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ABSTRACT 

The gum from M. flagellipes seed endosperm has been isolated and characterised using 

capillary viscometry and steady shear and small deformation oscillatory rheometry. The 

endosperm was found to constitute 67.15% of the whole seed and yielded 32.6% of gum. 

The Huggins and Kraemer plots obtained by capillary viscometry gave an intrinsic 

viscosity of 7.9 dL/g and viscosity average molecular mass was calculated to be 2.1 x 10
6
 

using the Mark Houwink relationship. The zero shear viscosity was plotted against the 

coil overlap parameter, C[η], and the slopes of the lines in the dilute and semi-dilute 

regions were found to be  ~ 1.0 and 4.6  respectively. The curves were fitted to the 

Tuinier and Martin equations and showed only qualitative agreement.  The shear flow 

viscosity profiles indicated that M. flagellipes gum did not exhibit significant shear 

thinning at polymer concentrations less than 0.5%, however, at higher concentrations, 

pronounced shear thinning was observed with the relaxation time (τ) increasing with 

increase in polymer concentration. The dynamic viscosity profiles showed that at all 

polymer concentrations examined, a Newtonian plateau was obtained at low frequencies 

indicating that the loss modulus was the dominant response. Plots of log η versus log � 

and log η* versus log ω were not superimposible and hence did not obey the Cox-Merz 

rule.  
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INTRODUCTION 

Vegetable gums are commonly used in food manufacturing processes as viscosifying 

agents. Many plants have been chemically analyzed for their potential as sources of seed 

gums. These include guar with 19-43% gum (Undersander, et al, 1991), Cassia brewsteri 

with 33.7±0.4% gum (Cunningham and Walsh, 2002) and mesquite with 24.9% gum 

(Estevez et al, 2004). Mucuna flagellipes is indigenous to West Africa and belongs to the 

family leguminosae and subfamily papilionaceae.  The plant is an annual crop and a 

climber and can be cultivated more than once a year. It is high yielding; and bears pods 

which contain usually three to four seeds per pod. The seeds are usually dark brown to 

black, sometimes speckled, depending on variety. Among the natives, the endosperm 

which is rich in gum is pulverized and used as thickener in many traditional food 

preparations. Several authors have reported on its suitability for application in processed 

foods including use as a rheology modifier (Onweluzo et al, 1999), stabilizer (Onweluzo 

et al,1995, Onweluzo et al, 2004) and film former (Ojile et al, 2000). Mucuna gum is a 

galactomannan and has D-galactose and D-mannose as the main sugars (Onweluzo et al, 

1995; Srivastava and Kapoor, 2005).  However, we are yet to find reports on the 

proportion of gum in the seed or on its intrinsic viscosity, molecular mass and rheological 

properties.  

 



MATERIALS AND METHODS 

Isolation of seed gum: M. flagellipes seeds were dehulled to obtain the seed endosperms 

(Figure 1).  The endosperms were pulverized by means of a hammer mill and the flour 

obtained by passing through a 500µm sieve and dried in the oven at 80
o
C for 6 hr. The 

flour was defatted by extracting with hexane in a soxhlet extractor for 6 hr. 5 g of sample 

was dispersed in 400 ml distilled water and hydrated continuously by means of a 

magnetic stirrer (FBI 15001, Fischer Scientific, UK) for 6 hr. This was poured into 

centrifuge tubes and centrifuged at 2500rpm for 30min. The supernatant was poured into 

a large beaker. The residue was reconstituted repeatedly with fresh distilled water, stirred 

and centrifuged again. The supernatant was pooled together and treated with 2-propanol 

when the gum spooled out.   The clear liquor was decanted while the trapped solvent was 

removed by filtering under suction in a Buchner funnel. The crude gum was re-dissolved 

in fresh distilled water and re-precipitated with 2-propanol. The gum sample was dried in 

a convention oven at 60
o
C overnight and cooled in a desiccator. This was pulverized in a 

mortar and stored in a sealed container. The gum preparation was carried out in triplicate.  

Elemental analysis: The elemental analysis was done with a Carlo-Erba CHN analyser. 

The sample was initially combusted in oxygen, subjected to chromatography (GC-MS) 

and the component elements quantified with a thermal conductivity detector. Calibration 

was done using least squares to linear fit. 

