
Glyndŵr University
Glyndŵr University Research Online

Computing Computer Science

7-1-2006

Optimisation Techniques for Wireless Networks
Mike J. Morgan
m.j.morgan@glyndwr.ac.uk

Vic Grout
Glyndwr University, v.grout@glyndwr.ac.uk

Follow this and additional works at: http://epubs.glyndwr.ac.uk/cair
Part of the Computer and Systems Architecture Commons, Digital Communications and

Networking Commons, Hardware Systems Commons, and the Systems and Communications
Commons

This Conference Paper is brought to you for free and open access by the Computer Science at Glyndŵr University Research Online. It has been
accepted for inclusion in Computing by an authorized administrator of Glyndŵr University Research Online. For more information, please contact
d.jepson@glyndwr.ac.uk.

Recommended Citation
Morgan, M. & Grout, V.(2006), ‘Optimisation Techniques for Wireless networks’. [Paper presented to the 6th International Network
Conference (INC 2006)] 11-14 July 2006, pp339-346. Plymouth: Plymouth University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/287589037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epubs.glyndwr.ac.uk?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/comp?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:d.jepson@glyndwr.ac.uk

Optimisation Techniques for Wireless Networks

Abstract
This paper introduces two new algorithms for the minimum connected dominating set problem. The problem
and its relevance to various aspects of wireless network optimisation are briefly outlined followed by a
description of the suggested techniques. Results show that these algorithms outperform a number of previous
approaches in terms of solution quality and potential for future work is discussed.

Keywords
Wireless network design, Simulated annealing, Tabu search

Disciplines
Computer and Systems Architecture | Digital Communications and Networking | Hardware Systems |
Systems and Communications

Comments
This paper was presented at 6th International Network Conference (INC 2006)] 11-14 July 2006, which was
held by University of Plymouth and details of the conference are available at http://www.cscan.org

This conference paper is available at Glyndŵr University Research Online: http://epubs.glyndwr.ac.uk/cair/70

http://www.cscan.org/scripts/external_links.asp?REF=conferences&URL=http://www.cscan.org/PreviousINCEvents/inc2006
http://epubs.glyndwr.ac.uk/cair/70?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages

Optimisation Techniques for Wireless Networks

Mike Morgan and Vic Grout

Centre for Applied Internet Research (CAIR), University of Wales, NEWI, Wrexham, UK
{mi.morgan|v.grout}@newi.ac.uk

Abstract

This paper introduces two new algorithms for the minimum connected dominating set problem. The problem and
its relevance to various aspects of wireless network optimisation are briefly outlined followed by a description of
the suggested techniques. Results show that these algorithms outperform a number of previous approaches in
terms of solution quality and potential for future work is discussed.

Keywords

Wireless network design, Simulated annealing, Tabu search

1. Introduction

The minimum connected dominating set problem (MCDS) arises in many practical
networking scenarios including design and virtual backbone organisation. This paper
proposes two new centralised algorithms for the problem, based on Tabu Search (TS) (Glover
and Laguna, 1997) and Simulated Annealing (SA) (Aarts and Korst, 1989) principles. They
are shown to outperform the greedy heuristics of Guha and Khuller (1998) and Grout (2005).

2. Minimum Connected Dominating Sets

In practical terms, the MCDS problem may be thought of as minimising the number of
backbone nodes in a network, where each node must either be a backbone node or be adjacent
to one. Formally, a MCDS of a graph G = (V,E) is a subset V' ⊆ V such that all nodes in V-V'
are neighbours of nodes in V', V' forms a connected component of G and |V'| is a minimum.
The problem is NP-Complete (Garey and Johnson, 1979). Figure 1 shows an example.

Figure 1: An Example Network with MCDS Nodes Enlarged

A practical application involves minimising the number of relay nodes in a wireless multihop
network. This has been tackled dynamically for ad-hoc and sensor networks e.g. (Alzoubi et
al., 2002) (Dai and Wu, 2004), but it also has static applications in fixed wireless network
design. The latter problem is formulated by Grout (2005) with consideration of practical
constraints. These are classified as add or drop constraints, which may be violated by adding

or dropping a node, respectively. In this paper, add constraints are considered in isolation,
whilst drop constraints are set aside for future work.

