
Glyndŵr University
Glyndŵr University Research Online

Computing Computer Science

3-1-2006

Spanning Tree Objective Functions and
Algorithms for Wireless Networks
Mike J. Morgan
m.j.morgan@glyndwr.ac.uk

Vic Grout
Glyndwr University, v.grout@glyndwr.ac.uk

Follow this and additional works at: http://epubs.glyndwr.ac.uk/cair
Part of the Computer and Systems Architecture Commons, Digital Communications and

Networking Commons, Hardware Systems Commons, and the Systems and Communications
Commons

This Conference Paper is brought to you for free and open access by the Computer Science at Glyndŵr University Research Online. It has been
accepted for inclusion in Computing by an authorized administrator of Glyndŵr University Research Online. For more information, please contact
d.jepson@glyndwr.ac.uk.

Recommended Citation
Morgan, M. & Grout, V. (2006), ‘Spanning Tree Objective Functions and Algorithms for Wireless Networks’. [Paper presented to the
2006 IEEE Sarnoff Symposium (Sarnoff 2006), 27-28 March 2006]. Princeton, New Jersey, USA: IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/287588953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epubs.glyndwr.ac.uk?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/comp?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:d.jepson@glyndwr.ac.uk

Spanning Tree Objective Functions and Algorithms for Wireless
Networks

Abstract
This paper considers various forms of objective function that may be applied in the calculation of spanning
trees in different network situations. Conventional link and path cost approaches are compared to those based
on switch or bridge costs more appropriate for wireless applications. Variant objectives are formulated and
compared. Although efficient exact algorithmic approaches exist only for the link cost objectives, reasonable
approximations for the switch/bridge equivalents are to be found with simple greedy heuristics and better
results still through various forms of iterated local search such as tabu search and simulated annealing.

Keywords
Wireless network optimization, Spanning trees, Objective functions, Algorithms, Heuristics

Disciplines
Computer and Systems Architecture | Digital Communications and Networking | Hardware Systems |
Systems and Communications

Comments
Copyright © 2006 IEEE. This is a reprint of a paper presented to the 2006 IEEE Sarnoff Symposium (Sarnoff
2006) in March 2006. It was published by the Institute of Electrical and Electronics Engineers (IEEE), and
details of the published paper are available at http://ieeexplore.ieee.org This material is posted here with
permission of the IEEE and the author. Such permission of the IEEE does not in any way imply IEEE
endorsement of any of the products or services of Glyndwr University Wrexham. Internal or personal use of
this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This conference paper is available at Glyndŵr University Research Online: http://epubs.glyndwr.ac.uk/cair/73

http://dx.doi.org/10.1109/SARNOF.2006.4534805
http://epubs.glyndwr.ac.uk/cair/73?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages

Abstract This paper considers various forms of objective

function that may be applied in the calculation of spanning trees
in different network situations. Conventional link and path cost
approaches are compared to those based on switch or bridge
costs more appropriate for wireless applications. Variant
objectives are formulated and compared. Although efficient
exact algorithmic approaches exist only for the link cost
objectives, reasonable approximations for the switch/bridge
equivalents are to be found with simple greedy heuristics and
better results still through various forms of iterated local search
such as tabu search and simulated annealing.

Index Terms— Wireless network optimization, Spanning trees,
Objective functions, Algorithms, Heuristics

I. INTRODUCTION: SPANNING TREE OBJECTIVE FUNCTIONS
panning Tree Protocols are integral in the efficient
operation of many forms of multipart/area network [1].

They provide loop-free routing/delivery by establishing a
single path between all node pairs. Finding a spanning tree
(ST) of minimal ‘cost’ is clearly beneficial; however the
relevant ‘cost’ to be minimized may vary between
applications. In particular, in wireless applications, any
approach based on link cost is clearly inappropriate.

Begin with a graph G = (V, E), |V|=n. The conventional
Minimum Spanning Tree (MST) approach assigns a cost to
each feasible link (i, j)∈ E then seeks to minimize the sum of
all link costs in the ST, that is to find the minimizing tree T*
such that

== ∑ ∑
−

= +=

1

1 1

**)(
n

i

n

ij

T
ijijMST xcTf

 ∑ ∑
−

= +=

=
1

1 1

min)(min
n

i

n

ij

T
ijijTMSTT xcTf (1)

for all trees T, where cij is the cost of the link (i, j) and T
ijx =1

if (i, j)∈ T and T
ijx =0 if (i, j)∉ T. The MST problem can be

solved efficiently [2].
However, minimizing total link cost is rarely appropriate

in a real-world environment. An alternative is to minimize
path length - either maximum or average. If T

ijp is the length

of the path from i to j in T (the sum of the link costs over the
path) then the Minimum Maximum Path (MMP) or Minimum
Average Path (MAP) objectives are to find T* such that

