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Abstract 

We tested the hypothesis that increasing the nitric oxide (NO) bioavailability by dietary 

nitrate would recover the hypoxic-induced reduction in dynamic CA. Twelve healthy 

males (age 21 ± 2 years) completed four days of dietary supplementation with a placebo 

or inorganic nitrate drink (140-ml beetroot juice) followed by 60-min of normoxia or 

hypoxia (fraction of inspired oxygen [FiO2] = 13%). Duplex ultrasonography was used 

to perform volumetric change-based assessment of dynamic CA in the internal carotid 

artery (ICA). Dynamic CA was assessed by rate of regulation (RoR) of vascular 

conductance using the thigh-cuff method. Four days of beetroot supplementation 

increased circulating nitrate by 208 [171,245] M (mean difference [95% confidence 

interval]) compared with placebo. Dynamic CA was lower in hypoxia than normoxia 

(RoR Δ-0.085 [-0.116, -0.054]). Compared with placebo, nitrate did not alter dynamic 

CA in normoxia (RoR Δ-0.022 [-0.060, 0.016]) or hypoxia (RoR Δ0.017 [-0.019, 

0.053]). Further, nitrate did not affect ICA vessel diameter, blood velocity or flow in 

either normoxia or hypoxia. Increased bioavailability of NO through dietary nitrate 

supplementation did not recover the hypoxia-induced reduction in dynamic CA. This 

suggests the mechanism of hypoxia-induced reduction in dynamic CA does not relate to 

the availability of NO. 
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INTRODUCTION 

Cerebral autoregulation (CA) is essential to protect the brain against ischaemic injury, 

capillary damage, and edema1,2. Dynamic CA is the maintenance of cerebral blood flow 

(CBF) at constant levels despite acute changes in cerebral perfusion pressure or in 

systemic blood pressure3. The physiological mechanisms responsible for the control of 

dynamic cerebral autoregulation are thought to involve a combination of nitric oxide 

(NO), neurogenic (sympathetic and cholinergic) and myogenic (stretching vascular 

smooth muscle) factors1. While dynamic CA normally ensures the preservation of CBF, 

including to transient hypertension4,5, studies demonstrate that dynamic CA is reduced 

during transient hypotension in normoxic and hypoxic conditions (i.e. acute hypoxia 

and at high altitude)4-14. The impairment in dynamic CA is characterized by a blunted 

increase in cerebrovascular conductance (CVC) in response to systemic hypotension, 

preventing normalization of CBF13. The mechanism by which hypoxia reduces dynamic 

CA is unclear but may relate to nitric oxide (NO) availability15. 

 

NO is a potent vasodilator and plays a vital role in the regulation of CVC, and 

consequently CBF16. Previous research in humans, breathing normal ambient air, has 

shown dynamic CA to be substantially reduced when the enzyme NO synthase is 

inhibited15. In oxygen-depleted environments, the L-arginine pathway, which is helped 

by the enzyme NO-synthase, has a decreased ability to generate NO17. NO can also be 
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generated by the serial reduction of nitrate (NO3
-) to nitrite (NO2

-) and then NO, 

providing an alternative pathway for NO production in hypoxia18,19. Dietary nitrate 

supplementation has been shown to be effective to increase the NO bioavailability20, 

and improve cerebral regulation and CBF in normoxia21,22. Specifically, dietary nitrate 

supplementation has previously been shown to enhance cerebral perfusion21 and 

increase middle cerebral artery blood flow velocity via a reduction in cerebrovascular 

resistance22. In addition, dietary nitrate has been shown to reverse the hypoxia-induced 

impairment in peripheral NO-dependent endothelial function23. Combined, this suggests 

dietary nitrate may be effective to reverse the hypoxia-induced impairment in dynamic 

CA. 

 

The aim of this study was to determine the role of NO availability in the hypoxia-

induced reduction of dynamic CA. We hypothesized nitrate supplementation would 

reverse the hypoxia-induced reduction in dynamic CA, which would provide evidence 

that NO plays a central role in the mechanism of hypoxia-induced reduction in dynamic 

CA.  

 

METHODS 

Participants  



 6 

All procedures were approved by the ethical committee of Mt. Fuji Reseach Institute 

and were performed in accordance with the guidelines of the Declaration of Helsinki 

(ECMFRI-01-2014). After a detailed explanation of all study procedures, including the 

possible risks and benefits of participation, each participant gave his written consent. 

