
Glyndŵr University
Glyndŵr University Research Online

Computing Computer Science

5-1-2007

Metaheuristics for Wireless Network Optimisation
Mike Morgan

Vic Grout
Glyndwr University, v.grout@glyndwr.ac.uk

Follow this and additional works at: http://epubs.glyndwr.ac.uk/cair
Part of the Computer and Systems Architecture Commons, Digital Communications and

Networking Commons, Hardware Systems Commons, and the Systems and Communications
Commons

This Conference Paper is brought to you for free and open access by the Computer Science at Glyndŵr University Research Online. It has been
accepted for inclusion in Computing by an authorized administrator of Glyndŵr University Research Online. For more information, please contact
d.jepson@glyndwr.ac.uk.

Recommended Citation
Morgan, M. & Grout, V. (2007), ‘Metaheuristics for Wireless Network Optimisation’. [Paper presented to the 3rd IARIA/IEEE
Advanced International Conference on Telecommunications (AICT 2007) 13th -19th May 2007]. Mauritius: IEEE

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/287588949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epubs.glyndwr.ac.uk?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/comp?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:d.jepson@glyndwr.ac.uk

Metaheuristics for Wireless Network Optimisation

Abstract
This paper introduces two new algorithms for the minimum connected dominating set (MCDS) problem
with constraints applicable to wireless network design, based on simulated annealing and tabu search
principles. Each algorithm is tested on a selection of random graphs and shown to produce significantly
smaller connected dominating sets when compared to a number of established methods. The simulated
annealing algorithm is found to favour large, sparse graphs while the tabu search heuristic prefers smaller
dense instances. In conclusion, we consider the adaptation of these algorithms to hybrid techniques and
comment on the possible use of hyper-heuristics.

Keywords
wireless network design, minimum connected dominating set, simulated annealing, tabu search,
metaheuristics

Disciplines
Computer and Systems Architecture | Digital Communications and Networking | Hardware Systems |
Systems and Communications

Comments
Copyright © 2007 IEEE – All Rights reserved. This paper was presented to the 3rd IARIA/IEEE Advanced
International Conference on Telecommunications (AICT 2007) 13th -19th May 2007 in Mauritius. The
proceedings were published by the IEEE and are available at http://ieeexplore.ieee.org This material is posted
here with permission of the IEEE and the author. Such permission of the IEEE does not in any way imply
IEEE endorsement of any of the products or services of Glyndwr University Wrexham. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This conference paper is available at Glyndŵr University Research Online: http://epubs.glyndwr.ac.uk/cair/63

http://dx.doi.org/10.1109/AICT.2007.28
http://epubs.glyndwr.ac.uk/cair/63?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages

Metaheuristics for Wireless Network Optimisation

Mike Morgan, Vic Grout
Centre for Applied Internet Research (CAIR)

University of Wales, NEWI
Wrexham, UK

{mi.morgan|v.grout}@newi.ac.uk

Abstract— This paper introduces two new algorithms for the
minimum connected dominating set (MCDS) problem with
constraints applicable to wireless network design, based on
simulated annealing and tabu search principles. Each algorithm
is tested on a selection of random graphs and shown to produce
significantly smaller connected dominating sets when compared
to a number of established methods. The simulated annealing
algorithm is found to favour large, sparse graphs while the tabu
search heuristic prefers smaller dense instances. In conclusion,
we consider the adaptation of these algorithms to hybrid
techniques and comment on the possible use of hyper-heuristics.

 Keyword s; wireless network design; minimum connected
dominating set; simulated annealing; tabu search; metaheuristics.

I. INTRODUCTION AND RELATED WORK

A Minimum Connected Dominating Set (MCDS) of a graph
G=(V,E) is a subset S⊆ V such that each node in V-S is
adjacent to one or more nodes in V, the subgraph G’ induced
by S is a connected component of G and |S| is a minimum.
The problem is known to be NP-Complete [6]. The practical
application of the MCDS problem in wireless network design
arises from the need to minimise the number of relays
(switches, etc.) in a given network. It forms an integral part of
the design problem for static networks along with self-
organisation problems in mobile ad-hoc networks or
MANETs. The former may be tackled using centralised
methods, while the latter relies on distributed approaches.
This paper proposes two new centralised algorithms for the
static problem variant.

