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Abstract 

Attempts to evaluate heuristic algorithms are often hampered by the lack of known 

exact solutions with which to compare results.  This is true, in particular, in the study 

of network backbone design - to date, a fairly undeveloped area in mathematical 

optimisation.  This paper uses a Mixed Integer Programming (MIP) approach to find 

optimal solutions to the problem of backbone minimisation in mesh networks. A 

simple model is formulated and then adapted to reduce the number of variables and 

constraints. Network reliability issues are then considered and a more complex 

model introduced. Finally the model is solved using a commercial solver to generate 

test instances with which to test the accuracy of a simulated annealing (SA) heuristic. 

The heuristic is shown to be accurate to within a very small error margin and the 

strengths and weaknesses of the two approaches are discussed. 

Keywords 

Wireless mesh networks, Network backbones, Mixed Integer Programming, 

Heuristics 

1. Introduction 

The problem of finding minimum sized backbones in networks is well known. 

Applications include self-organisation in mobile ad-hoc networks (Guha and Khuller, 

1998), relay location in fixed broadband wireless systems (Sen and Raman, 2007) 

and the positioning of cross-connects (OXCs) in optical fibre networks (Savasini et 

al, 2007). All of these problems have the same underlying structure, which may be 

adapted to accommodate particular scenarios by use of additional constraints. 

   
Figure 1a    Figure 1b 

Figure 1.  Network backbones 



Consider the example in Figure 1a. A number of locations, represented by nodes in 

the figure, require connection to one another. Feasible links between these nodes are 

indicated. In Figure 1b, a subset of these nodes (marked grey) has been selected to 

relay data on behalf of the others. This subset forms the network backbone. Observe 

that it is possible to send and receive data between any node pair along a path using 

only backbone nodes (or relays) and the two end node-backbone links. It is often 

advantageous to minimise the number of relays in the backbone whilst still 

maintaining connectivity between all node pairs. This is equivalent to solving the 

graph-theoretical Minimum Connected Dominating Set (MCDS) problem. 

At this point we may indicate the relevance of MCDS to the practical examples listed 

above. By solving this problem, we minimise the number of broadcast nodes in the 

mobile ad-hoc network or the number of relays/OXCs, and consequently the 

implementation cost of the fixed broadband and optical fibre networks. 

Unfortunately, this problem is NP-complete (Garey and Johnson, 1979) and so we 

are reliant upon exponential time algorithms or heuristics if we wish to solve it.  

The MCDS/SA heuristic (Morgan and Grout, 2006) has already been shown to 

outperform a number of established heuristics. It has been tested against some small, 

dense problem instances with a known optimum solution, discovered by an 

exhaustive search method (Morgan and Grout, 2007). The heuristic was found to be 

accurate in all test cases so it is necessary to find larger and more sparse problem 

instances with known optimum solutions. This paper introduces a Mixed Integer 

Programming method of finding such solutions before using them to test the 

accuracy of MCDS/SA. 

2. A Simple MIP Model 

Formally, a dominating set of a graph G=(V,E) is a subset S of the n nodes V such 

that every node in V-S is adjacent, via one of the m edges in E, to at least one node in 

S. S is said to be a connected dominating set if the subgraph of G induced by S is 

connected. 

The minimum connected dominating set (MCDS) problem involves finding a 

connected dominating set of minimal size.  

To summarize, the MCDS problem involves minimising the number of relays in a 

subset S of V, subject to connectivity and domination constraints. As the 

connectivity constraint is by far the more difficult to implement, we will begin with a 

model for the minimum dominating set (MDS) problem, where the connectivity 

constraint is ignored. 

We define a Boolean relay vector r = (ri), of length n, as ri=1 if node i is a relay and 

0 otherwise. 

Also, the adjacency matrix, A = (aij), of G is an n × n Boolean matrix, whereby aij=1 

if there is an edge linking nodes i and j in E and 0 otherwise. 

Our initial model for Minimum Dominating sets is as follows: 



Minimise: 
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The objective function (1) states that the number of relays is to be minimised whilst 

constraint (2) guarantees that all non-relay nodes have an adjacent relay. 

