and then as the concentration of SDS increased even further (to 2mM to > 100mM depending on227

the G-chitosan concentration) a clear solution was observed. The GQ-chitosan shows a similar228

behaviour (Figure 6 b) and d)), but with the presence of a gel phase rather than a precipitate229

when the GQ-chitosan concentration was above 0.2%.230

231

The mechanical spectra for selected samples are presented in Figure 7. Figure 7 a) shows232

G” values only as a function of frequency for 1% G-chitosan systems in the presence of 0.1 mM233

and 350mM SDS which were seen to be clear solutions. The values are very low and typical234

of a low viscosity solution. The G’ values were close to zero and are not included in the plot.235

Figure 7 b) shows G’(filled squares) and G” (open squares) as a function of frequency for 1%236

GQ-chitosan systems in the absence of SDS, which was a clear solution, and in the presence237

of 0.1mM, 1mM, 10mM and 350mM SDS which were seen to be a clear solution, gel, gel and238

clear solution respectively. At 0.1mM SDS (black tiny squares), the system showed weak gel239

characteristics in that G’ was slightly higher than G” but both varied with frequency. At 1mM240

SDS (blue small squares), the value of G’ was two orders of magnitude higher than G” and was241

independent of frequency thus indicating that the system exhibited the properties of a gel. At242

10mM SDS (green medium squares), G’ had similar values to the system in the presence of 1mM243

SDS but G” was significantly higher, about one order of magnitude lower than G’. At very much244

higher SDS concentration (350mM, red large squares) G” is very low and strongly dependent on245

frequency and G’ is close to zero (not included in the plot) and displays typical behaviour for a246

dilute polymer solution.247

248

4. Discussion249

In terms of producing a water-soluble high-molecular weight chitosan, the adaptation of Rui-250

hua’s perchloric acid method has been successful. The GTAC alkylation reaction yields are251

nearly 16 times higher in terms of DS% for the perchloric acid reaction compared to the re-252

action in alkaline medium. The alkaline method was initially used because of the tendency253

of GTAC to convert from the epoxide to a relatively inactive chlorhydrin form (3-chloro, 2-254

hydroxypropyltrimethylammonium chloride) under acid conditions (Goclik et al., 2004). How-255

ever, the final yield was low (5.4% D.S.). There are several possible reasons. The GTAC epoxide256

can also react with hydroxyl ions to form the inactive 2,3-dihydroxy product in a side reaction,257

resulting in potential loss of yield. Also, the chitosan was not dissolved in the reaction medium,258

but remained in a semi-crystalline form, so that many of the reactive amino groups must have259

been inaccessible to the GTAC reagent. In the neutral GTAC alkylations reported in the liter-260

ature (Kim et al., 2003), (Nam et al., 1999), (Lim and Hudson, 2004), the solid chitosan was261

suspended in a medium less than 2 pH points from the amino pKa (c. 5.6). A sufficient minority262
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(a) 1% G-Chitosan with increasing
SDS

(b) 1% GQ-Chitosan with increas-
ing SDS

(c) G-chitosan plotted against SDS

(d) GQ-chitosan plotted against SDS

Figure 6: a) - b) Effect of SDS concentration on solubility of G- and GQ-chitosans (1% in water). From left to
right: 0.1, 1, 10, 50, 100 and 350mM SDS. c) - d) Plot of phase behaviour of G- and GQ-chitosans in the presence
of SDS surfactant. Blue squares = solution, red circles = precipitate, green triangles = gel.
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Figure 7: Frequency spectra with G’ (filled) and G” (open) for G-chitosan (circles) and GQ-chitosan (squares) in
the presence of 0mM (magenta, largest), 0.1mM (black, smallest), 1mM (blue, small), 10mM (green, large) and
350mM SDS (red, larger). a) 1% G-chitosan, SDS 0mM, 0.1mM and 350mM. b) 1% GQ-chitosan, SDS 0mM,
0.1mM, 1mM, 10mM and 350mM.
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of glucosamine residues must have been protonated, enough to solvate the surrounding chains263

and open them up to the GTAC alkylating agent. As the reaction proceeded, the chitosan would264

become gradually completely dissolved. At pH values of 11 and above, there would be no proto-265

nation and therefore little solvation.266

267

The problem was solved by using aqueous perchloric acid as the reaction medium. The chi-268

tosan dissolves under conditions of low pH, and the perchloric acid has a low nucleophilicity, so269

that it does not open the epoxide ring. In the G-chitosan synthesis, both the chitosan and the270

