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Abstract: Decentralized in-house logistics areas, known as supermarkets, are widely used in the 

manufacturing industry for parts feeding to assembly lines. In contrary to the literature and inspired by 

observation in a real case, this study relaxes the assumption of using identical transport vehicles when 

deciding on the supermarkets’ location by considering the availability of different vehicles. In this 

regard, this study deals with the integrated supermarket location and transport vehicles selection 

problems (SLTVSP). A mixed-integer programming (MIP) model of the problem is developed. Due to 

the complexity of the problem, a hybrid genetic algorithm (GA) with variable neighborhood search 

(GA-VNS) is also proposed to address large-sized problems. The performance of GA-VNS is compared 

against the MIP, the basic GA, and simulated annealing (SA) algorithm. The computational results from 

the real case and a set of generated test problems show that GA-VNS provides a very good 

approximation of the MIP solutions at a much shorter computational time while outperforming the other 

compared algorithms. The analysis of the results reveals that it is beneficial to apply different transport 

vehicles rather than identical vehicles for SLTVSP. 

 

 

Keywords: In-house logistics; supermarket location; parts feeding; transport vehicles; mixed-integer 

programming; genetic algorithm. 

1. Introduction 

During the past years, there has been a shift from process improvement of the assembly lines 

to the part logistics operations. To satisfy the consumers’ needs, manufacturers have to 

customize their products from an assortment of options resulting in different product models 

to be produced and a large variety of parts to be fed to the stations. Furthermore, according to 

the just-in-time (JIT) concept, the delivery cycles have to be reduced while the need for well-

organized and consistent logistics operations has increased (Battini et al. 2013). In line with 

these shifts, most manufacturers, particularly in the automotive industry, have implemented the 

so-called supermarkets to overcome the above challenges faced by today’s demanding markets 

while following the just-in-time (JIT) concept. Supermarkets are decentralized in-house 
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logistics storage areas that are scattered over the assembly line (AL) and near to the stations 

(Boysen et al., 2015). Supermarkets are generally supplied by the central storage areas with 

large-sized trucks, while the AL stations are fed by smaller transport vehicles. Using this 

policy, the parts feeding can be managed in a fast, flexible and reliable manner so that 

responding to unforeseen events can be quickly re-planned by regular small-lot deliveries over 

short distances. Moreover, the inventory level of the stations is reduced while replenishments 

from the central storage which is usually located in a far distance from the AL are avoided. In 

addition, small-lots entail the replacement of the parts in smaller bins which can be stored and 

accessed more ergonomically and efficiently near the AL so that the pressure on the operators 

is diminished and the handling time is reduced (Battini et al. 2013). The complete description 

of the part supply process using supermarkets can be found in Emde and Boysen (2011, 2012) 

and Battini et al. (2013).  

Despite the above-mentioned advantages, the planning and implementing of supermarkets 

requires addressing several interrelated decision problems (Emde and Boysen, 2012) known as 

supermarket-related decision problems, including: (i) decide on the number and location of 

supermarkets, namely, the supermarket location problem (SLP); (ii) decide on the number of 

tow trains and the stations that each serve as a routing problem (RP); (iii) decide on the fixed 

delivery schedule of each transport vehicle on its associated route as a scheduling problem (SP) 

; and finally, (iv) decide on the number and types of part bins to be loaded per tour of tow trains 

as a loading problem (LP).  

In spite of the importance of the first decision problem (i.e., SLP) as the most long-term 

problem on the shop floor where the space is highly valuable, very few studies have considered 

its effect on other operational decision problems mentioned above (Battini et al. 2013). Thus, 

this study aims to address the SLP by taking into account more real-world considerations. 

Unlike many related studies in the literature that have assumed only identical transport vehicles 

(i.e., tow train) are used to deliver bins of parts to the stations, this study considers that other 

types of transport vehicles (e.g., automatic guided vehicles (AGVs) and trollies) with different 

bin sizes can also be applied for parts delivery to the stations. The use of multi-type transport 

vehicles has been inspired by consulting some logistics experts and observation of real-world 

industrial practices in an automotive assembly plant. Based on the observed practices in the 

real-world industry, it can be argued that it is more beneficial to apply different transport 

vehicles than can be fully loaded based on the demand of the associated parts. It is worth 

mentioning that applying different transport vehicles in just-in-time supermarkets can be 

widely employed in lean manufacturing of all different types of assembly lines, including 

automotive (Emde and Gendreau, 2017) and trucks or busses (Emde et al., 2018), to name a 

few. For instance, when a small number of bins have to be supplied to a sequence of stations, 

they prefer to send the required parts by trolley rather than tow train to ensure that the capacity 

of the transport vehicle is efficiently used. On the other hand, when a large number of bins have 

to be supplied to the stations, transportation using a tow train might be more efficient/beneficial 

than applying several AGVs/trollies. The managers at the company want to decide about the 

most appropriate mode of transportation from each established supermarket. By assuming that 

the decisions on determining the type and the number of transport vehicles per supermarket 

can be defined as a new decision problem called transport vehicles selection problem (TVSP), 



this study aims to deal with the integrated supermarket location and transport vehicles selection 

problem, so-called SLTVSP in brief. The integrated problem are first formulated as a mixed 

integer programming (MIP) model. 

Furthermore, due to the inherent complexity of basic SLP (Alnahhal and Noche, 2015; Zhou 

and Tan, 2019), it becomes even more complex when it is integrated with the TVSP in this 

study so that resorting to meta-heuristics is the main option especially if the problem size is 

large. On the other hand, since genetic algorithms (GAs) have shown a good performance in 

addressing a large variety of optimization problems, such as scheduling (Zhao et al., 2017; Zou 

et al., 2018), logistics and supply chain (Dolgui et al., 2018), assembly line balancing 

(Belassiria et al., 2018), and SLP (Alnahhal and Noche, 2015), in this paper a GA with new, 

customized mechanisms is proposed to efficiently solve the considered problems. The 

proposed GA can determine the exact places where the supermarkets are located while 

addressing the SLP. Moreover, to be able to address the integrated SLP and TVSP, a new 

representation is proposed so that the assignments of stations to the supermarkets along with 

the assignment of transport vehicles to the supermarkets are performed simultaneously. 

Considering the above GA characteristics, new initialization, crossover and mutation operators 

are also developed for the proposed GA. Moreover, to improve the local search capability of 

the proposed GA, it is hybridized with a variable neighborhood search (VNS).  

To sum up, the main contributions of this study are as follows: 

(1) For the first time in the literature, this study simultaneously deals with two main in-

house logistics decision problems, namely SLP and TVSP, while considering the use of 

different types of transport vehicles.  

(2) A new MIP model for the integrated SLP and TVSP (SLTVSP) is proposed where the 

total cost of parts feeding (PF) including the supermarket installation, transport vehicles’ 

procurement, and parts shipment costs, is minimized.  

(3) A GA-VNS hybridized algorithm is developed by introducing a customized solution 

representation and initialization mechanisms. The GA-VNS also benefits from new 

crossover and mutation operators that are tailored to the problem representation ensuring 

the generation of feasible solutions.  

The remainder of this paper is structured as follows. Section 2 discusses the scope of the 

study and provides a recent literature review on supermarket-related decision problems. An 

explanation of the real case study in an automotive component assembly plant and the 

mathematical model of the considered problem are presented in Section 3. The proposed GA-

VNS is presented in Section 4. The computational study is performed in Section 5. Finally, the 

concluding remarks are outlined in Section 6.    

