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Efficient Global Optimization of Actuator Based on
A Surrogate Model Assisted Hybrid Algorithm

Bo Liu, Senior Member, IEEE, Vic Grout, Senior Member, IEEE, Anna Nikolaeva

Abstract—Computationally expensive numerical techniques
are often involved in the actuator design optimization process,
with efficiency a major issue. Although surrogate-based opti-
mization is a promising solution, challenge to the optimization
efficiency is still considerable. Aiming to address this challenge, a
new method, called the Parallel Adjoint Sensitivity and Gaussian
Process-assisted Hybrid Optimization Technique (PAGHO), is
presented. The central concept is a new optimization framework
employing computationally cheap partial derivatives obtained by
the adjoint sensitivity method to tackle computationally expensive
infill sampling for surrogate-based optimization. A silicon micro-
actuator and a mathematical benchmark problem with different
kinds of challenges are selected as the test cases. Comparison
results show that PAGHO can obtain comparable results with
popular global optimization methods, while at the same time
having significant advantages in efficiency compared to standard
global optimization methods and state-of-the-art surrogate-based
optimization methods.

Index Terms—Design optimization, Actuator design, Efficient
global optimization, Simulation-driven optimization, Gaussian
Process, Adjoint sensitivity

I. INTRODUCTION

Simulation-driven shape design optimization plays an im-
portant role in the actuator design process. Given a predefined
structure, geometric parameters are optimized to satisfy the de-
sign specifications and minimize/maximize a design objective.
Among various optimization methods, evolutionary algorithms
(EAs) are attracting much attention because of their global
optimization ability, free of a good initial design, generality
and robustness [1], [2]. Although there exist computationally
cheap analytical equation/behavioral models for some design
cases, to obtain accurate performance of an actuator, numerical
techniques (e.g., finite element analysis) are often unavoidable
in simulation, which are computationally expensive. EAs often
need thousands to several tens of thousands of simulations to
find the optimal design. Therefore, the actuator optimization
process can be very time-consuming [3], [4].

To address this challenge, surrogate model-assisted evolu-
tionary algorithms (SAEAs) seem to be a promising method.
In the context of engineering design optimization, a surrogate
model, which is often constructed by statistical learning tech-
niques, is a computationally cheap mathematical model ap-
proximating the output of numerical simulations. By coupling
surrogate models with an EA, some of the computationally
expensive simulations can be replaced by the surrogate model
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predictions; the computational cost can, therefore, be reduced
significantly.

Some SAEAs use an off-line surrogate model. An initial
random sampling is firstly carried out, then a surrogate model
is constructed using the samples and used for prediction. The
main drawback of such methods is lack of scalability. When
the number of design variables is more than a few, obtaining
an accurate enough surrogate model may need a considerable
number of initial samples. For example, in [5], the 6 design
variables for a MEMS device are cut down to 3 (other design
variables are kept constant) to obtain an accurate enough
artificial neural network model in a reasonable time.

To address this problem, on-line SAEAs [6], [7], [8] have
been investigated and employed in engineering design. In
terms of model management method, available SAEAs mainly
include conservative SAEAs [7], [9], active SAEAs [10], [11]
and non-standard EA structure-based SAEAs [8]. Conservative
SAEAs can often obtain highly optimal designs comparable to
standard EAs at the cost of reduced efficiency improvement
[7], [12]. Active SAEAs, in contrast, are often efficient but
the optimization ability becomes a weakness [10] although
prescreening methods may help [13], [11]. In the last category,
a typical example is the surrogate model-aware evolutionary
search (SMAS) framework [8]. SMAS-based SAEAs show
comparable results with conservative SAEAs but use 10% to
40% of the number of exact function evaluations compared
to some popular conservative and active SAEAs [7], [9], [10]
based on benchmark problems [8]. They are also employed in
electromagnetic and actuator design optimization and obtain
excellent results [14], [15], [4]. Recently, SMAS has also been
employed in multi-fidelity design optimization [16], [17].

However, even SMAS-based SAEAs are not efficient
enough. For example, [14] is arguably the current most
efficient method for antenna global optimization based on
comparisons, but the authors acknowledge that it is only
suitable for problems with less than 30 minutes/simulation. In
actuator design optimization, it is normal that each simulation
costs several tens of minutes and the computational cost
may even be higher when involving multiphysics models.
Therefore, further efficiency improvement is in great need.

The reason why SAEAs are more efficient than standard
EAs is that additional information (i.e., prediction model) that
supports optimization is available. Hence, to further improve
the efficiency, a natural idea is to obtain more supportive in-
formation. A straightforward one is the derivative information,
which is essential in many traditional optimization methods.
However, approximating the partial derivatives of a single
candidate design for a d-dimensional design problem needs
d+1 simulations using the finite difference method, which is
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very computationally expensive.
Nevertheless, adjoint sensitivity techniques [18] may pro-

vide substantial help in terms of efficiency. Adjoint sensitivity
techniques aim to obtain partial derivatives with little extra
computing overhead beyond a single simulation [19] so as to
efficiently analyze the robustness of a design. While known
in the numerical techniques domain for decades, its use for
simulation-driven optimization is only seen in recent years
[20], [21]. Moreover, adjoint partial derivatives have become
available in optimizers of a few commercial software tools re-
cently, e.g., COMSOL Multiphysics [22] and CST Microwave
Studio [23]. Given the advantages of the adjoint sensitivity
techniques which make the idea of utilizing partial derivatives
in an SAEA computationally affordable, the key challenge
locates at the new framework to make derivative information
and surrogate model work harmonically.

