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Abstract 
 

Autofocus is a key step of inverse synthetic apertu re radar (ISAR) imaging. In 
this paper four new approaches to autofocussing bas ed on the application of 
beamforming and subspace concepts to ISAR imaging a re developed. Their relations 
to maximum likelihood (ML) estimation are identifie d. A common feature of these 
techniques is the estimation of the complex vector formed by the exponential 
function of phase rather than phase itself so that phase unwrapping is obviated. 
The Cramer-Rao lower bound (CRLB) of the estimated complex vector corresponding 
to translational motion and the CRLB of the estimat ed distance between two 
scatterers are derived. The results of processing s imulated and real data 
confirm the validity of proposed approaches.  
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1.0 Introduction 
 
Synthetic aperture radar (SAR) is typically carried  on a moving platform which 
is intended to be used in air-to-ground imaging of terrain [1] . ISAR, the inverse 
mode of SAR [2] [3] , is usually deployed on the ground and is used for  ground-to-
air imaging of non-cooperative moving targets such as missiles, satellites, 
aircraft, ships and celestial objects in the far fi eld. ISAR has been applied 
widely for radar astronomy and military purposes si nce it can be exploited 
whether it is cloudy or foggy and day or night. 
 
ISAR utilises the range-Doppler principle to achiev e the desired resolution. The 
high range resolution is obtained by transmitting w ide-band signals and the high 
cross-range resolution is produced by using the Dop pler frequency gradient 
generated by the rotation of the object relative to  radar-line-of-sight (RLOS). 
Two techniques common to SAR and ISAR signal proces sing are motion compensation 
and image formation. Motion compensation is the rem oval of the translational 
motion between object and radar prior to image form ation. However, motion 
compensation in ISAR may be more challenging than S AR because ISAR objects are 
often not cooperative. 
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Motion compensation of ISAR can be carried out in t wo steps. The first step is 
range realignment in which the high resolution rang e profiles are aligned in the 
range direction by placing the returns of different  pulses from the same 
scatterer in the same range cell. It is a coarse co mpensation of translational 
motion. The second step is phase compensation, whic h removes the residual 
translational motion by multiplying the range align ed signals with the conjugate 
phase of a selected reference point. Phase compensa tion is the fine compensation 
of translational motion. It is usually called autof ocus with the reference point 
being termed the focal point. 
 
Many ISAR autofocus methods have appeared. A simple  approach to ISAR autofocus 
is to choose as the reference point a range cell co ntaining a strong 
scatterer [4] . For a complex target that does not have a stable prominent 
scatterer, an estimate of the pulse-to-pulse phase difference of the reference 
point can be made by taking the phase differences f or each range cell and 
averaging them weighted by the amplitudes of the co ntent of each range cell [5] . 
An alternative is to average the phase differences in the range cells where only 
strong scatterers exist [6][7][16] . However phase unwrapping is crucial for these 
approaches because phase averaging is needed for es timating the phase of the 
translational motion. Another method, based on imag e contrast, has also been 
proposed recently for ISAR autofocus [13][14] . In these approaches, many images 
are produced with different focusing parameters. On e that produces the best 
image contrast is selected as the optimal focusing parameter. However the 
computational load of these approaches is expensive . 
 
Phase unwrapping may be appropriate in a low-noise environment in which the 
amplitude of the signal never approaches zero. Howe ver in the more realistic 
high-noise environment, the phase unwrapping may be come ambiguous [8] . In this 
paper, we develop some approaches for ISAR autofocu ssing which obviate phase 
unwrapping by estimating the complex exponential si gnal vector whose phase 
corresponds to the translational motion rather than  the phase itself. After the 
complex signal vector is estimated, ISAR autofocus can be conducted by 
compensating all the range profiles with the comple x signal vector. The block 
diagram of ISAR processing without phase unwrapping  is shown in Fig.1. 
 
 

Fig.1 ISAR processing diagram without phase unwrapp ing  
 

This paper considers ISAR autofocus as a problem of  array processing and solves 
it from the perspective of array calibration. Four new approaches based on array 
processing theory for estimating the complex vector  of translational motion for 
ISAR autofocussing are developed. The first and sec ond approaches make use of 
conventional and optimum beamforming concepts. The third and fourth approaches 
use signal and noise subspaces of an estimated cova riance matrix respectively. 
They have a computational advantage over the image contrast method as numerous 
images with different focusing parameters to calcul ate image contrast need not 
to be produced.  
 
