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Investigation of the Micromechanics of the Microbond Test

Abstract
The microbond test is a method which is sometimes used for measuring interfacial shear strength. In the
analysis of the data it is often assumed that the interfacial shear stress is constant and thus, by implication, that
the strain in the fibre along the embedded fibre decreases linearly from the point of entry to the point of exit.
In this paper the results of conventional microbond tests and simulated microbond tests performed under a
Raman microscope on a Kevlar-49/epoxy system are reported. The conventionally performed tests show that
the calculated interfacial shear strength for this system is approximately 16 MPa regardless of the position of
the supporting knife edges. The strain distribution along the fibre during simulated microbond tests was
studied as a function of knife edge position, interfacial area and level of load by means of Raman spectroscopy.
It was found that the interfacial shear stress was not constant, as is frequently assumed, but was strongly
dependent upon distance through the droplet, knife-edge position and applied load. At low loads the strain
was a maximum at the point where the fibre entered the droplet and then dropped off sharply through the
embedded length. This effect was enhanced when the knife-edge separation was reduced. The variation of the
shape of the stress distribution was similar to that predicted by a linear finite element analysis. At higher load
levels the onset of failure in the region closest to the point where the fibre entered the droplet could be
observed.
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Abstract 

The microbond test is a method which is sometimes used for measuring interfacial 

shear strength. In the analysis of the data it is often assumed that the interfacial shear 

stress is constant and thus, by implication, that the strain in the fibre along the 

embedded fibre decreases linearly from the point of entry to the point of exit. In this 

paper the results of conventional microbond tests and simulated microbond tests 

performed under a Raman microscope on a Kevlar 49/epoxy system are reported. The 

conventionally performed tests show that the calculated interfacial shear strength for 

this system is approximately 16 MPa regardless of the position of the supporting knife 

edges. The strain distribution along the fibre during simulated microbond tests was 

studied as a function of knife edge position, interfacial area and level of load using 

Raman spectroscopy. It was found that the interfacial shear stress was not constant, 

as is frequently assumed, but was strongly dependent upon distance through the 

droplet, knife edge position and applied load. At low loads the strain was a maximum 

at the point where the fibre entered the droplet and then dropped off sharply through 

the embedded length. This effect was enhanced when the knife edge separation was 

reduced. The variation of the shape of the stress distribution was similar to that 

predicted by a linear finite element analysis.  At higher load levels the onset of failure 

in the region closest to the point where the fibre entered the droplet could be 

observed. 
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Introduction 

Fibre reinforced composites can exhibit outstanding properties compared to their 

constituents. The fibre, matrix and interface are all important factors in the 

performance of composites. In particular the effective utilisation of the strength and 

stiffness of the fibres depends upon efficient transfer of load through the interface and, 

therefore, good interfacial bonding. Toughness, on the other hand, can be promoted 

by the use of a weaker interface, as is the case in many ceramic matrix composites. 

Thus the measurement and control of bond strength between the fibres and matrix is 

important and has been the subject of much effort. The interfacial shear strength of 

composites can be measured by tests on single fibre systems[1-13]. It is noticeable, 

however, that the various tests give different results even when used to characterise 

the same system[14-15]. Of the single fibre methods the most commonly used has 

been the pull-out technique[1-8]. A limitation to this approach is that if the fibre 

embedded length is longer than the critical length then failure of the fibre will occur 

before pull out. The manufacture of samples with sufficiently short embedded length is 

difficult. A modified technique, the microbond test, has been proposed in order to 

surmount this problem[12-13]. The sample preparation for this test involves the 

application of a microdroplet of resin onto the fibre. The microdroplet is then restrained 

by knife edges whilst the fibre is pulled out. It is usual to assume that the shear stress 

is constant along the interface so that the interfacial shear strength is calculated from 

the debonding force divided by the interfacial area. This should lead to a linear 

relationship between debonding force and embedded length. This relationship is 

observed if the embedded length is small, but at higher embedded lengths the 

debonding force tends to a maximum. This indicates that the assumption cannot be 

correct. Indeed theoretical and finite element studies show that the interfacial shear 

stress is not constant throughout the specimen[16-19]. It is clear that experimental 

measurements of the strain and interfacial stress distributions along the interface 

during the microbond test are required in order to put the theory and data reduction 

method on a firmer footing. 

