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Summary 

This paper considers communication network design problems 

that arise in the real world, with large numbers of nodes and link 

and switch costs dependent upon their traffic capacity.  Such 

costs, in turn, depend upon network topology so are not fixed at 

the start of, or through, any optimisation process.  Realistic 

topological restrictions are also discussed.  The limitations of 

conventional approaches – both constructive and search based – 

are noted and the requirements of practical optimisation methods 

explored.  Two workable approaches to network design - one an 

established local search variant, another a more novel geometric 

approach - are introduced.  Five different algorithms, ranging 

from exhaustive search to fast heuristic are compared with 

experimental results given in conclusion. 

 

Key words: 

Algorithms and heuristics, Large-scale network design, 

Optimisation, Variable costs 

1. Introduction 

The topological network design problem (TNDP) for fixed 

networks in general and communication networks in 

particular is often considered well-solved.  In the standard 

formulation, n nodes are to be interconnected with cij 

representing the cost of connecting node i directly to node 

j.  The problem is then to find a connecting set of links 

minimising 

 ∑∑
−

= +=

=
1

1 1

*
n

i

n

ij

ijcC .    (1) 

Early constructive algorithms (e.g. [1]) solve the problem 

to optimality in its unconstrained form and produce 

solutions of the type shown in Fig. 1.  Capacity constraints 

can be applied although the problem then becomes NP-

hard [2] and the necessarily adapted heuristics (e.g. [3]) 

only yield approximate solutions.  However, with an initial 

solution in place, various classes of local search heuristics 

such as tabu-search [4], simulated annealing [5] or genetic 

algorithms [6] can be applied to perturbate parts of the 

solution to look for improvement.  Ant Colony algorithms 

[7] also focus on static problems such as this.  A common, 

generic, but as we shall see - unrealistic, approach is to 

formulate the problem in Linear or Integer Programming 

[8]. 

This paper begins by outlining the shortcomings of this 

formulation of the TNDP and its associated algorithmic 

solutions in practical applications.  It then discusses the 

requirements of a real-world fixed network design 

optimisation process and introduces and compares various 

effective solutions.  The terms node, switch and traffic are 

used freely in the text but may be substituted by/for any 

appropriate equivalent in whatever underlying 

communications technology is being considered. 

i

j

a

b

Fig. 1.  Minimal Spanning Tree (MST) solution.  The network has long 

paths between nodes (e.g. a & b) and is extremely vulnerable to failure.  

A failure of  node i or link (i, j), for example, splits the network in two. 

2. Problems with the TNDP Formulation 

The TNDP solution shown in Fig. 1. is a Minimal 

Spanning Tree (MST).  There are two clear objections to 

such a topology: 

• The connecting network has long, inefficient 

paths (in terms of number of links), even between 

geographically close nodes. 
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• The solution network is extremely vulnerable to 

component failure.  There is no redundancy.  A 

fault at any node or link disconnects the network. 

However, there are also difficulties associated with this 

simplistic notion of cost, independent of the method of 

solution: 

• Only link (e.g. transmission) costs are considered; 

node (e.g. switching) costs are ignored. 

• Traffic will flow, possibly asymmetrically, in 

both directions on a link; the structure of link 

costs should reflect this. 

• Costs are taken as fixed in the statement of the 

problem and throughout any optimisation 

process, irrespective of network topology. 

i

j

 
Fig. 2.  A variant of Fig. 1.  The link (i, j) carries only local traffic and is 

of small capacity – so will cost less.  Also, i is no longer an expensive 

switch. 

The final point warrants further explanation.  The true cost 

of a link will depend partly on its length (which is known 

in advance) but also on its capacity - the level of traffic it 

can handle (which is not).  In Fig. 1, the link (i, j) carries 

traffic from one side of the network to the other and will be 

of high capacity.  In Fig 2, it carries local traffic only and 

will be much smaller.  A similar variance applies to 

switches.  The cost of a link or switch consequently 

depends on the solution topology -  so cannot be fixed for 

the duration of the optimisation process. 

For large numbers of nodes a more realistic network 

topology (for the same set of nodes as Fig. 2) is shown in 

Fig. 3.  A subset of nodes (switches) has been chosen to 

concentrate and relay traffic among the remainder through 

a mesh or partial-mesh core network.  The maximum path 

length between any node pair is reduced significantly and 

there is some tolerance of failure, at least in the core 

network, provided by redundant links.  We take this as our 

model for a practical network design in this paper.  Other 

forms are possible of course, such as: 

• Constrained full-mesh or star core networks, 

• Multiply-connected (non-switch) nodes, 

• Multi-level (>2) networks. 

The techniques discussed in this paper extend without 

difficulty to these variants.  However, for brevity, the 

formulation of the problem here is based on the topology 

in Fig. 3.  To generalize would extend the paper 

unnecessarily. 

3. A Practical Formulation 

Link costs remain variable, however, and switch costs 

should be considered.  If we adopt the convention of using 

uppercase characters for switches and lowercase for non-

switches then, in general, cs(i)=0, cs(X)>0, cl(i,j)=0 and, 

where the link in question is present, cl(X,Y)>cl(i,X)>0, 

where cs and cl are the costs of switches and links 

respectively.  More precisely, if a link L carries traffic t 

over a distance d then cl(L) = fl(t,d).  If a switch S 

processes traffic T then cs(S) = fs(T).  fl and fs may be any 

well-defined functions, dependent upon the underlying 

technology, and are not considered further until Section 7.  

Define tij to be the traffic between end-points i and j, that 

is, the traffic originating at i and destined for j.  Define dij 

to be the ‘distance’ between i and j.  This may the 

Euclidean straight line (dij = [(xi-xj)
2
+(yi-yj)

2
]

½
 where 

(xi,yi) and (xj,yj) are the Cartesian coordinates of i and j) or 

weighted to reflect local factors.  If a link is infeasible then 

dij=∞.  The cost of a link from a non-switch i to its parent 

switch X is then given by 
 

 ),(),(
1

iX

n

j

ijll dtfXic ∑
=

=   (2) 

 

with a corresponding cost  c(X, i) in the other direction.  