A fairly complex family of constraints has been outlined for
the design problem in [9]. In this paper, a reduced version of
this constraint set is considered in order to make a beginning.
The simplified model involves defining a set of feasible edges
based on maximum transmission distances and line-of-sight
considerations, whilst constraining certain nodes so that they
may not join the dominating set. This deals with the case in
which certain premises may not be able to house relay
equipment, whilst also addressing the transmission limitations
of various wireless technologies. More complex redundancy
and capacitative constraints are set aside for future work.

The two algorithms are each implementations of well
known metaheuristics: simulated annealing [1] and tabu search
[7]. The SA algorithm implements a modified evaluation
function which introduces a slight gradient into the extensive

plateaux commonly found in the problem’s search space. This
function can be used with a number of local search methods
besides SA and extended to tackle the generalised connected
dominating set problem [11] with a simple alteration, if
required. The tabu search algorithm is more esoteric and can
be considered a semi -greedy metaheuristic in its own right. It
is a deterministic approach inspired by techniques in [8]
whereby multi-starts, as used in semi-greedy methods, are
defined as an extreme case of one-sided strategic oscillation.
This principle is employed to create an effective construction
search based on a simple greedy algorithm. The algorithms
are seen to outperform simpler heuristics and shown to have
individual strengths and weaknesses, pointing to the possible
use of hyper-heuristics or hybrid techniques for the MCDS
problem.

To date, much of the work on connected dominating sets
has focused on distributed methods for virtual backbones in ad
hoc networks [5,13]. Whilst some work has been carried out
on centralised approximation algorithms, these are generally
simple, greedy heuristics. Algorithms such as those found in
[9] and [10] use the greedy criterion whereby the node or
combination of nodes which connect up the largest remaining
portion of the network are added to S at each iteration,
requiring the subgraph induced by S to be connected at each
stage or not, as the case may be. Other methods, such as [2]
involve forming a maximal independent set and then adding
nodes to form a CDS. This approach yields a constant
approximation ratio, but results are relatively poor in practice
[5]. A final technique is to commence with all nodes in an
initial dominating set and drop nodes or edges at each stage of
the algorithm. Examples include [3] and [9]. Again, these
perform poorly in practice and their main use is in handling
complex constraints or in ensuring connectivity at all times
during distributed processes. Whilst simulated annealing and
tabu search have been used successfully in network design
problems such as the capacitative minimum spanning tree [4],
we are aware of no reference to published work on their use
with this problem. These methods conduct far lengthier
searches than the simple, greedy approaches outlined above
and produce better results as a consequence.

II. THE MCDS/SA ALGORITHM
The simulated annealing algorithm for MCDS (MCDS/SA)

is outlined in the sections that follow. Initially we outline the
modified evaluation function f’(S), before defining the search

neighbourhood with regard to relevant efficiency
considerations.

A. The Modified Evaluation Function
The unmodified objective function f(S) for the MCDS

problem is as follows:

| | : is a CDS of G
()

 : otherwise

S S
f S

=
∞

. (1)

It is difficult to produce an effective perturbation search
using this as an evaluation function; greedy algorithms will
typically produce solutions which are locally optimal with
respect to any easily defined neighbourhood. The only way to
improve a solution would be to reduce the number of relays
whilst maintaining feasibility or to make a solution feasible
when it was not. It is difficult to concieve a simple
perturbation which is likely to achieve this on a regular basis.
The search may be led along extensive plateaux, neither
improving the solution nor terminating at a strict local
minimum or it may terminate immediately with no
improvement, depending on the acceptance criterion used.

The use of SA will combat this to some extent by
probabilistically allowing non-improving solutions. However,
with a modification to the evaluation function, the situation can
be improved further. Define the coverage C of a solution to be
the sum of the degrees of all its relay nodes. The greater the
coverage of the solution, the more likely it is that a relay can be
dropped without affecting feasibility. This is because an
increase in total relay degree will result in non-relay nodes
being adjacent to a greater number of relays on average.
Therefore, if the evaluation function is altered to maximise C
for sets of equal size, it becomes possible to introduce a
gradient into the plateaux and to guide the search process in an
effective manner. Additionally, by applying penalties to
infeasible solutions rather than ruling them out entirely, the
search trajectory can cross infeasible regions of the solution
space, temporarily accepting solutions with more than one
connected component or with one or more disconnected nodes
in the interests of diversification at higher temperatures. The
modified evaluation function, f’(S), is:

2 (| | 2) : 0
()

 : otherwise

m n S z C
f S

γ γ+ + − >′ =
∞

, (2)

where γ is the number of connected components of the
subgraph induced by S, z is the number of nodes in V-S with
no adjacent relay, C is the coverage of the solution and n and
m are equal to |V| and |E|, respectively. A minimum value for
f’(S) will always give a minimum for f(S).

