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30 Abstract 

31 Gum arabic was enriched with trace elements (Zn2+、Fe3+、Fe2+) by ion exchange against 

32 ZnCl2, FeCl3 and FeCl2. Trace elements content, molecular parameters and emulsifying properties 

33 of the gum arabic rich in trace elements (GARTE) were characterized by flame atomic absorption 

34 spectrometry (FAAS), gel permeation chromatography-multi angle laser light scattering (GPC-

35 MALLS), interfacial rheometer, laser particle analyzer and zeta potentiometry. With trace 

36 elements, molecular weight and arabinogalactan protein (AGP) content of gum arabic have 

37 increased probably due to the high surface energy leading to the aggregation of protein. GARTE 

38 has good emulsion stability performance with increasing molecular weight and AGP content 

39 compared to the control gum arabic. GARTE can be applied as a natural functional ingredient for 

40 trace element fortification, where the ferric ions and zinc ions are chelated by the self-assembled 

41 polymer host. 
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68 1. Introduction

69 Trace elements have been classified as trace minerals (<100 mg/day intake) which are needed in 

70 small quantities and used by all living organisms. They are imperative for optimum host response. 

71 Amidst the array of micronutrients, trace elements make up about 4% of the body weight and are 

72 mainly present in the skeleton, enzymes and hormones. They help in regulating and maintaining 

73 the normal heart rhythm, muscle contraction, nerve conduction and the acid–base balance 

74 (Schifferle, 2010). Populations worldwide are prone to their insufficiency owing to lifestyle 

75 changes or poor nutritional intake. A growing list of trace element utilization pathways highlights 

76 the importance of these elements for life (Prentice, 2005; Swinburn & Ravussin, 1994). Zinc (Zn) 

77 is thought to be essential for all organisms and suggested to be a key element in the origin of life 

78 (Mulkidjanian, 2009). Zn is an integral component of a large number of macromolecules, where it 

79 can maintain the stability of the cell membrane and activate more than 200 kinds of enzymes, get 

80 involved in nucleic acid and energy metabolism, and promote sexual, anti-bacterial, anti-

81 inflammatory functions (Dupont, et al., 2010; Dupont, et al., 2006; Gaither & Eide, 2001; Hantke, 

82 2005; Murakami & Hirano, 2008; Prasad, 1995). Zn deficiency is more prevalent in children, 

83 elderly and patients with immunosuppressive disorders due to dietary deficiencies or poor 

84 absorption (Dawson, et al., 2013). Its deficiency leads to the increase of frequency for infections 

85 and degenerative pathologies (Dawson, et al., 2013; Meunier, et al., 2005). Iron (Fe) compounds 

86 are ubiquitous in industrial applications, have vital functions in biological processes, and are 

87 essential in the human diet. They are crucial for erythropoiesis and haemoglobin and play an 

88 important role of oxygen transport in the blood (Schifferle, 2010). Fe is the active ingredient of 

89 many enzymes, metabolism and redox reactants (Hou, et al., 2014; Listed, 1968; Matzner, et al., 

90 1979; Trumbo, et al., 2001). If the human body lacks sufficient intake, iron deficiency and anemia 

91 develop, which are prevailing global health issues (Chakraborty, et al., 2014; Mukhopadhyay & 

92 Mohanaruban, 2002; Touitou, et al., 1985). 

93 Gum arabic (GA) is one of the popular ingredients widely used in the food and pharmaceutical 

94 industries (Guan & Zhong, 2014). It is a branched-chain, complex polysaccharide, either neutral 

95 or slightly acidic, found as mixed calcium, magnesium and potassium salts of polysaccharidic 

96 acids (Ali, Ziada, & Blunden, 2009). Three different fractions could be separated from gum 
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97 arabic, namely, arabinogalactan (AG, ~90% of total mass), arabinogalactan protein (AGP, ~10% 

98 of total mass) and glycoprotein (GP, ~1% of total mass) (Randall, Phillips, & Williams, 1989). 

99 GA is commonly used as an emulsifier to stabilize emulsions, the emulsifying property of which is 

100 provided by an excellent interfacial property of AGP. The structure of AGP is represented by a 

101 ‘wattle blossom-model’, which has, upon suggestion, provided both hydrophobic polypeptide 

102 chain and hydrophilic carbohydrate blocks, conferring good emulsification characteristics 

103 (Castellani, Guibert, et al. ,2010; Gomes, et al., 2010; Jayme, Dunstan, & Gee, 1999; Mahendran, 

104 et al., 2008). The stabilizing function of GA is provided by repulsive electrostatic and steric 

105 interactions after the polypeptide moieties adsorb on to the oil droplet surface and the 

106 polysaccharide chains protrude in the aqueous phase (Dickinson, 2003). The high water solubility 

107 and low solution viscosity are two additional features making GA a popular ingredient (Gomes, et 

108 al., 2010).

