
Glyndŵr University
Glyndŵr University Research Online

Computing Computer Science

1-1-2007

Advances in Similarity-Based Audio Compression
Stuart Cunningham
Glyndwr University, s.cunningham@glyndwr.ac.uk

Vic Grout
Glyndwr University, v.grout@glyndwr.ac.uk

Follow this and additional works at: http://epubs.glyndwr.ac.uk/cair
Part of the Computer and Systems Architecture Commons, Digital Communications and

Networking Commons, Hardware Systems Commons, and the Systems and Communications
Commons

This Conference Paper is brought to you for free and open access by the Computer Science at Glyndŵr University Research Online. It has been
accepted for inclusion in Computing by an authorized administrator of Glyndŵr University Research Online. For more information, please contact
d.jepson@glyndwr.ac.uk.

Recommended Citation
Cunningham, S. & Grout, V. (2007), ‘Advances in Similarity-Based Audio Compression’. [Paper presented to the Third Collaborative
Research Symposium on Security, E-Learning, Internet and Networking 14th-15th June 2007]. Plymouth: Plymouth University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/287588945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epubs.glyndwr.ac.uk?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/comp?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:d.jepson@glyndwr.ac.uk

Advances in Similarity-Based Audio Compression

Abstract
Existing lossy audio compression techniques such as MP3, WMA and Ogg Vorbis, for example, demonstrate
great success in providing compression ratios which successfully reduce the data size from the original
sampled audio. These techniques employ psychoacoustic models and traditional statistical coding techniques
to achieve data reduction. However, these methods do not take into account the perceived content of the
audio, which is often particularly relevant in musical audio. In this paper, we present our research and
development work completed to date, in producing a system for audio analysis, which will consider and
exploit the repetitive nature of audio and the similarities which frequently occur in audio recordings. We
demonstrate the feasibility and scope of the analysis system and consider the techniques and challenges that
are employed to achieve data reduction.

Keywords
Compression, Audio, Music, Similarity, Repetition, Psychoacoustics

Disciplines
Computer and Systems Architecture | Digital Communications and Networking | Hardware Systems |
Systems and Communications

Comments
This paper was presented at the Third Collaborative Research Symposium on Security, E-Learning, Internet
and Networking (SEIN 2007), 3rd International NRG Research Symposium, 14-15 June 2007, which was
held by University of Plymouth and the symposium proceedings are available at http://www.cscan.org

This conference paper is available at Glyndŵr University Research Online: http://epubs.glyndwr.ac.uk/cair/54

http://www.cscan.org/default.asp?page=sein07
http://epubs.glyndwr.ac.uk/cair/54?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages

Advances in Similarity-Based Audio Compression

Stuart Cunningham and Vic Grout

Centre for Applied Internet Research (CAIR), University of Wales, NEWI, Wrexham,
North Wales, United Kingdom

s.cunningham@newi.ac.uk | v.grout@newi.ac.uk

Abstract

Existing lossy audio compression techniques such as MP3, WMA and Ogg Vorbis, for example, demonstrate
great success in providing compression ratios which successfully reduce the data size from the original sampled
audio. These techniques employ psychoacoustic models and traditional statistical coding techniques to achieve
data reduction. However, these methods do not take into account the perceived content of the audio, which is
often particularly relevant in musical audio. In this paper, we present our research and development work
completed to date, in producing a system for audio analysis, which will consider and exploit the repetitive nature
of audio and the similarities which frequently occur in audio recordings. We demonstrate the feasibility and
scope of the analysis system and consider the techniques and challenges that are employed to achieve data
reduction.

Keywords

Compression, Audio, Music, Similarity, Repetition, Psychoacoustics

1. Introduction

Audio compression is a hugely challenging and rewarding area of research, which in the 21st
century, has the potential to affect the technologies, lifestyle and standard of life of millions of
users worldwide. If proof were needed of the significance of the area of audio compression as
a social, as well as research driven, field, one only needs to consider the extensive media
coverage and the impact of technologies such as the Apple iPod, MP3 files and the legal and
economic issues surrounding the downloading of music through services such as Napster and
iTunes.