Define ΓX  to be the set of nodes with X as their parent in a 

given configuration/solution.  Then the cost of the switch X 

is given by 

 ))(()(
1
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jiijss ttfXc .  (3) 
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i

j

b

X

Y

Z

 
Fig. 3.  A practical network design.  Path length is limited and there is 

some redundancy/fault tolerance in the core network. 

For a fully-connected core network, i.e. with a link 

between each switch pair (X, Y), the cost of the link (X, Y) 

is given by 
    

 ),(),( XY

i j

ijll dtfYXc
X Y

∑∑
Γ∈ Γ∈

=    (4) 

 

with an equivalent cost cl(Y,X) in reverse.  Define ΩXY = 1 

if there is a link between X and Y,  ΩXY = 0 otherwise.  

(The node sets ΓX, ΓY, …, and the connection matrix ΩΩΩΩ = 

(ΩXY) fully describe any given solution.)   

The total cost of the (fully-connected) network can then be 

calculated as 

  

 ∑
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If the link from switch X to switch Y is not present (ΩXY = 

0) this results in a saving of 
 

 ),(∑∑
Γ∈ Γ∈X Yi j

XYijl dtf .   (6) 

 

However its traffic must be redirected via switches Z1, Z2, 

…  The cost of each affected switch, Z1, Z2, … will 

increase to 
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and link costs to 
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for each capacity-enlarged link, (X, Z1), (Z1, Z2), …, (Zr, Y) 

where r is the degree of redirection for (X, Y) (r=0 ⇔ 

ΩXY=1).  The calculation is repeated for each (X, Y) with 

ΩXY = 0.  (If ΩXY = 0 implies ΩYX = 0 then the adjustments 

in (6, 7 & 8) are replicated in reverse but this is not 

assumed here.)  The total network cost c* can be 

recalculated accordingly.  The removal of a link will result 

in an overall saving if appropriate spare capacity can be 

found on the switches and links through which its traffic is 

redirected (see Section 7). 

(A distinction is made here between redirection and 

rerouting.  Redirection is part of the topological design 

process by which required link capacities are estimated.  

Rerouting is a dynamic process taking place in real time on 

network switches.  The use of redirection in design does 

not prohibit dynamic rerouting in operation.) 

c*, however, is a complex calculation, based on link 

costs that vary with network topology.  Significantly, small 

changes to a topology (such as moving a node to a 

different parent switch) have consequential effects across 

the network and require a full re-evaluation of the total 

cost.  Conventional local search techniques [4][5][6] work 

well when the effects of a local change can be calculated 

locally in terms of a change in cost (such as the 

insertion/removal of a link of fixed cost).   Their 

complexity is increased if the cost function must be 

recalculated for each perturbation and their power 

diminishes rapidly 
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DD(n): 

Make every node a switch  // Initial solution 
repeat 

   Connect switches as a full-mesh 

   ∆s = 0 
   Calculate c*      // Equation 5 

   for each switch X do    // Look to drop switches 

      begin 

         Calculate c*(X)                         // Equation 5 
         repeat 

            ∆l = 0 
            for each link (Y,Z) do           

               begin               // Look to drop links 

                  Calculate ∆ = c*(X)-c*(X,Y,Z) 
                  if ∆ > ∆l then     //  Equations 6,7,8 

                     Y* = Y, Z* = Z, ∆l = ∆ 
               end 

            if ∆l > 0 then 
               begin                // Drop ‘worst’ link 

                  Remove link (Y*,Z*) 

                  c*(X) = c*(X,Y*,Z*) 
               end 

         until 

            ∆l = 0    // No further link savings 

         ∆ = c* - c*(X) 
         if ∆ > ∆s then 
            X* = X, ∆s = ∆ 
      end 

   if ∆s > 0 then 
      Remove switch X*      // Drop ‘worst’ switch 
until 

   ∆s = 0   // No further switch savings 

repeat   // Repeat link drops for final switch set 

   ∆l = 0 
   for each link (Y,Z) do 

      begin 

         Calculate ∆ = c*-c*(Y,Z) 

            if ∆ > ∆l then 
               Y* = Y, Z* = Z, ∆l = ∆ 
      end 

   if ∆l > 0 then 
      begin 

         Remove link (Y*,Z*) 

         c* = c*(Y*,Z*) 

      end 

until 

   ∆l = 0     // Final solution 

Fig. 4.  The Double-Drop (DD) network design process.  c*(X) is the cost 

of the current solution with switch X removed.  c*(Y,Z) is the cost of the 

current solution with the link (Y,Z)  removed.  c*(X,Y,Z) is the cost of the 

existing solution with X and (Y,Z) removed. 

4. Local Search with Variable Costs 

Theoretical search routines do not work well for the 

variable cost problem outlined here.  There are n
n-2

 

possible trees on n nodes [9] and a number of connected 

networks given recursively by 
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[10].  Both expressions are exponential, implying that 

exhaustive search is impractical for larger n. 

An approach favoured by practical network designers, 

although its origins are uncertain, is outlined in Fig. 4.  

Starting from a full-switch/fully-connected network, the 

‘Double-Drop’ (DD) algorithm of Fig. 4. tries candidate 

switches for removal from the current solution.  With each 

trial switch removed, links are experimentally dropped in a 

similar manner.  The algorithm is essentially ‘greedy’ but 

in a nested, local-search form.  The network cost c* and 

perturbated costs c*(X), c*(Y,Z) and c*(X,Y,Z) are 

calculated as in Section 3.  There is an assumption that 

nodes are connected to their nearest switch. 

