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Spanning Tree Objective Functions and Algorithms for Wireless
Networks

Abstract
This paper considers various forms of objective function that may be applied in the calculation of spanning
trees in different network situations. Conventional link and path cost approaches are compared to those based
on switch or bridge costs more appropriate for wireless applications. Variant objectives are formulated and
compared. Although efficient exact algorithmic approaches exist only for the link cost objectives, reasonable
approximations for the switch/bridge equivalents are to be found with simple greedy heuristics and better
results still through various forms of iterated local search such as tabu search and simulated annealing.
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Abstract This paper considers various forms of objective 

function that may be applied in the calculation of spanning trees 
in different network situations.  Conventional link and path cost 
approaches are compared to those based on switch or bridge 
costs more appropriate for wireless applications.  Variant 
objectives are formulated and compared.  Although efficient 
exact algorithmic approaches exist only for the link cost 
objectives, reasonable approximations for the switch/bridge 
equivalents are to be found with simple greedy heuristics and 
better results still through various forms of iterated local search 
such as tabu search and simulated annealing. 
 

Index Terms— Wireless network optimization, Spanning trees, 
Objective functions, Algorithms, Heuristics 

 

I. INTRODUCTION: SPANNING TREE OBJECTIVE FUNCTIONS 
panning Tree Protocols are integral in the efficient 
operation of many forms of multipart/area network [1].  

They provide loop-free routing/delivery by establishing a 
single path between all node pairs.  Finding a spanning tree 
(ST) of minimal ‘cost’ is clearly beneficial; however the 
relevant ‘cost’ to be minimized may vary between 
applications.  In particular, in wireless applications, any 
approach based on link cost is clearly inappropriate. 

Begin with a graph G = (V, E), |V|=n.  The conventional 
Minimum Spanning Tree (MST) approach assigns a cost to 
each feasible link (i, j)∈ E then seeks to minimize the sum of 
all link costs in the ST, that is to find the minimizing tree T* 
such that 
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for all trees T, where cij is the cost of the link (i, j) and T
ijx =1 

 
 

if (i, j)∈ T and T
ijx =0 if (i, j)∉ T.  The MST problem can be 

solved efficiently [2]. 
However, minimizing total link cost is rarely appropriate 

in a real-world environment.  An alternative is to minimize 
path length - either maximum or average.  If T

ijp is the length 

of the path from i to j in T (the sum of the link costs over the 
path) then the Minimum Maximum Path (MMP) or Minimum 
Average Path (MAP) objectives are to find T* such that 
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Again, efficient techniques exist for minimizing paths [3]. 
In these formulations and those that follow, symmetric 

network parameters ( T
ji

T
ij xx =  and consequently T

ji
T
ij pp =  

for all i,j) are assumed.  This is only for brevity: asymmetric 
values are equally valid.  

 

II. SPANNING TREE OBJECTIVES FOR WIRELESS NETWORKS  

For wireless networks, link costs are best avoided entirely.  
Path lengths may still be mininized as in (2) and (3) but should 
ideally be based on switch/bridge cost, not link cost. 

Define ci to be the cost of the bridge i and T
iz  as: 
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T
iz  defines the active bridges in T.  T

iz =0 identifies non-
participatory ‘leaf’ nodes.  A more realistic objective function 
for a wireless environment is then to find T* such that 
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the Minimum Active Bridge (MAB) objective, or to redefine 
(2) and/or (3) in terms of switch/bridge costs, giving the 
Minimum Maximum Bridge Path (MMBP) and Minimum 
Average Bridge Path (MABP) objectives. 
 
ADD 

   // Initialization  
   for all i ∈ V do siN ← 0 
   for all i, j ∈ V do xijN ← 0 
   find i such that vi = maxj vj 
   si

N ← 1 
   // Growth  
   while there exists j such that sj

N = 0 do 
      { 
        for all j ∈ V such that 
               bj = 1 and eij = 1 and sj

N = 0 do 
            { 
                 xij

N ← 1 
               sj

N ← 1    } 
      find i such that 
                vi-δiN = max j (vj-δjN) 
                 where sj

N = 1           } 
 
Figure 1.  The Add algorithm for approximating the minimum-bridge solution 
 

The fMST,  fMMP,  fMAP,  fMMBP,  fMABP and  fMAB objectives are 
based on different underlying graph problems [4] and have 
different constrained complexities [5].  A simple greedy 
algorithm works well for the MST [2].  In principle, shortest 
path algorithms [3] deal with the MMP, MAP, MMBP and 
MABP.  However, it is known from various routing studies [6] 
that individually optimized paths do not provide optimal 
solutions for the network as a whole and that the compound 
problem is more complex [4]. 