Audio, particularly music, files tend to be large, however, which can cause problems in
transmission across network bottleneck points. The effects are usually data loss or
unacceptable latency or jitter. Continual efforts are being made to produce compression
techniques for audio which maintain the highest audio quality, or at least perceptually high-
quality, whilst also achieving high levels of data reduction. The perfect compromise would
produce a minimal data representation that produced an inaudible difference, if any, in audio
quality to the original sampled waveform. The ideal scenario would be to retain the original
CD quality audio. However, it is widely accepted that this format creates large amounts of
data (Rumsey, 1996). Without altering the quality, it would be necessary to exploit
redundancy in audio data to reduce the amount of data required to store audio of such quality.
In effect, this would be a system of lossless compression.

Current compression techniques for audio, although highly successful, both in the user
community and from a data reduction perspective, do not consider some fundamental aspects
of the content of the audio they process. The main issue identified with these techniques is
that they always encode a revised version of the original waveform in its entirety, and do not
take into account any musical or other form of excessive repetition, such as extended periods
of silence.

The methods we are developing and discuss in this paper are not lossless, but lossy, although
we rely on the presence of information in audio which is perceptually redundant, and is
therefore more rightly termed irrelevant. We aim to find this unnecessary information by
considering audio, and in particular music, from a top-level, and consider the structure and
make-up of audio. Musical audio, in particular, contains inherent amounts of repetition. This
could be repeating choruses or verses or simply repeating a small sequence of notes. In
particular many musical genres and styles, such as dance, techno, electronic, and hip-hop, rely
heavily on frequent repetition of beats, hooks, riffs, and vocal catches.

This data reduction process will work by analysing existing information within a waveform,
repeating sections of it as required, and disposing of the perceptually identical replicas
contained in the file. By doing so, the data is repeated or looped rather than storing two
versions of the same thing. A simple example of repetition in music would be to consider a
piece of music which displays repetitive structure and sequences when examined from a
macroscopic level. Audio blocks could then be repeated where necessary, rather than being
coded multiple times. Such an example is illustrated in Figure 1.

Verse 1 Chorus A Verse 2 Chorus B Verse 3 Chorus A Chorus B

Verse 1 Chorus A Verse 2 Chorus B Verse 3 Chorus A Chorus B

Figure 1: Top-Level Example of Musical Structure

In this simple example, it is clear that, provided the Choruses A are similar and the Choruses
B are similar, or at least perceptually similar, it is only necessary to encode and store one
version and repeat that sequence at the appropriate point later in the song. In this example,
this would instantly present a saving of approximately 29% over the original piece of music
through data redundancy (if samples were identical) or data irrelevancy (if the difference
cannot be perceived). It is also important to recognise that such similarity will exist in audio,
not only on such a macroscopic level, but also on a much smaller scale, such as individual
musical notes or sections of audio which may be less than a second long.

Replayed

Replayed

Reduced Coding Version

This can be demonstrated more specifically for audio, this time on a much smaller scale, by
considering the images in Figures 2 and 3, where we show the contents of two wave samples
from the song, Another Brick in the Wall (part 2) by Pink Floyd, by graphing the sample
values. Each sample window is approximately 2.4 seconds long and has been extracted from
two separate time points within the overall song.

Figure 2: Audio Sample at 0m 14s Figure 3: Audio Sample at 1m 27s

From observation of the two waveforms shown in Figures 2 and 3, it is easy to ascertain that
there are distinct similarities between the two samples presented. Indeed, if one listens to
each sample they are perceptually very similar and each represents part of sequences which
are frequently repeated throughout the song. Though initial inspection suggests that the
images are identical, closer attention to detail, and the contours of the waveform graph,
reveals that there are some subtle differences. In practice, this would be noticed by listening
more closely or by listening a number of times when comparing the samples. However, this
does not remove the notion that, although they may not be identical, these samples are very
similar. To demonstrate this slightly more scientifically, we could consider analysing the
sample values contained in each of the sections. However, since each sound file, in this case,
contains 19,236 samples, it is easier, for the purposes of this paper, to note the fact that the
samples in Figures 2 and 3 have different mean and standard deviation values.

