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Abstract 
 
This paper introduces two new algorithms for the minimum connected dominating set problem. The problem and 
its relevance to various aspects of wireless network optimisation are briefly outlined followed by a description of 
the suggested techniques. Results show that these algorithms outperform a number of previous approaches in 
terms of solution quality and potential for future work is discussed. 
 
Keywords 
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1.  Introduction 
 
The minimum connected dominating set problem (MCDS) arises in many practical 
networking scenarios including design and virtual backbone organisation. This paper 
proposes two new centralised algorithms for the problem, based on Tabu Search (TS) (Glover 
and Laguna, 1997) and Simulated Annealing (SA) (Aarts and Korst, 1989) principles. They 
are shown to outperform the greedy heuristics of Guha and Khuller (1998) and Grout (2005). 
 
2.  Minimum Connected Dominating Sets 
 
In practical terms, the MCDS problem may be thought of as minimising the number of 
backbone nodes in a network, where each node must either be a backbone node or be adjacent 
to one. Formally, a MCDS of a graph G = (V,E) is a subset V' ⊆ V such that all nodes in V-V' 
are neighbours of nodes in V', V' forms a connected component of G and |V'| is a minimum. 
The problem is NP-Complete (Garey and Johnson, 1979). Figure 1 shows an example. 

  
Figure 1: An Example Network with MCDS Nodes Enlarged 

 

A practical application involves minimising the number of relay nodes in a wireless multihop 
network. This has been tackled dynamically for ad-hoc and sensor networks e.g. (Alzoubi et 
al., 2002) (Dai and Wu, 2004), but it also has static applications in fixed wireless network 
design. The latter problem is formulated by Grout (2005) with consideration of practical 
constraints. These are classified as add or drop constraints, which may be violated by adding 



or dropping a node, respectively. In this paper, add constraints are considered in isolation, 
whilst drop constraints are set aside for future work. 
 

Add constraints come in two forms: edge and node viability. An edge is only viable between 
two sites if it is possible to transmit data between them. They are easily handled if the 
problem graph is defined only to include viable edges. A node is viable if its corresponding 
site is able to house relay equipment. These can be handled using a boolean vector to mark 
viable nodes. It may be observed that, in the absence of both edge and node viability 
constraints, the problem is solved trivially by a star/hub and spoke subgraph. 
 

A number of centralised heuristics have been proposed. Two common approaches are to add 
nodes to the solution one at a time, choosing at each stage the node or combination of nodes 
which connects up the largest remaining portion of the network (Grout, 2005) (Guha and 
Khuller, 1998), or to form a maximal independent set and then add nodes to ensure 
connectivity (Alzoubi et al., 2002). A third approach begins with all viable nodes and drops 
components, examples being the drop algorithm by Grout (2005) which drops edges and a 
similar algorithm by Butenko et al. (2003) which drops nodes. However, these algorithms 
perform fairly poorly when compared with other approaches and their main application would 
be ensuring connectivity at all times during distributed processes or in handling drop 
constraints. 
 

In contrast to the methods outlined above, this paper uses two meta-heuristic approaches. 
Simulated annealing (Aarts and Korst, 1989) is an adaptation of local search equipped with 
the ability to escape local optima. Here its implementation is unusual as it uses a modified 
evaluation function to penalise infeasible solutions. The technique is common to evolutionary 
algorithms but rarely used with trajectory based techniques such as SA (Hoos and Stutzle, 
2005). TS (Glover and Laguna, 1997) is another meta-heuristic which uses memory to learn 
from previous solutions. The algorithm in section 4 adapts a construction algorithm to 
perform strategic oscillation in a manner similar to that outlined by Glover (2000). 
 
3.  MCDS/SA: a Simulated Annealing Algorithm for MCDS 
 
With regard to local search, it is difficult to improve upon results from existing greedy 
algorithms as they are often locally optimal with respect to any easily-defined neighbourhood. 
The problem’s objective function f(s) returns the number of relays if a candidate solution is 
feasible and infinity otherwise; it can only be improved by a move which drops more relays 
than it adds (maintaining feasibility), or makes the solution feasible when it was not. 
 

The MCDS/SA algorithm gets around this difficulty in two ways: firstly, by probabilistically 
accepting non- improving solutions in a manner common to all SA algorithms and secondly, 
by using a modified evaluation function f’(s). This modified function differentiates between 
solutions with equal f(s) values, and penalises (rather than ruling out) infeasible solutions. The 
temperature parameter controls the probability with which non-improving solutions are 
accepted and is reduced during search to lead the algorithm back to feasibility. 
 

