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Abstract 

 

The experimental data presented in this paper reveals that even if the growth of long cracks in 

two materials, with different microstructures, have different 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾  curves the 

corresponding small crack curves can be similar.  We also see that long cracks in a large 

range of steels  with different microstructures, chemical compositions, and yield stresses can 

have similar crack growth rates.  The materials science community is challenged to explain 

these observations. The experimental data also suggests that the threshold term ∆𝐾thr in the 

Hartman-Schijve variant of the NASGRO crack growth equation appears to have the 

potential to quantify the way in which small cracks interact with the local microstructure.  In 

this context it is also noted that the variability in the life of operational aircraft is controlled 

by the probability distribution associated with the size and nature of the material 

discontinuities in the airframe rather than the probability distribution associated with the 

scatter in the growth of small cracks with a fixed initial size. 

 

Keywords: aircraft sustainment; lead cracks; micro-structure; chemical composition; 

small cracks 
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1. INTRODUCTION 

 

Classical metallurgical engineering literature is laden with the science and technology of 

microstructural design of alloys and metals to enhance their strength and to achieve effective 

resistance to growth of an existing crack. Metallurgical engineers have been improving the 

strength of various engineering alloys by thermo-mechanical treatments to bring about the 

required changes in microstructures, such as by the refinement of grain size, by mechanical 

working for developing strained crystal structure or by developing suitable precipitates in the 

alloy microstructure. The classical metallurgy text book examples showing the profound role 

of microstructure in strengthening include: martensitic microstructure of steels that have 

extremely high hardness; precipitation hardening of aluminium through alloying with copper 

that caused sufficient specific strengthening and enabled the first ever flight by Wright 

brothers in early 1900s; and anisotropy of microstructure of an extruded aluminium alloy that 

causes considerable differences in strength along the extrusion and perpendicular directions. 

The very title of an article whether microstructure plays a role in crack growth may sound 

absurd to a metallurgical researcher or engineer: whilst the role of microstructure in the 

growth of long cracks is clearly undeniable it is shown [1] that 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾  curves can 

provide a pragmatic and reliable method of assessment.  In particular, [1] revealed that the 

𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 data associated with the growth of long cracks in five different bridge 

steels, lay on a single “master curve”. These steels had a range of different chemical 

compositions and yield stresses that varied from between approximately 250 MPa up to 

approximately 800 MPa Furthermore, this bridge steel 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾  “master curve” 

coincided with that seen for the high strength aerospace steel 4340 which has a yield of 

approximately 1500 MPa, see Fig. 1. The bridges steels shown in Fig. 1 are: 

 

i) A36, where the crack growth data was taken from [2, 3], which is common in older 

bridges. 

ii) HPS 485W a high performance bridge steel used in North American bridges [4]. 

iii) HPS 350WT a high performance bridge steel with an improved low temperature 

performance [4]. 

iv) A588-80A [4], a weathering steel that is widely used in bridges. This steel has little R 

ratio dependency, see [5]. 

v) The Chinese bridge steel 14MnNbq [6]. 
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The 4340 steel crack growth 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 data is from [7]. 

 

 

 

Fig. 1. Representation of the growth of long cracks in a range of bridge steels, from [1]. 

 

Ali et al [1] also revealed that the 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves for the five cast steels 0030, 

0050A, 8630 and a C-Mn and a Mn-Mo steel were also very similar to the master curve, 

which is labelled B-D, shown in Fig. 1 for the bridge steels and the aerospace steel 4340, see 

Fig. 2.  Details on the heat treatments and chemical composition of these different steels are 

given in [8].  The yield stress associated with these five cast steels varied from approximately 

300 MPa for 0300 steel to approximately 1000 MPa for the 8630 steel. 
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Fig. 2. Comparison of the bridge steel curve BCD with the cast steel  

crack growth data taken from [1]. 

 

It was thus shown that the crack growth in these eleven different steels was largely 

independent1 of the microstructure, chemical composition and the yield stress. As such the 

primary question addressed in this article is the extent to which it is helpful to consider the 

role of microstructure in the assessment of fatigue crack growth in operational aircraft where 

the growth of small “lead” cracks is of prime interest.  Here it should be noted that in this 

paper we have essentially adopted the small crack definition contained in the fatigue test 

standard ASTM E647-13a “Standard Test Method for Measurement of Fatigue Crack Growth 

Rates” [10], albeit limited to a maximum crack length of approximately 0.04 mm [11], see 

Appendix. 

 

                                                           
1 That said it should be noted that small discrepancies in the crack growth rate curve could 

lead to non-negligible differences in the fatigue lifetimes. 
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2. THE ROLE OF CHEMICAL COMPOSITION, HARDNESS AND YIELD 

STRESS ON CRACK GROWTH IN OPERATIONAL AIRCRAFT 

 

 

In this section, which primarily focuses on the problem of aircraft sustainment, we will 

examine two hypotheses: 

i) Hypothesis 1: “Fatigue crack growth is strongly dependent on the micro-structure of 

a material.” 

ii) Hypothesis 2: “Fatigue crack growth is strongly dependent on the chemical 

composition and yield stress” 

 

As a result of this study we reveal that small cracks in materials with different 

microstructures can have similar crack growth rates and often exhibit a 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 

curve that resembles a simple Paris crack growth equation. We show that both long and small 

cracks in materials with different chemical compositions or yield stresses can have similar 

crack growth rates.   

 

In this context we show that the effect of the different microstructures on crack growth and 

the way in which these different microstructures effect the growth of both long and small 

cracks can often be captured by allowing for changes in the threshold term (∆𝐾thr) in the 

Hartman-Schijve variant of the NASGRO crack growth equation [12]. In this context we will 

show that ∆𝐾thr can be thought of as a means of (approximately) quantifying the way in 

which small cracks interact with the local microstructure. 

 

 

2.1 Crack growth in operational structures 

 

Whilst changes in microstructure can have a significant effect both on fracture toughness [13] 

and on the growth of long cracks tested in accordance with the ASTM fatigue test standard 

E647-13a [10] it has long been known [14-16] that the 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves associated 

with aluminium alloys are remarkably similar. The precise words used in [16] were:  

 

“In examining fatigue crack growth rate curves for many materials exhibiting very large 

differences in microstructure, the striking feature is the similarities between these curves, 

not the differences.” 
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It is also known [1] that the 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves associated with a wide range of bridge 

steels and the high strength aerospace steels D6ac and 4340 essentially coincide, i.e. that the 

𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves are not overly affected by the chemical composition or the yield 

stress. Indeed, when discussing the growth of fatigue cracks in bridge steels the US 

Department of Transportation Federal Highway Administrations report [17] states: 

 

“The insignificance of steel type and weld metal on fatigue resistance greatly simplifies 

the development of fatigue design rules since it eliminates the need to generate data for 

every type of structural steel.” 

 

Regardless of whether we are talking about aircraft [12, 18-23] , or steel bridges [24, 25], it is 

now thought that the majority of the life is consumed in what is commonly referred to as 

Regions I and II of the Paris crack growth curve where the effect of toughness on crack 

growth is relatively small. Furthermore, the operational life is governed by the growth of 

(small) lead cracks, i.e. the fastest cracks in the structure which invariably start to grow 

shortly after the aircraft/bridge is introduced into service [12, 18-23, 26-30]. In this context it 

is now believed [12, 26-28] that, for a given (small) crack size, the variability in fatigue life 

associated with small cracks is often essentially controlled by the variability in the small 

crack growth rate. As a result this section of the paper will focus on the growth of small 

cracks. As explained in the Appendix in this paper we will adopt the Ritchie, Yu, Blom and 

Holm [11] definition of small, viz: less than 400 microns, rather than those contained in 

either the USAF Damage Tolerant Design Handbook [31] which suggests a significantly 

larger upper limit or the ASTM E647-13a definition which is less quantitative. 

 

Ritchie, Yu, Blom and Holm [11] were also one of the first to reveal that for cracks that grow 

from small naturally occurring material discontinuities: 

 

i) The fatigue threshold is very low. The precise wording used in [11] is “microstructurally 

small cracks propagate, without evidence of a threshold”. This observation is consistent with 

statements made in Appendix X3 of the fatigue test standard E647-13a, which questions the 

existence of a fatigue threshold for small cracks. 

 

ii) Ritchie, Yu, Blom and Holm [11] also stated: “Once crack closure has been subtracted 

out, somewhat better correspondence is achieved between long and small crack results”. 
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Jones  [12] subsequently explained that by this [11] meant that the 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 

relationship associated with the growth of cracks from small naturally occurring defects can 

be obtained from long crack data by removing the effect of crack closure and other crack tip 

shielding effects. 

 

It has long been known [32-34] that the fractal box dimension D, which is a measure of 

surface roughness associated with small cracks, is relatively insensitive to microstructure. 

This suggests that the 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾  relationship for such small cracks may also be 

relatively independent of the microstructure. The role of microstructure on the 𝑑𝑎 𝑑𝑁⁄  versus 

∆𝐾 relationship associated with such small cracks is discussed in [9, 26, 37, 38].  This led [9] 

to conclude: 

 

“The changes in ' morphology achieved here did not affect the rate of short crack 

growth in Astroloy and, apparently, for equal grain sizes, the volume fraction of ', 

controlled by either heat treatment or alloy chemistry, also appears to have little 

influence.”  

 

“This observation, coupled with the small effect of grain size on short crack growth rates, 

seems to indicate a insensitivity to microstructure in this regime, making it hard to 

produce significant changes in fatigue resistance of nickel base superalloys.” 

 

Related statements on the insensitivity of the crack growth rate associated with small cracks 

to microstructure are contained in [26, 37, 38]. These independent statements appear to be 

consistent with the fact that for small cracks the fractal box dimension is essentially 

microstructure invariant.  

 

These various examples reveal that the statement: 

 

“Fatigue crack growth is strongly dependent on the micro-structure of a material” 

is false.  

 

Here it should be stressed that this does not mean that there will not be instances when the 

growth of lead cracks in an operational structure is dependent on the micro-structure, just that 

this dependency can’t be assumed. Furthermore, as noted in [26], for with a fixed initial 
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(small) crack size the scatter in the growth would appear to be as a result of the interaction of 

the crack with the local microstructure. In this context [12, 23, 27, 28, 39-43] have shown 

that this scatter can be captured by allowing for variability in the threshold term term ∆𝐾thr in 

the Hartman-Schijve variant of the NASGRO crack growth equation. It should also be noted 

that for operational aircraft the operational life is determined by the growth of (small) lead 

cracks [18] which essentially grow from day one [12,  19- 23,  28] and for which, as 

explained in ASTM 647-13a and [12, 26, 28] threshold effects are very small. 