To address this problem, a new method is proposed, called
Parallel Adjoint Sensitivity and Gaussian Process-assisted Hy-
brid Optimization Technique (PAGHO). Note that the working
environment of PAGHO is normal multi-core desktop work-
stations. Its capacity is often 3-5 simulations in parallel with
shared memory. High-Performance Computing facilities that
are often not available to many engineers are not considered
in this paper. PAGHO aims to:

• Achieve comparable results with methods which directly
embed numerical simulations into a standard EA for
actuator design optimization (often considered the best
in terms of solution quality);

• Considerably improve the efficiency compared with em-
ploying standard EAs as well as state-of-the-art on-line
SAEAs;

• Be general enough to handle actuator design optimization
without any ad-hoc analysis or initial designs.

The remainder of this paper is organized as follows. Section
II introduces the basic techniques. Section III introduces the
PAGHO algorithm, including its main ideas, its general frame-
work, the design of key algorithm components, discussions
on model management and the parameter settings. Section
IV presents the performance of PAGHO through a micro-
actuator and a challenging mathematical benchmark problem.
Comparisons with a standard differential evolution algorithm
and an SMAS-based on-line SAEA are provided. Section V
offers conclusions.

II. BASIC TECHNIQUES

A. Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is arguably the
most successful technique for constrained nonlinear continu-
ous optimization [24]. Although it is a derivative-based method
and aims to find a local optimum, convergence speed is
its clear advantage [24]. SQP can also be considered as a
surrogate-based optimization method, although its surrogate
model is based not on statistical learning but on a Taylor series.
A brief introduction is as follows; more details are in [24].

In SQP, the constrained optimization problem is modeled
as a quadratic programming (QP) problem in each iteration.
A Lagrangian function is firstly constructed (1):

L(x, β) = f(x) +

m∑
i=1

βigi(x) (1)

where f(x) is the objective function, gi(x), i = 1, 2, . . . ,m are
constraints and βi, i = 1, 2, . . . ,m are Lagrange multipliers.
The QP problem in the kth iteration for (1) is:

min ∇f(xk)T dk + 1
2d

T
k∇2(Lk)dk

s.t. ∇gi(xk)T dk + gi(xk) ≤ 0, i = 1, 2, . . . ,m
(2)

To reduce the computing overhead, the Hessian matrix of
the Lagrangian function L can be approximated by first-order
partial derivatives. A widely used method is BFGS [25], which
is used in this paper.

(2) can be solved by using any QP algorithm. The solution
dk can be used to form a new iteration:

xk+1 = xk + akdk (3)

where ak is the step length, which can be obtained by a line
search method. In this work, the implementation is based on
the MATLAB Optimization Toolbox.

B. Differential Evolution (DE)

The DE algorithm outperforms many EAs for continuous
optimization problems [26] and is widely used in engineering
design optimization. In DE, mutation is the main approach
to exploring the design space. There are a few different DE
mutation strategies trading off the convergence speed and
the population diversity (implying higher global exploration
ability) in different ways. This paper involves the following
DE mutation strategies ((4) to (6)):

(1) mutation strategy: DE/rand/1

vi = xr1 + F · (xr2 − xr3) (4)

where xr1 and xr2 and xr3 are three different solutions
randomly selected from P (the current population). vi is the
ith mutant vector in the population after mutation. F ∈ (0, 2]
is a control parameter, often called the scaling factor.

(2) mutation strategy: DE/current-to-best/1

vi = xi + F · (xbest − xi) + F · (xr1 − xr2) (5)

where xi is the ith vector in the current population and xbest

is the best candidate in the current population.
(3) mutation strategy: DE/rand/2

vi = xr1 + F · (xr2 − xr3) + F · (xr4 − xr5) (6)

where xr4 and xr5 are two different solutions randomly
selected from P and are different from xr1 , xr2 and xr3 .

Crossover is then applied to the population of mutant vectors
to produce the child population U , which works as follows:

1 Randomly select a variable index jrand ∈ {1, . . . , d},
2 For each j = 1 to d, generate a uniformly distributed

random number rand from (0, 1) and set:

uij =

{
vij , if (rand ≤ CR)|j = jrand
xij , otherwise (7)
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where CR ∈ [0, 1] is a constant called the crossover
rate.

For constraint handling, the penalty function method [27]
is used.

C. Basics of Gaussian Process (GP)

GP machine learning [28] is used to construct surrogate
models in PAGHO. The main reason for selecting GP is
that the prediction uncertainty has a sound mathematical
background, which is able to take advantage of prescreening
methods [10] for surrogate model-based optimization. An
intuitive introduction is as follows. More details are in [28].