In section 2, a mathematical model of the observed ISAR signal is given. Section 
3 describes the four proposed approaches in detail.  By using the covariance 
matrix of the received signal rather than the phase  of the received signal the 
problem of phase unwrapping is eliminated. Computer  simulation results are 
presented in section 4. In section 5 the relations of the proposed approaches to 
the ML estimation and other ISAR autofocus methods are investigated. The CRLB of 
the complex vector estimation and the CRLB of the e stimated distance between two 
scatterers are derived. In section 6 the statistica l performances of the 
developed approaches are estimated and compared wit h the CRLBs. Section 7 
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discusses the processing of real ISAR data. 
 
 
2.0 ISAR autofocus model 
 
Suppose that a moving object is flying in a straigh t line ox as shown in Fig.2. 
The motion of a rigid object can be decomposed into  two parts: translational 
motion of a certain reference point o on the object  and rotational motion of the 
object about the point o. Let the Cartesian coordin ates xoy be fixed on the 
object with range along the y-axis and cross-range along the x-axis when the 
object is at a broadside position to the radar. The  radar transmits M stepped-
frequency bursts. The aspect angle of the object re lative to the RLOS and the 
distance from the radar to the point o when the mth  burst is sent are 
represented by θm and R om, respectively, where m=0,…,M-1. 
 
 

Fig.2 ISAR imaging geometry 
 
Assume that there are K scatterers on the object. T he kth scatterer is situated 
a distance r km from the radar when the mth burst is sent. The ran ge between 
radar and the kth scatterer with coordinate (r k, φk) or (x k ,y k) is given by  

2/122 )]sin(2[ kmkomkomkm rRrRr φθ +++= .      (1) 

If the distance to the object is much larger than t he size of the object, that 

is, kom rR >> , we have the approximation; 

mkmkomkm yxRr θθ cossin ++≅ .       (2) 

Let ρk denote the complex reflected signal of the kth sca tterer which is assumed 
to be independent of the illuminating frequency and  the aspect angle. For each 
burst, L stepped frequencies f l =f 0+l ∆f, l=0,…,L-1 , are used where f 0 and ∆f are 
the initial and step frequency, respectively. The r eceived signal S klm  resulting 
from the kth scatterer and the lth illuminating fre quency during the mth burst 
can be written as 

}/4exp{ crfjS kmlkklm πρ −= .        (3) 

The total returned signal s lm  caused by the lth illuminating frequency of the 
mth burst is 

∑ ∑
= =
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0 }/)(4exp{}/4exp{ πρπρ .  (4) 

After the pulse compression in the range direction using an inverse discrete 
Fourier transform (IDFT) [3]  and substitution of (2) and (4), the complex 
envelope in the nth range cell of the mth burst bec omes  
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where  
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)]/2/sin[(
)]/2/(sin[
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   )}/2/)(1(exp{ cfrLnLj km∆−− ππ ,      (6) 

w’ nm m=0,…,M-1 n=0,…,N-1  is the complex envelope of the additive noise and N is 
the total number of range cells. We assume that w’ nm is independent identically 
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distributed complex Gaussian noise components with zero mean and variance 
2
wσ . 

 
(5) indicates that the ISAR received signal consist s of two terms. One is 

}/4exp{ 0 cRfj omπ−  induced by the translational motion of object whic h should be 

compensated prior to image formation. The other is enm, corresponding to the 
rotational motion of object, is used to reconstruct  ISAR image. 
 
Following range compression, range realignment is d one to align the high 
resolution range profiles in the range direction so  that the returns of 
different pulses from the same scatterer lie in the  same range cell. After range 

realignment is accomplished, it holds that kmmk rr ≅+ )1(  m=0,…,M-2. If only the 

translational motion for ISAR autofocus is consider ed and the rotational motion 

for image formation is ignored [6] , a good approximation is mm θθ ≅+1  m=0,…,M-2. 

