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Abstract 

 

This study reports on the chemical and physicochemical properties of the 

polysaccharide isolated from Bauhinia monandra seeds. The seeds were found to 

contain 17.8% polysaccharide which consisted predominantly of galactose and 

mannose. The Man/Gal ratio was found to be approximately 4:1and the average molar 

mass was 2.54 x 105 g/mol. The extracted material was also found to contain a small 

amount of protein (5.35%). The galactomannan produced highly viscous solution, the 

viscosity – shear rate profile was best described by the Williamson model. The 

mechanical spectrum of a 0.5 wt% solution showed that G″ was greater than G′ over 

the frequency range employed while at higher concentrations G′ became greater than 

G″ above a critical frequency. The solutions obeyed the Cox-Merz rule at low 

concentrations but there was some deviation at higher concentrations. Viscosity 

measurements were undertaken over a range of temperatures and the activation energy 

of viscous flow was found to be 20.75 kJ/mol. The rheological properties of solutions 

of B. monandra galactomannan indicate that it has comparable characteristics to other 

commercially important galactomannans such as guar gum and locust bean gum and 

hence has potential as a thickener in the formulation of food and other related products. 
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1. Introduction 

Bauhinia monandra  Kurz  belongs to the family Caesalpiniaceae and about 250 

species of the Bauhinia genus are known [1]. B. monandra is an ornamental plant 

usually grown to beautify the environment. The tree bears flat pods containing about 

10-20 seeds per pod. The seed contains a polysaccharide which consists of a main chain 

of D-mannopyranose units and the D-galactopyranose unit is present as the side chain 

[1]. Seed galactomannans find application as rheology modifiers in a variety of 

industrial processes. The M/G ratio influences the properties of the galactomannan 

polysaccharides in water including solubility and gel formation [2]. In the food industry 

they are used to alter product texture and viscosity and control the distribution of solids 

in aqueous sols in such a way that a range of texture and mouth feel is produced [3]. 

Aqueous polysaccharide solutions can be successfully used as model fluids in order to 

simulate the complex rheological behaviour of materials employed in various 

technological processes [4]. In the petroleum industry, galactomannans are used as 

drilling mud modifiers to suspend clay and increase oil recovery [3]. The oil industry 

employs biopolymers due to their high swelling at low polymer concentrations; high 

efficiency as suspending agents; high shear thinning behaviour and exceptional 

compatibility with high concentrations of various salts and temperatures. To date there 

has not been a systematic study of the physicochemical characteristics and rheological 

properties of the polysaccharide from B. monandra which has considerable commercial 

potential. The aim of this work therefore is to isolate the water soluble galactomannan 

component of B. monandra and determine the physicochemical and rheological 

properties and compare them with those of guar and locust bean gums, two widely 

applied commercial thickeners. The data obtained would be useful in assessing the 



potential of B. monandra as an alternative to guar gum and LBG in industrial 

application. 

2. Experimental 

2.1 Isolation of galactomannan from seed 

Dried pods of B. monandra were collected from trees growing in the compounds of the 

University of Ibadan and The Polytechnic, Ibadan. The pods were dehulled and the 

seeds collected. The galactomannan extraction procedure was similar to the method 

described in [5].  

The seeds were pulverized with a hammer mill, packed into a Soxhlet extractor and 

defatted with hexane.  A known weight of the defatted flour (10%, w/v) was swollen in 

water at 60oC overnight and blended using a Warring blender. The slurry was poured 

into centrifuge bottles and centrifuged at 2500 rpm for 2 h. The supernatant was 

decanted and residue reconstituted with water and centrifuged again. The supernatants 

were pooled and the galactomannan precipitated with excess isopropanol. This was 

reconstituted in a small amount of water and transferred to round bottomed flasks (to 

prevent the sample drying as lumps), frozen and the galactomannan recovered as 

powder by drying in a freeze dryer. 