The connectivity constraint requires that we introduce flow variables into the 

problem. We define a flow matrix, F = (fij), whereby fij defines the flow from node i 

to node j. If the subgraph is connected, we should be able to send flow from a source 

relay node to all other relay nodes (using only relay nodes as intermediaries). To 

begin, we shall arbitrarily use node 1 as the source node, requiring that this node be a 

relay in all candidate solutions. This constraint will then be relaxed by a further 

adaptation of the model. The additional flow constraints are: 
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Constraint (3) ensures that the source node produces sufficient flow to supply at least 

one unit of flow to all other relays. Constraint (4) forces each relay to consume at 

minimum one unit of flow. Additionally, flow may only originate from a relay and 

travel along a valid edge. This is expressed in (5) along with the more trivial 

constraint that flows must be positive. The source relay is fixed in (6). 

Now it is necessary to modify the model to deal with the situation where node 1 is 

not a relay. In this case, node 1 must transfer all its flow to one (and only one) of its 

relay neighbours, effectively making the neighbour node the source of flow for the 

relay component. We know that node 1 must have a relay neighbour because the 

domination constraint requires it to. To achieve this, constraint (5) must be replaced 

by the following: 

  1 1 10 ( )
j j j
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  0
ij ij i
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Inequality (7) makes it possible for node 1 to transmit flow if it is not a relay, so long 

as the receiving node is a relay. The original constraint from (5) is then replaced by 

(8), only this time it applies to all nodes except 1. It remains necessary to limit the 



number of neighbours node 1 can transfer its flow to. To do this, a binary vector q = 

(qi) is created such that qj=1 if flow is permitted from node 1 to node j and 0 

otherwise. Constraints are added as follows: 
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  qj binary  

Constraint (10) ensures that flow can only be transferred from node 1 to j if qj=1, 

while (9) forces qj to be one for only one node j, if node 1 is not a relay. 

Therefore, the simple model for the MCDS problem is as follows: 
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3. A Refined MIP Model for the MCDS problem 

The model outlined in section 2 is accurate but also time and space inefficient.  This 

situation is improved by replacing the adjacency matrix by a combination of lists, 

reducing the number of flow variables and constraints from O(n
2
) to O(m). In 

practice, this constitutes a massive decrease in memory and processor time 

consumption on all but the most dense problem instances. We define two adjacency 

vectors a’ and a” along with an index vector y. The length of a’ and a” is m, and the 

length of y is n+1. a’ lists the destination nodes of each edge in ascending order, 

beginning with those edges with a source at node 1, followed by node 2 etc. Each 

element yi denotes the position in a’ of the beginning of node i’s edge list. The last 



value yn+1 is a delimiting index equal to m+1. a” denotes the position of the reverse 

edge for all edges in a’. 

The number of flow variables can now be reduced to m. A vector f‘ = (fi’) denotes 

the flow across each edge in a’. As each edge (i,j) is listed twice in a’, once with i as 

the source and once with j, the vector y can be used to index the flows out of each 

node whilst a” indexes the flows into each node. The problem can be rewritten thus: 
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Constraints (20) to (26) are direct replacements for the constraint set given in section 

2. The most significant alteration is in (24), where the number of constraints is 

reduced from n
2
 (8) to m. The length of the binary vector q is also reduced from n to 

the degree of node 1, significantly reducing the number of integer variables in the 

model for most cases. 

4. 2-Connected Backbones 

The MCDS problem is a good basis for backbone minimisation problems in general 

but it does not provide redundancy to the backbone in the event of failure. To 

introduce a constraint which handles this, we offer the following definition: A graph 

is said to be k-connected if k or more node (or edge) deletions are required to 

disconnect it. In other words, a k-connected network may survive k-1 node or edge 

failures. A k-connected dominating set (k-CDS) is a CDS in which the backbone (the 

subgraph induced by S) is k-connected. 



The following theory is due to Kleitman (1969) and can be used to produce a 

constraint set for the Minimum 2-CDS problem: 

G=(V,E) is k-connected if for any node v in V, there are k node-independent paths 

from v to each other node and the graph G’ formed by removing v and all its incident 

edges from G is (k-1)-connected 

We present a model for 2-connected backbones using this theorem.  Firstly, we must 

test that there are two vertex independent paths from some relay node to all other 

relays on the backbone and secondly, we must establish that the backbone remains 

connected when this node is deleted. The second part may be established using the 

same connectivity constraint as in the previous two sections, with the alteration that 

flow may not pass through the source node for the vertex-independent paths 

calculation. 