 It has been found that the frequency of the bands in the Raman spectrum of 

many materials is sensitive to the stress in that material. There are a large number of 

reports which show that Raman spectroscopy can be used to measure strain and 

shear stress in fibres and composites. Examples of such studies may be found in 



 
 

 
 

references 20 to 34. Kevlar fibres have been the subject of a number of these studies 

as single fibres, in composites and during micromechanical tests[18,24,25-34]. There 

has been some confusion in the literature since some authors have not found changes 

in the Raman spectrum of Kevlar when the fibre was loaded[35-36]. These authors 

used high powered Argon ion lasers whereas those who found shifts used helium 

neon lasers[21-27,29-32]. It is now clear that the 488nm line of argon ion lasers 

causes erratic Raman peak shifts and premature failure when used to excite Raman 

spectra from Kevlar fibres[21]. In this work Raman spectroscopy has been used to 

obtain the strain distribution along a fibre within a droplet during simulated microbond 

tests using a helium neon laser and from these data the interfacial shear stress 

distributions have been determined. 

 

Experimental 

Microbond tests were carried out using an Instron mechanical testing machine in order 

to provide a comparison between the Raman data and the conventional approach. 

The Kevlar fibres were mounted singly upon paper cards with windows cut in them 

using double-sided adhesive tape. The fibres were subsequently fastened with a slow 

setting, cold-curing epoxy adhesive. The fibre droplet specimens were prepared by 

depositing a small amount of epoxy resin onto a horizontally suspended Kevlar fibre. 

The epoxy resin used was Ciba-Geigy LY1927 and the hardener was HY1927. These 

were mixed in the recommended ratio of 100:36 parts by weight and cured at room 

temperature. The resin was placed on the fibre using a fine glass applicator under a 

magnifier. The embedded length and droplet diameter were measured for each 

sample under an optical microscope. Microbond tests were performed using the 

mechanical testing machine. The free end of the fibre was held in a standard fibre 

testing grip. The microdroplet was restrained using two knife edges. The separation of 

these was controlled by means of a micrometer. A schematic drawing of the 

arrangement is shown in figure 1. 

The Raman spectroscopic measurements were performed using a SPEX 1000m 

single spectrometer coupled to a modified Olympus BH-2 optical microscope. 

Additional rejection of the laser line was provided by a holographic filter placed 

between the microscope and spectrometer. A Wright Instruments CCD camera was 

used as the detector. Spectra were excited with the 632.8nm line of a 7mW helium 



 
 

 
 

neon laser. The power at the sample was less than 1mW. The beam was focused on 

the sample through the microscope using a x20 objective lens with a numerical 

aperture of 0.4. The beam was polarised parallel to the fibre axis for all measurements 

and the exposure time was ten seconds. Prior to the simulated microbond experiments 

a number of calibration curves of strain versus Raman frequency were obtained. 

Single Kevlar fibres were fastened to a purpose built straining rig consisting of one 

fixed and one moveable block. The later was displaced by a micrometer, thus giving a 

measurement of fibre strain. Spectra of the 1610 cm
-1

 band were taken at 0.1% 

increments in fibre strain. The gauge length of the samples was approximately 20 mm. 

 The simulated microbond tests were carried out using a straining rig which was 

modified from the one used for the single fibre calibration measurements. A schematic 

diagram of this rig is shown in figure 2. The stationary block was replaced by two 

adjustable knife edges which allowed the resin droplet to be restrained with different 

knife edge separations. For these experiments gaps of 20, 50 and 80 µm were used. 

The end of the fibre was fastened to the moveable block in a similar manner as in the 

single fibre tests. The fibre was strained to a number of levels of strain and at each 

spectra were taken from the embedded fibre.  Spectra were taken at 10 µm intervals in 

the first 100 µm from the point were the loaded fibre entered the droplet, then at 30 µm 

intervals after that. Spectra were also taken from the area either side of the knife 

edges and also from the loaded fibre. Samples with droplets from 100 µm to 600 µm in 

length were used. 

 Finite element simulation of the microbond test to observe the effect of the knife 

edge separation upon the form of the shear stress distribution along the interface. This 

was undertaken using the LUSAS finite element system from FEA Ltd. A linear-elastic 

axisymmetric model was used. The axial modulus of the fibre was assumed to be 

121.5 GPa and the transverse modulus 2.49 GPa [37]. The shear modulus of the fibre 

was taken to be 1.69 GPa [38]. The resin Youngs modulus was assumed to be 3 GPa.  