2. Scope of study and literature review 

Considering today’s industrial paradigm, many companies/organizations have attempted to 

move towards sustainability throughout their production and supply chain systems. To be able 

to accord with these ongoing trends, companies have to transfer from their traditional linear 

business/economy model of “take, make, use and disposal” in an open-end production system 



towards a circular business model that entails closed-loop production and supply chain 

networks (Geissdoerfer et al., 2018). The above transformation requires the companies to 

implement an efficient use/restore of their resources throughout their products’ life cycle. To 

cope with the above challenges, companies are advised to take two main measures to reinforce 

the circularity between the two extreme points of their business models (Urbinati et al., 2017): 

(1) by proposing value towards the customer ;(2) by proposing value towards their supply chain 

network. The former can be achieved by the implementation of Industry 4.0 concept that 

promotes the products’ features to be directly designed by the customers, which is made 

possible using digital manufacturing and Internet of Things technologies in smart factories 

(Lopes de Sousa Jabbour et al., 2018). The latter includes both the outbound logistics, e.g., 

through interaction with their suppliers realized as inter-organizational cooperation and the 

inbound logistics, e.g., through reorganizing their internal material feeding strategies realized 

as intra-organizational process. In this regard, cross-dock is perceived as inter-organizational 

cooperation in the supply chain network to consolidate smaller shipments of several companies 

to full truckloads realized as economies in outbound logistics (Boysen and Fliedner, 2010). On 

the contrary, supermarket, known as the equivalent of cross-dock within inbound logistics, has 

been recently applied by many manufacturers to improve the intra-organizational logistics 

activities. It is worth mentioning that the scope of this study relies on the next important 

decision problem after the supermarket is applied within inbound logistics as approached by 

Emde and Boysen (2012) and Zhou and Tan (2019). Readers who are interested in knowing 

more about the state-of-the-art economy business models in supply chain management and 

logistics are referred to van Buren et al. (2016) and Geissdoerfer et al. (2018). 

Since applying supermarket is a relatively new concept, there are only a few studies dealing 

with supermarket-related decision problems. Emde and Boysen (2011) dealt with the routing 

problem (ii) and scheduling problem (iii), simultaneously. A dynamic programming approach 

with polynomial-time was proposed to optimize the inventory cost and the equipment cost in 

terms of the number of tow trains with a limited capacity. Emde et al. (2012) addressed the 

loading problem (iv) of tow trains, given a predefined route and schedule. Given the capacity 

of tow trains, an exact solution approach was proposed to optimize the inventory cost 

associated with the station demand while no shortages were allowed. Golz et al. (2012) coped 

with the routing (ii), scheduling (iii), and loading (iv) problems, simultaneously. They proposed 

a heuristic method to optimize the number of tow trains with limited capacity given a set of 

predetermined routes while no shortages were allowed. Fathi, Alvarez, et al., (2014), Fathi, 

Rodríguez, et al., (2014, 2016) dealt with tow train scheduling (iii) and loading (iv) problems, 

simultaneously. In the first two studies, the integrated problem was formulated as a mixed-

integer programming model, and a simulated annealing and a memetic ant colony optimization 

algorithm were proposed to optimize the number of tours and the inventory level. In the third 

study, the authors incorporated the tour time and weight constraints into their previous model 

and proposed a modified particle swarm optimization algorithm to solve it. Emde and Gendreau 

(2017) considered the scheduling (iii) problem of tow trains used in the delivery of part from 

supermarkets with limited capacities. They proved that the problem is complex (NP-hard) in 

nature. Thus, exact and heuristic approaches were proposed to address the real industrial 

instances by minimizing the in-process inventory cost. Emde et al. (2018) addressed the 



scheduling (iii) problem of electric vehicles used in part feeding in an engine manufacturing 

company in Germany. Given a specific time interval between the vehicles round trips to 

stations, they proposed a heuristic algorithm to optimize the number of vehicles considering 

the electricity recharging of the vehicles. The above studies have dealt with more operational 

decision problems. As for the focus of this study, less than a handful of studies have addressed 

the SLP (i) as the strategic decision problem of PF using supermarket. The most relevant studies 

to the current article are reported below. The interested readers are referred to Boysen et al. 

(2015) and Schmid and Limère (2019) for further studies in the part logistics and their related 

decision problems. 

Battini et al. (2010) proposed a step-by-step decision support framework to determine the 

degree of centralization/decentralization for each part supply and also the place where the 

supermarket can be established, considering transportation, inventory and installation costs. 

They addressed the SLP (i) by assuming that a single supermarket can be implemented to 

supply several ALs. This is while many real-world manufacturers have been employing more 

than a few supermarkets to feed each of their ALs. Emde and Boysen (2012) proposed a 

dynamic programming (DP) approach for SLP (i). They applied DP to minimize the 

transportation and the installation costs of supermarkets. The authors hypothesized that the 

placement of supermarkets could be determined in any place around the stations. However, 

since space is scarce and valuable on the shop floor, this assumption can result in impractical 

locations for supermarkets. Additionally, there might be particular places on the shop floor that 

cannot be employed by supermarkets as they are occupied by other facilities. Alnahhal and 

Noche (2015) proposed a simple MIP model for SLP (i) in which the total shipment and 

installation costs of supermarkets were minimized while the capacity of the supermarkets, as 

well as the possible places for supermarket placements, were taken into consideration. They 

also proposed a GA and compared its performance with the MIP model. However, their GA 

does not provide any information about the supermarket number feeding the stations. 

Nourmohammadi et al. (2019) dealt with the decision problem of configuring a new AL with 

stochastic task times and demands in which mathematical programming was proposed to 

address both ALBP and SLP (i) in a hierarchical approach. The objectives of the proposed SLP 

model were to optimize the inventory, shipment, and installation costs of supermarkets. 

Recently, Zhou and Tan (2019) addressed the SLP (i) by considering the limited capacity and 

the utilization rate of the supermarkets. They proposed an algorithm based on differential 

evolution to optimize the installation/operating cost of the supermarket and the transportation 

cost of tow trains.   

In all the above studies, it is assumed that an identical transport vehicle (tow train) is 

available for PF using supermarkets. However, there might be different transport vehicles 

available for PF in the real-world (as observed in the real case of this study) such as AGV, 

trolley or conveyor to be chosen from due to transportation system or labor costs, space 

limitation and other considerations. To the best of the authors’ knowledge, only Battini et al. 

(2015) have considered the transport vehicles selection problem (TVSP), particularly within 

the in-plant milk runs systems. However, they proposed a decision support framework based 



on a multi-scenario analysis tool to suggest which transportation mode should be chosen for 

PF. Moreover, they did not consider TVSP while addressing the SLP. 

Table 1 shows a summary of the supermarket decision problems reviewed in this study, 

including the problem characteristics, objectives, and solution approaches.  

Table 1. Summary of the supermarket decision problems reviewed.   

Study 
Decision problem  

Problem 

characteristics 
 Objectives  Solution approach 

SLP RP SP LP TVSP  CSP LC RC DTV  IC SC INC EC  DSF MP HA MA EA 

Battini et al. (2010)                      

Emde and Boysen 

(2011) 
                     

Emde et al. (2012)                      

Golz et al. (2012)                      

Emde and Boysen 

(2012) 
                     

Fathi, Alvarez, et al. 

(2014) 
            

* 
        

Fathi, Rodríguez, et al. 

(2014) 
            

*         

Alnahhal and Noche 

(2015) 
                     

Battini et al. (2015)                      

Fathi et al. (2016)             
*         

Emde and Gendreau 

(2017) 
                     

Emde et al. (2018)                      

Nourmohammadi et 

al. (2019) 
                     

Zhou and Tan (2019)                      

This study                      
Note: Candidate Supermarket Places (CSP), Limited Capacity (LC) of supermarket/tow train, Real Case (RC), Different Transport 

Vehicles (DTV), Installation Cost (IC), Shipment Cost (SC), Inventory Cost (INC), Equipment Cost (EC), Decision Support 

Framework (DSF), Mathematical Programming (MP), Heuristic Algorithm (HA), Meta-heuristic Algorithm (MA), Exact Approach 

(EA). *The shipment cost is in terms of the number of tours taken.  