B. Search Neighbourhood Definition and Efficiency
The search neighbourhood is a simple variant on 2-node

swaps: one node is added to S and another is removed followed
by a re-evaluation of f’(S). However, in order to change the
size of the CDS, two alterations have been made to this simple
neighbourhood definition. Firstly, we probabilistically
introduce moves which do not add or do not drop with a given
probability Pmove and secondly, whenever we find a drop move

which produces a feasible solution, we do not add anything
back to S.

procedure MCDS/SA
 initialise temperature T and solution S
 create ID vector id for S // BFS
 evaluate f’(S)
 Sbest ← S
 while (there is a change in f’(S))
 for all relays u
 S’ ← S - u
 create ID vector id’ for S’ // BFS
 evaluate f’(S’)
 if (S’ is feasible) then
 S ← S’
 if (f(Sbest)<f(S)) then
 Sbest ← S
 end-if
 continue // proceed to next relay
 end-if
 generate candidate list
 for all nodes v in candidate list
 randomly choose type of move (add/drop/swap)
 if (move type = add) then
 S’’ ← S + v
 ∆ f’(S) ←f’(S’’)-f’(S)
 else if (move type = drop) then
 S’’ ← S’
 ∆ f’(S) ←f’(S’’)-f’(S)
 else if (move type = swap) then
 S’’ ← S’ + v
 ∆ f’(S) ←f’(S’’)-f’(S’)
 end-if
 if (∆ f’(S) < 0 or random[0,1) < '()f S Te−∆) then
 relabel id
 S ← S’’
 if (f(S best)<f(S)) then
 Sbest ← S
 end-if
 break // proceed to next relay
 end-if
 end-for
 end-for
 T Tα←
 end-while
 return Sbest
end-procedure

Figure 1. Pseudocode for MCDS/SA

By contrast to the random sampling used in many SA
algorithms, MCDS/SA samples the search neighbourhood in a
strict order, subject to the probabilistic elements already
described. This order is designed to reduce the need for
breadth-first search (BFS) to evaluateγ , exploiting that fact
that BFS is only required when a node is dropped, as long as a
list of component identifiers (IDs) is kept for each node of the
graph. For each relay node u, we calculate f’(S) and f’(S-u) and
create ID lists for both S and S-u using BFS. If S-u is feasible,
we drop u from S and proceed to the next relay. Otherwise we
produce a candidate list of non-relay nodes v to add back. For
each node v, we select a move (swap, add only or drop only).
If the drop only move is selected, no further recalculation is
necessary. Otherwise, v’s neighbour list is scanned for relays
with IDs different from v’s, using the IDs for S-u if swapping
or the IDs for S if adding only. If v has no neighbouring relays,
a new component has been created and γ will be increased by
one. Otherwise the resulting value forγ is reduced by the
number of unique relay IDs not equal to v’s. Recalculation of z
and C is carried out incrementally. A relay’s degree is added to

or subtracted from C when it is added or dropped from S and z
is updated by tracking the number of relays in the adjacency
list for each node. Moves are accepted or rejected according to
the metropolis criterion [12], which states that a move is
accepted if, and only if, '() 0f S∆ < or

'() /[0,1) f S Trandom e−∆< where T is the current temperature and:

'() '() : Drop only
'() '() '() : Add only

'() '() : Swap

f S u f S
f S f S v f S

f S u v f S

− −∆ = + −
− + −

 (3)

Once a move is accepted, all IDs are invalidated and it is
necessary to proceed to the next relay. After this process has
been carried out for all relays, a pass has been completed and T
is reduced by a multiplying factor α , normally in the range
[0.85-1). This reduces the possibility of accepting a non-
improving solution as the algorithm progresses. The algorithm
terminates at the point where no change in f’(S) is seen between
the beginning and end of a pass. A minimum number of passes
may be specified to avoid accidental, premature convergence
and is specified by the algorithm parameter Imin . Pseudocode
for the MCDS/SA algorithm is given in Fig. 1.