Given a set of observations x = (x1, . . . , xn) and y =
(y1, . . . , yn), GP predicts a function value y(x) at some design
point x by modeling y(x) as a Gaussian distributed stochastic
variable with mean µ and variance σ. If the function is
continuous, the function values of two points xi and xj should
be close if they are highly correlated. In this work, we use
the Gaussian correlation function to describe the correlation
between two variables:

corr(xi, xj) = exp(−
d∑

l=1

θl|xil − x
j
l |
2) (8)

where d is the dimension of x and θl is the correlation
parameter, which determines how fast the correlation decreases
when xi moves in the l direction. The values of µ, σ and θ are
determined by maximizing the likelihood function that y = yi

at x = xi(i = 1, . . . , n). The optimal values of µ and σ can
be found in a closed form, which are as follows:

µ̂ = (ITR−1y)−1ITR−1y (9)

σ̂2 = (y − Iµ̂)TR−1(y − Iµ̂)n−1 (10)

where I is a n× 1 vector of ones, R is the correlation matrix
and

Ri,j = corr(xi, xj), i, j = 1, 2, . . . , n. (11)

Using the GP model, the function value y(x∗) at a new point
x∗ can be predicted as (x∗ should be included in R):

ŷ(x∗) = µ̂+ rTR−1(y − Iµ̂) (12)

where

r = [corr(x∗, x1), corr(x∗, x2), . . . , corr(x∗, xn)]T (13)

The measurement of the uncertainty of the prediction (mean
square error), which is used to assess the model accuracy, can
be described as:

ŝ2(x∗) = σ̂2[I−rTR−1r+(I−rTR−1r)2(ITR−1I)−1] (14)

In this work, we use the ooDACE toolbox [29] to implement
the GP surrogate modeling.

To make use of the prediction uncertainty to assist SAEA,
the lower confidence bound prescreening [10], [13] is selected.
We consider the minimization of y(x) in this paper. Given
the predictive distribution N(ŷ(x), s2(x)) for y(x), a lower
confidence bound prescreening of y(x) can be defined as [13]:

ylcb(x) = ŷ(x)− ωs(x)
ω ∈ [0, 3]

(15)

where ω is a constant, which is often set to 2 to balance
exploration and exploitation ability [10].

III. THE PAGHO ALGORITHM

A. Main Ideas of PAGHO

Although surrogate modeling makes SAEAs much more
efficient than standard EAs, SAEAs face a dilemma. In gen-
eral, prediction uncertainty degrades the optimization ability,
because some optimal designs may be predicted wrongly and
thus the SAEA search may be guided in incorrect directions.
To make a good prediction, more training data points through
expensive numerical simulations are necessary to maintain the
surrogate model quality, which decrease the efficiency. Despite
some SAEAs calling for an appropriate balance between
optimization quality and efficiency, a number of candidate
designs far from the optimal region still have to be simulated
to understand the search space (providing a reasonably good
global surrogate model), which is unavoidable for almost all
kinds of available SAEAs to the best of our knowledge.
Reducing such simulations is the main idea of PAGHO.

Clearly, derivative information showing the direction of a
possible optimum is useful. With the help of the adjoint
sensitivity method, the efficiency is no longer a challenge,
the central problem therefore becomes the appropriate way
to use derivative information in an SAEA. Related works
include [30], [9]. One type of methods (e.g., [30]) uses
partial derivatives to improve the reliability of space mapping
(a multi-fidelity surrogate-based local optimization method),
which has a different purpose compared to PAGHO. Another
type of methods follows the memetic algorithm structure [31];
in particular, SQP is used to improve the promising designs
generated by a conservative SAEA in [9]. However, an SMAS-
based SAEA is more efficient than this [8].

Rather than using derivative-based optimization as local
refinements, in PAGHO, derivative-based optimization is firstly
employed aiming to find a few local optimal solutions. In this
process, many non-optimal regions are escaped efficiently with
the help of the derivatives. An SAEA is then started from
the suboptimal region obtained. This SAEA should be much
more efficient than starting from random sampling. Clearly,
a fast convergence derivative-based optimization method is
needed for the initial stage of PAGHO: SQP is therefore the
choice. The limitation of this new framework is that it is not
fit for problems which are not suitable for derivative-based
optimization. For example, problems with optimum located
in a narrow valley (e.g., microwave filters). For this kind of
problems, derivative-based optimization from random starting
points is unlikely to reach a local optimal region [32].

The construction of this new framework is NOT trivial.
For an SAEA, several tens of well distributed individuals are
often needed in the population, which cannot be provided
by SQP. Various pilot experiments using different methods
to initialize the population of SAEA with the SQP result have
been carried out. Results show that, although SQP can provide
the SAEA with a relatively good starting region, the SAEA
is often trapped in a local optimum near/at the starting point.
The central question then becomes how to make the SAEA
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jump out of local optima, while at the same time taking the
benefits of the SQP result? This is solved by a new search
framework (Section III (B)), for which, the two key operators
are described in Section III (C) and Section III (D).

