
Glyndŵr University
Glyndŵr University Research Online

Computing Computer Science

7-1-2007

Practical Large-Scale Network Design with
Variable Costs for Links and Switches
Vic Grout
Glyndwr University, v.grout@glyndwr.ac.uk

Stuart Cunningham
Glyndwr University, s.cunningham@glyndwr.ac.uk

Rich Picking
Glyndwr University, Wrexham, r.picking@glyndwr.ac.uk

Follow this and additional works at: http://epubs.glyndwr.ac.uk/cair
Part of the Computer and Systems Architecture Commons, Digital Communications and

Networking Commons, Hardware Systems Commons, and the Systems and Communications
Commons

This Article is brought to you for free and open access by the Computer Science at Glyndŵr University Research Online. It has been accepted for
inclusion in Computing by an authorized administrator of Glyndŵr University Research Online. For more information, please contact
d.jepson@glyndwr.ac.uk.

Recommended Citation
Grout, V., Cunningham, S., and Picking, R. (2007) “Practical Large-Scale Network Design with Variable Costs for Links and Switches”.
International Journal of Computer Science and Network Security, 7(7), 113-125

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/287588955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epubs.glyndwr.ac.uk?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/comp?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:d.jepson@glyndwr.ac.uk

Practical Large-Scale Network Design with Variable Costs for Links and
Switches

Abstract
This paper considers communication network design problems that arise in the real world, with large numbers
of nodes and link and switch costs dependent upon their traffic capacity. Such costs, in turn, depend upon
network topology so are not fixed at the start of, or through, any optimisation process. Realistic topological
restrictions are also discussed. The limitations of conventional approaches – both constructive and search
based – are noted and the requirements of practical optimisation methods explored. Two workable
approaches to network design - one an established local search variant, another a more novel geometric
approach - are introduced. Five different algorithms, ranging from exhaustive search to fast heuristic are
compared with experimental results given in conclusion.

Keywords
Algorithms and heuristics, Large-scale network design, Optimisation, Variable costs

Disciplines
Computer and Systems Architecture | Digital Communications and Networking | Hardware Systems |
Systems and Communications

Comments
Copyright © 2007 IJCSNS. This is the author’s final version of the work after peer review. The article was
originally published in the International Journal of Computer Science and Network Security in 2007. The full
published article can be found at http://ijcsns.org

This article is available at Glyndŵr University Research Online: http://epubs.glyndwr.ac.uk/cair/76

http://paper.ijcsns.org/07_book/html/200707/200707015.html
http://epubs.glyndwr.ac.uk/cair/76?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

1

Manuscript received July 20, 2007

Manuscript revised July 25, 2007

Practical LargePractical LargePractical LargePractical Large----Scale Network Design with Variable Costs for Scale Network Design with Variable Costs for Scale Network Design with Variable Costs for Scale Network Design with Variable Costs for

Links and SwitchesLinks and SwitchesLinks and SwitchesLinks and Switches

Vic Grout, Stuart Cunningham and Rich Picking

v.grout@newi.ac.uk s.cunningham@newi.ac.uk r.picking@newi.ac.uk
University of Wales, NEWI, Wrexham, North Wales, UK

Summary

This paper considers communication network design problems

that arise in the real world, with large numbers of nodes and link

and switch costs dependent upon their traffic capacity. Such

costs, in turn, depend upon network topology so are not fixed at

the start of, or through, any optimisation process. Realistic

topological restrictions are also discussed. The limitations of

conventional approaches – both constructive and search based –

are noted and the requirements of practical optimisation methods

explored. Two workable approaches to network design - one an

established local search variant, another a more novel geometric

approach - are introduced. Five different algorithms, ranging

from exhaustive search to fast heuristic are compared with

experimental results given in conclusion.

Key words:

Algorithms and heuristics, Large-scale network design,

Optimisation, Variable costs

1. Introduction

The topological network design problem (TNDP) for fixed

networks in general and communication networks in

particular is often considered well-solved. In the standard

formulation, n nodes are to be interconnected with cij

representing the cost of connecting node i directly to node

j. The problem is then to find a connecting set of links

minimising

 ∑∑
−

= +=

=
1

1 1

*
n

i

n

ij

ijcC . (1)

Early constructive algorithms (e.g. [1]) solve the problem

to optimality in its unconstrained form and produce

solutions of the type shown in Fig. 1. Capacity constraints

can be applied although the problem then becomes NP-

hard [2] and the necessarily adapted heuristics (e.g. [3])

only yield approximate solutions. However, with an initial

solution in place, various classes of local search heuristics

such as tabu-search [4], simulated annealing [5] or genetic

algorithms [6] can be applied to perturbate parts of the

solution to look for improvement. Ant Colony algorithms

[7] also focus on static problems such as this. A common,

generic, but as we shall see - unrealistic, approach is to

formulate the problem in Linear or Integer Programming

[8].

This paper begins by outlining the shortcomings of this

formulation of the TNDP and its associated algorithmic

solutions in practical applications. It then discusses the

requirements of a real-world fixed network design

optimisation process and introduces and compares various

effective solutions. The terms node, switch and traffic are

used freely in the text but may be substituted by/for any

appropriate equivalent in whatever underlying

communications technology is being considered.

i

j

a

b

Fig. 1. Minimal Spanning Tree (MST) solution. The network has long

paths between nodes (e.g. a & b) and is extremely vulnerable to failure.

A failure of node i or link (i, j), for example, splits the network in two.

2. Problems with the TNDP Formulation

The TNDP solution shown in Fig. 1. is a Minimal

Spanning Tree (MST). There are two clear objections to

such a topology:

• The connecting network has long, inefficient

paths (in terms of number of links), even between

geographically close nodes.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

2

• The solution network is extremely vulnerable to

component failure. There is no redundancy. A

fault at any node or link disconnects the network.

However, there are also difficulties associated with this

simplistic notion of cost, independent of the method of

solution:

• Only link (e.g. transmission) costs are considered;

node (e.g. switching) costs are ignored.

• Traffic will flow, possibly asymmetrically, in

both directions on a link; the structure of link

costs should reflect this.

• Costs are taken as fixed in the statement of the

problem and throughout any optimisation

process, irrespective of network topology.

i

j

Fig. 2. A variant of Fig. 1. The link (i, j) carries only local traffic and is

of small capacity – so will cost less. Also, i is no longer an expensive

switch.

The final point warrants further explanation. The true cost

of a link will depend partly on its length (which is known

in advance) but also on its capacity - the level of traffic it

can handle (which is not). In Fig. 1, the link (i, j) carries

traffic from one side of the network to the other and will be

of high capacity. In Fig 2, it carries local traffic only and

will be much smaller. A similar variance applies to

switches. The cost of a link or switch consequently

depends on the solution topology - so cannot be fixed for

the duration of the optimisation process.

