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Polymer electrolytes based on modified natural rubber

Abstract
Modified natural rubber polymer hosts having low transition glass temperatures have been investigated for use
in polymer electrolytes. Two types of modified natural rubber, namely 25% epoxidised natural rubber
(ENR-25) and 50% epoxidised natural rubber (ENR-50) were employed in conjunction with poly(ethylene
oxide), PEO. Results are reported for ionic conductivity and thermal properties for both unplasticized and
plasticized polymer electrolyte systems with lithium triflate. The samples were in the form of free standing
films with the thickness 0.2–0.5 mm and mixtures of ethylene carbonate (EC) and propylene carbonate (PC)
were used as plasticizers. Unplasticized modified natural rubber-based systems exhibit ionic conductivities in
the range 10−6 to 10−5 S cm−1 at ambient temperatures. Incorporating 100% of EC/PC by weight fraction of
polymer (ENR/PEO) to the systems yielded mechanically stable films and ionic conductivities in the range of
10−4 S cm−1 at ambient temperature.
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Polymer electrolytes based on modified natural rubber 
 

M D Glasse, R Idris
1
, R J Latham, R G Linford and W S Schlindwein 

 

Solid State Research Centre, Faculty of Applied Sciences, De Montfort University,  

The Gateway Leicester, LE1 9BH, UK 

 
Modified natural rubber polymer hosts having low transition glass temperatures have been investigated for use in 

polymer electrolytes.  Two types of modified natural rubber, namely 25% epoxidised natural rubber (ENR-25) 

and 50% epoxidised natural rubber (ENR-50) were employed in conjunction with poly(ethylene oxide), PEO. 

Results are reported for ionic conductivity and thermal properties for both unplasticized and plasticized polymer 

electrolyte systems with lithium triflate.  The samples were in the form of free standing films with the thickness 

0.2-0.5mm and mixtures of ethylene carbonate (EC) and propylene carbonate (PC) were used as plasticizers. 

Unplasticized modified natural rubber based systems exhibit ionic conductivities in the range 10
-6

 to 10
-5

 S cm
-1

 

at ambient temperatures.  Incorporating 100 % of EC/PC by weight fraction of polymer (ENR/PEO) to the 

systems yielded mechanically stable films and ionic conductivities in the range of 10
-4

 S cm
-1

 at ambient 

temperature.  

 

1. Introduction 

Polymers are now used widely as the basis of the electrolyte electrochemical devices such as 

displays, sensors, electrochromic windows, supercapacitors and rechargeable batteries.  In 

particular there has been considerable interest regarding the use of polymer gel electrolyte 

systems in solid polymer batteries [1-3].  These systems have shown improved ionic 

conductivities over previous conventional solid polymer electrolyte systems [4-5].  Enhanced 

room temperature conductivity has been demonstrated by several types of gel polymer 

electrolytes and a variety of polymer hosts have been proposed as matrices for plasticized or 

gel polymer electrolyte systems.  Typical polymer hosts are as follows : 

 

• thermoplastic polymer hosts such as polyacrylonitrile [6-8], poly(ethylene oxide) [9], 

poly(methyl methacrylate) [10,11], poly(vinylchloride) [12], polyurethane [13] and 

polyvinylidene fluoride [14,15] 

•  network polymer hosts prepared by crosslinking of acrylate or methacrylate monomers 

having low molecular weight [16] 

•  mixtures of the polymer hosts mentioned above [17] 

 

The main drawback of these systems is their dimensional instability with high plasticiser 

concentrations, i.e. in the ‘gel’ state.  Mechanical properties can be improved by increasing 

the polymer-plasticiser ratio, but this  adversely affects the conductivity. 

 

An alternative approach involves the use of fillers.  For example, enhancement of ambient 

temperature conductivity also has been observed in the development of PEO–based 

nanocomposite polymer electrolytes [18] incorporating inorganic fillers such as Al2O3 and 

SiO2 although the mechanisms for promoting ion transport are not fully explained. 

 

An alternative to the use of ceramic fillers or blends is to employ a complexing but non-

blending polymer such as modified natural rubber. The modification should lead to such 

properties as low glass transition temperature, Tg, soft elastomer characteristics at room 

temperature and good elasticity and adhesion.  For example, the fabrication of flat, thin and 
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flexible paper-like batteries would be facilitated by materials having good elasticity, which 

also give excellent contact between the electrolytic layer and an electrode in batteries. Two 

suitably modified natural rubbers have been considered in this study in conjunction with PEO.  

They are 25% and 50% epoxidised natural rubbers, ENR (figure 1).  This work reports the 

results of ionic conductivity and thermal analysis measurements performed on non-plasticized 

and plasticized (using ethylene carbonate, EC, and propylene carbonate, PC) ENR/PEO based 

polymer electrolyte systems with lithium triflate.  

 

  

Figure 1 Chemical structure of the 25% and 50% epoxidised natural rubbers 

 

 

2. Experimental 
 

2.1Sample preparation 
 

All polymer electrolyte samples were prepared by a solvent casting method.  Masticated 

epoxidised natural rubber supplied by the Tun Abdul Razak Rubber Research Centre, London 

was received as masticated sheet (passed through a two-roll mill machine about six times).  

