
Glyndŵr University
Glyndŵr University Research Online

Computing Computer Science

11-1-2009

Integration Methodologies for Disparate Software
Packages with an Emphasis on Usability
Lyndon Evans

Vic Grout
Glyndwr University, v.grout@glyndwr.ac.uk

Dave Staton

Dougie hawkins

Follow this and additional works at: http://epubs.glyndwr.ac.uk/cair
Part of the Computer Engineering Commons

This Conference Paper is brought to you for free and open access by the Computer Science at Glyndŵr University Research Online. It has been
accepted for inclusion in Computing by an authorized administrator of Glyndŵr University Research Online. For more information, please contact
d.jepson@glyndwr.ac.uk.

Recommended Citation
Evans, L., Grout, V, Staton, D. & Hawkins, D., (2009)’Integration Methodologies for Disparate Software Packages with an Emphasis
on Usability. (Proceedings of the Fifth Collaborative Research Symposium on Security, E-Learning, Internet and Networking SEIN
2009, 26-27 November 2009, pp81-90 held in Darmstadt, Germany: Plymouth University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/287589064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epubs.glyndwr.ac.uk?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/comp?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:d.jepson@glyndwr.ac.uk

Integration Methodologies for Disparate Software Packages with an
Emphasis on Usability

Abstract
This paper describes a novel approach to program script generation. The goals are twofold: to allow a number
of different software packages to be implemented together and to permit a user with little or no programming
skill to produce executable code. The principles and requirements of such a system are discussed and an
outline approach is suggested. A case study based on electric motor design is presented for which early results
are encouraging. Future development is considered in conclusion.

Keywords
activeX, automation, flowchart, integration, machine-generated script

Disciplines
Computer Engineering

Comments
This paper was presented at the Fifth Collaborative Research Symposium on Security, E-Learning, Internet
and Networking (SEIN 2009), 26-27 November 2009, which was held in Darmstadt, Germany. It was
published by the University of Plymouth and the symposium proceedings are available at
http://www.cisnr.org

This conference paper is available at Glyndŵr University Research Online: http://epubs.glyndwr.ac.uk/cair/28

http://www.cisnr.org/default.asp?page=sein09
http://epubs.glyndwr.ac.uk/cair/28?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages

Integration Methodologies for Disparate Software

Packages with an Emphasis on Usability

Lyndon Evans
1 2

, Vic Grout
1
, Dave Staton

2
 and Dougie Hawkins

2

1
Centre for Applied Internet Research, Glyndŵr University, Wales, UK

2
Motor Design Ltd., Ellesmere, Shropshire, UK

{lyndon.evans|dave.staton|dougie.hawkins}@motor-design.com,

v.grout@glyndwr.ac.uk

Abstract

This paper describes a novel approach to program script generation. The goals are twofold: to

allow a number of different software packages to be implemented together and to permit a user

with little or no programming skill to produce executable code. The principles and

requirements of such a system are discussed and an outline approach is suggested. A case

study based on electric motor design is presented for which early results are encouraging.

Future development is considered in conclusion.

Keywords

ActiveX, Automation, Flowchart, Integration, Machine-Generated Script

1. Introduction and Background

An ever-increasing number of software systems are becoming available to industry

with the aim to increase productivity and efficiency. The drive to integrate systems is

becoming a priority for business managers (Larrucea, 2008). It is also becoming

increasingly important for industry to reduce the effort required of customers to

integrate their software (Mazhelis et al, 2007).

The components within these software packages can be mission critical to an

organisation’s success, and the importance of providing these components for use

within an automation process is becoming more widely recognised (Crnkovic et al,

2005).

Research for this paper is based on a software development project to facilitate the

automation of a range of CAD software packages supplied to the electric motor

industry by Motor Design Ltd. Each package specialises in different aspects of the

design process for a motor e.g. electromagnetic analysis (SPEED), thermal analysis

(Motor-CAD) and drive circuit simulation (Portunus).

Both Motor Design Ltd. and end users of these packages are increasingly exploiting

the benefits of automation to improve the accuracy and delivery times of proposed

designs. The project and proposed methodology are in the early stages of

development, but is able to interact with 2 CAD packages to gather and analyse data.

The remainder of this paper is organised as follows: Section 2 discusses the

principles and methodology being investigated, with an introduction to automation

methods. Section 3 details a case study employing the methodology being

researched, including some illustrations of a developing software project employing

the researched methodology. Finally, Section 4 offers some early results and

conclusions and discusses future work.

2. Principles and Methodology

2.1. Linking disparate software packages together

The ability to successfully control a software package by means other than manual

use of its user interface requires a precise sequence of actions to be carried out.

These actions can perform tasks such as the input or output of data, selecting options

and performing processing tasks which are likely to be a speciality of the application

being automated. Methods for software automation fall into two main categories:

1. Recording user interaction with an application's Graphical User

Interface (GUI).

2. Direct interaction with an application's automation interface.

1. Recording user interaction with an application's GUI.

This method uses software to record a sequence of user actions applied to a GUI in

one or more applications. These actions can include keystrokes, mouse button clicks

or click and drag operations such as selecting a block of text prior to copying.