 

2.2 Chemical composition, yield stress and hardness 

 

Let us next address the role of chemical composition and yield stress on crack growth.  In this 

context, Figures 1 and 2 reveal that for the eleven different steels considered crack growth 

was largely independent of the chemical composition and the yield stress for all of these 

various steels. These various examples reveal that the statement: “Fatigue crack growth is 

strongly dependent on the chemical composition and the yield stress” is false. Here it should 

again be stressed that this does not mean that there will not be instances when the growth of 

lead cracks in an operational structure is dependent on chemical composition and the yield 

stress, just that this dependency can’t be assumed. 

 

2.3 Representation of crack growth in operational structures 

 

The realisation that these two hypotheses are disproved begs the question of how to model or 

represent crack growth in an operational structure?  The form of the 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 

relationship for small lead cracks can often be approximated by the curve ABD in Fig. 3, see 

[38, 44]. This form of the small crack representation is discussed in detail in [1, 12, 23, 27, 28] 

and similar curves can be seen in [26, 44, 45]. This curve contrasts with the 𝑑𝑎 𝑑𝑁⁄  versus 

∆𝐾 curve as determined via test procedures outlined in the main body of  E647-13a results, 

which can generally be represented by a curve of the form CBD shown in Fig. 3.   
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Fig. 3. Comparison of the small (lead) crack 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves and  

that determined in accordance with ASTM E647-13a, from [23]. 

 

The need to work with the small crack 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curve rather than the corresponding 

ASTM long crack curve was one of the primary conclusions reached by USAF-McDonnell 

Douglas (now Boeing), following their study into sustainment issues associated with cracking 

in F-15 aircraft [44].  This is discussed in detail in the “state of the art” review [12].  

References [12, 23, 27, 28, 39-43]  also reveal that the growth of such small cracks, including 

the way in which multiple collocated small cracks grow and interact [46], can be captured 

using the Hartman-Schijve variant of the NASGRO equation: 

 

𝑑𝑎

𝑑𝑁
= 𝐷  

[
 
 
 
∆𝐾 − ∆𝐾thr

√1 − 𝐾max
𝐴 ]

 
 
 
𝑝

 (1) 

 

where 𝑎 is the crack length/depth, 𝑁 is the number of cycles, 𝐷 is a material constant, 𝑝 ≈ 2 

is another constant, 𝐴 is the cyclic fracture toughness, 𝐾 is the stress intensity factor, ∆𝐾 =

 (𝐾max − 𝐾min) is the range of the stress intensity factor seen in the cycle, and ∆𝐾thr is the 

“effective fatigue threshold”. The terms ∆𝐾thr and 𝐴 are best interpreted as parameters chosen 

so as to fit the measured 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 data [12]. This approach has also been shown to 

hold for the growth of small cracks in bridge steels [12] and a link to fractal based crack 

growth equations is discussed in [34, 47]. 

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

0.1 1 10 100

d
a

/d
N

 (
m

/c
y
c
le

)

DK MPa m

Small crack data B

A C

D



10 
 

 

The origin of equation (1) can be traced back to Hartman-Schijve [48]. In the derivations of 

similar equations, the difference lies in the form of the denominator [49, 50]. Variants of 

equation (1) that relate 𝑑𝑎 𝑑𝑁⁄  to (∆𝐾 − ∆𝐾thr)  have been also developed and validated for 

the growth of both long and small cracks, by McEvily et al [51-53], as well as in [54]. 

 

As mentioned in Section 2.1 the examples discussed in this study support the conclusions 

arising from [9, 26, 37, 38] that micro-structural effects on the growth of small cracks can 

often be relatively small; nevertheless, differences in microstructures can result in quite 

different long crack behaviour.  As such it would appear questionable to use ASTM tests to 

rank the effect of different micro-structures on operational performance; however we will go 

on to show how the Hartman-Schijve equation can be used to allow for microstructure 

threshold effects on the growth of both long and small cracks.  

 

 

2.4 On the relationship between small and long cracks 

 

Before further addressing the effect of microstructure on the growth of both long and small 

cracks it is first necessary to discuss the relationship between the growth of long and small 

cracks. It has been shown that the Hartman-Schijve equation can often be used to accurately 

compute the growth of both small and large cracks, under both constant amplitude and 

variable amplitude load spectra. This has been done for both aerospace aluminium alloys and 

aerospace steels subject to operational flight spectra as well as for rail bridge steels [1, 12, 23, 

25, 27-29, 39-42, 55, 56]. Examples include: (i) the growth of small cracks (until failure) in 

the 1969 F-111 D6ac wing test [12, 41], which was tested under a representative flight load 

spectra; (ii) the growth of both small and long cracks in 7075-T6 under measured maritime 

patrol aircraft (P3C Orion) flight load spectra [23, 27, 39, 41, 55]; (iii) small cracks (until 

failure) in 7050-T7451, tested under a civil aircraft flight load spectrum (MiniTWIST) [27, 

42]; (iv) small cracks (until failure) in 7050-T7451 tested under a measured F/A-18 flight 

load spectrum [12, 23, 40]. Here it should be noted that the maritime patrol aircraft flight load 

spectra are fundamentally different to that associated with combat aircraft.  It was developed 

from the fleet operational usage data collected between 1991 and 1997. One block consists of 

1,264,912 cycles, corresponding to 15,000 flight hours which represents the nominal design 

life of the aircraft.  In contrast the block loads used in the F/A-18 spectra correspond to 

approximately 250 flight hours.  These various studies show how the 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 
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relationship associated with long crack growth can be used to determine that relationship for 

(lead) small cracks and how this (small crack)  𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curve can then be used to 

accurately compute the growth of small cracks under a range of different operational flight 

load spectra. This involves first determining the small crack  𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curve from 

the Hartman-Schijve representation of the long crack  𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾  curve and then 

setting the Hartman-Schijve equation threshold term, ∆𝐾thr, to a small or zero value, typically 

in the range 0.0 to 0.5 MPa √m [12, 28].  

 

At this stage it should be noted [12, 23] that the small crack 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 relationship 

associated with lead cracks exhibits little if any 𝑅 ratio dependency.  This behaviour can be 

seen in Fig. 4, which presents the 7050-T7451 small crack curves for 𝑅 =

−0.3, 0.2, 0.5 and 0.7 .  The suitability of the Hartman-Schijve to represent 𝑅  ratio 

independent small crack growth to failure is shown in [41] and in Fig. 5, for the case of a full 

scale F/A-18 centre barrel test under a representative flight load.   

 

 
 

Fig. 4. Small crack growth curves for 7050-T7451 for a range of 𝑅 ratios, from [56]. 



12 
 

 
Fig. 5. Measured and predicted crack growth histories in an F/A-18 centre barrel test, from 

[40]. 

 

Other examples of this approach are given in [27, 39-42]. In these studies, the long crack 

𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾  representation for 7075-T6 was first determined using the NASGRO 

materials database. It was then shown that when using this representation the predicted and 

measured long crack growth histories, under two different flight load spectra, were in 

excellent agreement [55].  This representation was then used to predict the growth of small 

cracks in a specimen with a complex geometry [27].  This geometry was developed as part of 

the P3C Orion service life assessment program (SLAP) and consisted of a large panel with 

three intersecting holes, and became known as the “rabbit ear” specimen [27]. It was then 

shown [39, 43] that this formulation accurately predicted the growth to failure of small cracks 

from a fastener hole in a specimen cut from a P3C Orion wing plank, where the fastener hole 

contained an inter-granular cracking, and had two co-located satellite holes. These specimens 

were tested under a representative P3C flight load spectra and the agreement between the 

measured and computed crack growth histories is highlighted in [39].  

 

These various examples demonstrate that the small crack 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾  equation 

determined by the procedure outlined above can be used to reasonably accurately compute 

crack growth from small cracks (until failure) in a range of geometries tested a range of 
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operational load spectra, as well as under constant amplitude loading. We also see that this 

approach can be used to accurately compute the growth of small cracks in bridge steels [1]. 

 

2.5 Computing the growth of small cracks with different microstructures  

 

To illustrate that the growth of small cracks with different microstructures can be computed 

as outlined above let us consider the 𝑅 = 0.1 small and long crack growth curves for the 

engine material Astroloy [9]. The small and long crack  𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves for both 

fine and coarse grained materials are shown in Fig. 6, where we see that the long crack fine 

and coarse grained differ. Figure 6 also presents the associated small and long crack curves 

computed using the Hartman-Schijve variant of the NASGRO equation: 

 

𝑑𝑎

𝑑𝑁
= 1.2 × 10−11   

(∆𝐾 − ∆𝐾thr)
2

1 − 𝐾max
𝐴

 (4) 

 

A value of 𝐴 = 70 MPa √m was used in this analysis.  This value was taken from the 

NASGRO materials database.  As per the fatigue test standard ASTM E647-13a and [1, 12, 

28] we again set the threshold term ∆𝐾thr = 0  for the small crack tests.  The constant 𝐷 =

1.2 × 10−11 in equation (4) was then obtained by fitting equation (4) to the small crack data.  

Equation (4) was then used to predict the long crack data.   

 

As indicated in Section 2.4, a larger value of is needed to represent long crack curves.  To 

this end a value of ∆𝐾thr = 4.6 MPa √m was used for the fine grain (FG) long crack data.  A 

value of ∆Kthr = 10.45  MPa √m was used for the long crack coarse grain data.  Fig. 6 shows 

the good agreement between the various measured and computed 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves.  

Here we again see that, allowing for experimental error, the different micro-structures have 

little effect on the crack growth curves the effects. We also see that the effect of the different 

micro-structures on the 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves can be captured by allowing for the way in 

which the fatigue threshold evolves with crack length. As previously, the values of the long 

crack threshold term ∆Kthr were chosen based on the data at a crack growth rate of 𝑑𝑎 𝑑𝑁⁄ =

 10−10 m/cycle. An interesting feature about Fig. 6 is that, allowing for experimental error, 

for the small crack tests, the 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves for the coarse grain and the fine grain 

microstructures are essentially identical. This observation led [9] to the conclusion that the 

crack growth rate associated with these small cracks was not sensitive to the micro-structure. 
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Fig. 6. Measured and computed long and short crack curves for Astoloy, data from [9] 

 

 

Next consider the 𝑅 = 0.1 small and long crack growth for the engine material Ti-17 [58].  