The masticated ENR was cut into grain size and dissolved into tetrahydrofuran (THF) with 

efficient magnetic stirring.  A viscous solution of ENR rubber was formed after continuous 

stirring overnight.  Then, lithium triflate and different concentrations of PEO (RMM 4x10
6
) 

were added to the solution.  The samples ENR-25/PEO/LiCF3SO3, ENR-50/PEO/LiCF3SO3 

ENR-25/PEO/EC:PC/LiCF3SO3 and ENR-50/PEO/EC:PC/LiCF3SO3 were made with lithium 

salt contents expressed in terms of O:Li ratio being 5:1, 12:1, 24:1 and 32:1 respectively.  

These compositions were a consequence of maintaining a constant total mass of polymer in 

the electrolyte formulation. The total plasticizer concentration was based on 100% by weight 

of the total ENR/PEO using an EC:PC ratio of 1:1.  The PEO concentration was varied from 0 

to 100 weight % in the mixture with ENR.  The electrolyte solutions were cast into a glass 

ring mould on a Teflon substrate.  Free standing polymer electrolyte films of ENR/PEO, 0.2-

0.5mm thick, were obtained after the THF solvent had evaporated.  The final films were 

further dried under vacuum oven for 48h to remove residual solvent.  Then, the films were 

kept in a desiccator until further use.  

  

2.2 Conductivity measurements 
 

Polymer electrolyte film samples were sandwiched between two stainless steel blocking 

electrodes and mounted in the test cell.  A Solartron  1250 Frequency Response Analyser and 

1286 Electrochemical Interface were used to measure the impedance of electrolyte films over 

the frequency range 0.1Hz to 65 kHz.  The ionic conductivity was calculated from the bulk 

electrolyte resistance value (Rb).  
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2.3 Differential Scanning Calorimetry 

 

Differential Scanning Calorimetry (Perkin-Elmer DSC4 system) was employed for thermal 

characterization of the polymer electrolytes over a temperature range of –80 
o
C to + 120 

o
C in 

a nitrogen atmosphere.  Samples were rapidly cooled to –80 
o
C and heated to 120 

o
C at a scan 

rate of 10 
o
C min

-1
. 

 

 

3. Results and Discussion 

 

3.1 Ionic conductivity  

 

Typical impedance plots are shown in Figure 2.  It is possible to achieve ionic conductivities 

for ENR-25/PEO/LiCF3SO3 in the range 10
-6

 to 10
-4

 S cm
-1

. At room temperature the ionic 

conductivity is 1.5 x 10
-5

 S cm
-1

 when the PEO concentration is 0% and is 1.3x10
-5

 S cm
-1

 at 

75 weight % of PEO for the same salt concentration (figure 3). 

    

 (a)       (b) 

Figure 2 Impedance plots of (a) salt-doped modified natural rubber/PEO based electrolytes; 

(b) plasticised (EC:PC) modified natural rubber/PEO based gel electrolytes. 
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Figure 3 Conductivity as a function of PEO concentration of ENR/PEO/LiCF3SO3  

electrolytes at room temperature. 

It was observed that as the weight % PEO increases, the conductivity decreases to a minimum 

of 3.2 x 10
-6

 S cm
-1

 and starts increasing again to a maximum when the PEO content is 75 

weight %. This behaviour was also found in the case of ENR-50/PEO based electrolytes. The 

reason for this particular conductivity behaviour is not fully understood at this present time. 

Of the modified natural rubbers, ENR-25/PEO shows the highest conductivity at room 

temperature for any given PEO concentration compared with the ENR-50 based electrolytes.  

Overall, the conductivities of doped modified natural rubber/PEO based electrolytes have 

higher values than conventional PEO based electrolytes at ambient temperature.  In terms of 

the molecular structure of the polymer, ENR-25 and ENR-50 have an active oxygen in the 

epoxy group attached to their main chain.  It is assumed that the ENR oxygen atom takes a 

role similar to the ether group in the PEO polymer structure and that Li cation solvation in 

ENR occurs as a result of coordination with the oxygen of the polar epoxy group in ENR.  

ENR-50 would be expected to impose excessive coordination on the lithium cation thus 

repressing mobility.  It seems also that this chemical modification of natural rubber enables it 

to be compatible and blend with PEO although thermal analysis results, presented in section 

3.2, may initially seem to indicate otherwise.  The addition of PEO into the modified ENR 

facilitates sample handling by decreasing the stickiness of the gel electrolyte, particularly 

when plasticizers are used. 

 

When only the masticated rubbers and the lithium salt solution are mixed with ethylene 

carbonate (EC) and propylene carbonate (PC) to form a polymer electrolyte, the resultant cast 

films were slightly sticky and difficult to peel off from the substrate.  Unusually the films 

bonded strongly to the Teflon substrate used in the casting stage of preparation.  However, by 

the addition of a little PEO, the films could be peeled off easily.  The details of thermal 
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history of these films will be discussed in a later part of this section.  This strong adhesive 

property may be significant in promoting efficient contact with the electrodes in 

electrochemical cell systems.    Cell cycling tests [S. Rowlands and R. Idris, unpublished 

results] show reproducible behaviour.  This indicates that the epoxy groups do not degrade 

under repeated recycling, thus giving support to the potential applicability of these materials 

in practical devices. 
 