For large numbers of nodes a more realistic network

topology (for the same set of nodes as Fig. 2) is shown in

Fig. 3. A subset of nodes (switches) has been chosen to

concentrate and relay traffic among the remainder through

a mesh or partial-mesh core network. The maximum path

length between any node pair is reduced significantly and

there is some tolerance of failure, at least in the core

network, provided by redundant links. We take this as our

model for a practical network design in this paper. Other

forms are possible of course, such as:

• Constrained full-mesh or star core networks,

• Multiply-connected (non-switch) nodes,

• Multi-level (>2) networks.

The techniques discussed in this paper extend without

difficulty to these variants. However, for brevity, the

formulation of the problem here is based on the topology

in Fig. 3. To generalize would extend the paper

unnecessarily.

3. A Practical Formulation

Link costs remain variable, however, and switch costs

should be considered. If we adopt the convention of using

uppercase characters for switches and lowercase for non-

switches then, in general, cs(i)=0, cs(X)>0, cl(i,j)=0 and,

where the link in question is present, cl(X,Y)>cl(i,X)>0,

where cs and cl are the costs of switches and links

respectively. More precisely, if a link L carries traffic t

over a distance d then cl(L) = fl(t,d). If a switch S

processes traffic T then cs(S) = fs(T). fl and fs may be any

well-defined functions, dependent upon the underlying

technology, and are not considered further until Section 7.

Define tij to be the traffic between end-points i and j, that

is, the traffic originating at i and destined for j. Define dij

to be the ‘distance’ between i and j. This may the

Euclidean straight line (dij = [(xi-xj)
2
+(yi-yj)

2
]

½
 where

(xi,yi) and (xj,yj) are the Cartesian coordinates of i and j) or

weighted to reflect local factors. If a link is infeasible then

dij=∞. The cost of a link from a non-switch i to its parent

switch X is then given by

),(),(
1

iX

n

j

ijll dtfXic ∑
=

= (2)

with a corresponding cost c(X, i) in the other direction.

Define ΓX to be the set of nodes with X as their parent in a

given configuration/solution. Then the cost of the switch X

is given by

))(()(
1

∑∑
Γ∈ =

+=
Xi

n

j

jiijss ttfXc . (3)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

3

a

i

j

b

X

Y

Z

Fig. 3. A practical network design. Path length is limited and there is

some redundancy/fault tolerance in the core network.

For a fully-connected core network, i.e. with a link

between each switch pair (X, Y), the cost of the link (X, Y)

is given by

),(),(XY

i j

ijll dtfYXc
X Y

∑∑
Γ∈ Γ∈

= (4)

with an equivalent cost cl(Y,X) in reverse. Define ΩXY = 1

if there is a link between X and Y, ΩXY = 0 otherwise.

(The node sets ΓX, ΓY, …, and the connection matrix ΩΩΩΩ =

(ΩXY) fully describe any given solution.)

The total cost of the (fully-connected) network can then be

calculated as

 ∑
∑

∑





















+

+

+

=
Γ∈

X

Y

l

s

i

ll

YXc

Xc

iXcXic

c

X

),(

)(

)),(),((

* (5)

If the link from switch X to switch Y is not present (ΩXY =

0) this results in a saving of

),(∑∑
Γ∈ Γ∈X Yi j

XYijl dtf . (6)

However its traffic must be redirected via switches Z1, Z2,

… The cost of each affected switch, Z1, Z2, … will

increase to

),...)((

),)((

2

1

1

1

∑ ∑∑∑

∑ ∑∑∑

Γ∈ Γ∈ Γ∈=

Γ∈ Γ∈ Γ∈=

++

++

Z X Y

Z X Y

i i j

ij

n

j

jiijs

i i j

ij

n

j

jiijs

tttf

tttf

 (7)

and link costs to

)),((

...

),),((

),),((

21

1 2

1

1

YZ

Xi Yi

ij

Zi Yi

ijl

ZZ

Xi Yi

ij

Zi Zi

ijl

XZ

Xi Yi

ij

Xi Zi

ijl

r

r

dttf

dttf

dttf

∑∑∑∑

∑∑∑∑

∑∑∑∑

∈ ∈∈ ∈

∈ ∈∈ ∈

∈ ∈∈ ∈

+

+

+

 (8)

for each capacity-enlarged link, (X, Z1), (Z1, Z2), …, (Zr, Y)

where r is the degree of redirection for (X, Y) (r=0 ⇔

ΩXY=1). The calculation is repeated for each (X, Y) with

ΩXY = 0. (If ΩXY = 0 implies ΩYX = 0 then the adjustments

in (6, 7 & 8) are replicated in reverse but this is not

assumed here.) The total network cost c* can be

recalculated accordingly. The removal of a link will result

in an overall saving if appropriate spare capacity can be

found on the switches and links through which its traffic is

redirected (see Section 7).

(A distinction is made here between redirection and

rerouting. Redirection is part of the topological design

process by which required link capacities are estimated.

Rerouting is a dynamic process taking place in real time on

network switches. The use of redirection in design does

not prohibit dynamic rerouting in operation.)

c*, however, is a complex calculation, based on link

costs that vary with network topology. Significantly, small

changes to a topology (such as moving a node to a

different parent switch) have consequential effects across

the network and require a full re-evaluation of the total

cost. Conventional local search techniques [4][5][6] work

well when the effects of a local change can be calculated

locally in terms of a change in cost (such as the

insertion/removal of a link of fixed cost). Their

complexity is increased if the cost function must be

recalculated for each perturbation and their power

diminishes rapidly

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

4

DD(n):

Make every node a switch // Initial solution
repeat

 Connect switches as a full-mesh

 ∆s = 0
 Calculate c* // Equation 5

 for each switch X do // Look to drop switches

 begin

 Calculate c*(X) // Equation 5
 repeat

 ∆l = 0
 for each link (Y,Z) do

 begin // Look to drop links

 Calculate ∆ = c*(X)-c*(X,Y,Z)
 if ∆ > ∆l then // Equations 6,7,8

 Y* = Y, Z* = Z, ∆l = ∆
 end

 if ∆l > 0 then
 begin // Drop ‘worst’ link

 Remove link (Y*,Z*)

 c*(X) = c*(X,Y*,Z*)
 end

 until

 ∆l = 0 // No further link savings

 ∆ = c* - c*(X)
 if ∆ > ∆s then
 X* = X, ∆s = ∆
 end

 if ∆s > 0 then
 Remove switch X* // Drop ‘worst’ switch
until

 ∆s = 0 // No further switch savings

repeat // Repeat link drops for final switch set

 ∆l = 0
 for each link (Y,Z) do

 begin

 Calculate ∆ = c*-c*(Y,Z)

 if ∆ > ∆l then
 Y* = Y, Z* = Z, ∆l = ∆
 end

 if ∆l > 0 then
 begin

 Remove link (Y*,Z*)

 c* = c*(Y*,Z*)

 end

until

 ∆l = 0 // Final solution

Fig. 4. The Double-Drop (DD) network design process. c*(X) is the cost

of the current solution with switch X removed. c*(Y,Z) is the cost of the

current solution with the link (Y,Z) removed. c*(X,Y,Z) is the cost of the

existing solution with X and (Y,Z) removed.