109 Balanced levels of trace minerals like zinc (Zn) and iron (Fe) are essential to prevent 

110 progression of chronic conditions (Zhang & Gladyshev, 2011). To overcome this problem, zinc 

111 and iron supplementation and food fortification strategies are being actively pursued (Allen, et al., 

112 2006; Hilty, et al., 2010). The application of gum arabic as food-grade functional polymer hosts 

113 for complexation of trace elements into supramolecular structures could be an alternative strategy 

114 of immediate practical significance. Herein, we have developed a method to transform commercial 

115 gum arabic into the zinc and iron carrier by ion exchange against ZnCl2, FeCl2 and FeCl3. Flame 

116 atomic absorption spectrophotometry (FAAS) confirms the transformation to GARTE, whereas all 

117 other ionic species remain at very low concentrations. The emulsifying performance of the 

118 GARTE (GA/Zn2+, GA/Fe3+, GA/Fe2+) was investigated as well. The purpose of this study is to 

119 gain a natural functional polysaccharide containing essential trace elements, and investigate the 

120 impact of ionic binding on the emulsifying properties of GA.

121
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122 2. Materials and methods

123 2.1 Materials

124   Gum arabic (GA) was provided by San-Ei Gen F.F.I. Inc. (Osaka, Japan) in a spray dried 

125 powder. GA contains 5.56% moisture. Zinc chloride (ZnCl2), anhydrous ferric chloride (FeCl3), 

126 iron dichloride tetrahydrate (FeCl24H2O) were purchased from Chinese Medicine Group 

127 Chemical Reagent Co. Ltd. (Shanghai, China). Medium-chain triglyceride (MCT) was purchased 

128 from KLK OLEO Ltd., Malaysia. Hydrogen ion exchange resin was purchased from Sigma-

129 Aldrich Trading Co. Ltd., USA. Doubly-distilled deionized water was used in all the experiments.

130 2.2 Preparation and characterization of GARTE

131   GARTE (GA/Zn2+, GA/Fe3+, or GA/Fe2+) was prepared by ion exchange method. To prepare 

132 GA/Zn2+ as an example: hydrogen ion exchange resin was treated with 1 M HCl (400 ml) for 4 h 

133 and washed extensively with deionized water to remove free hydrogen ions. 0.5 M ZnCl2 (800 ml) 

134 was added to the resin for 4 h, followed by deionized water rinse. 0.5 M AgNO3 solution was used 

135 to confirm if free Cl- ions in the resin were removed completely. 15% GA (200 g) solution was 

136 added to the resin for 4 h to allow Zn2+ exchange onto GA, followed by freeze drying. The same 

137 method was used to prepare GA/Fe3+ and GA/Fe2+ with FeCl3 and FeCl24H2O, respectively.

138   The control GA and GARTE samples were characterized by gel permeation chromatography 

139 coupled with multi-angle light scattering (GPC-MALLS). The GPC-MALLS system consisted of 

140 a Waters 515 HPLC pump (Waters Co., Massachusetts, USA), a Superose 6 10/300GL column 

141 (GE Healthcare, USA), a UV detector at 214 nm (Shimadzu Technologies, Kyoto, Japan), a 

142 DAWN HELEOS light scattering detector (Wyatt Technology Co., CA, USA) with a solid-state 

143 laser operating at 658 nm, and a refractive index detector (Optilab rEX, Wyatt Technology Co., 

144 CA, USA). 0.2 M NaCl solution was used as an eluent and delivered at a constant flow rate of 0.4 

145 ml/min. 200 l of 2 mg/ml GA solution (in 0.2 M NaCl) was injected for analysis after filtration 

146 through 0.45 m filter. A refractive index increment dn/dc value of 0.145 was used for molecular 

147 parameter analysis of GA and GARTE. The data were analyzed with ASTRA software Version 

148 5.3.4.14. 
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149 2.3 Elemental analysis

150   The element content analysis of GA and GARTE was carried out by atomic absorption 

151 spectrometry equipped with a Zeeman background corrector (GBC Avanta M, Australia). An 

152 atomizer with an air/acetylene burner in voltage under 220±10V was used for determining all the 

153 elements investigated. The operating conditions were those recommended by the manufacturer, 

154 unless specified otherwise. The acetylene flow rate and the burner height were adjusted in order to 

155 obtain the maximum absorbance signal, while aspirating the analyte solution in methanol 

156 containing 0.1 M nitric acid. For discrete volume sampling, a volume of 100 L of the final 

157 solution was introduced into the nebulizer of the spectrometer by a manual sample injector that 

158 was connected to the nebulizer by the sample aspiration tubing. Absorbance signals as peak height 

159 were measured (Chen & Teo, 2001; Tokalioǧlu, Kartal, & Elçi, 2000). High purity reagents and 

160 doubly-distilled deionized water were used for all the analyses. Standard stock solutions 

161 containing 1000 g/mL were prepared from sulfate of Zn2+, Fe2+ in 1 M of HNO3.