The conductivity value of the plasticized ENR-25/PEO and ENR-50/PEO systems containing 

lithium triflate are shown in figure 4.  

Figure 4 Conductivity as a function of PEO concentration of ENR/PEO/EC:PC/LiCF3SO3 

electrolytes at room temperature.  The compositions are as defined in Section 2.1. 

 

It was observed that the modified natural rubber/PEO based films have the ability to take up a 

high loading of polar low molecular weight organic plasticiser such as EC and PC.  These 

polymer electrolyte films with ionic conductivities in the order 10
-4

 S cm
-1

 still retain their 

rubbery characteristics in spite of the presence of a large amount of absorbed electrolyte 

solution and the crystalline PEO.   

 

These findings were compared with the work of Matsumoto et al [18] who studied synthetic 

elastomeric host matrices of poly(acrylonitrile-cobutadiene) and poly(styrene-co-butadiene) 

rubbers [19]. It was reported that an ionic conductivity of the order of 10
-3

 S cm
-1

 was 

obtained by swelling a polymer electrolyte system with electrolyte solvent.  In this present, 

work a different material and approach has been used but the improvement in conductivity 

with addition of plasticiser mimics the above systems.  It is suggested that the polarity of the 

both materials is one of the key factors to attain high ionic conductivity.  It was reported that 

only polymers possessing high dipole moments are suitable candidates. Many of the recent 

studies on gel electrolytes have also reported employing polar matrices such as diacrylates, 
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acrylonitrile-methyl methacrylate-styrene terpolymer [3,5].  Taking this into consideration, 

modified natural rubbers have fulfilled the above criteria in making a polymer electrolyte for 

potential use in lithium batteries.  

 

3.2Differential Scanning Calorimetry 
 

  Thermal analysis can reveal the presence of single or multiple glass transitions, thus 

indicating the number of amorphous phases present.  For this reason, it is desirable to 

investigate the thermal properties prior to study.  Addition of salt and plasticizer into the 

polymer electrolyte system ENR/PEO may cause changes in glass transition temperature.  For 

this work, the phase behaviour of ENR/PEO/LiCF3SO3 electrolytes was investigated using 

differential scanning calorimetry, (DSC).  Films made from modified natural rubbers/PEO-

LiCF3SO3 solutions appeared homogenous at room temperature.  The glass transition, Tg, and 

melting temperatures, Tm, of the electrolytes based on ENR/PEO/LiCF3SO3 are shown in 

figures 5 and 6.  It can be seen that Fox type behaviour [20-22] in which the inverse Tg would 

be a weighted fraction of the inverse glass transition temperature of the components, is not 

found.   Because of the additional presence of salt, however, it is not possible to conclude that 

ENR and PEO are immiscible in the ratios used in these experiments.  The ENR-25/PEO and 

ENR-50/PEO types of modified natural rubbers doped with lithium triflate in this study 

exhibited a single Tg in the DSC experiments. For example, the Tg of ENR-25, is –43 
o
C. This 

suggests that there is no microphase separation in this system, although it is recognised that 

the glass transition in PEO systems can be very difficult to identify.  

  

Figure 5 Results from DSC studies for polymer electrolytes based on ENR-25/PEO blends. 

 

Tg is found, in general to increase with increasing salt concentration.  This indicates that a 

complex has formed between the rubber polymer and the lithium salt.  The ionic mobility is 

closely related to the relaxation modes of the polymer host.  This can be observed through the 

increase in Tg of polymer systems as the salt concentration is increased.  However,  a 

lowering of Tg values is observed as a result of incorporating plasticizers or solvents into the 
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modified natural rubber matrices.  It is suggested that the compatibility of the rubber and the 

solvent determines the optimised uptake of electrolyte species in the composition.  

 

Figure 6 Results from DSC studies for polymer electrolytes based on ENR-50/PEO blends. 

 

 

4. Conclusion 

 

Modified natural rubber/PEO based electrolytes incorporating lithium triflate salt are potential 

polymer electrolytes.  In addition, mixtures of ethylene carbonate (EC) and propylene 

carbonate (PC) enhance their ionic conductivities at room temperature.   

 

The majority of the salt-doped polymer electrolyte systems have ionic conductivities about 

10
-5

 S cm
-1

 at room temperature, irrespective of salt concentration.  Similarly, it was found 

that plasticizing modified natural/PEO rubbers with EC/PC/LiCF3SO3 salt solution 

significantly increased their ionic conductivity. Ionic conductivities were in the range 10
-4

 S 

cm
-1

 at room temperature.  The DSC traces of the salt-doped polymer electrolytes displayed a 

single transition glass (Tg) temperature when increasing amount of PEO concentration was 

introduced into the polymer matrix.  
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