The small crack 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curve presented in [58] is shown in Fig. 7. This curve can 

also be represented using the Hartman-Schijve variant of the NASGRO equation: 

 

da

dN
= 4.0 × 10−10   

(∆K − ∆Kthr)
2

1 − 𝐾max
𝐴

 (5) 

 

with ∆𝐾thr = 0.5  MPa √m, and the toughness value, 𝐴 = 75 MPa √m, is taken from [57].  

 

The computed, using equation (5),  long crack R = 0.1 curve, using ∆𝐾thr = 4.7 MPa √m, and 

the long crack 𝑅 = 0.7 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curve using with ∆𝐾thr = 1.0 MPa √m, are shown 

in Fig. 7.  Here, we again see good agreement between the various measured and computed 

𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves.  In this instance, since there was no data associated with a crack 

growth rate of 𝑑𝑎 𝑑𝑁⁄ =  10−10 m/cycle, the value of the threshold term ∆𝐾thr was chosen so 
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as to ensure that the measured and computed curves coincided at a crack growth rate of 

𝑑𝑎 𝑑𝑁⁄ =  3.5 × 10−10 m/cycle, which was the lowest crack growth rate in the data set. 

 

 
Fig. 7. Measured and computed long and small crack curves for Ti17, data from [57, 58]. 

 

Let us next examine the paper by Lados, Apelian, Paris and Donald [13], which addressed the 

effect of micro-structure and chemical composition on the growth of both long and short 

cracks in three Al-Si-Mg alloys, where the cracks were grown from an artificial 0.5 mm deep 

triangular starter notch, and hence are termed short rather than small cracks.  In these alloys, 

the Si content was 1, 7, and 13%, and the Mg was at a fixed level of 0.45%. Although 

changes in the Si content gave rise to significant changes in the fracture toughness, no 

specific values for the associated toughness’s were given.  The effect of the different Si 

content, i.e. different compositions, on the short crack 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves is shown in 

Fig. 8. 
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Fig. 8. Effect of different Si content, data from [13]. 

 

 

Let us next investigate whether this short crack behaviour can be represented by the Hartman-

Schijve variant of the NASGRO equation.  Recalling the form of the Hartman-Schijve 

equation, see equation (1), the constants in the small crack representation for these various 

Al–Si–Mg alloys can be determined by plotting 
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Using the values given in Table 1 and taking the values of the fracture toughness from Fig. 2b 

in [13] it appears that, allowing for experimental error, the short crack growth curves in these 

three different microstructures can all be approximated by a single equation, i.e. equation (1), 

with slightly different values for the threshold term ∆𝐾thr, see Fig. 9.  The values of the 

constants used in this representation are given in Table 1.  Here it should be noted that these 
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have larger values of ∆𝐾thr than cracks that arise naturally in operational aircraft and have 

initial lengths of 0.05 mm or less. 

 

Table 1. Short crack ∆𝐾thr values for different Si content 

 

Si content (%) 𝐴 (MPa √m) ∆𝐾thr (MPa √m) 𝑝 𝐷 

1 18 1.51 2 7.6 × 10-10 

7 30 2.55 2 7.6 × 10-10 

13 35 2.85 2 7.6 × 10-10 

 

 
Fig. 9. Hartman-Schijve representation, data from [13]. 

 

Having thus determined the constants in the Hartman-Schijve representation for these three 

different compositions let us next examine whether, as found in the previous studies, the 

various long crack 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves can be predicted by changing the value of the 

threshold term, ∆𝐾thr. To this end, let us first consider the 𝐾max = 11 MPa √m tests presented 
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in [13].  The resulting 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves are given in Fig. 10, along with the curves 

computed using equation (1) with the values of 𝐴, 𝐷and 𝑝, as given in Table 1, and with the 

values of ∆𝐾thr given in Table 2.  Fig. 10 shows that, allowing for experimental error, the 

measured and computed curves are in reasonably good agreement.  As previously, the values 

of the long crack threshold values ∆𝐾thr were chosen so as to ensure that the measured and 

computed curves essentially coincided at a crack growth rate of 𝑑𝑎 𝑑𝑁⁄ = 10−10  m/cycle. 

 

Table 2. Long crack ∆𝐾thr values for 𝐾max tests on different Si contents 

 

Si content (%) ∆𝐾thr  (MPa √m) 

1 1.20 

7 1.18 

13 1.28 

 

 

 
Fig. 10. Measured and computed curves for the 𝐾max tests, data from [13]. 

 

 

Continuing this study, the measured resulting 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 long crack curves for the 

𝑅 = 0.1 tests are given in Fig. 11, along with the curves computed using equation (1), again 

with the values of 𝐴, 𝐷 and 𝑝 as given in Table 1, and this time with the values of ∆𝐾thr given 

in Table 3.  In this instance, since the 7% and 13% curves are so similar, only the computed 

13% curve has been plotted. Fig. 11 reveals that, as is the case for the short crack and the 
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𝐾max tests, allowing for experimental error, the measured and computed long curves are in 

reasonably good agreement. That is to say that equation (1) is reasonably able to represent the 

effect of changes in the micro-structure on the growth of both short (cracks that were grown 

form a   0.5 mm deep artificial notch) and long cracks.  

 

Table 3. Long crack values 𝐾thr for 𝑅 = 0.1 tests on specimens with  

different Si contents 

Si content (%) ∆𝐾thr (MPa √m) 

1 3.87 

7 4.40 

13 4.75 

 

 
Fig. 11. Measured and computed long crack growth curves for the 𝑅 = 0.1 tests, data from 

[13]. 

 

 

This example, when taken together with the results presented above, suggests that that the 

effect of the different micro-structures and different compositions on crack growth can be 

captured reasonably well by allowing for changes in the threshold term.  Equation (1) thus 

suggests that the effect of microstructure on crack growth will generally be less significant 

for small lead cracks for which the fatigue threshold is often very small, see Appendix X3 of 

the ASTM fatigue test standard E647-13a and [12, 26, 28]. An example of this phenomenon 
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is seen in Fig. 10, where it is shown that although the fine grain (FG) and the coarse grain 

(CG) Astroloy microstructures had quite different long crack 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves the 

corresponding small crack curves were very similar.   

 

This conclusion is also consistent with the findings presented in [38] where it is stated: 

 

“… although up to 4 orders of magnitude faster than long cracks, small crack growth 

rates in 2090, 209l and 8091 remain comparable with behaviour in traditional alloys, 

such as 2124-T351 and 7150-T751.” 

 

Venkatraman and Ritchie [38] also suggested that the origin of micro-structural effects on 

fatigue crack propagation behaviour in aluminium alloys results primarily from shielding 

mechanisms; however, since as explained in ASTM E647-13a and [12, 59] for small cracks 

crack tip shielding is greatly reduced, we see that this conclusion is similar to that enunciated 

above, that the effect of micro-structure on the growth of lead cracks should generally be less 

significant for small cracks. 

 

3. ATOMISTIC MODELS 

 

Having seen that the growth of small lead cracks often conforms to a Paris like crack growth 

equation let us next examine the results obtained via atomistic simulation of crack growth. In 

this context it should be noted that the review paper by Horstemeyer et al [60] concluded that 

atomistic modelling often results in a Paris like crack growth curve. With this in mind Fig. 12 

presents the atomistic model 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾  curves and the corresponding long crack 

curves for copper with two grain sizes, viz: 12 and 120 microns, presented in [61] together 

with plots of the intrinsic crack growth curve 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾eff = (∆𝐾 − ∆𝐾thr) 

obtained, as per section 2, from the NASGRO representation of the long crack curve with the 

threshold term ∆𝐾thr set to 0.0. (Here it should be noted that [61] referred to the 120 microns 

𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾eff curve as long 120 microns and as such this notation is used in Fig. 12.) 

In this instance since the value A was unknown and since the ∆𝐾 data was limited to values 

beneath 15 MPa √m the term on the denominator has been neglected, i.e. as a first 

approximation we have ignored the term  √1 − 𝐾max 𝐴⁄ .  Here we see that, allowing for 

numerical error, the “nano scale” curves determined via the atomistic analysis exhibit a Paris 
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like relationship and that, to a first approximation, the atomistic curves and the curves 

computed using equation (1) with the threshold set to a small value are in reasonably good 

agreement. 

 

Paris like curves resulting from the atomistic modelling of the crack growth process are also 

given in [62, 63].  Unfortunately, many of these studies do not contain the associated long 

crack experimental data needed to perform the analysis/assessment shown in Fig. 13.  A 

feature of Fig. 12 is that it resembles the shape of the 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves shown in 

Figs. 3 and 11, and that the crack growth curves associated with the nano scale (atomistic) 

analysis resemble the small crack curves shown in Fig. 4.   
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Fig. 12. The atomistic and long crack growth data in [60] replotted. 

 

The paper by Chowdhury, Sehitoglu, Rateick and Maier of [64] is interesting since it 

addresses the topic of the role of nanoscale coherent twin boundaries on fatigue crack growth.  
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The atomistic simulations led [64] to paper conclude that fatigue crack growth is governed by 

the dislocation glide resistance and the irreversibility of crack tip displacement, both of which 

are influenced by the presence of nanoscale coherent twin boundaries. Simulation results 

were presented [64] for a Ni-Co alloy with both different twin thicknesses (t) and different 

twin spacings (d). The simulation results obtained for d = 8 nm are shown in Fig. 13 where 

we have plotted the 𝑑𝑎 𝑑𝑁⁄  against (∆𝐾 − ∆𝐾thr) √1 − 𝐾max 𝐴⁄⁄  using the value 𝐴 = 180 

MPa √m which is a typical value for this alloy.  In this case we see that different twin 

thicknesses result in the NASGRO like equation (1) with the different twin thicknesses (t) 

simulations having similar value for 𝑝.  The values of the threshold term ∆𝐾thr used in Fig. 13 

are given in Table 4. 