Add constraints come in two forms: edge and node viability. An edge is only viable between
two sites if it is possible to transmit data between them. They are easily handled if the
problem graph is defined only to include viable edges. A node is viable if its corresponding
site is able to house relay equipment. These can be handled using a boolean vector to mark
viable nodes. It may be observed that, in the absence of both edge and node viability
constraints, the problem is solved trivially by a star/hub and spoke subgraph.

A number of centralised heuristics have been proposed. Two common approaches are to add
nodes to the solution one at a time, choosing at each stage the node or combination of nodes
which connects up the largest remaining portion of the network (Grout, 2005) (Guha and
Khuller, 1998), or to form a maximal independent set and then add nodes to ensure
connectivity (Alzoubi et al., 2002). A third approach begins with all viable nodes and drops
components, examples being the drop algorithm by Grout (2005) which drops edges and a
similar algorithm by Butenko et al. (2003) which drops nodes. However, these algorithms
perform fairly poorly when compared with other approaches and their main application would
be ensuring connectivity at all times during distributed processes or in handling drop
constraints.

In contrast to the methods outlined above, this paper uses two meta-heuristic approaches.
Simulated annealing (Aarts and Korst, 1989) is an adaptation of local search equipped with
the ability to escape local optima. Here its implementation is unusual as it uses a modified
evaluation function to penalise infeasible solutions. The technique is common to evolutionary
algorithms but rarely used with trajectory based techniques such as SA (Hoos and Stutzle,
2005). TS (Glover and Laguna, 1997) is another meta-heuristic which uses memory to learn
from previous solutions. The algorithm in section 4 adapts a construction algorithm to
perform strategic oscillation in a manner similar to that outlined by Glover (2000).

3. MCDS/SA: a Simulated Annealing Algorithm for MCDS

With regard to local search, it is difficult to improve upon results from existing greedy
algorithms as they are often locally optimal with respect to any easily-defined neighbourhood.
The problem’s objective function f(s) returns the number of relays if a candidate solution is
feasible and infinity otherwise; it can only be improved by a move which drops more relays
than it adds (maintaining feasibility), or makes the solution feasible when it was not.

The MCDS/SA algorithm gets around this difficulty in two ways: firstly, by probabilistically
accepting non- improving solutions in a manner common to all SA algorithms and secondly,
by using a modified evaluation function f’(s). This modified function differentiates between
solutions with equal f(s) values, and penalises (rather than ruling out) infeasible solutions. The
temperature parameter controls the probability with which non-improving solutions are
accepted and is reduced during search to lead the algorithm back to feasibility.

It is necessary to introduce another solution property to consider f’(s) in detail. The coverage
of a node is defined to be the number of relays in its neighbourhood. The total coverage C of
the network is equal to the sum of the coverages of every node of the graph. The theory is that
the greater the total coverage, the more likely it is that a relay can be dropped without
affecting feasibility. So the value of C is subtracted from f’(s) to favour solutions with higher
coverage. The number of relays is multiplied by the maximum total coverage 2m to
compensate for this, where m is the number of edges of the problem graph.

Infeasible solutions fall into two types. A solution may have disconnected nodes (nodes with

no adjacent relays) or disconnected components. As it is necessary to penalise both of these
categories, the evaluation function f’(s) is outlined as follows:

f’(s) = 2m(ny+2z+|s|)-C

Where y is the number of disconnected components, z is the number of disconnected nodes
and |s| is the number of relays in the solution. This function is intended to penalise where
necessary whilst ensuring that the minimum value for f’(s) would always give a minimum for
f(s).

