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Abstract 1 

Migration routes of bats remain largely unknown, as previous orientation studies have been 2 

challenging even with newly developed techniques in tracking, genetic and stable isotope studies. 3 

However, a lack of knowledge about migrations poses problems for species conservation, 4 

especially in newly described species for which ecological information is not yet available. Here, 5 

we aimed to test flight orientation behaviour in the Soprano pipistrelle, Pipistrellus pygmaeus. This 6 

species has been described only 22 years ago but is now known to have a wide geographic 7 

distribution in Europe, yet virtually no information exists about seasonal movements of P. 8 

pygmaeus. In large parts of the continent, seasonal occurrence of P. pygmaeus matches with that 9 

of long-distance migratory Nathusius' bats (P. nathusii). To shed light on the migratory behaviour 10 

of both species, we investigated their orientation decisions at the Latvian Baltic Sea coast which is 11 

well-known for summer bat migration along a north-south axis. We developed an arena-based 12 

assay designed to measure orientation of takeoffs. The arena was installed in the natural flight path 13 

of Pipistrellus nathusii and P. pygmaeus, and after takeoff, bats chose the direction freely. We 14 

detected bearing fidelity between takeoff and departure flights, suggesting bats used cues within 15 

the arena, putatively geomagnetic information, which allowed them to set a course prior to takeoff. 16 

Further, our results show P. pygmaeus orientates in a southerly, seasonally appropriate direction, 17 

similar to P. nathusii during on-going migration. Therefore, our findings are consistent with true 18 

migratory behaviour of P. pygmaeus in the northern part of its range. Predicting flight directions 19 

of bats based on takeoff direction offers a simple test for orientation studies, and could further be 20 

used to test senses of bats under varying treatments, thereby facilitating a comparison of 21 

navigational skills across taxa, e.g. bats and birds. 22 

Keywords: Animal orientation, Bat migration, Mammal migration, Movement Ecology, 23 

Navigation, Pipistrellus nathusii, Take-off 24 
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 1 

Introduction 2 

Bats living in seasonal habitats migrate to reach mating and wintering grounds, yet orientation 3 

behaviour and spatial movements of bats remain poorly described for most species owing to the 4 

cryptic nature of bat migration (Holland 2007; Voigt et al. 2018). The traditional method of ringing 5 

bats with metallic bands uncovered some of the longest continental mammal migrations in the 6 

world (Barclay & Bell 1988; Hutterer et al. 2005). While ringing has been shown to be an effective 7 

solution for the study of spatial movements, it needs to be applied to vast numbers of bats to ensure 8 

reliable data because of often low recovery rates (Barclay & Bell 1988; Steffens et al. 2004; Ellison 9 

2008; Holland & Wikelski 2009). Also, some species are sensitive to ringing which led to a 10 

reduction of ringing efforts based on ethical reasons (Baker et al. 2001; Dietz et al. 2006). Due to 11 

these limitations, our understanding of regional bat movements and migration has been largely 12 

restricted to selected species and study locations harbouring stable populations. 13 

However, migratory behaviour has been newly described or revisited for many bat species over the 14 

past decades based on traditional ringing and rapid developments of other techniques in both field 15 

and laboratory (Wilkinson & Fleming 1996; Russell et al. 2005; Morales-Garza et al. 2007; Racey 16 

et al. 2007; Bryja et al. 2009; Moussy et al. 2013). For example, genetic techniques have revealed 17 

migratory directions could be inferred from pairwise comparisons of haplotype frequencies of 18 

common noctules, Nyctalus noctula, sampled in nursery roosts and hibernaculas (Petit & Mayer 19 

2000). However, both dispersal and migration affect gene flow which makes exact delineations of 20 

migratory behaviours based on genetic patterns vulnerable to subadult dispersal movements 21 

(Moussy et al. 2013). Further, mating on migration, a common behavioural strategy observed in 22 
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European and North American bats, e.g. Tadarida brasiliensis, can hamper assignments of 1 

individuals to geographically distinct subpopulations (McCracken & Gassel 1997). 2 

Alongside this, automated acoustic recordings of bat echolocation calls represent an alternative 3 

technique to detect spatiotemporal occurrences of bats, often suggestive of migratory movements 4 

(Heim et al. 2016). Such acoustic monitoring is highly valuable for delineating the phenology of 5 

mass occurrences of bats at distinct locations and enable us to identify putatively migratory species 6 

by call characteristics (Jarzembowski 2003; Furmankiewicz & Kucharska 2009; Johnson et al. 7 