 

Table 4. Threshold values for 𝑑 = 80 nm 

𝑡 (nm) ∆𝐾thr (MPa √m) 

0 2.6 

10 3.4 

5 4.4 

2 5.5 

 

The corresponding data, presented in [64], for the case of a fixed 𝑡 (= 80 nm) and varying 

twin spacings (𝑑) is shown in Fig. 13.  Here we again see that the simulated crack growth 

curves conform to equation (1) albeit with different thresholds. The values of the threshold 

term ∆𝐾thr used in Fig. 14 are given in Table 5. 

 

 

Table 5. Threshold values for 𝑡 = 80  nm 

𝑑 (nm) ∆𝐾thr(MPa √m) 

No twin 2.5 

10 4.3 

5 5.7 

2 7.3 
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Fig. 13. The atomistic crack growth data presented in [64] for 𝑑 = 80 nm replotted 
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Fig. 14. The atomistic crack growth data presented in [64] for 𝑡 = 80 nm replotted. 

 

 

These various studies support the finding given in [60] that atomistic modelling of the fatigue 

crack growth process often yields a simple Paris like behaviour. We also see that, for the 

cases considered, atomistic modelling yields 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾  curves that are consistent 

with the Hartman-Schijve variant of the NASGRO crack growth equation discussed in 

Section 2.  
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4. COMPARING THE GROWTH OF SMALL CRACKS IN A RANGE OF 

MATERIALS WITH DIFFERENT MICROSTRUCTURES 

 

As previously discussed small naturally occurring cracks generally exhibit little 𝑅  ratio 

dependence, see Fig. 4, and the associated small crack 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curve can often be 

approximated by a simple “Paris like” crack growth equation.  We have also seen that 

different microstructures need not significantly affect small crack growth. To further illustrate 

this, Fig. 15 plots the small crack growth 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves for: i) A 350 MPa grade 

locomotive rail steel [1], which was tested at a range of 𝑅 ratios; ii) The aerospace quality 

titanium alloys Ti-17 [58] and Ti-6246 (Ti–6Al–2Sn–4Zr–6Mo) [65], which were tested at a 

range of 𝑅 ratios. (In [58], the Ti-17 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves were 𝑅 ratio independent, so 

only a single curve is shown). A description of the specimen identifiers given in Fig. 15 for 

the locomotive steel tests is given in Table 6.   

 

Table 6: Test envelope, from [1], for small cracks growth in the locomotive steel 

Specimen 

Number 

D 

Width 

(mm) 

Thickness 

(mm) 

Notch 

(mm) 

Area 

(mm2) 
R 

σmax 

(MPa) 

σmin 

(MPa) 

Δσ 

(MPa) 

σmean 

(MPa) 

L1 50.12 5.16 1.0 253.46 0.14 330.0 46.2 283.8 188.1 

L2 50.15 5.41 1.0 265.90 0.50 330.0 165.0 165.0 247.5 

L3 50.04 5.32 1.0 260.89 0.50 330.0 165.0 165.0 247.5 

L4 49.94 5.38 1.0 263.30 -1.0 240.0 -240.0 240.0 0.0 

L5 50.00 5.64 1.0 276.36 0.14 330.0 46.2 283.8 188.1 

L6 49.95 5.61 1.0 274.61 0.50 330.0 165.0 165.0 247.5 

L7 49.95 5.64 1.0 276.08 0.14 330.0 46.2 283.8 188.1 

L8 49.98 5.66 1.0 277.23 0.14 330.0 46.2 283.8 188.1 

L9 50.11 5.65 1.0 277.47 0.50 330.0 165.0 165.0 247.5 

S11 50.13 5.39 1.0 264.81 0.50 330.0 165.0 165.0 247.5 

S12 50.11 5.64 1.0 276.98 0.14 330.0 46.2 283.8 188.1 

S13 50.05 5.34 1.0 261.93 0.50 330.0 165.0 165.0 247.5 

 

Fig. 15 demonstrates that, despite the large differences in micro-structure, yield stress and 

chemical composition, the 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curves associated with this locomotive steel 

and the two aerospace titaniums appear, to within experimental error, to essentially follow the 

same curve.  This represents a further confirmation of the statement presented earlier in this 

paper.  When taken in conjunction with Figs. 4, 7, 12-14, Fig. 15 illustrates that: 

 

a) Small crack growth is largely unaffected by the 𝑅 ratio, and that 
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b) The small crack 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾 curve can be often be approximated by a simple 

Paris like crack growth equation [1, 12, 23, 26, 54, 58, 65, 66]. 

 

 
Fig. 15. Experimental small 𝑑𝑎 𝑑𝑁⁄  vs ∆𝐾 curves for a 350 MPa grade locomotive  

rail steel [1] and the aerospace quality titanium alloys Ti-6246 [65] and Ti-17 [58]. 
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5. A NON DIMENSIONAL REPRESENTATION OF CRACK GROWTH IN 

OPERATIONAL AIRCRAFT 

 

 

We have seen that in the context of aircraft sustainment, the need to be able to represent the 

growth of cracks from small naturally occurring material discontinuities and small 

manufacturing defects accurately is particularly important. It is now known, that for cracks 

that have grown from small naturally occurring material discontinuities, the 𝑑𝑎 𝑑𝑁⁄  versus 

∆𝐾  is not unique [27], and that the variability in the crack growth curves can often be 

captured approximately by allowing for changes in the threshold term ∆Kthr in the Hartman-

Scijve variant of the NASGRO crack growth equation [12, 27, 28]. Interestingly this is also 

true for the variability seen in delamination growth in composites [67, 68], where the terms 

∆𝐾 and 𝐾max   are replaced by ∆√𝐺  and √𝐺max respectively, where 𝐺  is the energy release 

rate.  An advantage of the Hartman-Schijve formulation is that despite the very large scatter 

seen in delamination growth, it enables conservative estimates to be obtained for 

delamination growth, as well as conservative estimates for the associated delamination 

fatigue threshold [68].  

 

It has long been known that the operational life of an airframe is governed by the growth of 

lead cracks, i.e. the fastest cracks in the structure [12, 18, 21, 26, 28, 101] which invariably 

start to grow shortly after the aircraft is introduced into service.  In this context we have seen 

that these small crack curves are essentially Paris curves [12, 23, 26, 28, 29, 39, 40, 54, 58, 

65, 66, 69]  with an exponent that is often approximately 2, so that to a first approximation 

da dN⁄  becomes proportional to the crack length 𝑎 [12, 19-21, 69] so that the crack length 

history is approximately exponential.  Hence, it would appear that crack growth from small 

sub mm cracks up to failure under a range of different flight load spectra can be reasonably 

accurately computed using the small crack growth equation, i.e. equation (1) with the 

threshold term set to a small value and a value of p that is often approximately 2.  

 

The need to be able to accurately represent the growth of lead cracks in operational aircraft 

led the USAF [21] to develop a risk of failure approach that is based on the fact that crack 

growth in operational aircraft was essentially exponential and as such could be expressed in 

the form: 
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𝑎 = 𝑎0  ×  𝑒𝜔́𝐵 (6) 

 

where 𝑎0  is the size of the initial material discontinuity, 𝜔́  is spectrum and geometry 

dependent, and 𝐵 is the number of flight hours, or the number of load blocks in a full scale 

fatigue test.  This finding has subsequently been independently verified [70, 83].  Equation (6) 

has been shown to follow directly from the form of the Hartman-Schijve crack growth 

equation associated with small naturally occurring cracks [12].  It has subsequently been 

shown [12] that the Hartman-Schijve equation suggests that the crack growth history 

associated with lead cracks that initiate from such small material discontinuities should 

conform approximately to: 

 

𝐵 − 𝐵𝑖

𝐵𝑓 − 𝐵𝑖
= 1 − 

ln (𝑎 𝑎𝑓⁄ )

ln (
𝑎𝑖

𝑎𝑓
⁄ )

 (7) 

 

Here 𝐵𝑖  and 𝐵𝑓 and 𝑎𝑖 and 𝑎𝑓 are the start and end values of the number of the number of 

load blocks (or simulated flight hours) and the crack lengths respectively, see [12, 41]. This 

predicted behaviour has been shown [41] to hold for cracking seen in a range of aircraft under 

a range of operational flight load spectra.  As shown in [12] the Hartman-Schijve equation 

also predicts that equation (7) should hold for centre notch cracks (middle tension) and 

surface cracks in a large panel. This prediction was validated for 

 

a) Crack growth data presented in [71] for growth in a 6.3 mm thick and 610 mm wide 

centre cracked panel tests for 2324-T39, 2024-T351, 7075-T651, 7150-T651, and 

2024-T3 aluminium alloys tested under a range of representative civil aircraft load 

spectra, which [66] termed transport spectra A, B, and C.  This data was obtained as 

part of the Boeing 757 and the 767 materials development program; 

 

b) Crack growth data presented by Northrop-Grumman [72] who studied crack growth in 

a 12.7 mm wide and 7.34 mm thick centre cracked Mil Annealed Ti-6AL-4V panel 

subjected to a fighter load spectrum with a peak remote stress of 710 MPa and a 

similar dimension 2219-T851 panel subject to the same fighter spectrum except that 

the peak stress in the spectrum was 215.8 MPa;  
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c) The results of a NASA study [73] into 198 mm by 50.8 mm centre cracked 

Ti62222STA titanium and Al2024T3 aluminium alloy panels tested under a 

supersonic transport (SST) spectrum; 

 

d) Crack growth data associated with a surface flaw in 7050-T7451 subjected to a 

measured RAAF (Royal Australian Air Force) operational load spectrum [74];  

 

e) Crack growth data associated with a small surface flaw in the 1969 F-111 wing test 

[74, 75]; and 

 

f) Crack growth data associated with the Aloha accident [76]. 

 

As such these examples illustrated that when expressed as per equation (7) crack growth in 

these examples, which include both cracking in operational aircraft and laboratory tests, was 

essentially independent of both the material, the microstructure and the flight load spectrum. 

 

5.1 The importance of the initial crack size 

  

The initial crack size (ai) is a key parameter in equation (7). (In contrast we have seen that 

lead cracks in operational aircraft essentially grow from day one so the term Bi is often 

secondary importance for operational aircraft.) For aluminium alloy airframes, the probability 

distribution associated with the size and nature of the material discontinuities in the airframe 

is discussed in [28, 30, 100, 101].  These authors suggest that the mean size of the material 

discontinuities is equivalent to a fatigue crack-like size that is typically about 10 μm in depth.  