RS(m): 

min = MaxVal        // Some arbitrarily large value 

for each node pair i, j (1≤i≠j≤m) do 
   if dij < min then        // Find closest pair 

      i* = i, j* = j, min = dij 

xk = (wi*xi* + wj*xj*) / (wi* + wj*) 

yk = (wi*yi* + wj*yj*) / (wi* + wj*) 

wk = wi* + wj*     // Replace by single node 

for each node, η (η ≠ i*,j*) do 
   begin               //  with representative traffic, 

      dkη = (wi*di*η + wj*dj*η)         //   coordinate and distance 

             / (wi* + wj*)         // characteristics 

      dηk = (wi*dηi* + wj*dηj*) / (wi* + wj*) 

   end 

Fig. 5.  A single reduction step, RS(m).  The closest modes (min 1≤i≠j≤m  

dij) are replaced by a single node, representing the original pair in terms 

of traffic (weight), location and distance from the remaining nodes. 

DD is a practical algorithm in that it deals with costs that 

vary with network topology.  Its simple structure also 

minimises search iterations.  Its major drawbacks are: 

• It is unlikely to be particularly accurate since it 

removes switches and links in an entirely greedy 

manner with no consideration for a wider search 

neighbourhood, 

• It is still computationally complex it its 

consideration of all combinations of node and 

link drops at each stage, 

• Its complexity is increased further by the need to 

completely recalculate the cost function for each 

perturbation. 

A natural extension to the DD process, to overcome the 

shortcomings of greedy search, is to introduce larger 

search neighbourhoods through (e.g.) tabu search and 
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simulated annealing.  However, such refinements, whilst 

addressing the first problem, simply compound the second.  

For larger problems (n), DD has typically proved be the 

only viable search process. 

5. A Geometric Reduction Approach 

An alternative design method is proposed for large 

networks that eliminates a large number of iterations, 

branches and cost calculations.  It uses the traffic values tij 

and distances dij to geometrically reduce the network in 

size.  ‘Conventional’ optimisation then proceeds on the 

reduced version. 

Define the weight of each node to be its total traffic load: 
 

 ∑
=

+=
n

j

jiiji ttw
1

)(               (10) 

 

and note that this value is constant for any solution 

topology.  We also require each node i to be defined by its 

Cartesian coordinates, (xi,yi).  Then define a single 

reduction step, RS(m), acting on m nodes, as in Fig. 5, 

i*

j*

k

η

wi* (xi*, yi*)

wj* (xj*, yj*)

wk = wi*+wj*

xk = (wi*xi*+wj*xj*)/(wi*+wj*)

yk = (wi*yi*+wj*yj*)/(wi*+wj*) di*η

dj*η

dkη = (wi*di*η+wj*dj*η)

(wi*+wj*) 

 
Fig. 6.  A single reduction step, RS(m).  The two closest nodes (i* and j*) 

are replaced by a single node (k), representing the location and traffic of 

the originals. 

RS(m) finds the closest two nodes, as defined by distances 

dij and replaces them by a single, representative node, 

biased by the weights wi and wj.  The original m nodes are 

replaced by a representative m-1 in this single step.  The 

procedure is shown graphically in Fig. 6.  RS(m) is the 

essential component in a compound algorithm that can 

perform conventional optimisation on a network problem 

of reduced size.  If  RS(m) is repeated n – q times, the 

original network problem of size n will be replaced by a 

representative one of size q, as shown in Fig. 7.  These q 

nodes can be used in three ways to approximate an 

optimum solution – described in the next section.  The 

complexity of the reduction process, a sequence of matrix 

searches, is bounded above by O(n
3
). 

In principle, these replacement nodes could have been 

generated by a grid-based top-level division of the network 

into q regions then averaging x- and y-coordinates in each.  

However, the q nodes generated by bottom-up reduction 

described here are truly representative of the underlying 

problem.  They will be distributed according to node 

clustering and traffic density, not uniformly with arbitrary 

region boundaries dividing natural node/traffic groups (see 

Appendix C).  Another problem with this method is that 

fixed partitions produce a fixed number of representative 

nodes.  The nodes produced by p partitions are 

independent of those produced by p+1, etc.  In contrast, 

representative reduction generates each iteration from the 

previous one.  An illustrative example is given at the end 

of the results section (8). 

Original node (n)

Representative node (q)

Potential parent

Fig. 7.  A reduced network problem.  The q nodes can be used 

immediately as approximations for switches or as a reduced node set on 

which to conduct exhaustive or DD search.  Light lines show potential 

parents. 

6. Optimisation on a Reduced Network 

Problem 

Fig. 7 shows q replacement nodes at ‘greenfield’ sites, i.e. 

not true (original) node locations.  Assuming the intention 

is to site switches at existing locations, define the step 

Rel(q) to be the process of relocating the q representative 

nodes to their nearest true node.  A formal description of 

this simple process together with a demonstration that two 

representative nodes cannot relocate to the same true node 

is given in Appendix A.  If greenfield sites are permitted 
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then the step may be omitted from the final process. 

For any given computer upon which optimisation is to be 

performed (i.e. its processor power) we define the 

optimisation limit values.  nES  is the maximum number of 

nodes for which exhaustive search is feasible and  nDD  the 

maximum number of nodes for which double-drop is 

feasible.  Clearly,  nDD > nES  but actual values depend on 

the time available.  For a given (time) limit, the value of 

nES may be derived empirically (Section 8) or calculated 

exactly from the known complexity of the exhaustive 

search process given in Appendix B.  The double drop 

algorithm of Section 3, however, is indefinitely iterative: 

nDD is best derived by experimentation. 