This provides a suitable insight into the challenges and scope of the work required to achieve
such a system for audio compression. Clearly, the main points to be considered are the
procedures and processes needed to comprehensively search for repetition and structure in
audio as well as the investigation into the best techniques to identify suitable, perceptually
similar, matching audio blocks.

2. Previous and Related Work

There has been a wealth of work carried out, especially in the field of musicology, which
concentrates on analysing and determining repetition, structure and patterns within music.
However, to date, the majority of this research has focussed on using musical notation or
similar descriptive musical information, such as MusicXML, MIDI (Musical Instrument
Digital Interface), or similar formats, as the data for analysis, not the actual waveform audio
representation of the music. However, it is worthwhile presenting a brief overview of some of
this work, as it further demonstrates the value of investigation of musical content and

repetition and provides indications of techniques which could be applied to a waveform-based
analysis system.

Dannenberg & Hu (2002a & 2002b) have shown positive results in detecting similar sequences
of melody in monophonic music and have experimented in the polyphonic domain, primarily
using pitch detection and chroma quantisation. Another technique considered by Mazzoni and
Dannenberg (2001) use a pitch contour matching technique against a database of modified
MIDI songs, which had assigned pitch contours, alleviating problems introduced by
quantisation. However promising, these methods rely on pitch detection, normally based on
frequency analysis, or using musical notation and MIDI. Although their systems provide
indicative evidence of repetition, they lack the granularity that would be necessary to achieve
acceptable compression of the kind we propose in this paper. In the system proposed in this
paper, it is necessary to account for not only the pitch, but the entire polyphonic spread of
sounds. After all, though the proposed system is intended to be used in music compression,
there is no reason why it should be in any way restricted in its use in the audio domain.

Chai (2003) and Chai and Vercoe (2003) present work more considerate towards polyphonic
audio. Their research demonstrates excellent and highly-positive results in detection of
musical structure. The defining differences between the system proposed here and that of
Chai is that their system tends to look for high level music structure (e.g. ABABA, where A
an B are typically verses or choruses) whereas our system will detect structure at as small a
level as the user wishes to define. The other main difference is that Chai uses single-channel
audio, low sample rates and low bit-depth. Our system aspires to operate at any sample rate,
bit-depth, and across multiple channels, provided the search algorithms are scaled correctly.

Peeters et al. (2002) have also considered the issue of detecting patterns and structure in
polyphonic music using signal analysis, for the purposes of music summarisation and employ
a similarity matrix approach which can be visually depicted. Their work also presents the
results of such analysis, and the visual indicators for several very successful tests across a
varied genre of musical compositions. Particularly, their system is focused on genres of music
where repetition plays a major role in the piece.

Of significant note is the work of Kirovski and Landau (2004 and 2005). They employ
psychoacoustic, audio analysis techniques, based upon the principles of the Lempel-Ziv
algorithm, to detect the existence of suitable redundant data to allow entropy coding. In their
work, it is useful to note the functions used to analyse the audio, which, in this case, are
mainly those of the frequency analysis transform, the Modified Discrete Cosine Transform
(MDCT). As is expected from our own investigations, the results are variable depending on
the musical material being processed, but reductions in excess of 90% have been
demonstrated for electronic musical pieces that contain high-levels of repetition. Kirovski and
Landau’s work demonstrates further the worth and concept of our own investigations and
development efforts and also provides material against which to benchmark our own
techniques.