It is necessary to introduce another solution property to consider  f’(s) in detail. The coverage 
of a node is defined to be the number of relays in its neighbourhood. The total coverage C of 
the network is equal to the sum of the coverages of every node of the graph. The theory is that 
the greater the total coverage, the more likely it is that a relay can be dropped without 
affecting feasibility. So the value of C is subtracted from f’(s) to favour solutions with higher 
coverage. The number of relays is multiplied by the maximum total coverage 2m to 
compensate for this, where m is the number of edges of the problem graph. 
 

Infeasible solutions fall into two types. A solution may have disconnected nodes (nodes with 



no adjacent relays) or disconnected components. As it is necessary to penalise both of these 
categories, the evaluation function f’(s) is outlined as follows: 
 

f’(s) = 2m(ny+2z+|s|)-C 
 

Where y is the number of disconnected components, z is the number of disconnected nodes 
and |s| is the number of relays in the solution. This function is intended to penalise where 
necessary whilst ensuring that the minimum value for f’(s) would always give a minimum for 
f(s).  
 

Three moves are used by the algorithm: adding a relay, dropping a relay and a combination of 
the two. The combination move is preferred, with a 10% probability of not adding or not 
dropping at each iteration. If a node is dropped without creating an infeasible solution, it will 
be dropped without adding anything back to encourage minimisation of the CDS. Once a 
move is performed, values for z, |s| and C can be recalculated in O(d(v)) time, where d(v) is 
the degree of the vertex altered. The value of y presents more of a challenge as it would 
appear to require a breadth first search for every move, which would slow the algorithm down 
considerably. However, by organising the moves into systematic order it is possible to reduce 
the frequency with which breadth-first search is required. 
 

 
Figure 2a   Figure 2b    Figure 2c 

 

A component identifier (ID) is maintained for each node (Figure 2 shows an example). 
Disconnected nodes will be given a default ID. Figure 2a shows a fully connected network. 
Once a node is dropped, a modified breadth first search (BFS) must be performed for all 
components and their IDs updated (Figure 2b). At this point, add moves may be evaluated by 
examining the number of neighbouring relays with different IDs. In figure 2b, the node 
marked A will not reduce y, whilst node B will reduce y by 1. If node B is added back, the IDs 
can be relabelled in linear time. If a disconnected node is added, a new component is created 
and all its neighbours given the new ID. Therefore, it is possible to evaluate up to n-1 
combination moves between breadth first searches, provided that they all drop the same node.  
 

The pseudocode in figure 3 shows how MCDS/SA takes advantage of this. The algorithm 
iterates through relay nodes, dropping each one tentatively before defining a candidate list of 
non-relay nodes to add back. The move corresponding to each candidate node is evaluated 
incrementally as illustrated in figure 2. (Note that there is a ten percent chance of not adding 
or not dropping each time and evalations must be made accordingly.) If the new solution is 
accepted, the algorithm immediately proceeds to drop the next relay as both candidate lists 
and ID vectors are invalidated at this point. 
 

Moves are accepted or rejected in accordance with the metropolis criterion, which stipulates 
that every improving move will be accepted and that non- improving moves will be only be 
accepted if a random variable [0,1) is less than eval Te−∆ , where eval∆ is the difference in f’(s) 
for the old and new solutions and T is the current temperature. The temperature is periodically 
reduced by some multiplying factor α  in the range [0,1). 



procedure MCDS/SA 
 initialise temperature T and solution s 
 create component ID vector cid for s      %BFS 

while (further improvements found) 
  for all relays r     %begin pass 

s’ ←  s - r 
create component ID vector cid’ for s’   %BFS 
if (s’ is feasible) then 
 continue    %proceed to next relay 
end-if 
generate a candidate list of non-relay nodes to become relays 
for all nodes l in candidate list 

randomly choose type of move (add/drop/both) 
if (move type = add) then 

s’’ ←  s + l 
evaluate move (s,cid,g) 

    else if (move type = drop) then 
s’’ ←  s’ 
evaluate s’’ against s 

else if (move type = both) then 
s’’ ←  s’ + l 
evaluate move (s’,cid’,g) 

    end-if 
if (move accepted) then  %metropolis criterion 

relabel cid 
s ←  s’’ 
break   %proceed to next relay 

    end-if 
end-for 

end-for      %end pass 
T Tα←   

end-while 
end-procedure   

Figure 3: Pseudocode for MCDS/SA 
 

The strategy for defining candidate lists is as follows. Lists have constant length (a figure of 
20 was used in tests). They are initially filled with promising two-hop neighbours, with any 
remaining space populated randomly. Figure 4 gives an example. 4a shows a portion of a 
network. Once a relay is dropped (marked grey in figure 4b), several nodes become 
disconnected (marked black). The adjacency list of each black node is scanned for potential 
new relays (marked by arrows in figure 4c). Of these, the relay marked A can connect three 
black nodes and is considered the best new candidate. The list will be populated with the best 
candidates in order, followed by random candidates to fill up space where necessary. 
 