As shown in [12] this initiating defect size is consistent with the work of Merati [102], where 

it was reported that the size of initial defects in civil transport aircraft lie in the range 9-29 μm, 

and also with the paper by Schijve [103] where it was reported that the size of initial defects 

in civil transport aircraft lie in the range 7-30 μm. 

 

5.2 The scatter in the growth of small initial cracks 

 

Although this section is primarily concerned with the growth of lead cracks in operational 

aircraft it should be noted that it follows from [26-29] that, for laboratory tests, for a fixed 

initial crack size the variability in the growth of small cracks is primarily associated with the 
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way in which these small cracks interact with the local microstructure.  Given that the 

threshold term can take account of the variability in the growth of cracks of different sizes, [1, 

12, 27-29, 39, 40], it would appear that the term ∆𝐾thr can be thought of as quantifying the 

way in which small cracks, with a fixed initial size, interact with the local microstructure.  In 

this context it should also be recalled that the operational life of an airframe is primarily 

determined by the growth of small lead cracks which are generally associated with a small, 

near zero, fatigue threshold. As such the variability in the growth of lead cracks in 

operational aircraft is controlled by the probability distribution associated with the size and 

nature of the material discontinuities in the airframe, rather than by the probability 

distribution associated with the scatter in the growth of small cracks with a fixed initial size 

[28, 100, 101].  

 

 

6. DIRECTIONS FOR FUTURE RESEARCH 
 

6.1  Conceptual difficulties and conflicting approaches 

 

Despite the observed lack of an effect of microstructure on the growth of small cracks readers 

who are knowledgeable of the studies on the micro-structural effects [77, 78], or on 

computational simulations of micro-structure geometry [79-81], may feel uncomfortable 

absorbing knowledge. Since that knowledge is based on thorough scientific observation, 

albeit of the effect on long or non-lead cracks, or simulations, such reticence is both 

understandable and to be expected.  However, the foundation of scientific method was laid 

down by Sir Francis Bacon almost five hundred years ago, and is encapsulated in the Royal 

Society motto, “Nullius in verba” - “take nobody’s word for it” [82].  The difficulty lies in 

the need that one should on the one hand acknowledge the science basis of their work, while 

at the same time recognising that validation via experimental data is a central plank of the 

scientific method. Nevertheless it may be difficult to accept that the experimental evidence 

reveals that different microstructures, chemical compositions or yield stresses do not 

necessarily effect the growth of small cracks. Furthermore, the fact that the experimental data 

reveals that chemical composition and yield stress do not necessarily effect the growth of 

long cracks may be even harder to accept.  

 

6.2 Observational science is limited by the methods used to make the phenomenon of 

interest visible 
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Bacon [84] discussed the concept of four types of prejudice, which he describes as “idolae” 

that are generally rendered in English as “Idols of the Tribe”, human prejudices; “Idols of the 

Cave”, personal prejudices; “Idols of the Market Place”, confusion caused by language and 

miscommunication; and “Idols of the Theatre”.  Of the latter, Bacon says, 

 

“Lastly, there are Idols which have immigrated into men’s minds from the various 

dogmas of philosophies, and also from wrong laws of demonstration…” 

 

Bacon strikes very close to the mark: our scientific approach is frequently “tribal” in that we 

have personal preferences in the way that we like to interpret our work. Conveying a precise 

meaning is often difficult, even when expressed through images and mathematics; however, 

the biggest problem is to overcome dogma, and design experiments and tests that will reveal 

a true understanding. 

 

Assessment of experimental validity is a well-known feature of experiments in the social 

sciences area. In the physical sciences the focus is often on the creation of repeatability of 

measurement, and an error bounds or statistical analysis approach is used to assess variability 

in the results.  Thus the need to create a repeatable test methodology is paramount, so much 

so that there is sometimes a tendency to overlook the significance of phenomena that are less 

easy to observe or measure. 

 

In the mechanical testing of materials macroscopic measurements are the easiest to perform, 

viz: applied force, specimen elongation, crack length, crack opening displacement, etc.  The 

observation of the micro-structure of a sample of material follows in the same vein: the 

sample is embedded in a carrier, and polished to a high shine to reveal the grain structure.  

Grain types can then be identified, and various specifics can be measured or counted. This 

often involves 2D measurements, and the observational task is often limited by the prejudices 

of the observer, i.e. what seems to be relevant, or what is usually thought to be relevant in 

such an investigation.  That said X-ray computed tomography can now provide a fully 3D 

equivalent approach, and computational 3D image interpretation software is becoming 

established in the market place [85].  The algorithms used for geometrical interpretation may 

still be subject to some restriction, but the process has the potential to enable eventually a 

holistic assessment of material structure. 

 



32 
 

Following failure, the failure surface of the specimen can also be investigated. Whilst crack 

surfaces generally have an interesting structure classical fracture mechanics based tools 

ignore that structure and for Mode I failure the fracture surface is considered to be planar 

Nevertheless, recent studies have used the fractal nature of a fatigue crack surface to gain a 

better understanding of crack growth and to develop standards for assessing the effect of 

cracks on operational aircraft [34, 47]. 

 

Painstaking detailed observation of failure phenomena at the crystal grain boundaries have 

also been carried out.  Numerous textbooks on solid state physics [86, 87] and plasticity [88] 

discuss atomic dislocations, and the role of alloying impurities in the control of those 

dislocations. To verify these ideas experimentally requires X-ray or neutron diffraction to 

measure atomic spacings, and the data obtained represents an assembly of measurements of 

very large numbers of atoms. 

 

It is not our place to denigrate what is, in reality, extensive and very informative research: the 

only observation that we wish to make is that such investigations are necessarily incomplete.  

To focus on the site of one grain boundary or one material flaw is to ignore countless others: 

a very precise local understanding is built, but the global context is averaged out under the 

macroscopic measurements. 

 

6.3 Computational models are only as valid as the geometric information they contain 

 

The development of computational models of material structure at the meso-scale is another 

area in which there has been a lot of attention, particularly in recent years. “Meso-scale” 

modelling involves the creation of solid mechanical models which mimic the substructure of 

a material: in this case, it is the modelling of individual grains as separate material domains, 

or including features or material discontinuities in the structure, where such features are 

allocated a separate representative material property. 

 

Such models are generally analysed using finite element analysis (FEA), since FEA offers 

computational robustness, and modern computers are capable of analysing models containing 

several millions of degrees of freedom within a reasonable time period.  Creation of the 

model poses more difficulty, and there are two major approaches: (i) to find an example of a 

real material, discover its internal structure through some form of imaging, and reconstruct 
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that structure using computer aided design (CAD); or (ii) to develop an algorithm for the 

arbitrary creation of geometry, and then demonstrate that the geometry so created is 

sufficiently representative of reality. 

 

The internal structural imaging of a real material is a very difficult problem.  Two 

dimensional images can be obtained readily, but an image analysis method needs to be used 

to recognise the domain boundaries of the grains; identify the material phase within each 

grain; and, because at the individual grain length-scale the material is typically anisotropic, 

identify the orientation.  This is not straightforward. In this respect a 2D representation may 

not be sufficient.  Within the last decade, there have been major advances in X-ray computed 

tomography (CT). As a result 3D images can now be created without resort to the destructive 

process of slicing through a material sample and polishing. Image analysis software is in 

development, not only to identify the material domains, but also material form and alignment 

recognition.  It is conjectured that within a few years, this approach may become applicable 

for polycrystalline modelling.  Current capability to build a CAD geometry differentiating 

material and voids is certainly possible [88] and points at the potential for polycrystalline 

modelling in the not too distant future. 

 

The alternative approach, i.e. to define a geometry based on an artificial construction, is 

certainly possible. Such work is currently almost entirely limited to 2D modelling, and 

focusses on the construction of a grain structure using algorithms of sowing seed points and 

then constructing material phase regions using Voronoi tessellation [89-91]. In some ways 

this approach can be interpreted as a computational analogue of the physical process of metal 

solidification, since the Voronoi tessellation method forces boundaries at the equi-distant 

lines between nearest neighbour seed points; however, there are important differences. The 

first issue is that there should be some basis for the selection of the seed point sites. 

Assuming a “random” distribution is not enough: choosing random coordinate values leads to 

a clumpy distribution, which is not representative of reality. Other algorithms are possible, 

but then the onus is on the modeller to demonstrate the extent to which the representation is 

sufficiently representative [92]. A second issue is that assuming equi-distance for the 

boundary lines is essentially the same as assuming an instantaneous initiation and equal 

growth rates in all directions: in the real solidification process, the initiation of solidification 

takes place at different sites at different times and at different rates depending on the thermal 
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gradient and the crystal alignment. This is, to some extent, what gives rise to grain shapes 

that cannot be created with Voronoi tessellation.   

 

There is a real need to extend this modelling approach to 3D. Fortunately, in 2D and when 

extended to three dimensions, a modified version of the Voronoi tessellation method has the 

potential to capture time lag and anisotropic growth rates [93]. 

 

Irrespective of how the 3D model is created, the nature of the problem is stochastic.  As a 

result to give sensible results, a large number of grains must be modelled. This means that for 

a cube of material with side lengths of order 10 times the typical grain dimension, the entire 

model would contain of order 1000 grains. This would be a small model. To have any 

reasonable definition within a grain, there should be sufficient elements to capture geometry 

and stress gradients: a sensible minimum number of elements would be of order 100. This 

means that a the small model would require of order 1000 × 100 elements, × 3 degrees of 

freedom per element.  It would be better to model 1,000,000 or more grains. Fortunately, 

analysing a model of this size using modern computers is now entirely feasible.   

 

To check the repeatability and validity of results, multiple similar analyses would need to be 

run. To this end the algorithms used for geometry creation could be tested: different 

approaches to create seed points will lead to different configurations of grains, and variation 

levels in grain sizes. Different approaches to modelling grain domains based on a modified 

Voronoi approach would lead to greater variation in domain shape, and the possibility of 

anisotropic results. To date the majority of work in this area has not adequately addressed the 

issues of repeatability and validity. The focus has been on looking for principles in modelling 

capability, and particular features associated with the creation of the models. A more 

systematic attempt has been performed [92] to control flaw distribution, but this work looked 

at void distribution only, rather than grain structure and did not address fatigue crack growth. 