In other work by the authors of this paper, we also chose to examine the musical structure and
sequences present in music (Cunninghama et al. 2005). However, rather than looking for
similarity of sequences and structure within a single piece of music, we searched for similarity
between perceptibly different genres of music. For example, we compared music from the
heavy metal genre to classical music. This work was useful as it helped gain more

understanding of the logical and procedural approaches needed when analysing musical
content, although it too relied on musical notation as the source for analysis.

As part of the initial developments in this area of research, a framework for the audio
compression technique was devised. This provides a useful overview of how the proposed
techniques will be perceived from the top-level or user perspective. This is presented in
Figure 2.

Figure 2: Overview of Compression System (Cunninghamb et al. 2005)

As part of the initial research, one of the main areas of investigation was into the feasibility of
reusing audio segments from the point of view of the audio or music listener. A series of
small tests were devised to attempt to gauge the extent to which a listener was able to
differentiate between similar audio samples. To attempt to engage users in their usual
listening environments, this test was placed online and users were able to take the tests at their
convenience. Further testing in controlled environments will be heavily employed later in the
development but at this early investigative stage, this was an appropriate method
(Cunningham, 2005).

The test was divided into two sections. The first required the subjects to listen to five pairs of
sounds and state whether or not they thought they were different. The listener was only
permitted to hear each pair of sounds once. In the second section, the same sounds were used
but listeners were free to listen to each pair of sounds as many times as they wished. The tests
consisted of audio samples of pieces of music and others of single instruments or sounds. The
pairs of sounds were all different in some way (with the exception of the sounds in question 3,
which were the same - a ‘placebo’), either by extracting similar, but not identical, samples
from a piece of audio, or by taking identical pairs and processing or filtering one of them. The
samples used were constructed to range across the spectrum of being obviously different to
more subtle. The results of these tests are shown in Figures 3 and 4.

Figure 3: Single Listen Audio Comparison Test

Figure 4: Multiple Listen Audio Comparison Test

Overall, the results were generally as expected and indicate that listeners had difficulty
determining well constructed, repetitive audio as distinct segments. The results also reveal
that pieces of audio which were different, but had many qualities in common, could also
require more careful listening to determine the difference. The outcomes from question 3 are
useful as they allow us to consider the inclusion of an error or deviation factor into the results,
which in this case would be an average of ±13.4%. Another interesting feature emerged from
considering how quickly listeners made their decision about the similarity between two
sounds. In section two, where subjects were permitted to listen as many times as they wished,
the average number of plays of each pair of sounds was smaller than expected - an overall
average of 1.62. This indicates that in such scenarios listeners quickly assess the content and
importance of the audio being presented and make a firm assessment of it. This is also a well-
founded assumption as we compare results between sections one and two of the test. We see
that similar trends are presented and the average difference between responses in sections one
and two is only 6.7%.

Hacker (2000) defines a set of criteria, which any compression format hoping to compete
with, or supersede, the MP3 format would have to demonstrate. The criteria Hacker defines,
which would be required of a compression format to surpass MP3, are as follows:

 Smaller file sizes
 Superior audio quality
 Free and unprotected format

Although it could be argued that an improvement in any of these areas, with no corresponding
degradation in the other two, could still constitute progress, it is worthwhile considering and
reflecting upon these factors, either individually or in combination, when considering the
scope and aims of this work.

3. Comprehensive Similarity Searching

To start, it is necessary to establish a suitable searching system to analyse audio files. We
consider such factors as the number of steps or complexity as well as the practicalities and
implications of carrying out this highly linear process. This produces mechanisms which are
essentially brute-force attempts to ensure that every possibility of finding a match is
procedurally exposed. Where we employ an actual block comparison function in the tests
performed in this section, we rely on comparing a search and target block using an exact array
matching technique. This is the most logical (although least likely to yield the best results)
method to begin the investigation, particularly when we are at the stage of developing and
refining the comprehensive search procedures.

3.1 Static Block Searches

With this technique, the block size is static throughout the search procedure and is defined by
the user before execution. The target block is incrementally passed over the length of the file
until one block’s length from the end. The same motion is applied to the target block. This
has the effect of providing the most comprehensive coverage possible of the data in the file.