The vertex independent path constraints may be implemented using multicommodity 

flows (Ahuja et al, 1993).  The source node (which we fix as node 1 in this model) 

must transmit 2 units of a commodity to each relay; subject to the constraint that only 

1 unit of each commodity may be transmitted through the intermediate relays. Notice 

that this increases the number of variables and constraints to O(nm) as we must 

measure flow across each edge for all n-1 commodities. 

In addition to this, fixing node 1 as a relay means that the connectivity constraints 

from the previous section need a new source. This can either be achieved by fixing a 

second relay or by using the same method above using some node s as the source, 

where s is not adjacent to node 1 (in which case s might have no neighbouring relay 

besides 1 to transmit its flow to). In the model that follows we fix two nodes, 

although it should be noted that fixing one node could be more acceptable in 

practice. 

We introduce an n × m matrix F” = (fij”) where fij” denotes the flow of the 

commodity destined for node i across edge j. The following constraints ensure that 

there are two vertex independent paths from node 1 to all other relays: 
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Equations (27) and (28) state that two units of flow for commodity i must be sent 

from node 1 and received at node i if node i is a relay. Equation (29) is the flow 

conservation constraint; flow for commodity i cannot be lost or gained at nodes other 

than 1 or i.  Equations (30) and (31) state that no more than one unit of a 

commodity’s flow may pass into or out of a node unless it is the source (node 1) or 

sink (node i) for that commodity. Flows are constrained only to originate from relays 

in (32). 

Finally we need to modify the original flow equations to use node 2 as source 

(33),(34). We must also restrict these flows from entering or leaving node 1 as it has 

been ‘deleted’ at this stage of Kleitman’s theorem (35),(36). 
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These equations replace (21) and (22) from the model in section 3. Equations (23), 

(25) and (26) are removed. 

Finally, if we wish to give all terminal nodes two adjacent relays, making our 

topology 2-connected throughout rather than just across the backbone, we may 

change the domination constraint (20) to: 
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This creates a 2-connected, 2-dominating set. 

5. Results 

To generate problem instances, nodes were positioned randomly within a unit square. 

Two parameters were defined: a Maximum Transmission Distance (MTD) and a 



Line of Sight probability (LOS). Nodes were given an edge between them with 

probability LOS if they lay within MTD of one another. The instances were then 

solved using the CPLEX solver (ILOG, 2008). 

Initially the SA algorithm was tested for problem instances ranging from 50-100 

nodes with MTD and LOS set so that the graphs were as sparse as they could be 

whilst still being connected. As a result the values of MTD and LOS changed as the 

node count increased. This is demonstrated by Table 1. 

Table 1: Parameters for initial set of instances 

Nodes 50 60 70 80 90 100 

MTD 0.3 0.3 0.3 0.3 0.3 0.2 

LOS 0.4 0.4 0.4 0.3 0.3 0.5 

The results are shown in Table 2. It can immediately be seen that the performance of 

the SA algorithm is not always optimal for these problems. The difference in 

performance between the SA algorithm and the MIP approach is very small, 

however, remaining below 2.5% for all these instances. It is also encouraging to see 

a maximum error margin of only 1 node, indicating that the SA result was never 

more than 1 relay above optimal. Figure 2 shows the maximum and mean runtimes 

for SA and MIP, demonstrating the time saving of SA and the unpredictability in 

runtimes for the MIP model. 

Table 2: Mean results for variable n (10 runs) 

Nodes 50 60 70 80 90 100 

SA  15.5 15.6 17 22 21.2 27.9 

Optimum 15.5 15.6 16.6 21.9 20.7 27.8 

Difference (%) 0 0 2.41 0.46 2.42 0.36 

Exact Solutions (%): 81.67 Max Error Margin: 1 
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Figure 2: Mean and Maximum runtimes for tests in Table 2 

Table 3 shows the performance of SA with increasing problem density. Here we can 

see very little change in the algorithm’s accuracy, along with the same tight error 



margin. Figure 3 shows that runtimes were consistent once again compared to the 

unpredictability of MIP. 