These approximations, discussed below, allow the si gnal model z nm of ISAR 
autofocus to be written as 

nmnomnm wecRfjz ′+−≅ 00 }/4exp{ π        (7) 

where 

∑
=

∆−
∆−+−≅

K

k
cfrLn
cfrLnL

kkkn k

kcyxfje
1

)]/2/sin[(
)]/2/(sin[

0000 0

0}/)cossin(4exp{ ππ
ππθθπρ  

   )}/2/)(1(exp{ 0 cfrLnLj k∆−− ππ .       (8) 

The complex envelope vector in the nth range cell c an be expressed as the 
desired signal model 

nnn WDeZ += 0          (9) 

where 
T

Mnnon zzZ ],...,[ )1( −= , 
T

Mnnn wwW ],...,[ )1(0 −′′= , λ is the wavelength corresponding 

to f 0, and 
T

Moo RjRjD }]/4exp{},...,/4[exp{ )1(0 λπλπ −−−=  which is the complex vector 

that ISAR autofocus needs to estimate. (9) is the v ector form of signal model 
for ISAR autofocus. 
 
Although the above signal model is derived by use o f a stepped frequency 
waveform, it is straightforward to generalize it to  other signal waveforms such 
as the short pulse and chirp pulse-compression wave forms. The above derivation 
shows that the signal model (9) is valid after both  the range compression and 
the range realignment have been accomplished for IS AR autofocus. Finally it is 
worth noticing that the complex vector D is space invariant and does not 
correspond to a particular strong scatterer. 
 

In order to satisfy the approximation mm θθ ≅+1 , the phase variation induced by 

the rotational motion should be less than π/2 corresponding to a range error of 
λ/8 [1] . Consider two adjacent mth and (m+1)th pulses; the  exact signal returns 
from one scatterer are 

)]/2/sin[(
)]/2/(sin[

111 1

1}/)cossin(4exp{ cfrLn

cfrLnL
mmnm m

myxje ∆−
∆−+−= ππ

ππλθθπρ  

   )}/2/)(1(exp{ 1 cfrLnLj m∆−− ππ .       (10) 

)]/2/sin[(

)]/2/(sin[

11111)1( )1(1

)1(1}/)cossin(4exp{ cfrLn
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mmmn m
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+

+
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+++ +−= ππ
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   )}/2/)(1(exp{ )1(1 cfrLnLj m+∆−− ππ .      (11) 

and the phase variation due to the rotational motio n is 
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λθθθθπφ /)]cos(cos)sin(sin[4 1111 mmmmm yx −+−=∆ ++ .    (12) 

Limiting ∆φm to be less than π/2, we have 

8/|)cos(cos||)sin(sin| 1111 λθθθθ <−+− ++ mmmm yx .    (13) 

By use of 2/)2/sin( mm δθδθ ≅  for small δθm/2 where mmm θθδθ −= +1 , we have 

|}]2/)sin[(||]2/)cos[({|8 1111 mmmm yxm θθθθ
λδθ +++ ++

< .      (14) 

Thus the sample interval l s of the synthetic aperture must satisfy 

|}]2/)sin[(||]2/)cos[({|8 1111 mmmm

o

yx
R

mos Rl θθθθ
λδθ +++ ++

<=       (15) 

where Ro is the distance between the radar and object. Fig. 3 shows the required 
sampling interval versus the aspect angle where the  parameters are chosen as 
λ=3cm, x 1=1m and y 1=1m. It indicates that the required sampling interv al 
decreases as the aspect angle increases. The minimu m sampling intervals are 
26.51m and 79.53m when the Ro equals to 10km and 30km, respectively. This 
condition can be satisfied by increasing the PRF. 
 

Fig.3 Sampling interval versus aspect angle 
 

One requirement for range realignment to satisfy th e approximation kmmk rr ≅+ )1(  is 

that the variation of relative position between sca tterers in range profile 
should be less than one range resolution cell. Cons ider an example of two 
scatterers as shown in Fig.4, they are at first loc ated at A and B. During the 
interval of two adjacent pulses, they rotate to pos itions A 1 and B 1. The initial 
and final projections of two scatterers on range di rection (y axis) are dcos θm 
and dcos θm+1, respectively where d is the distance between two scatterers. The 
variation of relative position between two scattere rs in range profiles needs to 

satisfy rmmd τθθ <−+ |coscos| 1  where τr  is the range resolution. By use of 

mm δθδθ ≅)sin( , this relation becomes 

]2/)sin[( 1 mm

r

dm θθ
τδθ ++

< .         (16) 

This is a weak requirement as compared with (14) if  λ<τr . 
 