Let f represent the length of the file and b the size of the search and target blocks. Assuming
that the stepped value for the search and target block offset increments is always 1, the block
size is static over the course of this search and that the cost of the matching process can be
defined generically as some function, X(b), then the complexity for the search is defined as

.)()(
0 0

bf

g

bf

i

bXfC (1)

To be more precise, it is also useful to include the steps required in the iterative process of
reading the byte data into the target and search blocks. Since most audio files have large
sample rates, even a block consisting of a tenth of a second’s worth of audio can generate a
large number of data bytes. This gives a revised form of

.)()(
0 0

2

bf

g

bf

i

bXbfC (2)

A disadvantage of this particular searching method is its exhaustive nature. In the process of
this search, any block which is being searched for in the file will detect itself as a valid match.
This is one drawback in functionality of this method and means that the minimum number of

matches in any file will be given by f / b. Another drawback also skews the number of
matches due to the retrospective nature of the technique. Since the target block will always
look for a match from the start of the file, this means that matches that have been made earlier
in the search will be made again. For example, if a block at offset 20 matches a block at offset
60, then block 60 will also match block 20. This provides the result of two matches being
found, when we would only consider this to be a single match.

However, although inconvenient when attempting to determine how many true matches will
be contained in a file, this also increases the amount of time required to carry out the search.
We therefore consider a procedure of searching that does not match a block against itself (self-
matching) or retrospectively search within a file (backwards-matching). The offset is defined
by the block size, declared at execution. This eliminates the detection of false matches which
occur when the search block and target block overlap, resulting in a true match result. This
also reduces the overall complexity/number of steps involved in carrying out the search, since
the number of steps needed to progress the target block is reduced. The complexity for this
search can now be defined as

.)()(
0

2

bf

g

bf

bgi

bXbfC (3)

To demonstrate the efficiencies gained by making these simple reductions, it is useful for us to
compare the number of steps required between expressions (2) and (3). This is shown in
Table 1.

Sample Values Expression (2) Expression (3) Difference Saving

f=3,000, b=5 224,250,625 111,863,400 112,387,225 49.88%

f=3,000, b=10 894,010,000 444,467,100 449,542,900 49.72%

f=3,000, b=100 84,100,000,000 39,242,010,000 44,857,990,000 46.66%

f=12,000, b=5 3,597,000,625 1,797,450,900 1,799,549,725 49.97%
f=12,000, b=10 14,376,010,000 7,177,817,100 7,198,192,900 49.93%

f=12,000, b=100 1,416,100,000,000 696,377,010,000 719,722,990,000 49.18%

Table 1: Evaluating Expressions (2) and (3)

The results presented in Table 1 clearly show that there is a significant saving made by
reducing the number of steps involved in the search and by removing essentially redundant
and irrelevant comparisons. Across all tested search parameter values (f and b) we can see
that a saving of approximately 50% (average is 49.2%) of the steps required is made. This
optimisation is significant.

The cost of the search for (2) can be approximated as On2, or more specifically by the
considering the file and block size values.

.)(2fbfC (4)

This is in contrast to the complexity of carrying out the search as evaluated in expression 3,
which is approximate to On2-n/2, or more precisely.

.
2

)(
2 fbfb

fC

 (5)

To translate the notion of the number of steps required to meaningful real-world data, some
sample comparison tests were run. The aim here is to measure the actual time involved in
carrying out such searches. This is a crucial stage in the testing and development of these
numerical matching techniques. In the tests conducted, all of the files used a sample rate of 6
kHz and a bit-depth of 8-bits. The results of these operations are detailed in Table 2.