Twelve healthy male participants with a mean age of 21 ± 2 years, 174 ± 5 cm, and 

body mass 69 ± 8 kg (mean ± standard deviation [SD]) were enrolled. They were free 

from any cardiovascular or cerebrovascular diseases, and were not taking any 

medications. Participants engaged in regular recreational sports (1-2 h per day, 2-4 days 

per week). None of the participants was exposed to an altitude higher than 1500 m 

within 6 months before the study. In addition, participants were asked to abstain from 

caffeine for 12 h and from strenous exercise and alcohol for at least 24 h before the 

study. Participants were familiarized with measurement techniques (i.e., thigh-cuff 

testing for dynamic CA and measurement of blood flow in the intrnal carotid artery 

[ICA]). All studies were performed in an environmental chamber (TBR-4, 5SA2GX, 

Tabai Espec Co, Ltd., Tokyo, Japan) with set at an ambient temperature of 24°C and at 

relative himidity of 40%. 

  

Study design 

The study followed a double-blinded placebo-controlled crossover design. All 

participants performed two trials, each assessing dynamic CA in both normoxia and 
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hypoxia after four days of (1) nitrate-rich beetroot juice (nitrate) and (2) nitrate-depleted 

beetroot juice (placebo) dietary supplementation. These two trials were performed with 

at least a 2-week washout period and in random order. An overview of the study 

protocol is shown in Figure 1. 

 

Supplementation 

For the three days before the trials, participants consumed 140 ml per day of NO3
--rich 

beetroot juice (nitrate; Beet It, James White Drinks, Ltd., Ipswich, UK) or 140 mL per 

day of NO3
--depleted beetroot concentrate (placebo; James White Drinks, Ltd., Ipswich, 

UK). Both participants and researchers were blinded to the drink contents until the 

completion of the study. Participants were also provided a list of foods rich in NO3
-, and 

instructed to avoid the consumption of these foods and to otherwise maintain their 

normal dietary intake for the duration of the study. In addition, they were asked to 

abstain from the use of antibacterial mouthwash for the duration of the study, as it 

eliminates the oral bacteria that reduce NO3
- to NO2

- 24.  

 

Study procedures 

On each study day (nitrate or placebo), participants consumed their final dose of nitrate 

or placebo on arrival to the laboratory, about 1.5 h before the first dynamic CA test. 

After a 30 min supine and 45 min semi-recumbent rest on a manually inclined bed 
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(A4524-0096L, Paramount Bed Co., Ltd., Tokyo, Japan), a venous blood sample (10 

mL) was collected from the antecubital vein into a vacutainer and immediately 

centrifuged at 1000 g for 15 min at 4°C (Kubota 5200, Kubota Co., Ltd., Tokyo, Japan) 

to separate serum from whole blood. The serum samples were frozen at -80°C for 

further analysis of NO3
- content by SRL Co., Ltd. (Tokyo, Japan). Briefly, after 

deproteinizaation, serum NO3
- was measured by using high-performance liquid 

chromatography25.  After attachment of all devices, normoxic baseline values were 

measured for 5 min; then, dynamic CA assessment in normoxia was performed. 

Thereafter, hypoxic gas (FiO2 0.13) was supplied via a commercial tent (about 5000 L) 

with a hypoxic gas generating system (Hypoxico Everest Summit 2: Will Co., Ltd., 

Tokyo, Japan). Hypoxic baseline values were measured during the last 5 min of the 60-

min resting hypoxic exposure. Next, dynamic CA assessment in hypoxia was 

performed. Inspired oxygen concentration was verified before and after each experiment 

using a metabolic cart (AE-310s; Minato Medical Science, Osaka, Japan).  

 

Dynamic CA assessmemt 

Dynamic CA was assessed with participants sat on a comfortable chair in a semi-

recumbent position. After 2 min of baseline data in normoxia were recorded, bilateral 

thigh-cuffs (width 22 cm) were inflated to a pressure of 220 mmHg for 3 min using a 

custom cuff inflator. To evaluate dynamic CA, the cuff was then rapidly deflated, 
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causing a transient drop in arterial blood pressure, and measurements were continued 

for an additional minute. Participants were instructed to remain relaxed and were not 

given feedback regarding the elasped time during cuff occlusion. This protocol was 

repeated two or three times at 5-min intervals to allow for recovery to the resting 

value26. If the first or second trial reduction in mean arterial pressure (MAP) was < 15 

mmHg27, a third trial was performed, and the average value of two trials was used13. 