The candidate lists are kept to a constant length in order to
keep runtimes down. Initially, nodes are selected from
promising two-hop neighbours, with any remaining space
populated by randomly chosen, non-relay nodes. On dropping
a relay u, one or more nodes in u’s adjacency list may become
disconnected. It follows that any node capable of reconnecting
a newly disconnected node by becoming a relay must reside in
the adjacency list of one of the disconnected nodes in question.
Therefore, for each node v in the adjacency list of a
disconnected neighbour of u, we evaluateδ z(v) – the number
of newly disconnected nodes in v’s adjacency list. The nodes v
are sorted in descending order ofδ z(v) and placed in the
candidate list. Any remaining space in the list is populated
randomly in the interests of search diversification. The
complexity of this process is 2()O ∆ , where ∆ is the maximum
degree of any node of the graph. On account of this, it could be
argued that the simpler strategy of including all non-relay
nodes in the candidate list may be more appropriate for very
dense problem instances where ∆ approaches n. In practice,
however, a huge improvement in runtime was observed using
the two-hop candidate list strategy outlined above (see results
in section IV) .

III. THE MCDS/TS ALGORITHM
The tabu search algorithm for MCDS (MCDS/TS) adapts a

simple greedy heuristic which we shall call ADD. ADD can be
found under different names in a number of papers, including
[9] and [10] and is described as follows: Initially all nodes of
the graph are marked disconnected. The node with highest
degree is added to S and its neighbours are marked dominated.
At each subsequent step, the dominated node with the most
disconnected neighbours (or highest yield) is added to S, and its
neighbours are marked dominated. The algorithm terminates
when the highest yield reaches zero.

A simple multi-start algorithm might run several passes of
ADD, marking all nodes in S tabu after each pass, and

repeating ADD with the constraint that only non-tabu nodes
may be chosen for the first k steps, where 0 < k < |S|. While
this produces improved results for small k , the process may be
enhanced to conduct a more thorough search. The concept is
this: A variable depth search (VDS) procedure may remove a
set of components c from a solution and replace them with
components not in c. The solution may be re -evaluated and
accepted or rejected according to some suitable criterion.
However, a similar search may be carried out by re-running a
greedy algorithm such as ADD and altering one or more
component choices at some stage in its pass. This will produce
a knock-on effect, the extent of which will vary |c| in a less-
controllable manner than for VDS but some control may be
achieved from the heuristic principle that |c| is likely to be the
larger when alterations occur early in the pass. We note also
that solutions may be identified by the alterations made in the
behaviour of a greedy algorithm in creating them.

procedure MCDS/TS
 GlobalTabuVector ŝ s← ← ← ∅
 Trees ← 0
 TreePtr ← BuildTree(GlobalTabuVector)
 while(not TreePtr = NULL) do
 Alts(s) ← GetAlts(TreeNode)
 s ← ADD(AltList) // updates RCLs
 if (NodeDepth<Dmax and ()f s < ˆ()f s δ+) then

 CreateChildren()
 end-if
 if (()f s < ˆ()f s) then

 ŝ s←
 GlobalTabuVector ← GlobalTabuVector U s
 else if (NodeDepth = 1) then
 GlobalTabuVector ← GlobalTabuVector U s
 end-if
 TreePtr ← NextNode(TreePtr) // DFS
 if(TreePtr = NULL and Trees < Tmax) then
 TreePtr ← BuildTree(GlobalTabuVector)
 Trees ← Trees + 1
 end-if
 end-while
 return ŝ
end-procedure

Figure 2. Pseudocode for MCDS/TS

So a candidate MCDS solution S may be subjected to
perturbations by adding or removing alterations from its
corresponding alteration list alts(S), whereby each alteration in
alts(S) is a pair (i,j) instructing ADD to include node j at step i.
However, a constraint must be applied when modifying ADD
in this manner. With the exception of the first node, only
dominated nodes may be chosen at each step. Otherwise, the
dominating set produced may not be connected. As a result, a
number of rules are introduced for the maintainance of
alteration lists:

On creating perturbations to a CDS, S, by applying changes
to alts(S):

(i). When a pair (i,j) is added to alts(S) and i>1, j must
 have been dominated at step i in the ADD pass
 which created S.
(ii). Any pair (i,j) added to alts(S) must have i greater
 than its corresponding value for the last pair in
 alts(S).
(iii). Only the last pair in alts(S) may be removed.

Rules ii) and iii) imply that elements of alts(S) are kept in
ascending order of i. Rule i) assures that only dominated nodes
are added to alts(S), whilst rules ii) and iii) ensure that
alterations already held in the list are not invalidated by
changes. The result is a means by which perturbations can be
made to a CDS ensuring that the resulting solution is also a
valid CDS.