An important observation derived from this work is that of “emergent” properties.  Emergent 

properties, or “emergence”, in the modern sense, relates to the recognition of form or 

structure arising in a complex model where individual elements in the model do not reflect 

that structure.  Examples of this include the emergent patterns within the Mandelbrot set [94], 

or cellular automaton [95].   

 

 



35 
 

6.4 Bulk properties and local properties: interfaces and surfaces 

 

A further important aspect of the micro-scale material is the distinction between “bulk” 

properties and local properties. Bulk properties apply to large quantities of “pure” material, 

and while the chemist’s view-point might differ from that of the materials scientist or 

engineer, the essential consideration is that the volume of the material is more significant 

than the boundary.  Harking back to Bacon’s Idol of the Tribe, our human experience is so 

embedded in the macro-scale that our concepts of “surface” or “interface” are often 

descriptive rather than scientific.  For example, when preparing a test specimen, the test 

methodology [93] will specify a level of surface preparation. The idea is to create a “smooth” 

surface, and yet no account is taken of the influence of the “smooth” surface on the 

performance of the specimen, and how this is substantively different to the in-service 

performance of the unprepared aircraft structure. In practice, there are methods for measuring 

and quantifying surface roughness [96], and levels of surface roughness can be influenced by 

both by manufacturing and machining methods and processes, by surface treatment methods 

[97] and by the in-service operational environment. Indeed, there is currently no study that 

considers surface effects that reflect the surface conditions associated with lead cracks in an 

operational structure. This is an important consideration since it is conjectured that this effect 

may dominate any microstructural related effects. 

 

For a specimen or component for which the bulk is considered homogeneous, the only 

boundary is the external boundary. Preliminary work considering external surface roughness 

effects, but not surface conditions that are associated with lead cracks in operational aircraft, 

on a homogeneous bulk material has recently been submitted for publication [98].  For a 

polycrystalline material, there are internal surface effects to be considered.  Even for very 

small grain sizes, the grain dimensions are likely to be much greater than the atomic spacing 

distance, so well within the grain, the material properties can be considered to be “bulk” 

properties.  Towards the boundary of a grain, the regular crystal structure is less strongly 

imposed, as atoms that are closer to the boundary impose a less regular array of forces on 

their neighbours than those that are well within the uniformity of structure. The forces and 

displacements between atoms in the structure are the conduit for the transmission of macro-

structural force and displacement within the engineering component; as such, these provide 

the real physics for which stress and strain are mathematical constructs. Atomic bond force - 

displacement relationships are near linear in performance.  Breakdown of this linear 
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relationship, and failure of atomic bonds is likewise the paradigm of macroscopic failure; 

however, macroscopic failure occurs at a much lower value of strain than might be supposed 

from failure displacement of atomic bonds. The macroscopic concepts of plasticity and creep 

represent slip of atomic bonds along planes, and reattachment of atoms at new positions [94].  

The trigger or control for such a slip lies in the disruption of the regular pattern of atomic 

bonds, and such irregularities arise from crystal defects, the presence of alloying elements at 

certain concentrations within the crystal, and the meeting of differently aligned atomic arrays 

at the grain boundaries. 

 

Models of polycrystalline material assume the boundary to be a piece-wise smooth polygon, 

and with a zero boundary thickness. This is a mathematical abstraction. In practice, the 

boundary is the point where pattern of atomic alignment in one grain finishes and the next 

grain begins.  In reality, this is not such a sharply defined feature, since atoms near the 

interface will try to arrange themselves so as to minimise the atomic bond strain energy, and 

not lie perfectly in either alignment. The region of modified alignment will thus be of the 

order of several atomic spaces in width. Furthermore, this boundary will itself move in 

response to environmental changes. Noting that temperature and concentration of atomic 

species in solution in the alloy will drive a continual rebalancing of the energy, it should be 

expected that grains will be slowly but continuously changing form. 

 

This leads to the following questions: Since even “small” cracks are large compared with 

atomic spacings to what extent can atomic diffusion processes be considered to be a part of 

the crack development process?  In terms of building FEA models of the grain structure, 

should the interface region be considered to be of finite thickness, and what “bulk” material 

properties could be allocated to it?  Alternatively, what types of atomic modelling analyses 

should be performed, and how can the results of simulations on an assembly of a finite 

number of atoms be transferred and interpreted at the continuum mechanics length scale? 

 

This area of investigation is very clearly at the interface between engineering materials and 

solid-state physics. It may demand a thorough understanding of statistics, a complete re-think 

of geometry building computer science algorithms and a detailed understanding of both 

continuum and quantum mechanics. This is a rare skill-set for any individual scientist! 
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It follows from [26-29] that for a fixed initial crack size the variability in the growth of small 

cracks is associated with the way in which these small cracks interact with the local 

microstructure.  Given that the threshold term can take account of the variability in the 

growth of cracks of different sizes, [1, 12, 27-29, 39, 40], it would appear that the term ∆𝐾thr 

can be thought of as quantifying the way in which small cracks, with a fixed initial size, 

interact with the local microstructure.  In this context it should also be noted that lead cracks 

determine the operational life of the airframe, and that lead cracks are generally associated 

with a small, near zero, fatigue threshold. As such the variability in the growth of lead cracks 

in operational aircraft is controlled by the probability distribution associated with the size and 

nature of the material discontinuities in the airframe, rather than by the probability 

distribution connected with the way that small cracks interact with the microstructure of the 

material [28, 100, 101].  

 

For aluminium alloy airframes, the probability distribution associated with the size and nature 

of the material discontinuities in the airframe is discussed in [28, 30, 100, 101].  These 

authors suggest that the mean size of the material discontinuities is equivalent to a fatigue 

crack-like size that is typically about 10 μm in depth.  As shown in [12] this initiating defect 

size is consistent with the work of Merati [102], where it was reported that the size of initial 

defects in civil transport aircraft lie in the range 9-29 μm, and also with the paper by Schijve 

[103] where it was reported that the size of initial defects in civil transport aircraft lie in the 

range 7-30 μm. 

 

We have also noted that crack growth in complex geometries, under variable amplitude loads, 

representative of aircraft components under operational flight loads, can be predicted to 

reasonable accuracy using small crack growth data, which can often be closely approximated 

as a simple Paris crack growth equation. We have noted that the growth of lead cracks in 

operational aircraft starts from day one of service operation and that the associated crack 

growth history often conforms to the exponential crack growth model first proposed by the 

USAF to assess the risk of failure.  As a result, the crack growth histories associated with the 

growth of lead cracks in operational aircraft can often be expressed in a form, which is 

independent of both the material and the flight load spectrum. However, with the exception of 

crack growth in bridge steels, the data does not exist to enable us to establish whether this 

relationship is also true in non-aerospace structures. 
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7. CONCLUSIONS 

 

The experimental data has shown that even if long cracks in two materials with different 

microstructures have different 𝑑𝑎 𝑑𝑁⁄  versus ∆𝐾  curves the corresponding small crack 

curves can be similar.  We have also shown that the experimental data reveals that small 

cracks in materials with different microstructures, chemical compositions and yield stresses 

can have similar crack growth rates.  As a result of these findings the material community is 

challenged to address the questions: 

 

Why do the long crack 𝑑𝑎 𝑑𝑁⁄  vs ∆𝐾 curves associated with a large range of steels with 

different chemical compositions and yield stresses essentially coincide? 

 

Why do the small crack 𝑑𝑎 𝑑𝑁⁄  vs ∆𝐾  curves associated with mild steel and the two 

aerospace quality titanium alloy’s essentially coincide? 

 

What is the materials science underpinning the observation that the growth of small naturally 

occurring cracks in operational aircraft is exponential and that this relationship is independent 

of the material, microstructure and the flight load spectrum? 

 

What is materials science underpinning the cubic rule that is used by the RAAF to predict the 

growth of small naturally occurring cracks in aluminium, titanium and steel airframes, i.e. for 

materials with a range of different microstructures, chemical compositions and yield stresses, 

in operational aircraft? 

 

The first two questions are particularly important given the current focus on the use of 

titanium in additive manufacturing. Indeed, they raise the question: Are there instances where 

the use of cast steels may be a valid alternative to additively manufactured titanium parts? 

 

The latter two questions are particularly important given that exponential crack growth and 

the cubic rule are widely used to assess cracking in fleet aircraft. 

 

Until such fundamental questions are answered many practitioners will undoubtedly continue 

to rely on empirical formulations, such as the Hartman-Schijve crack growth equation or the 
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cubic rule2 [83] which is built into the RAAF F/A-18 Structural Assessment Manual (SAM), 

the RAAF AP3C (Orion) Structural Repair Assessment Manual (SRAM), and is used to 

assess cracking in the RAAF Pilatus Porter PC9 fleet. Nevertheless it is understandable if the 

micro-structure science community, which has invested considerable time and intellect into 

the study of micro-structural effects in crack development, may find it difficult to accept 

empirical models, such as the Nasgro equation which is currently the most widely used crack 

growth equation and is embedded in the commercially available computer codes NASGRO, 

AFGROW and FASTRAN or the cubic rule, where for small cracks micro-structural effects 

on the growth have little effect.  

 

We have also seen that atomistic modelling suggests a Paris like crack growth curve and that 

in one instance the growth of nano scale cracks could be predicted by using the Hartman-

Schijve long crack representation with the threshold term set to zero. 

 

 

REFERENCES 

 

1. Ali K, Peng D, Jones R, Singh Raman RK, Zhao XL, McMillan AJ and Berto F. Crack 

growth in a naturally corroded bridge steel. Fatigue Fract Eng Mater Struct 

2017;40:1117-27. 

2. Barsom J M, and Rolfe ST. Fracture and fatigue control in structures: Applications of 

fracture mechanics. ASTM MNL41. 3rd ed. West Conshohocken, PA: Butterworth-

Heinemann; 1999.  

3. Fisher JW, Mertz DR, Zhong A. Steel bridge members under variable amplitude, long 

life fatigue loading. NCHRP Project 267. Washington, D.C.: Transportation Research 

Board; 1983. 

4. Chen H, Grodin GY and Driver RG. Fatigue resistance of high performance steel. Sixth 

International Conference on Short & Medium Span Bridges, Vancouver, Canada, 2002. 

5. Zweraeman FJ and Frank KH. Fatigue damage under variable amplitude loads. Struct 

Eng 1988;114:67-83. 

