Glyndŵr University **Glyndŵr University Research Online** Chemistry Materials Science 1-1-2003 Synthesis and Reactivity of N,N,N',N'-Tetramethyldiaminomethane (TMDM) Complexes of Tricarbonylrhenium(I). X-Ray Molecular Structures of [ReBr(CO)₃(TMDM)] and [{Re(bipy)(CO)₃}₂(μ -OH)][SbF₆]. Peter J. Heard Glyndwr University, p.heard@glyndwr.ac.uk Phunrawie Sroisuwan Derek A. Tocher Follow this and additional works at: http://epubs.glyndwr.ac.uk/chem Part of the <u>Inorganic Chemistry Commons</u>, <u>Organic Chemistry Commons</u>, and the <u>Physical</u> Chemistry Commons Copyright © 2003 Elsevier. This is the author's final version of the work. The article was originally published in Polyhedron in 2003 by Elsevier. The full published article can be found at http://www.sciencedirect.com #### Recommended Citation Heard, P. J., Sroisuwan, P., & Tocher, D. A. (2003) 'Synthesis and Reactivity of N,N,N',N'-Tetramethyldiaminomethane (TMDM) Complexes of Tricarbonylrhenium(I). X-Ray Molecular Structures of [ReBr(CO)₃(TMDM)] and [{Re(bipy)(CO)₃}₂(μ -OH)][SbF₆].' Polyhedron, 22(10), 1321-1327(7) This Article is brought to you for free and open access by the Materials Science at Glyndŵr University Research Online. It has been accepted for inclusion in Chemistry by an authorized administrator of Glyndŵr University Research Online. For more information, please contact d.jepson@glyndwr.ac.uk. ## ARTICLE IN PRESS Available online at www.sciencedirect.com Polyhedron 00 (2003) 1-7 www.elsevier.com/locate/poly Synthesis and reactivity of N,N,N',N'-tetramethyldiaminomethane complexes of tricarbonylrhenium(I). X-ray molecular structures of [ReBr(CO)₃(TMDM)] and [{Re(bipy)(CO)₃}₂(μ -OH)][SbF₆] Peterb J. Heard a,*, Phunrawie Sroisuwan , Derek A. Tocher b ^a School of Biological and Chemical Sciences, Birkbeck University of London, Gordon House, 29 Gordon Square, London WC1H 0PP, UK ^b Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, UK Received 16 December 2002; accepted 7 February 2003 #### **Abstract** N,N,N',N'-tetramethyldiaminomethane (TMDM) is known to act as a source of Me_2NCH in carbonyl substitution reactions, but the reaction of TMDM with the neutral halogenopentacarbonylrhenium(I) compounds gave unexpectedly fac-[ReX(CO)₃(TMDM)] (X = Cl, Br or I), in which the intact TMDM ligand acts in a chelating fashion. The complexes are stable both in the solid-state and in solution, but rapidly decompose on dehalogenation, yielding Re metal. Under anaerobic conditions, the reaction of TMDM with $[Re(CO)_3(bipy)]^+$ also leads to decomposition. In the presence of oxygen the system is stable. Three Re(bipy) containing species were identified in the reaction mixture: $[\{Re(CO)_3(bipy)\}_2(\mu\text{-OH})][SbF_6]$ (1), which was characterised by X-ray crystallography, $[\{Re(CO)_3(bipy)\}_2(\mu\text{-OH}_2)][SbF_6]$ (2) and $[Re(OH)(CO)_3(bipy)]$ (3). 22 © 2003 Published by Elsevier Science Ltd. Keywords: Bidentate chelate; Decomposition; Dimethylamine; X-ray crystallography #### 1. Introduction The ability of ethylenediamine (en) and *N*,*N*,*N'N'*-tetramethylethylenediamine (tmen) to act as both chelating and bridging ligands is well known [1], but few complexes of the analogous ligand *N*,*N*,*N'*,*N'*-tetramethyldiaminomethane (Me₂NCH₂NMe₂, TMDM) have been reported [2]. TMDM is an effective reagent for the introduction of the dimethylaminocarbene moiety, Me₂NCH, into transition metal complexes by carbonyl substitution reactions [3–5] and also acts as a source of dimethylamine [6,7]. Reaction of TMDM with [PtXMe₃]₄ (X = Cl, Br or I) or [PtMe₃(bipy)]⁺ (bipy = 2,2'-bipyridine) yields the dimethylamine complexes [PtXMe₃(Me₂NH)]₂ and [PtMe₃(bipy)(Me₂NH)]⁺, re- spectively, and formic acid [7]. Similarly, the