Fig. 3a: MTD=0.2, LOS=0.8, IN=0

100 150 200 250 300 350 400 450 500

19

20

21

22

23

24

25

26

Add

GK1

GK2
TS

SA

Nodes

M
ea

n
do

m
in

at
in

g
se

t s
iz

e
(2

0
ru

ns
)

TS: MaxDepth=4,MaxStarts=12,w=8 δ =3
SA: Initial temperature=100,α =0.97

Fig. 3b: MTD=0.1, LOS=0.5, IN=0

500 600 700 800 900 1000 1100 1200 1300 1400 1500

100

102.5

105

107.5

110

112.5

115

117.5

120

122.5

125

127.5

130

132.5

Add

GK1

GK2
TS

SA

Nodes

M
ea

n
D

om
in

at
in

g
S

et
 S

iz
e

(1
0

ru
ns

)

TS: MaxDepth=4,MaxStarts=12,w=8 δ =4
SA: Init. temp=100,α =0.95

Figure 3. Plots of dominating set size against n for constant MTD, IN and LOS

Rule i) is enforced by maintaining a Restricted Candidate
List (RCL) for each step of an ADD pass, recording the yields
of the best RCL_length candidates at that step. Alterations are
chosen from these lists, which guarantees that they will be
viable. Rules ii) and iii) are enforced by organising pairs into a
tree structure. Every pair must have i greater than its parent’s
and has a corresponding pass whose alteration list is found by
reading back up the tree.

Trees are constructed dynamically. Initially, the root node
is built with i=1 and j indexing the highest degree node not
marked by the global tabu vector. The global tabu vector
marks all nodes chosen by root passes and passes producing
new global best-known solutions and, as the global tabu vector
is initialised as empty, the first tree will select the root node
ADD would have selected at step 1. Passes yielding good
quality solutions will select pairs from the corresponding RCLs
to add w children up to a maximum depth Dmax. This selection
process involves scanning RCLs for steps i+1 to |S| - looking
for the highest w yields obtained by nodes not used in an
ancestor pass. The tree is traversed in depth-first order and
when traversal is complete another tree is built up to a limit of
Tmax trees.

A number of rules could potentially be applied to decide
which passes will be permitted to bear children. The natural
criterion to use is that only passes creating solutions S with |S| <
|Sbest|+δ may bear children. Here Sbest is the best known
solution so far andδ is a parameter of the algorithm, usually an
integer in the range 0< δ <6. The extent to which the algorithm
dynamically prunes the tree is controlled by δ : a lower value
for δ results in more aggressive pruning. Studies on the effect
of altering δ are provided for a variety of randomly-generated
problem instances in section IV. Pseudocode for MCDS/TS is
given in Fig. 2.

By comparison to conventional TS approaches. the root
created in building a new tree may be considered equivalent to

a multi-start, while passes further down the tree create a
progressively more localis ed search akin to strategic
oscillation. However, knock-on effects ought to produce
considerable variation in the size and extent of the
perturbations applied. If necessary, elite candidates may be
referred to by their alteration list and reconstructed using ADD
if a further search is desired around them.

IV. RESULTS

A. Comparison of CDS Sizes
Nodes were placed randomly within a unit square. A

maximum transmission distance MTD and line of sight
probability LOS were used to define edge viabilities, whereby
edges connected nodes less than MTD apart with probability
LOS. A value IN was defined as the probability of any node
being infeasible.

In the absence of problem instances for which the optimum
solution is known (other than small instances that can be
optimised completely through exhaustive search), it was
necessary to find some suitable benchmark against which to
compare performance. As a result, three greedy heuristics
were used for comparison. These were the ADD algorithm [9]
and Guha and Khuller’s two algorithms [10], hereafter
referred to as GK1 and GK2. It is expected that these three
algorithms would be outperformed by the metaheuristics.

Fig. 4a: n=200, MTD=0.2, IN=0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
15

17.5
20

22.5
25

27.5
30

32.5
35

37.5
40

42.5
45

47.5
50

Add
GK1

GK2
TS

SA

LOS

M
ea

n
D

om
in

at
in

g
S

et
 S

iz
e

(2
0

ru
ns

)

TS: MaxDepth=4,MaxStarts=12,w=8, δ =3
SA: Initial temperature=100,α =0.97

Fig. 4b: n=1000, MTD=0.1, IN=0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

Add

GK1
GK2

TS

SA

LOS

M
ea

n
D

om
in

at
in

g
S

et
 S

iz
e

(1
0

ru
ns

)

TS: MaxDepth=4,MaxStarts=12,w=8,δ =4
SA: Initial temperature=100,α =0.95

Figure 4. of dominating set size against LOS for constant MTD, IN and n

Initially, the effect of varying node count (n) upon
dominating set size (|S|) was observed for constant values of
the other problem parameters MTD, LOS and IN. Following
this, the effect of increasing edge density upon |S| was studied
by varying LOS and keeping the remaining parameters
constant. Finally, the algorithms’ abilities to handle node
constraints was investigated by increasing IN and observing
the resulting values for |S|. For MCDS/SA, the candidate list
lengths were set to 20, Pmove was set to 0.1 and Imin to 40. For
MCDS/TS, the RCL_Length parameter was set to 4.

