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 29 

ABSTRACT 30 

Octenyl- and dodecenyl succinic anhydride derivatives (OSA- and DDSA-) of inulin have been 31 

synthesised and their solution and interfacial properties have been determined and compared 32 

to a commercially available alkylated inulin, Inutec SP1. All samples formed micellar 33 

aggregates in solution above a critical concentration (critical aggregation concentration) and 34 

were able to ‘dissolve’ a hydrophobic dye. They were also able to form stable oil-in-water 35 

(O/W) emulsions as assessed by measurements of their droplet size as a function of time. 36 

DDSA-inulin with a high degree of substitution was found to be effective at encapsulating beta 37 

carotene using the solvent evaporation method which yielded a solid which dissolved readily 38 

in simulated gastric fluid. The results confirm the potential application of these materials in a 39 

number of areas including, drug delivery, pharmaceuticals, neutraceuticals, cosmetics and 40 

personal care.     41 
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 67 

INTRODUCTION 68 

 69 

Inulin is a polyfructan and is obtained commercially from chicory. It consists of β 2,1 fructose 70 

chains, with degrees of polymerisation ranging between 2 and 60, which terminate with a 71 

glucose residue. It is classed as a type of dietary fibre because it is not absorbed in the 72 

stomach or small intestine but is degraded by bacteria in the colon to form short-chain fatty 73 

acids which have health benefits. There has been considerable interest in recent years in the 74 

derivatisation of inulin to form a range of speciality chemicals (Stevens, Merigii & Booten 75 

2001). Inutec SP1 is a hydrophobically modified inulin derivative which is produced 76 

commercially by reaction of inulin with dodecyl isocyanate in an aprotic solvent to yield inulin 77 

dodecyl carbamate (Stevens et al., 2001; Exerowa et al., 2007; 2009a, b; Gotchev et al., 2007; 78 

Nestor et al., 2007). It has a molar mass of about 5000 g/mol (Exerowa et al., 2009b; Nestor 79 

et al., 2005, 2007, 2008) and is used in a variety of industrial sectors for the stabilisation of 80 

emulsions and dispersions..  81 

A number of other hydrophobic derivatives have been synthesised by reaction of inulin in 82 

organic solvents with fatty acid chlorides, methyl esters, alkyl epoxides, and alkyl isocyanates 83 

(Stevens, Merigii & Booten, 2001; Exerowa et al., 2009; Khristov & Czarnecki, 2010; Gochev 84 

et al., 2011). A ‘green’ approach to modification has been developed by Morros et al. (2010, 85 

2011), Kokubun, Ratcliffe & Williams (2013; 2015) and Han, Ratcliffe and Williams (2015) who 86 

have recently reported the modification of inulin using alkenyl succinic anhydrides in water 87 

under mild alkaline conditions to produce inulin derivatives with varying alkenyl chain length 88 

and varying degrees of substitution. It was confirmed that these surfactants adsorbed at the 89 

air-water interface and that they formed micellar-like aggregates in solution above a critical 90 

concentration. 91 

The ability of hydrophobically modified inulin derivatives to form micellar aggregates has 92 

attracted much interest in recent years. Muley et al. (2016), for example, used Inutec SP1 for 93 

the encapsulation and controlled release of the anti-cancer drug, paclitaxel. Encapsulation 94 

was achieved using both the ‘thin film hydration’ and ‘solvent evaporation’ methods and they 95 

demonstrated through dynamic light scattering and transmission electron microscopy studies 96 

that near spherical drug-loaded micellar aggregates of ~250nm were produced. Other groups 97 

have also used hydrophobic derivatives for encapsulation of active compounds within micellar-98 

like structures. For example, Di Prima et al. (2017) synthesised an amine derivative which was 99 

further modified to incorporate retinoic acid to yield mucoadhesive micelles with enhanced 100 

transcorneal permeation properties while Mandracchia et al. (2017) produced derivatives 101 

containing both vitamin E and biotin capable of forming micelles for potential application as 102 

long-circulating carriers for receptor-mediated targeted drug delivery. In another approach, 103 
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Lopez-Molina et al. (2015) synthesised a cinnamoylated inulin derivative by reaction with 104 

cinnamic acid chloride in pyridine and produced microspheres for the targeted delivery of 105 

drugs to the colon.  106 

The purpose of the present study was to synthesise octenyl and dodecenyl succinic anhydride 107 

derivatives of inulin and to investigate their solution and interfacial properties in comparison 108 

with Inutec SP1 and to evaluate their ability to encapsulate water insoluble beta carotene. It is 109 

our hypothesis that encapsulation using the anionic succinylated derivatives could have 110 