 == *max*)(T
ijijMMP pTf

 T
ijijTMMPT pTf maxmin)(min = (2)

and

)(min
)1(

1*)(
1

1 1

* Tfp
nn

Tf MAPT

n

i

n

ij

T
ijMAP =

−
= ∑ ∑

−

= +=

∑ ∑
−

= +=−
=

1

1 1

min
)1(

1 n

i

n

ij

T
ijT p

nn
. (3)

Again, efficient techniques exist for minimizing paths [3].
In these formulations and those that follow, symmetric

network parameters (T
ji

T
ij xx = and consequently T

ji
T
ij pp =

for all i,j) are assumed. This is only for brevity: asymmetric
values are equally valid.

II. SPANNING TREE OBJECTIVES FOR WIRELESS NETWORKS

For wireless networks, link costs are best avoided entirely.
Path lengths may still be mininized as in (2) and (3) but should
ideally be based on switch/bridge cost, not link cost.

Define ci to be the cost of the bridge i and T
iz as:

Mike Morgan and Vic Grout
Centre for Applied Internet Research (CAIR)

University of Wales, NEWI, Plas Coch Campus
Wrexham, North Wales, LL11 2AW, UK

{mi.morgan|v.grout}@newi.ac.uk

SPANNING TREE OBJECTIVE FUNCTIONS
AND ALGORITHMS FOR WIRELESS

NETWORKS

S










=

>
=

∑

∑

=

=

1:0

1:1

1

1
n

j

T
ij

n

j

T
ij

T
i

x

x
z (4)

T
iz defines the active bridges in T. T

iz =0 identifies non-
participatory ‘leaf’ nodes. A more realistic objective function
for a wireless environment is then to find T* such that

 == ∑
=

n

i

T
iiMAB zcTf

1

**)(

 ∑
=

=
n

i

T
iiTMABT zcTf

1
min)(min (5)

the Minimum Active Bridge (MAB) objective, or to redefine
(2) and/or (3) in terms of switch/bridge costs, giving the
Minimum Maximum Bridge Path (MMBP) and Minimum
Average Bridge Path (MABP) objectives.

ADD

 // Initialization
 for all i ∈ V do siN ← 0
 for all i, j ∈ V do xijN ← 0
 find i such that vi = maxj vj
 si

N ← 1
 // Growth
 while there exists j such that sj

N = 0 do
 {
 for all j ∈ V such that
 bj = 1 and eij = 1 and sj

N = 0 do
 {
 xij

N ← 1
 sj

N ← 1 }
 find i such that
 vi-δiN = max j (vj-δjN)
 where sj

N = 1 }

Figure 1. The Add algorithm for approximating the minimum-bridge solution

The fMST, fMMP, fMAP, fMMBP, fMABP and fMAB objectives are
based on different underlying graph problems [4] and have
different constrained complexities [5]. A simple greedy
algorithm works well for the MST [2]. In principle, shortest
path algorithms [3] deal with the MMP, MAP, MMBP and
MABP. However, it is known from various routing studies [6]
that individually optimized paths do not provide optimal
solutions for the network as a whole and that the compound
problem is more complex [4].

It is shown in this paper that minimizing fMAB also
minimizes or reduces fMMP, fMAP, fMMBP and fMABP. Simple
but effective greedy ‘add’ and ‘drop’ algorithms for the MAB
problem are given in [5]. This paper discusses improved
iterated local search (‘meta-heuristic’) approaches to the MAB
(and consequently MMP, MAP, MMBP and MABP) problem
based on Tabu-Search (TS) and Simulated Annealing (SA) [7]
principles. TS techniques are shown to give improved results
for the MAB, MMP, MAP, MMBP and MABP problems. A

developmental SA approach is also considered.
 The extension of these centralized algorithms to their

distributed equivalents is considered in conclusion.

Figure 2. MST Spanning tree solution

III. SPANNING TREE ALGORITHMS FOR WIRELESS NETWORKS
[5] gives a complete formulation of the problem of

minimizing bridge (or relay) costs in a wireless network,
including three separate objective functions for:

• minimizing the number of bridges,
• minimizing the degree of the active bridges,
• minimizing the degree of all network nodes.

For STs, as opposed to networks with redundant paths, these
objectives are identical. [5] also details two classes of
constraint that may be applied:

• Add constraints – identifying feasible edges and nodes (a
feasible node is one that may act as a bridge),

• Drop constraints – identifying levels of redundancy and
load restrictions.

Only add constraints are relevant for STs.