2011; Rydell et al. 2014). In combination with visual observations, such acoustic monitoring might 8 

even enable determination of the direction from which bats arrive at specific locations 9 

(Furmankiewicz & Kucharska 2009). Yet, acoustic monitoring alone does not reveal the direction 10 

of migratory movements of individual bats, and therefore the observation of seasonal presence of 11 

bats using acoustic methods fails to provide convincing evidence for migration 12 

Lastly, stable isotope approaches have revealed the geographical origins of sedentary and 13 

migratory bats based on isoscape origin models (Cryan et al. 2004; Ossa et al. 2012; Popa-Lisseanu 14 

et al. 2012; Voigt et al. 2012; Lehnert et al. 2014; Voigt et al. 2016), yet the accuracy of these 15 

geographic assignments suffers from variability of isotope ratios in consumer tissues and source 16 

waters (Voigt & Lehnert 2018). Finally, our understanding of regional and long-distance migration 17 

is hampered in bats because conventional approaches are largely incompatible with their small size, 18 

which presents tagging bats with long-lasting loggers or GPS units (Holland & Wikelski 2009).  19 

.  20 

Yet , we recently used the direction of departure flights of bats tagged with radio transmitters to 21 

infer migratory orientation (Pipistrellus nathusii; Lindecke et al. 2015). These bats showed a 22 



 5 

consistent southern departure flight direction even when translocated 11 km far away from the 1 

migration corridor where they were captured (Lindecke et al. 2015). Based on that, we aimed to 2 

develop a method to study bat orientation and eventually migration. Here, we investigated the 3 

migration behaviour of a cryptic bat species, the Soprano pipistrelle, Pipistrellus pygmaeus (Leach, 4 

1825). Soprano pipistrelles are particularly interesting with respect to their movement ecology, 5 

because this species was once considered to be identical to P. pipistrellus (Schreber, 1774), a sister 6 

species which lacks any pronounced migration behaviour (Steffens et al. 2004, Hutterer et al. 7 

2005). At the turn of the last century, P. pygmaeus was described as a new species based on genetic, 8 

morphological and acoustic parameters (Barratt et al. 1997; Mayer & von Helversen 2001). 9 

Therefore, banding data preceding this date accidentally lumps recapture data of the two species, 10 

confounding our understanding of the movement ecology of both species. Recent field studies 11 

demonstrated both species prefer distinct habitats, exhibit contrasting foraging behaviours and 12 

show different phenologies in large parts of their distribution range (Davidson-Watts & Jones 2006; 13 

Davidson-Watts et al. 2006; Nicholls & Racey 2006; Sattler et al. 2007). While P. pipistrellus is 14 

widely accepted as a sedentary, or eventually regionally migratory bat (Hutterer et al. 2005; Voigt 15 

et al. 2012; Voigt et al. 2016; but cf. Bryja et al. 2009), the status of P. pygmaeus as a potentially 16 

migratory species is still under debate, albeit in-depth genetic studies implied some degree of 17 

migratory behaviour for this species (Racey et al. 2007; Bryja et al. 2009; Dietz et al. 2009). Further 18 

genetic analysis suggested that migratory behaviour of P. pygmaeus is more pronounced in 19 

continental European populations than in populations of the British Isles (Sztencel-Jablonka & 20 

Bogdanowicz 2011). 21 

takeoffHere, we focused on the orientation behaviour of individual P. pygmaeus caught between 22 

August and September at Pape Bird Ringing Station (PBRS) at the Latvian Baltic Sea coast. 23 

Previous acoustic studies demonstrated a regular occurrence of the species at PBRS during summer 24 
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migration (Rydell et al. 2014; Voigt et al. 2017, 2018), yet it is unknown if this reflects the seasonal 1 

occurrence of P. pygmaeus in this region without pronounced directional migration flights. 2 

Interestingly, similar to other bats passing PBRS on migration, P. pygmaeus only exceptionally 3 

displays foraging behaviour (Voigt et al. 2017, 2018). In our study, we aimed to compare 4 

directionality of flights, here estimated as the orientation behaviour of departing P. pygmaeus with 5 

that of a well-known European long-distance migrant, P. nathusii. Nathusius’ bats have been 6 

extensively studied at the same location for many years (Pētersons 2004; Steffens et al. 2004, 7 