Fig. 3 shows the effect of increasing n on |S| for small,
dense problem instances (3a) and large, sparse ones (3b).
Whilst there is little difference between SA and TS for smaller
graphs (3a), SA outperforms TS on larger ones (3b).
Furthermore, comparing 3a and 3b for n=500, shows TS

giving better solutions for MTD = 0.2 and LOS = 0.8, while
SA is far more successful with MTD = 0.1 and LOS = 0.5.
This shows that edge density also has a bearing on the two
algorithms’ relative performance.
Fig. 5a: n=200, MTD=0.2, LOS=0.5

0 0.1 0.2 0.3 0.4

19

19.5

20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

25

Add

GK1
GK2
TS
SA

IN

M
ea

n
D

om
in

at
in

g
S

et
 S

iz
e

(2
0

ru
ns

)

TS: MaxDepth=4,MaxStarts=12,w=8,δ =3
SA: Initial temperature=100,α =0.97

Fig. 5b: n=1000, MTD=0.1, LOS=0.5

0 0.1 0.2 0.3 0.4

110

112.5

115

117.5

120

122.5

125

127.5

130

132.5

135

137.5

140

Add

GK1

GK2
TS
SA

IN

M
ea

n
D

om
in

at
in

g
S

et
 S

iz
e

(1
0

ru
ns

)

TS: MaxDepth=4,MaxStarts=12,w=8,δ =4
SA: Initial temperature=100,α =0.95

Figure 5. Plots of Dominating set size against IN for constant n, MTD & LOS

Fig. 6a: n=200, MTD=0.2, LOS=0.8

1 3.16 10 31.62 100 316.23 1000 3162.28 10000 31622.8 100000

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

Alpha = 0.95

0.97
0.99

Initial Temperature

M
ea

n
R

un
tim

e
(s

)

Fig. 6b: n=500, MTD=0.2, LOS=0.5

1 3.16 10 31.62 100 316.23 1000 3162.28 10000 31622.8 100000

0

5

10

15

20

25

30

35

40

45

50

55

60

Alpha = 0.93
0.95
0.97

Initial Temperature

M
ea

n
R

un
tim

e
(s

)

Figure 6. Time Charts for MCDS/SA

Fig. 4 confirms this, showing the result of varying LOS for
constant n and MTD. In 4a, TS begins to outperform SA as
the density increases and, although SA is superior in 4b, a
relative improvement can be observed for TS. The effect of
increasing edge density explains the inconcistency in results
for Fig. 3. Comparing 3a and 3b, it is clear that SA is more
successful for larger n, but this is not noticeable on
considering either chart in isolation. This is explained by the
fact that edge density increases with increasing n (for constant
MTD and LOS).

Fig. 7a: n=200, MTD=0.2, LOS=0.8

1 3.16 10 31.62 100 316.23 1000 3162.28 10000 31622.8100000

19

19.25

19.5

19.75

20

20.25

20.5

20.75

21

21.25

21.5

Alpha=0.95
0.97
0.99

Initial Temperature

M
ea

n
C

D
S

 s
iz

e
(1

0
ru

ns
)

Fig. 7b: n=500, MTD=0.2, LOS=0.5

1 3.16 10 31.62 100 316.23 1000 3162.28 10000 31622.8100000
32.5

32.75
33

33.25
33.5

33.75
34

34.25
34.5

34.75
35

35.25
35.5

35.75
36

36.25
36.5

Alpha=0.93
0.95
0.97

Initial Temperature

M
ea

n
C

D
S

 s
iz

e
(1

0
ru

ns
)

Figure 7. Corresponding CDS Sizes for MCDS/SA Time Charts

Whilst Figures 3 and 4 deal exclusively with edge
constraints (IN=0), the effect of incre asing IN is observed in
Fig. 5. In this case the results are a little less consistent. SA
may appear to improve slightly over TS as IN increases, but
the results are by no means conclusive.