Number of switches (s)

Cost

c(s)

s*

c*
(s < s*) (s > s*)

(c(s) ≥ c*) (c(s) ≥ c*)

Fig. 8.  Cost of optimum solution for fixed numbers of switches.  There 

is a global minimum at s = s*, the optimum number of switches. 

Three compound heuristics are outlined in the subsections 

that follow and given formally in Fig. 9. 

6.1. Reduction to Exhaustive Search (RES) 

This is a simple, intuitive process.  Reduce the number of 

nodes to nES, relocate to true positions and optimise to find 

switches and core network through exhaustive search.  An 

exhaustive search algorithm is given in Appendix B. 

6.2. Reduction to Double-Drop (RDD) 

This is equally simple.  Reduce the number of nodes to 

nDD, relocate to true positions and perform double-drop 

optimisation to find switches and core network. 

6.3. Reduction to Switch Location (RSL) 

This is not so straightforward.  The ideal is as follows. 

Reduce the number of nodes by one each time, 

immediately relocate to true positions (a single step only 

for the new node), explicitly make each node a switch and 

optimize on the core network only.  Calculate cost 

(Equations 5, 6, 7 & 8).  Repeat while cost decreases.  The 

stopping principle assumes a concave cost function.  (Let 

c(s) be the cost of the best network solution with s switches 

and let s* be the optimum number of switches.  Then c* = 

c(s*) and for s ≠ s*, c* ≤ c(s).  The general form of c(s) is 

shown in Fig. 8.) 

However, this would be an extremely complex approach.  

Evaluating each of the Φm core networks for each 

decreasing value of m switches (starting with m = n) is 

comparable with exhaustive search for complexity.  To 

avoid this, we adopt the heuristic approach of only 

evaluating the cost of a fully-connected (mesh) core 

network.  In Fig. 9, COpt(m) is the process of finding the m 

switches with the cheapest full-mesh core network and 

co(m) is the cost of this core network.  The optimal core 

network is only calculated for the final switch set (Opt(m)). 

7. Networks and Cost Functions 

The algorithms introduced in this paper are compared in 

the next section.  Two types of test instances were used: 

computer-generated and real-world.  It is known [11] that 

certain algorithms can favour problem instances with 

parameters taken from particular statistical distributions so 

every attept is made to consider a variety of situations and 

characteristics. 

   RES:             RDD:             RSL: 

     m = n            m = n            m = n 

     repeat           repeat         repeat 

       RS(m)            RS(m)          RS(m) 

     until            until            Rel(m) 

       m = nES           m = nDD        COpt(m) 

     Rel(m)           Rel(m)         until 

     ES(m)            DD(m)            co(m) > 

                                        co(m+1) 

                                     m = m+1 

                                     Opt(m) 

Fig. 9.  Three compound algorithms.  RES: Reduce then apply 

exhaustive search; RDD: Reduce then apply double-drop; RSL: reduce 

and optimise directly on switches.  For RSL, co(m) is the cost of a fully-

connected core network on a given m switches.  COpt(m) is the process 

(Eqn. 5) of finding the optimum set of m switches assuming a fully-

connected core network and Opt(m) defines the process (Eqns. 6, 7 & 8) 

of finding (or approximating) the optimum core network, with cost c(m), 

for a given m switches. 

7.1. Computer-Generated Instances (CG) 

Random generation of test instances is straightforward but 

must be appropriate and realistic.  Just over 4,000 

instances were produced with numbers of nodes (n) 

between 10 and 100,000.  Node positions were randomly 

taken from the [0,1] unit square but with reference to 

between 0 and 25 cluster points (cp) and a cluster 

coefficient (cc) of between 0 and 1 (theoretically).  A cc of 
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1 forces all nodes to be coincident on cluster points.  A cc 

of 0 allows nodes to be placed anywhere – a uniform 

distribution across the unit square.  cp and cc were 

randomized uniformly.  Fig. 10 shows three examples. 
 

(a) No cluster points or                                            (c)  Three cluster points

cc = 0                                                          cc = 0.6

(b)  One cluster point

cc = 0.3

 
 

Fig. 10. Randomly generated node positions. (a). No clustering. (b). 

Moderate clustering around one point.  (c).  Heavy clustering about three 

points. 

End-to-end traffic figures between each node pair were 

independently randomized on the interval [0,1] according 

to (both, separately) a uniform distribution (U) and a 

normal distribution (Nσ) with mean 0.5 and standard 

deviation (σ) between 0.005 and 0.25. 

Realistic link and switch costs are more complex – even 

for randomly generated instances.  The benefits of 

redirecting traffic between switches, calculated in section 

III, are only positive if spare capacity can be found on 

existing links and switches to offset the additional cost of 

connection and switching.  Real link and switch costs 

increase in discrete steps.  General principles are given in 

[12] and formulated in [13].  Our cost functions are based 

on this approach and are described as follows.  We initially 

consider transmission and switching sizes/costs together; 

they have similar characteristics at this level.  We also use 

the general term channel to indicate a link/switch of a 

known size. 

At low traffic levels, the smallest available channels will 

be used.  Each will have a capacity of s0. At some (traffic) 

limit, ι0, however, it will be preferable (cheaper) to use a 

single (larger) channel of size s1.  s1 > ι0.  For traffic, 0<ι≤ 

ι0, |ι/s0|+1 channels will be required. (|..| represents the 

integer part.)  For traffic, ι0<ι≤ι1, |ι/s1|+1 channels will be 

necessary, up to a limit of ι1, etc.  This process is finite.  

There will be a largest channel of some size sχ.  Larger 

values of ι will be carried by channels in multiples of sχ.  

Fig. 11 shows χ=2.  In the case of transmission costs, the 

values of ι0, s0, ι1, s1, ι2, etc., will depend on link Quality of 

Service (QoS) and may be calculated or derived from 

tables.  Switches may or may not have QoS parameters.  In 

their absence, the values of ι0, s0, ι1, s1, ι2, etc. are fixed 

(for a given application). 