4. Local Search with Variable Costs

Theoretical search routines do not work well for the

variable cost problem outlined here. There are n
n-2

possible trees on n nodes [9] and a number of connected

networks given recursively by

 ∑
−

=

−−−
−

−−

Φ−
−=Φ

1

1

2/)1)((

2/)1(

)!()!1(

2)!1(
2

n nn

nn

n
n

n

µ

µµ
µ

µµ
 (9)

[10]. Both expressions are exponential, implying that

exhaustive search is impractical for larger n.

An approach favoured by practical network designers,

although its origins are uncertain, is outlined in Fig. 4.

Starting from a full-switch/fully-connected network, the

‘Double-Drop’ (DD) algorithm of Fig. 4. tries candidate

switches for removal from the current solution. With each

trial switch removed, links are experimentally dropped in a

similar manner. The algorithm is essentially ‘greedy’ but

in a nested, local-search form. The network cost c* and

perturbated costs c*(X), c*(Y,Z) and c*(X,Y,Z) are

calculated as in Section 3. There is an assumption that

nodes are connected to their nearest switch.

RS(m):

min = MaxVal // Some arbitrarily large value

for each node pair i, j (1≤i≠j≤m) do
 if dij < min then // Find closest pair

 i* = i, j* = j, min = dij

xk = (wi*xi* + wj*xj*) / (wi* + wj*)

yk = (wi*yi* + wj*yj*) / (wi* + wj*)

wk = wi* + wj* // Replace by single node

for each node, η (η ≠ i*,j*) do
 begin // with representative traffic,

 dkη = (wi*di*η + wj*dj*η) // coordinate and distance

 / (wi* + wj*) // characteristics

 dηk = (wi*dηi* + wj*dηj*) / (wi* + wj*)

 end

Fig. 5. A single reduction step, RS(m). The closest modes (min 1≤i≠j≤m

dij) are replaced by a single node, representing the original pair in terms

of traffic (weight), location and distance from the remaining nodes.

DD is a practical algorithm in that it deals with costs that

vary with network topology. Its simple structure also

minimises search iterations. Its major drawbacks are:

• It is unlikely to be particularly accurate since it

removes switches and links in an entirely greedy

manner with no consideration for a wider search

neighbourhood,

• It is still computationally complex it its

consideration of all combinations of node and

link drops at each stage,

• Its complexity is increased further by the need to

completely recalculate the cost function for each

perturbation.

A natural extension to the DD process, to overcome the

shortcomings of greedy search, is to introduce larger

search neighbourhoods through (e.g.) tabu search and

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

5

simulated annealing. However, such refinements, whilst

addressing the first problem, simply compound the second.

For larger problems (n), DD has typically proved be the

only viable search process.

5. A Geometric Reduction Approach

An alternative design method is proposed for large

networks that eliminates a large number of iterations,

branches and cost calculations. It uses the traffic values tij

and distances dij to geometrically reduce the network in

size. ‘Conventional’ optimisation then proceeds on the

reduced version.

Define the weight of each node to be its total traffic load:

 ∑
=

+=
n

j

jiiji ttw
1

)((10)

and note that this value is constant for any solution

topology. We also require each node i to be defined by its

Cartesian coordinates, (xi,yi). Then define a single

reduction step, RS(m), acting on m nodes, as in Fig. 5,

i*

j*

k

η

wi* (xi*, yi*)

wj* (xj*, yj*)

wk = wi*+wj*

xk = (wi*xi*+wj*xj*)/(wi*+wj*)

yk = (wi*yi*+wj*yj*)/(wi*+wj*) di*η

dj*η

dkη = (wi*di*η+wj*dj*η)

(wi*+wj*)

Fig. 6. A single reduction step, RS(m). The two closest nodes (i* and j*)

are replaced by a single node (k), representing the location and traffic of

the originals.

RS(m) finds the closest two nodes, as defined by distances

dij and replaces them by a single, representative node,

biased by the weights wi and wj. The original m nodes are

replaced by a representative m-1 in this single step. The

procedure is shown graphically in Fig. 6. RS(m) is the

essential component in a compound algorithm that can

perform conventional optimisation on a network problem

of reduced size. If RS(m) is repeated n – q times, the

original network problem of size n will be replaced by a

representative one of size q, as shown in Fig. 7. These q

nodes can be used in three ways to approximate an

optimum solution – described in the next section. The

complexity of the reduction process, a sequence of matrix

searches, is bounded above by O(n
3
).

In principle, these replacement nodes could have been

generated by a grid-based top-level division of the network

into q regions then averaging x- and y-coordinates in each.

However, the q nodes generated by bottom-up reduction

described here are truly representative of the underlying

problem. They will be distributed according to node

clustering and traffic density, not uniformly with arbitrary

region boundaries dividing natural node/traffic groups (see

Appendix C). Another problem with this method is that

fixed partitions produce a fixed number of representative

nodes. The nodes produced by p partitions are

independent of those produced by p+1, etc. In contrast,

representative reduction generates each iteration from the

previous one. An illustrative example is given at the end

of the results section (8).

Original node (n)

Representative node (q)

Potential parent

Fig. 7. A reduced network problem. The q nodes can be used

immediately as approximations for switches or as a reduced node set on

which to conduct exhaustive or DD search. Light lines show potential

parents.

6. Optimisation on a Reduced Network

Problem

Fig. 7 shows q replacement nodes at ‘greenfield’ sites, i.e.

not true (original) node locations. Assuming the intention

is to site switches at existing locations, define the step

Rel(q) to be the process of relocating the q representative

nodes to their nearest true node. A formal description of

this simple process together with a demonstration that two

representative nodes cannot relocate to the same true node

is given in Appendix A. If greenfield sites are permitted

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

6

then the step may be omitted from the final process.