   
Figure 4a   Figure 4b   Figure 4c 

 

4. MCDS/TS: A Tabu Search Algorithm for MCDS 
 
The last section shows that local search can be complex for this problem. The best-first 
approach normally used in standard tabu search (TS) algorithms would introduce a minimum 
complexity of O(nm) per move, even if all the efficiency improvements from MCDS/SA were 



used. It is possible that efficiency could be improved a little with more candidate lists or path-
relinking, but the process would still be time-consuming. 
 

An alternative is to use multi-starts to modify an existing greedy heuristic. This process is 
common to more than one meta-heuristic, other examples being GRASP and Adaptive 
Iterated Construction Search (AICS). MCDS/TS modifies the add algorithm (Grout, 2005) to 
perform strategic oscillation in a manner based on work by Glover (2000). 
 
The add algorithm is an efficient heuristic which produces good results in practice. To begin, 
every node is marked disconnected. The node with the highest degree is added to the 
dominating set, and its neighbours are marked as dominated. For each subsequent iteration, 
the dominated node with the most disconnected neighbours (or highest yield) is added to the 
set and the algorithm terminates when no more disconnected nodes can be found. 
 

This algorithm is modified by the use of multi starts. A restricted candidate list (RCL) is 
maintained for each step, holding a set of highly ranked candidates. The RCL is used to find 
unexploited candidates to be included in subsequent passes. For example, on a given step of 
the add algorithm, the RCL may record several nodes with yields equal to the highest or 
thereabouts. Choosing any one of these may have a profound effect on the subsequent 
behaviour of the algorithm. The extreme case changes the first node selected, which may 
entirely alter the list of dominated nodes for several steps. 
 

In fact, the result of changing many nodes generally results in poor solutions, but by changing 
one node per pass in systematic order good quality solutions may be obtained. This is 
achieved by storing alterations in a dynamically updated tree. Each alteration consists of an 
integer pair (iteration, node). The tree is arranged in such a manner as each alteration occurs 
later than its parent. For every alteration node, a corresponding pass is produced, imposing its 
own alteration and the alterations of each of its ancestors by reading back up the tree. 

 

 
Figure 5: A Tree Example 

 
Figure 5 shows an example. After each pass, RCLs are inspected to select the 4 unexploited 
nodes with highest yield. They are made into children of the current alteration. This is 
repeated, up to a depth of maxDepth, traversing the tree in depth-first order. Once the 
traversal is complete, a new tree is built up to a limit of maxStarts trees. In the interests of 
efficiency, the tree may be pruned by stipulating that only passes producing solutions within a 
given value δ of the best-known solution may have children. Pseudocode is given in figure 6. 
 

The function BuildTree selects the highest degree node not marked by the GlobalTabuVector 
to be chosen at the first construction step. The value k defines the number of children per tree 
node and the function GetAlterations reads back up the tree from the current node to acquire 
all the alterations it needs to impose. CreateChildren selects the k best alterations, whose 
nodes are not contained in the local tabu vector (the union of nodes used in the current pass 
and all ancestor passes). The objective function f(s) returns the size of the dominating set for a 
feasible solution and infinity otherwise. 
 



procedure MCDS/TS 
 GlobalTabuVector ŝ s← ← ← ∅  
 TreePtr ←  BuildTree(GlobalTabuVector) 
 while(not TreePtr = NULL) do 
  AlterationList ←  GetAlterations(TreeNode) 
  s ←  Add(AlterationList)    % updates RCL 
  if (NodeDepth<MaxDepth and ( )f s < ˆ( )f s δ+ ) then 

CreateChildren(RCL, TreePtr, k) 
  end-if 
  if ( ( )f s < ˆ( )f s ) then 

   ŝ s←  
   GlobalTabuVector  ←  GlobalTabuVector U  s  
  else if (NodeDepth = 1) then 
   GlobalTabuVector  ←  GlobalTabuVector U  s  
  end-if 
  TreePtr ←  FindNextNode(TreePtr) % depth first search 
  if(TreePtr = NULL and Restarts < MaxStarts) then 
   TreePtr ←  BuildTree(GlobalTabuVector) 
  end-if 
 end-while 
 return ŝ  
end-procedure 
 

Figure 6: Pseudocode for MCDS/TS  

 
5. Results 
 

For testing, nodes were placed randomly within a unit square. A maximum transmission 
distance MTD and line of sight probability LOS were used to define edge viabilities, whereby 
edges connected nodes less than MTD apart with probability LOS. A value IN was defined as 
the probability of any node being infeasible.  
 