162 2.4 Interfacial adsorption and emulsion properties of GARTE

163 2.4.1 Interfacial tension measurements 

164   The interfacial adsorption of GA and GARTE at the oil-water interface changing with time was 

165 measured by a drop profile tensiometer (Teclis Tracker, France). The experiments were carried 

166 out at 25 ± 1°C. A pendant drop of GA or GARTE solution was formed at the tip of the needle of 

167 a syringe whose verticality could be controlled. The needle was submerged in an optical glass 

168 cuvette containing MCT, which was located between a light source and a high-speed charge 

169 couple device (CCD) camera. The drop profile was recorded by the CCD camera and analyzed 

170 according to the Laplace equation (Castellani, Gaillard, et al., 2010; Castellani, Guibert, et al., 

171 2010; Oscar, et al., 2010).

172 2.4.2 GARTE emulsion preparation

173   Each 5%(w/w) GA or GARTE (GA/Zn2+, GA/Fe3+, GA/Fe2+) solution was put on a roller mixer 

174 at 25±1oC overnight. MCT was added to the gum solutions to achieve a final concentration of 

175 5%(w/w) in the emulsions. The systems were pre-homogenized for 3 min at 26,000 rpm using a 
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176 high-speed blender (Polytron PT 2100, Switzerland). The primary emulsions were further 

177 homogenized with a high-pressure homogenizer (Microfluidic M-110L, USA) at 75 MPa for one 

178 pass. The homogenization was carried out in an ice bath to minimize the extent of lipid oxidation. 

179 2.4.3 Droplet size distribution measurements

180   The droplet size distribution of the GARTE emulsions at 60oC was determined to evaluate the 

181 properties and stability using a laser diffraction technique (Master-Sizer 2000, Malvern 

182 Instruments Ltd.). The emulsions were diluted to achieve a laser obscuration slightly above 10% 

183 and stirred continuously to avoid multiple scattering effects. The refractive index of sample was 

184 1.52 with an absorption coefficient of 0.01. The particle size is given as the volume-weighted 

185 mean diameter (D[4, 3]), D[4, 3]= (Σnidi
4/Σnidi

3), where ni is the number of droplets with diameter 

186 di. D4,3 was reported as the average of triplicates.

187 2.4.4 Zeta potential measurements

188  Zeta potential ζ of emulsion was measured on a Zetasizer Nano-ZS apparatus (Malvern 

189 Instruments, U.K.) equipped with an MPT-2 pH autotitrator (4mW He/Ne laser emitting at 633 

190 nm). Electrophoretic mobility UE of charged particles was measured by means of laser Doppler 

191 velocimetry (LDV), and ζ was calculated according to the Henry equation: (Li, et al., 2012)

192                                                                  (1)𝑈𝐸 =
2𝜀𝜁𝑓(𝐾𝑎)

3𝜂

193 where ε is the dielectric constant,  η is the viscosity of medium, and f(Ka) is the Henry function 

194 which possesses a value of 1.5 under the Smoluchowski approximation.

195
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196 3. Results and discussion

197 3.1 Trace element content and molecular parameters of GARTE

198   Trace element contents of GA, GA/Zn2+, GA/Fe3+, GA/Fe2+
 samples were shown in Table 1. 

199 The trace element contents of control GA sample (without ion exchange) from high to low are: K> 

200 Na> Ca> Mg> Zn> Fe> Cu. The content of corresponding target elements (Zn2+, Fe3+, Fe2+) in 

201 GARTEs have significantly increased with other elements (K, Na, Ca, Mg) decreasing after ion 

202 exchange. The contents of Zn2+, Fe3+ and Fe2+ in GARTEs increase respectively by 27, 162 and 

203 1097 times, compared to control GA. The enrichment of Fe2+ by ion exchange method is the most 

204 efficient. It clearly reveals that the GARTE can be successfully prepared by ion exchange method. 

205 The molecular parameters of control GA and GARTEs are shown in Table 2. The molecular 

206 weights and AGP contents of GARTEs have increased after ion exchange, and from high to low 

207 are: GA/Fe2+ > GA/Fe3+ > GA/Zn2+> GA. There is strong evidence showing that metal ion binding 

208 to proteins tends to induce aggregation. The increase in molecular weight of GARTEs may be due 

209 to metal ions binding to proteins, inducing partial aggregation of gum arabic fractions. Given that 

210 the increase in average molecular weight and the AGP content are relatively modest, the results 

211 indicate that GA molecules are still largely present in non-aggregated form in GARTES. 