Hutterer et al. 2005) and show pronounced southward orientation when released close to the coastal 8 

line of PBRS (Lindecke et al. 2015). 9 

In order to investigate the migratory behaviour of P. pygmaeus and P. nathusii without the use of 10 

tracking devices, we aimed to first identify a movement behaviour which is performed by all bats 11 

and which is measurable at a relatively small scale, yet with sufficient accuracy and precision. In 12 

the past, numerous attempts to measure orientation behaviour of bats in a confined space failed 13 

(e.g. Mueller 1966), however Wang et al. (2007) demonstrated that Chinese noctules (Nyctalus 14 

plancyi) aligned themselves to the magnetic field when resting in a round plastic basket. In studies 15 

of non-migratory bats, Holland and colleagues also demonstrated that bats use a magnetic compass 16 

during active flight (Holland et al. 2006; Holland et al. 2010). Based on these studies, we 17 

hypothesized that wild bats could use environmental cues, putatively the Earth's magnetic field, for 18 

orientation and also directional takeoff from the perimeter of a circular arena. Thus, we predicted 19 

that if a bat oriented towards a relatively distant (migratory) goal from inside a circular-shaped test 20 

apparatus, we would find bearing fidelity between measures. That means, we would observe 21 

persistence between repeated measures of direction, i.e. maintenance of a compass bearing while 22 

the focal bat is moving freely. In theory, high bearing fidelity indicates high relevance of the 23 

particular movement direction to the individuals' navigational decisions, sometimes despite 24 
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elevated sensory noise or dynamically changing environmental information. To test our prediction 1 

on bearing fidelity in pipistrelles, we developed a simple, easy-to-build setup which we termed a 2 

circular release box (CRBox) for bats enabling us to register a bats’ takeoff orientation (TOO). 3 

We observed the directionality of flights, i.e., initial departure flight orientation (DFO) of free 4 

flying bats after takeoff from the CRBox. In bird orientation studies, recording of initial movement 5 

bearings is standard (Wallraff, 2005), and it has been successfully used in hand-released bats in the 6 

past (e.g. Mueller 1966; Buchler & Childs 1982; Serra-Cobo et al. 2000). If P. pygmaeus oriented 7 

departure flights easterly towards inland instead of the Baltic Sea shoreline, i.e. in stark contrast to 8 

P. nathusii, we would reconsider our hypothesis of a true migratory motivation in P. pygmaeus. 9 

Aside from spatial orientation measures, we also timed latency to takeoff. Latency, the delay 10 

between a stimulus and a behavioural response, is a standard measure in behavioural assays, e.g., 11 

in studies of spatial learning and escape responses (Sousa et al., 2006; Domenici et al., 2011). 12 

Conceptual aspects of both of these established research fields will be integral for future work 13 

applying an experimental assay to study bat orientation. Therefore we aimed to record baseline 14 

latency data with our CRBox setup. Our study is the first investigating wild migratory mammals 15 

with the help of an orientation arena. 16 

 17 

MATERIAL AND METHODS 18 

Study location and animals 19 

Field work was conducted between 24 August and 10 September 2016 at Pape Bird Ringing Station 20 

(56°09' N 21°03' E, Rucava Municipality, Latvia) under permit Nr. 31/2016-E issued by the 21 

Latvian Nature Conservation Agency. Using a Heligoland funnel trap, we caught in total 64 adult 22 



 8 

bats. We aged bats according to the closure of epiphyseal gaps of the phalanges; P. nathusii: 19 1 

males, 16 females, P. pygmaeus: 12 males, 15 females, 2 individuals with undetermined sex. Bats 2 

were kept in wooden boxes in small groups of 3 to 4 individuals until tested.  3 

 4 

Test apparatus 5 

All components for construction of the orientation cage for bats, i.e. the CRBox, were purchased 6 

from hardware stores. As a measure of precaution, we only used non-magnetic materials to avoid 7 

interference with a putative magnetic sense of bats. The same rationale applied to the mechanism 8 

for remote release which is operated manually, as any electronics could also potentially interfere 9 

with magnetoreception due to electromagnetic noise (Engels et al. 2014). To ensure geomagnetic 10 

field intensity at the experimental site (50.8 µT, measured on 24 Aug 2016) was not altered inside 11 

the CRBox, we used an Apple iPhone 5 equipped with a 3D magnetometer (Asahi Kasei 12 