B. The General Framework of PAGHO

The flow diagram of the PAGHO algorithm is shown in Fig.
1, which consists of the following steps:

Step 1: Select λ solutions from the design space using the
Latin Hypercube sampling method [33]. Numerical
simulation is not performed.

Step 2: Cluster the λ points into h clusters using the k-
means method [34] (h is the number of simulations
that can be run in parallel). Select the point (from
the λ samples) that is the nearest to the centroid of
each cluster to generate h starting points for SQP.

Step 3: Carry out SQP (Section II (A)) from each starting
point in parallel and save all the simulated candidate
designs and their performances in the database. Par-
tial derivatives are obtained by the adjoint sensitivity
method.

Step 4: Use the method in Section III (C) to obtain λ
designs as the initial population of the SAEA.

Step 5: If a preset stopping criterion (e.g., computing
budget) is met, output the best solution from the
database; otherwise, go to Step 6.

Step 6: Select the λ best solutions from the database to
form a population P .

Step 7: Use the method in Section III (D) to generate h
groups of child solutions (each group has λ child
solutions).

Step 8: For each group, calculate the median of the λ child
solutions. Take the τ nearest solutions to the median
from the database (based on Euclidean distance) and
their function values (performances) as the training
data points to construct GP surrogate models.

Step 9: For each group, prescreen the λ child solutions
generated in Step 8 using the LCB method (Section
II (C)) and obtain the estimated best child solution
in each group (h solutions in total). Simulate the h
solutions in parallel. Add the solutions and their per-
formances (via numerical simulation) to the database.
Go back to Step 5.

It can be seen that PAGHO begins with a multiple start
SQP. To improve the diversity for constructing the initial
population of the SAEA (i.e., implying higher exploration
ability), it is desirable that the starting points should represent
complementary areas of the design space and should be far
away from each other. Therefore, Latin Hypercube sampling
and k-means clustering are used. Note that PAGHO considers
only a few (e.g., 3-5) parallel simulations as described in
Section I, so the solution diversity provided by multiple start
SQP is still limited. Hence, a key operator is developed to
generate an initial population for the SAEA in Step 4.

Steps 5-9 are the SAEA part of PAGHO. Some key concepts
are borrowed from the SMAS framework [8], [12] (Steps 6 and
9). The central idea of SMAS is to improve the locations of
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Output
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Select the estimated 

best candidates
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Update database
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space
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Figure 1. The flow diagram of PAGHO

training data points. With the same number of training data
points, it is intuitive that using training data points located
near to the points waiting to be predicted (child population
in Step 7) can obtain a better surrogate model. Hence, in
each iteration, the λ current best candidate solutions construct
the parent population and a few best candidates based on
prescreening in the child population are selected to replace
the worst ones in the parent population. Hence, only at most
a few candidates are changed in the parent population in
each iteration, so the best candidates in the child solutions in
several consecutive iterations may be reasonably near to each
other (they will then be simulated and are used as training
data points). Therefore, the training data points describing
the current promising region can be much denser compared
to those generated by a standard EA population updating
mechanism. It can be seen that this property is inherited in
PAGHO in Steps 6 and 9.

However, experiments show that directly employing stan-
dard SMAS in [8] causes PAGHO to be trapped in local
optima. The reason is that the initial population is provided
based on the SQP result instead of Latin Hypercube sampling
of the whole design space as [8]. Step 4 helps substantially
but is not a complete solution. Therefore, a new method (Step
7) is developed to address this problem. Steps 4 and 7 are the
main innovations of PAGHO compared to SMAS besides the
new framework of introducing partial derivatives into SAEAs.

C. Initial Population Generation of SAEA

The input to this operator (Step 4 of PAGHO) is the database
comprising all the candidate designs visited by SQP and their
performances. The output is the initial population P for the
SAEA with λ candidate designs. The procedure consists of
the following steps:



5

Step 1: Refine the database by keeping the top 75% of the
candidate designs in terms of performance optimality
to construct a selection pool S.

Step 2: Initialize P with the best candidate design. Remove
the best candidate design from S.

Step 3: If |P | is equal to λ, output P . If |P | is smaller than
λ and |S| is larger than 0, go to Step 4. Otherwise;
go to Step 5.

Step 4: Calculate the scores of all the candidates in S using
the following equation:

score = 1− f(x)−min(f(x))
max(f(x))−min(f(x))

+ dist(x)−min(dist(x))
max(dist(x))−min(dist(x))

(16)

where f(x) is the fitness function (a minimization
problem is considered), dist(x) is the Euclidean
distance between a candidate x in S and the nearest
candidate to x in P .
Add the one with the highest score to P and remove
it from S. Go back to Step 3.

Step 5: Apply the DE/rand/1 mutation (4) and the crossover
operators (7) on P to generate |P | child solutions.

Step 6: Use the database as the training data points to
construct a GP surrogate model.