For any given computer upon which optimisation is to be

performed (i.e. its processor power) we define the

optimisation limit values. nES is the maximum number of

nodes for which exhaustive search is feasible and nDD the

maximum number of nodes for which double-drop is

feasible. Clearly, nDD > nES but actual values depend on

the time available. For a given (time) limit, the value of

nES may be derived empirically (Section 8) or calculated

exactly from the known complexity of the exhaustive

search process given in Appendix B. The double drop

algorithm of Section 3, however, is indefinitely iterative:

nDD is best derived by experimentation.

Number of switches (s)

Cost

c(s)

s*

c*
(s < s*) (s > s*)

(c(s) ≥ c*) (c(s) ≥ c*)

Fig. 8. Cost of optimum solution for fixed numbers of switches. There

is a global minimum at s = s*, the optimum number of switches.

Three compound heuristics are outlined in the subsections

that follow and given formally in Fig. 9.

6.1. Reduction to Exhaustive Search (RES)

This is a simple, intuitive process. Reduce the number of

nodes to nES, relocate to true positions and optimise to find

switches and core network through exhaustive search. An

exhaustive search algorithm is given in Appendix B.

6.2. Reduction to Double-Drop (RDD)

This is equally simple. Reduce the number of nodes to

nDD, relocate to true positions and perform double-drop

optimisation to find switches and core network.

6.3. Reduction to Switch Location (RSL)

This is not so straightforward. The ideal is as follows.

Reduce the number of nodes by one each time,

immediately relocate to true positions (a single step only

for the new node), explicitly make each node a switch and

optimize on the core network only. Calculate cost

(Equations 5, 6, 7 & 8). Repeat while cost decreases. The

stopping principle assumes a concave cost function. (Let

c(s) be the cost of the best network solution with s switches

and let s* be the optimum number of switches. Then c* =

c(s*) and for s ≠ s*, c* ≤ c(s). The general form of c(s) is

shown in Fig. 8.)

However, this would be an extremely complex approach.

Evaluating each of the Φm core networks for each

decreasing value of m switches (starting with m = n) is

comparable with exhaustive search for complexity. To

avoid this, we adopt the heuristic approach of only

evaluating the cost of a fully-connected (mesh) core

network. In Fig. 9, COpt(m) is the process of finding the m

switches with the cheapest full-mesh core network and

co(m) is the cost of this core network. The optimal core

network is only calculated for the final switch set (Opt(m)).

7. Networks and Cost Functions

The algorithms introduced in this paper are compared in

the next section. Two types of test instances were used:

computer-generated and real-world. It is known [11] that

certain algorithms can favour problem instances with

parameters taken from particular statistical distributions so

every attept is made to consider a variety of situations and

characteristics.

 RES: RDD: RSL:

 m = n m = n m = n

 repeat repeat repeat

 RS(m) RS(m) RS(m)

 until until Rel(m)

 m = nES m = nDD COpt(m)

 Rel(m) Rel(m) until

 ES(m) DD(m) co(m) >

 co(m+1)

 m = m+1

 Opt(m)

Fig. 9. Three compound algorithms. RES: Reduce then apply

exhaustive search; RDD: Reduce then apply double-drop; RSL: reduce

and optimise directly on switches. For RSL, co(m) is the cost of a fully-

connected core network on a given m switches. COpt(m) is the process

(Eqn. 5) of finding the optimum set of m switches assuming a fully-

connected core network and Opt(m) defines the process (Eqns. 6, 7 & 8)

of finding (or approximating) the optimum core network, with cost c(m),

for a given m switches.

7.1. Computer-Generated Instances (CG)

Random generation of test instances is straightforward but

must be appropriate and realistic. Just over 4,000

instances were produced with numbers of nodes (n)

between 10 and 100,000. Node positions were randomly

taken from the [0,1] unit square but with reference to

between 0 and 25 cluster points (cp) and a cluster

coefficient (cc) of between 0 and 1 (theoretically). A cc of

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

7

1 forces all nodes to be coincident on cluster points. A cc

of 0 allows nodes to be placed anywhere – a uniform

distribution across the unit square. cp and cc were

randomized uniformly. Fig. 10 shows three examples.

(a) No cluster points or (c) Three cluster points

cc = 0 cc = 0.6

(b) One cluster point

cc = 0.3

Fig. 10. Randomly generated node positions. (a). No clustering. (b).

Moderate clustering around one point. (c). Heavy clustering about three

points.

End-to-end traffic figures between each node pair were

independently randomized on the interval [0,1] according

to (both, separately) a uniform distribution (U) and a

normal distribution (Nσ) with mean 0.5 and standard

deviation (σ) between 0.005 and 0.25.

Realistic link and switch costs are more complex – even

for randomly generated instances. The benefits of

redirecting traffic between switches, calculated in section

III, are only positive if spare capacity can be found on

existing links and switches to offset the additional cost of

connection and switching. Real link and switch costs

increase in discrete steps. General principles are given in

[12] and formulated in [13]. Our cost functions are based

on this approach and are described as follows. We initially

consider transmission and switching sizes/costs together;

they have similar characteristics at this level. We also use

the general term channel to indicate a link/switch of a

known size.

At low traffic levels, the smallest available channels will

be used. Each will have a capacity of s0. At some (traffic)

limit, ι0, however, it will be preferable (cheaper) to use a

single (larger) channel of size s1. s1 > ι0. For traffic, 0<ι≤

ι0, |ι/s0|+1 channels will be required. (|..| represents the

integer part.) For traffic, ι0<ι≤ι1, |ι/s1|+1 channels will be

necessary, up to a limit of ι1, etc. This process is finite.

There will be a largest channel of some size sχ. Larger

values of ι will be carried by channels in multiples of sχ.

Fig. 11 shows χ=2. In the case of transmission costs, the

values of ι0, s0, ι1, s1, ι2, etc., will depend on link Quality of

Service (QoS) and may be calculated or derived from

tables. Switches may or may not have QoS parameters. In

their absence, the values of ι0, s0, ι1, s1, ι2, etc. are fixed

(for a given application).

ι

ι0

ι1

ι’0 ι’1

ι2

fs(ι)

|ι/ι1|=1

|ι/ι0|=1
..

...

|ι/ι0|=0

|ι/ι1|=0

...

|ι/ι2|=0 ...

Fig. 11. Stepped cost function. Channels have fixed, maximum

capacities and can be deployed in integer multiples of these values.

The cost of each channel of increasing capacity s0, s1, s2,

etc. will increase with ι, but less than linearly. Also,

transmission costs must take into account the length of the

link. We may realistically model our cost functions, fs(T)

and fl(t,d) as

 fs(T) = T
ξ
 (11)

for switching and

 fl(t,d) = t
ξ
d
ζ
 (12)

for transmission. 0<ξ<1. In principle, ζ>0. However,

values of ζ>2 are excessive in practice and we

consequently restrict our test ranges to 0<ζ<2. Test

instances with different values of ι0, s0, ι1, s1, ι2, … ξ and ζ

are summarized in the results given in Section 8.