 

Fig.4 Position variation of two scatterers 
 
 

3.0 Four autofocus approaches 
 
In standard ISAR autofocussing algorithms, Rom is estimated and the range 
aligned signals are corrected with the phase term e xp{-j4 πRom/ λ}. However, from 
(7) it can be seen that for the above signal model,  we only need to work with 

the }/4exp{ λπ omnmnm Rjzz =′ . Thus it is unnecessary to estimate Rom and all that 

is required is an estimate of exp{j4 πRom/ λ}, obviating the need for phase 
unwrapping. In this section, we will develop the fo ur new approaches for 
estimating the exp{-j4 πRom/ λ} m=0,…,M-1, that is the complex vector D rather 
than Rom. 
 
3.1 Conventional beamforming approach 
 
The first approach is an extension of the conventio nal beamforming. It is 
assumed that the conventional beamformer with unifo rm shading across the array 
sets the weights to be equal to the steering vector  [10] . In conventional 
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beamforming the steering vector is parameterized by  the steering angle; however 
for the present application it is parameterized by the R om, namely, the range 
between the radar and the object when the mth burst  is transmitted. Loosely, 
this may be thought of as beamforming in range. Thu s the beamforming weight 
vector v is defined as 

T
Mvvv ],...,[ )1(0 −=         (17) 

where }/4exp{ λπ omm Rjv −=  m=0,…,M-1. The output of the conventional beamform ing 

is 
2/ MvCvP n

H
c = .        (18) 

where C n is the covariance matrix of the signal vector in t he nth range cell 
which is defined as 

}{ H
nnn ZZEC =         (19) 

where H denotes the Hermitian transpose and E denot es ensemble averaging. Based 
on (9), (19) reduces to  

Mw
H

nn IDDpC 2σ+=         (20) 

where 
2

0 || nn ep =  is the signal power of the nth range cell and I M is the identity 

matrix.  
 
The first approach for estimating D can be defined as the maximization of the 
conventional beamforming output by choice of v, tha t is, 

vMvCv n
H ∀}/max{ 2

       (21) 

subject to the constraint Mvv H = . The above optimization happens when the 

estimated steering vector v is equal to the eigenve ctor u 1 of λ1, that is, 

MDuv /ˆ 1 ==         (22) 

where λ1 is the maximal eigenvalue of C n. Then (22) means that P c attains its 
maximal value when the estimated translational moti on phase matches the actual 
translational motion phase. 
 
3.2 Optimum beamforming approach 
 
The second new approach is based on optimum beamfor ming. With the conventional 
beamforming, the weights are calculated using the i nverse of the covariance 
matrix for the noise alone. In practice, the estima ted covariance matrix 
contains the signals as well as noise, which leads to the beamformer treating 
the signal as noise and suppressing it. To overcome  this problem, the optimum 
beamformer calculates the weights so that the outpu t of the beamformer is 
minimized while the response in the direction of th e desired signal is 
constrained to unity. The output of the optimum bea mformer is [10]  

11 )( −−= vCvP n
H

o .        (23) 

The second approach to estimate D is obtained by the maximization of the optimum 
beamforming output, that is,  

vvCv n
H ∀−− })max{( 11        (24) 

with constraint Mvv H = . This maximization occurs when the estimated steer ing 
vector v is equal to the eigenvector u 1 of C n corresponding to the maximal 
eigenvalue, that is, 

MDuv /ˆ 1 == .        (25) 
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(25) also shows that P o reaches its maximal value when the estimated 
translational motion phase approaches the actual tr anslational motion phase. 
 
When the covariance matrix becomes singular, the in verse of covariance matrix 

1−
nC  may be replaced by the Moore-Penrose pseudoinverse  of covariance matrix 

+
nC . 

 
3.3 Signal subspace approach 
 
The third approach is to exploit the eigendecomposi tion of covariance matrix. 
This technique has been applied to shape estimation  of sonar towed array [11]  and 
correction of SAR phase error [9] . Here it is extended to ISAR autofocus. Based on 
(20), it has been shown that the dimension of signa l subspace of C n is 1 [12] . The 
eigenvalue and eigenvector corresponding to signal subspace are  

2
1 wn Mp σλ +=         (26) 

and 

MDu /1 = .         (27) 

The matrix that projects data onto signal subspace is  

MDDP H
s /=         (28) 

which has eigenvalues of 1 and 0. The signal subspa ce approach maximizes the 
projection of the steering vector onto the signal s ubspace, that is, 

vvPs ∀}||max{|| 2
        (29) 

with constraint MvvH =  where || || is the Euclidean norm of a vector. Wit h the 

relation of ss PP =2 , (29) is equivalent to 

}max{ vPv s
H          (30) 

subject to MvvH = . This optimization happens when the steering vecto r is equal 
to the eigenvector corresponding to the maximal eig envalue of P s, that is, 