2.2 Determination of protein content of B. monandra galactomannan 

The protein (N X 6.25) content was determined by AACC Approved Method 46-30.01 

using Flash 2000 protein Analyzer from CE Elantech, Inc. [6].  In brief, the sample was 

weighed in a tin capsule and introduced into the combustion reactor via autosampler 

together with a proper amount of pure oxygen. After combustion, the produced gases 

were carried by a constant helium flow to a second reactor filled with copper reducer, 

then swept through CO2 and H2O traps, a GC column and   finally detected by a thermal 

conductivity detector. A complete N/Protein report was automatically generated by the 

Eager Xperience dedicated software. The analysis conditions were as follows: 



Combustion temperature 900°C, reduction temperature 680°C, oven temperature 50 °C, 

Helium flow rate 140 ml/min, Oxygen flow rate 100 ml/min and total run time about 5 

minutes. 

2.3 Determination of sugar composition 

The sugar composition was determined by HPAEC-PAD using methanolysis combined 

with TFA hydrolysis [7] with some modification.  In brief, the gum sample was first 

dissolved in de-ionized water (1 mg/ml).  An aliquot of 100 nmoles myo-inositol 

(internal standard) was added to the gum solution and dried in a Teflon-lined screw cap 

glass vial by blowing with filtered nitrogen followed by drying in a vacuum oven at 

50oC overnight.  These samples were methanolyzed with 1.5 M methanolic HCl in the 

presence of 20% (v/v) methyl acetate for 16 h, cooled to room temperature and dried 

by blowing with filtered N2 after adding five drops of t-butanol.  The methanolyzed 

samples were hydrolyzed with 0.5 ml 2M TFA at 121oC for 1 h, evaporated by blowing 

with filtered N2 at 50oC and the residue was washed by sequential addition and 

evaporation of three aliquots (0.5 ml) of methanol.  In five separate glass vials were 

placed 100, 200, 300, 500 and 1000 nmoles of a mixture of standard sugars containing 

fucose, arabinose, rhamnose, galactose, glucose, xylose, glucuronic acid and 

galacturonic acid.  Then, 100 nmoles of myo- inositol (internal standard) was added to 

each vial, evaporated and dried as above.  These standard samples were also 

methanolyzed and hydrolyzed as described above and used for quantification. 

Hydrolyzates were analyzed for neutral and acidic sugars by HPAEC-PAD using a 

Dionex DX-500 system that included a CarboPac PA20 column and guard column, a 

GP 50 gradient pump, an ED40 electrochemical detector utilizing the quadruple 

potential waveform (gold working electrode and pH reference electrode), an AS3500 

autosampler with a thermal compartment (30EC column-heater), and a PC10 pneumatic 
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controller post column addition system. The mobile phase consisted of isocratic 12 mM 

NaOH eluant for 10 min followed by 100 mM NaOH and 6 mM CH3COONa for 3 min, 

100 mM NaOH and 12 mM CH3COONa for 17 min at a flow rate of 0.5 ml/min. at 

ambient temperature. The column wash with 1 M CH3COONa for 0.10 min and 100 

mM NaOH for 10 min followed by 30-min equilibration with 12 mM NaOH at a flow 

rate of 0.5 ml/min at ambient temperature was required to yield highly reproducible 

retention times for the monosaccharides. The total run time was ca. 70 min. In order to 

minimize baseline distortion due to change in pH of the eluant during monosaccharides 

detection by PAD, 730 mM NaOH was added to the post column effluent via a mixing 

tee. 

2.4 Molecular mass determination 

The eluent, (0.1M NaNO3 with sodium azide biocide in deionized water) was initially 

passed through a 0.22 µm type GSWP mixed cellulose ester Millipore membrane filter.  

A 5 mg/ml solution of the B. monandra was prepared in the eluent by vigorous shaking 

overnight in a Stuart Scientific orbital incubator and with a Stuart flask shaker the next 

day. It was subsequently heated (85oC) for 4 min in a water bath, followed by sonication 

at full power using a Soniprep 150 MSE sonicator.  As the sample was deemed to be 

too viscous, it was diluted with eluent to give a 2 mg/ml solution which was then used 

for GPC analysis.  