According to Table 1, no study in the literature has yet dealt with both SLP and TVSP, 

simultaneously. It is worth mentioning that any decision regarding TVSP is highly dependent 

upon SLP and vice versa. Moreover, in the existing literature, it is assumed that the capacity of 

transport vehicles and accordingly their shipment costs are equal without taking the mode of 

transportation into consideration. In spite of different studies that have contributed to the 

supermarket-related literature so far, there is still a wide gap between the theory and 

application. Thus, this study which is inspired by the observation made in a real-world case 

aims to alleviate this gap by relaxing the assumption that different transport vehicles can be 

used at supermarkets to feed part bins to the stations.   

3. Problem description and formulation  

In this section, the problem considered in this study is described in detail, and the proposed 

model to deal with the described problem is presented.    

3.1. Problem description 



This study is inspired by the observation made in a real-world AL at an automotive 

manufacturing company in which two different part feeding policies were used. In the line 

stocking policy, the parts which require no further processing are directly shipped from the 

central warehouse to be stored next to the stations in large/small containers, depending on the 

packaging received from the suppliers. In the downsizing policy, first, the parts are delivered 

in large containers to the decentralized warehouses (supermarkets), where parts are repacked 

into bins of standard size. Then, from supermarkets, the bins can be loaded on particular 

transport vehicles to be regularly supplied to the stations following a predetermined production 

plan. Regarding the second part feeding policy for parts with high demand rates, the decision-

makers (DMs) at the company aim to establish some new supermarkets close to the AL so that 

the parts can be frequently delivered to the stations in small bins. Thus, first, the DMs would 

like to determine the optimal number and the location of supermarkets. Second, considering 

the availability of different transport vehicles and their associated capacities and logistic costs, 

the DMs would like to decide about the most appropriate type and the number of transport 

vehicles required at each supermarket to deliver the prepared bins to the stations.  

There are three types of transport vehicles, as shown in Figure 1, where their capacity in 

terms of bins, their shipment, and procurement costs are represented in Table A1. Also, the 

company is interested in knowing about the effect of different supermarket capacities, which 

can be a multiple of 10 starting from 30 bins (i.e., 30, 40, 50, etc.), on the above-mentioned 

decision problems. It is worth mentioning that in this study as per discussion with the 

company’s experts, the installation cost (𝐼𝐶) of each supermarket is calculated by multiplying 

the supermarket capacity by 20, wherein their associated expenses such as equipment and 

establishment costs are taken into consideration. The rest of the data associated with the real 

case is shown in Table A2. In determining the above cost term parameters, a fixed planning 

horizon (e.g., month or year) for the production process has to be considered. Considering that 

the supermarket installation and vehicles selection are strategic problems, average production 

over a couple of years is usually considered for informed decisions so that the fluctuations over 

longer periods are taken into consideration. In this study, yearly production as the planning 

horizon is considered for calculating the reasonable values of installation cost, procurement 

cost, and expected demand. Thus, at this strategic decision-making phase, the company 

attempts to simultaneously address the SLP and TVSP while the PF’s total cost is minimized.  

According to the above explanation, the problem can be formulated by assuming a set of 

stations, 𝑘 = 1, … ,𝑀 (𝑀 =number of stations), arranged along a single straight AL with known 

part demands in bins as 𝑠𝑑𝑘, which have to be supplied by a set of candidate supermarkets 𝑠 =

1, … ,𝑆 (𝑆 = possible number of supermarkets). There are different types of transport 

vehicles 𝑒 = 1, … , 𝐸 (𝐸 =number of transport vehicles) which can be used by supermarkets to 

deliver the bins to a sequence of stations. Each transport vehicle has a different capacity as well 

as shipment and procurement costs. The coordinate of station 𝑘 and supermarket 𝑠 on the AL 

are defined by (𝑥𝑘,𝑦𝑘) and (𝑋𝑠,𝑌𝑠), respectively. The distance that each transport vehicle 

travels from supermarket to supply bins to a sequence of stations, which is represented 

by 𝑑𝑖𝑠𝑡𝑠𝑘𝑙, is calculated by the following components: (a) the distance from supermarket 𝑠 to 

station 𝑘, (b) the distance between station 𝑘 to station 𝑙, and (c) the distance from station 𝑙 to 

supermarket 𝑠. Equation (1) presents how 𝑑𝑖𝑠𝑡𝑠𝑘𝑙 can be calculated.  



skl s k s k k l k l s l s ldist X x Y y x x y y X x Y y             (1) 

The integrated SLP and TVSP considered in this study, named by SLTVSP, aims to 

determine the optimum number and location of supermarkets and the stations that each support, 

as well as the type and number of transport vehicle required by each supermarket, so that the 

total cost of PF in terms of part shipment, transport vehicle procurement, and supermarket 

installation costs are optimized simultaneously. An AL layout with three supermarkets and 

three transport vehicles namely AGV, tow train and trolley, to supply the bins of parts to the 

shooter racks of stations is illustrated in Figure 1.  

 

 
Figure 1. The layout of an AL with three supermarkets and three transport vehicles. 

The following assumptions are considered in modeling the SLTVSP which are taken from 

the literature (Alnahhal and Noche, 2015; Emde and Boysen, 2012) as well as the observations 

made in the real case: 

 There are candidate supermarket places located next to the shooter racks of stations 

arranged in a straight pattern in a single AL depending on the space limitation of the shop 

floor.  

 The capacity of supermarkets is limited which is known in terms of the number of bins 

that can be stored and retrieved.  

 There are different types of transport vehicles with different capacities in terms of bins. 

There are no limits on the number of vehicles of each type which can be used by each 

supermarket. Although there are different transport vehicles, however, it is assumed that 

each supermarket can only use one type of transport vehicles among the available types.  

 The parts are re-packed and stored in bins of identical standardized sizes in the 

supermarkets to be delivered to the stations. Only frequent deliveries in small lots from 

supermarkets to assembly stations are considered in this study. Moreover, to enable the 

use of fully automated loading and unloading systems, the bins are considered to be 

identical in terms of size. It is worth mentioning that, the use of identical standardized size 

bins is a requirement for applying ‘‘shooter-racks’’ as observed in the case study and also 

discussed in previous research studies (e.g., Zhou and Tan, 2019). 



 The transport vehicles set off from each supermarket and visit a sequence of stations, 

consecutively. For instance, if the sequence of stations from 1 to 4 have to be supplied by 

a supermarket, all the stations in this range will be visited sequentially by the same 

assigned transport vehicle to receive their parts. Thus, it is required to have all the stations 

(re)arranged in increasing order.  

3.2. Proposed model 

The notations used in modeling the considered SLTVSP are presented in Table 2. 

  

Table 2. List of notations. 