ι

ι0

ι1

ι’0 ι’1

ι2

fs(ι)

|ι/ι1|=1

|ι/ι0|=1
..

...

|ι/ι0|=0

|ι/ι1|=0

...

|ι/ι2|=0 ...

 
Fig. 11.  Stepped cost function.  Channels have fixed, maximum 

capacities and can be deployed in integer multiples of these values. 

The cost of each channel of increasing capacity s0, s1, s2, 

etc. will increase with ι, but less than linearly.  Also, 

transmission costs must take into account the length of the 

link.  We may realistically model our cost functions, fs(T) 

and fl(t,d) as 
 

 fs(T)  =  T
ξ
                (11) 

 

for switching and 
 

 fl(t,d)  =  t
ξ
d
ζ
                (12) 

 

for transmission.  0<ξ<1.  In principle, ζ>0.  However, 

values of ζ>2 are excessive in practice and we 

consequently restrict our test ranges to 0<ζ<2.  Test 

instances with different values of ι0, s0, ι1, s1, ι2, … ξ and ζ 

are summarized in the results given in Section 8. 

7.2. Real-World Instances (RW) 

Four real network problems were also studied.  Actual 

network data in the form of node locations, traffic 

requirements and link/switch costs were provided as 

follows: 

Case 1: A Frame-Relay network of 78 nodes with 

estimated traffic flows, allowing the traffic matrix to be 

approximated. 

Case 2:  A Frame-Relay network of 103 nodes with known 

(measured) traffic flows, allowing the traffic matrix to be 

calculated. 

Case 3:  An ATM network of 221 nodes with unknown 

traffic flows.  The traffic matrix is taken as being constant 
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for all node pairs. 

Case 4:  An IP network of 491 nodes with known 

(measured) traffic flows, allowing the traffic matrix to be 

calculated. 

For reasons of commercial confidentially, it is not possible 

to release precise details of locations, traffic and costings.  

It is, however, acceptable to summarise results as in the 

next section. 

8. Comparing Compound Algorithms 

Five algorithms are considered and their complexity and 

accuracy compared. 

ES:  Exhaustive Search (Appendix B) 

DD:  Double-Drop (Section 3) 

RES:  Reduction to Exhaustive Search (Section 6) 

RDD:  Reduction to Double-Drop (Section 6) 

RSL:  Reduction to Switch Location (Section 6). 

Table 1.  Run-Times for Exhaustive Search (ES) and Double Drop (DD) 

 n ES run-time (s) DD run-time (s) 

 

               6 (CG)                   < 1                          < 1 

               8 (CG)                   < 1                          < 1 

             10 (CG)                   < 1                          < 1 

             11 (CG)                      3.8                       < 1 

             12 (CG)        77,123       < 1 

             13 (CG)        3 x 108   *                  < 1 

             15 (CG)                4 x 1016  *       < 1 

             20 (CG)        1 x 1042  *       < 1 

             25 (CG)                        -                         < 1 

             30 (CG)                        -                         < 1 

             40 (CG)                        -                         < 1 

             50 (CG)                        -           7.2 

             55 (CG)                        -                        242 

             60 (CG)                        -                    80,880 

             65 (CG)                        -                  269,385 

             70 (CG)                        -                            - 

Run times in seconds.  Actual timings except * calculated.  CG: 

Computer Generated instances.  RW: Real-World cases. 

At the end of this section, we also consider PES, PDD and 

PSL, the fixed partition equivalents (Appendix C) of RES, 

RDD and RSL.  However, these prove to be poorer 

performers in each case and are not considered in detail. 

We deal first with run times.  All are based on each 

algorithm, coded in C++, running on dual 3.4GHz Intel 

Xeon 64 bit processors with 8GB SDRAM.  Generated 

instances (CG) are averaged, test cases (RW) given 

explicitly.  Distances dij were calculated once then stored 

for efficiency.  Table 1 compares run times for ES and DD. 

Table 1 shows that, taking one day (84,400s) as the 

acceptable limit for program run time, the optimisation 

limit values are nES = 12 and nDD = 60.  Other values may 

be used but we stick with these in this paper.  We use the 

values in subsequent tests to perform full or partial 

optimisation at the earliest opportunity – i.e. on the largest 

possible number of nodes.  There was little variance, and 

no apparent correlation, in the run times for different 

values of cp, cc and σ (or ι0, s0, ι1, s1, ι2, … ξ and ζ) 

(Section 7).  Table 2 gives the run times of RES, RDD and 

RSL using these values of nES and nDD. 

Table 2.  Run-Times for Reduction to Exhaustive Search (RES), 

Reduction to Double Drop (RDD) and Reduction to Switch Location 

(RSL) 

          n         RES run-time (s)     RDD run-time (s)     RSL run-time (s) 

 

    1,000 (CG)           77,123                80,880                          < 1 

    5,000 (CG)           77,123                80,880                          < 1 

  10,000 (CG)           77,123                80,880                          < 1 

  25,000 (CG)           77,124                80,880                             1 

  50,000 (CG)           77,129                80,882                           24 

100,000 (CG)           78,502                81,442                      1,510 

Run times in seconds.  nES = 12 and nDD = 60.  CG: Computer Generated 

instances. 

The dominance of the ES and DD components in RES and 

RDD is clear.  RSL, with its simplified core network 

heuristic, is considerably less complex for all but the very 

largest values of n.  Once again, there was no noticeable 

difference for different values of cp, cc and σ (or ι0, s0, ι1, 
s1, ι2, … ξ and ζ). 

In measuring the accuracy of the different optimisation 

methods, there is a large quantity of data/results to report 

and it is necessary to summarise for brevity.  Although, 

among the large numbers of tests, there was some 

fluctuation for different values of cost parameters ι0, s0, ι1, 
s1, ι2, … ξ and ζ (Section 7), there is no clear pattern and 

the variance is attributed to statistical uncertainty. 