B. Runtimes and Parameter Settings
The complexity of MCDS/SA using constant length

candidate lists is 2(())O n m∆ + or 3()O n per pass, although in

practice performance is normally better than this . Runtimes
are given in Fig. 6 with various values for the initial
temperature and α . Here it can be seen that runtimes do not
begin to increase until the initial temperature approaches 1000.
Fig. 7 shows the corresponding CDS sizes for the times in Fig.
6. Here we can see, fortunately that lower values for initial
temperature tend to give better results as well. A good
compromise between runtime and solution quality would be to
set the initial temperature between 3 and 100, perhaps slightly
greater for instances with larger n. Where α is concerned it
appears that high values work better without compromising
runtimes too badly. In tests, runtimes were generally around
2-3 seconds for n=200, 10-15 seconds for n=500 and 50-70
seconds for n=1000, using an Athlon 1700XP processor and
512MB RAM, with algorithms implemented in non-optimised
C++.

MCDS/SA was tested with three different graph types, A
(n=200, MTD=0.2, LOS=0.8, IN=0), B (n=500, MTD=0.2,
LOS=0.5, IN=0) & C (n=1000, MTD=0.1, LOS=0.5, IN=0).
Runtime increases and CDS size decreases with increasing Imin
so the setting of this parameter is largely a trade-off between

runtime and solution quality. There is also a suggestion that a
larger Imin may be more effective with smaller instances. A
positive Pmove is certainly advantageous, with a range of values
between 0.1 and 0.4 being potentially useful. The effect on
runtimes is less predictable, but it appears that none of the
tested settings for Pmove are overly-detrimental. Runtimes
increase consistently with increasing candidate list length and
little improvement in solution quality is found after the list
length exceeds 20. This indicates that the optimum trade-off
length for candidate lists may be found somewhere in the
region of 20 for a variety of graph dimensions.

1 2 3 4 5 ... Inf

0

100
200

300
400

500
600

700

800
900

1000

1100
1200

1300
1400

1500

Tree A
Tree B
Tree C
Tree D

Delta

M
ea

n
T

de
lta

/T
ad

d
(1

0
ru

ns
)

Figure 8. Time Charts for MCDS/TS

Runtimes for MCDS/TS are controlled primarily by δ . It
should be fairly obvious that MCDS/TS complexity is
exponential with respect to Dmax and that the purpose of δ is
minimise the potentially catastrophic impact this could have
on runtimes. Further precautions include setting Dmax to a
small constant and increasing w and Tmax to improve the
search. The complexity of an ADD pass is 2()O n in this
implementation, although other papers [10] claim bounds as
low as O(m). Fig. 8 shows the mean ratio Tdelta/Tadd for
increasing δ , where Tdelta is the time taken for MCDS/TS to
compute for the given value of δ and Tadd is the time taken
for one ADD pass. Fig. 9 shows the corresponding percentage
reduction in CDS size for MCDS/TS when compared to ADD.
It can be seen from Fig. 9 that relatively little improvement in
CDS size can be gained by increasing δ above 4 or 5.
However, Fig. 8 shows that runtimes are particularly small
when compared to the unrestricted case where δ = ∞ . As a
result, values for δ around 3-5 with Dmax no greater than 5
would seem to give a good compromise between runtime and
solution quality. Runtimes were of a similar order to
MCDS/SA, ranging roughly from 1 second to one minute (for
the same hardware/software specification as before),
depending on the size of the problem graph.

V. CONCLUSIONS

It can be seen from the results that each of the algorithms
has its preferred variety of problem instance. SA seems to
prefer large, sparse problem instances, whereas TS prefers
small, dense ones and a number of factors may be involved in

attempting to explain this behaviour. Firstly, on considering
the relative performance of ADD when compared to GK2, we
see that ADD (the algorithm on which MCDS/TS is based)
improves its performance when compared to GK2 as edge
density increases, but that GK2 comes into its own as the
graphs get larger or less dense. The reason may be
conjectured as follows: ADD requires the dominating set to be
connected at every step, while GK2 builds a dominating set
and connects it up later. As a result, ADD possesses the
ability to ignore high-degree nodes early on in the search
whilst GK2 does not. The extent to which this adversely
affects ADD’s performance ought to increase as the graph
becomes larger or more sparse. As MCDS/TS is based on
ADD, it is little surprise that it exhibits similar behaviour
when compared to MCDS/SA.