Notation Definition 

Indices:  

𝑘,𝑙: Index for stations (𝑘,𝑙 = 1, … ,𝑀) 

𝑠: Index for supermarket (𝑠 = 1, … ,𝑆) 

𝑒: Index for transport vehicle (𝑒 = 1, … ,𝐸) 

Parameters:  

𝑀: Number of stations 

𝑆: Possible number of supermarkets  

𝐸: Number of transport vehicles 

𝑥𝑘, 𝑦𝑘: Coordinates x and y for station 𝑘 

𝑋𝑠,𝑌𝑠: Coordinates x and y for supermarket 𝑠 

𝑑𝑖𝑠𝑡𝑠𝑘𝑙: 
Total distance traveled by transport vehicle from supermarket 𝑠 to supply all stations from 

stations 𝑘 to 𝑙;  

𝑠𝑑𝑘: Demand of station 𝑘 in terms of number of bins 

𝑇𝑑𝑒𝑚𝑘𝑙: Total demand of all stations from station k to station l; 𝑇𝑑𝑒𝑚𝑘𝑙 = ∑ 𝑠𝑑𝑓
𝑙
𝑓=𝑘  

𝐷𝑠𝑑𝑘𝑙: Total standard deviation of part demand for all stations from stations 𝑘 to 𝑙 

𝐶𝑎𝑝𝑠: Capacity of supermarket (number of bins) 

𝐼𝐶: Installation cost of supermarket  

𝐶𝑎𝑝𝑒𝑒: Capacity of transport vehicle 𝑒 (number of bins) 

𝑃𝑟𝑜𝑐𝑒𝑒: Procurement cost for one transport vehicle of type 𝑒 

𝑆𝐶𝑒: Shipment unit cost of moving one bin one unit distance using transport vehicle 𝑒 

𝛼: Service level for probability of not exceeding the capacity of the supermarket 

Decision variables: 

𝑁𝑆: Number of established supermarkets 

𝑞𝑠𝑒: Number of transport vehicle 𝑒 assigned to supermarket 𝑠 

𝑧𝑠𝑘𝑙𝑒: {
1;   if all stations from station 𝑘 to 𝑙 are fed by supermarket 𝑠 using transport vehicle 𝑒
0;                                                                                                                                    otherwise 

   

 

According to the problem description given above, a MIP model for SLTVSP is proposed 

as follows. It is worthy of mentioning that this model is an extended version of the model 

proposed by Alnahhal and Noche (2015) by assuming that different transport vehicles can be 

used by supermarkets. As a result, in the objective function, the shipment and vehicle 

procurement costs are added/updated. In the constraint, a new constraint is added to calculate 

the minimum number of transport vehicles. Moreover, the rest of the constraints and the 

decision variables are updated to be able to take the difference in transport vehicles into 

considerations. This model is generic in the sense that it can be applied to jointly address two 



main decision problems of PF of ALs using supermarkets (SLP and TVSP), while different 

supermarket locations and transport vehicles are considered.    
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Using Equation (2) the objective function of the model, which is the total cost (𝑇𝐶) of PF 

for SLTVSP, is minimized. The objective function is comprised of three terms, including the 

total shipment cost (TSC), total vehicle procurement cost (TVPC) and total installation cost 

(TIC) of supermarkets, respectively. Constraint (3) obtains the number of transport vehicles of 

type 𝑒 assigned to each supermarket. Using constraint (4), it is assured that the number of 

station groups (cells) formed to be supplied by transport vehicles, amounts to the number of 

established supermarkets. By constraint (5), it is assured that all cells are supplied by the 

established supermarkets through the assigned transport vehicle type. Using constraint (6), it is 

guaranteed that each station is supplied by only one supermarket as well as one type of transport 

vehicle. Assuming that the total demand of each supermarket can be subjected to changes 

occasionally caused by the variations of demands between its associated station groups, 

constraint (7) assures that the capacity of the supermarket is adequate not just for the total 

demand of stations groups (𝑇𝑑𝑒𝑚𝑘𝑙) but also for the added standard deviation of stations 

demand (𝐷𝑠𝑑𝑘𝑙) multiplied by 𝐹α, which is the normal factor for the 𝛼 quantile of the standard 

normal distribution. Constraint (8) ensures that at least one supermarket is established to supply 

the stations’ demand. Constraint (9) delimits the domain of the decision variables which are 

both binary and integer. 

4. The proposed hybrid genetic algorithm for SLTVSP 

Due to the complexity of basic SLP (Alnahhal and Noche, 2015; Zhou and Tan, 2019), which 

even becomes more complex after integration with TVSP in this study, using approximation 

methods to solve large-sized problems is inevitable. In this regard, since GA has shown good 



performance in addressing a large variety of optimization problems such as scheduling (Zhao 

et al., 2017), line balancing (Fathi et al., 2019) and SLP (Alnahhal and Noche, 2015), a new 

hybrid GA, called GA-VNS is proposed to deal with the SLTVSP. More details about the 

proposed GA and its elements are provided in the following sections. 

4.1. Representation and initialization   

This study proposes a new solution representation for the proposed GA which is based on a 

two-row chromosome structure. The first row of the chromosome shows the supermarket 

positions ranged from one to the possible number of supermarkets contained by the cell 

boundary or the rightmost station assigned to each supermarket. For instance, in Figure 2 (a) 

the first position which belongs to supermarket 1, contains 4 as the rightmost station assigned 

to supermarket 1 meaning that stations 1-4 are assigned to supermarket 1. It is worth 

mentioning that using this representation when a supermarket is not established, e.g., 

supermarket 2 in Figure 2 (a), its cell boundary will be equal to zero.  

On the other hand, the second row illustrates the transport vehicle type assigned to each 

established supermarket. For instance, supermarket 1 in Figure 2 (a) uses transport vehicle type 

1 while the second supermarket is not established, and thus no transport vehicle is assigned. To 

better elaborate this representation, Figure 2 (b) illustrates the corresponding solution for the 

representation shown in Figure 2 (a) which depicts the assignment of stations to the possible 

supermarket places. As can be seen from this figure, stations 1-4 are assigned to supermarket 

1 which are colored similar to Figure 2 (a), supermarket 2 is not established, etc.   

 

 
Figure 2. The representation scheme for GA. 

 



By assuming the population size of GA as 𝑃𝑜𝑝𝑠𝑖𝑧𝑒, the initial population of GA is composed 

of a matrix with the dimension of (2× 𝑃𝑜𝑝𝑠𝑖𝑧𝑒, 𝑆). To make sure that the search space of the 

SLTVSP is efficiently searched by the GA-VNS, the following initial solution generation 

procedure is proposed to obtain a feasible initial solution for SLTVSP:   

 

where Std. is the standard deviation and 𝑊𝑠 is the set of stations assigned to supermarket 𝑠 and 

the rest of notations are the same as presented in Table 2.   

4.2. Crossover 

According to the proposed representation, a new crossover operator is also devised. The 

crossover operator selects two individuals (parents) from the current population randomly and 

then uses the crossover operation illustrated in Figure 3 to make two new offspring. As this 

figure shows, the parents have 11 genes which equal to the possible number of supermarkets 

in this example. Then a random crossover point is selected for both of the selected parents. As 

shown in Figure 3, three combinations of crossover points (A, B, and C) are considered for 

further elaboration. Unlike the usual crossover operators in which the lengths of the selected 

parents are equal, in this crossover operator the lengths of the selected parents can be different 

from each other. For example, in Figure 3 parent 1 and 2 have different lengths of 10 and 11, 

respectively, which is the place where the last station (i.e., 21 in this example) appears. It is 

important to note that while doing the crossover, the zero values are ignored and only positive 

numbers are taken into considerations. In order to make sure that during the crossover 

operations, the characteristics of the parents are shared between the two offspring while the 

feasibility of the new offspring is maintained, both of the following two conditions have to be 

satisfied.  

First, the exchange of the genes after the crossover points should not violate the sequence 

of the group of cells which has to be in ascending order. For instance, in crossover combination 

A labeled with A in Figure 3, since the maximum number to the left (inclusive) of point A in 

parent 1 (10) is lower than the minimum number to the right of point A in parent 2 (12), shown 

by oval 10<12, the ascending order condition for offspring 1 is met. By making the same 

comparison for offspring 2 since 6<15, the ascending order condition for offspring 2 is also 

met. Thus, the crossover variant A is valid when considering the first condition. However, since 

for the crossover combination B, this condition is not met for offspring 1 (4≮3), thus this 

crossover is not valid.  