The sample solution was filtered through a 0.45 µm nylon syringe filter to fill  the 200 

uL loop of the Rheodyne valve system linked to the rest of the  GPC instrumentation,   

prior to injection into a Suprema column (3000Å, 8 x 300 mm) packed with 10 μm 

beads comprising a polyhydroxymethacrylate copolymer network.  The eluent was 

pumped (Waters: 515 HPLC Pump, Milford, MA 01757, USA) through an in-line 

eluent degasser (CSI 6150, Cambridge Scientific Instruments, England) at a flow rate 

of 0.5 ml/min. The total injected mass was 4.11 x 10-4 g. The detector array comprised 



a Dawn DSP laser photometer (MALLS detector) and Optilab DSP interferometric 

refractometer viz.  RI detector).The GPC/MALLS chromatogram was analyzed using 

ASTRA software (Astra for Windows 4.90.08 QELLS 2 . xx) using the Berry model 

with first order polynomial and  a dn/dc value of 0.140 ml/g 

2.5 Rheological studies 

Galactomannan solutions (0.5 - 2.0wt%) were prepared by dispersing the powder in the 

required volume of distilled water on a roller mixer overnight at room temperature after 

which time the sample was fully dissolved. Rheological measurements carried out 

according to the procedure in [5]. Studies were done at 25oC using a controlled stress 

rheometer (T.A. Instruments, USA) with cone and plate geometry (40mm 2° steel cone, 

ser no 982525; gap 53 micro m). The sample was placed on the Peltier plate with a 

spoon spatula, the cone was lowered and gap set, and the excess sample trimmed off. 

In all the studies, low viscosity oil was applied around the edge of the cone to act as a 

solvent trap.  

2.5.1. Steady shear viscosity: Under steady shear, the galactomannan solutions were 

subjected to a steady stepped flow procedure at a shear rate of 0.01 – 1000 s-1. The 

viscosity data obtained were analyzed using the Williamson model (Eq. 1) in the T.A. 

data analysis software 

    (Eq. 1) 

where η, ηo are shear and zero shear  viscosities, respectively; لآ,   and N are shear  rate, 

Williamson relaxation time and Williamson rate index, respectively.   

2.5.2. Small deformation oscillation experiments: Under oscillatory shear, the stress 

sweep was carried out at oscillation stress of 0.01- 500 Pa at a fixed frequency of 1Hz, 

with the aim to locate the linear viscoelastic region. Then a frequency sweep was 

conducted using an oscillation stress value in the linear viscoelastic region to obtain the 

frequency sweep data.  
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2.4.3 Effect of temperature: The effect of temperature on the apparent viscosity was 

investigated on a 2% galactomannan solution by carrying out a stepped flow procedure 

at different temperatures (15oC to 50oC) over the shear rate range 0.01 – 1000 s-1. The 

flow curves were fitted to the Williamson model and the zero shear viscosities (ηo) at 

different temperatures determined. The ηo was plotted against the inverse of the 

absolute temperature (T). The activation energy for viscous flow was estimated using 

the modified Arrhenius equation (Eq. 2) 

)(exp,
RT

Ea
Too 

             (Eq. 2) 

Where ηo= zero shear viscosity (Pa s) at temperature (T);ηo,T ͚ = zero shear viscosity (Pa 

s) at infinite temperature (T ͚ ); Ea = activation energy (J/mol); R = universal gas 

constant (8.314 J/mol/K; T= temperature (K).Since ηo,T ͚ represents the zero shear 

viscosity at infinite temperature, the equation can be written in the natural logarithmic 

form by choosing a reference temperature, in this case 298ᴏK (Eq. 3). 
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3. Results and Discussion 

3.1 Yield, protein content and monosaccharide composition 

The yield of galactomannan from the B. monandra seeds (Table 1) was 17.8% and is 

close to 19% reported for B. malabania seed by [8].The gum yield is less than 20. 4 % 

reported for Peltophorum pterocarpum seed [5], 26% reported for Cassia javanica 

seeds [9] and 40 – 61.7% reported for LBG [10, 11]. The galactomannan from B. 

monandra had a protein content of 5.35% which is less than 11.69% protein reported 

for Mucuna flagellipes polysaccharide [12] and 6.9 – 10.3% reported for LBG [10]. 