 

   

Results and Discussion 

 

Conventional analysis 

Conventional microbond tests were carried out using an Instron mechanical tester as 



 
 

 
 

described above. The droplets were supported using knife edges. One of these was 

moved by means of a micrometer so that the separation between them could be set. 

Experiments were carried out using knife-edge separations of 20, 50 and 80 µm. 

Figures 3-5 show plots of pull-out force against embedded area data obtained with 

these knife edge separations. According to Miller, Muri and Rubenfeld [13] the shear 

stress can be assumed to be constant along the interface and thus the interfacial 

shear strength can be found from  

τ
π

=
F

rl2
             Equation 1 

 

were F is the failure force, r is the radius of the fibre, l is the embedded length and 

hence 2πrl is the embedded area. Straight lines have been fitted to the failure force 

against interfacial area data in figures 3-5. Only the data at low embedded areas were 

used for this because as the embedded area increases the data tends towards a 

constant value of force. At this constant level of applied force it is quite possible that 

the fibre is failing rather than interfacial yielding or debonding occurring. The fits have 

been forced to go through the origin since it is clear from Equation 1 that the force 

must be zero when the embedded area is zero. The straight line fits yield values of 

average interfacial shear strengths of 15.7, 15.8 and 15.5 ± 3.0 MPa for tests with the 

knife edge separations of 20, 50 and 80 µm respectively.  Thus the position of the 

knife edges appeared to have no effect upon the measured value of interfacial shear 

strength. This should be compared to the data obtained from simulated microbond 

tests using Raman spectroscopy, presented in the next part of the paper, which shows 

a significant variation in the interfacial shear stress distribution depending upon the 

position of the knife edges. 

 

Raman investigations of microbond samples at low strain levels 

In order to investigate in more detail the micromechanics of the microbond tests 

Raman microscopy was used to measure the stress distribution along the interface. In 

order to use this approach it is necessary to calibrate the rate of shift of one of the 

Raman bands with strain for a single fibre. This was accomplished using a small 

straining rig as described above. Figure 6 shows a calibration plot for a single Kevlar 

fibre. The average slope measured was 4.85cm
-1

 %
-1

  which is in good agreement with 



 
 

 
 

previously published values[21,31].  

Simulated microbond tests were performed using a rig similar to that used for 

calibrating the single fibres as described earlier. The simulated microbond tests were 

difficult in general to perform. Raman spectra were obtained from a number of 

specimens with different embedded lengths to investigate the effect of embedded 

length on the strain distribution along the interface and upon the interfacial shear 

stress distribution. The effect of knife edge separation upon these distributions was 

also investigated.  The simulated microbond test samples all failed by debonding 

except in one case where the embedded length was 500µm and the knife separation 

was 20µm which failed by fibre fracture. Since only one sample failed this way this 

may have been due to the high stress on the fibre at the point of entry caused by the 

support conditions or by rubbing of the fibre against the knife edge.  

Figure 7 shows typical results from some simulated microbond tests. Three strain 

profiles are presented each taken with knife edge separations of 20, 50 and 80 µm. 

The external fibre strain was between 0.6 and 0.9% for these data. Information with 

fibres at exactly the same strain was not obtained due to the difficulties in making the 

measurements. The droplets in each case were approximately 500 µm long. There is 

some scatter in the data, but it can be seen that the strain in the fibre is a maximum 

close to the point where the loaded fibre enters the droplet and the strain rapidly 

decreases along the length of the droplet. This is as might be expected from shear lag 

theory[39,40], but is contrary to the assumption made in the simple analysis of the 

microbond test[12,13], that the shear stress is constant. In order for the shear stress to 

be constant the decrease of strain with distance through the droplet should be linear, 

which is not the case as shown by figure 7.  