Microdevices AK8963, Tokyo, Japan; resolution: 0.15 µT/LSB, 16-bit) for control measurements. 13 

The CRBox consisted of two circular shaped elements, a lid made out of wood, including the 14 

mechanism for remote release, and the arena with eight openings for directional choice as the 15 

bottom (Fig. 1). The arena part consisted of a shallow funnel, so that a bat started a test below the 16 

level of the wall openings, i.e. a focal animal was placed in the centre of the funnel, at its lowest 17 

part, and was required to crawl for ~12 cm upwards to leave the arena through one of eight exits. 18 

In this way, animals would not face the openings immediately, and thus the effect of a spontaneous 19 

escape response is minimized (Fig. 1a). To construct the funnel, we used extruded polystyrol (XPS, 20 

Jackodur, Jackson Insulation). We applied synthetic leather as a coat for the arena because it is not 21 

slippery for crawling bats and it comes with a surface texture which can be cleaned easily between 22 

trials. The eight takeoff platforms were made out of wood and tilted downward 40° since an 23 
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inclined platform would facilitate takeoff for bats. Remote release of the focal bat is enabled 1 

through lifting the acclimatisation box (non-transparent PET) which was fixed to a stout cord 2 

running over a pulley. We attached a white stiff paper flag to the rod as a visual cue for the 3 

experimenter to stop pulling the chord when the acclimatisation box was lifted to the maximum. 4 

The lid of the CRBox extends beyond the arena (Fig. 1b). The brim serves to hinder the bat from 5 

seeing the night sky overhead and to curtail any emitted echolocation calls. If the bat is motivated 6 

to gather information from its surroundings, it is thus forced to takeoff. Finally, we used a stool to 7 

position the CRBox 1 m above ground to increase the likelihood for bats to takeoff (Fig. 1c). Using 8 

a spirit level, we adjusted the CRBox to the horizontal plane.  9 

 10 

Release procedure and orientation measures 11 

CRBox tests were conducted over the course of six nights on a meadow of rectangular shape (1,300 12 

m2) surrounded by trees, 100 m distant to the shoreline and only under calm wind conditions and 13 

clear sky. The CRBox was placed in the centre of the meadow with a minimum distance of 18 m 14 

to surrounding rows of trees. We used a bat detector (Pettersson D-100) tuned to the call frequency 15 

of the species under test (40 kHz for P. nathusii and 50 kHz for P. pygmaeus respectively) to 16 

control for any conspecific bat calls at the location of the CRBox. Bats are social animals and may 17 

orient towards or be repelled by echolocation or social calls emitted by conspecifics. This could 18 

affect exit latency, TOO and vanishing behaviour once a bat is airborne. We tested bats in the 19 

second half of the night, with the earliest release starting at 01:30 h and the latest at 05:30 h. We 20 

repeated acoustic checks for free flying wild bats between trials. Releases were paused when other 21 

bats were registered. Before any trial, the interior of the CRBox and takeoff platforms were cleaned 22 

with 70% ethanol to prevent animals from using olfactory cues left by previously tested bats. We 23 
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manually placed individuals into the acclimatisation box varying the angle for insertion randomly 1 

by 90° between tests. Bats were restricted from viewing spatial details of the environment prior to 2 

release. We used night vision goggles (BIG25 Safran Vectronix AG) for behavioural observations, 3 

i.e., comparison of TOO and subsequent flight. Departure flight bearings were recorded in eight 4 

sectors with a width of 45°, i.e., cardinal and ordinal compass directions after the bat had 5 

disappeared from view. Final bat vanishing directions could be observed up to a distance of approx. 6 

20 to 50 m, depending on whether a focal bat flew into or above the canopy of trees surrounding 7 

the meadow. Departure bearings were noted from the position of the CRBox. The observer moved 8 

to this position when a bat was about to vanish from viewing range in heights above canopy. If a 9 

bat disappeared in the canopy, the observer memorised that spot by means of tree characteristics 10 

and recorded the bearing from the position of the CRBox. The error introduced by measuring all 11 

departure flight bearings from that single position is negligible considering the 45° wide sectors 12 

for recording of data. For analysis of bearing fidelity, we discarded trials in which we were not able 13 

to identify DFO due to rapid flight manoeuvres performed by these individuals, and thus could not 14 