It is shown in this paper that minimizing  fMAB  also 
minimizes or reduces  fMMP,  fMAP,  fMMBP  and   fMABP.  Simple 
but effective greedy ‘add’ and ‘drop’ algorithms for the MAB 
problem are given in [5].  This paper discusses improved 
iterated local search (‘meta-heuristic’) approaches to the MAB 
(and consequently MMP, MAP, MMBP and MABP) problem 
based on Tabu-Search (TS) and Simulated Annealing (SA) [7] 
principles.  TS techniques are shown to give improved results 
for the MAB, MMP, MAP, MMBP and MABP problems.  A 

developmental SA approach is also considered. 
 The extension of these centralized algorithms to their 

distributed equivalents is considered in conclusion. 

 
Figure 2.  MST Spanning tree solution 

III. SPANNING TREE ALGORITHMS FOR WIRELESS NETWORKS 
[5] gives a complete formulation of the problem of 

minimizing bridge (or relay) costs in a wireless network, 
including three separate objective functions for: 

• minimizing the number of bridges, 
• minimizing the degree of the active bridges, 
• minimizing the degree of all network nodes. 

For STs, as opposed to networks with redundant paths, these 
objectives are identical.  [5] also details two classes of 
constraint that may be applied: 

• Add constraints – identifying feasible edges and nodes (a 
feasible node is one that may act as a bridge), 

• Drop constraints – identifying levels of redundancy and 
load restrictions. 

Only add constraints are relevant for STs. 

 
Figure 3.  MAB Spanning tree solution 

Finally, [5] offers two algorithms (ADD and DROP) to 
attempt optimum solutions.  The ADD algorithm (Figure 1) 



 

approximates the minimum bridge ST we require, producing 
significantly smaller fMAB(T*) values than an MST approach 
(Figures 2 and 3).  It constructs a network, N, from an empty 
link set, using the temporary spanning vector, sN = ( N

is : i∈ 

V), where N
is = 0  initially for all i ∈ V and N

is = 1 as i is 
included.  vi is the valency (degree) of the node i in the 
underlying graph G and δj

N the current degree of j in N.  bj = 1 
if j is a viable bridge and eij = 1 if (i,j) is a viable link (0 
otherwise).  A spanning relay is chosen initially as the node of 
highest degree.  A link is then established between it and all 
adjacent nodes.  From the nodes currently spanned, a new 
spanning relay is selected, adjacent to the maximum number 
of unspanned nodes, and the process is repeated.  It may also 
be observed from Figures 2 and 3 that MAB solutions 
generally result in shorter paths than MST solutions, and 
Figure 4 shows that the difference increases with problem 
size.  However, the add algorithm is still essentially greedy 
and consequentially crude: better results are to be achieved 
from TS and SA. 
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Figure 5 outlines the TS algorithm for the MAB.  It 
extends ADD’s capability using multi-starts.  A Restricted 
Candidate List (RCL) is produced during each pass, holding a 
set of highly-ranked nodes for each construction step.  The 
RCL is used to find unexploited candidates to be included in 
subsequent passes. 

Candidates are stored in a dynamically-created tree, 
together with the iteration in which they are going to be used.  
The tree is organized so that parent alterations occur earlier in 
the construction process than their children.  Each node of the 
tree produces a construction pass, imposing its own alteration 
along with its preceding ancestor alterations. 

The function BuildTree selects the highest-degree bridge 
not marked by the GlobalTabuVector to be chosen at the first 
construction step.  CreateChildren searches the RCL for the k 
most attractive alterations not marked by the local tabu vector, 
which contains the union of bridges selected by the most 
recent pass and its ancestor passes.  MaxDepth and k specify 
tree dimensions and MaxRestarts defines the number of first-
iteration alterations.  f(s) returns the number of bridges for a 
feasible solution and ∞ otherwise.  δ is used to limit execution 
time by further restricting the search neighbourhood. 

TS 
  GlobalTabuVector ← ŝ ← s ← ∅ 
  TreePtr ← BuildTree(GlobalTabuVector) 
  while not TreePtr=NULL do { 
    AltList ← GetAlts(TreeNode) 
  s ← Add(AltList)             // update RCL 
  if NodeDepth<MaxDepth and f(s)<f(ŝ)+δ then 
   CreateChildren(RCL, TreePtr, k) 
  if f(s)<f(ŝ) then { 
   ŝ ← s 
   GlobalTabuVector ← GlobalTabuVector ∪ s } 
  else if NodeDepth = 1 then 
   GlobalTabuVector ← GlobalTabuVector ∪ s 
  TreePtr ← FindNextNode(TreePtr)  // depth- 
  if TreePtr=NULL            // first search 

and Restarts<MaxRestarts then 
   TreePtr ← BuildTree(GlobalTabuVector) } 
 

Figure 5.  Tabu-Search for approximating the minimum-bridge solution 
 

An SA approach to the MAB (and related) problems is 
also under investigation.  This uses only node swaps to 
explore the search space.  Disconnected nodes and 
components are penalized by the evaluation function – but not 
repaired.  This allows the algorithm to cross infeasible regions 
of the search space, which is essential as large-scale 
perturbations are normally required to improve upon local 
ADD solutions.  Preliminary results are good.  However, this 
algorithm is only just out of its developmental stage.  At the 
time of publication, fine-tuning is still required and final 
results will be reported elsewhere. 
 