6. Yan-Ping Liu, Chuan-Yao Chen and Guo-Qing. Fatigue crack growth and control of 

14MnNbq welding plates used for bridges. Eng Mechanic-ASCE 2012;138:30-35. 

7. Forth SC., James MA., Newman JA. Everett, RA. Jr., and Johnston WM. Jr. 

Mechanical data for use in damage tolerance analyses. NASA/TM-2004-213503 and 

ARL-TR-3375. 2004. 

8. Stephens RL. Fatigue and fracture toughness of five low carbon cast steels at room or 

low climate temperature. Carbon and Low Alloy Steel Technical Research Committee. 

Steel Founders Society of America, Research Report 94A; 1982.  

9. Brown CW, King JE, and Hicks MA. Effects of microstructure on long and short crack 

growth in nickel base superalloys. Met Sci 1984;18:374-80. 

                                                           
2 The cubic rule states that the exponent 𝜔́ in Equation (6) is proportional to the cube of the 

stress field [83]. 



40 
 

10. American Society for Testing and Materials (ASTM). Standard Practice for Conducting 

Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, ASTM 

E646, USA, 1988. 

11. Ritchie RO, Yu W, Blom AF, Holm DK. An analysis of crack tip shielding in 

aluminium alloy 2124: A comparison of large, small through-crack and surface fatigue 

cracks. Fatigue Fract Eng Mater Struct 1987;10:343-63. 

12. Jones R. Fatigue crack growth and damage tolerance. Fatigue Fract Eng Mater Struct 

2014;37:463-83. 

13. Lados DA, Apelian D, Paris PC, Donald JK. Closure mechanisms in Al–Si–Mg cast 

alloys and long-crack to small-crack corrections. Int J Fatigue 2005; 27: 1463-72.  

14. Spiedel MO. Aluminium as a corrosion resistant material, Aluminium Transformation 

Technology and Application. (Proceedings of the International Symposium at Puerto 

Madrya, Chubut, Argentina), CA. Pampillo, H. Biloni and DE. Embury, American 

Society for Metals, Metals Park, Ohio, USA; 1980, p. 613. 

15. Boyer HE. Atlas of Fatigue Curves. ASM International; 1985, ISBN: 978-0-87170-214-

2. 

16. Davidson DL, Lankford J. Fatigue crack growth in metals and alloys: mechanisms and 

micromechanics. Int Mater Rev 1992;37:45-75. 

17. Dexter RJ, and Ocel JM. Manual for repair and retrofit of fatigue cracks in steel bridges. 

US Department of Transportation, Federal Highway Administration Report FHWA-IF-

13-020; 2013. 

18. Molent L, Barter SA, Wanhill RJH. The lead crack fatigue lifing framework. Int J 

Fatigue 2011, 33, pp. 323-331. 

19. Rudd JL. Applications of the equivalent initial quality method. AFFDL-TM-77-58-FBE; 

1977.  

20. Manning SD, Garver WR, Henslee SP, Norris JW, Pendley BJ, Speaker SM, Smith 

VD, Yee BGW, Shinozuka M, and Yang YN. Durability Methods Development. 

Volume I –Phase I, AFFDL-TR-79.-3118; 1979.    

http://www.dtic.mil/dtic/tr/fulltext/u2/a087301.pdf 

21. Berens AP, Hovey PW, Skinn DA. Risk analysis for aging aircraft fleets. Volume 1: 

Analysis, WL-TR-91-3066, Flight Dynamics Directorate, Wright Laboratory, Air 

Force Systems Command, Wright-Patterson Air Force Base; 1991. 

22. Wanhill RJH. Characteristic stress intensity factor correlations of fatigue crack growth 

in high strength alloys: reviews and completion of NLR investigations 1985-1990. 

NLR-TP-2009-256; 2009.  

23. Jones R. and Tamboli D. Implications of the lead crack philosophy and the role of short 

cracks in combat aircraft. Eng Fail Anal 2013;29:149-66. 

24. Mertz D. Steel Bridge Design Handbook: Design for Fatigue. U.S. Department of 

Transportation, Federal Highway Administration, Publication No. FHWA-IF-12-052 - 

Vol. 12; 2012. 

25. Peng D, Jones R, Cairns K, Baker J, McMillan A. Life cycle analysis of steel railway 

bridges. Theor Appl Fract Mech, https://doi.org/10.1016/j.tafmec.2017.06.023. 

26. Larsen JM, Jha SK, Szczepanski CJ, Caton MJ, John R, Rosenberger AH, Buchanan DJ, 

Golden PJ, Jira JR. Reducing uncertainty in fatigue life limits of turbine engine alloys. 

Int J Fatigue 2013;57:103-12. 

27. Jones R, Huang P and Peng D. Crack growth from naturally occurring material 

discontinuities under constant amplitude and operational loads. Int J Fatigue 

2016;91:434-44. 

28. Molent L, Jones R. The influence of cyclic stress intensity threshold on fatigue life 

scatter. Int J Fatigue 2016;82:748-56.  

http://www.dtic.mil/dtic/tr/fulltext/u2/a087301.pdf
https://doi.org/10.1016/j.tafmec.2017.06.023


41 
 

29. Jones R, Molent L, Barter S. Calculating crack growth from small discontinuities in 

7050-T7451 under combat aircraft spectra. Int J Fatigue 20133;55:178-82. 

30. Barter SA, Molent L and Wanhill RH. Typical fatigue-initiating discontinuities in 

metallic aircraft structures, Int J Fatigue 2012;41:1-198.  

31. Miedlar PC, Berens AP, Gunderson A, and Gallagher JP. Analysis and support 

initiative for structural technology (ASIST), AFRL-VA-WP-TR-2003-3002. 

32. Bouchaud, E. Scaling properties of cracks. J. Phys.: Condens. Matter 9:4319-4344. 

S0953-8984(97)72446-9; 1997. 

33. Mandelbrot BB. Fractal analysis and synthesis of fracture surface roughness and related 

forms of complexity and disorder. Int J Fract 2006;138:13-17. 

34. Jones R, Chen F, Pitt S, Paggi M, Carpinteri A. From NASGRO to fractals: 

Representing crack growth in metals. Int J Fatigue 2016;82:540-49.36.  

35. Carpinteri An, Spagnoli A, A fractal analysis of size effect on fatigue crack growth. Int 

J Fatigue 2004, 26(2): 125-33. 

36. Carpinteri An, Spagnoli A, Vantadori S, A multifractal analysis of fatigue crack growth 

and its application to concrete. Eng Fract Mech 2010, 77(6): 974-84. 
37. Hastings, Philip John.  The behaviour of short fatigue cracks in a beta-processed titanium alloy. 

PhD Thesis, University of Nottingham; 1989. 

http://eprints.nottingham.ac.uk/28458/1/352955.pdf 

38. Venkateswara Rao KT, Yu W and Ritchie RO. On the behavior of small fatigue cracks 

in commercial aluminium-lithium alloys. Eng Fract Mech 1988;31:623-35. 

39. Lo M, Jones R, Bowler A, Dorman M, Edwards D. Crack growth at fastener holes 

containing intergranular cracking, Fatigue Fract Eng Mater Struct 2017;40:1664-75. 

40. Jones R, Peng D, Singh Raman RK, Pu Huang, Tamboli D, Matthews N. On the growth 

of fatigue cracks from corrosion pits and manufacturing defects under variable 

amplitude loading. JOM 2015;67:1385-91. 

41. Jones R, Peng D, Pu Huang, Singh Raman RK. Crack growth from naturally occurring 

material discontinuities in operational aircraft. Procedia Eng 2015;101: 227-34. 

42. Tamboli D, Barter S, Jones R, Decoupling of fatigue and corrosion. Proceedings 

ICAF2017 29th Symposium, Nagoya, Japan, 5th - 9th June, 2017.  

43. Lo. M. Interaction of fatigue crack growth and intergranular corrosion in maritime 

aircraft, PhD Thesis, Department of Mechanical and Aerospace Engineering, Monash 

University, Clayton, Victoria, Australia, 2016. 

44. Lincoln JW, Melliere RA. Economic life determination for a military aircraft, J Aircraft 

1999;36:737-42.  

45. Zhang K, Yang KV, Lim S, Wub  X, Davies CHJ. Effect of the presence of macrozones 

on short crack propagation in forged two-phase titanium alloys. Int J Fatigue 

2017;104:1-11. 

46. Tan J and Chen B. Prediction of fatigue life in aluminium alloy (AA7050-T7451) 

structures in the presence of multiple artificial short cracks In. Theor Appl Fract Mec 

2015;78:1-7. 

47. Molent L, Spagnoli An, Carpinteri An, Jones R. Using the lead crack concept and 

fractal geometry for fatigue lifing of metallic structural components. Int J Fatigue 

2017;102:214-20. 

48. Hartman A and Schijve J. The effects of environment and load frequency on the crack 

propagation law for macro fatigue crack growth in aluminium alloys. Eng Fract Mech 

1970;1:615-31. 

49. Liu HW and Liu D. A quantitative analysis of structure sensitive fatigue crack growth 

in steels. Scr Metall 1984;18:7-12. 

http://eprints.nottingham.ac.uk/28458/1/352955.pdf


42 
 

50. Ramsamooj DV. Analytical prediction of short to long fatigue crack growth rate using 

small- and large-scale yielding fracture mechanics. Int J Fatigue 2003;25:923-33. 

51. McEvily AJ, Eifler D, Macherauch E. An analysis of the growth of short fatigue cracks. 

Eng Fract Mech 1991;40:571-84. 

52. Endo M and McEvily AJ. Prediction of the behaviour of small fatigue cracks Mater Sci 

Eng A 2007;468-470:51-8. 

53. Ishihara S, Yoshifuji S, Mcevily Aj, Kawamoto M, Sawai M and Takata M. Study of 

the fatigue lifetimes and crack propagation behaviour of a high speed steel as a function 

of the R value. Fatigue Fract Engn Mater Struct 2010;33:294-302. 

54. Wang K, Wang F, Cui W, Hayat T and Ahmad B. Prediction of short fatigue crack 

growth of Ti-6Al-4V. Fatigue Fract Engn Mater Struct 2014;37:1075-86. 