 B. monandra galactomannan (Table 1) contained mannose (77.28%), galactose 

(19.32%), and small amounts of glucose (2.44%), arabinose (0.52%} and glucuronic 

acid (0.44%). These results indicate that B. monandra is a glactomannan with Man/Gal 



ratio of 4:1. The Mal/Gal ratio is higher than 3.2:1 reported for B. malabania 

galactomannan [13], 2:1 reported for guar [11], slightly less than 4.4:1 reported for 

Peltophorum pterocarpum [5] but comparable to 4:1 reported for LBG [14]. This 

suggests B. monandra glactomannan would have similar solution properties to LBG.   

3.2 Molecular characteristics of B. monandra galactomannan 

The GPC-MALLS of B. monandra galactomannan (Figure 1) shows presence of two 

components, with the major component eluting at 8.0 ml (peak 1) and a minor 

component eluting at 12 ml (peak 2). The molar mass values were obtained by fitting 

the data to a Berry plot and are presented in Table 1. The whole polysaccharide had an 

average molar mass (Mw) of 2.54 x 105g/mol, the polydispersity index (Mw/Mn) was 

1.37 while the radius of gyration (Rg) was 40.7 nm. The analysis of the two eluted 

components separately showed that the major component (Peak 1) had Mw = 2.73x 105 

g/mol, Mw/Mn = 1.17, Rg = 41.4 nm) while the minor component (Peak 2) had Mw = 

1.25 x 105 g/mol, Mw/Mn = 1.00, Rg = 34.7 nm. We have not presently found any 

literature on the molar mass of B .monandra galactomannan for comparison. Since B. 

monandra galactomannan has similar M/G ratio as found in LBG it would be proper to 

compare their Mw. Haddarah et al. [11] and Gaisford  et al. [10] have reported Mw in 

the range of 3.0 - 13.8 x 105 g/mol for LBG which is close to the value obtained for B. 

monandra.  

3.3 Flow properties of B. monandra galactomannan under steady shear 

The result of steady shear studies carried out on solutions of 0.5 – 2.0wt%, B. monandra 

galactomannan are presented in Figure 2a. The flow parameters obtained by fitting the 

flow curves to the Williamson model are presented in Table 2a. 

The galactomannan solutions exhibited two shear flow regimes. A low shear Newtonian 

regime in which the apparent viscosity remained constant as shear rate increased and a 



shear thinning regime in which the apparent viscosity decreased with increasing shear 

rate.  

The transition from a Newtonian to a shear thinning regime occurred at a critical shear 

rate (لآCr). The لآCr shifted to lower shear rates as polymer concentration increased (Table 

2a). This shear rate marked the onset of shear thinning. The critical shear rate is related 

to the relaxation time, τ through τ =1/لآCr. The τ is the time taken by the polymer 

macromolecules to relax from all imposed stress brought about by shearing action. The 

value of τ increased with increase in polymer concentration. This is because at higher 

concentrations, the polymer coils are enmeshed and interpenetrate one another and 

when subjected to shear, these polymer coils become strained. After the imposed stress 

is removed, the time for stress relaxation is directly proportional to the number of 

entanglements. At a concentration of 0.5%, the ηo was 0.25 Pa s and increased to 244 

Pa s at 2.0%.  In comparison the apparent viscosity of B. monandra at 1% dispersion 

(7.179 Pa s)  was in the range of values reported for guar (6.0 – 7.5 Pa s) but higher 

than that reported for LBG (3.0 -3.5 Pas) [15, 16] 

The high zero shear apparent viscosity of B. monandra is a positive application property 

of the galactomannan as both suspending agent and stabilizer. The rate index lay 

between 0.5117- 0.7383 and increased with rise in galactomannan concentration. This 

indicates the degree of dependence of viscosity on shear rate in the shear thinning 

region for the B. monandra galactomannan. The strong shear thinning characteristics is 

a positive attribute for this galactomannan because it makes operations such as mixing, 

pumping, packaging or bottling easier [17].   