The pull-out test has been modelled by a number of workers. The general form of 

these models is very similar. Piggott[17] gives the strain along the fibre, fε ,  as 

 

 f app

e

=
n L x r

ns
ε ε

sinh[ ( ) / ]

sinh( )

−
          Equation 2 

where εapp is the external strain on the fibre, r is the radius of the fibre, Le is the 

embedded length,  s  is the aspect ratio of the fibre, i.e. Le/r and n is given by the 

formula  

 



 
 

 
 

    n
E

E R

m

f m

2
1 1

1
=

+ln( / ) ( )r ν
           Equation 3 

where Em is the Young’s modulus of the matrix, Ef is the fibre Young’s modulus, R is 

the radius of the block of resin surrounding the fibre, r is the radius of the fibre and 

νm is the Poisson’s ratio of the matrix 

In order to ascertain whether or not the theory predicts the form of the data, Equation 

2 has been plotted with the strain data obtained from a droplet of length 540 µm in 

figure 7. It can be seen in figure 7 that Equation 2 fits the data reasonably well.  In 

order to plot these curves a value for n of 0.11 was used for the data gathered with 

knife edge separations of 20 and 50 µm and 0.07 for the data obtained with a knife 

edge separation of 80 µm. The difference in the value of n required to fit the data 

where the droplet was gripped further away from the fibre suggests that at this point 

the influence of the knife edges upon the strain and interfacial stress distributions is 

less marked. The significance in the different values of n required to fit the data is not 

high, however, and thus n should be regarded as little more than a fitting constant. 

Although the theory was developed for the pull-out rather than microbond test the 

geometry is similar and the fit to the experimental data can be seen from figure 7 to be 

good. 

 

Geometrical effects 

Closer inspection of figure 7 reveals that the slope of the curves for different gripping 

positions is not the same. The rate of decrease of fibre strain with distance into the 

droplet is lower for the droplet restrained with an 80 µm knife edge gap than for the 

ones where the knife edge separation was 20 or 50 µm. In order to fit the data, as 

noted above, a different value of n was required. This difference is, as stated 

previously, presumably due to the influence of the stress concentration of the knife 

edge at the lower separations.  

Perhaps clearer is the data presented in figure 8 which shows the interfacial shear 

stress as a function of position through the droplet. This was calculated from the data 

of figure 7 using the expression[41] 

 x

f f
=

E d

4

e

x
τ

d

d
 Equation 4 

where τx is the interfacial shear stress, Ef is the fibre Young's modulus, d is the fibre 



 
 

 
 

diameter and def/dx is the slope of the strain against distance curve. These data show 

that the interfacial shear stress is high at the point of entry of the fibre into the droplet 

and then decreases rapidly with distance through the droplet.  

Figure 8 shows that the interfacial shear stress at the point of fibre entry into the 

droplet increases as the knife edge supports are moved closer in towards the fibre. 

There is thus an influence on the strain and stress distributions of the gripping position.  

In order to verify the stress distributions obtained from the Raman spectroscopy 

experiments and to model the effect of knife edge position upon the strain distributions 

a simple, linear axisymmetric finite element analysis has been performed. In this 

analysis the gripping position was moved around the droplet one node at a time from 

the fibre outwards. The mesh which was used is shown in figure 9. Figure 10 shows 

the strain distribution in the droplet as a function of the gripping position predicted by 

the finite element analysis. The external fibre strain used for these calculations was 1 

%. Comparison of this with figure 7 shows good agreement on the shape of the stress 

distribution, thus confirming the experimental measurements. It is clear from these 

measurements and calculations that the interfacial shear stress in the droplet will not 

be constant, as is usually assumed in the analysis of data from this test.  

 Figure 11 shows the effect of droplet length on the strain distribution in the 

embedded part of the fibre. In this figure the separation of the knife edges has been 

maintained at 80 µm. It can be seen from figure 11 that for the embedded lengths 

examined that the strain distributions are similar in nature to those observed in figure 

7. The strain decreases throughout the droplet, but this decrease is not linear and, 

therefore, cannot give a constant shear interfacial shear stress.  The form of this 

decrease is similar in each of these cases and not dissimilar to the form of the shear 

lag and finite element[17,19,30] predictions.  

 

High strain deformation 

So far all of the strain and shear stress distributions presented and discussed have 

been recorded with the strain in the loaded part of the fibre being 1% or less. Thus the 

specimen is not close to failure and the matrix is still behaving elastically. The stress 

distributions close to failure might be expected to be different to these initial ones. This 

is true for this system and figure 12 shows the strain distribution in a 440 µm long 

droplet, with the knife edges 50 µm apart at different levels of applied stress. It can be 



 
 