55. Jones R, Lo M, Peng D, Bowler A, Dorman M, Janardhana M, Iyyer NS. A study into 

the interaction of intergranular cracking and cracking at a fastener hole. Meccanica 

2015;50:517-32. 

56. Jones R, Molent L, Walker K. Fatigue crack growth in a diverse range of materials. Int. 

J. Fatigue 2012;40:43-50. 

57. Newman JC. Jr, (1996) Application of a closure model to predict crack growth in three 

engine disc materials. Int J Fract 1996;80:193-218. 

58. Cadario A, Alfredsson B. Fatigue growth of short cracks in Ti-17: Experiments and 

simulations. Eng Fract Mech 2007;74:2293-2310. 

59. Ritchie RO and Suresh S. The fracture mechanics similitude concept: questions 

concerning its application to the behavior of short fatigue cracks, Mater Sci Eng 

1983;57:L27-L30. 

60. Horstemeyer MF, Farkas D, Kim S, Tang T, Potirniche G. Nanostructurally small 

cracks (NSC): A review on atomistic modeling of fatigue. Int J Fatigue 2010;32:1473-

1502. 

61. Potirniche GP, Horstemeyer MF, Gullett PM, Jelinek B. Atomistic modelling of fatigue 

crack growth and dislocation structuring in FCC crystals. Proc R Soc A, Math Phys 

Eng Sci 2006;462:3707-31. 

62. Uhnáková A, Machová A, Hora P. 3D atomistic simulation of fatigue behavior of a 

ductile crack in bcc iron. Int J Fatigue 2011;33:1182-88. 

63. Machová A.,  Pokluda J., Uhnáková A., Hora P. 3D atomistic studies of fatigue 

behaviour of edge crack (001) in bcc iron loaded in Mode I and II, Int J Fatigue 

2014;66:11-19. 

64. Chowdhury PB, Sehitoglu S, Rateick RG, Maier HJ. Modeling fatigue crack growth 

resistance of nanocrystalline alloys. Acta Mater 2013;61:2531-47. 

65. Jha SK, John R, Larsen JM. Incorporating small fatigue crack growth in probabilistic 

life prediction: Effect of stress ratio in Ti–6Al–2Sn–4Zr–6Mo. Int J Fatigue 

2013;51:83-95. 

66. Caton MJ, John R, Porter WJ, Burba ME. Stress ratio effects on small fatigue crack 

growth in Ti–6Al–4V. Int J Fatigue 2012;38:36-45. 

67. Mujtaba A, Stelzer S, Brunner AJ, Jones R. Influence of cyclic stress intensity threshold 

on the scatter seen in cyclic Mode I fatigue delamination growth in DCB tests. Compos 

Struct 2017;169:138-41.  

68. Jones R, Kinloch AJ, Michopoulos JG, Brunner AJ, Phan N. Delamination growth in 

polymer-matrix fibre composites and the use of fracture mechanics data for material 

characterisation and life prediction. Compos Struct 2017;180:316-33. 

69. Molent L and Gallagher JP. The equivalence of EPS and EIFS based on the same crack 

growth life data. Int J Fatigue 2015;80:162-70. 



43 
 

70. Molent L, Barter SA. A comparison of crack growth behaviour in several full-scale 

airframe fatigue tests. Int J Fatigue 2007;9:1090-99. 

71. Miller M., Luthra VK., and Goranson UG. Fatigue crack growth characterization of jet 

transport structures, Proc. of 14th Symposium of the International Conference on 

Aeronautical Fatigue (ICAF), Ottawa, Canada, 1987.  

72. Bell PD, Creager M. Crack growth analysis for arbitrary spectrum loading. Volume I - 

Results and discussion, Final Report: June 1972 - October 1974, Technical Report 

AFFDL-TR-74-129, USA, 1974. 

73. Phillips EP.  Periodic overload and transport spectrum fatigue crack growth tests of 

Ti62222STA and Al2024T3 sheet. NASA/TM-1999-208995, 1999. 

74. Jones R, Molent L, and Pitt S. Crack growth from small flaws. Int J Fatigue 

2007;29:1658-67. 

75. Fracture Mechanics Volume II - Analysis for Operational Aircraft Usage. FZM-12- 

13647. General Dynamics, 15th July 1973. 

76. NTSB. Aircraft Accident Report, Aloha Airlines, Flight 243, Boeing 737-200, N73711, 

near Maui, Hawaii, April 28, 1988 (Aircraft Accident Report No. NTSB/AAR-89/03), 

Washington DC, National Transportation Safety Board, 1989. 

77. Chowdhury P, Sehitoglu H. Mechanisms of fatigue crack growth – a critical digest of 

theoretical developments. Fatigue Fract Eng Mater Struct 2016;39:652-74. 

78. Morel F, Huyen N. Plasticity and damage heterogeneity in fatigue. Theor Appl Fract 

Mech 2008;49:98-127. 

79. Rodopoulos CA, Chliveros G. Fatigue damage in polycrystals - Part 1: the numbers two 

and three. Theor Appl Fract Mech 2008;49:61-76. 

80. Rodopoulos CA, Chliveros G.  Fatigue damage in polycrystals – Part 2: intrinsic scatter 

of fatigue life. Theor Appl Fract Mech 2008;49:77-97. 

81. Simonovski I, Cizelj L. Representative volume element size of a polycrystalline 

aggregate with embedded short crack, Proc Int Conf Nuclear Energy for New Europe 

2007, Portorož, Slovenia, September, 2007. 

82. The Royal Society. https://royalsociety.org/about-us/history/ [last accessed 26 August 

2017]. 

83. Molent L., Jones R., (2016) A Stress versus Crack Growth Rate Investigation (aka 

Stress - Cubed Rule), International Journal of Fatigue, 87, pp, 435-443. 

84. Bacon F (1620) Novum Organum.  This exists in various translations, or can be found 

in the original Latin at http://www.thelatinlibrary.com/bacon.html [last accessed 26 

August 2017]. 

85. Simpleware, https://www.simpleware.com/ [last accessed 28 August 2017]. 

86. Weiss RJ. Solid state physics of metallurgists. Pergamon Press, Oxford; 1963. 

87. Friedel J. Dislocations. Pergamon Press, Oxford; 1964. 

88. Povstyanoi OYu, Sychuk VA, McMillan A, Rud’ VD, Zabolotnyi OV. Metallographic 

analysis and microstructural image processing of sandblasting nozzles produced by 

powder metallurgy methods. Powder Metall Met Ceram 2015;54:234-40. 

89. Dirichlet GL. Über die Reduktion der positive quadratischen Formen mit drei 

unbestimmten ganzen Zahlen, J Reine Angew Math 1850;40:209-27. 

90. Voronoi G. Nouvelles application des parametrès continus à la théorie des forms 

quadratiques. J Reine Angew Math 1908;133:97-178. 

91.  Fortune SJ. A sweepline algorithm for Voronoi diagrams. Algorithmica 1987;2:153-

74. 

92. McMillan AJ. Material strength knock-down resulting from multiple randomly 

positioned voids. J Reinf Plast Comp 2012;31:13-28. 

https://royalsociety.org/about-us/history/
http://www.thelatinlibrary.com/bacon.html
https://www.simpleware.com/


44 
 

93. McMillan AJ. Geometry generation challenges for modelling and analysis of micro-

structured materials. IOP Conf. Ser: Mater Sci Eng 2015;74 012010 

94. Mandelbrot B. Fractal aspects of the iteration of z →λz(1- z) for complex λ and z. 

Ann N Y Acad Sci 1980;357:249-59. 

95. Wolfram S, Packard NH. Two-dimensional cellular automata. J Stat Phys 1985;38:901-

46. 

96. Leach R. Characterisation of areal surface texture. Springer-verlang, Berlin Heidelbert; 

2013. 

97. Curtis S, de los Rios ER, Rodopoulos CA, Levers A. Analysis of the effects of 

controlled shot peening on fatigue damage of high strength aluminium alloys. Int J 

Fatigue 2003;25:59-66. 

98. McMillan AJ, Jones R, Peng D, Chechkin G (TBD) A computational study of the 

influence of surface roughness on material strength, [submitted to Meccanica, August 

2017] 

99. Brinckmann S, Van der Giessen E. A fatigue crack initiation model incorporating 

discrete dislocation plasticity and surface roughness. Int J Fract 2007;148:155-67. 

100. White P, Molent L, Barter S. Interpreting fatigue test results using a probabilistic 

fracture approach. Int J Fatigue 2005;27:752-67. 

101. Molent L. Alternative methods for derivation of safe life limits for a 7050-T7451 

aluminium alloy structure, Int J Fatigue 2015;74:55–64. 

102. Merati A. A study of nucleation and fatigue behavior of an aerospace aluminum alloy 

2024-T3. Int J Fatigue 2005;27:33-44. 

103. Schijve J. Fatigue life until small cracks in aircraft structures: Durability and damage 

tolerance. Advanced Structural Integrity Methods for Airframe Durability and Damage 

Tolerance. Proceedings FAA/NASA International Symposium, Hampton, 1994. NASA 

Conference Publication 3274. 1994:665-81. 

  



45 
 

 

APPENDIX DEFINITION OF SMALL AND SHORT CRACKS 

 

The fatigue test standard ASTM E647-13a [10] defines cracks as  being small when either  1) 

their length is small compared to relevant microstructural dimension (a continuum mechanics 

limitation), 2) their length is small compared to the scale of local plasticity (a linear elastic 

fracture mechanics limitation), and 3) they are merely physically small (<1 mm).  In this 

context Appendix X3 of ASTM E647-13a goes on to say:  The specific physical dimensions 

that define small vary with the particular material, geometric configuration, and loadings of 

interest. On the other had Appendix X3 states defines a crack as being short when only one 

physical dimension (typically, the length of a through-crack) is small according to the 

description given above. 

 

To put this definition in perspective it should be noted that, as discussed in [18, 30, 102, 103], 

the size of typical initiating (small) cracks that are found airframes is generally lies in the 

range of 3 to approximately 50 m and for aluminium alloy airframes has a mean of 

approximately 10 m [18, 30, 101].  Consequently, in this paper we will adopt the small 

crack definition given by Ritchie, Yu, Blom and Holm [11] definition of small, viz: less than 

400 microns, rather that contained in either the USAF Damage Tolerant Design Handbook 

[31] which suggests a significantly larger upper limit or the ASTM E647-13a definition 

which is less quantitative. 

 

 

 