reaction of [Re₂(CO)₈H₂] with TMDM in chloroform gives $[MCl_4(TMDM)]$ (M = Ti or Sn) [8] and $[MMe_3-$ TMDM is believed to act in chelating fashion in $[Re₂(CO)₈(Me₂NH)Cl(\mu-H)]$ [6]. [CoCl₂(TMDM)]₂ [12] and [FeCl₂(TMDM)]₂ [12], in which TMDM acts in a chelating fashion. The (bis)phosphine ligands $R_2P(CH_2)_nPR_2$ (n=1 or 2) are known to act in both a chelating and bridging fashion towards the tricarbonylrhenium(I) moiety [13–15]. It is therefore of interest to investigate the mode of action of TMDM towards tricarbonylrhenium(I) to see if it behaves in analogous fashion to the (bis)phosphine ligands or as a source of either Me_2NCH or Me_2NH . The results of this investigation are reported here. ⁽TMDM)] (M = B, Al or Ga) [9,10], and probably has a bridging role in [(MMe₃)₂(TMDM)] (M = B, Al or Ga) [10]. The only complexes of TMDM that have been characterised crystallographically are [Co(TMDM)(3,6-DBQ)₂] (DBQ = di-tert-butyl-1,2-benzoquinone) [11], ^{*} Corresponding author. Tel.: +44-120-7679-7480; fax: +44-120-7679-7464. ^{4 7679-7464.} *E-mail address:* p.heard@bbk.ac.uk (P.J. Heard). ^{0277-5387/03/\$ -} see front matter © 2003 Published by Elsevier Science Ltd. doi:10.1016/S0277-5387(03)00102-5 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 112 113 114 115 116 117 118 119 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 P.J. Heard et al. | Polyhedron 00 (2003) 1-7 #### 2. Results and discussion Reaction of the halogenopentacarbonylrhenium(I) compounds, $[ReX(CO)_5]$ (X = Cl, Br or I) with TMDM yields air-stable, white crystalline solids, soluble in common polar organic solvents. The infrared spectra of the products display three bands in the carbonyl stretching region (1850–2100 cm⁻¹) and up to six bands each due to the Re-C stretching and deformation modes, characteristic of a fac-octahedral tricarbonyl metal moiety [16]. Bands below 1500 cm⁻¹ are characteristic of TMDM [17], and no N-H stretching bands are observed. Infrared data therefore indicate that the intact TMDM ligand co-ordinates to the metal in a bidentate chelate fashion. The fast atom bombardment (FAB) mass spectra of the complexes exhibit intense peaks due to the species $[M-X]^+$: observed and calculated isotope patterns are consistent with the formulated species, as are the elemental analytical figures. Data, reported in Table 1, are therefore consistent with the formation of the complexes [Re- $X(CO)_3(TMDM)$] (X = Cl, Br or I). The solution ¹H NMR spectra of the complexes each exhibit two singlets ($\delta \approx 2.9-3.5$) and an AB quartet ($\delta \approx 4.4-4.8$; ² $J_{\rm HH} \approx 11$ Hz), assignable to the N-Me and methylene hydrogens, respectively. This indicates that the plane of symmetry bisecting the (Me)C-N-C(Me) angles is lost while that bisecting the N-C(H₂)-N angle is retained. This is consistent with the intact TMDM ligand acting in a bidentate chelate fashion. NMR data are reported in Table 2. X-ray molecular structure of [Re-Br(CO)₃(TMDM)] was obtained to confirm the unusual bidentate co-ordination mode of TMDM, indicated by analytical and spectroscopic data. A suitable crystal was obtained by recrystallisation of the bromo complex from a dichloromethane/hexane mixture at -20 °C. A view of the molecule, showing the atom numbering scheme is shown in Fig. 1. Crystal data, collection data and refinement parameters are given in Table 3. Selected bond lengths and angles are reported in Table 4. Fig. 1 shows clearly that the metal moiety has the expected fac-octahedral geometry with the intact TMDM ligand chelating. The geometry at Re deviates somewhat from that of an idealised octahedron because of the small bite angle of TMDM: $N(1)-Re-N(2)=63.4(1)^{\circ}$, similar to the