MDuv /ˆ 1 == .        (31) 

 
3.4 Noise subspace approach 
 
Based on (20), the dimension of the noise subspace is M-1. All the eigenvalues 

of the noise subspace are equal to 
2
wσ  and their corresponding eigenvectors are 

denoted by u 2,…,u M. The projection matrix onto the noise subspace is 
H

MMn uuuuP ),...,)(,...,( 22= .       (32) 

Noise subspace approach is to minimize the projecti on of steering vector onto 
the noise subspace, namely, 

vvPn ∀}||min{|| 2
        (33) 

with constraint MvvH =  which is equivalent to 

}min{ vPv n
H          (34) 

subject to Mvv H = . With the relation of MDDIP H
n /−= , the above minimum 

occurs if  

MDv /ˆ = .         (35) 
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4.0 Computer simulation 
 
Computer simulations were conducted to verify the v alidity of the developed 
approaches for ISAR autofocus. In the simulation, t he scattering model of an 
aircraft is shown in Fig.5. The return from the air craft was assumed to be 
dominated by scattering from its nose, engine intak es and exhausts, wing pods 
and horizontal stabiliser extremities with meter co ordinates (11,0), (0,2),  
(0,-2), (-3.3,2), (-3.3,-2), (0,8), (0,-8), (-9,3),  and (-9,-3). The 
reflectivity ratios of the nine scatterers were sup posed to be 
1:3:3:2:2:1:1:1:1. The radar transmitted a stepped- frequency waveform with an 
effective bandwidth of 50MHz which results in a 3m resolution in range. The 
number of stepped frequencies was 16. The radar wav elength was 3cm. The initial 
distance between the radar and the aircraft was 30k m and initial aspect angle 
was 0 o. The aircraft was flying in a straight line with a  speed of 200m/s. The 
total change of angle was 0.38 o which provided a 2m resolution in cross-range. 
 
 

Fig.5 Scattering model of simulated aircraft 
 

The received signals were generated with noise adde d to give SNR=20dB which were 
processed by range compression, range realignment, autofocus, and range-Doppler 
imaging. The covariance matrix was estimated by ave raging over all the range 
cells. Fig.6 shows the ISAR images of simulated air craft: (a) the ISAR image 
without autofocus, (b) the ISAR image focused by th e conventional beamformer 
approach, (c) the ISAR image focused by the optimum  beamformer approach, (d) the 
ISAR image focused by the signal subspace approach and (e) the ISAR image 
focused by the noise subspace approach. The reconst ructed ISAR images have 
correspondences to the scattering model of simulate d aircraft as shown in Fig.5. 
The small difference among (b), (c) and (d) can be attributed to imperfection in 
the optimization associated with the size of the se arch steps. 
 

(a) Unfocused image 
 

(b) Focused image with the conventional beamforming  approach 
 

(c) Focused image with the optimum beamforming appr oach 
 

(d) Focused image with the signal subspace approach  
 

(e) Focused image with the noise subspace approach 
Fig.6 ISAR images of simulated aircraft 

 
5.0 Relations to maximum likelihood estimation and other methods and the Cramer-
Rao lower bounds 
 
The derivations in section 3.0 are based on the ass umption that the exact 
covariance matrices are available. However in pract ice these must be estimated 
from a finite number of data samples. In this secti on we consider the problem 
from an estimation perspective.  
 
By inspection of (9) the vector D is independent of range cell index and so the 
covariance matrix can be estimated by replacing the  ensemble average with one 
over range cells, namely, 

∑
−

=

=
1

0

1ˆ
N

n

H
nnN ZZC .         (36) 
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This ensures that it will have sufficient rank for the techniques to work and 
reduce the effect of rotational motion. 
 
5.1 Relation to maximum likelihood estimation 
 
If the received noise is Gaussian distributed, the joint probability density 

function of ],...,[ 10 −= NZZZ  is given by 

)}ˆ(exp{||);( 1CCNTrCZp n
N

n
MN −−− −=Θ π       (37) 

where the unknown parameters },{ npD=Θ . Maximizing the log probability density 

function with respect to Θ results in the following equation [9] [11]   

11
2

1 ˆˆˆ uuC wλσ= .         (38) 

(38) shows that the eigenvector 1û  of Ĉ  corresponding to the maximal eigenvalue 

is the ML estimation of the complex signal vector D. 
 