 

Measurements 

Right ICA measurements were performed 1.0–1.5 cm distal to the carotid bifurcation 

with a Doppler ultrasound set at 10.0 MHz and a linear transducer (Logic-e; GE 

Healthcare, Tokyo, Japan). For baseline ICA flow measurement, the ICA blood flow 

was averaged over 2 min during the last 5 min of the initial 30-min resting exposure. 

For the dynamic ICA blood flow measurements, blood flow was continuously measured 

during the thigh cuff test. To calculate the average ICA blood flow, we analyzed the 

mean vessel diameter (Dmean) and flow velocity as described in a previous study28. 

Briefly, after obtaining a clear image of the vessel using the brightness mode, the mean 

vessel diameter was calculated as: mean diameter = (systolic diameter × 1/3) + 

(diastolic diameter × 2/3). The time-averaged mean flow velocity obained using the 

pulse wave mode was defined as the mean blood flow velocity (Vmean; in centimeters 

per second). Blood flow was calculated by multiplying the cross-sectional area × 60 (in 
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milliliters per minute). Throughout the measurement, care was taken to ensure that the 

probe position was stable, the insonation angle did not vary (< 60° in all cases) and the 

sample volume was positioned in the center of the vessel and adjusted to cover the 

width of the vessel diameter. Heart rate (HR) was monitored using three-lead ECG. 

Pulmonary ventilation (V
．

E) and partial pressure of end-tidal carbon dioxide output 

(PETCO2) were measured by a breath-by-breath gas analyzer (AE-310S; Minato Medical 

Science, Osaka, Japan). Standard gases (O2 15.23%, CO2 4.999%, and N2 balance) and 

room air were used to calibrate the gas analyzer before each test. Beat-by-beat MAP 

was measured using finger photoplethysmography from the middle or index finger of 

the left hand (MUB-101; Medi-sens, Saiatama, Japan). Peripheral arterial oxygen 

saturation (SpO2) was monitored by finger pulse oximetry (PULFIS WB-100, Japan 

Precision Instruments Inc., Gunma, Japan). 

 

Data analysis 

We calculated the rate of regulation (RoR) as an indicator of dynamic CA29. For 

calculation of RoR, baseline values for MAP, ICA blood flow and cerebrovascular  

conductance (ICA/MAP) were defined as the mean during the 4 s immediately before 

the thigh-cuff release. The RoR was calculated from the slope of the regression line 

between ICA conductance and the time from 1.0 to 4.0 s after thigh-cuff deflation and 

normalized to the degree of cuff-release-induced hypotension. The RoR = (ΔICA 
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conductance/Δt)/ΔMAP, where ΔICA conductance/Δt is the slope of the linear 

regression between ICA conductance and time (t), and ΔMAP is the magnitude of the 

blood pressure step, which was calculated by subtracting the baseline MAP from the 

MAP averaged during the interval from 1.0 to 4.0 s. In a previous study, the data from 

1.0 to 3.5 s after cuff deflation were used to calculate dynamic CA29; however, we 

extended this time to 4.0 s after cuff deflation to ensure beat-by-beat blood flow data for 

at least three cardiac cycles13,28. Trials in which the reduction in MAP was < 15 mmHg 

were excluded from analysis, and the average of two trials was used. The coefficient of 

variation of this measure is 13%.  

 

Statistics  

Values are expressed as means ± SD unless otherwise stated. Two-way repeated-

measures ANOVAs (oxygen × supplement) were used for comparisons of 

cardiorespiratory, hemodynamic and dynamic CA variables across conditions. P values 

< 0.05 were considered to indicate statistical significance. The magnitude of effect of 

nitrate supplementation on the hypoxia-induced decline in dynamic CA variables was 

determined by ANCOVA comparison of nitrate and placebo hypoxia trials (with 

normoxia placebo as the covariate), and interpreted in relation to a priori meaningful 

differences30. A sample size estimation for the primary analysis indicated that 10 

participants were needed to produce an 80% chance of obtaining statistical significance 
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at the 0.05 level for a two-tailed design, based on a minimum important difference of 

0.076 RoR, a standard deviation of the difference of 0.05, and an estimated correlation 

of 0.411. Statistical analyses were performed using commercial software packages 

(Sigma Stat 3.5, Hulinks, Chicago, IL, USA; SPSS V25, IBM Corp, Armonk; NY). 

 

RESULTS 

Serum nitrate 

Four days inorganic nitrate supplementation increased serum NO3
- concentrations 

compared to placebo (mean difference [95% confidence interval]: Δ208 [171, 245] M; 

P < 0.001). 