Table 3.  Performance of Reduction to Switch Location (RSL) relative to 

Exhaustive Search (ES) for small problems 

       n    c*  �           n       c*     � 

 

   6 (CG) 0.03 94.2     10 (CG)    0.16   94.0 

   7 (CG) 0.05 94.1     11 (CG)    0.20   93.8 

   8 (CG) 0.11 94.1     12 (CG)    0.23   93.8 

   9 (CG) 0.14 94.0     13 (CG)    0.25   93.7 

Percentage (%) cost (c*) increase of RSL over ES and percentage (%) of 

RSL finding same (optimal) solution as ES (�).  CG: Computer 

Generated instances. 

There was, however, some clear relationship between the 

size of the problems in question (n), the number of cluster 

points (cp), the cluster coefficient (cc) and the distribution 
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from which the end-to-end traffic matrix was taken 

(uniform or normal with distribution σ) and the relative 

performance of the different algorithms and these are 

summarized in what follows. 

Table 4.  Performance of RES with RSL for Different Traffic 

Characteristics 

             n                  U             N(0.25)          N(0.1)        N(0.005) 

 

           10 (CG)        1.8 1.8               1.7              1.7 

           30 (CG)        2.3 2.2               2.0              2.0 

         100 (CG)        2.7 2.5               2.4              2.2 

         300 (CG)        4.0 3.9               3.7              3.6 

      1,000 (CG)        5.2 4.9               4.7              4.6 

      3,000 (CG)        7.0                6.6               6.5              6.2 

    10.000 (CG)        8.2                7.8               7.4              7.1 

    30,000 (CG)        9.3                9.0               8.5     8.2 

  100,000 (CG)      11.4              10.5             10.2     9.9 

Percentage (%) cost (c*) saving of RSL over RES for traffic values 

drawn from uniform and normal distributions.  cp = cc = 0.  CG: 

Computer Generated instances. 

We begin with a set of small tests, comparing ES with 

RSL.  ES can only run up to n = 12 and RSL is the only 

one of the three reductive algorithms (RES, RDD and 

RSL) that is faster than ES for problems of this size. 

Table 5.  Performance of RES and RDD with RSL for Cluster 

Characteristics  cp = 0, cc = 0 

                    n                                 RSL                 RDD 

 

                       10 (CG)                    1.8                   2.4  

                       30 (CG)                    2.3                   3.2 

                     100 (CG)                    2.7                   5.1 

                     300 (CG)                    4.0                   8.2 

                  1,000 (CG)                    5.2                 10.2 

                  3,000 (CG)                    7.0                 12.8 

                10.000 (CG)                    8.2                 15.0 

                30,000 (CG)                    9.3                 17.2 

              100,000 (CG)                  11.4                 21.5 

Percentage (%) cost (c*) saving of RSL and RDD over RES for cp = cc 

= 0.  CG: Computer Generated instances. 

Table 3 shows that the inaccuracies of RSL, relative to ES, 

are small at this level but increase with n.  It is conjectured, 

but cannot be tested, that these inaccuracies will continue 

to increase with larger n.  For these small problems, there 

was no apparent significance to the parameters cp, cc and 

σ. 

We turn now to traffic variance.  For our tests, the traffic 

requirement between end nodes i and j, tij, is taken from 

two distributions: 

• U: tij drawn randomly, uniformly from the 

interval [0,1], independently for each (i,j), and 

• Nσ: tij drawn randomly on the interval [0,1] from 

a normal distribution with mean 0.5 and variance 

σ
2
, independently for each (i,j) 

U gives very random traffic.  Nσ, for small σ, gives 

extremely self-similar traffic.  Table 4 compares the 

behaviour of the RES and RSL reductive algorithms for 

different traffic characteristics with no clustering. 

Table 6.  Performance of RES and RDD with RSL for Cluster 

Characteristics  cp = 5, cc = 0.5 

                      n                              RSL               RDD 

 

                      10 (CG)                      1.9                 2.4 

                      30 (CG)                      2.4                 3.3 

                    100 (CG)                      2.9                 5.0 

                    300 (CG)                      4.3                 8.2 

                 1,000 (CG)                       5.5               10.0 

                 3,000 (CG)                       7.4               12.9 

               10.000 (CG)                       8.8               14.7 

               30,000 (CG)                       9.7               16.8 

             100,000 (CG)                     11.9              21.7 

Percentage (%) cost (c*) saving of RSL and RDD over RES for cp =5,  

cc = 0.5.  CG: Computer Generated instances. 

Table 4 suggests that the cruder reductive approach of 

RES is less poor for problems with heavily self-similar 

traffic, due to the likelihood that a larger number of 

solutions have relatively close costs.  When traffic is 

diverse, there is a greater tendency for RES to miss the 

optimal solution by a greater margin.  In general RSL 

outperforms RES by a greater margin anyway for larger 

problems.  Table 4 is a summary and the difference is 

slight.  These patterns were observed in the problems with 

clustering features that follow but are omitted for brevity 

(uniform traffic distributions are assumed). 

Table 7.  Performance of RES and RDD with RSL for Cluster 

Characteristics  cp = 15, cc = 0.4 & cp = 15, cc = 0.8 

                n              cc=0.4   RSL  RDD        cc=0.8   RSL  RDD 

 

               10 (CG)                   2.0     2.2                       2.1      2.1 

               30 (CG)                   2.5     3.1                       2.7      3.0 

             100 (CG)                   3.1     4.6                       3.3      4.4 

             300 (CG)                   4.8     7.7                       4.9      7.6 

          1,000 (CG)                   5.8     9.5                       6.2      9.3 

          3,000 (CG)                   7.9   12.2                       8.2    11.9 

        10.000 (CG)                   9.3   14.3                       9.7    13.9 

        30,000 (CG)                 10.0   16.3                     10.2    15.9 

      100,000 (CG)                 12.5   21.3                     12.8    20.6 

Percentage (%) cost (c*) saving of RSL and RDD over RES for cp =15,  

cc = 0.4 & cp = 15, cc = 0.8.  CG: Computer Generated instances. 