GTAC were able to react under optimum conditions.271

272

The Quab 342 alkylation was carried out on a chitosan already alkylated with GTAC, un-273

der alkaline conditions, because the reagent was supplied in the unreactive chlorhydrin form.274

The unsatisfactory results with the alkaline heterogeneous GTAC alkylation suggested that the275

chitosan had to be rendered alkali-soluble first. Accordingly, the DQ% of GQ-chitosan is low, be-276

cause most of the active sites were already taken by hydroxypropyltrimethylammonium groups.277

However, the presence of a small 3.5% Quab 342-derived hydrophobic dodecyl chains have made278

a considerable difference to the physicochemical properties of the GQ-chitosan. Its viscosity is279

considerably increased compared to the G-chitosan, especially at high pH as the chitosan 2-amino280

groups are deprotonated. The increase in viscosity is attributed to intermolecular hydrophobic281

interactions of the C12 alkyl chains present along the GQ chitosan backbone as has been reported282

for other hydrophobically modified polymers (Tanaka et al., 1992). Its phase behaviour with SDS283

is also altered and it has acquired surfactant properties; it is observed to foam during mixing,284

unlike its parent compounds, the G-chitosan and the unmodified chitosan L#2272.285

286

There has been considerable interest over many years in the interaction of polymers and sur-287

factants including polyelectrolytes and oppositely charged surfactants (Williams, 2003), (Langevin,288

2009). It is generally observed that association occurs at a critical surfactant concentration (crit-289

ical aggregation concentration) which is much lower than the critical micelle concentration and290

is due to cooperative binding. A number of studies have been reported on the interaction of291

unmodified chitosan with SDS under acid conditions (Petrovic et al., 2016), (Onesippe and292

Lagerge, 2008), (Chiappisi and Gradzielski, 2015), other anionic surfactants (Desbrieres et al.,293

2010), (Petrovic et al., 2017) (Chiappisi and Gradzielski, 2015), or with polyanions such as car-294

boxymethylcellulose (Rosca et al., 2005). It is expected that binding occurs through electrostatic295

interaction between the surfactant sulphate groups and the protonated amine group on the chi-296

tosan chain.297

298

Chiappisi and Gradzielski (2015) have argued that at very low SDS concentrations some non-299

cooperative binding occurs but the complexes are soluble and the solution remains clear. At300

intermediate SDS concentrations, polymer / surfactant aggregation occurs at a critical concen-301

tration, the critical aggregation concentration (CAC) as a result of cooperative binding resulting302

in micellar-like aggregates forming along the polymer chain and that turbidity can be observed.303

A further increase in SDS concentration results in the saturation of the polymer chain. One-304

sippe and Lagerge (2008) have reported that, for a 0.05% chitosan solution, the CAC occurred305

at 1.8mM SDS which is considerably lower than the critical micelle concentration (CMC) which306

is 8mM SDS. Senra et al. (2018) studied the interaction of cationically modified chitosan with307

sodium decyl sulphonate and showed through conductiometric measurements that for a 1mM308

chitosan solution interaction occurred at a concentration of 1mM surfactant which is much lower309

than its CMC (40mM). For the cationically modified chitosans in our study, at a polymer concen-310

tration of 0.02%, turbidity was observed at concentrations of approximately 0.7mM and 0.5mM311

14



Page 15 of 19

Acc
ep

te
d 

M
an

us
cr

ip
t

SDS for G-chitosan and GQ-chitosans respectively, confirming that significant interaction had312

occurred at these concentrations. The concentrations correspond to a molar ratio of SDS to313