corresponding angles in the $[MCl_2(TMDM)]_2$ (M =Co or Fe) complexes [12], but less than that found in $[Co(TMDM)(3,6-DBQ)_2]$ (71.8°) [11]. The ReNCN chelate ring is essentially planar; maximum deviation from the mean plane is 0.16 Å [C(4)]. The dihedral angle between the planes ReNCN and C(1)ReC(2) is 8.7°. The Re-N (≈ 2.27 Å), Re-C (≈ 1.88 Å) and Re-Br (2.62 Å) lengths are similar to those measured in other Re^I complexes [18-20] and, apart form the smaller bite angle of TMDM, the complex is structurally very similar to the analogous tetramethylethylenediamine (tmen) and dimethylethylenediamine (dmen) complexes, [Re- $Br(CO)_3(tmen)$ [21], $[ReF(CO)_3(tmen)]$ [22] and [Re- $Br(CO)_3(dmen)$ [23]. On dehalogenation under anaerobic conditions (reaction with Ag⁺) the complexes decompose immediately, giving a black solid. The addition of TMDM to the Table 1 Synthetic and analytical data for $[ReX(CO)_3(TMDM)]$ (X = Cl, Br or I) and complexes 1-3 | Complex | Yield (%) | Infrared ^a (cm ⁻¹) | | | Analysis ^b (%) | | | Mass spectral data (m/z) | | |--------------------------------|-----------|---|---------------------------------|------------------------------------|---------------------------|-------------------------------|-----------------------------|-----------------------------|--| | | | СО | Re-C | TMDM | ОН | C | Н | N | | | [ReCl(CO) ₃ (TMDM)] | 54 ° | 1874; 1907;
2019 | 473; 484; 529;
539; 636; 658 | 867; 961; 989;
1036; 1226; 1459 | | 23.63
(23.56) | 3.34
(3.46) | 6.77
(6.87) | 408 [M] ⁺ ;
373 [M-Cl] ⁺ | | [ReBr(CO) ₃ (TMDM)] | 50 ° | 1879; 1910;
2021 | 473; 485; 528;
637; 655 | 868; 963; 990;
1037; 1226; 1466 | | 21.33
(21.24) | 3.00
(3.12) | 6.05
(6.19) | 452 [M] ⁺
373 [M–Br] ⁺ | | [ReI(CO) ₃ (TMDM)] | 42 ° | 1893; 1930;
2020 | 474; 485; 528; 634; 653 | 867; 958; 989;
1036; 1236; 1468 | | 19.33
(19.24) | 2.81
(2.82) | 5.32
(5.61) | 500 [M] ⁺
373 [M–I] ⁺ | | (1) | 32 | 1882; 1925;
2027 | | | 3447br | 28.44
(28.24) | 1.85
(1.55) | 4.98
(5.07) | 871 [M-SbF ₆] ⁺ ;
235 ^d [SbF ₆] ⁻ | | (2) | 28 | 1894; 1944;
2032 | | | 3438br | 23.56
(23.26) | 1.34
(1.35) | 4.03
(4.17) | 871 [M-H-2SbF ₆] ⁺ ;
428 [Re(CO) ₃ (bpy)] ⁺ ;
235 ^d [SbF ₆] ⁻ | | (3) | 65 | 1898; 1917;
2023 | | | 3421br | 33.57
(33.37) ^e | 2.28
(2.07) ^e | 5.27
(5.77) ^e | 428 [M-OH] ⁺ | ^a Infrared spectra recorded as KBr discs. ^b Calculated values in parentheses. ^c Yield quoted relative to [ReX(CO)₅] or [ReBr(CO)₃(bpy)]. d Negative ion MS. ^e Calculated analytical figures include 0.5 mol of dichloromethane (which is observed in the ¹H NMR spectra). ## ARTICLE IN PRESS P.J. Heard et al. | Polyhedron 00 (2003) 1-7 Table 2 Hydrogen-1 NMR data $^{\rm a}$ for [ReX(CO)₃(TMDM)] (X = Cl, Br or I) and complexes 1–3 | δ (Me) | δ (CH ₂) ^b | δ (pyridine-H) $^{\rm b}$ | | | | |------------|-----------------------------------|--------------------------------------|---|---|---| | | | $\overline{\mathrm{H}_{\mathrm{A}}}$ | H_{B} | H_{C} | H_D | | 2.92; 3.32 | 4.55; 4.65 (~11) | | | | | | 3.02; 3.36 | 4.64; 4.71 (~11) | | | | | | 3.20; 3.42 | 4.74; 4.79 (~11) | | | | | | | | 8.88 ^c | 7.59 | 8.19 | 8.26 | | | | 8.70 | 7.51 | 8.17 | 8.20 | | | | 9.03 | 7.56 | 8.11 | 8.23 | | | 2.92; 3.32