Step 7: Prescreen the |P | child solutions generated in Step
6 using the LCB method in Section II (C), obtain
the estimated best child solution and simulate it. Add
the solution and its performance (via simulation) to
P and the database. Go back to Step 3.

The algorithm starts by removing the SQP visited solutions
that are far from optimal from S (Step 1). Those solutions
often do not contain good patterns in terms of optimality and
should not be included in new candidate generation, although
they can provide more diversity. Due to the fast convergence
of SQP, the first few steps of SQP are often large, and the
number of far from optimal solutions is often small. This is
the reason for using 75% as the threshold.

For the next step, the remaining candidates in S are selected
balancing their contribution to optimality (performance values)
and diversity (shortest distance to P ). Normalization is used
to calculate the score. However, sometimes the candidates in
S are not enough to fill P . In such cases, instead of using
solutions far away from the optimal region, new candidates are
generated to fill the vacancies. DE/rand/1 is used to generate
new candidates, which trades off the optimality and diversity
of P . Experiments show that using DE/rand/1 provides better
result than using DE/current-to-best/1 (5) and DE/rand/2 (6).

D. Child Solution Generation

h groups of child solutions are generated from P in Step 7
of PAGHO using DE mutations, which is another key operator.
As described in Section III (B), employing the traditional
SMAS framework often cannot jump out of local optima
even with the improved initial population. Hence, selecting
the correct DE mutation strategy, compensating the population
diversity while maintaining convergence speed, is the key
of this operator. Each DE mutation operator ((4) to (6))
trades off the exploration ability (population diversity) and

convergence speed (optimality) to a certain extent. Among
them, DE/current-to-best/1 (5) has the least diversity consid-
eration but the convergence speed is the fastest, DE/rand/2 (6)
emphasizes the promotion of population diversity but with the
slowest convergence speed. DE/rand/1 (4) is in the middle in
both respects.

It is observed that, due to different problem landscapes, the
solutions provided by SQP are of diverse characteristics and,
after Step 4 of PAGHO, the initial population constructed also
shows diverse optimality and diversity. Hence, it is difficult to
select a universal DE mutation operator for all SQP outputs for
different kinds of function landscapes and initial populations.
To address this challenge, this section provides a self-adaptive
method, which works as follows:

For each child population i = 1, 2, . . . , h:
Step 1: If the algorithm is within the learning period (the

current number of iterations is smaller than a thresh-
old L), the rate of using DE/rand/1 (4), DE/current-
to-best/1 (5) and DE/rand/2 (6) is 1

3 . Otherwise; use
the rates in Step 5.

Step 2: Perform a roulette wheel selection [35] based on
the rates to determine a DE mutation method and
generate a child population Ci comprising λ child
solutions.

Step 3: Calculate the median of the λ child solutions.
Take the τ nearest solutions to the median from
the database (based on Euclidean distance) and their
function values (performances) as the training data
points to construct a GP surrogate model.

Step 4: Compare the predicted value of each solution in
Ci and the current best solution (simulated value).
Add the number of solutions that are better than the
current best solution to Ns (the number of successes
of (4), (5) or (6)) and add λ to Nu (the number of
uses of (4), (5) or (6)).

Until all the h groups of child solutions are generated.
Step 5: Update the rates of using DE/rand/1 (4),

DE/current-to-best/1 (5) and DE/rand/2 (6) by
Ns/Nu based on the previous L iterations. Update
the number of iterations.

It can be seen that the DE mutation strategies are employed
self-adaptively and the most frequently fitted will be used
with a greater chance. Experimental results show that, for
different types of functions and initial populations, the rates
can be drastically different, which verifies the effectiveness
of this operator. Experiments also show that, if without the
improved initial population from Step 4 but with this operator,
the success rate becomes low and some runs may cost many
function evaluations. This shows the necessity to combine both
operators.

E. Discussions on Surrogate Model Management in PAGHO

Surrogate model management is important in any SAEA.
The surrogate model usage and management in PAGHO are
summarized as follows: In each iteration, h GP models are
built in Step 8 of the PAGHO framework (Section III (B)). In
the first iteration, the initial surrogate model is built based on
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the training data points obtained in Step 4 (the method is in
Section III (C)) as well as the simulated points in the parallel
SQP search process in Step 3. After that, in each iteration, h
new training data points (top h solutions based on prediction)
are supplemented by Step 9 of the PAGHO framework for
updating the GP models in the next iteration. The goals of
this surrogate model management method are to make SMAS
[8] work harmonically with SQP and adapt to the small-scale
parallel simulation environment.

The challenges to achieve the above two goals are: (1) Using
Latin Hypercube sampling of the whole design space to obtain
well distributed initial samples is essential for the success of
SMAS, but this is in conflict with the key idea for efficiency
improvement of PAGHO. PAGHO uses SQP to avoid surrogate
modeling (i.e., samples based on computationally expensive
simulations) of many non-optimal regions and well distributed
initial samples are not straightforwardly available. (2) SMAS
is a sequential method. Only a single candidate solution
is simulated in each iteration and the surrogate model is
then updated. In contrast, PAGHO aims to support parallel
simulations of several candidate designs and the surrogate
model is updated based on multiple points in each iteration.