Figure 3. MAB Spanning tree solution

Finally, [5] offers two algorithms (ADD and DROP) to
attempt optimum solutions. The ADD algorithm (Figure 1)

approximates the minimum bridge ST we require, producing
significantly smaller fMAB(T*) values than an MST approach
(Figures 2 and 3). It constructs a network, N, from an empty
link set, using the temporary spanning vector, sN = (N

is : i∈

V), where N
is = 0 initially for all i ∈ V and N

is = 1 as i is
included. vi is the valency (degree) of the node i in the
underlying graph G and δj

N the current degree of j in N. bj = 1
if j is a viable bridge and eij = 1 if (i,j) is a viable link (0
otherwise). A spanning relay is chosen initially as the node of
highest degree. A link is then established between it and all
adjacent nodes. From the nodes currently spanned, a new
spanning relay is selected, adjacent to the maximum number
of unspanned nodes, and the process is repeated. It may also
be observed from Figures 2 and 3 that MAB solutions
generally result in shorter paths than MST solutions, and
Figure 4 shows that the difference increases with problem
size. However, the add algorithm is still essentially greedy
and consequentially crude: better results are to be achieved
from TS and SA.

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21

MST
MAB

25 100 250 500 n

Average
Maximum
Path
Length

(number
or total
cost of
bridges)

Figure 4. Average maximum path lengths

Figure 5 outlines the TS algorithm for the MAB. It
extends ADD’s capability using multi-starts. A Restricted
Candidate List (RCL) is produced during each pass, holding a
set of highly-ranked nodes for each construction step. The
RCL is used to find unexploited candidates to be included in
subsequent passes.

Candidates are stored in a dynamically-created tree,
together with the iteration in which they are going to be used.
The tree is organized so that parent alterations occur earlier in
the construction process than their children. Each node of the
tree produces a construction pass, imposing its own alteration
along with its preceding ancestor alterations.

The function BuildTree selects the highest-degree bridge
not marked by the GlobalTabuVector to be chosen at the first
construction step. CreateChildren searches the RCL for the k
most attractive alterations not marked by the local tabu vector,
which contains the union of bridges selected by the most
recent pass and its ancestor passes. MaxDepth and k specify
tree dimensions and MaxRestarts defines the number of first-
iteration alterations. f(s) returns the number of bridges for a
feasible solution and ∞ otherwise. δ is used to limit execution
time by further restricting the search neighbourhood.

TS
 GlobalTabuVector ← ŝ ← s ← ∅
 TreePtr ← BuildTree(GlobalTabuVector)
 while not TreePtr=NULL do {
 AltList ← GetAlts(TreeNode)
 s ← Add(AltList) // update RCL
 if NodeDepth<MaxDepth and f(s)<f(ŝ)+δ then
 CreateChildren(RCL, TreePtr, k)
 if f(s)<f(ŝ) then {
 ŝ ← s
 GlobalTabuVector ← GlobalTabuVector ∪ s }
 else if NodeDepth = 1 then
 GlobalTabuVector ← GlobalTabuVector ∪ s
 TreePtr ← FindNextNode(TreePtr) // depth-
 if TreePtr=NULL // first search

and Restarts<MaxRestarts then
 TreePtr ← BuildTree(GlobalTabuVector) }

Figure 5. Tabu-Search for approximating the minimum-bridge solution

An SA approach to the MAB (and related) problems is
also under investigation. This uses only node swaps to
explore the search space. Disconnected nodes and
components are penalized by the evaluation function – but not
repaired. This allows the algorithm to cross infeasible regions
of the search space, which is essential as large-scale
perturbations are normally required to improve upon local
ADD solutions. Preliminary results are good. However, this
algorithm is only just out of its developmental stage. At the
time of publication, fine-tuning is still required and final
results will be reported elsewhere.

IV. RESULTS
This section discusses the performance of the TS algorithm

as a relationship between accuracy and run-time. Table I
summarizes results from the ADD and TS algorithms for n =
30, 100, 300 & 1,000 – 50 runs for each with an RCL length
of 4, MaxDepth = k = 4, MaxRestarts = 9 and δ = 2.

TABLE I. A COMPARISON OF ADD AND TS

Mean percentage improvement of TS over ADD
n

 LOS = 0.5 LOS = 0.7 LOS = 0.9

30

MTD = 0.3
MTD = 0.5
MTD = 0.7

 XXX

6.25
6.25

3.28
7.73
4.48

4.44
9.04
2.02

 LOS = 0.5 LOS = 0.7 LOS = 0.9

100
MTD = 0.3
MTD = 0.4
MTD = 0.5

 9.14
12.29
10.08

10.76
12.03
14.48

 9.22
15.94
10.70

 LOS = 0.2 LOS = 0.3 LOS = 0.4

500
MTD = 0.2
MTD = 0.3
MTD = 0.4

4.41
5.76
6.43

5.65
7.76
8.73

 6.95
 8.09
10.68

 LOS = 0.15 LOS = 0.2 LOS = 0.25

1,000
 MTD = 0.15

MTD = 0.2
 MTD = 0.25

3.10
3.83
4.23

3.82
4.21
5.02

4.18
3.97
5.05

XXX: No feasible solutions

LOS and MTD are the line-of-sight probability and
maximum transmission distance (relative to a unit square

containing all nodes) respectively, used to generate the edge
viabilities eij. (An edge is viable if there is LOS and the
distance between then is less than MTD.) bj = 1 for all j – all
nodes are viable bridges in these tests. Table I shows some
variance in the relative performance although the general
improvement of TS over ADD is clear.