The dependence of viscosity on concentration could be reduced to a master curve by a 

plot of the reduced variables η/ηo versus τلآ. The Figure 2b indicates that η/ηo ~ 1 as τلآ 

~ 0. 



3.4 Viscoelastic properties of Bauhinia monandra galactomannan 

The linear viscoelastic region fell in the range of oscillation stress 0.1 – 1.0 Pa (Figure 

S1), therefore an oscillation stress of 0.5 Pa within this range was applied to generate 

the frequency sweep data. 

Figure 3 shows the variation of G′ and G″ with angular frequency, ω, at different 

polymer concentrations. The galactomannan exhibited viscous properties at polymer 

concentrations of 0.5% and below, with G″> G′ at all concentrations. However, both G′ 

and G″ showed dependence on ω with the separation between both moduli getting 

narrower as ω increased although no crossover occurred. However, polymer 

concentrations between 0.75% to 2.0% exhibited viscoelastic properties with both 

moduli crossing over (G′ = G″) at a critical angular frequency (ωcrit) below which the 

polymer solution exhibited a predominantly viscous response viz. G″ > G′. In contrast, 

above ωcrit, the solution exhibited a predominantly elastic response (G′ > G″). The value 

of G at the crossover point increased as concentration increased while the ωcrit decreased 

(Table 2b).The time for microstructural coupling (τ′) [given as τ′ = 1/ωcrit] increased 

with increase in polymer concentration. The complex modulus, G* is related to 

complex viscosity η* by | η*| = |G*|/ω and |G*| = (| G2|׳ + |G2|״)1/2. The relationship 

between steady shear (η(لآ)) and its oscillatory analogue (|η*(ω)|) was tested by 

superimposing the two sets of data for لآ = ω. This relationship is referred to as the Cox-

Merz superimposition. When this rule is valid, the rheological properties can be 

determined by either oscillatory or steady-state shear experiments, both of which are 

useful due to the limitations in each kind of experiment [18]. In addition, the Cox-Merz 

rule provides information about the microstructure of the materials from their degree of 

conformity with the rule [19].  



As can be seen from Figure 4, the Cox-Merz superimposition was closely obeyed at 0.5 

wt% but deviations became more pronounced at higher concentrations and higher shear 

rates. This divergence has been attributed to enthalpic association between the 

macromolecules. Such associations include various types of specific and non-specific 

interactions, some of which could only survive oscillatory (reversible) shear but not 

steady (destructive or irreversible) shear. Where association is purely topological, 

complete superimposition is obtained [20]. 

3.5 Effect of temperature on the flow properties of B. monandra galactomannan 

The most widespread approach to modelling the effect of temperature on rheological 

properties is to consider its effect on apparent viscosity. Figure 5a shows that the 

apparent viscosity of B. monandra galactomannan solution decreased with rising 

temperature.  

The apparent zero shear viscosity at 15oC was 633.6 Pa s while at 50oC it was 209 Pa 

s. Similar observations have been reported for other polysaccharides [20, 21]. Changes 

in viscosity with temperature can be used to manipulate the properties of 

polysaccharide-thickened media. For instance, the addition of thermal energy to a 

system will increase the vibrational energy of the molecules and thereby weaken the 

inter- and intra-molecular associations resulting in ready flow. By removing thermal 

energy, the inter- and intra-molecular associations are increased, inducing gel 

formation. This has been attributed to extended inter-particle associations at low 

temperatures [21].The activation energy(Ea) for viscous flow of 2wt% B. monandra 

galactomannan was estimated from the Arrhenius plot of the zero shear viscosity as a 

function of the inverse of absolute temperature (Figure 5b).  

The Ea was calculated to be 20.75 kJ/mol, this being the energy barrier that must be 

overcome before elementary flow processes can occur [22].This value signifies the 



minimum energy required to initiate flow in a 2 wt% solution of B. monandra seed 

galactomannan. In addition to temperature, Ea has also been reported to be affected by 

polymer concentration, the nature of intra- and inter-chain interactions and the 

molecular mass of the polysaccharide [20, 23]. 