5.2 Relation to other autofocus methods 
 

If a dominant strong scatterer exists in the kth ra nge cell, Ĉ  can be 
approximated as 

IZZC H
kk

2
1ˆˆ σ+≈ .         (39) 

In this case, the largest eigenvalue of Ĉ  is 
2
1

2 ˆ|||| σ+kZ  and the corresponding 

eigenvector is 

kZu =1ˆ           (40) 

which is equivalent to the strong scatterer referen cing method [4] . 
 
Subaperture processing [16]  can be applied to the developed approaches to redu ce 
the computational load. Consider a special case whe re each subaperture consists 
of two pulses and all the subapertures are connecte d with one pulse. For the mth 
subaperture, the covariance matrix in the nth range  cell is expressed as 










−−
−

=
+

+

1}/)(4exp{

}/)(4exp{1

)1(

)1(

λπ
λπ

ommo

ommo

nn RRj

RRj
pC   (41) 

and the eigenvector corresponding to the maximum ei genvalue is  










−−
=

+ }/)(4exp{

1

)1(
1 λπ ommo RRj

u .      (42) 

However in practice we have to estimate the covaria nce matrix by range cell 
averaging, that is, 

[ ]*
)1(

*

1 )1(

1ˆ
+

= +
∑ 








= mnnm

N

n mn

nm

N zz
z

z
C .       (43) 

The eigenvector corresponding to largest eigenvalue  of Ĉ  is 














= ∑

=
+

N

n
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1
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*
1

1

1
ˆ          (44) 

where p1 is a scale factor. Thus we have an estimation 
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N

n
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N

n
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1
)1(

*

1
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*
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which is equivalent to Doppler centroid tracking [5] . 
 
5.3 CRLB of the estimated complex signal vector D 
 
The Cramer-Rao lower bound (CRLB) gives the minimum  variance that an unbiased 
estimator can achieve and is a useful tool for quan tifying the performance of 
practical estimators. In (9), D is the complex vector associated with the 
translational motion of the object. The variance of  estimated D compared with 
the CRLB of D indicates the efficiency of ISAR autofocus. The CR LB of D is given 
below, summarized from [15]. 
 
In the signal model of (9), both en0 and D are unknown. An ambiguity occurs when 

en0 and D become αen0 and α-1 D, respectively. If we set constraints NeeH =00  

where 
T

Neee ),...,( 0,1000 −=  and Im( e00)=0, this ambiguity will be removed. 

 

Let jwuD +=  and jtre +=0  with constraints 00 =t  and NeeH =00 . Then the CRLBs 

of u and w are given by  
2

2
1 )()( mmmNm wPuCRLB β+=         (46) 

2
2
1 )()( mmmNm uPwCRLB β+=         (47) 

where the noise covariance matrix jQPCw += , um is the mth element of the 

vector u, ])[2/()( 1
00 DCDNppN w

H −−=β  and (P) mm is the mth diagonal element of the 

matrix P. Thus the CRLB of Dm (the mth element of D) takes the form 

β+= mmNm PDCRLB )()( 1 .        (48) 

 
5.4 CRLB of the estimated distance between two scatterers 
 
The variance of the estimated distance between two scatterers spaced in cross-
range is a measure of ISAR location capability and the CRLB for this variance is 
derived below. 
 
In this analysis, the object is composed of two sca tterers s 1 and s 2 with the 
coordinates (x 1,y 1) and (x 2,y 2). When the distance between the radar and the 
object is much larger than the size of object, the returned signal of the mth 
pulse can be expressed as 

}/]cossin[4exp{ 111 λθθπρ mmmm yxrjz ++−=  

  mmmm wyxrj +++−+ }/]cossin[4exp{ 112 λθθπρ      (49) 

where ρ1 and ρ2 are proportional to the reflectivities of s 1 and s 2, 
respectively, r m denotes the distance between the radar and the cen tre of the 
two scatterers when the mth pulse is sent and w m is the additive noise, assumed 
to be independent and identically distributed from pulse to pulse. It is 

modelled as complex Gaussian with zero mean and var iance 
2
wσ .  