7.2. Real-World Instances (RW)

Four real network problems were also studied. Actual

network data in the form of node locations, traffic

requirements and link/switch costs were provided as

follows:

Case 1: A Frame-Relay network of 78 nodes with

estimated traffic flows, allowing the traffic matrix to be

approximated.

Case 2: A Frame-Relay network of 103 nodes with known

(measured) traffic flows, allowing the traffic matrix to be

calculated.

Case 3: An ATM network of 221 nodes with unknown

traffic flows. The traffic matrix is taken as being constant

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

8

for all node pairs.

Case 4: An IP network of 491 nodes with known

(measured) traffic flows, allowing the traffic matrix to be

calculated.

For reasons of commercial confidentially, it is not possible

to release precise details of locations, traffic and costings.

It is, however, acceptable to summarise results as in the

next section.

8. Comparing Compound Algorithms

Five algorithms are considered and their complexity and

accuracy compared.

ES: Exhaustive Search (Appendix B)

DD: Double-Drop (Section 3)

RES: Reduction to Exhaustive Search (Section 6)

RDD: Reduction to Double-Drop (Section 6)

RSL: Reduction to Switch Location (Section 6).

Table 1. Run-Times for Exhaustive Search (ES) and Double Drop (DD)

 n ES run-time (s) DD run-time (s)

 6 (CG) < 1 < 1

 8 (CG) < 1 < 1

 10 (CG) < 1 < 1

 11 (CG) 3.8 < 1

 12 (CG) 77,123 < 1

 13 (CG) 3 x 108 * < 1

 15 (CG) 4 x 1016 * < 1

 20 (CG) 1 x 1042 * < 1

 25 (CG) - < 1

 30 (CG) - < 1

 40 (CG) - < 1

 50 (CG) - 7.2

 55 (CG) - 242

 60 (CG) - 80,880

 65 (CG) - 269,385

 70 (CG) - -

Run times in seconds. Actual timings except * calculated. CG:

Computer Generated instances. RW: Real-World cases.

At the end of this section, we also consider PES, PDD and

PSL, the fixed partition equivalents (Appendix C) of RES,

RDD and RSL. However, these prove to be poorer

performers in each case and are not considered in detail.

We deal first with run times. All are based on each

algorithm, coded in C++, running on dual 3.4GHz Intel

Xeon 64 bit processors with 8GB SDRAM. Generated

instances (CG) are averaged, test cases (RW) given

explicitly. Distances dij were calculated once then stored

for efficiency. Table 1 compares run times for ES and DD.

Table 1 shows that, taking one day (84,400s) as the

acceptable limit for program run time, the optimisation

limit values are nES = 12 and nDD = 60. Other values may

be used but we stick with these in this paper. We use the

values in subsequent tests to perform full or partial

optimisation at the earliest opportunity – i.e. on the largest

possible number of nodes. There was little variance, and

no apparent correlation, in the run times for different

values of cp, cc and σ (or ι0, s0, ι1, s1, ι2, … ξ and ζ)

(Section 7). Table 2 gives the run times of RES, RDD and

RSL using these values of nES and nDD.

Table 2. Run-Times for Reduction to Exhaustive Search (RES),

Reduction to Double Drop (RDD) and Reduction to Switch Location

(RSL)

 n RES run-time (s) RDD run-time (s) RSL run-time (s)

 1,000 (CG) 77,123 80,880 < 1

 5,000 (CG) 77,123 80,880 < 1

 10,000 (CG) 77,123 80,880 < 1

 25,000 (CG) 77,124 80,880 1

 50,000 (CG) 77,129 80,882 24

100,000 (CG) 78,502 81,442 1,510

Run times in seconds. nES = 12 and nDD = 60. CG: Computer Generated

instances.

The dominance of the ES and DD components in RES and

RDD is clear. RSL, with its simplified core network

heuristic, is considerably less complex for all but the very

largest values of n. Once again, there was no noticeable

difference for different values of cp, cc and σ (or ι0, s0, ι1,
s1, ι2, … ξ and ζ).

In measuring the accuracy of the different optimisation

methods, there is a large quantity of data/results to report

and it is necessary to summarise for brevity. Although,

among the large numbers of tests, there was some

fluctuation for different values of cost parameters ι0, s0, ι1,
s1, ι2, … ξ and ζ (Section 7), there is no clear pattern and

the variance is attributed to statistical uncertainty.

Table 3. Performance of Reduction to Switch Location (RSL) relative to

Exhaustive Search (ES) for small problems

 n c* � n c* �

 6 (CG) 0.03 94.2 10 (CG) 0.16 94.0

 7 (CG) 0.05 94.1 11 (CG) 0.20 93.8

 8 (CG) 0.11 94.1 12 (CG) 0.23 93.8

 9 (CG) 0.14 94.0 13 (CG) 0.25 93.7

Percentage (%) cost (c*) increase of RSL over ES and percentage (%) of

RSL finding same (optimal) solution as ES (�). CG: Computer

Generated instances.

There was, however, some clear relationship between the

size of the problems in question (n), the number of cluster

points (cp), the cluster coefficient (cc) and the distribution

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

9

from which the end-to-end traffic matrix was taken

(uniform or normal with distribution σ) and the relative

performance of the different algorithms and these are

summarized in what follows.

Table 4. Performance of RES with RSL for Different Traffic

Characteristics

 n U N(0.25) N(0.1) N(0.005)

 10 (CG) 1.8 1.8 1.7 1.7

 30 (CG) 2.3 2.2 2.0 2.0

 100 (CG) 2.7 2.5 2.4 2.2

 300 (CG) 4.0 3.9 3.7 3.6

 1,000 (CG) 5.2 4.9 4.7 4.6

 3,000 (CG) 7.0 6.6 6.5 6.2

 10.000 (CG) 8.2 7.8 7.4 7.1

 30,000 (CG) 9.3 9.0 8.5 8.2

 100,000 (CG) 11.4 10.5 10.2 9.9

Percentage (%) cost (c*) saving of RSL over RES for traffic values

drawn from uniform and normal distributions. cp = cc = 0. CG:

Computer Generated instances.

We begin with a set of small tests, comparing ES with

RSL. ES can only run up to n = 12 and RSL is the only

one of the three reductive algorithms (RES, RDD and

RSL) that is faster than ES for problems of this size.

