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Abstract— This paper introduces two new algorithms for the 
minimum connected dominating set (MCDS) problem with 
constraints applicable to wireless network design, based on 
simulated annealing and tabu search principles.  Each algorithm 
is tested on a selection of random graphs and shown to produce 
significantly smaller connected dominating sets when compared 
to a number of established methods.  The simulated annealing 
algorithm is found to favour large, sparse graphs while the tabu 
search heuristic prefers smaller dense instances.  In conclusion, 
we consider the adaptation of these algorithms to hybrid 
techniques and comment on the possible use of hyper-heuristics. 

  Keyword s; wireless network design; minimum connected 
dominating set; simulated annealing; tabu search; metaheuristics. 

 

I.  INTRODUCTION AND RELATED WORK 

A Minimum Connected Dominating Set (MCDS) of a graph 
G=(V,E) is a subset S⊆ V such that each node in V-S is 
adjacent to one or more nodes in V, the subgraph G’ induced 
by S is a connected component of G and |S| is a minimum.  
The problem is known to be NP-Complete [6].  The practical 
application of the MCDS problem in wireless network design 
arises from the need to minimise the number of relays 
(switches, etc.) in a given network.  It forms an integral part of 
the design problem for static networks along with self-
organisation problems in mobile ad-hoc networks or 
MANETs.  The former may be tackled using centralised 
methods, while the latter relies on distributed approaches.  
This paper proposes two new centralised algorithms for the 
static problem variant. 

A fairly complex family of constraints has been outlined for 
the design problem in [9].  In this paper, a reduced version of 
this constraint set is considered in order to make a beginning.  
The simplified model involves defining a set of feasible edges 
based on maximum transmission distances and line-of-sight 
considerations, whilst constraining certain nodes so that they 
may not join the dominating set.  This deals with the case in 
which certain premises may not be able to house relay 
equipment, whilst also addressing the transmission limitations 
of various wireless technologies.  More complex redundancy 
and capacitative constraints are set aside for future work. 

The two algorithms are each implementations of well 
known metaheuristics: simulated annealing [1] and tabu search 
[7].  The SA algorithm implements a modified evaluation 
function which introduces a slight gradient into the extensive 

plateaux commonly found in the problem’s search space.  This 
function can be used with a number of local search methods 
besides SA and extended to tackle the generalised connected 
dominating set problem [11] with a simple alteration, if 
required.   The tabu search algorithm is more esoteric and can 
be considered a semi -greedy metaheuristic in its own right.  It 
is a deterministic approach inspired by techniques in [8] 
whereby multi-starts, as used in semi-greedy methods, are 
defined as an extreme case of one-sided strategic oscillation.  
This principle is employed to create an effective construction 
search based on a simple greedy algorithm.   The algorithms 
are seen to outperform simpler heuristics and shown to have 
individual strengths and weaknesses, pointing to the possible 
use of hyper-heuristics or hybrid techniques for the MCDS 
problem. 

To date, much of the work on connected dominating sets 
has focused on distributed methods for virtual backbones in ad 
hoc networks [5,13].  Whilst some work has been carried out 
on centralised approximation algorithms, these are generally 
simple, greedy heuristics.  Algorithms such as those found in 
[9] and [10] use the greedy criterion whereby the node or 
combination of nodes which connect up the largest remaining 
portion of the network are added to S at each iteration, 
requiring the subgraph induced by S to be connected at each 
stage or not, as the case may be.  Other methods, such as [2] 
involve forming a maximal independent set and then adding 
nodes to form a CDS.  This approach yields a constant 
approximation ratio, but results are relatively poor in practice 
[5].  A final technique is to commence with all nodes in an 
initial dominating set and drop nodes or edges at each stage of 
the algorithm.  Examples include [3] and [9].  Again, these 
perform poorly in practice and their main use is in handling 
complex constraints or in ensuring connectivity at all times 
during distributed processes.   Whilst simulated annealing and 
tabu search have been used successfully in network design 
problems such as the capacitative minimum spanning tree [4], 
we are aware of no reference to published work on their use 
with this problem.  These methods conduct far lengthier 
searches  than the simple, greedy approaches outlined above 
and produce better results as a consequence. 