212 According to relevant literature reports, Fe3+, Fe2+ and Zn2+ have a significant effect on the 

213 mechanism of protein aggregation (Bonda, et al., 2011; Sensi, et al., 2009; Tõugu, Tiiman, & 

214 Palumaa, 2011; Timasheff, 1998). Multivalent metal ions are especially efficient in this 

215 stabilization by bringing together charged residues on the protein surface (Maclean, Qian, & 

216 Middaugh, 2002). The likely changes are illustrated schematically in Fig. 1. In the present system, 

217 metal ions binding might promote the folding of protein fraction of gum arabic into aggregation-

218 prone conformations and thus accelerate their aggregation (Lang & Kohn, 1970; Vitos, et al., 

219 1998). Nevertheless, different metal ions have different effects on protein aggregation process. 

220 The results show that the effect of different metal ions of GARTE on protein aggregation process 

221 decreases in the order GA/Fe2+ > GA/Fe3+ > GA/Zn2+. Jishnu and Umesh (Jishnu & Umesh, 2017) 

222 investigated that metal ions influences on the conformation and aggregation processes of bovine 

223 β-lactoglobulin (β-lg) at equimolar ratio under thermal condition. Fe3+ ion causes a more drastic 

224 perturbation of the conformation of native β-lg than Zn2+ ion. β-lg is prone to form irreversible 
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225 aggregates probably by the metal-complex formation. The β-lg aggregates with Zn2+ are fibrillar 

226 in nature while the higher molecular aggregates with Fe3+ ion are of different types. Therefore, the 

227 kinetic growth and the shape of the protein aggregates with different metals solely depend on the 

228 nature of the metal ions, not on the charge of the metal ions.

229 3.2 Emulsifying performance of GARTE

230 3.2.1 The kinetics of adsorption

231 The GA, GA/Zn2+, GA/Fe3+ and GA/Fe2+ solutions were used as the aqueous phase with a 

232 concentration of 0.5% and MCT as the oil phase to determine the dynamic adsorption of GA and 

233 GARTE on the interface of MCT-water. The dynamics of GA and GARTE adsorption at an 

234 MCT–water interface was examined over the time scale ranging from seconds to several hours. 

235 Interfacial tensions measured during the adsorption of different GARTEs onto the MCT–water 

236 interface at 25 °C are shown in Fig. 2. It can be clearly observed that, the interfacial tension 

237 decreases progressively along with the adsorption time, with faster changes at earlier adsorption 

238 period, indicating a spontaneous adsorption of GA and GARTE at the interface. The decrease is 

239 initially steeper before an asymptotically plateauing after the interface is generated. This shape is 

240 characteristic for the interfacial tension evolution of the emulsifier laden oil/water interface. It is 

241 attributed to a two stage process: the initial fast diffusion of emulsifier to the interface followed by 

242 a slower adsorption delayed by electrostatic and steric hindrance (Felix, Romero, Vermant, & 

243 Guerrero, 2016; Noskov, 2014). However, the initial interfacial tension of GARTE is significantly 

244 higher than that of GA, indicating that the adsorption rate of GARTE at the MCT-water interface 

245 has decreased. The time required for reducing interfacial tension by 30% of the initial value at the 

246 MCT-water interface due to the adsorption of GA, GA/Zn2+, GA/Fe3+ and GA/Fe2+ and the 

247 equilibrium interfacial tension at 40,000 s at 25oC are shown in Table 3. GA shows more rapid 

248 adsorption dynamics than GARTEs and better ability to reduce the equilibrium interfacial tension. 

249 It indicates that the adsorption rate of GARTE decreases with enriched Zn2+, Fe3+ and Fe2+. The 

250 interfacial tension of GARTE after the interface adsorption has reached its equilibrium is also 

251 significantly higher than the control GA. The magnitude of interfacial tension  after adsorption 

252 equilibrium is as follows:  (GA/Fe2+) >  (GA/Fe3+) >  (GA/Zn2+) >  (GA). Many factors such 
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253 as emulsifier size, hydrophobicity, instability, charge, and disulfide bonds are considered in 

254 determining adsorption rate among the different emulsifiers. Beverung et al. investigated 

255 adsorption kinetics of different proteins (bovine serum albumin, -Casein and ovalbumin) at the 

256 oil-water interface by dynamic interfacial tension measurements (Beverung, Radke, & Blanch, 

257 1999). Their results showed that higher molecular weight proteins have a higher interfacial tension 

258 at the initial stage and a slower rate of interfacial tension decrease than smaller molecular weight 

259 proteins. The adsorption rates of GA and GARTE are possibly associated with the molecular 

260 weights of GA, GA/Zn2+, GA/Fe3+ and GA/Fe2+, due to the fast adsorption of low molecular 

261 weight species during droplet formation (Gould & Wolf, 2017). As shown in Fig. 1, partial 

262 aggregation of proteins caused by metal ions binding increases the large molecular weight 

263 components (AGP) in GARET and decreases the small molecular weight component (AG and 

264 GP). This might explain the different interfacial adsorption behaviors of GA and GARET, and 

265 further their emulsifying performance to be discussed below.