Table 5. Performance of RES and RDD with RSL for Cluster

Characteristics cp = 0, cc = 0

 n RSL RDD

 10 (CG) 1.8 2.4

 30 (CG) 2.3 3.2

 100 (CG) 2.7 5.1

 300 (CG) 4.0 8.2

 1,000 (CG) 5.2 10.2

 3,000 (CG) 7.0 12.8

 10.000 (CG) 8.2 15.0

 30,000 (CG) 9.3 17.2

 100,000 (CG) 11.4 21.5

Percentage (%) cost (c*) saving of RSL and RDD over RES for cp = cc

= 0. CG: Computer Generated instances.

Table 3 shows that the inaccuracies of RSL, relative to ES,

are small at this level but increase with n. It is conjectured,

but cannot be tested, that these inaccuracies will continue

to increase with larger n. For these small problems, there

was no apparent significance to the parameters cp, cc and

σ.

We turn now to traffic variance. For our tests, the traffic

requirement between end nodes i and j, tij, is taken from

two distributions:

• U: tij drawn randomly, uniformly from the

interval [0,1], independently for each (i,j), and

• Nσ: tij drawn randomly on the interval [0,1] from

a normal distribution with mean 0.5 and variance

σ
2
, independently for each (i,j)

U gives very random traffic. Nσ, for small σ, gives

extremely self-similar traffic. Table 4 compares the

behaviour of the RES and RSL reductive algorithms for

different traffic characteristics with no clustering.

Table 6. Performance of RES and RDD with RSL for Cluster

Characteristics cp = 5, cc = 0.5

 n RSL RDD

 10 (CG) 1.9 2.4

 30 (CG) 2.4 3.3

 100 (CG) 2.9 5.0

 300 (CG) 4.3 8.2

 1,000 (CG) 5.5 10.0

 3,000 (CG) 7.4 12.9

 10.000 (CG) 8.8 14.7

 30,000 (CG) 9.7 16.8

 100,000 (CG) 11.9 21.7

Percentage (%) cost (c*) saving of RSL and RDD over RES for cp =5,

cc = 0.5. CG: Computer Generated instances.

Table 4 suggests that the cruder reductive approach of

RES is less poor for problems with heavily self-similar

traffic, due to the likelihood that a larger number of

solutions have relatively close costs. When traffic is

diverse, there is a greater tendency for RES to miss the

optimal solution by a greater margin. In general RSL

outperforms RES by a greater margin anyway for larger

problems. Table 4 is a summary and the difference is

slight. These patterns were observed in the problems with

clustering features that follow but are omitted for brevity

(uniform traffic distributions are assumed).

Table 7. Performance of RES and RDD with RSL for Cluster

Characteristics cp = 15, cc = 0.4 & cp = 15, cc = 0.8

 n cc=0.4 RSL RDD cc=0.8 RSL RDD

 10 (CG) 2.0 2.2 2.1 2.1

 30 (CG) 2.5 3.1 2.7 3.0

 100 (CG) 3.1 4.6 3.3 4.4

 300 (CG) 4.8 7.7 4.9 7.6

 1,000 (CG) 5.8 9.5 6.2 9.3

 3,000 (CG) 7.9 12.2 8.2 11.9

 10.000 (CG) 9.3 14.3 9.7 13.9

 30,000 (CG) 10.0 16.3 10.2 15.9

 100,000 (CG) 12.5 21.3 12.8 20.6

Percentage (%) cost (c*) saving of RSL and RDD over RES for cp =15,

cc = 0.4 & cp = 15, cc = 0.8. CG: Computer Generated instances.

We now compare RSL, RES and RDD directly. In

particular, we consider problems with different cluster

characteristics, cp and cc. Tables 5, 6, 7 and 8 compare

RSL and RDD with RES for cp:cc pairs, 0:0, 5:0.5,

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

10

15:0.4, 15:0.8, 25:0.4 and 25:0.8. Although RDD

consistently outperforms RSL, which in turn outperforms

RES, it can be seen that, as the level of clustering

increases, RSL performs comparatively better and RDD

comparatively worse. Fig. 12 summarises Tables 5 to 8.

Table 9 gives the equivalent results for the real-world

cases, which broadly correlate with the computer-

generated instances.

Table 8. Performance of RES and RDD with RSL for Cluster

Characteristics cp = 25, cc = 0.4 & cp = 25, cc = 0.8

 n cc=0.4 RSL RDD cc=0.8 RSL RDD

 10 (CG) 2.2 1.9 2.4 1.7

 30 (CG) 2.7 2.8 2.8 2.6

 100 (CG) 3.4 4.1 3.6 3.7

 300 (CG) 5.2 7.2 5.4 6.9

 1,000 (CG) 6.3 8.9 6.5 8.5

 3,000 (CG) 8.3 11.8 8.4 11.6

 10.000 (CG) 9.7 13.3 10.1 13.0

 30,000 (CG) 10.6 15.2 10.9 14.7

 100,000 (CG) 12.9 19.8 13.5 19.3

Percentage (%) cost (c*) saving of RSL and RDD over RES for cp =25,

cc = 0.4 & cp = 25, cc = 0.8. CG: Computer Generated instances.

0

5

10

15

20

25

10 30
100

300
1000

3000

10000
30000

100000

RSL(0:0)

RDD(0:0)

RSL(5:0.5)

RDD(5:0.5)

RSL(15:0.4)

RDD(15:0.4

RSL(15:0.8)

RDD(15:0.8)

RSL(25:0.4)

RDD(25:0.4)

RSL(25:0.8)

RDD(25:0.8)
n

RDD (cp:cc)

% improvement over RES

RSL (cp:cc)

Increased

clustering

Increased

clustering

Fig. 12. Percentage improvement of RSL and RDD over RES for

different cluster values of (cp:cc). RDD is always better than RSL, the

difference increasing with n. However, RSL performs comparatively

better with increased clustering and RDD comparatively worse.

Table 9. Performance of RES and RDD with RSL for Real-World Cases

 n RSL RDD

 78 (RW) 3.0 3.4

 103 (RW) 3.1 6.2

 221 (RW) 3.6 6.9

 491 (RW) 5.1 8.9

Percentage (%) cost (c*) saving of RSL and RDD over RES for Real-

World (RW) cases.

Table 10. Performance of PES, PSL and PDD with RES, RSL and RDD

 n PES/RES PSL/RSL PDD/RDD

 10 (CG) 0.3 1.2 0.7

 30 (CG) 2.9 4.6 3.1

 78 (RW) 6.2 8.9 5.3

 100 (CG) 6.1 10.5 7.0

 103 (RW) 5.6 9.1 8.4

 221 (RW) 9.2 12.0 11.0

 300 (CG) 8.8 18.0 10.3

 491 (RW) 8.9 15.5 9.7

 1,000 (CG) 11.7 22.1 13.3

 3,000 (CG) 15.0 28.6 17.5

 10.000 (CG) 18.2 35.5 20.6

 30,000 (CG) 22.0 43.8 26.6

 100,000 (CG) 27.8 55.1 33.2

Percentage (%) cost (c*) increase of PES, PSL and PDD over RES, RSL

and RDD. CW: Computer Generated instances (cp = 0; cc = 0). RW:

Real-World cases.