2. Direct interaction with an application's automation interface.

The use of this method is dependant on an application having a built in automation

interface. By using compiled code or script, the automation interface can be used to

perform tasks within the application under external control. This method bypasses

the GUI, and as such the application is not required to display it.

Both methods have advantages and disadvantages. The first method has simplicity

and an ability to use almost any software. However it requires the user to record the

actions required in the automation process being designed, and requires some careful

planning to achieve the desired results. The second method is more efficient while

executing, particularly in the transfer of data. Its disadvantage however is that

automation using this method requires programming skills which a user may not

have.

Due to the requirements of the case study, the second technique is used and requires

the use of scripting. Consequently, the issue of programming skills and syntax

knowledge must be overcome, and it is the methodology for addressing this which is

discussed in this paper. The methodology relies on the Common Object Model

(COM) discussed by Minich et al (2008). COM is also referred to as ActiveX and it

this technology employed in the applications which are utilised by the script.

Figure 1: Automation framework

Figure 1 shows the framework for the methodology being researched. The controller

is an application which can build a script according to the user’s design, and control

it during execution. The script can control one or more other applications using their

built-in automation interfaces.

2.2. ‘Programming for non-programmers’

The concept and challenge behind the methodology is to allow complex automation

scripts to be generated by users without manually having to write them and test for

syntax errors etc. This is discussed in 3 sections: Structure, Detail and Control.

2.2.1. Structure

The automation process is to be designed as a flowchart. This is to be achieved by

the use of an interface incorporating a graphical flow diagram builder to describe the

automation process required by the user.

Block type
Linkage rules

Preceding blocks Following blocks

Start (Terminal) None One only

Stop (Terminal) Min 1 None

Process Min 1 Max 1

Decision At least one process block
At least one defined for both true and

false paths

Table 1: Flowchart block rules

A summary of the rules for creating a flowchart is shown in Table 1. The main issue

with converting a flow chart created by the user into a script is to ensure that the

generated script executes the automation process stages in the order, branching and

iteration cycles dictated by the flowchart.

One method which has been researched is to analyse the diagram to identify the

boundaries of loop and branching structures in the flowchart, in order that the blocks

within may be contained within the required script syntax.

Figure 2: Boundary of a branch structure

 Figure 3: Nested loop boundaries

In the case of a branch structure (Figure 2), it is necessary to start from the

originating decision block and trace along both true and false paths to the point

where they converge. The instructions from each block within the boundary can then

be placed appropriately within the branching syntax of the script e.g.

If ‘?’ then

 Perform A

Else

 Perform B

End If

A similar approach can be used with loops in the flowchart. In this case, a decision

block is at the base of the loop, and the top is defined where the return path

converges with the main stack. Figure 3 shows an example of a nested loop with

the boundaries identified.

Nested structures require that the function to build them in the script be called

recursively, and some limited success was achieved with this technique. However,

these methods of following the flowchart structure can be technically challenging

with complex diagrams, and does impose a limitation on the way they can be built,

see Figure 4.

A

B

 True

 False

Figure 4: Overlapping loops

The diagram has been built using the simple rules defined in Table 1. As can be seen,

these simple rules do allow the forming of overlapping loops or branching structures,

which cannot be implemented in script syntax without causing an error.

An alternative technique for converting the flowchart into a script is to define each

block (apart from both terminal blocks) as discrete functions. The output of each

function is a reference to the next function (block) to be executed.

To implement this alternative method, a loop is built into the main procedure of the

script which calls a function by reference from output function which preceded it.

Once the loop has been initialised with a function to start with, the loop calls the

remaining functions in the order dictated by the flowchart design. In the context

programming this in Visual Basic (VB), the function selection would be performed

in a Select...Case statement.

Do While blockToExecute <> ""

Select case blockToExecute

 case "FlowActionBlock1"

 blockToExecute = FlowActionBlock1()

 case "FlowActionBlock2"

 blockToExecute = FlowActionBlock2()

 case "FlowActionBlock3"

 blockToExecute = FlowActionBlock3()

 case "FlowTerminalBlock2"

 blockToExecute = FlowTerminalBlock2 ()

End Select

Loop

In the above example the loop is halted by returning an empty string (which is

essentially what is done by the STOP block function). In evaluating methods for

turning a flowchart into a script, the second technique offers far more flexibility and

simplicity in execution. It is counter-productive to use the first technique to try and

build an efficient script (i.e. as would be written by an experienced programmer) by

analysing the flowchart and identifying the boundaries of loops and branching

structures.

2.2.2. Detail

The methods discussed can deal with the structure of the flowchart. The issue of

building syntactically correct script statements within each block according to the

user’s requirements, in the context of data input, output and manipulation, also needs

to be addressed. It will be a requirement to shield the user from the syntax of the

script language, while presenting the user with the necessary information which

preserves his or her awareness of the block functionality.