Three moves are used by the algorithm: adding a relay, dropping a relay and a combination of
the two. The combination move is preferred, with a 10% probability of not adding or not
dropping at each iteration. If a node is dropped without creating an infeasible solution, it will
be dropped without adding anything back to encourage minimisation of the CDS. Once a
move is performed, values for z, |s| and C can be recalculated in O(d(v)) time, where d(v) is
the degree of the vertex altered. The value of y presents more of a challenge as it would
appear to require a breadth first search for every move, which would slow the algorithm down
considerably. However, by organising the moves into systematic order it is possible to reduce
the frequency with which breadth-first search is required.

Figure 2a Figure 2b Figure 2c

A component identifier (ID) is maintained for each node (Figure 2 shows an example).
Disconnected nodes will be given a default ID. Figure 2a shows a fully connected network.
Once a node is dropped, a modified breadth first search (BFS) must be performed for all
components and their IDs updated (Figure 2b). At this point, add moves may be evaluated by
examining the number of neighbouring relays with different IDs. In figure 2b, the node
marked A will not reduce y, whilst node B will reduce y by 1. If node B is added back, the IDs
can be relabelled in linear time. If a disconnected node is added, a new component is created
and all its neighbours given the new ID. Therefore, it is possible to evaluate up to n-1
combination moves between breadth first searches, provided that they all drop the same node.

The pseudocode in figure 3 shows how MCDS/SA takes advantage of this. The algorithm
iterates through relay nodes, dropping each one tentatively before defining a candidate list of
non-relay nodes to add back. The move corresponding to each candidate node is evaluated
incrementally as illustrated in figure 2. (Note that there is a ten percent chance of not adding
or not dropping each time and evalations must be made accordingly.) If the new solution is
accepted, the algorithm immediately proceeds to drop the next relay as both candidate lists
and ID vectors are invalidated at this point.

Moves are accepted or rejected in accordance with the metropolis criterion, which stipulates
that every improving move will be accepted and that non- improving moves will be only be
accepted if a random variable [0,1) is less than eval Te−∆ , where eval∆ is the difference in f’(s)
for the old and new solutions and T is the current temperature. The temperature is periodically
reduced by some multiplying factor α in the range [0,1).

procedure MCDS/SA
 initialise temperature T and solution s
 create component ID vector cid for s %BFS

while (further improvements found)
 for all relays r %begin pass

s’ ← s - r
create component ID vector cid’ for s’ %BFS
if (s’ is feasible) then
 continue %proceed to next relay
end-if
generate a candidate list of non-relay nodes to become relays
for all nodes l in candidate list

randomly choose type of move (add/drop/both)
if (move type = add) then

s’’ ← s + l
evaluate move (s,cid,g)

 else if (move type = drop) then
s’’ ← s’
evaluate s’’ against s

else if (move type = both) then
s’’ ← s’ + l
evaluate move (s’,cid’,g)

 end-if
if (move accepted) then %metropolis criterion

relabel cid
s ← s’’
break %proceed to next relay

 end-if
end-for

end-for %end pass
T Tα←

end-while
end-procedure

Figure 3: Pseudocode for MCDS/SA

The strategy for defining candidate lists is as follows. Lists have constant length (a figure of
20 was used in tests). They are initially filled with promising two-hop neighbours, with any
remaining space populated randomly. Figure 4 gives an example. 4a shows a portion of a
network. Once a relay is dropped (marked grey in figure 4b), several nodes become
disconnected (marked black). The adjacency list of each black node is scanned for potential
new relays (marked by arrows in figure 4c). Of these, the relay marked A can connect three
black nodes and is considered the best new candidate. The list will be populated with the best
candidates in order, followed by random candidates to fill up space where necessary.

Figure 4a Figure 4b Figure 4c

4. MCDS/TS: A Tabu Search Algorithm for MCDS

The last section shows that local search can be complex for this problem. The best-first
approach normally used in standard tabu search (TS) algorithms would introduce a minimum
complexity of O(nm) per move, even if all the efficiency improvements from MCDS/SA were

used. It is possible that efficiency could be improved a little with more candidate lists or path-
relinking, but the process would still be time-consuming.