II. THE MCDS/SA  ALGORITHM 
The simulated annealing algorithm for MCDS (MCDS/SA) 

is outlined in the sections that follow.  Initially we outline the 
modified evaluation function f’(S), before defining the search 



neighbourhood with regard to relevant efficiency 
considerations. 

A. The Modified Evaluation Function 
The unmodified objective function f(S) for the MCDS 

problem is as follows: 

| | :   is a CDS of G
( )

  : otherwise

S S
f S

= 
∞

.   (1) 

It is difficult to produce an effective perturbation search 
using this as an evaluation function; greedy algorithms will 
typically produce solutions which are locally optimal with 
respect to any easily defined neighbourhood.  The only way to 
improve a solution would be to reduce the number of relays 
whilst maintaining feasibility or to make a solution feasible 
when it was not.  It is difficult to concieve a simple 
perturbation which is likely to achieve this on a regular basis.  
The search may be led along extensive plateaux, neither 
improving the solution nor terminating at a strict local 
minimum or it may terminate immediately with no 
improvement, depending on the acceptance criterion used. 

The use of SA will combat this to some extent by 
probabilistically allowing non-improving solutions.  However, 
with a modification to the evaluation function, the situation can 
be improved further.  Define the coverage C of a solution to be 
the sum of the degrees of all its relay nodes.  The greater the 
coverage of the solution, the more likely it is that a relay can be 
dropped without affecting feasibility.  This is because an 
increase in total relay degree will result in non-relay nodes 
being adjacent to a greater number of relays on average.  
Therefore, if the evaluation function is altered to maximise C 
for sets of equal size, it becomes possible to introduce a 
gradient into the plateaux and to guide the search process in an 
effective manner.  Additionally, by applying penalties to 
infeasible solutions rather than ruling them out entirely, the 
search trajectory can cross infeasible regions of the solution 
space, temporarily accepting solutions with more than one 
connected component or with one or more disconnected nodes 
in the interests of diversification at higher temperatures.  The 
modified evaluation function, f’(S), is: 

2 ( | | 2 )  : 0
( )

 : otherwise

m n S z C
f S

γ γ+ + − >′ = 
∞

,  (2) 

where γ  is the number of connected components of the 
subgraph induced by S, z is the number of nodes in V-S with 
no adjacent relay, C is the coverage of the solution and n and 
m are equal to |V| and |E|, respectively.  A minimum value for 
f’(S) will always give a minimum for f(S). 

B. Search Neighbourhood Definition and Efficiency 
The search neighbourhood is a simple variant on 2-node 

swaps: one node is added to S and another is removed followed 
by a re-evaluation of  f’(S).  However, in order to change the 
size of the CDS, two alterations have been made to this simple 
neighbourhood definition.  Firstly, we probabilistically 
introduce moves which do not add or do not drop with a given 
probability Pmove and secondly, whenever we find a drop move 

which produces a feasible solution, we do not add anything 
back to S. 
 

procedure MCDS/SA 
   initialise temperature T and solution S 
   create ID vector id for S      // BFS 
   evaluate f’(S)       
   Sbest ← S    
   while (there is a change in f’(S)) 
      for all relays u 
         S’ ← S - u 
         create ID vector id’ for S’             // BFS  
         evaluate f’(S’)      
         if (S’ is feasible) then 
            S ← S’ 
            if (f(Sbest)<f(S)) then 
               Sbest ←  S 
            end-if  
            continue           // proceed to next relay 
         end-if 
         generate candidate list 
         for all nodes v in candidate list 
            randomly choose type of move (add/drop/swap) 
            if (move type = add) then 
               S’’ ← S + v 
               ∆ f’(S) ←f’(S’’)-f’(S) 
            else if (move type = drop) then 
               S’’ ←  S’ 
               ∆ f’(S) ←f’(S’’)-f’(S) 
            else if (move type = swap) then 
               S’’ ←  S’ + v 
               ∆ f’(S) ←f’(S’’)-f’(S’) 
            end-if 
            if (∆ f’(S) < 0 or random[0,1) < '( )f S Te−∆ ) then 
               relabel id 
               S ← S’’ 
               if (f(S best)<f(S) ) then 
                  Sbest ← S 
               end-if  
               break           // proceed to next relay 
            end-if 
         end-for 
      end-for  
      T Tα←  
   end-while 
   return Sbest 
end-procedure 
 