We now compare RSL, RES and RDD directly.  In 

particular, we consider problems with different cluster 

characteristics, cp and cc.  Tables 5, 6, 7 and 8 compare 

RSL and RDD with RES for cp:cc pairs, 0:0, 5:0.5, 
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15:0.4, 15:0.8, 25:0.4 and 25:0.8.  Although RDD 

consistently outperforms RSL, which in turn outperforms 

RES, it can be seen that, as the level of clustering 

increases, RSL performs comparatively better and RDD 

comparatively worse.  Fig. 12 summarises Tables 5 to 8.  

Table 9 gives the equivalent results for the real-world 

cases, which broadly correlate with the computer-

generated instances. 

Table 8.  Performance of RES and RDD with RSL for Cluster 

Characteristics  cp = 25, cc = 0.4 & cp = 25, cc = 0.8 

 n            cc=0.4  RSL  RDD        cc=0.8   RSL  RDD 

 

                  10 (CG)              2.2     1.9                         2.4     1.7 

                  30 (CG)              2.7     2.8                         2.8     2.6 

                100 (CG)              3.4     4.1                         3.6     3.7 

                300 (CG)           5.2     7.2                         5.4     6.9 

             1,000 (CG)              6.3     8.9                         6.5     8.5 

             3,000 (CG)              8.3   11.8                         8.4   11.6 

           10.000 (CG)              9.7   13.3                       10.1   13.0 

           30,000 (CG)            10.6   15.2                       10.9   14.7 

         100,000 (CG)            12.9   19.8                       13.5   19.3 

Percentage (%) cost (c*) saving of RSL and RDD over RES for cp =25,  

cc = 0.4 & cp = 25, cc = 0.8.  CG: Computer Generated instances. 
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Fig. 12.  Percentage improvement of RSL and RDD over RES for 

different cluster values of (cp:cc).  RDD is always better than RSL, the 

difference increasing with n.  However, RSL performs comparatively 

better with increased clustering and RDD comparatively worse. 

Table 9.  Performance of RES and RDD with RSL for Real-World Cases 

         n                RSL      RDD 

 

 78 (RW)                    3.0                    3.4 

                103 (RW)                    3.1                    6.2 

                221 (RW)                    3.6                    6.9 

                491 (RW)                    5.1                    8.9 

Percentage (%) cost (c*) saving of RSL and RDD over RES for Real-

World (RW) cases. 

Table 10.  Performance of PES, PSL and PDD with RES, RSL and RDD 

        n        PES/RES     PSL/RSL     PDD/RDD 

 

                     10 (CG)             0.3               1.2               0.7 

                     30 (CG)             2.9               4.6               3.1 

                    78 (RW)             6.2               8.9               5.3 

                   100 (CG)             6.1             10.5               7.0 

                  103 (RW)             5.6               9.1               8.4 

                  221 (RW)             9.2             12.0             11.0 

                   300 (CG)             8.8             18.0             10.3 

                  491 (RW)             8.9             15.5               9.7 

                1,000 (CG)           11.7             22.1              13.3 

                3,000 (CG)           15.0             28.6              17.5 

              10.000 (CG)           18.2             35.5              20.6 

              30,000 (CG)           22.0             43.8              26.6 

            100,000 (CG)           27.8             55.1              33.2 

Percentage (%) cost (c*) increase of PES, PSL and PDD over RES, RSL 

and RDD. CW: Computer Generated instances (cp = 0; cc = 0).  RW: 

Real-World cases. 
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Fig. 13.  Comparing PES, PSL and PDD with RES, RSL and RDD.  RW 

cases do not behave exactly as CG instances but the relative 

performances remain clear. 

Finally, we compare representative reduction with arbitrary 

partitioning.  Table 10 shows the relative performance 

(percentage cost increase) of each of the compound 

partitioning algorithms, PES, PSL and PDD (Appendix C) 

with its reductive equivalent, RES, RSL and RDD.  Both 

real and generated cases (with no clustering) are given.  

Representative reduction outperforms arbitrary partitioning 

in all cases (although there is an imperfect correlation 

between the CG and RW examples).  Fig. 13 shows the 

trend graphically.  PSL is particularly poor. 

9. Conclusions 

Theoretical, fixed-cost models of the network design 

process are simplistic.  In the practical design of a real 
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network, both link and switch costs have to be considered 

and these costs are (at least partially) a function of 

(required) capacity.  As this capacity depends upon the 

topology of the solution network, costs cannot be 

considered fixed and entered as input to a standard 

algorithmic solution.  The further, implied difficulty that 

the cost function is not locally stable, and must be re-

evaluated fully for each solution variant, increases the 

complexity considerably, particularly for large problems.  

Conventional construction or local search variants fail for 

one or both of these reasons. 

Noting these objections, this paper initially considers two 

practical optimisation algorithms: exhaustive search (ES) 

and a doubly-iterative drop (DD).  However, both have 

limits (nES and nDD) on network size so additional 

techniques are needed to reduce larger problems to within 

their range.  The top-down and bottom-up approaches are 

considered: firstly, partitioning (P) the plane into arbitrary 

areas and secondly, reducing (R) the problem 

representatively.  In isolation, R is more complex than P 

but both are insignificant if ES and DD are running at their 

limits.  In fact, P solutions are generally poorer. 