 

Assuming ρρρ == 21  for simplicity, (49) is changed into 

mmmm wudz ++= }/]sin[2cos{2 λφθπρ       (50) 

where d is the distance between the two scatterers,  φ is the angle between the x 
axis and a straight line through s 1 and s 2, and 

}/]cos)(sin)(2[2exp{ 2121 λθθπ mmmm yyxxrju ++++−= . 
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If φ, θm and u m are assumed to be known, the joint probability den sity function 
of single observation is 

}exp{);( 2

2

2

|}/]sin[2cos{2|1

w

mmm

w

udz
m dzp

σ
λφθπρ

πσ
+−−=       (51) 

and the joint probability density function of multi ple independent observations 
is 

∏ ∑
−

=

−

=

−
− +−−==

1

0

1

0

212
10 }|}/]sin[2cos{2|exp{)();();,...,( 2

M

m

M

m
mmm

M
wmM udzdzpdzzp

w
λφθπρπσ

σ
(52) 

Thus we get the log joint probability density funct ion  

∑
−

=
− +−−−=

1

0

212
10 |}/]sin[2cos{2|)ln();,...,( 2

M

m
mmmwM udzMdzzL

w
λφθπρπσ

σ
.  (53) 

From Appendix A the CRLB of d is given by 

∑
= −

=

++
1

0

222

2

}/]sin[2sin{]sin[32

)( M

m
mm dSNR

dCRLB
λφθπφθπ

λ       (54) 

where 
22 / WSNR σρ=  denotes the signal-to-noise ratio (SNR). 

 
It is noted that in the above derivations we have a ctually formed the CRLB under 
the assumption that φ, { θm} and SNR are all known. In practice this may not b e 
the case; however for comparison of different metho ds this approach is 
justified. 
 
 
6.0 Statistical analysis 
 
Monte-Carlo simulations were conducted to analyse t he accuracies of the four 
ISAR autofocus approaches. In the simulation, w nm was independent identically 

distributed complex Gaussian noise components with zero mean and variance 2
wσ . 

Thus we had Mww IC 2σ= . The CRLB of the complex signal vector D corresponding to 

the translational motion takes the form  

MSNRNMm
wDCRLB 2

1
2
1

2

)1()( +−= σ
       (55) 

where 
2

0 / wpSNR σ= . It is noted that 00 eeH
 is the total power of the received 

signals over the N range cells. Ignoring the variability from range t o range of 

the signal power, we may approximate 00 eeH
 as Np0. Furthermore in the derivation 

of the CRLB it is assumed that NeeH =00 . Thus we may replace the term Nw /2σ  in 

the above equation by 0
2 / Npwσ  or 1/( NSNR). 

The parameters of ISAR simulation were described in  section 4. The statistics 
were based on 100 simulations for each estimator at  the specified SNR level. The 
mean square errors of the complex signal vector est imated by the conventional 
beamforming approach (Pc), the optimum beamforming approach (Po), the signal 
subspace approach (Ps) and the noise subspace appro ach (Pn) are shown in Fig.7 
and compared with the CRLB of the complex signal ve ctor for M=128 and N=10. It 

indicates that Pc, Ps and Pn approach the CRLB when  dBSNR 0≥  and Po reaches 

the CRLB as dBSNR 5≥ . This is because that Po uses the inverse of covar iance 
matrix which makes it more sensitive to noise than other estimators. Fig.7 
indicates that the SNR thresholds (minimum required  SNRs) for ISAR autofocus by 
use of Pc, Po, Ps and Pn are 0dB, 5dB, 0dB and 0dB,  respectively. At high SNR 
above the SNR thresholds the mean square errors of the four methods approach to 
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the CRLB. However the CRLB fails to predict the mea n square errors when SNR 
drops below the SNR thresholds. For low SNR the the oretical analysis of 
statistical performance of estimators may be conduc ted by use of Weiss-Weinstein 
lower bound [17] . 
 

Fig.7 Mean square error of the estimated complex si gnal vector  
 

Fig.8 gives the CRLBs for various values of N (the number of range cells) with 

M=128 (the number of pulses) and 12 =wσ . It shows that the CRLBs of D decrease 

with the increase of N and SNR. They are approximat ely proportional to 1/N if 
the SNR is high enough. The CRLB reaches 0dB, -10dB  and –20dB when N is equal to 
1,10 and 100, respectively, in the case of high SNR . 
 

Fig.8 The CRLBs versus SNR for three N values 
 

The CRLBs for N=10 and three values of M are shown in Fig.9. We see that the 
difference between them becomes indiscernible in th e case of high SNR. In other 
words the CRLB is almost independent of M if SNR is  high enough where the CRLB 
approaches –10dB. This means that the subaperture p rocessing is more effective 
for high SNR. 
 