Figure 1.  Pseudocode for MCDS/SA 

By contrast to the random sampling used in many SA 
algorithms, MCDS/SA samples the search neighbourhood in a 
strict order, subject to the probabilistic elements already 
described.  This order is designed to reduce the need for 
breadth-first search (BFS) to evaluateγ , exploiting that fact 
that BFS is only required when a node is dropped, as long as a 
list of component identifiers (IDs) is kept for each node of the 
graph.  For each relay node u, we calculate f’(S) and f’(S-u) and 
create ID lists for both S and S-u using BFS.  If S-u is feasible, 
we drop u from S and proceed to the next relay.  Otherwise we 
produce a candidate list of non-relay nodes v to add back.  For 
each node v, we select a move (swap, add only or drop only).  
If the drop only move is selected, no further recalculation is 
necessary.  Otherwise, v’s neighbour list is scanned for relays 
with IDs different from v’s, using the IDs for S-u if swapping 
or the IDs for S if adding only.  If v  has  no neighbouring relays, 
a new component has been created and γ  will be increased by 
one.  Otherwise the resulting value forγ  is reduced by the 
number of unique relay IDs not equal to v’s.  Recalculation of z 
and C is carried out incrementally.  A relay’s degree is added to 



or subtracted from C when it is added or dropped from S and z 
is updated by tracking the number of relays in the adjacency 
list for each node.  Moves are accepted or rejected according to 
the metropolis criterion [12], which states that a move is 
accepted if, and only if,  '( ) 0f S∆ <   or   

'( ) /[0,1) f S Trandom e−∆< where T is the current temperature and: 

'( ) '( ) : Drop only
'( ) '( ) '( ) : Add only

'( ) '( ) : Swap

f S u f S
f S f S v f S

f S u v f S

− −∆ = + −
− + −

  (3) 

Once a move is accepted, all IDs are invalidated and it is 
necessary to proceed to the next relay.  After this process has 
been carried out for all relays, a pass has been completed and T 
is reduced by a multiplying factor α , normally in the range 
[0.85-1).  This reduces the possibility of accepting a non-
improving solution as the algorithm progresses.   The algorithm 
terminates at the point where no change in f’(S) is seen between 
the beginning and end of a pass.  A minimum number of passes 
may be specified to avoid accidental, premature convergence 
and is specified by the algorithm parameter Imin .  Pseudocode 
for the MCDS/SA algorithm is given in Fig. 1. 

The candidate lists are kept to a constant length in order to 
keep runtimes down.  Initially, nodes are selected from 
promising two-hop neighbours, with any remaining space 
populated by randomly chosen, non-relay nodes.  On dropping 
a relay u, one or more nodes in u’s adjacency list may become 
disconnected.  It follows that any node capable of reconnecting 
a newly disconnected node by becoming a relay must reside in 
the adjacency list of one of the disconnected nodes in question.  
Therefore, for each node v in the adjacency list of a 
disconnected neighbour of u, we evaluateδ z(v) – the number 
of newly disconnected nodes in v’s adjacency list.  The nodes v 
are sorted in descending order ofδ z(v) and placed in the 
candidate list.  Any remaining space in the list is populated 
randomly in the interests of search diversification.  The 
complexity of this process is 2( )O ∆ , where ∆  is the maximum 
degree of any node of the graph.  On account of this, it could be 
argued that the simpler strategy of including all non-relay 
nodes in the candidate list may be more appropriate for very 
dense problem instances where ∆  approaches n.  In practice, 
however, a huge improvement in runtime was observed using 
the two-hop candidate list strategy outlined above (see results 
in section IV) . 

