
 Glyndŵr University Research Online

Conference Presentation

Event-driven simulation of digital circuits using modified Petri nets
algorithm

Lapin, A., Bulakh, D. and Vagapov, Y

This is a paper presented at the 7th IEEE Int. Conference on Internet Technologies and
Applications ITA-17, Wrexham, UK, 12-15 September 2017

Copyright of the author(s). Reproduced here with their permission and the permission of the
conference organisers.

Recommended citation:

Lapin, A., Bulakh, D. and Vagapov, Y (2017) 'Event-driven simulation of digital circuits using
modified Petri nets algorithm'. In: Proc. 7th IEEE Int. Conference on Internet Technologies
and Applications ITA-17, Wrexham, UK, 12-15 September 2017, pp. 15-17. doi:
10.1109/ITECHA.2017.8101903.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/287589336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Event-driven Simulation of Digital Circuits using

Modified Petri Nets Algorithm

Alexander Lapin, Dmitry Bulakh

Department of Integrated Circuits Design

National Research University of Electronic Technology

Zelenograd, Moscow, 124498, Russia

Yuriy Vagapov

School of Applied Science, Computing and Engineering

Glyndwr University

Plas Coch, Mold Road, Wrexham, LL11 2AW, UK

Abstract—This paper presents a modified Petri nets

simulation algorithm applied as an engine for a logic simulator in

digital integrated circuit design. The simulator uses an event-

driven algorithm and eliminates the delta delay which occurs in

the majority of modern simulation algorithms. The algorithm has

been tested for the logic simulation of combinational digital

circuits and demonstrated more accurate simulation results. This

has been achieved due to solving the issue of the priority choice

problem when two or more events are occurring simultaneously.

Keywords—design automation; integrated circuit design; event-

driven simulation; delta delay; gate level simulation; behavioural

simulation; Petri net

I. INTRODUCTION

Digital circuit design is the most important stage of
integrated circuit (IC) development where circuit elements are
represented as logic gates to perform Boolean algebra
operations. Logic gate operations are usually described as a
combination of logic functions (i.e. AND, NOT, OR and
others) performing under algorithms based on the syntax of
high level programming languages. The syntax of these
languages includes assignment statements, multiple-choice
operators, logical conditions, loops and, for some languages,
even the function or procedure calls and object oriented
programming.

There are several types of algorithms applied for digital
circuit simulation. The first type of algorithms is called “cycle
simulation” where the time axis is divided into a sequence of
small fixed time steps and the simulation is performed at each
time step during the simulation time. All of the logic gates of
the circuit are evaluated at each time step. However, this
algorithm has several important disadvantages:

1. The algorithm can only be implemented at the gate
level for the described circuits;

2. The algorithm must arrange all of the elements in the
simulated circuit according to the signals passing
through the logic gates;

3. The algorithm is inefficient when used to simulate
digital circuits containing large numbers of gates;

4. The algorithm is extremely inefficient for the
simulation of circuits with delays.

It is obvious that this type of algorithm cannot be applied
for the simulation of circuits having a large scale integration
and a significant number of feedbacks. Therefore, the
simulation of modern digital circuits, comprising of millions of
triggers and flip-flops, becomes impossible under the “cycle
simulation” approach.

The second type of algorithm is called “event-driven
simulation”. Nowadays this simulation algorithm is extremely
popular and widely used for IC development and design.

During event-driven simulation the time axis is not divided
onto a fixed sequence of time steps but dynamically updated
with events indicating which gate has to be evaluated. If a
circuit signal value is changed (for example, as a result of input
switching or gate switching) a new event is added to the event
list. This event contains information about operation time and
the gate to be evaluated.

Thus, this algorithm solves the majority problems that
occur during the execution of the “cycle simulation” algorithm:

1. The algorithm can be applied at any level of
abstraction to the described circuits;

2. The algorithm does not need to define all of the
elements in the simulated circuit;

3. The algorithm is efficient for simulation of the digital
circuits containing a large amount of gates. The
simulation under this algorithm is not conducted for
all gates; it is only applicable for the gates added to
the list of events;

4. The algorithm is efficient when used to simulate
circuits with delays. This is achieved due to the fact
that the time axis is not divided into fixed time steps
and the events appear dynamically.