Procedure feasible SLTVSP solution generation 

Begin  
𝑠 = 1; 𝑘=1; 
While 𝑠 ≤ 𝑆  and 𝑘≤ 𝐾 
      If  ∑ 𝑠𝑑𝑘𝑘∈𝑠 + 𝐹𝛼 × S𝑡𝑑𝑘∈𝑠(𝑠𝑑𝑘 ) ≤ 𝐶𝑎𝑝𝑠; 

  𝑊𝑠 ← 𝑘    
Else 

𝑠 = 𝑠 + 1 
End if; 

End while;  
End procedure. 

 



The second condition for a successful crossover is that while the first condition is satisfied, 

the length of the resulting offspring should not be longer than the possible number of 

supermarkets. For instance, in crossover variant C in the last row of Figure 3, the first condition 

is met for both of the resulting offspring, while the length of offspring 2 is larger than the 

possible number of supermarkets which is 11 in this example. Thus, this crossover combination 

is not valid, too.   

 

 

Figure 3. Crossover operator for GA. 

     

It is worthy of mentioning that using the above crossover, while exchanging the elements 

of parents in the first rows, the transport vehicle type of the supermarkets are also altered in the 

second row at the same time as depicted in Figure 3. The above crossover operation is 

performed on the individuals of the current population, considering the crossover probability 

(𝑃𝑟𝑐𝑟).  

4.3. Mutation 

Regarding the mutation operator adopted for the proposed GA, the aim is to change the 

number within a selected mutation point so that its left and right cell boundaries are not 

exceeded. To do so, an individual from the current population is randomly selected and a 

random mutation point is chosen. For this mutation point, a set of candidate numbers 

considering its left and right cell boundaries are built. If the mutation point contains a positive 

number, then a zero is also added to the above set of candidate numbers (a zero means that the 

supermarket is not established) and then a number from the built candidate set is randomly 

chosen. For instance, in Figure 4, for the mutation point A, the candidate set is {0, 2, 3, 4, 6} 

when considering its left and right cell boundaries. For mutation point B in Figure 4, which 

includes zero, the candidate set from which a number has to be chosen randomly is {11, 12, 

13, 14}. It is important to emphasize that whenever a mutation operation is performed on the 



first row, a number from [1,…, 𝐸] has to be chosen randomly for the second row of the 

corresponding mutation point. Since in this example, three transport vehicle types were 

considered, this range is {1, 2, 3} as shown in Figure 4.  

 

 
Figure 4. Mutation operator for GA. 

   

The above mutation operation is performed on the current population’s individuals, 

considering the mutation probability (𝑃𝑟𝑚𝑢). 

4.4. Variable neighborhood search 

The reason for applying the variable neighborhood search (VNS) is to systematically use 

different search structures to improve the possibility of finding a better solution (Mladenovic 

and Hansen, 1997; Zhao et al., 2017). Using the crossover and the mutation operators, the 

diversity of the search in terms of the assignment of different stations to different supermarkets 

is assured. However, to make sure that there is a specific mechanism in the algorithm to guide 

the search in terms of transport vehicles selection, a new operation is required. In this study, 

VNS is employed to enhance the local search capability of the GA which is mainly responsible 

for guiding the GA with transport vehicles selection. To this purpose, two neighborhood 

operators (2-opt and 3-opt), adapted from the literature (Liu et al., 2018; Zhao et al., 2017), are 

used in which the two and three points random swaps of genes are performed on the second 

row of each individual (chromosome) which can, in turn, increase the diversity of the solutions 

while improving the search capability of the proposed GA by avoiding being trapped in the 

local optimum. The pseudo-code of the VNS applied in each iteration of the proposed GA is 

shown in the following procedure:  



 

The above VNS operation is performed on the best individuals of the current population 

considering the VNS probability (𝑃𝑟𝑉𝑁𝑆). 

Overall, the mechanisms discussed above result in a new GA-VNS for SLTVSP. The 

pseudo-code of the proposed algorithm for SLTVSP is summarized as follows: 

 

 

 

Procedure VNS 

Select a set of the best individuals from the current population  

For each individual (𝑥) 

Repeat 

Obtain local optimum for 𝑥 using 2-opt neighborhood operator (𝑥′ ) 

If this local optimum is better than the current solution: 𝑥 ← 𝑥′  

Else obtain local optimum for 𝑥 using 3-opt neighborhood operator (𝑥′′ ) 

If this local optimum is better than the current solution: 𝑥 ← 𝑥′′  

End repeat  

End procedure. 



 

5. Computational study 

In this section, the computational settings, SLTVSP and SLP results, and their comparison are 

reported and discussed in detail. 

5.1. Computational settings 

The MIP model for SLTVSP was coded in GAMS version 24.1.2 and solved with the 

CPLEX solver. To present the performance of the proposed GA-VNS, it is compared with 

conventional GA as well as SA. It should be noted that due to the complexity of MIP, the 

computational time of exact algorithms increases exponentially. Thus, the computational time 

for CPLEX was limited to 1,200 seconds. The GA-VNS, GA, and SA were coded in MATLAB 

Pseudo-code of GA-VNS for SLTVSP 

Initialization step 

Read input parameters: 𝑠𝑑𝑘 , 𝑆, 𝐶𝑎𝑝𝑠, 𝐼𝐶, Proce𝑒 , 𝑆𝐶𝑒 , 𝐹𝛼 , 𝑥𝑘 , 𝑦𝑘 , 𝑋𝑠 , 𝑌𝑠; 
Calculate: 𝑇𝑑𝑒𝑚𝑘𝑙 , 𝐷𝑠𝑑𝑘𝑙 , 𝑑𝑖𝑠𝑡𝑠𝑘𝑙 ; 

Pre-processing step 

Set values for the GA control parameters (𝑃𝑜𝑝𝑠𝑖𝑧𝑒, 𝑃𝑟𝑐𝑟 , 𝑃𝑟𝑚𝑢 ,  𝑃𝑟𝑣𝑛𝑠 , Max Gen);  
Initialize the generation counter (𝐺 = 0);  
Use the representation and initialization mechanisms in 4.1 to generate a population of 
initial feasible solutions; 
Calculate the 𝑇𝐶 of the current population’s solutions 

Repeat 

For 𝑖 = 1 to 𝑃𝑜𝑝𝑠𝑖𝑧𝑒 do (create population 𝑃 of the next generation) 
Begin 

Reproduction step 
Rank the solutions within the current population according to their 𝑇𝐶𝑠  and 
considering the reproduction rate put the best found solutions as the next 
population members;      

Crossover step 
Considering the 𝑃𝑟𝑐𝑟  for each of the two randomly selected individuals from the 
current population apply the crossover scheme in 4.2 to generate the next 
population individuals; 

Mutation step 
Considering the 𝑃𝑟𝑚𝑢  for each randomly selected individual from the current 
population apply the mutation scheme in 4.3 to mutate the next population 
individuals; 

Evaluation step 
Calculate the 𝑇𝐶 for each SLTVSP solution using Equation (2);  

End; 
Variable neighborhood search step 

Rank the solutions within the current population according to their 𝑇𝐶𝑠 and perform 
the VNS operation in 4.4 on the best solutions of the current population considering 
the 𝑃𝑟𝑣𝑛𝑠 ;    

Update the best found solution  
Update the best found solution  

G=G+1;            
Until the stopping condition has been reached;  
Return the best found solution for the SLTVSP. 

 



version R2015a. Both the MIP model and the meta-heuristics algorithms were run on a personal 

computer with a Core i7 2.4 GHz processor and 8 GB of RAM.  