calculate angular differences (P. nathusii, n = 13; P. pygmaeus, n = 5). However, we still used 15 

takeoff latency data from discarded trials as those were not compromised. Variances of bearing 16 

fidelity within and across animals can be evaluated based on angular differences between measures 17 

of directionality at different spatial scales, e.g., TOO and DFO. For intra- and inter-individual 18 

statistical comparison, the analysis of bearing fidelity requires normalisation of the initial 19 

orientation measure (here TOO) to a common direction. As a result, the second measure (DFO) 20 

can be visualised relative to the TOO of the bat. Measurement of takeoff latency started as soon as 21 

the acclimatisation box was lifted, i.e., when a bat was released inside of the arena, and stopped 22 

when the bat launched into air. Based on escape tests with several species of bats (Chase, 1981), 23 

we set a 3 minute cut-off time for cancelling a release trial. The experimenter at the other end of 24 
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the cord remained motionless to avoid any noise which could hinder bats from taking off or 1 

motivate them to change flight paths over the meadow. For P. pygmaeus, we measured takeoff 2 

latency during 22 trials; in five trials however, we could not record the takeoff precisely enough to 3 

include these measurements in the statistical analysis. 4 

 5 

Statistical analysis of orientation behaviour and takeoff latency 6 

To test for persistence between TOO and DFO, we normalised TOOs (e.g. N, NE, E, etc.) of all 7 

individuals for which we observed departure flights to a common direction (0° ahead) and 8 

determined the individual angular difference of respective departure flight bearings by subtraction. 9 

If TOO was the consequence of a spontaneous escape-response dependant on direction of insertion 10 

or the result of stress by the procedure, we would expect uniform random distribution of departure 11 

flight bearings irrespective of normalisation, since we randomly inserted animals to the test 12 

apparatus. We determined unimodal deviation from circular uniformity by applying Rayleigh’s test 13 

(Batschelet 1981). For both species, we compared mean DFO with normalised TOO (0° ahead) by 14 

inspecting 95% confidence intervals, which is a way to evaluate whether mean DFO would 15 

encompass TOO (confidence interval test), i.e. if bearing fidelity can be assumed after a bat takes 16 

off. We further aimed to evaluate how actual vanishing directions of both species matched with the 17 

topography around the release site, e.g. whether they were aligned with the coastline, or if 18 

orientations resemble migratory orientations previously recorded via capture-recapture (ringing) 19 

and radio tracking (Pētersons 2004; Lindecke et al. 2015). At our field station, the coastline runs 20 

in a straight line from NNW (339.0°) to SSE (159.0°) in both directions. We calculated mean 21 

bearing and mean vector length from DFOs of both species while using Rayleigh's test to control 22 

for deviation from circular uniformity. However, we observed bats taking off and vanishing in 23 
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both, southerly and northerly directions, as well. Since orientations could eventually be bimodal, 1 

we analysed the data axially if raxial > runimodal. Inspection of confidence intervals of bat data enabled 2 

us to compare it with coastline and site-specific migratory orientations in P. nathusii. All circular 3 

calculations were performed using Oriana 4.0 software (Kovach Computing Services, Pentraeth, 4 

UK). 5 

We measured the time (seconds) a focal bat took to take off from the platforms after the 6 

acclimatisation box inside the CRBox got lifted. We compared takeoff latency among species by a 7 

Mann-Whitney U test (normality test failed, P < 0.05; SigmaPlot 11.0, Systat Software Inc., 8 

Chicago, IL, USA). We tested for differences between sexes using a Mann-Whitney U test for P. 9 

nathusii (normality test failed, P < 0.05) and an unpaired t-test for P. pygmaeus (normality test, P 10 

= 0.164). 11 

 12 

RESULTS 13 

Bearing fidelity 14 

We measured movement directionality, i.e., TOO and corresponding DFO, in 45 released bats of 15 

two species Pipistrellus nathusii (n = 22), and P. pygmaeus (n = 23). Normalisation of individual 16 

TOOs to a common direction (0°), revealed a significantly unimodal distribution of departure flight 17 

bearings (Rayleigh test, P. nathusii: r = 0.456, Z = 4.632, P = 0.008; P. pygmaeus: r = 0.605, Z = 18 

8.427, P = 0.0001; Fig. 2a, b). Further, in both species, mean vectors (µ) of departure flights did 19 

not differ from takeoff bearings (95% confidence intervals for µ, P. nathusii: 327.6° to 37.2° with 20 