Intrinsic viscosity: The intrinsic viscosity of M. flagellipes gum was determined in 

distilled water. The gum solution was prepared by dispersing 50 mg of the gum ( db, dry 

basis) in 100 mL of the distilled water at room temperature and placing on a roller mixer 

(SRT2, Staurt Scientific) overnight. 2 mL of solution was transferred into a Cannon-



Ubbelohde capillary viscometer (No 75) which was immersed in a precision water bath to 

maintain the temperature at 25.0±0.1 
o
C   and after equilibration for 10 minutes, the flow 

time was determined between the two etched marks. Serial dilution was performed in situ 

and three readings were taken for each dilution and averaged. The viscosity average 

molecular mass, Mw was evaluated using the Mark-Houwink equation (Lazaridou et al, 

2000) (equation 1). 

79.06102.80][ wM××=
−

η                                                (1) 

 

Rheological characterization of M. flagellipes gum: Different concentrations of the M. 

flagellipes gum solutions (0.1%, 0.2%, 0.5%, 1.0%, 2.0% and 3.0%) were prepared by 

dispersing the desired amount of dry gum powder in distilled water and leaving to tumble 

overnight at ambient temperature using a roller mixer to ensure complete hydration 

(SRT2, Stuart Scientific, UK). Steady shear viscosity and small deformation oscillation 

experiments were performed using a Controlled Stress Rheometer (AR 2000, TA 

Instruments) fitted with cone and plate geometry (60mm 2
o
 steel cone, 50µm gap). The 

flow properties were obtained at 25
o
C by subjecting the gum solutions to stepped-flow at 

a shear rate of 10
-3

 to 10
3
s

-1 
after pre-conditioning. In the small deformation oscillation 

experiments, stress sweeps were performed on each gum solution to locate the linear 

viscoelastic region. A frequency sweep was performed on the gum solutions in the region 

of 10
-1

 to 120 rad/s at an amplitude strain within the linear viscoelastic region.  

 

RESULTS AND DISCUSSION 



Composition: Table 1 shows the physical composition of M. flagellipes seed. The 

endosperm constituted 46.73 - 74.76 % of whole seed with mean of 67.15%. The hull 

was easily separable from the endosperm by mechanical means. There was no visible 

germ. The defatted endosperm yielded 32.6±1.97% of gum (Table 1). Elemental analysis 

showed the gum contained 1.87 % nitrogen, 39.25% carbon and 6.43% hydrogen. This is 

the first available data on M. flagellipes gum and values are in the range of those reported 

for other sources of galactomannan (Undersander, et al, 1991, Cunningham and Walsh, 

2002). 

Intrinsic viscosity:  Figure 2 shows the Huggins and Kraemer plot for M. flagellipes 

gum and the intrinsic viscosity of M. flagellipes obtained from the intercept was 7.9 dL/g. 

Application of the Mark-Houwink equation gave a viscosity average molecular mass of 

2.1 x 10
6
 which is similar to the viscosity average molecular mass values reported for 

other galactomannans such as carob gum (Lazaridou et al, 2000). 

The double logarithmic plot of zero shear specific viscosity, ηsp,o, against the coil overlap 

parameter, C[η], gave a critical overlap concentration, C*, of 3.98/[η] and the slopes of 

the lines below and above C* were ~1.0  and 4.6 respectively . This compares to values 

of ~4/[η] for C* and 1.4 and to 3.3 for the slopes of the lines for a range of random coil 

polysaccharides (Morris et al, 1981). Slopes of ~1 in the dilute region have been reported 

for Aeromonas polysaccharide (Xu et al, 2006), the exopolysaccharide from Escherichia 

coli strain S61 (Ren et al, 2003) and acid hydrolyzed amioca starch (Chamberlain and 

Rao, 2000). A higher value for the slope in the semi-dilute region has been reported for 

other polysaccharides. Kapoor et al (1998) have reported slope of 5.87 for Cassia 

spectabilis galactomannan . Andrade et al (1999) reported C* =3.3/[η] for 



galactomannans from Caesalpinia pulcherrima and Cassia javanica. The data were also 

fitted to the equations proposed by Tuinier et al, (equation 2) and Martin (equation 3) and 

curves obtained are shown in Figure 3b.   
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where mk  is Martin polymer-polymer interaction parameter.  

Both models showed only qualitative agreement as has been reported by Ratcliffe et al, 

(2005) for glucomannan.  

 

Steady shear viscosity and viscoelastic properties 

Figure  4 shows the steady shear viscosity  as a function of shear rate for different 

concentrations of M. flagellipes gum. The flow profiles indicate that M. flagellipes gum 

exhibited Newtonian behaviour at polymer concentrations less than 0.5%. At higher 

concentrations, above C*, the polymer solutions became more viscous and exhibited non-

Newtonian behaviour with marked shear thinning observed. Table 3 shows the values of 

the various parameters obtained by fitting the data to the Cross (equation 4) and 

Newtonian models (equation 5) 

m
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Where η, ηo and 
∞

η  are viscosity (Pa.s), zero shear viscosity (Pa.s) and infinite shear 

viscosity (Pa.s) respectively,γ&  is shear rate (s
-1

), τ is relaxation time (s) and m is the rate 

index (dimensionless) and σ  is shear stress (Pa). The relaxation time, τ (τ =1/ �crit, �crit = 

critical shear rate, marks the onset of shear thinning), increased with increase in polymer 

concentration.  