To evaluate the performance of the CPLEX solver, GA-VNS, GA and SA for the proposed 

MIP model, since the model is new, and no benchmark problems exist in the literature, in 

addition to the real case study introduced, a set of 19 benchmark problems are generated and 

solved using the CPLEX solver and the above-mentioned meta-heuristic algorithms. It is 

important to pay notice that the test problems are generated with the same characteristics of the 

real-world case taken from industry and can be downloaded at the link provided in the Data 

reference Section. All the considered problems are divided into three problem sizes based on 

the number of stations, namely, small (20 to 60 stations), medium (70 to 130 stations) and large 

(140 to 200 stations) as discussed with the experts in the field. The remaining characteristics 

of the generated problems are discussed as follows.  

In line with the problem description, it is presumed that the stations are sequentially 

arranged along a straight AL with one unit distance from each other. For simplicity, the 𝑥-

coordinates of candidate supermarket places (𝑋𝑠) are chosen to be smoothly positioned in the 

range of the locations of the stations. Moreover, the 𝑦-coordinates of stations and supermarkets 

(𝑦𝑘  and 𝑌𝑠 ) are set to 0 and 5, respectively (Nourmohammadi et al. 2019). Based on the 

requirement in the real case, the information about the transport vehicle types as well as the 

supermarkets was chosen according to the problem description section.  

To set reasonable parameter values for GA-VNS, Taguchi design was applied on an 𝐿9(34) 

experimental design (Taguchi et al. 2007) over its parameters’ levels, as shown in Table 3.  

 

Table 3. GA-VNS parameters’ levels. 

Parameter level Popsize 𝑃𝑟𝑐𝑟  𝑃𝑟𝑚𝑢 𝑃𝑟𝑉𝑁𝑆 

1 20 0.7 0.1 0.05 

2 50 0.8 0.15 0.1 

3 100 0.9 0.2 0.2 

 

According to the Taguchi results which can be accessed in the supplementary material, the 

GA-VNS parameters levels are set to 100, 0.8, 0.2, and 0.2 for 𝑃𝑜𝑝𝑠𝑖𝑧𝑒, 𝑃𝑟𝑐𝑟, 𝑃𝑟𝑚𝑢, and 𝑃𝑟𝑣𝑛𝑠, 

respectively.  

Since this study aims to compare the performance of the proposed GA-VNS with other 

meta-heuristics and due to the lack of meta-heuristics in this context, particularly with the 

characteristics of the new SLTVSP discussed in this study, a conventional GA with the same 

mutation and crossover operations will be considered further for comparison purpose. To 

determine the effect of the VNS mechanism in the proposed GA-VNS and for a fair 

comparison, the levels of the GA parameters are also set equal to the levels of the GA-VNS 

tuned by Taguchi. In addition, simulated annealing (SA) is applied to SLTVSP by embedding 

the proposed mutation operator in Section 4.4 as the neighborhood search mechanism.  

For a fair comparison in terms of an equal number of function evaluations (NFE) for all 

algorithms, the following stopping conditions are considered. The stopping condition of GA-



VNS was chosen to be 500 generations. Using the population size of 100 based on Taguchi 

design, the resulting NFE for GA-VNS by taking the 2 VNS operators and the selected 𝑃𝑟𝑣𝑛𝑠 

level (20%) into consideration, is at most 70,000. Thus, for a fair comparison in terms of equal 

NFE, the stopping condition of GA was set to 700 generations (by assuming the same 𝑃𝑜𝑝𝑠𝑖𝑧𝑒 

as GA-VNS). Accordingly, the initial temperature of SA was set to 70,000, and the stopping 

condition of SA was set to reaching the final temperature of zero while using the cooling 

scheme  𝑇𝐼𝑇+1 = 𝑇𝐼𝑇 − 1 , where 𝑇𝐼𝑇  is the temperature at 𝐼𝑇 th iteration. Also, the internal 

iteration number of SA at each temperature was set to maximum 5 iteration, while the 

acceptance rate of the SA at each iteration is calculated using Equation (10) (Fathi et al. 2016).  

                                                  ( )IT
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                                                        (10) 

where ∆𝑇𝐶 is the change in the objective function value between two solutions.   

5.2. Computational results 

In this section, the results of the mathematical model and the meta-heuristic approaches over 

the SLTVSP test problems are compared against one another. To consider the stochastic nature 

of the meta-heuristic algorithms, they are run over each problem 10 times and their results are 

reported in terms of 𝑇𝐶  of PF including shipment, transport vehicle procurement and 

installation costs of supermarkets. Table 4 shows the results of CPLEX, GA-VNS, GA, and 

SA over the case study (the first two rows with 45 stations) as well as different test problems. 

The first four columns of Table 4 show the characteristics of the problems, including the 

problem size, name, number of stations (𝑀) and the capacity of the supermarkets (𝐶𝑎𝑝𝑠). The 

name selected for each problem represents the combination of the number of stations (M) and 

the capacity of supermarkets. Column 𝑆 shows the possible number of supermarkets which is 

calculated by (𝑇𝑑𝑒𝑚1𝐾 + 𝐹𝛼𝐷𝑠𝑑1𝐾)/𝐶𝑎𝑝𝑠 added by 3 to obtain a reasonable upper bound for 

each problem (Alnahhal and Noche, 2015). Under column CPLEX, the optimal or best-found 

solution, the optimality gap (OG) in percent and the time spent (in seconds) to find the optimal 

or the best 𝑇𝐶 within the allotted time (1200 second), are reported. In the rest of the columns, 

the worst, the average, the best and the standard deviation of the resulting 𝑇𝐶𝑠 for each meta-

heuristic, as well as the average time (in seconds) spent by them to find the optimal or best-

found solution are represented.  

According to Table 4, one can observe that in total, the worst, average, and best 𝑇𝐶s 

obtained by GA-VNS outperform the relating 𝑇𝐶s obtained by GA and SA. Also, the standard 

deviations of the 𝑇𝐶s obtained by GA-VNS are mostly less than GA and SA, which can be a 

representative measure indicating the robustness and reliability of GA-VNS compared to the 

other methods (Osaba et al., 2016), particularly when applying it in the real environment. For 

the case study (the first two rows), in both of the considered capacities, the optimal solutions 

have been found by both MIP and GA-VNS, while GA and SA could only find near-optimal 

and feasible solutions, respectively. Detailed solutions obtained by GA-VNS for all the solved 

problems are given in the Data Reference.      



Furthermore, to better clarify the deviations between the 𝑇𝐶𝑠 obtained by each algorithm, 

i.e., GA-VNS, GA and SA, and the optimal or best found 𝑇𝐶𝑠 obtained by CPLEX, a new 

measure called relative percent deviation (𝑅𝑃𝐷) is calculated using Equation (11). Table 5 

shows the 𝑅𝑃𝐷𝑤𝑜𝑟𝑠𝑡, 𝑅𝑃𝐷𝐴𝑣𝑔. and 𝑅𝑃𝐷𝑏𝑒𝑠𝑡 for each algorithm over different test problems. 
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According to Table 5, one can observe that in 9 out of 40 problems, both GA-VNS and MIP 

have resulted to the same optimal or best-found solutions, while in 21 problems, the best 𝑇𝐶s 

obtained by GA-VNS have less than one percent deviation from the optimal or best solutions 

found by CPLEX. For 7 problems, the GA-VNS solutions have shown between one to two 

percent deviations from the optimal or best solutions found by CPLEX. Finally, it is important 

to highlight that in three problems belonging to the large-sized problems the 𝑅𝑃𝐷𝑏𝑒𝑠𝑡 obtained 

by GA-VNS were negative, meaning that the best 𝑇𝐶s resulted by GA-VNS were better than 

their relating 𝑇𝐶s obtained by CPLEX, during the allotted time. This superiority was made 

possible because of the positive optimality gap (OG%) of the CPLEX in the large-sized 

problems.  