µ = 2.4°; P. pygmaeus: 354.7° to 51.0° with µ = 19.0°; confidence interval tests for both species: 21 
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P > 0.05). However after takeoff, we observed occasionally bats circling above the CRBox before 1 

disappearing from the experimental area in a straight line, i.e. in DFO. 2 

 3 

Orientation in the environmental context 4 

Bearings of P. nathusii showed a bimodal distribution (Rayleigh test, raxial = 0.502, Z = 5.552, P = 5 

0.003; Fig. 2c) with a mean N–S vector which did not differ significantly from the coast line 6 

orientation at our study site (95% confidence intervals for P. nathusii: 184.8° to 153.4° with µaxial 7 

= 169.1° – 349.1°; confidence interval test, P > 0.05). Pipistrellus pygmaeus were oriented 8 

unimodally (runimodal = 0.702, Z = 11.322, P = 2.53*e-6; Fig. 2d) with a mean vector in SSW (209°) 9 

direction.  10 

  11 

Takeoff latency 12 

Takeoff latency did not exceed 3 min in total for any of the tested bats (P. nathusii: n = 35, median: 13 

55 s, range: 6–176 s; P. pygmaeus: n = 17, median: 17 s, range: 6–92 s; Fig. 3). We detected no 14 

difference in takeoff latencies between sexes (P. nathusii: U = 131.0, P = 0.497, nmales = 19, nfemales 15 

= 16; P. pygmaeus: t = -0.183, P = 0.858, nmales = 6, nfemales = 9, excluding two individuals with sex 16 

undetermined) and therefore we pooled data for interspecific comparison. Pipistrellus nathusii 17 

readily showed akinesia when carried and inserted into the CRBox, respectively. Consistent with 18 

our hypotheses, this may account for the significant difference in takeoff latency between the two 19 

species (Mann-Whitney U-Test, U = 154.0, P = 0.004).  20 

 21 
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DISCUSSION 1 

Close to a major migration corridor of bats at the coast of the Baltic Sea in Latvia, we compared 2 

the movement orientation of two congeneric bat species, one being a known long-distance migrant 3 

(P. nathusii) and the other with a putative migration behaviour (P. pygmaeus). Our observation of 4 

consistent southern heading directions of P. pygmaeus is in line with migratory behaviour of this 5 

species. Indeed, orientation and takeoff direction were similar to that of P. nathusii, a species with 6 

known long-distance migration across Europe. The seasonal occurrence of P. pygmaeus at our 7 

study site in conjunction with orientation towards the south in departing individuals identifies 8 

P. pygmaeus as a migratory species, at least for its north-eastern distribution range (Voigt et al. 9 

2017, 2018). Using our novel experimental setup, called the circular release box (CRBox), we here 10 

showed (1) initial movements of bats are goal-oriented on the level of takeoff, that (2) orientations 11 

are biologically meaningful, and that (3) the principal methodology enables comparison of different 12 

measures between species. Therefore, we established that takeoff directions of bats are a suitable 13 

measure for developing an experimental paradigm for studies of mammal navigation and sensory 14 

ecology using bats as a model organism. 15 

 16 

Bat orientation relative to the environment 17 

In both species, DFOs matched with the geographical orientation of the local coastline, i.e., the 18 

migratory corridor and direction, respectively (Pētersons 2004; Lindecke et al. 2015). For 19 

P. nathusii, we observed a bimodal orientation of movements in southern and northern direction, 20 

whereas P. pygmaeus flew in the direction in which bat migration is directed at PBRS in late 21 

summer (Lindecke et al. 2015). The observed orientations of P. pygmaeus would bring bats back 22 
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to the flyway above the coastal dunes or 50-100 m parallel to it. In a study by Ahlén et al. (2009) 1 

conducted at southern shores of Scandinavia, P. pygmaeus showed behaviour similar to P. nathusii 2 

and N. noctula, as well, as it was observed in high numbers at departure sites of these migratory 3 

species leaving for offshore flights. However, regarding our subsample of northerly flying P. 4 

nathusii, we hypothesise that these bats reversed orientation to find a day roost in the coastal forest 5 

or to forage instead of continuing migration along the dunes. This reverse orientation could have 6 

been caused due to the timing of our experiments, which only covered the second part of a night. 7 