III. THE MCDS/TS ALGORITHM 
The tabu search algorithm for MCDS (MCDS/TS ) adapts a 

simple greedy heuristic which we shall call ADD.  ADD can be 
found under different names in a number of papers, including 
[9] and [10] and is described as follows: Initially all nodes of 
the graph are marked disconnected.  The node with highest 
degree is added to S and its neighbours are marked dominated.  
At each subsequent step, the dominated node with the most 
disconnected neighbours (or highest yield) is added to S, and its 
neighbours are marked dominated.  The algorithm terminates 
when the highest yield reaches zero. 

A simple multi-start algorithm might run several passes of 
ADD, marking all nodes in S tabu after each pass, and 

repeating ADD with the constraint that only non-tabu nodes 
may be chosen for the first k  steps, where 0 < k < |S|.  While 
this produces improved results for small k , the process may be 
enhanced to conduct a more thorough search.  The concept is 
this: A variable depth search (VDS) procedure may remove a 
set of components c from a solution and replace them with 
components not in c.  The solution may be re -evaluated and 
accepted or rejected according to some suitable criterion.  
However, a similar search may be carried out by re-running a 
greedy algorithm such as ADD and altering one or more 
component choices at some stage in its pass.  This will produce 
a knock-on effect, the extent of which will vary |c| in a less-
controllable manner than for VDS but some control may be 
achieved from the heuristic principle that |c| is likely to be the 
larger when alterations occur early in the pass.  We note also 
that solutions may be identified by the alterations made in  the 
behaviour of a greedy algorithm in creating them.  
 

procedure MCDS/TS 
   GlobalTabuVector ŝ s← ← ← ∅  
   Trees ← 0  
   TreePtr ← BuildTree(GlobalTabuVector) 
   while(not TreePtr = NULL) do 
      Alts(s) ← GetAlts(TreeNode) 
      s ←  ADD(AltList)             // updates RCLs 
      if (NodeDepth<Dmax and ( )f s < ˆ( )f s δ+ ) then 

         CreateChildren() 
      end-if 
      if ( ( )f s < ˆ( )f s ) then 

         ŝ s←  
         GlobalTabuVector  ← GlobalTabuVector U  s  
      else if (NodeDepth = 1) then 
         GlobalTabuVector  ← GlobalTabuVector U  s  
      end-if 
         TreePtr ← NextNode(TreePtr)                // DFS  
      if(TreePtr = NULL and Trees < Tmax) then 
         TreePtr ← BuildTree(GlobalTabuVector)  
         Trees ←  Trees + 1 
      end-if 
   end-while 
   return ŝ   
end-procedure 
 

Figure 2.  Pseudocode for MCDS/TS 

So a candidate MCDS solution S may be subjected to 
perturbations by adding or removing alterations from its 
corresponding alteration list alts(S), whereby each alteration in 
alts(S) is a pair (i,j) instructing ADD to include node j at step i.  
However, a constraint must be applied when modifying ADD 
in this manner.  With the exception of the first node, only 
dominated nodes may be chosen at each step.  Otherwise, the 
dominating set produced may not be connected.  As a result, a 
number of rules are introduced for the maintainance of 
alteration lists: 

On creating perturbations to a CDS, S, by applying changes 
to alts(S): 

(i). When a pair ( i,j) is added to alts(S) and i>1, j must 
      have been dominated at step i in the ADD pass  
      which created S. 
(ii). Any pair (i,j) added to alts(S) must have i greater 
       than its corresponding value for the last pair in 
       alts(S).  
(iii). Only the last pair in alts(S) may be removed. 



Rules ii) and iii) imply that elements of alts(S) are kept in 
ascending order of i.  Rule i) assures that only dominated nodes 
are added to alts(S), whilst rules ii) and iii) ensure that 
alterations already held in the list are not invalidated by 
changes.  The result is a means by which perturbations can be 
made to a CDS ensuring that the resulting solution is also a 
valid CDS. 