 
 

seen from this figure that the strain distribution within the fibre at low strain levels is 

very much like those observed in the previous figures. Indeed the lines shown on 

figure 12 for the two curves at lower strain were drawn using equation 2 with the same 

value of n as used for the data of figure 7 restrained at 50 µm knife edge gap. With 

higher levels of strain in the loaded part of the fibre it can be seen that the form of the 

strain distribution changes significantly. There is a region where the strain decreases 

linearly followed by a region in which there is shear lag type behaviour. The data is of 

the form expected where there is partial debonding of the interface. The debonding 

takes place over the initial portion of the embedded fibre, up to 250 µm, this is then 

followed by elastic stress transfer. Previous work on the pull-out test[42] has shown 

that the strain in the debonded part of the fibre can be found from the balance of 

forces argument  which gives rise to the expression[41] 

     ε
τ

f

i

f

i x

rE
=

−2 ( )
                Equation 5 

where τI is the frictional shear stress, i is the point where a line fitted to the data in the 

debonded region intercepts the distance axis and the other symbols are as defined 

previously. The strain in the elastic part of the droplet can be given by modifying 

equation 2 to use the bonded, rather than total, length of the fibre. In figure 13 the 

curve at the highest load level has been fitted using these equations assuming that the 

frictional shear stress is 10.5 MPa and that n is 0.07. It can be seen from the figure 

that these equations fit the data reasonably well. It is interesting to note that the value 

of n is the same as that required to fit the data of figure 7 for a knife edge gap of 80 

µm, i.e. at a separation where the finite element analysis shows that there is little effect 

of the knife edges upon the shear stress distribution. Thus the strain data recorded for 

this test can be explained and fitted using the existing theory for the pull-out test. The 

value of the frictional shear stress obtained for this system is exactly the same as the 

average value obtained by Bannister et al from pull-out tests on high modulus Twaron 

fibres in a similar resin[42]. The shear yield stress of this resin has been found to be 

43 MPa[42]. The interfacial shear stress data calculated at a fibre strain of 0.8 % and 

shown in figure 13 are consistent with this as is the data for a sample with 1.7 % fibre 

strain. The data obtained for the sample under a fibre strain of 1.1 % lead to shear 

stresses close to the fibre end which are apparently greater than the shear yield stress 

for the matrix. This is probably due to fitting to the low number of data points and the 



 
 

 
 

comparatively high random error in them due to the difficulty in performing the 

measurements. 

 

Conclusions 

It has been clearly shown that by use of Raman spectroscopy the strain distribution in 

an embedded fibre during microbond tests can be measured. This has shed some 

light on the interfacial shear stress distribution in the embedded fibre. In contrast to the 

assumption normally made in the analysis of data from this micromechanical test the 

interfacial shear stress is not constant. At low applied loads the strain and shear stress 

distributions are much as would be expected from shear lag theory. At higher loads 

this is no longer true. In the example presented in this paper in figure 13 evidence of 

debonding can be observed. It can also be seen from the experimental data presented 

in figures 7 and 8, the finite element analysis of figure 10 and the values of n required 

to fit the data to theory that the position of the grips which support the microdroplet is 

important and directly affects the interfacial shear stress distribution and its maximum 

value. The finite element analysis shows that once the knife edges are placed a few 

fibre diameters away from the fibre the stress distribution becomes insensitive to their 

position. If the knife edges are placed close to the fibre then the strain and stress 

distributions and in particular the maximum interfacial shear stress is very dependent 

upon gripping position. This is contradictory to the recommendations of Chou et al[43] 

who suggest that the knife edges should be placed close to the fibre. The data from 

the conventionally performed and analysed microbond test shows that the values 

derived for the average interfacial shear stress are much lower than the actual 

maximum shear stresses. The values obtained for the conventional test were not very 

dependent upon the position of the knife edge supports, even thought the Raman data 

shows this to be a critical factor controlling the shear stress distribution and maximum 

interfacial shear stress. It is clear from these observations that a method of data 

reduction which assumes that the interfacial shear stress is constant under all loading 

conditions is not appropriate. In none of the cases examined was the interfacial shear 

stress constant. Furthermore interfacial failure will not occur because of the presence 

of some average level of interfacial shear stress but due to the maximum interfacial 

shear stress being high enough to cause, for example, rupture of the interface or 

yielding of the matrix close to the interface. In fact it is now clear that the failure occurs 



 
 