Sample Values f Length (s) Expression (3) Time (s) Time (m)

f=3,000, b=5 0.5 111,863,400 50.719 <1

f=3,000, b=10 0.5 444,467,100 39.360 <1

f=3,000, b=100 0.5 39,242,010,000 21.016 <1

f=12,000, b=5 2 1,797,450,900 736.125 ~12
f=12,000, b=10 2 7,177,817,100 594.359 ~10

f=12,000, b=100 2 696,377,010,000 427.625 ~7

Table 2: Complexity Calculations and Actual Running Times

When performing these tests, it must be recognised that, when measuring time, there will be
additional costs to carry out the particular matching function X(b) with each step. To ensure
that this was not dramatically altering the actual time taken, we measured the time costs of
performing the numerical block (array) comparisons. This is summarised in Figure 5, which
shows that the comparison times are negligible, given the magnitude of the total search
complexity from Table 2.

Array Object Comparison Times - Timestamp Avg.

800000

820000

840000

860000

880000

900000

920000

940000

960000

10 100 1000 10000 100000 1000000 10000000

Test (log scale)

Ti
m

e
(n

an
o

s
ec

on
ds

)

Compare Times Mean Log. (Compare Times)

Figure 5: Analysis of Numerical Array Comparison Times

The major limitation with all procedures discussed so far is that of the static search and target
blocks. To use a block of static size is extremely limiting and does not provide a complete
and comprehensive search for all available matches. Therefore, this must be addressed.

3.2 Dynamic Block Searches

To further refine this search method and ensure that maximum scope is given to detect
matching audio sequences, we employ a dynamic search and target block. Given the length of
a file f, the file would be iteratively searched using a search block b, which would increase (or
decrease) in size through the lifetime of the search process. Therefore, minimum and
maximum sizes of search (and target) block , bmin and bmax, are established before searching
and an increment value, ∆b, between these limits of block sizes is also set. (We Assume ∆b
divides bmin and bmax.) A search increment across the file - the interval between one search
position and the next - is also defined as ∆s, and will effectively allow a fineness or depth
facility to the function. Similarly, a final incremental parameter, ∆t, provides an offset for the
target block where the match for b is sought. This is illustrated in Figure 6.

Figure 6: Assignment of Search Components

Again, we generically define the complexity, or number of steps required to match one block
of size b, as the function X(b). Then for a given set of values of file size, maximum and
minimum block size, search block and target block start position increments, the complexity
of an exhaustive search routine, considering all possible matches of b (bmin < b < bmax) is
given by

.)(),,,,,(

max

min 0 0
maxmin

b

b

s

b

t

bb

b
b

bf

s

bf

t
btsb bXbbfC (6)

Since the length of the file is effectively static at the start of the compression process, the five
parameters (bmin, bmax, ∆b , ∆s , and ∆t) are all, in effect, measures of quality or effectiveness
of the search process and could be defined at the beginning of any search. However, the end
user of such a system is unlikely to want to specify five different values each time they save a
file. It would be much better to give an overall, single ‘quality’ rating factor to the end user,
through which the quality value of the final compressed file could be specified. Internally
however, it is expected that the setting of this value would scale the previously defined quality
parameters by the required factors to facilitate an overall quality factor.

B

f

ts

f-b

BB

b

To provide simplification, these parameters are consolidated into one value: ∆ = ∆b = ∆s =
∆t. To provide additional simplification, the assumption is made that bmin = ∆b = ∆and bmax

= f / 2, since, in most cases, it would be impractical to search for a block greater than half the
length of the file. Given these values, the expression in (6) then simplifies to

.)(),(
2

1 0 0

f

b

bf

s

bf

t

bXfC (7)

Finally, if we approximate X(b) by an invariant term X, which is not dependent on b, and
assume f >> b, so that all (f- ∆b)/ ∆terms reduce to f then this reduces the expression to:

.
2

),(
3

3

 XffC (8)

From these expressions, it is clear that performing such a search would be linearly dependant
on the cost or complexity of the search itself (X) and the time required for the search process
will depend on the particular pattern discovery techniques being employed. Although we use
a simple array matching technique in our initial tests, it is far more practical and likely that
future methods will involve more audio-specific transforms and functions that will provide
much more suitable mechanisms for comparing audio.