R solutions have three variants: reduce down to exhaustive 

search (RES), reduce down to double-drop (RDD) and 

reduce directly down to switch location (RSL).  There is an 

additional heuristic simplification involved in RSL 

(Section 6).  The equivalent PES, PDD and PSL do not 

give good results (comparatively). 

RES does not perform well, mainly due to a necessarily 

very small nES.  RSL gives better results: its core network 

heuristic makes it the fastest of the three R approaches at 

the expense of some accuracy.  RDD is the most accurate: 

nDD > nES outweighing the heuristic limitation of DD.  If 

time permits, RDD would be the preferred method of 

solution for a large-scale network design problem.  If less 

accurate results are required much faster (for example, if 

frequent re-optimisation is to be performed) then RSL is an 

acceptable compromise. 

Appendix A: . Node relocation 

The relocation process, Rel(m) or Rel(q), relocates each of 

the reduced  m or q representative nodes to its nearest 

original node.  The algorithm for (the Rel(m) version of) 

this simple process is given in Fig 14. 

The repeated application of RS(m) will place each 

representative node at the weighted centre of the original 

node set it represents (Fig. 15).  The implications of this 

are that, taking any direction from representative node m 

(e.g. to another representative node), there will be at least 

one original node, in m’s node set, in that direction that is 

closer to m than any node not in m’s node set.  Each 

representative node thus relocates to an original node in its 

own set and all representative nodes locate to different 

original nodes.  An extreme case is where no reduction has 

taken place for a given ‘replacement’ node, in which case 

it ‘relocates’ to the single original node with which it is 

still coincident. 

 

Rel(m): 

for each replacement node k (1≤k≤m) do 
   begin 

      j = 1, min = d1k 

      for each original node i (2≤i≤n) do 
         if dik < min then 

            j = i, min = dik 

      relocate k to j 

   end 

Fig. 14.  The relocation process, Rel(m), relocating each of the m 

representative nodes to its nearest original node. 

Representative node

Original node

Relocation

Node set boundaries

 
Fig. 15. The relocation process, Rel(m) on m representative nodes.  No 

two representative nodes relocate to the same original node. 

Appendix B: . Exhaustive Search 

An exhaustive search algorithm, ES(n) or ES(m), on n 

original or m replacement nodes tries every combination of 

switches and core networks and returns the configuration 

of least cost.  ES(n) is given in Fig. 16.  The use of 

equations 5, 6, 7 & 8 is implicit. 

It is assumed in ES(n) as given that nodes connect to their 

nearest switch.  In the majority of, but not all cases, this 

will yield the optimum solution.  In isolated cases, 

however, it may be that connecting certain nodes to 
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switches other than the closest may better use capacity on 

the distant switch, avoid an extra step cost on the nearer, 

and justify the slight extra cost of the longer link.  ES(n) 

(or ES(m)) are easily adapted to include this extra search 

level but their complexity increases substantially. 

ES(n): 

min = MaxVal        // Some arbitrarily large value 

for each m (1≤m≤n) do 
   for each node subset S = {s:1≤m≤n} (|S|=m) do 
      for each connected core network 

         Ξ = {(i,j):1≤i,j≤n and i,j∈S} do 
            if c* < min then 

               min = c* 

               S* = S 

               Ξ* = Ξ 

Fig. 16.  The exhaustive search process, ES(n).  All combinations of 

switches and core network are considered.  The process returns the 

optimal switch set, S*, and the optimal core network, Ξ*. 
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m

mn

mm

n mC
1

, which simplifies to ∑
=

Φ
n

m

mm

n C
1

 if 

nodes are constrained to connect to their nearest switches.  

A similar expression applies to ES(m).  This allows the 

value of nES in Section 6 to be calculated.  However, both 

are doubly exponential in complexity. 

Appendix C: . Top-down versus Bottom-up 

                         Clustering 

The reduction process described in this paper builds a set 

of representative nodes by bottom-up iterative 

replacement.  In so doing, it produces the best possible 

reduced representation of the original nodes in terms of 

both traffic density and position and can take into account 

either Euclidean or non-Euclidean distances. 

There is of course another, simpler way of generating these 

replacement nodes, which has been used for various 

geometric optimisation problems over the years (e.g. [14]).  

The Partitioning method, P(m), divides the plane up into m 

regions, R1, R2, …, Rm, and calculates the co-ordinates of 

the representative node for each region Ri as  

)/,/( ∑∑∑∑
∈∈∈∈ iiii Rj

j

Rj

jj

Rj

j

Rj

jj wywwxw .          (13) 

 
 PES:  PDD:  PSL: 

     m = n  m = n  m = n 

   repeat  repeat  repeat 

     P(m)             P(m)    P(m) 

   until  until    Rel(m) 

       m = nES          m = nDD   COpt(m) 

   Rel(m)        Rel(m)  until 

   ES (m)        DD(m)   co(m) > 

    co(m+1) 

     m = m+1 

     Opt(m)  

 

Fig. 17.  The three partitioned equivalents of the RES, RDD and RSL 

algorithms.  PES: Partition then apply exhaustive search; PDD: Partition 

then apply double-drop; PSL: (Partition to Switch Location).  Reduce 

and optimise directly on switches. 

On this basis, we can define the partitioned equivalents 

of RES, RDD and RSL as in Fig. 17. 

Original node

Replacement

node (bottom-up)

Replacement

node (top-down)

 

Fig. 18. Comparing the bottom-up and top-down node replacement 

policies.  Arbitrary divisions of the plane do not give good representative 

nodes and cannot take non-Euclidean distances truly into account. 

Figure 18, however, shows typical results for this 

method compared with representative reduction.  Not only 

are the partitioned replacement nodes poor representatives 

of the original clusters, equation (13) does not take into 

account (particularly non-Euclidean) distances in the 

manner of RS(m) (Fig. 5).  For our purposes, reduction 

proves to be stronger than partitioning at no practical 

increase in complexity. 
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