 
 

in two stages as seen in figures 12 and 13. The strains and interfacial shear stresses 

increase, but the shape of the distribution remains the same as the external load is 

increased. Failure is then initiated, in this case by a debonding process, and this 

propagates along the fibre. The maximum interfacial shear stress is the stress at the 

point where the fibre enters the droplet just before the interface begins to fail. In the 

conventionally performed test the failure force is recorded. At this point the force 

consists of that which is required to increase the shear stress to its maximum plus the 

force necessary to propagate the failure along the interface. There are thus at least 

two sources of variation in the data presented in figures 3 to 5. One is variation due to 

the effect of the position of the knife edges. If the droplet is not central between these 

then the stress concentration effect may vary from sample to sample. The second 

effect comes from the variation in the frictional strength of the interface from sample to 

sample as demonstrated for the similar pull-out test by Bannister et al [42]   

 It is now necessary to redefine the  procedures used to gather the experimental 

data and for the calculation of interfacial shear stresses in the light of the observations 

presented here and elsewhere[42,44]. The shear lag type models do fit the strain 

distributions, but the force required to calculate the interfacial shear strength is not the 

failure load of the specimen. The force required is that at which the sample starts to 

fail. At this point the strain and interfacial shear stresses fit the shear lag type 

distributions and the maximum interfacial shear stress is reached, as noted above. In 

principle this can be obtained from careful analysis of the load-displacement curve 

since the compliance of the sample will change slightly at this point. This change in 

slope is not easy to detect and some recommendations for a technique which would 

allow this approach to be used have been made by one of the authors elsewhere[44]. 

In essence the suggested method is to use not one but two droplets. One of these 

would be restrained, the other displaced. The load-displacement curve would be 

recorded and the change in stiffness of the sample would indicate the load at which 

yielding or debonding occurred. This load could then be used to calculate the 

interfacial shear strength using a shear lag model. A similar suggestion has been 

made by Hampe and Marotzke [45]. 
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Figures 

Figure 1. Schematic diagram of the experimental arrangement used to obtain 

debonding force versus embedded area data.  

 

Figure 2.  Schematic diagram of the apparatus used to perform the simulated 

microbond tests. 

 

Figure 3. Plot of debonding force versus embedded area measured for Kevlar 49 

fibres in Ciba Geigy LY5052 resin with a knife edge separation of 20 µm. 

 

Figure 4. Plot of debonding force versus embedded area measured for Kevlar 49 

fibres in Ciba Geigy LY5052 resin with a knife edge separation of 50 µm. 

 

Figure 5. Plot of debonding force versus embedded area measured for Kevlar 49 

fibres in Ciba Geigy LY5052 resin with a knife edge separation of 80 µm. 

 

Figure 6. Calibration of rate of change of position of the 1610cm
-1

 band in Kevlar with 

strain. 

 

Figure 7. Strain distribution in droplets of approximately 500 µm length at various knife 

edge separations.  

 

Figure 8. Interfacial shear stress distribution in droplets of 500 µm length at various 

knife edge separations calculated from the data of figure 7. 

 

Figure 9. Finite element mesh used in numerical modeling of the microbond test. 

 

Figure 10. Strain distribution along the interface in a droplet of length 540 µm 

calculated using a linear elastic finite element model. The curves were generated by 

moving the gripping position away from the fibre one node at a time and rerunning the 

analysis. 

 

Figure 11. Strain distribution as a function of droplet length. Knife edge separation 80 

µm. 

 

Figure 12. Strain distribution in a droplet of 440 µm in length with knife edge 



 
 

 
 

separation of 50 µm as a function of strain in loaded part of fibre. The solid lines are 

fits to the theory described in the text. 

 

Figure 13. Interfacial shear stress distributions calculated from the data of figure 12 

using the theory outlined in the text.  
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Figure 3
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Figure 7

0 100 200 300 400 500 600

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Gripping positon and fibre strain

  20 µm gap 0.60% strain

  50 µm gap 0.86% strain 

  80 µm gap 0.91% strain

S
tr

a
in

 /
%

Distance along fibre /µm

 



 
 

 
 

0 100 200 300 400 500 600

0

10

20

30

40

50

Gripping postion and fibre strain

 20 µm gap 0.60 % strain

 50 µm gap 0.86 % strain

 80 µm gap 0.91 % strain
In

te
rf

a
c
ia

l 
s
h
e
a
r 

s
tr

e
s
s
 /
M

P
a

Distance along fibre /µm

 

Figure 8 
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Figure 10 
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Figure 11 
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Figure 12 
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