4. Audio Analysis Techniques in Similarity Searching

Although array matching is currently used, this has been inefficient in yielding suitable
matches, and it is far more appropriate to consider solutions which take into account the
spectral audio content of the sound being analysed. For example, if we consider the samples
presented in Figures 2 and 3, we see that the wave shapes were similar at a macroscopic level.
However, we also notice subtle differences. When considering the audio blocks on a sample-
by-sample basis, there will clearly be radical, almost random, differences in a purely
numerical sense, although there is potentially scope for simple correlation or range pattern
matching functions to be applied. However, even these methods would be further enhanced
by some kind of transform being applied.

Frequency/time related transforms, such as the Fast Fourier Transform or Discrete Cosine
Transform, are commonly used in signal processing and analysis. The effectiveness of using
such techniques is presented simply in Figure 7, which graphs the frequency analysis
(acquired using a FFT) of the two samples we believed to be similar in Figures 2 and 3.
Notice in particular, the similarity in frequency content and trends between the two samples.

-80

-70

-60

-50

-40

-30

-20

0 375 750 1125 1500 1875 2250 2625 3000 3375 3750
Frequency (Hz)

A
m

p
li

tu
d

e
(d

B
)

Sound 1 Sound 2

Figure 7: Frequency Analysis of Similar Audio Samples

Working with the data produced by the FFT is now much simpler and faster than searching
through large amounts of numerical information. However, we must accept that the FFT
applied on these audio samples provides an average of the frequency content within the
sample. Therefore, although this might be suitable for samples of short length, it is too
inaccurate to be used across large blocks of audio. A more suitable solution is to apply the
transform (in this case an FFT) as a sliding window across the audio file. To demonstrate this
principle, we apply a Short-Term Fourier Transform (STFT) to the two previous samples to
demonstrate the greater granularity and detail allowed. This is shown in Figures 8 and 9.

Figure 8: Spectrogram - Sound 1 (0m 14s) Figure 9: Spectrogram - Sound 2 (1m 27s)

Figures 8 and 9 show the results of the STFT in the form of a spectrogram. The scale uses
brightness in the image represents the high power and darkness indicates low power at given
frequencies. Again, observing the two images immediately identifies large amounts of
similarity, although closer inspection reveals some differences. However, most relevant is

that, with this data, we can identify where and to what extent there are differences between
blocks much more accurately than can be achieved using purely sample values.

5. Conclusions & Future Work

There is clearly a significant amount of work to be carried out in the development of this
analysis and compression technique. Key to this is determining the most suitable method(s)
for audio comparison, and crucially, those which provide the most acceptable results to a
listener. The results of research and investigation so far indicate that this will most likely be a
frequency/time based transform, as this is where the bulk of similar audio analysis work has
succeeded. However, this should not rule out the opportunity to investigate other methods
which may have been overlooked. This presents the next highly significant stage of the
research beyond the development of the technique, namely the methods and procedures used
to assess and evaluate the suitability of any compression mechanisms developed.

It is expected that testing will initially take a quantitative form in order to assess as wide and
diverse a range of subjects as possible. This is particularly essential given the potentially vast
range of end-users of such a system. This will provide a suitable top-level evaluation in the
first instance, to determine the acceptability of the technique. This is likely to be a very
iterative process and will be used to test many parameters - some of which have been
mentioned previously in this paper - and the effects these have on the resultant audio. A key
aspect of this will be to investigate the limits and thresholds of what is acceptable, in
particular to what extent the technique can be employed before the quality of the audio is
unacceptable. At this stage, more quantitative methods may become useful to identify more
precisely the traits and aspects of the audio which are particularly of note in determining the
effectiveness, and ultimately the quality, of the compressed file.