266 3.2.2 Droplet size and distribution

267 The droplet size distributions and volume mean diameters (D[4, 3]) of the freshly prepared and 

268 accelerated emulsions stabilized by GA and GARTE were determined and compared for the 

269 evaluation of their emulsifying capacity (Fig. 3 and Fig. 4). The emulsions contain 5.0% GA or 

270 GARTE with 5% MCT as mentioned in experimental section. These emulsions have similar 

271 droplet size distribution at 60oC over a week. The emulsion freshly prepared with GA alone 

272 exhibits a small droplet size (d≈0.41m), which could be related with the relatively high surface 

273 activity of GA at the oil-water interface. The accelerated emulsion shows a little increase in 

274 droplet size (d≈0.51m) with a slight shift of size distribution profiles to the right. When 

275 incorporated with trace elements, the freshly prepared GARTE emulsions show a smaller particle 

276 size (p < 0.05) than GA. Noticeably, no significant (p > 0.05) changes in particle size for 

277 accelerated emulsion D[4, 3] are observed during storage time up to 7 days, indicating a high 

278 stabilizing ability of GARTE against coalescence. Visual observation of the emulsions prepared 

279 with GA and GARTE is shown in Fig. 3B. Emulsions prepared with GARTE all exhibit excellent 

280 bulk stability during acceleration. Castellani et al. investigated the emulsifying properties and the 

281 adsorption behaviors at the n-hexadecane–water interface of conventional arabic gum and those 
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282 after thermal maturation (EM1 and EM2) (Castellani, Gaillard, et al., 2010; Castellani, Guibert, et 

283 al., 2010). They found that thermal maturation resulted in an increase in average molecular weight 

284 and arabinogalactan protein (AGP) content. It further led to a decrease in interfacial adsorption 

285 kinetics but a more homogenous and stable emulsion. The emulsifying performance of matured 

286 gum seems to be similar with that of GARTE. The improved emulsifying property might be 

287 related to the better interfacial steric stabilizing effect of aggregated GA molecules in GARTE, 

288 which form a thicker interfacial layer and more efficiently prevent emulsion droplets from 

289 coalescence. This resulted in emulsions with smaller droplets and better stability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

290 3.2.3 Zeta potential of GA and GARTE emulsion 

291 The surface charge of the GA and GARTE stabilized droplets was assessed through measuring 

292 zeta potentials (see Fig. 5 for the results). The data were acquired following the dilution of each 

293 emulsion with water and all GA and GARTE stabilized emulsions show a relatively high negative 

294 zeta potential. A zeta potential of 30 mV is often reported as a critical value below which 

295 emulsions are seen to flocculate (Grumezescu, 2016), requiring the addition of thickening agents 

296 to prevent creaming. Here, while the absolute values of the zeta potential of the GA and GARTE 

297 stabilized emulsions are more than 30 mV, the emulsions show no coalescence or flocculation 

298 over 7 days at 60oC. The zeta potential absolute values of fresh and accelerated emulsions of 

299 GA/Zn2+ and GA/Fe2+ were lower than GA emulsions. This might be due to GA/Zn2+ and 

300 GA/Fe2+ binding positively charged Zn2+ and Fe2+ ions after ion exchange, thereby reducing the 

301 absolute value of zeta potential. Although the zeta potential of GA/Zn2+ and GA/Fe2+ is slightly 

302 reduced compared with GA, it is still large enough to provide an effective electrostatic stabilizing 

303 effect (> 45 mV). Additionally, as discussed above, the aggregation in GA/Zn2+ and GA/Fe2+ 

304 tends to provide a better interfacial steric stabilizing effect. These together led to a better stability 

305 of emulsions stabilized with GA/Zn2+ and GA/Fe2+ (Castellani, Guibert, et al., 2010). In the case 

306 of the GA/Fe3+ stabilized emulsions, the absolute value of the zeta potential was significantly 

307 higher compared to the other emulsions. The reason for this is unknown at the present stage, and is 

308 possibly due to the fact that the binding affinity of Fe3+ with GA is weaker than those of Zn2+ and 

309 Fe2+ and other divalent cations such as Ca2+ and Mg2+, leading to a larger extent of dissociation 

310 from GA and therefore a higher zeta potential. Nevertheless, long term stability of GARTEs, 
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311 comparable to GA stabilized emulsions, can also be assumed. These results indicate that the use of 

312 GARTEs as an emulsifier is comparable, if not more efficient, to GA, offering a trace element 

313 source of natural functional polysaccharide for food emulsion formulations. 

314 4. Conclusions

315 This research has combined organic and inorganic materials to produce cost-effective trace 

316 element–polysaccharides. It can be validated that GA can be effective carriers for trace elements 

317 for food fortification. The resulting hybrid materials can be utilized to stabilize o/w emulsions 

318 without significant droplet coalescence for a period of at least a week under harsh environment. 