An alternative is to use multi-starts to modify an existing greedy heuristic. This process is
common to more than one meta-heuristic, other examples being GRASP and Adaptive
Iterated Construction Search (AICS). MCDS/TS modifies the add algorithm (Grout, 2005) to
perform strategic oscillation in a manner based on work by Glover (2000).

The add algorithm is an efficient heuristic which produces good results in practice. To begin,
every node is marked disconnected. The node with the highest degree is added to the
dominating set, and its neighbours are marked as dominated. For each subsequent iteration,
the dominated node with the most disconnected neighbours (or highest yield) is added to the
set and the algorithm terminates when no more disconnected nodes can be found.

This algorithm is modified by the use of multi starts. A restricted candidate list (RCL) is
maintained for each step, holding a set of highly ranked candidates. The RCL is used to find
unexploited candidates to be included in subsequent passes. For example, on a given step of
the add algorithm, the RCL may record several nodes with yields equal to the highest or
thereabouts. Choosing any one of these may have a profound effect on the subsequent
behaviour of the algorithm. The extreme case changes the first node selected, which may
entirely alter the list of dominated nodes for several steps.

In fact, the result of changing many nodes generally results in poor solutions, but by changing
one node per pass in systematic order good quality solutions may be obtained. This is
achieved by storing alterations in a dynamically updated tree. Each alteration consists of an
integer pair (iteration, node). The tree is arranged in such a manner as each alteration occurs
later than its parent. For every alteration node, a corresponding pass is produced, imposing its
own alteration and the alterations of each of its ancestors by reading back up the tree.

Figure 5: A Tree Example

Figure 5 shows an example. After each pass, RCLs are inspected to select the 4 unexploited
nodes with highest yield. They are made into children of the current alteration. This is
repeated, up to a depth of maxDepth, traversing the tree in depth-first order. Once the
traversal is complete, a new tree is built up to a limit of maxStarts trees. In the interests of
efficiency, the tree may be pruned by stipulating that only passes producing solutions within a
given value δ of the best-known solution may have children. Pseudocode is given in figure 6.

The function BuildTree selects the highest degree node not marked by the GlobalTabuVector
to be chosen at the first construction step. The value k defines the number of children per tree
node and the function GetAlterations reads back up the tree from the current node to acquire
all the alterations it needs to impose. CreateChildren selects the k best alterations, whose
nodes are not contained in the local tabu vector (the union of nodes used in the current pass
and all ancestor passes). The objective function f(s) returns the size of the dominating set for a
feasible solution and infinity otherwise.

procedure MCDS/TS
 GlobalTabuVector ŝ s← ← ← ∅
 TreePtr ← BuildTree(GlobalTabuVector)
 while(not TreePtr = NULL) do
 AlterationList ← GetAlterations(TreeNode)
 s ← Add(AlterationList) % updates RCL
 if (NodeDepth<MaxDepth and ()f s < ˆ()f s δ+) then

CreateChildren(RCL, TreePtr, k)
 end-if
 if (()f s < ˆ()f s) then

 ŝ s←
 GlobalTabuVector ← GlobalTabuVector U s
 else if (NodeDepth = 1) then
 GlobalTabuVector ← GlobalTabuVector U s
 end-if
 TreePtr ← FindNextNode(TreePtr) % depth first search
 if(TreePtr = NULL and Restarts < MaxStarts) then
 TreePtr ← BuildTree(GlobalTabuVector)
 end-if
 end-while
 return ŝ
end-procedure

Figure 6: Pseudocode for MCDS/TS

5. Results

For testing, nodes were placed randomly within a unit square. A maximum transmission
distance MTD and line of sight probability LOS were used to define edge viabilities, whereby
edges connected nodes less than MTD apart with probability LOS. A value IN was defined as
the probability of any node being infeasible.