significant benefits in the controlled release of the beta carotene compared to the commercial 111 

non-ionic Inutec SP1. 112 

 113 

 114 

MATERIALS AND METHODS 115 

 116 

Materials 117 

 118 

Inulin coded Fibruline® DS2 was supplied by Cosucra and was dried at 70 ˚C for 24 hours 119 

before use. It was found to have a weight average and number average molar mass of 3,760 120 

and 3,000 g/mol respectively (Kokubun, Ratcliffe & Williams, 2013). Inutec SP1 was obtained 121 

by Beneo Biobased Chemicals and was used as supplied.  122 

2-octen-1-yl-succinic anhydride (OSA) and 2-dodecen-1-yl-succinic anhydride (DDSA) were 123 

obtained from Aldrich Chemical Co. and were used as received. Medium Chain Triglyceride 124 

(MCT) gold oil was obtained from Trec Nutrition UK and was used as supplied. Sudan IV was 125 

obtained from the Eastman Kodak Company. Beta carotene Type I synthetic ≥ 93 % (UV) 126 

powder was obtained from Sigma-Aldrich Chemie GmbH., and was used as supplied. 127 

 128 

 129 

Methods 130 

 131 

Synthesis of hydrophobically modified inulin 132 

Hydrophobically modified inulin samples were synthesised in aqueous solution under alkaline 133 

conditions using OSA and DDSA and were characterised by nuclear magnetic resonance 134 

(NMR) spectroscopy as previously reported (Kokubun, Ratcliffe & Williams, 2013). The 135 

samples obtained, namely OSA(1), OSA(2) and DDSA(1) had approximately 1 – 2 alkenyl 136 

chains per molecule and a further sample, DDSA(2), had ~5 alkenyl chains per molecule.  137 

 138 

Critical aggregation concentration 139 
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The CAC was determined by the dye solubilisation technique using Sudan IV. 10mg of the 140 

dye was added to 10 mL of the OSA-, DDSA- inulins or Inutec SP1 at varying concentrations 141 

in deionised water. The samples were mixed at 40 °C overnight and filtered using a Millex-GP 142 

0.22 µm filter (Millipore Ireland Ltd.) into disposable UV-grade 10 mm path length cuvettes 143 

(CXA-110-0053 from Fisher Scientific Ltd.). The absorbance of the solutions was measured 144 

at 510 nm using a Lambda 25 UV/vis Spectrometer PerkinElmer. The CAC was determined 145 

as the point at which the absorbance increased. 146 

 147 

Surface and interfacial tension 148 

The surface tension at the air / water interface and the interfacial tension at ASA-inulin or 149 

Inutec SP1 aqueous solution / MCT oil interface were measured at varying concentration at 150 

25 ˚C ± 1 ˚C using the Du Nouy ring method with a Tensiometer K8 and a 4 cm circumference 151 

platinum ring RI 01 from Krüss GmbH. The equilibrium surface and interfacial tensions were 152 

plotted as a function of the sample concentration and the CAC was estimated from the change 153 

in slope of the plots. 154 

 155 

Zeta potential 156 

The zeta potential of inulin-coated emulsion droplets was determined at various pH at 25 ˚C 157 

using a Zetasizer Nano ZS (Malvem Instrument Lab, Malvern, UK) equipped with a 5 mw He-158 

Ne laser (λ0 633 nm) and a digital correlator. Measurements were carried out using a folded 159 

capillary cell DTS1060 (Malvern Instrument Lab, Malvern, UK). The cell was washed with 160 

ethanol and deionised water several times and dried before measurements. Oil-in-water (O/W) 161 

emulsions were prepared by mixing 1.5 g MCT oil with 8.5 g of 2.5% OSA-, DDSA- inulin or 162 

Inutec SP1 solution for 3 minutes at 24 000 rpm, using an IKA T25 digital Ultra-Turrax mixer. 163 

Two drops of the emulsion were added into 10mL 0.01M NaCl which was filtered with a type 164 

GN 0.2 µm filter (Millipore Ireland Ltd) before use. The system was mixed for 30 seconds and 165 

the pH was adjusted using 0.1M HCl and 0.1M NaOH. Ten runs were performed for each 166 

sample. The data was analysed using the Zetasizer Software 6.20 © 2002-2010 from Malvern 167 

Instruments Ltd and the zeta potential was determined from the electrophoretic mobility using 168 

the Smoluchowski equation.  169 

 170 

 171 

Emulsification properties 172 

O/W emulsions were prepared as above and droplet size measurements were made 173 

immediately after emulsion preparation and over a period of 21 days for samples stored at 174 

room temperature (25 ºC) and at 50 ºC using the Mastersizer 2000 (Malvern Panalytical Ltd 175 