The three algorithms used for comparison were the add algorithm and Guha and Khuller’s 
two algorithms, hereafter referred to as GK1 and GK2. The metaheuristics outperform these 
algorithms as expected, given that both TS ans SA methods conduct a  longer search.  
 

 Fig 7a: MTD=0.2, LOS=0.8, IN=0          Fig 7b: MTD=0.1, LOS=0.5, IN=0 
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 TS: MaxDepth=4,MaxStarts=12,k=8, δ =3  TS: MaxDepth=4,MaxStarts=12,k=8, δ =4 
 SA: Initial temperature=100, α =0.97    SA: Init. temp=100, α =0.95 
 

Figure 7: Plots of dominating set size against n for constant MTD, IN and LOS 
 



Figure 7 shows the effect of increasing n on algorithm performance. Whilst there is little 
difference between SA and TS for smaller graphs (Figure 7a), SA outperforms TS on larger 
ones (Figure 7b). Comparing figures 7a and b, 7a shows TS giving better solutions for n=500 
with MTD = 0.2 and LOS = 0.8, while SA is far more successful with MTD = 0.1 and LOS = 
0.5 in 7b. This shows that edge density also has a bearing on the two algorithms’ relative 
performance. Figure 8 confirms this, showing the result of varying LOS for constant n and 
MTD. In figure 8a TS begins to outperform SA as the density increases and although SA is 
superior in figure 8b a relative improvement can be observed for TS. The effect of increasing 
edge density explains the inconcistency in results for figure 7. Comparing 7a and 7b, it is 
clear that SA is more successful for larger n, but this is not noticeable on considering either 
chart in isolation. This is explained by the fact that edge density increases with increasing n. 
 

Fig 8a: n=200, MTD=0.2, IN=0  Fig 8b: n=1000, MTD=0.1, IN=0  
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 TS: MaxDepth=4,MaxStarts=12,k=8, δ =3  TS: MaxDepth=4,MaxStarts=12,k=8, δ =4 
 SA: Initial temperature=100, α =0.97    SA: Initial  temperature=100, α =0.95 

 
Figure 8: Plots of dominating set size against LOS for constant MTD, IN and n. 

 

Whilst figures 7 and 8 deal exclusively with edge constraints (IN=0), the effect of increasing 
IN is observed in figure 9. In this case the results are a little less consistent. SA may appear to 
improve slightly over TS as IN increases, but the results are by no means conclusive.  
 

       Fig 9a: n=200, MTD=0.2, LOS=0.5               Fig 9b: n=1000, MTD=0.1, LOS=0.5 
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TS: MaxDepth=4,MaxStarts=12,k=8, δ =3  TS: MaxDepth=4,MaxStarts=12,k=8, δ =4 

 SA: Initial temperature=100, α =0.97    SA: Initial  temperature=100, α =0.95 
 

Figure 9: Plots of Dominating set size against IN for constant n, MTD and LOS 



6. Conclusions 
 
It can be seen from the results that each of these algorithms has its purpose. SA tends to prefer 
larger, sparser graphs while TS tends to prefer smaller, denser instances and the underlying 
reason for this may easily be conjectured. The TS algorithm requires that the connectivity 
constraint be met at every stage of construction which gives it the potential to overlook good 
relay choices. The extent to which this adversely affects TS performance ought to depend on 
the proportion of disconnected nodes over the course of the algorithm’s pass. This proportion 
will naturally be greater in large, sparse networks. 
 

This conjecture is backed up by the relative behaviours of add and GK2 in the results section. 
GK2 (which does not require the connectivity constraint) begins to outperform ADD as the 
networks get larger (Figure 7), but add comes into its own as the edge density increases 
(Figure 8). Based on these findings, it may be profitable to consider size, edge density and 
proportion of inviable nodes before deciding which approach to use. This does not only apply 
to the SA and TS approaches outlined, but also to simple greedy heuristics like add and GK2, 
both of which are useful in the event that speed is a requirement. A simple hyper-heuristic 
might evaluate node count and edge density before applying its chosen method, or a hybrid 
approach could be sought. 
 

With regard to fixed wireless network design, a beginning has been made. However, the 
algorithms must be extended to tackle capacitative and redundancy constraints if they are to 
be of significant practical use. Where virtual backbones, routing and broadcasting in ad-hoc 
networks are concerned, the potential for a distributed counterpart to one or both of these 
algorithms would need to be investigated. These would constitute the main body of research 
work hereafter. 
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