In Figure 5, the comparison of GA-VNS with MIP, in terms of the CPU time and the average 

𝑅𝑃𝐷𝑏𝑒𝑠𝑡 for three problem sizes (small, medium, and large), is shown. It can be seen that when 

the size of the problem increases, the difference between the CPU times of MIP and GA-VNS 

has increased dramatically due to the complexity of the problem. Moreover, it is interesting to 

note that the average 𝑅𝑃𝐷𝑏𝑒𝑠𝑡 for large-sized problems (0.34) is lower than the small (0.51) 

and the medium (0.54) sized problems.  

In addition, Figure 6 illustrates the comparison of MIP CPU times with the average CPU 

times for different meta-heuristics to reach optimal or best-found solutions. As this figure 

shows, when the size of test problems increases, the computational time of MIP has grown 

exponentially so that it is unable to find the optimal solution in 12 out of 14 problems belonging 

to large-sized problems. This is because meta-heuristics are less sensitive to the size of the 

problems. Moreover, as this figure shows the amount of CPU times spent by MIP over most of 

the test problems, which are shown in logarithmic scale with base 10, are much higher than 

GA-VNS, GA, and SA, particularly for large-scale problems. Thus, by considering the 

performance of GA-VNS in achieving very near-optimal solutions, i.e., smaller 𝑅𝑃𝐷𝑏𝑒𝑠𝑡 with 

shorter average CPU times (as shown in Figures 6), one can infer that it is advantageous to 

apply GA-VNS in addressing the SLTVSP. 

 

 



Table 4. Computational results of CPLEX, GA-VNS, GA and SA in terms of 𝑇𝐶.   

Prob. 

Size 
Problem Name 𝑀 𝐶𝑎𝑝s 𝑆 

CPLEX  GA-VNS  GA  SA 

OP/BFS*  OG(%) 
Time 

(Sec.) 
 Worst Avg. Best S. Dev. 

Time 

(Sec.) 
 Worst Avg. Best S. Dev. 

Time 

(Sec.) 
 Worst Avg. Best S. Dev. 

Time 

(Sec.) 

Small M45-Cap30 45 30 14 22001 0.00 4**  22297 22223 9734 109 6  22533 22240 22023 165 6  25419 24842 24197 383 16 

 M45-Cap50  50 10 23324 0.00 45  23726 23686 11232 121 4  23726 23726 23726 0 5  30736 28225 26893 1245 12 

 M20-Cap30 20 30 8 9734 0.00 2  9751 9749 16402 5 2  9751 9748 9734 6 1  10872 10377 10094 350 5 

 M20-Cap50  50 6 11232 0.00 2  11496 11353 18298 99 4  11496 11291 11232 96 2  13201 12236 11531 692 0 

 M30-Cap30 30 30 12 16402 0.00 1  16697 16637 18730 84 2  16897 16719 16632 83 2  19208 18370 17444 441 17 

 M30-Cap50  50 8 18098 0.00 2  18298 18298 19868 0 2  18298 18298 18298 0 1  21310 19703 19368 606 10 

 M40-Cap30 40 30 12 18594 0.00 3  18730 18730 22001 0 3  18748 18739 18730 9 2  21408 20635 20175 383 14 

 M40-Cap50  50 9 19868 0.00 11  20216 20088 23324 112 11  20784 20317 20120 249 4  24565 23298 21780 1093 9 

 M50-Cap30 50 30 16 26243 0.00 4  26455 26373 26339 45 9  26617 26403 26327 100 3  29011 28526 28036 322 21 

 M50-Cap50  50 11 28168 0.00 14  29048 28896 28678 128 7  29048 28853 28660 181 3  33289 31813 30439 1061 12 

 M60-Cap30 60 30 17 26680 0.00 12  26998 26938 26796 52 7  27588 27035 26862 258 4  32863 31693 30558 730 15 

 M60-Cap50  50 11 28676 0.00 88  29782 29338 29168 263 7  29644 29350 29028 242 3  35583 33690 32404 1145 15 

Medium M70-Cap30 70 30 20 33390 0.00 13  33863 33646 33547 143 15  34258 33966 33699 196 8  38154 37465 36635 480 16 

 M70-Cap50  50 13 35620 0.00 34  35973 35847 35620 149 3  37036 36679 36348 276 5  45699 43974 41221 1408 12 

 M80-Cap30 80 30 22 35869 0.00 17  36013 35919 35869 63 19  36925 36385 35869 374 7  48522 46783 44451 1222 23 

 M80-Cap50  50 14 39518 0.00 111  40726 40151 39662 467 11  41163 40958 40726 172 7  51733 49043 46921 1699 14 

 M90-Cap30 90 30 24 41511 0.00 143  42355 42103 41891 156 29  43633 42915 41903 515 16  49303 47969 46952 749 25 

 M90-Cap50  50 16 44813 0.00 806  46196 46089 45588 200 14  47648 46500 46176 541 8  58799 56455 54867 1298 19 

 M100-Cap30 100 30 26 44279 0.00 168  44689 44417 44351 98 24  45733 45228 44880 332 19  53493 52118 51067 821 25 

 M100-Cap50  50 17 48351 0.00 192  48913 48696 48959 188 19  50827 50524 50118 263 9  68165 60945 55409 3171 16 

 M110-Cap50 110 50 19 57122 2.33 1200***  58236 57566 57446 273 8  59310 58653 58246 391 9  79641 75471 72046 2285 22 

 M110-Cap60  60 16 54612 0.00 57  54962 54781 54612 106 20  55484 54893 54730 274 8  78914 76356 71784 2012 19 

 M120-Cap50 120 50 20 58339 0.00 336  61054 59180 58641 872 7  62742 61756 61054 596 7  80284 76572 72255 2315 20 

 M120-Cap60  60 17 57265 0.00 214  57696 57666 57639 24 14  60597 58864 57674 883 7  88192 79891 69662 5908 18 

 M130-Cap50 130 50 22 67435 0.00 461  70445 68689 67583 1159 15  71559 71016 70544 364 13  111374 99468 93374 5076 25 

 M130-Cap60  60 19 66059 0.00 532  67363 67104 66528 198 21  69228 68189 66998 763 10  104385 95766 90853 3906 21 

Large M140-Cap50 140 50 22 69168 0.31 1200  71748 69954 69924 901 12  73120 72423 71748 439 10  109905 104160 96579 4054 23 

 M140-Cap60  60 19 67359 0.00 348  68402 67848 67736 189 18  69438 68190 67736 652 10  113875 102436 91900 6289 20 

 M150-Cap50 150 50 24 74229 1.28 1200  76200 74822 74785 535 41  79955 78013 76885 934 15  116504 108416 103683 4260 27 

 M150-Cap60  60 20 72120 0.00 601  73573 73197 73121 135 23  76093 74331 73121 1080 11  123073 114011 105709 4880 25 

 M160-Cap50 160 50 25 78198 0.83 1200  79064 78699 78506 217 23  84685 82952 81904 1023 19  127470 122896 118604 2418 20 

 M160-Cap60  60 21 76700 0.90 1200  77555 77477 76810 207 20  79466 78673 77823 554 10  133970 122810 115188 5743 24 

 M170-Cap50 170 50 27 84509 0.63 1200  85377 85126 84669 265 6  92149 90138 89111 1046 17  122175 117518 111784 2915 25 

 M170-Cap60  60 23 82808 1.26 1200  83540 83156 82844 290 26  87674 85300 83568 1481 15  142432 134396 122153 5603 19 

 M180-Cap50 180 50 28 88477 3.61 1200  89294 88904 88357 331 7  94200 93277 92262 768 19  151377 141497 129364 6567 25 

 M180-Cap60  60 24 86960 2.17 1200  88075 87705 87207 199 25  93241 90858 89453 1352 13  159110 142587 128591 9033 26 

 M190-Cap50 190 50 28 89136 5.04 1200  90016 89307 89134 258 4  94955 94380 93899 380 19  154755 146245 137632 5268 32 

 M190-Cap60  60 24 86478 1.84 1200  87138 86874 86478 323 12  91352 89999 88914 901 16  158170 144946 127983 7478 23 

 M200-Cap50 200 50 30 97932 3.05 1200  98304 98000 97924 152 15  107006 104921 103961 1023 20  148464 142456 134229 4663 26 

 M200-Cap60  60 26 95919 1.72 1200  96419 96119 95919 245 8  101373 100539 98107 1122 14  163212 153245 138186 6694 28 

*Optimal/Best found Solution;**Optimal solution has been found before reaching 1200 seconds; *** The best solution found during 1200 seconds (if CPU<1200 the solution is optimal, 

if CPU=1200 the solution is the best found solution). 