Species-specific orientation responses can principally change during the activity period of bats 8 

(Mistry 1990). Interestingly, in migratory bird studies, similar observations of bimodal orientations 9 

have been made, especially at coastal sites (Sandberg et al. 1988; Åkesson et al. 1996). It has been 10 

hypothesised that such differences in orientation depend on the stage of migration with reverse 11 

movements along the migratory route occurring in individuals from populations which cover 12 

shorter distances (Muheim et al. 2017). 13 

In roe deer it has recently been found that disturbed individuals directed their initial movements 14 

depending on the initial alignment of the body axis (Obleser et al. 2017). In contrast to roe deer 15 

individuals aligned on the east-west axis, individuals aligned along the north-south axis escaped 16 

not randomly, but toward north or south, respectively. These findings routed in the magnetic 17 

alignment hypothesis (Begall et al. 2013; Obleser et al. 2017) deserve consideration in future work 18 

based on takeoff as initial movement being measured in departing bats. 19 

Takeoff as measure 20 

Comparisons of takeoff with respect to subsequent flight demonstrated directional persistence 21 

between these movements, i.e., bearing fidelity exists between individual TOO and DFO in 22 

migratory P. nathusii and P. pygmaeus. Thus, we inferred that TOO as measured by the CRBox is 23 
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a suitable proxy to predict DFO after bats started flying. This observation supports our assumption 1 

that bats were able to acquire environmental information relevant for orientation and navigation, 2 

even in a relatively cue-deprived situation but with a multi-directional choice for takeoff, i.e., in 3 

the CRBox. Based on results gathered with a resting assay using a similar-sized setup in the 4 

laboratory (Wang et al., 2007), we speculate that the Earth’s magnetic field might have played a 5 

functional role for our bats. Yet again, it is too early to draw further inferences about the role of 6 

magnetoreception in bat orientation on the level of takeoff. For example, this would require an 7 

experimental setup based on magnetic coils where the geomagnetic-field around a focal bat could 8 

be precisely manipulated. However, at the perimeter of the CRBox, echolocation would not have 9 

provided useful long-distance information about landmarks at the moment of release, and view of 10 

the nightly sky with stars, Milky Way or moon, was inhibited by the design of the CRBox as well 11 

(Fig. 1). However, environmental olfactory cues or distant low-frequency sounds, e.g. emitted by 12 

the Baltic Sea, might have influenced TOO of our bats as well (Childs & Buchler, 1981; Gagliardo, 13 

2013). Previously, bat orientation studies measuring initial flight orientations visually were limited 14 

to sampling under twilight conditions at dusk and dawn (Davis, 1966; Buchler & Childs, 1981, 15 

1982; Serra-Cobo, et al. 2000). In our study, application of night-vision technique for behavioural 16 

observations proved to be a solution to avoid effects of environmental light to which bats might be 17 

sensitive (Chase, 1981; Buchler & Childs, 1982; Holland et al. 2010; Greif, et al. 2014). However, 18 

we missed some flights due to rapid movements of animals even using advanced optical equipment. 19 

We recorded sufficient baseline data about takeoff latencies for the two pipistrelle species and 20 

found differences, with P. nathusii performing significantly slower than P. pygmaeus. Compared 21 

to P. pygmaeus, P. nathusii readily shows a state of motionless inactivity, so-called akinesis, when 22 

being handled. We assume this behaviour of P. nathusii in response to handling was delaying 23 

takeoff. Yet, with respect to bearing fidelity, P. nathusii, like P.pygmaeus, qualifies as an 24 
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appropriate model species for orientation tests with relatively short release trials (< 3 min) which 1 

are practicable for testing multiple independent subjects over a short period. Previous research 2 

using crawling bats in Y-maze tests suggested a true escape response would take only two to three 3 

seconds for active bats in similar settings (Chase, 1981; Mistry 1990). Here observed latencies 4 

suggest that our bats did not escape spontaneously but took off after a delay putatively serving 5 

orientation in the confined space of the CRBox.  6 

In principle, using an arena-based approach to elucidate preferred bat orientations adds to the 7 

methodological repertoire for the study of bat species. Eventually, this could be useful for 8 

identification of migration routes of other bats across their ranges. But primarily, testing 9 

directionality of takeoff represents a novel option for addressing a multitude of questions in bat 10 

physiology and sensory ecology where circular orientation responses have rarely been recorded 11 

before. We acknowledge that for certain bat families the current CRBox is eventually unsuitable, 12 

e.g. New World leaf-nosed bats (Phyllostomidae; but see Chase, 1981 & 1983 and Gröger & 13 