4. Conclusions 

We have isolated the water soluble galactomannan constituent of B. monandra seed and 

characterised it. The galactomannan had Man/Gal ratio, molar mass and rheological 

properties similar to LBG and can be a good substitute in applications in which LBG is 

employed. Thus B. monandra has the potential to be used as thickener in food and 

related products. 
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Table 1. Some properties of B. monandra seed galactomannan 

Yield (%)    17.8 

Protein (%)     5.35±0.06 

 

Monosaccharide composition (%)
a
 

Ara     0.52±0.05 

Gal     19.32±0.26 

Glc     2.44±0.04 

Man     77.28±0.26 

GlcA     0.44±0.15 

Man/Gal    4/1 

 

Molecular characteristics
b
  Total elution                Peak 1          Peak 2  

Molar mass, Mw (g/mol)         2. 54±0.00 x 10
5
  2.73±0. 00 x 10

5
     1.25±0.14 x 10

5
 

            Radius of gyration, Rg  (nm)  40.7±0.0                     41.4±0.8                 34.7±0.00 

            Polydispersity, Mw/Mn  1.28±0.00             1.17±0.00                1.00±0.00 

 

a 
Results are mean±std of triplicate determinations. Note: Ara, Arabinose; Gal, Galactose; 

Glc, Glucose; Man, Mannose;  GlcA, Glucuronic acid 

b Obtained from fitting to the Berry first order polynomial. Results are mean±std of duplicate 

determinations 

 

 



Table 2. Solution characteristics of different aqueous concentrations of Bauhinia monandra 

galactomannan under steady shear and small deformation oscillations at 25
o
C.  

 

a. Parameters of the Williamson model  

fitted to viscosity-shear rate curves 

Conc (wt%) ηo(Pa.s)    τ (s)  N   s.e. 

0.50  0.248    0.04314    0.5117 14.24 

0.75  1.583    0.1932      0.5943 15.47 

1.0  7.179    0.7159      0.6212 20.69 

1.5  63.55    2.521        0.7021 17.18 

2.0  244.2    5.556        0.7383 15.99 

Key: ηo (Pa.s)= Zero shear viscosity,  τ (s) = Williamson relaxation time, N = Williamson rate 

index, s.e.= Standard error. G = modulus at crossover point (Pa), ωcrit = critical angular 

frequency (rad/s), τ′=time for microstructural coupling 

G (Pa)     ωcrit  (rad/s)    τ′=(1/ωcrit) (s) 

 

17.19  64.10  0.0156  

31.47  38.26  0.0261 

57.29  8.619  0.1160 

90.66  3.309  0.3022 

 

b. Frequency sweep data showing G 

crossover point at critical angular frequency 

 

 



 

Figure 1. GPC-MALLS showing Mw and RI response peaks versus elution volume of B. 

monandra galactomannan.  
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Figure 2 (a). Viscosity - shear rate profiles for different concentrations of B. monandra 

galactomannan at 25
o
C fitted to the Williamson model. (b).  Plots of reduced viscosity versus 

time constant for varying concentrations of  B. monandra galactomannan 
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Figure 3. Frequency sweep showing G′ and G″ (storage and loss moduli) versus ω (angular 

frequency) for different polymer concentrations at 25
o
C 

0.001

0.01

0.1

1

10

100

0.01 0.1 1 10 100

G
', 

G
" 

(P
a)

ω (rad/s)

2% G' 2% G" 1.5% G' 1.5% G" 1% G' 1% G" 0.75% G' 0.75% G" 0.50% G' 0.5% G"

        



 

Figure 4. Cox-Merz plot: Superimposition of steady shear viscosity (η(لآ)) [filled symbols] and 

dynamic viscosity (η*(ω)) [unfilled symbols]measured at 25
o
C for different concentrations of  

B. monandra galactomannan 
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Figure 5 a. Viscosity-shear rate profiles of 2% B. monandragalactomannan at different 

temperatures.b). Arrhenius plot of zero shear viscosity as a function of  inverse absolute 

temperature 
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Figure S1. Oscillation stress sweep showing storage modulus, G′ at different polymer 

concentrations at 25oC 
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