3.02; 3.36 | 2.92; 3.32 | H _A 2.92; 3.32 4.55; 4.65 (~11) 3.02; 3.36 4.64; 4.71 (~11) 3.20; 3.42 4.74; 4.79 (~11) 8.88 ° 8.70 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ^a Spectra recorded in CDCl₃ { $[ReX(CO)_3(TMDM)]$ } or CD_2Cl_2 {complexes 1-3}. Chemical shifts reported in ppm relative to tetramethylsilane as an internal standard. $^{\rm b}$ $^2J_{\rm HH}/{\rm Hz}$ given in parentheses. ^c Scalar couplings do not vary significantly between complexes: ${}^3J_{AB} \sim 5.5$; ${}^3J_{AC} \sim 1.6$; ${}^3J_{BC} \sim 7.6$; ${}^3J_{BD} \sim 1.6$; ${}^3J_{CD} \sim 8.1$ Hz. Fig. 1. X-ray molecular structure of [ReX(CO)₃(TMDM)], showing the atomic numbering scheme. Hydrogen atoms have been omitted for clarity. [Re(CO)₃]⁺ cation (obtained by dissolving [NE- t_4]₂[ReBr₃(CO)₃] in water [24]) gave an identical result, indicating that Re^I is the active agent, rather than Ag⁺. To investigate this further, the reaction of TMDM with the stable cation [Re(CO)₃(bipy)]⁺ (bipy = 2,2'-bipyridine) [25] was studied. On addition of TMDM to an anaerobic THF solution of [Re(CO)₃(bipy)(THF)][SbF₆], the orange solution decolourises immediately and a black solid, presumably Re metal, is precipitated. Under aerobic conditions, the THF solution initially became yellow then slowly decolourised with the concomitant deposition of the same black solid. If oxygen is bubbled through the solution decomposition is retarded significantly, and three Re containing species were thus identified (see below). These results suggest that either TMDM itself, or a by-product is undergoing oxidation: in the absence of oxygen, Re^I must act as the oxidising agent, being reduced to Re black, which is deposited. Concentration of the oxygenated THF solution yielded an orange-yellow solid. The ¹H NMR spectrum of the crude product indicates the presence of three Re(bipy) containing species; only bipyridine-H signals were observed. The crude solid was extracted with cold (0 °C) CH₂Cl₂, from which orange crystals of 1, suitable for X-ray crystallography, were obtained on further cooling (-20 °C). A pure sample of a second species, 2, insoluble in cold CH₂Cl₂ was also isolated. After the separation of the crystals of 1 from the dichloromethane solution, ¹H NMR showed the mother liquor to contain a mixture of 1 and, a third species, 3, which could not be separated. The infrared spectrum of 1 displays three bands in the region $1850-2050 \text{ cm}^{-1}$, assignable to carbonyl stretching modes and a broad band at 3447 cm⁻¹ ($\Delta\sigma_{1/2} \approx 300 \text{ cm}^{-1}$), assignable to an O-H stretching mode. The positive ion FAB mass spectrum displays an intense set of peaks centred on m/z 871 and the negative ion FAB mass spectrum displays a peak at m/z 235, due to SbF₆. These data, along with the elemental analytical figures (Table 1) suggest 1 is the dimeric species [{Re(CO)₃(bi- ## ARTICLE IN PRESS P.J. Heard et al. | Polyhedron 00 (2003) 1-7 Table 3 X-ray data for [ReBr(CO)₃(TMDM)] and [{Re(CO)₃(bpy)}₂(μ -OH)][SbF₆] | | [ReBr(CO) ₃ (TMDM)] | $[\{Re(CO)_3(bpy)\}_2(\mu\text{-OH})][SbF_6]$ | | | |---|---|---|--|--| | Empirical formula | C ₈ H ₁₄ BrN ₂ O ₃ Re | $C_{26}H_{17}F_6N_4O_7Re_2Sb$ | | | | Formula weight | 452.32 | 1105.59 | | | | Crystal size (mm) | $0.75 \times 0.73 \times 0.48$ | $0.76 \times 0.74 \times 0.38$ | | | | Crystal system | monoclinic | Monoclinic | | | | Space group | $P2_1/n$ | $P2_1/c$ | | | | Unit cell dimensions | | | | | | a (Å) | 7.964 (2) | 12.837 (3) | | | | b (Å) | 12.342 (2) | 18.312 (4) | | | | c (Å) | 13.330 (3) | 13.904 (3) | | | | α (°) | 90 | 90 | | | | β (°) | 97.23 (3) | 108.71 (3) | | | | γ (°) | 90 | 90 | | | | $V(\mathring{A}^3)$ | 1299.8 (5) | 3095.7 (12) | | | | $D_{\rm calc} ({\rm mg \ m^{-3}})$ | 2.311 | 2.372 | | | | Z | 4 | 4 | | | | Absorption coefficient (mm ⁻¹) | 12.413 | 8.753 | | | | $F(0\ 0\ 0)$ | 840 | 2048 | | | | θ Range for data collection (°) | 2.83-25.05 | 2.71-25.07 | | | | Reflections collected | 2456 | 5474 | | | | Independent reflections | 2283 ($R_{\text{int}} = 0.0315$) | $5474 \ (R_{\rm int} = 0.0000)$ | | | | No. of parameters | 137 | 415 | | | | Goodness-of-fit | 1.019 | 1.062 | | | | Extinction coefficient | 0.0091 (8) | 0.0091 (8) | | | | Final R_1 , wR_2 indices $[I > 2\sigma(I)]$ | 0.0520, 