0

10

20

30

40

50

60

10 (C
G)

30 (C
G)

78 (R
W

)

100 (
CG)

103 (
RW

)

221 (
RW

)

300 (
CG)

491 (
RW

)

1000
 (C

G)

3000
 (C

G)

1000
0 (C

G)

3000
0 (C

G)

1000
00 (C

G)

PES/RES

PSL/RSL

PDD/RDD

RW RW RW RW

n

% increase Pxx/Rxx

Fig. 13. Comparing PES, PSL and PDD with RES, RSL and RDD. RW

cases do not behave exactly as CG instances but the relative

performances remain clear.

Finally, we compare representative reduction with arbitrary

partitioning. Table 10 shows the relative performance

(percentage cost increase) of each of the compound

partitioning algorithms, PES, PSL and PDD (Appendix C)

with its reductive equivalent, RES, RSL and RDD. Both

real and generated cases (with no clustering) are given.

Representative reduction outperforms arbitrary partitioning

in all cases (although there is an imperfect correlation

between the CG and RW examples). Fig. 13 shows the

trend graphically. PSL is particularly poor.

9. Conclusions

Theoretical, fixed-cost models of the network design

process are simplistic. In the practical design of a real

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

11

network, both link and switch costs have to be considered

and these costs are (at least partially) a function of

(required) capacity. As this capacity depends upon the

topology of the solution network, costs cannot be

considered fixed and entered as input to a standard

algorithmic solution. The further, implied difficulty that

the cost function is not locally stable, and must be re-

evaluated fully for each solution variant, increases the

complexity considerably, particularly for large problems.

Conventional construction or local search variants fail for

one or both of these reasons.

Noting these objections, this paper initially considers two

practical optimisation algorithms: exhaustive search (ES)

and a doubly-iterative drop (DD). However, both have

limits (nES and nDD) on network size so additional

techniques are needed to reduce larger problems to within

their range. The top-down and bottom-up approaches are

considered: firstly, partitioning (P) the plane into arbitrary

areas and secondly, reducing (R) the problem

representatively. In isolation, R is more complex than P

but both are insignificant if ES and DD are running at their

limits. In fact, P solutions are generally poorer.

R solutions have three variants: reduce down to exhaustive

search (RES), reduce down to double-drop (RDD) and

reduce directly down to switch location (RSL). There is an

additional heuristic simplification involved in RSL

(Section 6). The equivalent PES, PDD and PSL do not

give good results (comparatively).

RES does not perform well, mainly due to a necessarily

very small nES. RSL gives better results: its core network

heuristic makes it the fastest of the three R approaches at

the expense of some accuracy. RDD is the most accurate:

nDD > nES outweighing the heuristic limitation of DD. If

time permits, RDD would be the preferred method of

solution for a large-scale network design problem. If less

accurate results are required much faster (for example, if

frequent re-optimisation is to be performed) then RSL is an

acceptable compromise.

Appendix A: . Node relocation

The relocation process, Rel(m) or Rel(q), relocates each of

the reduced m or q representative nodes to its nearest

original node. The algorithm for (the Rel(m) version of)

this simple process is given in Fig 14.

The repeated application of RS(m) will place each

representative node at the weighted centre of the original

node set it represents (Fig. 15). The implications of this

are that, taking any direction from representative node m

(e.g. to another representative node), there will be at least

one original node, in m’s node set, in that direction that is

closer to m than any node not in m’s node set. Each

representative node thus relocates to an original node in its

own set and all representative nodes locate to different

original nodes. An extreme case is where no reduction has

taken place for a given ‘replacement’ node, in which case

it ‘relocates’ to the single original node with which it is

still coincident.

Rel(m):

for each replacement node k (1≤k≤m) do
 begin

 j = 1, min = d1k

 for each original node i (2≤i≤n) do
 if dik < min then

 j = i, min = dik

 relocate k to j

 end

Fig. 14. The relocation process, Rel(m), relocating each of the m

representative nodes to its nearest original node.

Representative node

Original node

Relocation

Node set boundaries

Fig. 15. The relocation process, Rel(m) on m representative nodes. No

two representative nodes relocate to the same original node.

Appendix B: . Exhaustive Search

An exhaustive search algorithm, ES(n) or ES(m), on n

original or m replacement nodes tries every combination of

switches and core networks and returns the configuration

of least cost. ES(n) is given in Fig. 16. The use of

equations 5, 6, 7 & 8 is implicit.

It is assumed in ES(n) as given that nodes connect to their

nearest switch. In the majority of, but not all cases, this

will yield the optimum solution. In isolated cases,

however, it may be that connecting certain nodes to

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

12

switches other than the closest may better use capacity on

the distant switch, avoid an extra step cost on the nearer,

and justify the slight extra cost of the longer link. ES(n)

(or ES(m)) are easily adapted to include this extra search

level but their complexity increases substantially.

ES(n):

min = MaxVal // Some arbitrarily large value

for each m (1≤m≤n) do
 for each node subset S = {s:1≤m≤n} (|S|=m) do
 for each connected core network

 Ξ = {(i,j):1≤i,j≤n and i,j∈S} do
 if c* < min then

 min = c*

 S* = S

 Ξ* = Ξ

Fig. 16. The exhaustive search process, ES(n). All combinations of

switches and core network are considered. The process returns the

optimal switch set, S*, and the optimal core network, Ξ*.

There are
)!(!

!

mnm

n
Cm

n

−
= choices of m switches from n

nodes and, adapting the expression from section 4,

∑
−

=

−−−
−

−−

Φ−
−=Φ

1

1

2/)1)((

2/)1(

)!()!1(

2)!1(
2

m mm

mm

m
m

m

µ

µµ
µ

µµ
 connected

core networks for each switch set. There are m
n-m

 ways of

connecting n-m non-switch nodes to m switches so the total

number of network configurations to be considered by

ES(n) is ∑
=

−Φ
n

m

mn

mm

n mC
1

, which simplifies to ∑
=

Φ
n

m

mm

n C
1

 if

nodes are constrained to connect to their nearest switches.

A similar expression applies to ES(m). This allows the

value of nES in Section 6 to be calculated. However, both

are doubly exponential in complexity.

Appendix C: . Top-down versus Bottom-up

 Clustering

The reduction process described in this paper builds a set

of representative nodes by bottom-up iterative

replacement. In so doing, it produces the best possible

reduced representation of the original nodes in terms of

both traffic density and position and can take into account

either Euclidean or non-Euclidean distances.