G- and GQ-chitosan monomer units of 0.88 and 0.54 at which the electrostatic charge on the314

complex is expected to be close to zero. Chiappisi and Gradzielski also determined the elec-315

trophoretic mobility of chitosan/SDS complexes and reported that for a 0.01% chitosan solution316

charge neutralisation occurred at an SDS concentration of 0.45mM and at higher SDS concen-317

trations the complexes became negatively charged.318

319

In addition to the interesting phase behaviour, the GQ-chitosan has novel rheological prop-320

erties. It is noted in Figure 6 that a number of the samples have gel-like characteristics and321

this is confirmed through the rheological data shown in Figure 7. It is believed that the gels322

are formed through intermolecular hydrophobic interactions between the C12 chains on the GQ-323

chitosan. This behaviour is typical of ‘associative thickeners’ and is supported by the fact that324

G-chitosan, which does not contain C12 chains, does not form gels. G’ values were found to325

increase significantly in the presence of SDS up to concentrations close to its CMC ( 8mM). It is326

evident that the SDS promotes intermolecular hydrophobic association of the GQ-chitosan poly-327

mer chains by increasing the number and/or life-time of the crosslinks as has been reported for328

other hydrophobically-modified polymers (Tanaka et al., 1992), (Jiménez-Regalado et al., 2000).329

At higher SDS concentrations, above the SDS CMC each C12 chain will be encapsulated within330

an SDS micelle and hence intermolecular associations will be inhibited and the systems will have331

the characteristics of a dilute solution.332

333

5. Conclusions334

This study has demonstrated that cationic chitosan derivatives with a high DS can be syn-335

thesised using GTAC in dilute perchloric acid and that the derivatives are soluble over a broad336

pH range. Furthermore, it has been shown that the introduction of C12 alkyl groups along the337

chitosan chain leads to the formation of viscoelastic gels in the presence of SDS molecules. These338

materials have potential application in a range of commercial formulations, including cosmetics,339

pharmaceuticals and personal care.340
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Sahariah, P., Másson, M., 2017. Antimicrobial chitosan and chitosan derivatives: A review of412

the structure–activity relationship. Biomacromolecules 18 (11), 3846–3868.413

Sajomsang, W., Gonil, P., 2010. Preparation and characterization of α-chitin from cicada sloughs.414

Mater. Sci. Eng. C 30 (3), 357–363.415

Senra, T., Campana-Filho, S. P., Desbrieres, J., 2018. Surfactant-polysaccharide complexes based416

on quaternized chitosan. characterization and application to emulsion stability. European Poly-417

mer Journal 104, 128–135.418

Snyman, D., Hamman, J., Kotze, J., Rollings, J., Kotzé, A., 2002. The relationship between the419

absolute molecular weight and the degree of quaternisation of n-trimethyl chitosan chloride.420

Carbohydrate Polymers 50, 145–150.421

Tanaka, R., Meadows, J., Williams, P. A., Phillips, G. O., 1992. The interaction of hydrophobi-422

cally modified hydroxyethyl cellulose with various added surfactants. Macromolecules 25 (4),423

1304–1310.424

Tungtong, S., Okonogi, S., Chowwanapoonpohn, S., Phutdhawong, W., Yotsawimonwat, S.,425

2012. Solubility, viscosity and rheological properties of water-soluble chitosan derivatives.426

Maejo Int. J. Sci. Technol. 6 (02), 315–322.427

Williams, P. A., 2003. Surfactant-waterborne polymer interactions in coating applications. Black-428

well Publishing Ltd Oxford, UK, pp. 180–210.429

Xia, W., Liu, P., Zhang, J., Chen, J., 2011. Biological activities of chitosan and chitooligosac-430

charides. Food Hydrocolloids 25, 170–179.431

17



Page 18 of 19

Acc
ep

te
d 

M
an

us
cr

ip
t

Younes, I., Rinaudo, M., 2015. Chitin and chitosan preparation from marine sources. structure,432

properties and applications. Mar. Drugs 13, 1133–1174.433

18



Page 19 of 19

Acc
ep

te
d 

M
an

us
cr

ip
t

Highlights 

• Chitosan was alkylated with GTAC to form water-soluble G-chitosan. 
• The G-chitosan was alkylated with Quab 342 to form the novel GQ-chitosan 

derivative. 
• GQ-chitosan has increased viscosity compared to G-chitosan and unmodified 

chitosan. 
• The derivatives form complexes with the anionic surfactant SDS. 
• The GQ-chitosan-SDS complex has a gel phase, due to its long alkyl chains. 

 


	Journal Article cover sheet
	Synthesis of cationic-surfactant Accepted Manuscript