319 The stability in o/w emulsions combined with its low cost demonstrate that the zinc or iron–

320 polysaccharides are promising novel trace elements fortificants in food products. 

321
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356 Fig. 4
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359 Fig. 5
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362 Table 1. 

Sample

Cu

(ppm)

Zn

(ppm)

Fe

(ppm)

K

(ppm)

Na

(ppm)

Ca

(ppm)

Mg

(ppm)

GA <0.01 130.40 5.20 11524.30 8569.90 8287.27 2986.00

GA/Zn2+ 5.13 3571.40 92.50 2392.40 5380.00 512.82 425.82

GA/Fe3+ <0.01 33.99 844.88 3020.20 2399.20 130.72 631.81

GA/Fe2+ <0.01 80.79 5705.30 3624.70 3666.50 193.91 232.70
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364 Table 2.

Whole 

fraction
AGP fraction AG+GP fraction

Sample
Mw

(g/mol)

Percentage

(wt.%)

Mw

(g/mol)

Percentage

(wt.%)

Mw

(g/mol)

GA 9.43×105 16.86 3.99×106 83.14 3.11×105

GA/Zn2+ 9.99×105 17.11 4.23×106 82.89 3.35×105

GA/Fe3+ 1.06×106 17.70 4.50×106 82.30 3.32×105

GA/Fe2+ 1.37×106 18.51 5.71×106 81.49 3.42×105
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366 Table 3.

Emulsion sample T (s) Equilibrium interfacial 

(mN/m)

GA 4974 8.67

GA/Zn2+ 7587 13.11

GA/Fe3+ 8427 20.98

GA/Fe2+ 38911 24.62

367



ACCEPTED MANUSCRIPT

368 References

369 Ali, B. H., Ziada, A., & Blunden, G. (2009). Biological effects of gum arabic: A review of some recent 
370 research. Food & Chemical Toxicology, 47(1), 1-8.
371 Allen, L., De Benoist, B., Dary, O., & Hurrell, R. (2006). Guidelines on food fortification with 
372 micronutrients. volume 18(18), 106-120.
373 Beverung, C. J., Radke, C. J., & Blanch, H. W. (1999). Protein adsorption at the oil/water interface: 
374 characterization of adsorption kinetics by dynamic interfacial tension measurements. 
375 Biophysical Chemistry, 81(1), 59.
376 Bonda, D. J., Lee, H. G., Blair, J. A., Zhu, X., Perry, G., & Smith, M. A. (2011). Role of Metal 
377 Dyshomeostasis in Alzheimer Disease. Metallomics Integrated Biometal Science, 3(3), 267.
378 Castellani, J. W., Muza, S. R., Cheuvront, S. N., Sils, I. V., Fulco, C. S., Kenefick, R. W., Beidleman, 
379 B. A., & Sawka, M. N. (2010). Effect of hypohydration and altitude exposure on aerobic 
380 exercise performance and acute mountain sickness. Journal of Applied Physiology, 109(6), 
381 1792-1800.
382 Castellani, O., Guibert, D., Al-Assaf, S., Axelos, M., Phillips, G. O., & Anton, M. (2010). 
383 Hydrocolloids with emulsifying capacity. Part 1 – Emulsifying properties and interfacial 
384 characteristics of conventional ( Acacia senegal (L.) Willd. var. senegal ) and matured (Acacia 
385 ( sen ) SUPER GUM™) Acacia senegal. Food Hydrocolloids, 24(2–3), 193-199.
386 Castellani, O., Al-Assaf, S., Axelos, M., Phillips, G. O., & Anton, M. (2010). Hydrocolloids with 
387 emulsifying capacity. Part 2 – Adsorption properties at the n-hexadecane–Water interface. 
388 Food Hydrocolloids, 24(2), 121-130.
389 Castellani, O., Gaillard, C., Vié, V., Al-Assaf, S., Axelos, M., Phillips, G. O., & Anton, M. (2010). 
390 Hydrocolloids with emulsifying capacity. Part 3 – Adsorption and structural properties at the 
391 air–water surface. Food Hydrocolloids, 24(2–3), 131-141.
392 Chakraborty, S., Tewari, S., Sharma, R. K., Narula, S. C., Ghalaut, P. S., & Ghalaut, V. (2014). Impact 
393 of iron deficiency anemia on chronic periodontitis and superoxide dismutase activity: a cross-
394 sectional study. Journal of Periodontal & Implant Science, 44(2), 57-64.
395 Chen, J., & Teo, K. C. (2001). Determination of cadmium, copper, lead and zinc in water samples by 
396 flame atomic absorption spectrometry after cloud point extraction. Analytica Chimica Acta, 
397 450(1–2), 215-222.
398 Dawson, R., Branch-Mays, G., Gonzalez, O. A., & Ebersole, J. L. (2013). Dietary modulation of the 
399 inflammatory cascade. Periodontol, 64(1), 161-197.
400 Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed 
401 systems ☆. Food Hydrocolloids, 17(1), 25-39.
402 Dupont, C. L., Valas, R. E., Bourne, P. E., & Caetano-Anollés, G. (2010). History of biological metal 
403 utilization inferred through phylogenomic analysis of protein structures. Proceedings of the 
404 National Academy of Sciences of the United States of America, 107(23), 10567-10572.
405 Dupont, C. L., Yang, S., Palenik, B., & Bourne, P. E. (2006). Modern Proteomes Contain Putative 
406 Imprints of Ancient Shifts in Trace Metal Geochemistry. Proceedings of the National 
407 Academy of Sciences of the United States of America, 103(47), 17822-17827.
408 Felix, M., Romero, A., Vermant, J., & Guerrero, A. (2016). Interfacial properties of highly soluble 
409 crayfish protein derivatives. Colloids & Surfaces A Physicochemical & Engineering Aspects, 
410 499, 10-17.
411 Gaither, L. A., & Eide, D. J. (2001). Eukaryotic zinc transporters and their regulation. Biometals An 