There is of course another, simpler way of generating these

replacement nodes, which has been used for various

geometric optimisation problems over the years (e.g. [14]).

The Partitioning method, P(m), divides the plane up into m

regions, R1, R2, …, Rm, and calculates the co-ordinates of

the representative node for each region Ri as

)/,/(∑∑∑∑
∈∈∈∈ iiii Rj

j

Rj

jj

Rj

j

Rj

jj wywwxw . (13)

 PES: PDD: PSL:

 m = n m = n m = n

 repeat repeat repeat

 P(m) P(m) P(m)

 until until Rel(m)

 m = nES m = nDD COpt(m)

 Rel(m) Rel(m) until

 ES (m) DD(m) co(m) >

 co(m+1)

 m = m+1

 Opt(m)

Fig. 17. The three partitioned equivalents of the RES, RDD and RSL

algorithms. PES: Partition then apply exhaustive search; PDD: Partition

then apply double-drop; PSL: (Partition to Switch Location). Reduce

and optimise directly on switches.

On this basis, we can define the partitioned equivalents

of RES, RDD and RSL as in Fig. 17.

Original node

Replacement

node (bottom-up)

Replacement

node (top-down)

Fig. 18. Comparing the bottom-up and top-down node replacement

policies. Arbitrary divisions of the plane do not give good representative

nodes and cannot take non-Euclidean distances truly into account.

Figure 18, however, shows typical results for this

method compared with representative reduction. Not only

are the partitioned replacement nodes poor representatives

of the original clusters, equation (13) does not take into

account (particularly non-Euclidean) distances in the

manner of RS(m) (Fig. 5). For our purposes, reduction

proves to be stronger than partitioning at no practical

increase in complexity.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.2, February 2007

13

References

[1] R.C. Prim, “Shortest Connection Networks and some

Generalizations,” Bell Systems Tech. J. Vol. 36, pp1389-1401,

1957.

[2] M.R. Garey and D.S. Johnson, Computers and Intractability: A

guide to the theory of NP-completeness, W.H. Freeman, New York,

1979.

[3] A. Kershenbaum and W. Chou, “A Unified Algorithm for

Designing Multidrop Teleprocessing Networks”, IEEE Trans.

Communications, Vol. COM-22, No. 11, pp1762-1772, 1974.

[4] F. Glover and M. Laguna, “Tabu Search,” in Modern Heuristic

Techniques for Combinatorial Problems, Reeves, Ed. New York,

Wiley, 1993, pp70-150.

[5] E.H.L. Aarts and J.K. Lenstra, Local Search in Combinatorial

Optimization, Wiley, 1997.

[6] G. Winter, J. Periaux and M. Galan (Eds.), Genetic Algorithms in

Engineering and Computer Science, Wiley, 1995.

[7] M. Dorigo, G. Di Caro and L.M. Gambardella, “Ant Algorithms for

Discrete Optimization,” in Artificial Life, MIT Press, 1999.

[8] B.S. Verkhovsky, and Y.S. Polyakov, “Algorithms for Optimal

Switch Location: Concave Cost Functions,” in Advances in

Decision Technology and Intelligent Information Systems, Vol. IV,

Lasker, Ed. Int. Inst for Advanced Studies in Systems Research

and Cybernetics, pp16-20, 2003.

[9] J.W. Moon, “Counting Labelled Trees”, Canadian Mathematics

Congress, Montreal, 1970.

[10] V. Grout, “Principles of Cost Minimisation in Wireless Networks”,

Jnl. Heuristics, Vol. 11, Issue 2, March 2005.

[11] V. Grout, “Initial Results from a Study of Probability Curves for

Shortest Arcs in Optimal ATSP Tours with Application to Heuristic

Performance”, Proc. 20th British Combinatorial Conference (BCC

2005), University of Durham, UK, 10th-15th July 2005.

[12] R. Chan, Wide Area Network Design: Concepts & Tools for

Optimization, Morgan Kaufmann, 1998.

[13] V. Gabrel, A. Knippel and M. Minoux, “Exact solution of

multicommodity network optimization problems with general step

cost functions,” Operations Research Letters, Vol. 25, pp15-23,

1999.

[14] G. Gutin and A.P. Punnen, “The Traveling Salesman Problem and

its Variations”, Kluwer, 2002.

Vic Grout was awarded the BSc(Hons) degree in

Mathematics and Computing from the University

of Exeter (UK) in 1984 and the PhD degree in

Communication Engineering from Plymouth

Polytechnic (UK) in 1988.

He has worked in senior positions in both

academia and industry for twenty years and has

published and presented over 120 research papers.

He is currently a Reader in Computer Science at the University of Wales

NEWI, Wrexham in the UK, where he leads the Centre for Applied

Internet Research (CAIR). His research interests and those of his

research students span several areas of computational mathematics,

particularly the application of heuristic principles to large-scale problems

in network design and management.

Dr. Grout is a Chartered Engineer, Scientist and Mathematician and a

Fellow of the British Computer Society (BCS) and Institute of

Engineering and Technology (IET(. He chairs the biennial international

conference series on Internet Technologies and Applications (ITA 05 &

ITA 07).

Stuart Cunningham was awarded his BSc degree

in Computer Networks in 2001, and in 2003 was

awarded the MSc Multimedia Communications

degree with Distinction, both from the University

of Paisley (UK). He is a Member of the British

Computer Society and the Institute of Engineering

& Technology. Stuart is also a member of the

MPEG Music Notation Standards working group.

Since 2003, he has been working at the University of Wales as a lecturer

where he teaches audio visual computing and computer systems

architecture. Stuart is also a PhD student at the University of Wales,

studying under the supervision of Dr. Vic Grout.

Rich Picking has a BSc(Hons) degree in

Computing and Operational Research from Leeds

Polytechnic (UK, 1986), an MSc in Control

Engineering and Information Technology

(University of Sheffield, UK, 1987) and a PhD in

Interactive Multimedia Interface Design from

Loughborough University (UK) in 1996.

 Dr. Picking has authored and edited numerous

papers, proceedings and guides in various fields of

Internet Technologies and Applications. He currently a Principal

Lecturer in Computing in the School of Computing and Communications

Technology within the Faculty of Business, Science and Technology at

the University of Wales NEWI, Wrexham in the UK.

	Glyndŵr University
	Glyndŵr University Research Online
	7-1-2007

	Practical Large-Scale Network Design with Variable Costs for Links and Switches
	Vic Grout
	Stuart Cunningham
	Rich Picking
	Recommended Citation

	Practical Large-Scale Network Design with Variable Costs for Links and Switches
	Abstract
	Keywords
	Disciplines
	Comments