0.1361 | 0.0661, 0.1791 | | | | R_1 , wR_2 indices (all data) | 0.0645, 0.1656 | 0.0839, 0.1998 | | | | Largest difference peak and hole (e Å ⁻³) | 3.037 and -2.403 | 2.495 and -2.066 | | | Table 4 Selected bond lengths (Å) and selected bond angles (°) for [Re-Br(CO)₃(TMDM)] | Re-N(1) | 2.267(10) | |-----------------|---| | Re-N(2) | 2.279(10) | | Re-Br(1) | 2.619(2) | | N(2)-C(4) | 1.48(2) | | | | | C(1)-Re- $C(3)$ | 88.0(7) | | C(2)-Re-Br | 175.4(4) | | C(2)-Re-N(1) | 95.4(5) | | C(2)-Re-N(2) | 94.5(5) | | C(2)-Re- $C(1)$ | 89.9(6) | | C(2)-Re- $C(3)$ | 86.4(6) | | C(3)-Re-Br | 90.0(4) | | C(3)-Re-N(1) | 169.5(5) | | C(3)-Re-N(2) | 106.1(5) | | | (1)-Re-C(3)
(2)-Re-Br
(2)-Re-Br
(2)-Re-N(1)
(2)-Re-N(2)
(2)-Re-C(1)
(2)-Re-C(3)
(3)-Re-Br
(3)-Re-N(1) | Estimated standard deviations given in parentheses. 161 162 163 164 165 166 167 py) $_2(\mu$ -OH)][SbF₆]. This is confirmed by X-ray crystallography. The molecular structure of $[{Re(CO)_3(bipy)}]_2(\mu-OH)]^+$, $1-[SbF_6]$, is shown in Fig. 2 and crystal data, collection data and refinement parameters are reported in Table 3. Selected bond lengths and angles are given in Table 5. The molecular structure of the cation consists of two chemically identical [Re(CO)₃(bipy)] units linked by a single, unsupported hydroxide bridge; there are no interactions with the counter ion (SbF₆⁻). The Re-O(H)-Re angle, 135.1(5)°, is significantly opened out, presumably because of the steric requirements of the two [Re(CO)₃(bipy)] moieties. The two (equatorial) planes containing the bipyridine ligands are essentially staggered; the torsion angles N(1)Re(1)Re(2)N(3) and N(2)Re(1)Re(2)N(4) are 37.0 and 39.4°, respectively. The dihedral angle between the equatorial planes is 27.8° and the shortest distance between the two rings is 3.38 Å. The two Re-O distances are 2.146(9) Å and 2.176(8) Å, similar to those reported in other Re-OH species [26-29]. The Re-C and Re-N lengths and associated angles are unremarkable [18-20]. Although hydroxy-bridged rhenium(I) complexes are well known [26-29] as far as we are aware, this is the first example of a single, unsupported hydroxy-bridged rhenium(I) com- The cation in 1 is probably formed from deprotonation (by either TMDM or dimethylamine) of the aquo species, [Re(CO)₃(bipy)(OH₂)]⁺ and subsequent dimerisation with the solvent adduct, [Re(CO)₃(bipy)-(THF)]⁺. The most likely source of water is the TMDM sample: TMDM is prepared in aqueous solution [30,31]. Although the concentrations of the three species observed differ, the solution ¹H NMR spectrum of 1 is 177 178 193 194 195 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 ## ARTICLE IN PRESS P.J. Heard et al. | Polyhedron 00 (2003) 1-7 Fig. 2. X-ray molecular structure of $[{Re(CO)_3(bipy)}_2(\mu-OH)]^+$, showing the atomic numbering scheme. Hydrogen atoms have been omitted for clarity. Table 5 Selected bond lengths (Å) and selected bond angles (°) for $[\{Re(CO)_3(bpy)\}_2(\mu\text{-OH})][SbF_6]$ | [(()3())][0] | | | | | | | | |----------------------|----------|-----------------|-----------|--|--|--|--| | Bond lengths (Å) | | | | | | | | | Re(1)-C(1) | 1.88(2) | Re(1)-N(1) | 2.162(13) | | | | | | Re(1)-C(2) | 1.91(2) | Re(1)-N(2) | 2.133(14) | | | | | | Re(1)-C(3) | 1.84(2) | Re(2)-N(3) | 2.153(12) | | | | | | Re(2)-C(4) | 1.89(2) | Re(2)-N(4) | 2.134(12) | | | | | | Re(2)-C(5) | 1.90(2) | Re(1) - O(7) | 2.146(9) | | | | | | Re(2)-C(6) | 1.93(2) | Re(2) - O(7) | 2.176(8) | | | | | | Angles (°) | | | | | | | | | Re(1) - O(7) - Re(2) | 135.1(5) | N(4)-Re(2)-N(3) | 74.0(4) | | | | | | N(2)-Re(1)-N(1) | 75.2(5) | N(3)-Re(2)-O(7) | 84.0(4) | | | | | | O(7)-Re(1)-N(1) | 82.2(5) | N(4)-Re(2)-O(7) | 80.7(4) | | | | | | N(2)-Re(1)-O(7) | 80.0(4) | C(4)-Re(2)-N(3) | 