Fig. 3a: MTD=0.2, LOS=0.8, IN=0  
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Fig. 3b: MTD=0.1, LOS=0.5, IN=0 
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Figure 3.  Plots of dominating set size against n for constant MTD, IN and LOS 

Rule i) is enforced by maintaining a Restricted Candidate 
List (RCL) for each step of an ADD pass, recording the yields 
of the best RCL_length  candidates at that step.  Alterations are 
chosen from these lists, which guarantees that they will be 
viable.  Rules ii) and iii) are enforced by organising pairs into a 
tree structure.  Every pair must have i greater than its parent’s 
and has a corresponding pass whose alteration list is found by 
reading back up the tree.  

Trees are constructed dynamically.  Initially, the root node 
is built with i=1 and j indexing the highest degree node not 
marked by the global tabu vector.  The global tabu vector 
marks all nodes chosen by root passes and passes producing 
new global best-known solutions and, as the global tabu vector 
is initialised as empty, the first tree will select the root node 
ADD would have selected at step 1.  Passes yielding good 
quality solutions will select pairs from the corresponding RCLs 
to add w children up to a maximum depth Dmax.  This selection 
process involves scanning RCLs for steps i+1 to |S| - looking 
for the highest w yields obtained by nodes not used in an 
ancestor pass.  The tree is traversed in depth-first order and 
when traversal is complete another tree is built up to a limit of 
Tmax trees.  

A number of rules could potentially be applied to decide 
which passes will be permitted to bear children.  The natural 
criterion to use is that only passes creating solutions S with |S| < 
|Sbest|+δ may bear children.  Here Sbest is the best known 
solution so far andδ is a parameter of the algorithm, usually an 
integer in the range 0< δ <6.  The extent to which the algorithm 
dynamically prunes the tree is controlled by δ : a lower value 
for δ  results in more aggressive pruning.  Studies on the effect 
of altering δ  are provided for a variety of randomly-generated 
problem instances in section IV.  Pseudocode for MCDS/TS is 
given in Fig. 2. 

By comparison to conventional TS approaches. the root 
created in building a new tree may be considered equivalent to 

a multi-start, while passes further down the tree create a 
progressively more localis ed search akin to strategic 
oscillation.  However, knock-on effects ought to produce 
considerable variation in the size and extent of the 
perturbations applied.  If necessary, elite candidates may be 
referred to by their alteration list and reconstructed using ADD 
if a further search is desired around them. 

IV.  RESULTS 

A. Comparison of CDS Sizes 
Nodes were placed randomly within a unit square.  A 

maximum transmission distance MTD and line of sight 
probability LOS were used to define edge viabilities, whereby 
edges connected nodes less than MTD apart with probability 
LOS.  A value IN was defined as the probability of any node 
being infeasible.  

In the absence of problem instances for which the optimum 
solution is known (other than small instances that can be 
optimised completely through exhaustive search), it was 
necessary to find some suitable benchmark against which to 
compare performance.  As a result, three greedy heuristics 
were used for comparison.  These were the ADD algorithm [9] 
and Guha and Khuller’s two algorithms [10], hereafter 
referred to as GK1 and GK2.  It is expected that these three 
algorithms would be outperformed by the metaheuristics. 

Fig. 4a: n=200, MTD=0.2, IN=0  
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Fig. 4b: n=1000, MTD=0.1, IN=0  
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Figure 4.  of dominating set size against LOS for constant MTD, IN and n 

Initially, the effect of varying node count (n) upon 
dominating set size (|S|) was observed for constant values of 
the other problem parameters MTD, LOS and IN.  Following 
this, the effect of increasing edge density upon |S| was studied 
by varying LOS and keeping the remaining parameters 
constant.  Finally, the algorithms’ abilities to handle node 
constraints was investigated by increasing IN and observing 
the resulting values for |S|.  For MCDS/SA, the candidate list 
lengths were set to 20, Pmove was set to 0.1 and Imin  to 40.  For 
MCDS/TS, the RCL_Length parameter was set to 4. 