IV. RESULTS 
This section discusses the performance of the TS algorithm 

as a relationship between accuracy and run-time.  Table I 
summarizes results from the ADD and TS algorithms for n = 
30, 100, 300 & 1,000 – 50 runs for each with an RCL length 
of 4, MaxDepth = k = 4, MaxRestarts = 9 and δ = 2. 

TABLE I. A COMPARISON OF ADD AND TS 

Mean percentage improvement of TS over ADD 
n 

 LOS = 0.5 LOS = 0.7 LOS = 0.9 

30 

MTD = 0.3 
MTD = 0.5 
MTD = 0.7 

  XXX 

6.25 
6.25 

3.28 
7.73 
4.48 

4.44 
9.04 
2.02 

  LOS = 0.5 LOS = 0.7 LOS = 0.9 

100 
MTD = 0.3 
MTD = 0.4 
MTD = 0.5 

  9.14 
12.29 
10.08 

10.76 
12.03 
14.48 

  9.22 
15.94 
10.70 

  LOS = 0.2 LOS = 0.3 LOS = 0.4 

500 
MTD = 0.2 
MTD = 0.3 
MTD = 0.4 

4.41 
5.76 
6.43 

5.65 
7.76 
8.73 

  6.95 
  8.09 
10.68 

  LOS = 0.15 LOS = 0.2 LOS = 0.25 

1,000 
  MTD = 0.15 

MTD = 0.2 
  MTD = 0.25 

3.10 
3.83 
4.23 

3.82 
4.21 
5.02 

4.18 
3.97 
5.05 

XXX: No feasible solutions 
 

LOS and MTD are the line-of-sight probability and 
maximum transmission distance (relative to a unit square 



 

containing all nodes) respectively, used to generate the edge 
viabilities eij.  (An edge is viable if there is LOS and the 
distance between then is less than MTD.)  bj = 1 for all j – all 
nodes are viable bridges in these tests.  Table I shows some 
variance in the relative performance although the general 
improvement of TS over ADD is clear. 
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Figure 6.  Comparing ADD and TS execution times 

Execution time for TS is approximately |TreeNodes|xTadd 
where Tadd  is the time taken by ADD and |TreeNodes| is the 
total number of tree nodes created during the search.  In the 
unrestricted case (δ = ∞), |TreeNodes| can be calculated easily 
based on values for k, MaxDepth and MaxStarts.  It remains to 
consider the effect of lower values of δ on execution time and 
accuracy. 

TABLE II. SEARCH TREES USED TO COMPARE ADD AND TS 

Tree k MaxDepth MaxStarts 
A 3 3 5 
B 4 3 9 
C 4 4 9 
D 5 4 12 

 
Define Tdelta to be the time taken by TS with a given δ.  

Figure 6 shows mean values of Tdelta/Tadd for four different sets 
of search tree dimensions (given in Table II) over problem 
instances with  n = 500,  MTD = LOS = 0.2.  Lower values of 
δ reduce execution time significantly compared with the 
unrestricted case.  Figure 7 shows that there is little difference 
in solution quality between  δ = ∞   and  δ = 5  and only 
moderate deterioration by  δ = 3.  This confirms that lowering 
δ  reduces execution time considerably while still returning 
good results. 

V. CONCLUSIONS 
Obviously there is some expense to greater accuracy.  Run-

times increase with more sophisticated search parameters and 
larger search neighbourhoods.  The ideal balance will depend 
on the application being considered.  Longer run-times may 
well be tolerated in static design problems such as wireless 

broadband distribution networks [8] and will yield the closest 
to optimal solutions.  In dynamic situations, such as the 
frequent re-calculation of bridge spanning trees in response to 
link/node failure, quicker, less-precise searches will be 
necessary.  Fortunately, the accuracy-complexity trade-off of 
TS appears favourable in this respect. 
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Figure 7.  Comparing ADD and TS accuracy 

A final consideration must be given to the distribution of 
these processes.  The versions of ADD, TS and SA discussed 
here are centralized (they take a global view of the network 
problem/solution), which is appropriate for static network 
design problems.  For dynamic bridging protocols, however, 
the algorithms will be required to run independently on 
individual nodes [9] and distributed versions of ADD, TS and 
SA have to be found.  This is the next stage of the research. 
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