 

Cardiorespiratory and hemodynamic responses at rest 

Effect of hypoxia. Compared to normoxia, acute hypoxia decreased SpO2, and 

increased HR, ICA diameter, ICA blood flow, and CVC (all P < 0.05; Table 1). Further, 

acute hypoxia tended to increase V
．

E (P = 0.06) and decrease PETCO2 (P = 0.09). 

Hypoxia did not alter MAP or ICA blood flow velocity at rest (P > 0.05; Table 1). 

Effect of nitrate. Dietary nitrate supplementation did not affect any of the resting 

cardiovascular or cerebrovascular responses in either normoxia or hypoxia (all P > 0.05; 

Table 1). 
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Dynamic cerebral autoregulation 

Effect of hypoxia. Thigh-cuff release elicited similar MAP reductions in hypoxia and 

normoxia (P = 0.7; Table 2). In contrast, the ICA blood flow nadir in response to thigh-

cuff was greater in hypoxia than normoxia (P < 0.001; Table 2). Dynamic CA 

assessment (1-4 s after deflation) indicated that hypoxia did not alter the ΔMAP, but 

did decrease the slope of CVC (P < 0.05; Table 2). Consequently, RoR was decreased 

in hypoxia compared to normoxia (Δ-0.085 [-0.116, -0.054]; P < 0.05; Figure 3). 

Effect of nitrate. Thigh-cuff release elicited similar reductions in MAP and ICA flow 

after nitrate and placebo in normoxia and hypoxia (Table 2; interactions P > 0.9). 

During dynamic CA assessment (1-4s after deflation), nitrate had no effect on any 

dynamic CA variable in normoxia or hypoxia when compared to the placebo (Table 2, 

Figures 2 and 3). Specifically, compared to placebo, nitrate supplementation did not 

alter RoR in normoxia (Δ-0.022 [-0.060, 0.016]; P = 0.2) or hypoxia (Δ0.017 [-0.019, 

0.053]; P = 0.3). Further, compared to placebo, nitrate supplementation did not effect 

the hypoxia-induced decline in dynamic CA variables (Figure 2): MAP (Δ-0.06 [-3.62, 

3.50]; P = 0.9), ICA flow (Δ-1 [-26, 23]; P = 0.9), CVC (Δ-0.003 [-0.009, 0.002]; P = 

0.2), or RoR (Δ0.020 [-0.010, 0.051]; P = 0.2 

 

DISCUSSION 
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This study is the first to investigate the effects of dietary nitrate supplementation on 

dynamic CA in hypoxia. The major findings of this study are therefore that increased 

bioavailability of NO by dietary nitrate supplementation did not influence dynamic CA 

in acute hypoxia or recover the hypoxia-induced reduction in dynamic CA (Figure 3). In 

addition, we also show that dietary nitrate supplementation did not influence 

cerebrovascular responses, including dynamic CA, whilst participants breathed normal 

ambient air (normoxia). A particular strength of this study was the method used to 

determine dynamic CA, i.e. duplex Doppler ultrasound in conjunction with the 

traditional thigh-cuff test. In brief, we used duplex Doppler ultrasound as it enables the 

assessment of blood flow velocity and vessel diameter, which contrasts the easier-to-

perform and more commonly used TCD method that only assesses blood flow velocity. 

Previous research has shown the thigh-cuff method, which imposes a large and abrupt 

change in blood pressure, is more sensitive to interventions, such as hypoxia, than 

transfer function analysis that examines spontaneous fluctuations in blood pressure26. 

The importance of using these methods is emphasised when considering the only other 

study to have examined dietary nitrate supplementation on dynamic CA in normoxia 

reported inconclusive effects31 that may have resulted from using TCD in conjunction 

transfer function analysis, which is a less sensitive method to assess dynamic CA than 

used in the present study.   
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In our study, acute hypoxia reduced dynamic CA which is a consistent finding with many 

other studies6-14. Indeed, 10 of 12 participants had reduced dynamic CA with hypoxia 

irrespective of supplementation. However, in contrast with our hypothesis, and previous 

research that suggests NO may have an important role in regulating brain vascular tone32 

and dynamic CA15, dietary nitrate supplementation did not influence any physiological 

determinant of dynamic CA (Figure 2), or dynamic CA (Figure 3), differently than the 

placebo in acute hypoxia. Indeed, the mean difference in RoR between nitrate and placebo 

and the 95% confidence intervals indicate any effect of nitrate is trivial in magnitude. 