Fig. 3 shows the effect of increasing n on |S| for small, 
dense problem instances (3a) and large, sparse ones (3b).  
Whilst there is little difference between SA and TS for smaller 
graphs (3a), SA outperforms TS on larger ones (3b).  
Furthermore, comparing 3a and 3b for n=500, shows TS 



giving better solutions for MTD = 0.2 and LOS = 0.8, while 
SA is far more successful with MTD = 0.1 and LOS = 0.5.  
This shows that edge density also has a bearing on the two 
algorithms’ relative performance.  
Fig. 5a: n=200, MTD=0.2, LOS=0.5  
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Fig. 5b: n=1000, MTD=0.1, LOS=0.5  
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Figure 5.  Plots of Dominating set size against IN for constant n, MTD &  LOS 

Fig. 6a: n=200, MTD=0.2, LOS=0.8  
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Fig. 6b: n=500, MTD=0.2, LOS=0.5  
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Figure 6.  Time Charts for MCDS/SA  

Fig. 4 confirms this, showing the result of varying LOS for 
constant n and MTD.  In 4a, TS begins to outperform SA as 
the density increases and, although SA is superior in 4b, a 
relative improvement can be observed for TS.  The effect of 
increasing edge density explains the inconcistency in results 
for Fig. 3.  Comparing 3a and 3b, it is clear that SA is more 
successful for larger n, but this is not noticeable on 
considering either chart in isolation.  This is explained by the 
fact that edge density increases with increasing n (for constant 
MTD and LOS). 

 

Fig. 7a: n=200, MTD=0.2, LOS=0.8 
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Fig. 7b: n=500, MTD=0.2, LOS=0.5 
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Figure 7.  Corresponding CDS Sizes for MCDS/SA Time Charts 

Whilst Figures 3 and 4 deal exclusively with edge 
constraints (IN=0), the effect of incre asing IN is observed in 
Fig. 5.  In this case the results are a little less consistent. SA 
may appear to improve slightly over TS as IN increases, but 
the results are by no means conclusive.  

B. Runtimes and Parameter Settings 
The complexity of MCDS/SA using constant length 

candidate lists is 2( ( ))O n m∆ + or 3( )O n per pass, although in 

practice performance is normally better than this .  Runtimes 
are given in Fig. 6 with various values for the initial 
temperature and α .  Here it can be seen that runtimes do not 
begin to increase until the initial temperature approaches 1000.  
Fig. 7 shows the corresponding CDS sizes for the times in Fig. 
6.  Here we can see, fortunately that lower values for initial 
temperature tend to give better results as well.  A good 
compromise between runtime and solution quality would be to 
set the initial temperature between 3 and 100, perhaps slightly 
greater for instances with larger n.  Where α  is concerned it 
appears that high values work better without compromising 
runtimes too badly.  In tests, runtimes were generally around 
2-3 seconds for n=200, 10-15 seconds for n=500 and 50-70 
seconds for n=1000, using an Athlon 1700XP processor and 
512MB RAM, with algorithms implemented in non-optimised 
C++. 

MCDS/SA was tested with three different graph types,  A 
(n=200, MTD=0.2, LOS=0.8, IN=0), B (n=500, MTD=0.2, 
LOS=0.5, IN=0) & C (n=1000, MTD=0.1, LOS=0.5, IN=0).  
Runtime increases and CDS size decreases with increasing Imin 
so the setting of this parameter is largely a trade-off between 



runtime and solution quality.  There is also a suggestion that a 
larger Imin may be more effective with smaller instances.  A 
positive Pmove is certainly advantageous, with a range of values 
between 0.1 and 0.4 being potentially useful.  The effect on 
runtimes is less predictable, but it appears that none of the 
tested settings for Pmove are overly-detrimental.  Runtimes 
increase consistently with increasing candidate list length and 
little improvement in solution quality is found after the list 
length exceeds 20.  This indicates that the optimum trade-off 
length for candidate lists may be found somewhere in the 
region of 20 for a variety of graph dimensions. 
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Figure 8.  Time Charts for MCDS/TS 