98.2(6) | | | | | | C(1)-Re(1)-N(1) | 93.1(6) | C(4)-Re(2)-N(4) | 172.2(7) | | | | | | C(1)-Re(1)-N(2) | 96.0(6) | C(4)-Re(2)-O(7) | 98.1(5) | | | | | | C(1)-Re(1)-C(2) | 90.0(8) | C(4)-Re(2)-C(5) | 86.5(7) | | | | | | C(1)-Re(1)-O(7) | 174.4(5) | C(4)-Re(2)-C(6) | 86.9(7) | | | | | | C(2)-Re(1)-N(1) | 170.4(7) | C(5)-Re(2)-N(3) | 94.0(5) | | | | | | C(2)-Re(1)-N(2) | 95.4(7) | C(5)-Re(2)-N(4) | 94.6(6) | | | | | | C(2)-Re(1)-O(7) | 94.2(6) | C(5)-Re(2)-O(7) | 175.2(5) | | | | | | C(3)-Re(1)-N(1) | 99.2(6) | C(5)-Re(2)-C(6) | 87.9(7) | | | | | | C(3)-Re(1)-N(2) | 173.0(6) | C(6)-Re(2)-N(3) | 174.7(6) | | | | | | C(3)-Re(1)-O(7) | 95.2(5) | C(6)-Re(2)-N(4) | 100.9(6) | | | | | | C(3)-Re(1)-C(1) | 88.4(7) | C(6)-Re(2)-O(7) | 93.7(5) | | | | | | C(3)-Re(1)-C(2) | 90.0(8) | | | | | | | Estimated standard deviations given in parentheses. 196 197 198 199 200 identical to that of the crude product mixture [32]. Comparison of the NMR data with that obtained for the other two species observed (see below) enabled the sub-spectrum of 1 to be identified. The assignment of the signals (Table 2) to the different hydrogen environ- ments of the bipy ligand were made on the basis of the scalar coupling network (COSY) and by comparison with other $[Re(CO)_3(bipy)]$ complexes [25,33]. The IR and (positive and negative ion) FAB mass spectra of **2** are essentially identical to those of **1**. The C:H:N ratio is similar to that in **1**, but the absolute magnitudes are considerably lower (Table 1), consistent with a dicationic, dimeric Re species. Complex **2** was thus characterised tentatively as the aquo-bridged species [{Re(CO)₃(bipy)}₂(μ -OH₂)][SbF₆]₂. The solution ¹H NMR spectrum of **2** displays one set of signals in the aromatic region, which correspond to one of the three sets in the crude product, assignable to the hydrogens of the (metal co-ordinated) 2,2-bipyridine ligand. No signal due to *co-ordinated* water is observed; however, the O–H stretching mode is observed clearly in the IR spectrum [ν (OH) = 3438]. The ¹H NMR spectra show clearly that 2 can be derived from 1, but not, at least under neutral conditions, vice versa. A plausible explanation for this observation is that one of the Re-O bonds in $[{Re(CO)_3(bipy)}_2(\mu-OH)]^+$, breaks giving the neutral [Re(OH)(CO)₃(bipy)], hydroxy species, [Re(CO)₃(bipy)(solvent)]⁺, which then co-ordinates residual water in the solvent. Further reaction of aquoadduct, [Re(CO)₃(bipy)(OH₂)]⁺, with [Re(CO)₃(bipy)-(solvent)]⁺ yields $[\{Re(CO)_3(bipy)\}_2(\mu-OH_2)]^{2+}$, **2**-2[SbF₆], (Scheme 1). In the absence of any base to deprotonate the co-ordinated water molecule this is irreversible. If this hypothesis is correct, the hydroxide complex, [Re(OH)(CO)₃(bipy)], should also be present in the crude product and in solutions of 1. It was not possible to isolate [Re(OH)(CO)₃(bipy)] from the reac- ## ARTICLE IN PRESS P.J. Heard et al. | Polyhedron 00 (2003) 1-7 Scheme 1. Proposed reaction for the formation of complexes (2) and (3) from (1). tion mixtures, but there is strong evidence to suggest its presence. An explicit synthesis of [Re(OH)(CO)₃(bipy)] was carried out by adding an aqueous solution of sodium hydroxide to a THF solution of [Re(CO)₃(bipy)]⁺. Analytical and spectroscopic data (Table 1) are consistent with the formation of [Re(OH)(CO)₃(bipy)]. The ¹H NMR spectrum of [Re(OH)(CO)₃(bipy)] shows a single set of bipy signals with identical chemical shifts to 3; 3 was thus assigned tentatively as the species [Re(OH)(CO)₃(bipy)]. The details of the reaction between the $[Re(CO)_3]^+$ moiety and TMDM are not known, but it probably involves metal activated (N)C-N bond cleavage with the concomitant formation of dimethylamine [6,7]. Whilst the complexes $[ReX(CO)_3(Me_2NH)_2]$ (X = Cl, Br or I) are known [34], our attempts to prepare dimethylamine complexes of [Re(CO)₃]⁺ were unsuccessful; addition of dimethylamine to [Re(CO)₃(bipy)]⁺ led to decomposition with the deposition of a black solid. We therefore tend to the view that a dimethylamine complex is formed and that it is this species that undergoes (oxidative) decomposition. The oxidation of amines is generally complex (the products depend on the substrates and reaction conditions involved [35,36]). The organic product(s) of the reaction have yet to be determined. #### 3. Experimental #### 3.1. Starting materials Starting materials were purchased from standard sources and used without further purification. The $[ReX(CO)_5]$ (X = Cl, Br or I) compounds [37], $[Re-Br(CO)_3(bipy)]$ [25,32] and $[Et_4N]_2[ReBr_3(CO)_3]$ [24] were prepared by previously published procedures. #### 3.2. Synthesis of $[ReX(CO)_3(TMDM)]$ complexes TMDM (0.025 mg, 0.246 mmol) was added to a stirred benzene solution of $[ReX(CO)_5]$ (0.246 mmol). The reactants were refluxed for approximately 8 h, then the solvent evaporated to dryness in vacuo. The solid residue was washed with hexane and crystallised from a dichloromethane/n-hexane mixture at -20 °C. ### 3.3. Reaction of $[Re(CO)_3(bipy)]^+$ with TMDM [Re(CO)₃(bipy)(THF)][SbF₆] was prepared in situ by the reaction of [ReBr(CO)₃(bipy)] with AgSbF₆. TMDM was added to the THF solution of [Re(CO)₃(bipy)(THF)][SbF₆] (which was filtered to remove AgBr) and stirred for approximately 1 h, during which time the solution was kept saturated with oxygen. The solution was filtered, and then concentrated to dryness. The resulting yellow solid was extracted with cold dichloromethane, giving an orange solution and a yellow residue of 2. Crystals of 1 suitable for X-ray crystallography were obtained by cooling (-20°C) of the dichloromethane solution. #### 3.4. Synthesis of $[Re(OH)(CO)_3(bipy)]$ An aqueous, dilute solution of NaOH was added to a THF solution of [Re(CO)₃(bipy)(THF)][SbF₆] and stirred for approximately 8 h. The solution was filtered and then evaporated to dryness in vacuo. The resulting yellow solid was washed with hexane and crystallised from a dichloromethane/n-hexane mixture at -20° C. Yield: 65%. #### 3.5. Physical methods Hydrogen-1 NMR spectra were recorded at ambient temperature in $CDCl_3$ or CD_2Cl_2 solution on a Bruker DRX500 Fourier transform spectrometer operating at P.J. Heard et al. | Polyhedron 00 (2003) 1-7 500.13 MHz, using standard Bruker automation programs. Chemical shifts are quoted relative to tetramethylsilane as an internal standard. Infrared spectra were recorded as KBr discs on a Shimadzu hyper 8700 FT-IR spectrometer operating in the region 4000–400 cm⁻¹. FAB mass spectra were obtained at the London School of Pharmacy on a VG Analytical ZAB-SE4F instrument, using Xe⁺ bombardment at 8 kV energy, on samples in a matrix of 3-nitrobenzyl alcohol. Elemental analyses were carried out at University College London. The X-ray structure determinations were carried out using an automatic four-circle Nicolet R3mV diffractometer, using the ω -2 θ technique at 293(2) K. Data were recorded using routine procedures and empirical absorption corrections applied (ψ scan method). The structures were solved by direct methods and refined to convergence (least-squares; SHELXL 93) [38]. Hydrogen atoms were inserted in calculated idealised positions (r C-H = 0.96 Å) and assigned a common isotropic thermal parameter ($U = 0.08 \text{ Å}^2$). #### 4. Supplementary material 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 327 328 329 330 331 332 336 395 321 been deposited with the Cambridge Crystallographic 322 Data Centre, CCDC Nos. 198077 and 