Malvern, UK). Before measuring the samples, background readings for the instrument were 176 
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carried out to subtract the ambient light signals from the total scattering received from 177 

samples. Two or three drops of the sample were introduced into the dispersion unit containing 178 

distilled water. The dispersion unit pump speed was 2000 rpm. The obscuration was between 179 

10% and 30%. The refractive index of the dispersing medium and the dispersed particles were 180 

1.33 and 1.45 respectively. Measurements were performed in duplicate.  181 

 182 

Encapsulation 183 

Encapsulation of beta carotene using hydrophobically modified inulin was facilitated using the 184 

solvent evaporation method. Approximately 1.0 g of the beta carotene and 5.0 g of the ASA-185 

inulin or Inutec SP1 were added to 70 mL of chloroform and the system was stirred with a 186 

magnetic stirrer and then left overnight at room temperature inside a fume cupboard to enable 187 

the chloroform to evaporate completely. The solubility of the beta carotene in the resulting 188 

solid matrix was determined by preparing a number of samples containing 0.02g of the solid 189 

in 10 ml deionised water or simulated gastric fluid and mixing at 37 °C. The simulated gastric 190 

fluid was prepared by adding 500 ml 1 M HCl and 10.22 g sodium chloride to 5 L deionised 191 

water and stirring with a magnetic stirrer overnight at room temperature to fully dissolve. 3ml 192 

of each of the dispersions was taken at various time intervals and filtered using a Millex-GP 193 

0.22 µm filter (Millipore Ireland Ltd.) into disposable UV-grade 10 mm path length cuvettes 194 

(CXA-110-0053 from Fisher Scientific Ltd.). The absorbance of the solutions was measured 195 

at 455 nm using a Lambda 25 UV/vis Spectrometer PerkinElmer.  196 

 197 

. 198 

 199 

 200 

 201 

RESULTS AND DISCUSSION 202 

 203 

Critical aggregation concentration and interfacial properties 204 

The results obtained for the dye solubilisation studies are presented in Figure 1. It is seen that 205 

the absorbance increased at values of 0.70% +/-0.1%, 0.02% +/-005% and 0.002% +/- 206 

0.001% for the OSA(1)-inulin, DDSA(1)-inulin and Inutec SP1 respectively.  207 

 208 
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Figure 1. Absorbance of OSA(1), DDSA(1)-inulin and Inutec SP1 at varying 210 
concentrations in the presence of Sudan IV. 211 
 212 

The increase is attributed to the formation of micellar-like aggregates through hydrophobic 213 

association of the inulin molecules and the dissolution of the dye in the hydrophobic core as 214 

discussed previously (Kokubun, Ratcliffe & Williams, 2013). The CAC values for the 215 

succinylated samples are expected to be higher than those for Inutec SP1 since the former 216 

have an anionic carboxylate group in the linkage between the alkenyl chains and the inulin 217 

molecule which will tend to inhibit molecular aggregation due to intermolecular electrostatic 218 

repulsions. The CAC is significantly higher for OSA-inulin compared to DDSA-inulin which is 219 

consistent with our previous studies (Kokubun, Ratcliffe and Williams, 2013; 2015; Han, 220 

Ratcliffe and Williams (2015)) and the work of van Kempen et al. (2013a; 2013b; 2014) who 221 

studied the CAC of a series of inulin fatty acid esters with alkyl chain lengths ranging from C8-222 

C16.  223 

  224 

The surface tension of OSA-inulin, DDSA-inulin and Inutec SP1 samples are plotted as a 225 

function of concentration in Figure 2. The surface tension was found to decrease with 226 

increasing concentration and an inflexion was observed at 0.70% +/-0.08%, 0.020% +/-227 

0.0025% and 0.005% +/-0.001% respectively for the OSA-inulin, DDSA-inulin and Inutec SP1 228 

and these values closely correspond to the CAC values reported above obtained by dye 229 

solubilisation.  230 

 231 

 232 
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Figure 2. Surface tension of OSA(1), DDSA(1) -inulins and Inutec SP1 as a function of 234 
concentration.  235 
 236 
 237 
Our studies have shown that the surface tension was 38 mN/m, 42 mN/m and 49 mN/m at the 238 

CAC for the OSA-inulin, DDSA-inulin and Inutec samples respectively. Nestor et al. (2005) 239 

have also determined the surface tension of Inutec SP1 and found that it decreased from ~ 68 240 

to ~45 mN/m with increasing concentration and observed an inflexion at 7x10-7 mol·dm-3 which 241 

is equivalent to 0.00035% assuming an Mw of 5000g/mol. These workers also determined the 242 