Although the event-driven simulation algorithm is widely
used in industry it has a disadvantage related to accuracy.

II. PROBLEM DEFINITION

At the simulation stage of the digital circuits with multi-
input gates, where the inputs of the gates are switched at the
same time, the logic simulator must select which gate has to be
processed first because the algorithm engine does not support
“true parallel” operation.

978-1-5090-4815-1/17/$31.00 ©2017 IEEE

In order to resolve this ambiguity, modern digital circuit
simulators implement the concept of “delta delay”. This
concept means that all of the signal switches that occur at the
same moment in time are shifted along the time axis with a
very small delay called “delta delay”. The time delay is so
small that for the user, observation of all of the signal switches
occurs in parallel at the same moment in time. Whereas the
algorithm actually evaluates them consequently. However, this
approach can generate different simulation results for the same
signal switching sequences.

>=10

0

0

D

Q

Q
SET

CLR

D

C

EC nQ

Q

Fig. 1. Example circuit.

Depending on the method of description the algorithm can
perform in different ways choosing a different order of
switching operations. This situation is illustrated in an example
of the clock-gated D Flip-flop (DFF) shown in Fig. 1 where the
simulation results depend on the order of the signal switching
in the netlist. Fig. 2 shows the result of the simulation of a
given circuit using an Icarus Verilog simulator, the most
efficient open source digital circuit simulation program.

Fig. 2. Simulation results.

In this example, there are two signals switching at the same
time – C (clock signal) and EC (enable clock signal). The
simultaneous switching disables the clock signal passing to
DFF when using the power save mode. This method known as
“clock gating” is usually applied to minimise power
consumption of a circuit operating in power save mode.

Obviously, the simulation program cannot evaluate the
simultaneous switching of several gates so therefore it
implements a “delta delay” algorithm to perform the sequential
switching of inputs C and EC.

The upper plot in Fig. 2 shows the results when the
simulation algorithm chooses the input EC to be switched first.
In this case the input C is switched after EC and the simulation

program considers that if EC is already equal to 0 then
switching C to 1 will lead to the switching of the OR2 gate and
the DFF output is changed accordingly.

The lower plot in Fig. 2 demonstrates the opposite
condition, where the simulation algorithm takes switching of
input C first. Under this condition, the input EC is still equal to
1, so nothing happens at the output of the OR2 gate and the
trigger is not switched.

This paper proposes a new digital circuit simulation
algorithm based on the modification of the Petri net simulation
approach aimed to avoid the “delta delay” and improve the
accuracy of the digital circuit simulation.

III. PROPOSED APPROACH

Petri nets are a class of the basic model of parallel and
distributed systems designed by Carl Adam Petri. An example
of a Petri net is shown on Fig. 3.

Fig. 3. An elementary Petri net.

Algorithms based on Petri nets can simulate parallel
processes with sequential instructions. Petri nets contain the
places (s1, s2, s3, s4) and the transitions (t1, t2) which can be
connected by the directed arcs. The places in the net may
contain tokens in (s1, s2, s3) and not in (s4) as shown in Fig. 3.
These tokens can be moved to other places using “firing”
actions. Each step of the simulation in the Petri net consists of
three stages: t− (Fig. 4a), t0 (Fig. 4b) and t+ (Fig. 4c).

Fig. 4. Functioning of Petri net.

Petri nets are used as an effective tool for parallel process
simulation in hardware design. There are two main application
approaches of Petri nets in the digital IC design:

1. Description of a circuit behaviour [1], [2] where the
simulation of the circuit is conducted using standard
algorithms;

2. The basis of gates representation [3], [4] where digital
elements are described in terms of safe Petri nets and
standard algorithms are used for simulation.

The method suggested in this paper is based on the
modified Petri nets simulation algorithm being used as a basis
of the logic simulation engine. Instead of the circuit description
using a set of traditional Petri net places and transitions it is
proposed that the modified transitions and places are
implemented in accordance with the logic functions described

in the netlist. This approach reduces the number of Petri net
elements (states and transitions) used for the simulation
compared to previous approaches [2]-[4].