To address the first challenge mentioned above, the initial
population generation method starting from the local optima
obtained by SQP is developed (Section III (C)). A scoring
method is introduced aiming to select points which have good
fitness values and far from existing selected points without
additional simulations (if possible). The goal is to approach the
well distributed initial training data points (but in the optimal
region) as much as possible. To address the second challenge,
three DE mutation strategies are carefully selected (Section III
(D)). The aim is to provide solutions with good optimality and
diverse distribution in the optimal region (instead of optimal
but clustered together) in order to improve the surrogate model
quality as much as possible. Our pilot experiments using
4 mathematical benchmark problems show that the selected
combination performs the best among all the combinations
of the 5 widely used DE mutation strategies (i.e., DE/best/1,
DE/rand/1, DE/current-to-best/1, DE/best/2, DE/rand/2 [26]).

F. Parameter Settings

PAGHO introduces only the new parameter L beyond the
SQP and SMAS parameters. The parameters in SQP and
SMAS are investigated and those parameters are shown to
be insensitive by experimental verifications. More details are
provided in [24], [12]. Following the rules, we set F = 0.8,
CR = 0.8, λ = 50, τ = 8 × d (d is the number of design
variables). In particular, λ is recommended to be set between
5×d to 8×d to obtain the stability of the performance. Clearly,
the learning period L is not sensitive, which is recommended
to be between 20 and 40 related to the dimensionality of the
problem. For simplicity, 30 is used for the problems in Section
IV.

The setting of the stopping criterion for SQP needs atten-
tion. The goal of SQP in PAGHO is to efficiently converge to
solutions that are near to local optima rather than finding the
exact local optima. Therefore, the tolerance of x and f(x) is

not recommended to be very small as with standard SQP. For
example, if the expected improvement of f(x) is less than 0.1
or the movement of x for the next step is within 0.01, then
continued SQP optimization is not necessary. The tolerance
values depend on the design problem and are easy to estimate
by the designer. Clearly, this number is insensitive considering
the goal of SQP in PAGHO.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

In this section, PAGHO’s effectiveness is demonstrated by
experimental verification. Two complementary test cases are
carefully selected to exhibit typical challenges that may be
encountered. We suggest that, if PAGHO performs well for
these two difficult test cases, it should also work well for easier
problems, as was verified by our pilot experiments. For real-
world problem tests, a silicon micro-actuator [36] is selected,
which is modeled in COMSOL Multiphysics. The major chal-
lenge here is that the adjoint partial derivatives are inaccurate
for the objective function due to the unavoidable numerical
error, although reasonably accurate for the constraints. The
purpose is to indicate the performance of PAGHO for design
cases where the estimated derivative information is inaccurate.
In addition, the constraints are tight. Thus, PAGHO’s ability
to handle tight constraints is also shown.

The mathematical benchmark problem test aims, instead,
to study the property of PAGHO using known landscape
characteristics and optimal solutions. The central challenge for
PAGHO is its exploration ability. Therefore, in the constructed
problem, the Levy function [37] serves as the objective func-
tion and the Ellipsoid function [37] serves as the constraint.
The Levy function is a typical landscape in which to test
the exploration ability of a global optimization method. The
function has many local optima, which are relatively far away
from each other and the global optimum is located in a flat
valley. This landscape may make the parallel SQP optimization
(Steps 1-3 of PAGHO) arrive at local optimal regions far from
the global optimum, which causes the SAEA part (Steps 4-9)
of PAGHO to be easily trapped in a local optimum or become
slow. The purpose of this test case is to show PAGHO’s ability
to jump out of local optima. Note that some very rugged
or discontinuous mathematical benchmark problems (e.g., the
Rastrigin function) are not appropriate to be used because they
are not fit for using partial derivatives and are rarely seen in
actuator design landscapes.

PAGHO, a state-of-the-art SMAS-based SAEA [8], [12]
and the standard DE algorithm [26] are compared. In [8],
the reference SMAS-based SAEA shows significant speed
improvement compared to several popular conservative and
active SAEAs. [12] provides a minor improved version of [8],
which is used as the reference method. DE, the Particle Swarm
Optimization method and the Covariance Matrix Adaptation
Evolution Strategy for engineering design optimization are
compared in various papers, and generally comparable per-
formance has been shown. Hence, DE is used to represent
typical standard EAs.

The parameters of SMAS (λ,τ ,F and CR) and the pa-
rameters of DE (F ,CR) are the same as those used in
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PAGHO. The number of initial samples of SMAS is set to
λ, which is often used by SMAS-based SAEAs [12]. The
penalty function method [27] is used to handle the constraints
and the penalty coefficient is set to 50. The examples are
run on a workstation with Intel Xeon CPU E5-2420 and 24
GB RAM. In parallel SQP, different starting points lead to
different numbers of simulations (or function evaluations) and
the largest one is used as the number of function evaluations
in parallel SQP. A parallel simulation/function evaluation of
several candidate solutions is straightforward for DE. SMAS,
on the other hand, is a sequential method, and does not
support parallel function evaluations except for the initial
Latin Hypercube sampling [8], [12]. Hence, the number of
simulations/evaluations shown in the following subsections is
parallel simulations/evaluations for PAGHO and DE, while for
SMAS, parallel simulations/evaluations are only applied to the
50 Latin Hypercube sampling points.