Table 3: Mean results for variable LOS with n=70, MTD=0.3 (10 runs) 

LOS 0.3 0.5 0.7 0.9 

SA 20.7 13.7 10.6 8.5 

Opt 20.6 13.6 10.5 8.5 

Diff 0.485437 0.735294 0.952381 0 

Exact Solutions  (%):  92.5 Max Error Margin:  1 
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Figure 3: Mean and maximum runtimes for tests in Table 3 

Finally, problem instances were tested using the 2-connectivity model from section 

4. Size was restricted here due to the increase in the number of variables and 

constraints. Again MTD and LOS were set so that the graphs would be sparse (Table 

4), but this time they would need to be 2-connected. Table 5 shows the results, which 

indicate a decrease in the SA algorithm’s accuracy along with an increase in 

maximum error margin to 2 relays.  Runtimes are given in Figure 4, indicating a 

similar trend to that shown in Figures 2 and 3. 

Table 4: Parameters for 2-connected backbone tests 

Nodes 30 40 50 60 70 

MTD 0.5 0.4 0.4 0.4 0.4 

LOS 0.4 0.4 0.4 0.4 0.3 
 

Table 5: Mean results for 2-connected backbones with variable n 

Nodes 30 40 50 60 70 

SA 10.5 12.8 13.3 12.8 16 

Opt 10.2 12.3 12.5 12.6 15.6 

difference 2.941176 4.065041 6.4 1.587302 2.564103 

Exact Solutions (%): 64 Max Error Margin: 2 
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Figure 4: Mean and maximum runtimes for tests in Table 5 

6. Conclusions 

MCDS/SA has shown itself to be an accurate heuristic for finding connected 

dominating sets in the majority of cases tested. The time saving for this method is 

clear, although the MIP model may be preferred in cases where the problem is small 

as it guarantees to find the optimal solution. The results present a strong case for the 

use of heuristics and establish the limitations of exact methods more clearly. An 

outline for future work would include testing the heuristic with still larger problem 

instances using graphs designed with regular features so that the optimum CDS size 

can be known at the outset. Also the potential for a faster IP formulation of the 

model would need to be investigated. 

7. References 

Ahuja, R., Magnanti, T. and Orlin J. (1993) Network Flows, Prentice Hall. 

Garey, M. and Johnson, D. (1979) Computers and Intractability: A Guide to the Theory of NP-

Completeness, Freeman. 

Guha, S. and Khuller, S. (1998) “Approximation Algorithms for Connected Dominating Sets” 

Algorithmica, 20: 374-387. 

ILOG  (2008)  CPLEX,  available from http://www.ilog.com/products/cplex/ (January 2008). 

Kleitman, D. (1969) “Methods of Investigating Connectivity of Large Graphs” IEEE 

Transactions on Circuit Theory (Corresp.), CT-16, pp232-233. 

Morgan, M. and Grout, V. (2006), “Optimisation Techniques for Wireless Networks”, 

Proceedings of the Sixth International Network Conference: INC 2006, Plymouth, pp339-346. 

Morgan, M. and Grout, V. (2007), “Virtual Backbone Configuration in Wireless Mesh 

Networks” Proceedings of the Third Collaborative Research Symposium on Security, E-

learning, Internet and Networking: SEIN 2007, Plymouth, pp231-237.  

Savasini, S. Monti, P. Tacca, M. Fumagalli, A. and Waldman, H. (2007) “Regenerator 

Placement with Guaranteed Connectivity in Optical Networks”, Proceedings of the 11th 

International IFIP TC6 Conference, ONDM 2007, Athens, Greece, pp438-447.  

Sen, S. and Raman, B. “Long Distance Wireless Mesh Network Planning: Problem 

Formulation and Solution”, Proceedings of the Sixth International World Wide Web 

Conference (WWW2007), Banff, Canada, pp893-903. 


	Glyndŵr University
	Glyndŵr University Research Online
	7-1-2008

	Finding Optimal Solutions to Backbone Minimisation Problems using Mixed Integer Programming
	Mike J. Morgan
	Vic Grout
	Recommended Citation

	Finding Optimal Solutions to Backbone Minimisation Problems using Mixed Integer Programming
	Abstract
	Keywords
	Disciplines
	Comments