Runtimes for MCDS/TS are controlled primarily by δ .  It 
should be fairly obvious that MCDS/TS complexity is 
exponential with respect to Dmax and that the purpose of δ is 
minimise the potentially catastrophic impact this could have 
on runtimes.  Further precautions include setting Dmax to a 
small constant and increasing w and Tmax to improve the 
search.  The complexity of an ADD pass is 2( )O n  in this 
implementation, although other papers [10] claim bounds as 
low as O(m).  Fig. 8 shows the mean ratio Tdelta/Tadd for 
increasing δ , where Tdelta is the time taken for MCDS/TS to 
compute for the given value of δ  and Tadd is the time taken 
for one ADD pass.  Fig. 9 shows the corresponding percentage 
reduction in CDS size for MCDS/TS when compared to ADD.  
It can be seen from Fig. 9 that relatively little improvement in 
CDS size can be gained by increasing δ  above 4 or 5.  
However, Fig. 8 shows that runtimes are particularly small 
when compared to the unrestricted case where δ = ∞ .  As a 
result, values for δ around 3-5 with Dmax no greater than 5 
would seem to give a good compromise between runtime and 
solution quality.  Runtimes were of a similar order to 
MCDS/SA, ranging roughly from 1 second to one minute (for 
the same hardware/software specification as before), 
depending on the size of the problem graph. 

V. CONCLUSIONS 

It can be seen from the results that each of the algorithms 
has its preferred variety of problem instance.  SA seems to 
prefer large, sparse problem instances, whereas TS prefers 
small, dense ones and a number of factors may be involved in 

attempting to explain this behaviour.  Firstly, on considering 
the relative performance of ADD when compared to GK2, we 
see that ADD (the algorithm on which MCDS/TS is based) 
improves its performance when compared to GK2 as edge 
density increases, but that GK2 comes into its own as the 
graphs get larger or less dense.  The reason may be 
conjectured as follows: ADD requires the dominating set to be 
connected at every step, while GK2 builds a dominating set 
and connects it up later.  As a result, ADD possesses the 
ability to ignore high-degree nodes early on in the search 
whilst GK2 does not.  The extent to which this adversely 
affects ADD’s performance ought to increase as the graph 
becomes larger or more sparse.  As MCDS/TS is based on 
ADD, it is little surprise that it exhibits similar behaviour 
when compared to MCDS/SA. 

A second factor may help to explain the relative 
performance of these two algorithms.  Whilst the δ -pruning 
of MCDS/TS trees goes some way to reducing runtime, it is 
still difficult to increase Dmax enough to produce a really 
thorough search without the runtimes becoming too high.  
Naturally, in large sparse networks, the CDSs are likely to be 
larger, so many alterations will occur early in the search.  As a 
result the search is all diversification and very little 
intensification.  This is likely to give inferior res ults as good 
regions of the search space may be left unexploited.  It may be 
that a different approach to pruning could provide 
improvements for the MCDS/TS algorithm. 
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Figure 9.  Corresponding Reduction in CDS size for MCDS/TS Time Charts 

These observations lead to a number of insights into the 
development of heuristics for MCDS.  Firstly, the possible use 
of hyper-heuristics may be considered, whereby the size and 
density of the problem is measured and an algorithm selected 
accordingly.  As discussed, this does not only apply to the two 
metaheuristics, but also to simple algorithms like ADD and 
GK2 which are both us eful methods if time is an issue.  
Secondly, the development of hybrid techniques might be 
considered.  Possibilities include using zero temperature 
annealing on elite candidates from MCDS/TS or employing 
MCDS/TS with a shallower tree to generate a starting point for 
the annealing process. 
 In addition to the above proposals for future work, there is 
still the need to address further constraints.  Minimum k-



connected dominating sets (where k>1) and capacitative 
minimum connected dominating sets might be considered, for 
example.  The handling of redundancy and load constraints 
will introduce yet another level of complexity into an already 
tough search problem.  It is not yet known whether the kind of 
methods outlined here could be adapted, or if further 
techniques would need to be developed in order to achieve 
this. 
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