The three algorithms used for comparison were the add algorithm and Guha and Khuller’s
two algorithms, hereafter referred to as GK1 and GK2. The metaheuristics outperform these
algorithms as expected, given that both TS ans SA methods conduct a longer search.

 Fig 7a: MTD=0.2, LOS=0.8, IN=0 Fig 7b: MTD=0.1, LOS=0.5, IN=0

100 150 200 250 300 350 400 450 500
19

20

21

22

23

24

25

26

Add
GK1
GK2
TS
SA

Nodes

M
ea

n
do

m
in

at
in

g
se

t s
iz

e
(2

0
ru

ns
)

500 600 700 800 900 1000 1100 1200 1300 1400 1500

100

102.5

105

107.5

110

112.5

115

117.5

120

122.5

125

127.5

130

132.5

Add

GK1

GK2
TS

SA

Nodes

M
ea

n
D

om
in

at
in

g
S

et
 S

iz
e

(1
0

ru
ns

)

 TS: MaxDepth=4,MaxStarts=12,k=8, δ =3 TS: MaxDepth=4,MaxStarts=12,k=8, δ =4
 SA: Initial temperature=100, α =0.97 SA: Init. temp=100, α =0.95

Figure 7: Plots of dominating set size against n for constant MTD, IN and LOS

Figure 7 shows the effect of increasing n on algorithm performance. Whilst there is little
difference between SA and TS for smaller graphs (Figure 7a), SA outperforms TS on larger
ones (Figure 7b). Comparing figures 7a and b, 7a shows TS giving better solutions for n=500
with MTD = 0.2 and LOS = 0.8, while SA is far more successful with MTD = 0.1 and LOS =
0.5 in 7b. This shows that edge density also has a bearing on the two algorithms’ relative
performance. Figure 8 confirms this, showing the result of varying LOS for constant n and
MTD. In figure 8a TS begins to outperform SA as the density increases and although SA is
superior in figure 8b a relative improvement can be observed for TS. The effect of increasing
edge density explains the inconcistency in results for figure 7. Comparing 7a and 7b, it is
clear that SA is more successful for larger n, but this is not noticeable on considering either
chart in isolation. This is explained by the fact that edge density increases with increasing n.

Fig 8a: n=200, MTD=0.2, IN=0 Fig 8b: n=1000, MTD=0.1, IN=0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
15

17.5
20

22.5
25

27.5
30

32.5

35
37.5

40
42.5

45
47.5

50

Add
GK1
GK2
TS
SA

LOS

M
ea

n
D

om
in

at
in

g
S

et
 S

iz
e

(2
0

ru
ns

)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

Add
GK1
GK2

TS
SA

LOS

M
ea

n
D

om
in

at
in

g
S

et
 S

iz
e

(1
0

ru
ns

)

 TS: MaxDepth=4,MaxStarts=12,k=8, δ =3 TS: MaxDepth=4,MaxStarts=12,k=8, δ =4
 SA: Initial temperature=100, α =0.97 SA: Initial temperature=100, α =0.95

Figure 8: Plots of dominating set size against LOS for constant MTD, IN and n.

Whilst figures 7 and 8 deal exclusively with edge constraints (IN=0), the effect of increasing
IN is observed in figure 9. In this case the results are a little less consistent. SA may appear to
improve slightly over TS as IN increases, but the results are by no means conclusive.

 Fig 9a: n=200, MTD=0.2, LOS=0.5 Fig 9b: n=1000, MTD=0.1, LOS=0.5

0 0.1 0.2 0.3 0.4

19

19.5

20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

25

Add

GK1
GK2
TS

SA

IN

M
ea

n
D

om
in

at
in

g
S

et
 S

iz
e

(2
0

ru
ns

)

0 0.1 0.2 0.3 0.4

110

112.5

115

117.5

120

122.5

125

127.5

130

132.5

135

137.5

140

Add

GK1
GK2
TS

SA

IN

M
ea

n
D

om
in

at
in

g
S

et
 S

iz
e

(1
0

ru
ns

)