CAC by static light scattering and observed an inflexion in the light scattering intensity at a 243 

concentration of 5x10-6 mol·dm-3  (equivalent to 0.0025%) which is in agreement with our 244 

findings. Srinarong et al (2010) also determined the CAC of Inutec SP1 by surface tension 245 

measurements and showed that the surface tension decreased to ~55 mN/m at a 246 

concentration of 0.009% which corresponded to the CAC.  247 

The surface excess, Γ / molm-2 , was calculated from the gradient of the plot of surface tension 248 

as a function of the logarithm of the concentration determined at a concentration just below 249 

the CAC.  250 

 251 

The area/molecule, A, was calculated using equation (1) 252 

 253 

                                                         (1) 254 

 255 

The surface excess and the area per molecule for OSA-, DDSA-inulins and Inutec SP1 are 256 

presented in Table 1.  257 
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 258 

Table 1. The surface excess and the area/molecule for OSA-, DDSA- inulins and Inutec 259 
SP1 260 

 261 
 262 
 263 
 264 
 265 
 266 
 267 

 268 

The value of A from surface tension measurements at the air-water interface was found to be 269 

1.44, 0.74 and 0.87nm2 for OSA-inulin, DDSA-inulin and Inutec SP1 respectively. Stevens et 270 

al. (2001) have reported values of 0.9 nm2 for octyl inulin carbamate at the air-water interface. 271 

The values for A are significantly larger than those reported for simple sugar-based surfactants 272 

based on one or two sugar residues as might be expected due to the higher molar mass of 273 

inulin. Soultani et al. (2003) reported values of 0.05 – 0.2 nm2 for hydrophobically modified 274 

fructose and sucrose surfactants while Garofalakis et al. (2000) reported values of 0.29 – 0.68 275 

nm2 for surfactants based on xylose, galactose, sucrose and lactose. It is evident that A for 276 

the modified inulins will depend on the number of the hydrophobic groups attached to the inulin 277 

molecules and to their location along the chain.  278 

 279 

The interfacial tension at the interface between aqueous solutions of OSA-inulin, DDSA-inulin 280 

or Inutec SP1 and MCT oil are plotted as a function of concentration in Figure 3 and was found  281 

Sample name dγ/dlnc/Nm-1 Γ/molm-2 Γ-1/ m2molecule-1 Γ-1/ nm2molecule-1 
Surface tension 

OSA-inulin -0.0132 1.16 x10-6 1.44x10-18 1.44 
DDSA-inulin -0.0255 2.23x10-6 7.43x10-19 0.74 
Inutec SP1 -0.0108 1.89x10-6 8.78x10-6 0.87 
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Figure 3. Interfacial tension of OSA(1), DDSA(1) -inulins and Inutec SP1 at the oil / water 283 
interface as a function of concentration.  284 
 285 

to decrease as the concentration increased but there was no clear inflexion corresponding to 286 

the CAC values noted above. This is likely to be due to the very heterogeneous nature of the 287 

modified inulin samples. The interfacial tension was found to be 8 mN/m, 16 mN/m and 13 288 

mN/m at the CAC for the OSA-inulin, DDSA-inulin and Inutec SP1 respectively. Stevens et al. 289 

(2001) measured the interfacial tension for octyl inulin carbamate at the IsoparM oil / water 290 

interface and reported an interfacial tension of 6.8mN/m at the CAC.  291 

 292 

Emulsification properties 293 

The zeta potential of droplets for O/W emulsions prepared using OSA- and, DDSA -inulins 294 

and Inutec SP1 are plotted as a function of pH in Figure 4. It is noted that the zeta potential 295 

increased with increasing pH from -4.8 mV at pH 1.9 to -60.8 mV at pH 9.7 for OSA-inulin and 296 

from -2.2 mV at pH 1.8 to -55.5 mV at pH 10.2 for DDSA-inulin.  297 

 298 
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Figure 4. Zeta potential of OSA(1), DDSA(1) -inulins and Inutec SP1 as a function of pH. 300 
 301 

The increase in zeta potential is due to the fact that OSA-, DDSA- inulins have a carboxylic 302 

acid group present in the linkage between the inulin and alkenyl moieties arising from the 303 

alkylene succinic anhydride and this dissociates as the pH increases to form the carboxylate 304 

ion. Inutec SP1 does not contain ionic groups (Nestor et al., 2005) and hence does not show 305 

this trend. The slight increase in the zeta potential observed for Inutec SP1 is likely to be due 306 

the adsorption of hydroxide ions at the O/W interface and/or ionisation of hydroxyl ions of the 307 

inulin and/or MCT oil (Xin et al., 2013; Liu et al., 2006). 308 

 309 

The droplet sizes for emulsions prepared using 2.5% OSA- and DDSA -inulins and Inutec SP1 310 

over time at room temperature and 50 ˚C are presented in Figures 5.  311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 
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        (Ⅰa)                                                             (Ⅰb) 321 