198078. Copies of this information may be obtained free of charge from 323 The Director, CCDC, 12 Union Road, Cambridge, CB2 324 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ 325 Crystallographic data for the structural analysis have 326 ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk). #### Acknowledgements We are grateful to The Royal Thai Government for a studentship (PS), to Dr K. Kite for helpful discussions and to Johnson Matthey for the loan of rhenium. #### References - [1] D.A. House, Comprehensive Coordination Chemistry, Pergamon Press, Oxford, 1987. - 333 334 [2] H. van Der Does, F.C. Mijlhoff, G.H. Reres, J. Mol. Struct. 74 335 (1981) 153. - [3] R.D. Adams, J.E. Babin, Organometallics 6 (1987) 1364. - 337 [4] R.D. Adams, J.E. Babin, Organometallics 7 (1988) 963. - 338 [5] R.D. Adams, J.E. Babin, H.-S. Kim, Polyhedron 7 (1988) 967. - [6] R.D. Adams, J.D. Kuhns, Polyhedron 7 (1988) 2543. - [7] E.W. Abel, D.H. Goldsworthy, P.J. Heard, K. Kite, Polyhedron 14 (1995) 515. - [8] S.R. Wade, G.R. Willey, J. Chem. Soc. Dalton Trans. (1981) 1264. - [9] D.A. Baldwin, G.J. Leigh, J. Chem. Soc. (A) 41 (1963) 1359. - [10] A. Storr, B.S. Thomas, Can. J. Chem. 48 (1970) 3667. - [11] O.-S. Jung, D.H. Jo, Y.-A. Lee, Y.S. Sohn, C.G. Pierpont, Inorg. Chem. 37 (1998) 5875. - [12] D.A. Handley, P.B. Hitchcock, T.H. Lee, G.J. Leigh, Inorg. Chim. Acta 314 (2001) 14. - [13] W. Yuqiang, G. Yici, S. Qizhen, Polyhedron 11 (1992) 2483. - [14] M.I. Bruce, P.J. Low, B.W. Skelton, A.H. White, J. Organomet. Chem. 515 (1996) 65. - [15] M. Knorr, P. Braunstein, A. Tiripicchio, F. Ugozzoli, J. Organomet. Chem. 526 (1996) 105. - [16] D.A. Edwards, J. Marshalsea, J. Orgnanomet. Chem. 131 (1977) - [17] B.J. Aylett, L.K. Peterson, J. Chem. Soc. (1965) 4043. - [18] C.M. Lukehart, J.V. Ziele, J. Organomet. Chem. 140 (1977) 309. - [19] F.A. Cotton, E.V. Dikarev, M.A. Petrukhina, Inorg. Chim. Acta 284 (1999) 304. - [20] P.J. Heard, P.M. King, D.A. Tocher, J. Chem. Soc. Dalton Trans. (2000) 1769. - [21] M.C. Couldwell, J. Simpson, J. Chem. Soc. Dalton Trans. (1979) - [22] E. Horn, M.R. Snow, Aust. J. Chem. 35 (1984) 37. - [23] E.W. Abel, M.M. Bhatti, M.B. Hursthouse, K.M.A. Malik, M.A. Mazid, J. Organomet. Chem. 197 (1980) 345. - [24] R. Alberto, R. Schibli, A. Egli, P.A. Schubiger, W.A. Herrmann, G. Artus, U. Abram, T.A. Kaden, J. Organomet. Chem. 493 (1995) 119 - [25] E.W. Abel, P.J. Heard, K.G. Orrell, Inorg. Chim. Acta 225 (1997) - [26] R. Alberto, A. Egli, U. Abram, K. Hegetschweiler, V. Gramlich, P.A. Schubiger, J. Chem. Soc. Dalton Trans. (1994) 2815. - [27] C. Jiang, Y. Wen, L. Liu, T.S.A. Hor, Y. Yan, Organometallics 17 (1998) 173. - [28] K.A. Azam, M. Hossain, M.B. Hursthouse, S.E. Kabir, M. Abdul, H. Vahrenkamp, J. Organomet. Chem. 555 (1998) 285. - [29] A. Egli, K. Hegetschweiler, R. Alberto, U. Abram, R. Schibli, R. Hedinger, R. Kissner, P.A. Schubiger, Organometallics 16 (1997) - [30] J.K. Lindsay, C.R. Hauser, J. Org. Chem. 22 (1957) 355. - [31] M. Gaudry, Y. Yasor, T.B. Khac, Org. Synth. 59 (1980) 153. - [32] No attempt was made to dry the NMR solvents. - [33] P.J. Heard, PhD Thesis, University of Exeter, 1994. - [34] F. Calderazzo, D. Vitali, I.P. Mavani, F. Marchetti, I. Bernal, J.D. Korp, J.L. Atwood, R.D. Rogers, M.S. Dalton, J. Chem. Soc. Dalton Trans. (1981) 2523. - [35] P.A.S. Smith, The Chemistry of Open-Chain Organic Nitrogen Compounds, vol. 1, W.A. Benjamin, New York, 1965. - [36] B.R. Brown, The Organic Chemistry of Aliphatic Nitrogen Compounds, Oxford University Press, Oxford, 1994. - [37] P. Schmidt, W.C. Trogler, F. Basolo, Inorg. Synth. 28 (1979) 160. - [38] G.M. Sheldrick, SHELXL 93, University of Göttingen, 1993. 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 7