TS: MaxDepth=4,MaxStarts=12,k=8, δ =3 TS: MaxDepth=4,MaxStarts=12,k=8, δ =4

 SA: Initial temperature=100, α =0.97 SA: Initial temperature=100, α =0.95

Figure 9: Plots of Dominating set size against IN for constant n, MTD and LOS

6. Conclusions

It can be seen from the results that each of these algorithms has its purpose. SA tends to prefer
larger, sparser graphs while TS tends to prefer smaller, denser instances and the underlying
reason for this may easily be conjectured. The TS algorithm requires that the connectivity
constraint be met at every stage of construction which gives it the potential to overlook good
relay choices. The extent to which this adversely affects TS performance ought to depend on
the proportion of disconnected nodes over the course of the algorithm’s pass. This proportion
will naturally be greater in large, sparse networks.

This conjecture is backed up by the relative behaviours of add and GK2 in the results section.
GK2 (which does not require the connectivity constraint) begins to outperform ADD as the
networks get larger (Figure 7), but add comes into its own as the edge density increases
(Figure 8). Based on these findings, it may be profitable to consider size, edge density and
proportion of inviable nodes before deciding which approach to use. This does not only apply
to the SA and TS approaches outlined, but also to simple greedy heuristics like add and GK2,
both of which are useful in the event that speed is a requirement. A simple hyper-heuristic
might evaluate node count and edge density before applying its chosen method, or a hybrid
approach could be sought.

With regard to fixed wireless network design, a beginning has been made. However, the
algorithms must be extended to tackle capacitative and redundancy constraints if they are to
be of significant practical use. Where virtual backbones, routing and broadcasting in ad-hoc
networks are concerned, the potential for a distributed counterpart to one or both of these
algorithms would need to be investigated. These would constitute the main body of research
work hereafter.

7. References

Aarts, E and Korst, J. (1989) Simulated Annealing and Boltzmann Machines, Wiley

Alzoubi, K. Wan, P.J. and Frieder, O. (2002) “Distributed Construction of Connected Dominating Set in
Wireless Ad Hoc Networks”, Proceedings of IEEE INFOCOM, vol. 3, June 2002, pp. 1597-1604

Butenko, S. Cheng, X. Oliveira, C. and Pardalos, P. (2003) “A new algorithm for connected dominating sets on
ad hoc networks”, In: Butenko, S. Murphey, R. and Pardalos, P. Recent Developments in Cooperative Control
and Optimization, pages 61-73. Kluwer

Dai, F. and Wu, J. (2004) “An Extended Localized Algorithm for Connected Dominating Set Formation in Ad
Hoc Wireless Networks”, IEEE Transaction on Parallel and Distributed Systems, Vol. 15 No. 10 October 2004
pp. 908-920

Garey, M. and Johnson, S. (1979) Computers and Intractability, a Guide to the Theory of NP-Completeness,
Freeman

Glover, F. and Laguna, M. (1997) Tabu Search, Kluwer Academic Publishers

Glover, F. (2000) “Multi-Start and Strategic Oscillation Methods - Principles to exploit adaptive memory”, In:
Laguna, M. and Gonzales-Valarde, J. Computing Tools for Modeling, Optimization and Simulation: Interfaces in
Computer Science and Operations Research. pp 1-24. Kluwer

Grout, V. (2005) “Principles of Cost Minimisation in Wireless Networks”, Journal of Heuristics, 11: 115-133

Guha, S. and Khuller, S. (1998) “Approximation Algorithms for Connected Dominating Sets”, Algorithmica, 20:
374-387.

Hoos, H. and Stutzle, T (2005) Stochastic Local Search Foundations and Applications, Morgan Kauffman

	Glyndŵr University
	Glyndŵr University Research Online
	7-1-2006

	Optimisation Techniques for Wireless Networks
	Mike J. Morgan
	Vic Grout
	Recommended Citation

	Optimisation Techniques for Wireless Networks
	Abstract
	Keywords
	Disciplines
	Comments