2.2.3. Control

It is important to note that the script handler, once passed a script for execution is an

independent process. It would be risky to allow this process to be executed without

some form of user control mechanism. The control thread illustrated in Figure 1

allows the process to be initiated or paused. The use of individual functions allows a

check for a stop request to be performed at each block stage, thus allowing the user

to stop the automation process in the event of a problem.

3. Case Studies and Examples

3.1. Introduction

Research into this methodology is underpinned by a software development project

called ‘Workbench’ to facilitate the automation of several CAD packages used in the

design of electric machines. Automation via scripting is used to run repeated

calculations within the CAD packages for the purposes of optimising designs for

objectives such as cost, performance or efficiency.

3.2. Design screen

At the heart of the research, and key to the effectiveness of the software is the

flowchart design area, see Figure 5. This is where the user builds an automation

process graphically using both standard and customised diagram blocks and links to

indicate the direction of process flow.

Figure 5: Flowchart being constructed

Some features of the design interface have been added specifically to aid the diagram

building process. An automatic linking facility has been included to save the user

from having to manually link blocks. The user can nominate an existing block by

selecting it, before adding a new block and the application will automatically link

both blocks.

Immediately to the right of the design area is a panel where the user can define the

actions which occur within the selected block. At present, VB script is typed directly

into this area, including references to automation objects and any data manipulation

which is required. The improvement of this area is the next phase of the development

project and will increase the user benefit of Workbench and lies at the heart of the

researched methodology.

When requested by the user, Workbench performs some checks on the flowchart to

ensure it follows the rules defined in Table 1. If successful, the flowchart is

processed by Workbench, which constructs a self-contained VB Script to perform the

desired automation operations. This is passed over to an internal script handler

which, when executed, will interact with the various software packages using their

ActiveX interfaces.

3.3. Spreadsheet

One of the existing methods of automating the CAD applications is to use a VBA

script from within Microsoft Excel, using the spreadsheet to store the data generated

by the various applications. To avoid this reliance on Excel, Workbench has its own

spreadsheet for the collection and storage of data.

Figure 6: Spreadsheet being populated with data sourced from SPEED

Figure 6 shows the spreadsheet cells being populated with data as it is generated by

the SPEED application as it is automated via the script. The ActiveX commands for

Workbench itself allow data to be sorted into columns and headings defined in the

script.

3.4. Graphing

Given that the applications in the case study produce mostly numerical data as output

during automation, the inclusion of graphing features to interpret the gathered data

has been necessary.

A graph type (e.g. 2D, 3D and contour type) associated with an individual sheet in

the workbook can be defined when a sheet is added either before or during the

automation process. Figure 7 shows a graph being plotted from data being generated

during an automation script interacting with SPEED, as it calculates torque and

efficiency values from a motor design over a range of operating parameters.

Figure 7: Graph generated from SPEED data

4. Results and Conclusions

The project is in the early stages of development, but some important benefits of the

automation technique have been realised. By gathering the data in an organised

fashion, as facilitated by Workbench, it is possible to summarise data and perform

specialised analysis, such as the creation of efficiency maps for proposed motor

designs. Figure 8 shows an efficiency map generated from data gathered using a

script built and executed from Workbench. Efficiency maps are used to identify the

most efficient zone of operation for a motor, particularly for their use in electric

vehicles.

In order to further enhance the usability of Workbench and the underlying

methodology, further investigation is to undertaken into the block detail issues

highlighted in Section 2.2.2. It is likely that the user interface will offer options for

filtering or other processing requirements on raw data. These as well as other aspects

of block detail will be presented to the user in such a way as to avoid the manual

entry of script syntax.

In conclusion, the authors believe that the proposed methodology can offer an

effective script construction tool for non-programmers, and allow the complex

automation of disparate software packages to be achieved with less effort.

Figure 8: An efficiency contour map generated from gathered data

5. References

Crnkovic, I. Schmidt, H. Stafford, J. and Wallnau, K. (2005) ‘Automated Component-Based

Software Engineering.’ Journal of Systems and Software, vol. 74, issue 1, 1 - 3.

Larrucea, X. (2008) 'Method Engineering Approach for Interoperable Systems Development'.

Software Process Improvement and Practice, vol. 13, 127-33.

Mazhelis, O., Tyrvainen, P. and Viitala, E. (2007) 'Modelling software integration scenarios

for telecommunications operations software vendors'. 2007 IEEE International Conference on

Industrial Engineering and Engineering Management, vol. 1-4, 49-54.

Minich, M., Harriehausen-Mühlbauer, B., Wentzel, C. and Phippen, A. D. (2008) 'Software

Industrialization in Systems Integration.' Proceedings of the Fourth Collaborative Research

Symposium on Security, E-Learning and Networking SEIN 2008. Glyndŵr University, UK.

	Glyndŵr University
	Glyndŵr University Research Online
	11-1-2009

	Integration Methodologies for Disparate Software Packages with an Emphasis on Usability
	Lyndon Evans
	Vic Grout
	Dave Staton
	Dougie hawkins
	Recommended Citation

	Integration Methodologies for Disparate Software Packages with an Emphasis on Usability
	Abstract
	Keywords
	Disciplines
	Comments