This finding suggests NO bioavailability has limited influence on the hypoxia-induced 

reduction in dynamic CA observed in young healthy adults. Of note, our results do not 

discount the role of NO in CBF responses including dynamic CA in hypoxia. CBF 

regulation is a complex, multifaceted physiological process, of which the action of NO is 

a key component33. The data from this study simply suggest that insufficient 

bioavailability of NO is not the primary cause of hypoxia-induced reduction in dynamic 

CA. 

A possible alternative mechanism for the hypoxia-induced reduction in dynamic 

CA could be attributed to increased vasodilation at rest29. Hypoxia is a potent 

vasodilator34, and therefore cerebral blood vessels may already be close to maximally 

dilated in hypoxia, limiting capacity for further vasodilation to maintain CVC during 

dynamic CA. In our study hypoxia substantially increased ICA diameter at rest (Table 
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1), which may have limited the capacity for further dilation in dynamic CA response to 

the thigh cuff release. Regions with already elevated CBF at rest in hypoxia have been 

previously shown to minimally increase CBF with experimental manipulations known 

to cause vasodilation35, supporting the idea that baseline diameter influences capacity 

for further dilation. Indeed, previous research supports that dynamic CA depends on 

basal vascular tone, and that the autoregulatory response in middle cerebral artery blood 

flow velocity is slower when cerebral vessels are already dilated29. Similarly, lower 

cerebrovascular resistance (higher cerebrovascular conductance) resulted in higher 

transfer function gain, indicating that dynamic CA is reduced when cerebral vessels are 

dilated36. Other factors, including prostaglandins37-40, and sympathetic nerve 

activity33,41, have been shown to contribute the regulation of CBF and may also be 

responsible for the hypoxia-induced reduction in dynamic CA.  

 

Limitations and perspectives 

Our findings should be considered carefully within the context they were obtained. To 

assess dynamic CA we measured changes in ICA blood vessel diameter and blood 

velocity flow. Global CBF however consists of ~75% ICA flow and ~25% vertebral 

artery (VA) flow42 so, although technically challenging, a more complete assessment of 

CA would have included both ICA and VA. Further, as one previous magnetic 

resonance imaging study observed regional but not global CBF differences after nitrate 
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supplementation21, future studies examining the influence of dietary nitrate on regional 

extra- and intracranial cerebral blood flow and autoregulation are warranted. Dietary 

nitrate supplementation has been shown to be effective to recover peripheral vascular 

function at high altitude23. In contrast, dietary nitrate did not affect cerebral vascular 

function during hypoxic exposure in the present study. This heterogenous response 

between vascular beds is consistent with a previous study where dietary nitrate 

increased muscle oxygenation in hypoxia, but did not affect cerebral oxygenation43. In 

combination these findings provide evidence dietary nitrate and NO influence 

peripheral and cerebral vascular responses to hypoxia by different mechanisms. The 

limited effects of dietary nitrate observed on dynamic CA in this study may be a 

consequence of the young healthy population recruited. Indeed, as other studies in 

young healthy individuals we report no effect of dietary nitrate on resting physiological 

responses in normoxia or hypoxia23,44,45. Whether dietary nitrate influences 

cerebrovascular responses and dynamic CA in persons with reduced vascular function, 

poor NO bioavailability, or clinical populations with cerebrovascular disease remains to 

be investigated. Future research should also resolve whether reductions in dynamic CA 

are related to an increase in adverse outcomes such as headache and Acute Mountain 

Sickness, which are common in hypoxic conditions7,9,13,46. Resolving this is important 

as dynamic CA could be a useful screening-tool to identify those persons at risk of 

hypoxia-induced adverse events. 
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CONCLUSION 

In conclusion, a four-day dietary inorganic nitrate supplementation did not affect resting 

cerebrovascular responses or dynamic CA in either normoxia or hypoxia (after 60-min 

exposure with 13% O2) in healthy men. This suggests NO availability is not responsible 

for hypoxia-induced reduction in dynamic CA.  
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Figure Legends 

Figure 1. The protocol of the present study. BL, baseline; dCA, dynamic cerebral 

autoregulation assessment; FiO2, fraction of inspired oxygen. 
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Figure 2. Comparisons in the components of dynamic cerebral autoregulation 

among the four conditions. The supplement contrast is defined by dashed (placebo) 

versus solid (nitrate) lines, the oxygen contrast is defined by black (normoxia) versus grey 