The proposed modifications to the Petri nets are as follows:

1. Each place of Petri net corresponds to one node of the
digital circuit. If the state has a dot it means that this
net of a circuit has logic 1 whereas if the state has no
dot – the logic value in this net equals to logic 0. Using
coloured Petri nets the multi-valued logic (0, 1, U, Z
etc.) could be implemented.

2. A net transition implements a logic gate of the digital
circuit. At the gate level of simulation algorithm there
is a set of predefined transitions corresponding to the
logic gates NOT, AND, OR, NAND, NOR and XOR.

3. Unlike the basic Petri net algorithm the transition will
fire in any case; this action is not linked to the presence
of a dot in its input. In the proposed modification the
transition firing depends on type of transition only and
could occur when there is no dot in the input. For
example, if the transition implements a logic gate NOT
it will fire each time when there is no dots in its input
and will not fire if there is a dot. This performance is
corresponding to the logic gate functioning rules.

4. If the transition fires, this action will not remove the
dots from its inputs.

IV. EXAMPLE CIRCUIT

An example shown in Fig. 5 and Fig. 6 demonstrates how a
one bit full adder (Fig. 5) is implemented in the proposed
modification of Petri nets (Fig. 6).

AND

XOR

AND

XOR

OR

B

A

S

Cin

Cout

Fig.5. Full adder schematic

Fig.6. Full adder schematic translated to Petri nets

Simulation under the proposed algorithm takes 1.5–2 times
longer than the similar process without Petri nets. For example,
if the simulation queue is {G1, G2, G3} (where G_ is a logic

gate) then using Petri nets, it is changed to the following:
{G1(t−), G2(t−), G3(t−), G1(t0) G2(t0) G3(t0), G1(t+) G2(t+),
G3(t+)}. Despite this, the performance of the proposed
simulation algorithm equals that of the Icarus Verilog.
However, the proposed algorithm increases the simulation
queue by three times when compared to a standard simulation
algorithm.

V. EXPERIMENTAL RESULTS

This algorithm was implemented using C++ [5] and was
compared to the Icarus Verilog simulation program.

For the circuit in Fig. 1, different input vectors were
generated. When these were compared to the results obtained
from the Icarus Verilog simulation program (Fig. 2), the
simulation under the proposed algorithm demonstrated that any
sequence of the input vectors results in the unique and correct
waveforms as shown in Fig. 7.

Fig.7. Simulation results.

The developed simulation program was tested using
ISCAS'85 benchmarks. The results of the simulation are fully
consistent with the results obtained from Icarus Verilog
simulation.

VI. CONCLUSION

It has been shown that the simulation result for the
proposed algorithm is correct for any type of netlist
description. In further work, several approaches will be
implemented for the simulation of behavioural descriptions of
digital circuits using a proposed algorithm. Behavioural
descriptions can also be represented as the set of Petri net
instances (places and transitions) with specific functioning.

REFERENCES

[1] A. Yakovlev, L. Gomes, and L. Lavagno, Eds., Hardware Design and
Petri Nets, New York: Springer, 2011.

[2] M. Uzam, M. Avci, and M.K. Yalcin, “Digital hardware implementation
of Petri net based specifications: Direct translation from safe automation
petri nets to circuit elements,” in Proc. Int. Workshop on Discrete-Event
System Design, Przytok, Poland, 27-29 June 2001, pp. 25-34.

[3] A.A. Veselov, “D-extended Petri nets for simulating of digital devices,”
in Proc. Annual Conf. Processor-oriented Methods and Tools for the
Development of Information Systems, Potsdam, Germany, 9-11 Oct.
2002, vol. 65, pp. 116-127.

[4] H. Kubatova. “Direct implementation of Petri net based model in
FPGA”, in Proc. 2nd Int. Workshop on Discrete-Event System Design,
Dychow, Poland, 15-17 Sept. 2004, pp. 31-36.

[5] A.V. Lapin, D.A. Bulakh, A.V. Korshunov, and G.G. Kazennov, “The
use of Petri nets as the basis of algorithm for gate level digital circuits
simulation,” in Proc. IEEE East-West Design and Test Symp., Yerevan,
Armenia, 14-17 Oct. 2016, pp. 1-4.