A. 7-variable silicon micro-actuator

The silicon (modulus of elasticity E = 1.35 × 105 MPa,
Poisson’s ratio ν = 0.33) micro-actuator is shown in Fig. 2.
In this actuator, the design parameters for snap-through under
particular conditions of pressure translate into a predetermined
value for deflection. The membrane of the corrugated actuator
is rigidly fixed along the external radius w = 0, w′ = 0
(where w is a displacement along Z axis, w′ is a rotation
angle in ZOR plane) and has a rigid center (w′ = 0).
The corrugated membrane has a sinusoidal profile. For this
membrane, the pressure is uniformly loaded. The micro-
actuator can be described by equilibrium equations, geometry
equations and Hooke’s law [38], which are as follows:

σij,j + ρfi = 0 (17)

where σij is the stress tensor components, ρ is the density and
fi is the loading vector components.

εij =
1

2
(ui,j + uj,i +

∑
l

ul,iul,j) (18)

where ε is the deformation tensor components, u is the
displacement component.

σij =
∑
kl

Cijklεkl (19)

where C is the elastic constants tensor components.
The design variables and their ranges are in Table I. The

optimization problem is shown in (20).

max Ds@Pc

s.t.Pc ∈ [2.575, 2.625]MPa
r2 ≤ 580µm

(20)

where Ds is the displacement, Pc is the critical pressure and
r2 is the radius.

Finite element analysis and adjoint sensitivity analysis are
carried out by COMSOL Multiphysics. The axisymmetric
element formulation is used. The cross-section of the shell is
modeled using free triangular mesh and the average element
size is 0.25 × h1. The nonlinear analysis is performed using

 

Figure 2. The silicon micro-actuator

Table I
RANGES OF DESIGN VARIABLES OF THE MICRO-ACTUATOR (IN µm)

V ariables H r1 r2 h1 h2 h3 h4
Lower bound 65 30 550 6 6 6 6
Upper bound 85 50 650 7.5 7.5 7.5 7.5

the global equation method. The meshing procedure and
solution are performed for each new candidate design. Each
simulation takes approximately 6-13 minutes, in which, the
sensitivity analysis only takes less than 30 seconds. When
using PAGHO, three simulations are performed simultaneously
using the workstation. In parallel SQP, the tolerance of f(x)
is set to 1, which means that, if the expected improvement of
displacement is smaller than 1µm, SQP will terminate.

The convergence trends of PAGHO and SMAS are shown in
Fig. 3. 10 runs are carried out for PAGHO and SMAS. 1 run
of DE is also carried out, costing 11 days. The computing
budget of PAGHO is 80 parallel simulations and that for
SMAS is 467 simulations (17 parallel simulations are used
for the initial sampling and the other 450 simulations are not
able to be parallelized in SMAS). Note that SMAS needs 50
initial samples (3 samples are simulated in parallel), so the
convergence trend begins from the 18th simulation.

In the 10 runs of PAGHO, one of them fails to get a feasible
solution and all the others satisfy the design constraints.
The average objective function value (excluding the infeasible
solution) is 173.6µm with a standard deviation of 1.27µm.
In particular, 8 out of 10 runs obtain the best found value
174.0µm. The average runtime is about 9 hours. In the 10

 

 

 

 

 

Figure 3. The convergence trends of PAGHO (average of 9 runs without the
failed run) and SMAS (average of 10 runs) for test case 1
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runs of SMAS, all of them find a feasible solution and the
average objective function value is 170.2µm with a standard
deviation of 2.40µm. The average runtime is about 2.3 days.
It can be seen that PAGHO is much more efficient than a state-
of-the-art SMAS-based SAEA. The best found result of DE
is also 174µm, using 917 parallel simulations. To obtain the
average result of PAGHO, DE needs 834 parallel simulations.
Hence, PAGHO is 10 times faster than DE. If DE does not
use parallel simulations, PAGHO is about 30 times faster.

As expected, thanks to the partial derivatives, PAGHO can
often obtain a near feasible solution in the parallel SQP
process using a very small number of simulations (maximum
19 simulations among the 10 runs), providing a much better
starting region than SMAS, as is shown in Fig 3. It is
reasonable that feasible solutions are not provided by SQP
optimization due to the tight constraints and not very accurate
partial derivatives. The SAEA part of PAGHO then jumps out
of local optima and obtains high-quality solutions, verifying
the effectiveness of key operators. It can also be seen that the
inaccurate partial derivatives of the objective function do not
have much impact, since only 1 out of the 10 runs fails.