(hypoxia) lines. As such, the four conditions are represented as follows: placebo 

normoxia, dashed black line; nitrate normoxia, solid black line; placebo hypoxia, dashed 

grey line; nitrate hypoxia, solid grey line. All values are presented as changes from 

baseline to cuff release, normalised to baseline in each condition. Hypoxia (A) had no 

effect on mean arterial pressure (MAP), (B) decreased internal carotid artery (ICA) flow, 

and (C) decreased cerebrovascular conductance (CVC) following thigh cuff release 

(*P<0.05). However, nitrate had no effect on (A) MAP, (B) ICA flow, or (C) CVC (all 

P>0.05). Values are means ± SD. *P < 0.05 between normoxia and hypoxia. 
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Figure 3. Dynamic cerebral autoregulation (rate of regulation: RoR) in normoxia 

and hypoxia after placebo and nitrate supplementation. * Significant difference 

between normoxia and hypoxia (P > 0.05). Values are means ± standard deviation (SD). 
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Table 1. Resting cardiorespiratory and hemodynamic responses in normoxia and hypoxia after placebo and nitrate supplementation. 

 Placebo Nitrate Two-way ANOVA 

 Normoxia Hypoxia Normoxia Hypoxia Suppl. Oxygen Interaction 

Cardiorespiratory  

V
．

E, l min-1 10.0 ± 1.4 10.6 ± 1.4 10.2 ± 0.9 10.6 ± 1.7 0.678 0.059 0.784 

PETCO2, mmHg 37.8 ± 1.9 36.5 ± 1.9 37.7 ± 2.1 36.5 ± 1.7 0.852 0.094 0.903 

HR, bpm 63 ± 5 68 ± 5* 64 ± 5 69 ± 4* 0.137 <0.001 0.828 

MAP, mmHg 83 ± 5 85 ± 6 84 ± 5 85 ± 5 0.342 0.133 0.712 

SpO2, % 98.2 ± 0.5 85.2 ± 4.8* 98.4 ± 0.8 85.9 ± 4.0* 0.160 <0.001 0.442 

Internal carotid artery   

Blood flow, ml min-1 327 ± 20 345 ± 26* 337 ± 21 356 ± 36* 0.274 0.022 0.880 

Blood velocity, cm s-1 29.0 ± 5.3 26.4 ± 2.5 27.9 ± 4.9 26.2 ± 3.5 0.555 0.149 0.655 

Diameter, cm 0.49 ± 0.05 0.53 ± 0.03* 0.51 ± 0.04 0.54 ± 0.04* 0.252 0.015 0.821 

CVC, ml min-1 mmHg-1 3.90 ± 0.38 4.05 ± 0.34* 4.07 ± 0.45 4.21 ± 0.52* 0.256 0.034 0.928 

Values are means ± standard deviation (SD). V
．

E, pulmonary ventilation, PETCO2, partial pressure of end-tidal carbon dioxide; HR, heart rate;        bpm, 

beats per minute; MAP, mean arterial pressure; SpO2, arterial oxygen saturation; CVC, cerebrovascular conductance; Suppl., supplementation.    * 

indicates a statistical difference between normoxia and hypoxia within the same supplementation. 
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Table 2. Hemodynamic responses to the thigh-cuff test in normoxia and hypoxia after placebo and nitrate supplementation. 

 Placebo Nitrate Two-way ANOVA 

 Normoxia Hypoxia Normoxia Hypoxia Suppl. Oxygen Interaction 

Thigh-cuff response                

Max. ΔMAP (%) -26.0 ± 4.1 -25.6 ± 4.6 -26.9 ± 3.8 -26.6 ± 3.8 0.525 0.683 0.913 

Max. ΔICA flow (%) -17.2 ± 2.3 -21.2 ± 4.7* -17.9 ± 2.7 -21.8 ± 3.3* 0.557 <0.001 0.987 

Dynamic CA variables (1-4 s after deflation)             

Slope of CVC 0.041 ± 0.006 0.023 ± 0.008* 0.040 ± 0.011 0.026 ± 0.004* 0.646 <0.001 0.345 

ΔMAP (%) -17.0 ± 3.0 -16.7 ± 5.3 -17.9 ± 3.5 -17.1 ± 3.4 0.631 0.591 0.804 

Values are mean ± SD. MAP, mean arterial pressure; ICA, internal carotid artery; CVC, cerebrovascular conductance; Suppl., supplementation. * 

indicate significant difference between normoxia and hypoxia within the same supplementation. 

 

 