A second factor may help to explain the relative
performance of these two algorithms. Whilst the δ -pruning
of MCDS/TS trees goes some way to reducing runtime, it is
still difficult to increase Dmax enough to produce a really
thorough search without the runtimes becoming too high.
Naturally, in large sparse networks, the CDSs are likely to be
larger, so many alterations will occur early in the search. As a
result the search is all diversification and very little
intensification. This is likely to give inferior res ults as good
regions of the search space may be left unexploited. It may be
that a different approach to pruning could provide
improvements for the MCDS/TS algorithm.

1 2 3 4 5 ... Inf

0

0.5

1

1.5
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Tree A
Tree B
Tree C
Tree D

Delta

M
ea

n
R

ed
uc

tio
n

in
 C

D
S

 s
iz

e
(%

)

Figure 9. Corresponding Reduction in CDS size for MCDS/TS Time Charts

These observations lead to a number of insights into the
development of heuristics for MCDS. Firstly, the possible use
of hyper-heuristics may be considered, whereby the size and
density of the problem is measured and an algorithm selected
accordingly. As discussed, this does not only apply to the two
metaheuristics, but also to simple algorithms like ADD and
GK2 which are both us eful methods if time is an issue.
Secondly, the development of hybrid techniques might be
considered. Possibilities include using zero temperature
annealing on elite candidates from MCDS/TS or employing
MCDS/TS with a shallower tree to generate a starting point for
the annealing process.
 In addition to the above proposals for future work, there is
still the need to address further constraints. Minimum k-

connected dominating sets (where k>1) and capacitative
minimum connected dominating sets might be considered, for
example. The handling of redundancy and load constraints
will introduce yet another level of complexity into an already
tough search problem. It is not yet known whether the kind of
methods outlined here could be adapted, or if further
techniques would need to be developed in order to achieve
this.

REFERENCES
[1] E. Aarts and J. Korst, “ Simulated Annealing and Boltzmann Machines”,

Wiley, 1989.
[2] K. Alzoubi, P.J. Wan and O. Frieder, “Distributed Construction of

Connected Dominating Set” in Wireless Ad Hoc Networks, Proceedings
of IEEE INFOCOM, Vol. 3, pp1597-1604, June 2002.

[3] S. Butenko, X. Cheng, C. Oliveira and P. Pardalos, “A new algorithm
for connected dominating sets on ad hoc network”s, in: Butenko, S.
Murphey, R. and Pardalos, P., Recent Developments in Cooperative
Control and Optimization, pp61-73. Kluwer, 2003.

[4] R. Cahn, “Wide Area Network Design ”, Morgan Kauffman, 1998.
[5] F. Dai and J. Wu, “An Extended Localized Algorithm for Connected

Dominating Set Formation in Ad Hoc Wireless Networks”, IEEE

Transaction on Parallel and Distributed Systems, Vol. 15 No. 10, pp908 -
920, October 2004.

[6] M. Garey and D.S. Johnson, “Computers and Intractability, a Guide to
the Theory of NP -Completeness”, Freeman, 1979 .

[7] F. Glover and M. Laguna, “Tabu Search”, Kluwer Academic
Publishers, 1997.

[8] F. Glover, “Multi-Start and Strategic Oscillation Methods - Principles to
exploit adaptive memory”, in: Laguna, M. and Gonzales-Valarde, J.
Computing Tools for Modeling, Optimization and Simulation: Interfaces
in Computer Science and Operations Research. pp1-24. Kluwer, 2000.

[9] V. Grout, “Principles of Cost Minimisation in Wireless Networks”,
Journal of Heuristics, Vol. 11: pp115-133, 2005.

[10] S. Guha and S. Khuller, “Approximation Algorithms for Connected
Dominating Sets”, Algorithmica, 20, pp374-387, 1998.

[11] M. Kouider and P. Vestergaard, “Generalized Connected Domination in
Graphs”, Discrete Mathematics and Theoretical Computer Science, 8,
pp57 -64., 2006.

[12] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller,
“Equation of State Calculations by Fast Computing Machines”, Journal
of Chemical Physics, 21, pp1087-1092, 1953.

[13] J. Wu, W. Lou and F. Dai, F., “Extended Multipoint Relays to
Determine Connected Dominating Sets in MANETs”, IEEE
Transactions on Computers, Vol. 55, No. 3, pp334-347, March 2006.

	Glyndŵr University
	Glyndŵr University Research Online
	5-1-2007

	Metaheuristics for Wireless Network Optimisation
	Mike Morgan
	Vic Grout
	Recommended Citation

	Metaheuristics for Wireless Network Optimisation
	Abstract
	Keywords
	Disciplines
	Comments