  322 
 323 
       (Ⅱa)                                                             (Ⅱb) 324 

 325 
         (Ⅲa)                                                           (Ⅲb) 326 

 327 
Figure 5. Surface weighted mean (d 3, 2) and volume weighted mean (d 4, 3) diameters of 328 
O/W emulsions using 2.5% OSA (9%)-(Ⅰ), DDSA (12%)-inulin(Ⅱ) and Inutec (Ⅲ) over 329 
21 days (a) at room temperature and (b) 50 ˚C. 330 
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 331 

The DDSA - inulin sample was found to have the greatest emulsification capacity producing 332 

droplets with a smaller size compared to OSA-inulin and Inutec SP1 stabilised emulsions. The 333 

surface weighted mean (d 3, 2) and the volume weighted mean (d 4, 3) diameters for all samples 334 

remained relatively constant over 21 days at room temperature and 50 ˚C. This is consistent 335 

with the work of Tadros et al. (2004) who prepared 50/50 (v/v) Isopar/water emulsions 336 

containing 2% Inutec SP1 (w/v). They demonstrated that emulsion droplets were stable and 337 

there was no oil separation over a one year period. It is assumed that the hydrophobic chains 338 

covalently attached to the modified inulins facilitate the adsorption of the molecules onto the 339 

surface of the oil droplets and that the carbohydrate residues protrude into the aqueous phase. 340 

According to Gochev et al.(2011) and Khristov et al. (2010) the inulin molecules form loops at 341 

the interface and that the size of the loops will depend on the number of alkyl chains attached. 342 

It is evident for Inutec SP1 that droplet aggregation is prevented through steric repulsive forces 343 

arising from the interaction of the carbohydrate moieties (Nestor et al., 2005; Stevens et al., 344 

2001).  For the OSA- and DDSA -inulin samples, which have a significantly shorter inulin chain 345 

compared to Inutec, stabilisation will be achieved by electrostatic repulsive forces due to the 346 

presence of the carboxylate ions in the head-group (Kokubun, Ratcliffe & Williams (2015)). 347 

This is supported by the zeta potential measurements reported above which show that the 348 

droplets acquire a significant negative charge as the pH is increased.  349 

 350 

Encapsulation 351 

OSA-, DDSA- inulin and Inutec SP1 solid dispersions were formed by the solvent evaporation 352 

method and their ability to disperse in water and in simulated gastric fluid was determined by 353 

measuring the absorbance of the solution as a function of time. The results are reported in 354 

Figures 6a and 6b. The absorbance of the filtered solutions for the DDSA(2) sample was found 355 

to increase to a maximum value of 0.1 after ~30 minutes in water but increased to significantly 356 

higher values in the gastric fluid. The increase in absorbance is evidence of the presence of 357 

micellar aggregates in which the beta carotene is dissolved in the hydrophobic core. Only very 358 

small increases in absorbance were observed for Inutec SP1 and the other less substituted 359 

OSA-, DDSA- inulin samples.    360 

 361 

  362 

 363 

 364 

 365 

 366 

 367 
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 369 
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 371 
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 373 
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 376 
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 385 
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 387 
 388 
 389 
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 392 

 393 
Figure 6 Absorbance of dispersions of beta carotene and OSA(2) [triangles], DDSA(2)- 394 
inulin [squares] and Inutec SP1 [circles] as a function of time dispersed in (a) water (b) 395 
simulated gastric fluid.   396 
 397 
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This study has shown that OSA-, DDSA- inulin and Inutec SP1 form micellar aggregates in 401 

solution above a critical concentration which are able to dissolve hydrophobic compounds. In 402 

addition, they are effective at reducing the interfacial tension at the air-water and oil-water 403 

interface and can stabilise O/W emulsions. The DDSA(2) sample with a higher degree of 404 

modification proved more effective than the OSA-inulin and Inutec SP1 to encapsulate and 405 

release beta carotene when the solid dispersion was dispersed in water and simulated gastric 406 

fluid. These materials have considerable potential for application in the encapsulation of active 407 

compounds, such as drugs, vitamins, antimicrobials and aromas for use in, for example,  408 

pharmaceutical, neutraceutical, personal care and cosmetic products.   409 

 410 

 411 
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