To further verify PAGHO’s optimization capacity and the
key operators, two experiments are carried out. In the first
experiment, 10 runs of SQP using randomly generated starting
points are carried out. A small enough tolerance of f(x),
0.01µm, is used. In the 10 runs, only 1 run obtains a feasible
design with a 160µm displacement, which is a local optimum
compared to the results of DE and PAGHO, while all the others
converge to infeasible local optimal points.

In the second experiment, the initial population generation
method (Section III (C)) of PAGHO is not used. Instead, the
top λ candidate designs visited in the parallel SQP process
are used to construct the initial population. Then, SMAS is
carried out with this new population. In this way, many non-
optimal regions are escaped thanks to the SQP search but
the population diversity is not considered. 10 runs are carried
out. In the 10 runs, 3 runs fail to satisfy the constraints (i.e.,
converge to infeasible local optimal points), 2 runs obtain
the best found result, 174.0µm, and other runs converge to
local optima in the feasible region. In all the feasible runs, the
average objective function value is 170.4µm with a standard
deviation of 6.28µm. Compared to PAGHO results, for which,
8 out of 10 runs obtain the best found objective function value,
the global exploration capacity of PAGHO, in particular, the
proposed initial population generation method, is verified.

B. Benchmark Problem Test

To study the exploration ability of PAGHO, the constructed
problem is shown in (21). The search range is [−20, 20]10.
The function landscape characteristics are described before.
The global optimum is 0 when all the elements in x are 1. 4
solutions are evaluated simultaneously for PAGHO and DE in

 

 

 

Figure 4. The convergence trends of PAGHO, SMAS and DE for test case 2
(average of 20 runs)

this experiment. The tolerances of f(x) and x are set to 0.1.

min f(x) = sin2(πwi) +
∑d−1

i=1 [1 + 10sin2(πwi + 1)]
+(wd − 1)2[1 + sin2(2πwd)], wi = 1 + 0.25(xi − 1)

s.t.g(x) = log(
∑d

i=1 i× x2i ) ≤ 5
i = 1, . . . , 10

(21)
20 runs are performed for PAGHO, SMAS and DE. The

constraints are satisfied for all the algorithms. Fig. 4 shows the
convergence trends. The computing budgets are 200 parallel
function evaluations for PAGHO, 763 function evaluations
for SMAS (13 parallel function evaluations are used for the
initial sampling and the other 750 function evaluations are not
able to be parallelized in SMAS) and 2500 parallel function
evaluations for DE.

The following conclusions can be drawn: (1) The average
f(x) of PAGHO is at the 1e-3 level and the average Euclidean
distance between the obtained optimal solutions and the real
global optimum is 0.048. The high optimization quality of
PAGHO is thus shown. (2) PAGHO shows significant speed
improvement compared to SMAS. The SMAS curve shows
that the convergence speed is very slow from 300 to 700
function evaluations. This can be explained as SMAS is
“learning” the flat valley in this process. PAGHO, however,
avoids this process. To obtain the result of PAGHO, DE needs
1463 parallel function evaluations, which means that PAGHO
is 7 times faster. If DE does not use parallel evaluations as
PAGHO, PAGHO is 29 times faster. (3) PAGHO works as
expected. The parallel SQP part firstly provides a much better
starting region than random sampling using very few function
evaluations. The SQP part obtains feasible solutions in all the
runs, and the local optima that it provides vary from 0.05 to
7.38. The SAEA part then jumps out of the local optima and
obtains highly optimal solutions.

Note that this problem is difficult for SAEAs since the
global optimum is located on a flat valley and the local
optima are not near to it, making prediction difficult. For many
other benchmark problems, PAGHO and SMAS show much
greater speed enhancement than DE. The high exploration
ability of PAGHO is shown by this example, justifying the
initial population generation method and the self-adaptive
child solution generation method.
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V. CONCLUSIONS

In this paper, the PAGHO algorithm has been proposed
for actuator shape design optimization, aiming to substantially
improve the optimization efficiency. In contrast with existing
works using derivative information for local refinement in
SAEAs, the new concept of utilizing derivative information
to escape non-optimal regions beforehand and then making
SAEA work harmonically from the not well distributed local
optimization results, is introduced for the first time, to the best
of our knowledge.

Experiments show that even for challenging landscapes
or inaccurate estimated derivative information, PAGHO can
provide highly optimal designs, which are comparable to the
DE algorithm, but uses a reasonable timeframe and is much
more efficient. Moreover, PAGHO shows several times speed
improvement over a state-of-the-art SMAS-based SAEA. This
is achieved by our novel adjoint sensitivity-assisted SAEA
framework, including the new hybrid structure, the initial
SAEA population generation method and the self-adaptive
child solution generation method. The limitation of PAGHO
is that it is not fit for problems for which derivative infor-
mation can hardly help. On the other hand, considering the
wide applicability of derivative-based optimization in actuator
design (although highly likely to only obtain an unsatisfactory
local optimum), the scope of PAGHO is large. Future works
will include deeper behavioral study and wider applications of
PAGHO.
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