Key to achieving implementation and practical usage of the techniques described in this work
is the optimisation of the search procedures. As we have shown, there us a high level of
complexity involved in the linear, exhaustive search methods we have described. However,
even from small-scale testing it is apparent that these methods are inappropriate and take
excessive lengths of time to execute. Clearly, there is a need to consider heuristic and non-
linear search routines when processing the audio data. For example, we are currently
investigating the effects of altering the block sizes used bmax and bmin , search and target block
increment values ∆t and ∆s, and the increment of the block size ∆b. It may also be more
reasonable to search for large blocks first and then blocks of decreasing size, or vice-versa.
This is a crucial area, which is a priority for current and future investigation.

There are many other potential uses for this system and the resultant data produced. For
example, content-based searching is a field where the use of small, searchable, clips of audio
could prove tremendously useful, saving search time, and diversifying content. The waveform
analysis and comparison techniques could also be used in legal situations, to settle differences
in how similar one piece of music was to another.

Another function for this system in copyright might be to detect the use of music samples
within audio compositions or collages. Blocks extracted from waveforms could be compiled
into a central library, which could aid such applications as audio searching by humming or
whistling – again, content-based searches. Such libraries could also be used for composition,

providing a system of ‘Object-Oriented Music Composition’ for computer music students and
musicians alike.

6. References

Chai, W. (2003), Structural Analysis of Musical Signals via Pattern Matching , Proceedings of IEEE
International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, China.

Chai, W. and Vercoe, B. (2003), Music Thumbnailing via Structural Analysis, Proceedings of the 11th ACM
International Conference on Multimedia, Berkeley, California, USA.

Cunningham, S. (2005), Waveform Analysis for High-Quality Loop-Based Audio Distribution, Proceedings of
ISCA 20 th International Conference on Computers and their Applications (CATA-2005), 16th – 18th March, New
Orleans, Louisiana, USA.

Cunninghama, S., Grout, V. and Bergen, H. (2005), Mozart to Metallica: A Comparison of Musical Sequences
and Similarities, Proceedings of ISCA 18th International Conference on Computer Applications in Industry and
Engineering (CAINE-2005), Hawaii, USA.

Cunninghamb , S., Grout, V. and McGinn, J. (2005), Play it Again, Babbage! – A Framework to Exploit Musical
Repetition for High-Quality Audio Compression , Proceedings of IADIS International Conference on
WWW/Internet, 19 th – 22nd October, Lisbon, Portugal.

Dannenberga, R. B. and Hu, N. (2002a), Pattern Discovery Techniques for Music Audio, Proceedings of
ISMIR 2002 Conference on Music Information Retrieval, IRCAM, Paris, France.

Dannenbergb, R. B. and Hu, N. (2002b), Discovering Musical Structure in Audio Recordings, Proceedings of
Music and Artificial Intelligence: Second International Conference, ICMAI, Edinburgh, Scotland, UK.

Hacker, S. (2000), MP3: The Definitive Guide, O’Reilly, UK.

Kirovski, D. and Landau, Z. (2004), Generalized Lempel-Ziv Compression for Audio, IEEE 6th Workshop on
Multimedia Signal Processing.

Kirovski, D. and Landau, Z. (2005), Parameter analysis for the Generalized LZ Compression of Audio,
Proceedings of Data Compression Conference (DCC 2005), 29th – 31st March, Snowbird, UT, USA.
Mazzoni, D. and Dannenberg, R. B. (2001), Melody Matching Directly from Audio, Proceedings of ISMIR
2001 Conference on Music Information Retrieval, Indiana, USA.

Peeters, G., La Burthe, A. and Rodet, X. (2002), Toward Automatic Music Audio Summary Generation from
Signal Analysis, Proceedings of ISMIR 2002 Conference on Music Information Retrieval, IRCAM, Paris,
France.

Rumsey, F. (1996), The Audio Workstation Handbook, Focal Press, Oxford, UK.

	Glyndŵr University
	Glyndŵr University Research Online
	1-1-2007

	Advances in Similarity-Based Audio Compression
	Stuart Cunningham
	Vic Grout
	Recommended Citation

	Advances in Similarity-Based Audio Compression
	Abstract
	Keywords
	Disciplines
	Comments