The variation of the storage modulus (G'), loss modulus (G") and complex shear viscosity 

(η*) with the frequency of oscillation (ω) for the gum solutions are shown in Figures 5 

and 6. In Figure 5, the gum at 1.0% concentration gave a predominantly viscous response 

(G" > G'), however at concentrations of 2.0% and 3.0%, there was a transition from a 

predominantly viscous response at long timescales of measurement (G" > G') to a 

predominantly elastic response at shorter timescales (G' > G"). This cross over point 

occurred at ω = 9.087 rad/s in 3.0% and ω = 30.62 rad/s in 2.0% while the corresponding 

G' are 72.24 Pa and 41.96 Pa respectively. The average timescales for microstructural 

coupling estimated from the crossover point of the moduli (given by 1/ ω, where G'= G") 

for 2% and 3% gum solutions were 0.03s and 0.11s respectively. In Figure 6, η* 

exhibited a Newtonian plateau at low ω indicating that the loss modulus was the 

dominant response at all gum concentrations.   

Figure 7 shows the steady shear viscosity (log η versus log �) and dynamic viscosity (log 

η* versus log ω) of the solutions at varying concentration. It was noted that the two sets 

of curves did not superimpose at any of the concentrations in contradiction to the Cox-

Merz rule. Such behaviours has been observed for other polysaccharides including konjac 

glucamannan (Ratcliffe et al, 2005) and Aeromonas gum (Xu et al, 2006) and has been 



attributed to weak association between the polymer chains, so-called 

hyperentanglements. 
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       Fig. 1: M. flagellipes seeds (A), endosperm cotyledons (B) 
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Fig.2. Determination of the intrinsic viscosity of M. 

flagellipes  gum
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Fig.3a:  Zero shear pecific viscosity  versus Degree of space-

occupancy of M. flagellipes  gum
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Figure 3: Log zero shear specific viscosity ηsp,o versus 

Log degree of occupancy, C[η]
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        Fig.4: Viscosity-shear rate profiles for different concentrations of M. flagellipes 

gum 
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              Figure 7: Cox-Merz plots, superimposition of log η (�) and log η*(ω) 
 

 

Table 1: Physical composition of M. flagellipes seed
a 

 

 

 Composition  Range      Mean 

 

                  Hull (%)   25.24-53.27   32.85±10.15 

 

                 Endosperm (%)    46.73-74.76    67.15±10.15 

 

                 Germ (%)         -              - 

  
                 a

= mean for nine seeds ± SD 

 

 



 

                Table 2: Yield and composition of M. flagellipes gum 

 

   Yield (%)
a
        32.6±1.97 

 

Carbon  (%)     39.253 

 

Hydrogen (%)     6.425 

 

Nitrogen (%)     1.873 

 

             
a
= mean of triplicate determinations ± SD 

 

 

 

Table 3: Rheological model-fitted characteristics of M. flagellipes gum. 

 

 

    ηo (Pa.s)        η∞ (Pa.s)           τ (s)                қ         S.E 

 

 

 

 3.0        Cross           53.30      1.868E-7       1.80  0.7370 12.41 

 

2.0        Cross          14.62      8.709E-8       0.7196  0.6689 18.89 

 

1.0        Cross          0.12413      4.356E-3       4.33E-3 0.7202  20.16 

 

0.5        Cross          0.01775      8.359E-3           1.756E-3   0.8417             57.10 

 

0.2              Newtonian         5.862E-3         -   -    -  12.2 

 

0.1              Newtonian        4.001E-3          -   -    -             4.12 

 

 

 

G Gum conc.

(   % (w/v) 

    Rheological 

    Models 

 



Table 4: Analysis result of curve of Log ηsp versus Log C[η] for M. flagellipes gum 

concentrations 

  

 

                 [η] (dL/g)                            7.9  

                 Log C*[η]                            0.6  

                 C*[η]                                                3.98 

                 C* (g/dL)                                          0.50 

 Log ηsp at C*              -1.75 

              ηsp at C* (Pa.s)               0.018 

              Slope below C*              1.0    

                  Slope above C*                                4.6    
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