ACCEPTED MANUSCRIPT

412 International Journal on the Role of Metal Ions in Biology Biochemistry & Medicine, 14(3-4), 
413 251-270.
414 Gomes, J. F., Rocha, S., Do, C. P. M., Peres, I., Moreno, S., Tocaherrera, J., & Coelho, M. A. (2010). 
415 Lipid/particle assemblies based on maltodextrin-gum arabic core as bio-carriers. Colloids & 
416 Surfaces B Biointerfaces, 76(2), 449-455.
417 Gomes, J. F. P. S., Rocha, S., Pereira, M. D. C., Peres, I., Moreno, S., Toca-Herrera, J., & Coelho, M. 
418 A. N. (2010). Lipid/particle assemblies based on maltodextrin–gum arabic core as bio-carriers. 
419 Colloids & Surfaces B Biointerfaces, 76(2), 449-455.
420 Gould, J., & Wolf, B. (2017). Interfacial and emulsifying properties of mealworm protein at the 
421 oil/water interface. Food Hydrocolloids.
422 Grumezescu, A. (2016). Emulsions. Elsevier Science.
423 Guan, Y., & Zhong, Q. (2014). Gum Arabic and Fe(2+) Synergistically Improve the Heat and Acid 
424 Stability of Norbixin at pH 3.0-5.0. Journal of Agricultural & Food Chemistry, 62(52), 12668.
425 Hantke, K. (2005). Bacterial zinc uptake and regulators. Current Opinion in Microbiology, 8(2), 196-
426 202.
427 Hilty, F. M., Arnold, M., Hilbe, M., Teleki, A., Knijnenburg, J. T. N., Ehrensperger, F., Hurrell, R. F., 
428 Pratsinis, S. E., Langhans, W., & Zimmermann, M. B. (2010). Iron from nanocompounds 
429 containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nature 
430 Nanotechnology, 5(5), 374-380.
431 Hou, J., Yamada, S., Kajikawa, T., Ozaki, N., Awata, T., Yamaba, S., Fujihara, C., & Murakami, S. 
432 (2014). Iron plays a key role in the cytodifferentiation of human periodontal ligament cells. 
433 Journal of Periodontal Research, 49(2), 260-267.
434 Jayme, M. L., Dunstan, D. E., & Gee, M. L. (1999). Zeta potentials of gum arabic stabilised oil in 
435 water emulsions. Food Hydrocolloids, 13(6), 459-465.
436 Jishnu, C., & Umesh, C. H. (2017). Formation of Protein Micro-Spherulites: Thermal Aggregation of 
437 Bovine β-Lactoglobulin with Metal Ions. International Journal of Scientific & Engineering 
438 Research, 8(3), 23-31.
439 Lang, N. D., & Kohn, W. (1970). Theory of Metal Surfaces: Charge Density and Surface Energy. 
440 Physical Review B Condensed Matter, 1(1), 4555-4568.
441 Li, X., Fang, Y., Al-Assaf, S., Phillips, G. O., Yao, X., Zhang, Y., Zhao, M., Zhang, K., & Jiang, F. 
442 (2012). Complexation of bovine serum albumin and sugar beet pectin: structural transitions 
443 and phase diagram. Langmuir, 28(27), 10164-10176.
444 Listed, N. (1968). Nutritional anaemias. Report of a WHO scientific group. World Health Organization 
445 Technical Report, 405, 5.
446 Maclean, D. S., Qian, Q., & Middaugh, C. R. (2002). Stabilization of proteins by low molecular weight 
447 multi-ions. Journal of Pharmaceutical Sciences, 91(10), 2220-2229.
448 Mahendran, T., Williams, P. A., Phillips, G. O., Al-Assaf, S., & Baldwin, T. C. (2008). New insights 
449 into the structural characteristics of the arabinogalactan-protein (AGP) fraction of gum arabic. 
450 Journal of Agricultural & Food Chemistry, 56(19), 9269-9276.
451 Matzner, Y., Levy, S., Grossowicz, N., Izak, G., & Hershko, C. (1979). Prevalence and causes of 
452 anemia in elderly hospitalized patients. Gerontology, 25(2), 113-119.
453 Meunier, N., O'Connor, J. M., Maiani, G., Cashman, K. D., Secker, D. L., Ferry, M., Roussel, A. M., & 
454 Coudray, C. (2005). Importance of zinc in the elderly: the ZENITH study. European Journal 
455 of Clinical Nutrition, 59(2), 1-4.