Wiegrebe, 2006) and Old world Horseshoe bats (Rhinolophoidae) which commonly do not use 14 

quadrupedal locomotion, i.e. crawling. However, for families like Vespertilionidae, Miniopteridae 15 

or Molossidae, which readily crawl on the ground or in crevices, TOO measures have high potential 16 

for orientation studies, as the principle CRBox design allows measurement of a natural behaviour 17 

in these species. Yet, for future works the CRBox should be improved to gain higher resolution of 18 

orientation measures, e.g. by offering more exits. This would allow for more sophisticated test 19 

procedures enabling statistical comparison between study species or experimental groups 20 

(Batschelet 1981).  21 

Conclusions and open questions 22 
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Our results suggest P. pygmaeus from northern Europe behaves similar to long-distance migratory 1 

P. nathusii during times of summer migration at the Baltic Sea coast (Lindecke et al. 2015, and this 2 

study). The observed orientations would lead bats southwards and back to the flyway along the 3 

dunes of the shoreline. Based on our findings combined with previous results about population 4 

genetics, phenological occurrences and flight behaviour at sea sides, we argue that P. pygmaeus 5 

can be considered a true migratory species, at least in northern parts of its distribution range (Ahlén 6 

et al. 2009, Sztencel-Jabłonka & Bogdanowicz 2012; Rydell et al. 2014, Voigt et al. 2017, 2018). 7 

Quantitative studies based on tagged individuals are now needed to evaluate how regular P. 8 

pygmaeus migrate over longer distances and where individuals of northern populations are 9 

overwintering. Still, it remains unresolved which environmental cues contribute to the compass 10 

system bats and other mammals use for migration. Pipistrelle species appear to be a suitable future 11 

model to address this question in detail. With an easy-to-build experimental arena setup, we 12 

established a method to study initial orientation behaviour of bats, using their natural takeoff 13 

behaviour as a proxy for directional choices. Future work is necessary to understand which 14 

environmental cues enable bats to orient in the small, confined space of a test arena. We speculate 15 

one of the most important cues to be the geomagnetic field (Holland et al. 2006; Wang et al. 2007).  16 
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 5 

Figure legends 6 

Figure 1. The circular release box for bats. (a) Cross-section view, with dimensions (in mm) 7 

adapted for small bat species of < 80 mm body length. 1 = pulley for remote release, 2 = 8 

acclimatisation box with rod and white signal flag, 3 = funnel, 4 = takeoff platform. (b) Top view 9 

of the CRBox with takeoff platforms oriented in cardinal and ordinal directions. The roof board is 10 

shown transparent. (c) CRBox setup photographed through night vision goggles. 11 

Figure 2. Orientation behaviour of pipistrelle bats. Circular graphs on the left show normalised 12 

departure flight bearings (relative to individual takeoff orientation) of P. nathusii (a) and 13 

P. pygmaeus (b) which were significantly oriented unimodally in both species (P. nathusii, n = 22; 14 

P. pygmaeus, n = 23). Mean vectors (µ) of normalised departure flights were well within the 15 

orientation of takeoff (P. nathusii: µ = 2.4°; P. pygmaeus: µ = 19.0°). Directions of arrows depict 16 

the orientation of µ and the lengths reflect the r proportional to the radius of the circle. The 95% 17 

confidence intervals are indicated above the mean vector. The two inner circles mark the 5% 18 

(dotted) and the 1% significance border. Numbers on gridlines indicate sample sizes covered by 19 

the wedges. Circular graphs on the right show departure flight orientations in an environmental 20 

context with the Baltic Sea in the west. Vanishings of P. nathusii (c) were bimodal with a mean 21 
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vector similar to the coastal orientation while the mean vector of P. pygmaeus (d) was oriented 1 

SSW. 2 

Figure 3. Takeoff latency of bats. Boxplots depict median and mean latency (dashed); outliers 3 

are indicated by points not covered by the whiskers (P. nathusii: n = 35; P. pygmaeus: n = 17). The 4 

inlet photograph shows a P. pygmaeus crawling onto a platform for takeoff. Takeoff latency in 5 

both species differed significantly (P = 0.004). 6 