1 2 3 4 5 ... Inf
0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

Tree A
Tree B
Tree C
Tree D

Delta

M
ea

n
Td

el
ta

/T
ad

d
(1

0
ru

ns
)

Figure 6. Comparing ADD and TS execution times

Execution time for TS is approximately |TreeNodes|xTadd
where Tadd is the time taken by ADD and |TreeNodes| is the
total number of tree nodes created during the search. In the
unrestricted case (δ = ∞), |TreeNodes| can be calculated easily
based on values for k, MaxDepth and MaxStarts. It remains to
consider the effect of lower values of δ on execution time and
accuracy.

TABLE II. SEARCH TREES USED TO COMPARE ADD AND TS

Tree k MaxDepth MaxStarts
A 3 3 5
B 4 3 9
C 4 4 9
D 5 4 12

Define Tdelta to be the time taken by TS with a given δ.

Figure 6 shows mean values of Tdelta/Tadd for four different sets
of search tree dimensions (given in Table II) over problem
instances with n = 500, MTD = LOS = 0.2. Lower values of
δ reduce execution time significantly compared with the
unrestricted case. Figure 7 shows that there is little difference
in solution quality between δ = ∞ and δ = 5 and only
moderate deterioration by δ = 3. This confirms that lowering
δ reduces execution time considerably while still returning
good results.

V. CONCLUSIONS
Obviously there is some expense to greater accuracy. Run-

times increase with more sophisticated search parameters and
larger search neighbourhoods. The ideal balance will depend
on the application being considered. Longer run-times may
well be tolerated in static design problems such as wireless

broadband distribution networks [8] and will yield the closest
to optimal solutions. In dynamic situations, such as the
frequent re-calculation of bridge spanning trees in response to
link/node failure, quicker, less-precise searches will be
necessary. Fortunately, the accuracy-complexity trade-off of
TS appears favourable in this respect.

1 2 3 4 5 ... Inf
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

Tree A
Tree B
Tree C
Tree D

Delta

M
ea

n
Br

id
ge

 R
ed

uc
tio

n
(%

)

Figure 7. Comparing ADD and TS accuracy

A final consideration must be given to the distribution of
these processes. The versions of ADD, TS and SA discussed
here are centralized (they take a global view of the network
problem/solution), which is appropriate for static network
design problems. For dynamic bridging protocols, however,
the algorithms will be required to run independently on
individual nodes [9] and distributed versions of ADD, TS and
SA have to be found. This is the next stage of the research.

REFERENCES
[1] B.Y. Wu and K.-M. Chao, Spanning Trees and Optimization Problems,

Chapman & Hall, 2004.
[2] J.B. Kruskal, “On the Shortest Spanning Subtree of a Graph and the

Traveling Salesman Problem”, Proc. American Math. Soc., vol. 7,
pp48-50, 1956.

[3] E.W. Dijkstra, “A Note on Two Problems in Connexion with Graphs”,
Numerische Mathematik, vol. 1, pp269-271, 1959.

[4] M.R. Garey and D.S. Johnson, Computers and Intractability: A guide to
the theory of NP-Completeness, Freeman, 1979.

[5] V. Grout, “Principles of Cost Minimisation in Wireless Networks”, J.
Heuristics, vol. 11, no. 2, pp115-133, 2005.

[6] V.Grout, “Ne’er the Twain Shall Meet: Bridging the network
optimisation reality gap”, Mathematics Today, vol. 41, no. 5, pp157-
160, October 2005.

[7] E. Aarts and J.K. Lenstra, Local Search in Combinatorial Optimisation,
Princeton University Press, 2003.

[8] Fowler, T., “Mesh Networks for Broadband Access”, IEE Review,
pp17-22, January 2000.

[9] Cisco Systems, “Spanning Tree Protocol”,
http://www.cisco.com/warp/public/473/17.html, 27th January 2006.

	Glyndŵr University
	Glyndŵr University Research Online
	3-1-2006

	Spanning Tree Objective Functions and Algorithms for Wireless Networks
	Mike J. Morgan
	Vic Grout
	Recommended Citation

	Spanning Tree Objective Functions and Algorithms for Wireless Networks
	Abstract
	Keywords
	Disciplines
	Comments