ACCEPTED MANUSCRIPT

456 Mukhopadhyay, D., & Mohanaruban, K. (2002). Iron deficiency anaemia in older people: 
457 investigation, management and treatment. Age & Ageing, 31(2), 87-91.
458 Mulkidjanian, A. Y. (2009). On the origin of life in the zinc world: 1. Photosynthesizing, porous 
459 edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth. Biology 
460 Direct, 4(1), 1-39.
461 Murakami, M., & Hirano, T. (2008). Intracellular zinc homeostasis and zinc signaling. Cancer Science, 
462 99(8), 1515-1522.
463 Noskov, B. A. (2014). Protein conformational transitions at the liquid-gas interface as studied by 
464 dilational surface rheology. Advances in Colloid & Interface Science, 206(2), 222-238.
465 Oscar, C., Saphwan, A. A., Monique, A., Glyno, P., & Marc, A. (2010). Hydrocolloids with 
466 emulsifying capacity. Part 2-Adsorption properties at the n-hexadecane-Water interface. Food 
467 Hydrocolloids, 24(2–3), 121-130.
468 Prasad, A. S. (1995). Zinc: an overview. Nutrition, 11(11), 93-99.
469 Prentice, A. M. (2005). Macronutrients as sources of food energy. Public Health Nutrition, 8(7a), 932-
470 939.
471 Randall, R. C., Phillips, G. O., & Williams, P. A. (1989). Fractionation and characterization of gum 
472 from Acacia senegal. Food Hydrocolloids, 3(1), 65-75.
473 Schifferle, R. E. (2010). Periodontal disease and nutrition: separating the evidence from current fads. 
474 Periodontol, 50(1), 78-89.
475 Sensi, S. L., Paoletti, P., Bush, A. I., & Sekler, I. (2009). Zinc in the physiology and pathology of the 
476 CNS: J. Wiley & Sons ;.
477 Swinburn, B. A., & Ravussin, E. (1994). Energy and macronutrient metabolism. Baillieres Clinical 
478 Endocrinology & Metabolism, 8(3), 527.
479 Tõugu, V., Tiiman, A., & Palumaa, P. (2011). Interactions of Zn(II) and Cu(II) ions with Alzheimer's 
480 amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. 
481 Metallomics Integrated Biometal Science, 3(3), 250.
482 Timasheff, S. N. (1998). Control of protein stability and reactions by weakly interacting cosolvents: the 
483 simplicity of the complicated. Advances in Protein Chemistry, 51(1), 355.
484 Tokalioǧlu, Ş., Kartal, Ş., & Elçi, L. (2000). Determination of heavy metals and their speciation in lake 
485 sediments by flame atomic absorption spectrometry after a four-stage sequential extraction 
486 procedure. Analytica Chimica Acta, 413(1–2), 33-40.
487 Touitou, Y., Proust, J., Carayon, A., Klinger, E., Nakache, J. P., Huard, D., & Sachet, A. (1985). 
488 Plasma ferritin in old age. Influence of biological and pathological factors in a large elderly 
489 population. Clinica chimica acta; international journal of clinical chemistry, 149(1), 37-45.
490 Trumbo, P., Yates, A. A., Schlicker, S., & Poos, M. (2001). Dietary reference intakes: vitamin A, 
491 vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, 
492 silicon, vanadium, and zinc. Journal of the American Dietetic Association, 101(3), 294.
493 Vitos, L., Ruban, A. V., Skriver, H. L., & Kollár, J. (1998). The surface energy of metals. Surface 
494 Science, 411(1–2), 186-202.
495 Zhang, Y., & Gladyshev, V. N. (2011). Comparative genomics of trace element dependence in biology. 
496 Journal of Biological Chemistry, 286(27), 23623-23629.

497

498



ACCEPTED MANUSCRIPT

1

Highlights

1) Gum arabic was enriched with trace elements (Zn2+、Fe3+、Fe2+) by ion exchange against ZnCl2, 

FeCl3 and FeCl2.

2) Gum arabic rich in trace elements (GARTE) has good emulsion stability performance with 

increasing molecular weight and AGP content compared to the control gum arabic.

3) Gum arabic rich in trace elements (GARTE) offering a trace element source of natural functional 

polysaccharide for food emulsion formulations.
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