Fig.9 The CRLBs versus SNR for three M values 
 

In the simulation, two scatterers were assumed to b e 15m apart in cross-range. 
After ISAR autofocus ISAR images were produced and the distance between the two 
scatterers was estimated by detecting the peak posi tions corresponding to the 
two scatterers. Fig.10 (a) shows the bias (mean err or) of the estimated distance 
between two scatterers determined by Pc, Po, Ps and  Pn versus SNR. It indicates 
that the SNR thresholds of these four approaches ar e –5dB. When SNR is higher 
than –5dB, the bias of the four methods approaches zero. If SNR is below –5dB, 
the bias increases.  
Mean square errors of the estimated distance betwee n two scatterers determined 
by the four approaches are given in Fig.10 (b) and compared with the CRLB. It is 
illustrated that the experimental variances of the conventional beamforming, the 
signal subspace and the noise subspace approaches r each the CRLB when 

dBSNR 15≥ . This means that they are statistically efficient.  Although the 
optimum beamforming approach does not reach the CRL B, the mean square error is 
close to the CRLB as SNR increases. Fig.10 (b) show s that the minimum SNR 
required for precisely locating multiple scatterers  is 15dB. 
 

(a) Bias 
 

(b) Mean square error 
Fig.10 Bias and mean square error of the estimated distance between two 

scatterers  
 

In the above simulations, it is assumed that d, φ, { θm} and SNR are known 
precisely in order to calculate the CRLBs. For prac tical application this may 
not be true. Nevertheless it gives an effective app roach to compare the 
performances of different methods theoretically. 
 
7.0 Real data results 
 
Thanks to Prof. B.D.Steinberg of the University of Pennsylvania, we received 
experimental data of a Boeing-727. The commercial B oeing-727 aircraft was flying 
into the Philadelphia International Airport. The ra nge, speed and altitude of 
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the aircraft were about 2.7km, 120m/s and a few tho usand feet, respectively. The 
central frequency of radar was 9.6GHz (X-band) ( λ=3.123cm). Range resolution of 
1m was achieved by transmitting a narrow pulse with  the width of 7ns. Signals in 
120 range cells were recorded and PRF was 400Hz. Th e real data were processed 
with range realignment, autofocus, and range-Dopple r imaging. The ISAR images of 
the Boeing-727 are shown in Fig.11 where (a) is the  unfocused image, (b) is the 
focused image with the conventional beamforming app roach, (c) is the focused 
image with the optimum beamforming approach, (d) is  the focused image with the 
signal subspace approach and (e) is the focused ima ge with the noise subspace 
approach. Compared with the plan view of Boeing-727  as shown in Fig.9 (f), the 
focused images are quite impressive. 

(a) Unfocused image 
 

(b) Focused image with the conventional beamforming  approach 
 

(c) Focused image with the optimum beamforming appr oach 
 

(d) Focused image with the signal subspace approach  
 

(e) Focused image with the noise subspace approach 
 

(f) Plan view 
Fig.11 ISAR images of Boeing-727 

 
8.0 Conclusions 
 
Four new approaches for ISAR autofocus based on the  complex signal vector 
estimation were developed. They are the conventiona l beamforming, the optimum 
beamforming, the signal subspace and the noise subs pace methods. Their 
advantages over conventional methods are that the r eturned signals are processed 
with the covariance matrix rather than the phase it self so that no phase 
unwrapping is needed. The signal subspace approach is identified as the ML 
estimation of the complex signal vector associated with ISAR autofocus. If a 
dominant strong scatterer is detected, it simplifie s into the strong scatterer 
reference method. When the subaperture processing i s used, it is related to the 
Doppler centroid tracking. The mean square errors c ompared with CRLBs show that 
the developed approaches are statistically efficien t. The results with simulated 
and real data for two dimensional ISAR imaging show  that the four developed 
approaches can provide the high quality ISAR images . The developed approaches 
may have far wider application to other focusing pr oblems. 
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10.0 Appendix A 

The first partial derivative of );,...,( 10 dzzL M −  with respect to d is 
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The second partial derivative of );,...,( 10 dzzL M −  with respect to d has the form 
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The expectation of the second partial derivative is   
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Based on (50), we have  
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Thus (A.3) becomes 
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