 
Table 5. Comparison of 𝑅𝑃𝐷s for GA-VNS, GA and SA (in percent). 

Prob. 

Size 
Prob. Name 𝑀 𝐶𝑎𝑝s 𝑆 

  GA-VNS   GA   SA 

  Worst Avg. Best   Worst Avg. Best   Worst Avg. Best 

Small M45-Cap30 45 30 14  0.17 0.16 0,00  0.17 0.15 0.00  11.7 6.61 3.69 

 M45-Cap50  50 10  2.35 1.08 0,00  2.35 0.53 0.00  17.53 8.94 2.66 

 M20-Cap30 20 30 8  1.80 1.43 0,00  3.02 1.94 1.41  17.11 12.00 6.35 

 M20-Cap50  50 6  1.11 1.11 1,11  1.11 1.11 1.11  17.75 8.87 7.02 

 M30-Cap30 30 30 12  0.73 0.73 0,73  0.83 0.78 0.73  15.13 10.98 8.50 

 M30-Cap50  50 8  1.75 1.11 0,00  4.61 2.26 1.27  23.64 17.26 9.63 

 M40-Cap30 40 30 12  1.34 1.01 0,00  2.42 1.09 0.10  15.54 12.91 9.98 

 M40-Cap50  50 9  1.72 1.55 0,00  1.72 1.72 1.72  31.78 21.01 15.30 

 M50-Cap30 50 30 16  0.81 0.50 0,37  1.42 0.61 0.32  10.55 8.70 6.83 

 M50-Cap50  50 11  3.12 2.58 1,81  3.12 2.43 1.75  18.18 12.94 8.06 

 M60-Cap30 60 30 17  1.19 0.97 0,43  3.40 1.33 0.68  23.18 18.79 14.54 

 M60-Cap50  50 11  3.86 2.31 1,72  3.38 2.35 1.23  24.09 17.49 13.00 

Medium M70-Cap30 70 30 20  1.42 0.77 0,47  2.60 1.72 0.93  14.27 12.20 9.72 

 M70-Cap50  50 13  0.99 0.64 0,00  3.98 2.97 2.04  28.29 23.45 15.72 

 M80-Cap30 80 30 22  0.40 0.14 0,00  2.94 1.44 0.00  35.28 30.43 23.93 

 M80-Cap50  50 14  3.06 1.60 0,36  4.16 3.64 3.06  30.91 24.10 18.73 

 M90-Cap30 90 30 24  2.03 1.43 0,92  5.11 3.38 0.95  18.77 15.56 13.11 

 M90-Cap50  50 16  3.09 2.85 1,73  6.33 3.77 3.04  31.21 25.98 22.44 

 M100-Cap30 100 30 26  0.92 0.31 0,16  3.28 2.14 1.36  20.81 17.70 15.33 

 M100-Cap50  50 17  1.16 0.71 1,26  5.12 4.50 3.65  40.98 26.05 14.60 

 M110-Cap50 110 50 19  1.95 0.78 0,57  3.83 2.68 1.97  39.42 32.12 26.13 

 M110-Cap60  60 16  0.64 0.31 0,00  1.60 0.51 0.22  44.50 39.82 31.44 

 M120-Cap50 120 50 20  4.65 1.44 0,52  7.55 5.86 4.65  37.62 31.25 23.85 

 M120-Cap60  60 17  0.75 0.70 0,65  5.82 2.79 0.71  54.01 39.51 21.65 

 M130-Cap50 130 50 22  4.46 1.86 0,22  6.12 5.31 4.61  65.16 47.50 38.47 

 M130-Cap60  60 19  1.98 1.58 0,71  4.80 3.22 1.42  58.02 44.97 37.53 

Large M140-Cap50 140 50 22  3.73 1.14 1,09  5.71 4.71 3.73  58.90 50.59 39.63 

 M140-Cap60  60 19  1.55 0.73 0,56  3.09 1.23 0.56  69.06 52.07 36.43 

 M150-Cap50 150 50 24  2.66 0.80 0,75  7.71 5.10 3.58  56.95 46.06 39.68 

 M150-Cap60  60 20  2.01 1.49 1,39  5.51 3.07 1.39  70.65 58.09 46.57 

 M160-Cap50 160 50 25  1.11 0.64 0,39  8.30 6.08 4.74  63.01 57.16 51.67 

 M160-Cap60  60 21  1.11 1.01 0,14  3.61 2.57 1.46  74.67 60.12 50.18 

 M170-Cap50 170 50 27  1.03 0.73 0,19  9.04 6.66 5.45  44.57 39.06 32.28 

 M170-Cap60  60 23  0.88 0.42 0,04  5.88 3.01 0.92  72.00 62.30 47.51 

 M180-Cap50 180 50 28  0.92 0.48 -0,14  6.47 5.43 4.28  71.09 59.93 46.21 

 M180-Cap60  60 24  1.28 0.86 0,28  7.22 4.48 2.87  82.97 63.97 47.87 

 M190-Cap50 190 50 28  0.99 0.19 -0,002  6.53 5.88 5.34  73.62 64.07 54.41 

 M190-Cap60  60 24  0.76 0.46 0,00  5.64 4.07 2.82  82.90 67.61 48.00 

 M200-Cap50 200 50 30  0.38 0.07 -0,01  9.27 7.14 6.16  51.60 45.46 37.06 

 M200-Cap60  60 26   0.52 0.21 0,00  5.69 4.82 2.28  70.16 59.76 44.06 



 
Figure 5. Comparison of MIP and GA-VNS in terms of CPU times and average 𝑅𝑃𝐷𝑏𝑒𝑠𝑡 for three problems 

sizes. 

  

 

 
Figure 6. Comparison of MIP CPU times with average CPU times for GA-VNS, GA, and SA to reach the 

optimal or best found solutions. 

 

To further validate the performance of GA-VNS, a statistical analysis of the results by the 

considered meta-heuristic algorithms is performed which can be accessed in the supplementary 

material. According to the results of this statistical analysis, it can be concluded that the 

robustness and efficiency of GA-VNS in achieving near-optimal solutions are superior to other 

algorithms.  

5.3. Comparison of SLTVSP and SLP results  

To investigate the effect of TVSP on SLP, here the results of the MIP obtained for SLTVSP 

and SLP are compared. In this regard, the effect of implementing three different transport 
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vehicle types versus identical transport vehicles, i.e. when only tow train is available as the 

transport vehicle, while addressing the SLP is evaluated. Tow train is considered for SLP 

mainly because it is the most commonly applied transport vehicle in the literature (Emde and 

Gendreau 2017; Battini et al. 2013; Boysen et al. 2015).  

Table 6 shows the average relative percent improvement (𝑅𝑃𝐼 ) obtained by SLTVSP 

compared to SLP for the case study and the three problem sizes as well as in overall (including 

all problems), in terms of total installation cost (𝑇𝐼𝐶), total vehicles procurement cost (𝑇𝑉𝑃𝐶), 

total shipment cost (𝑇𝑆𝐶 ) and total cost (𝑇𝐶 )1. The positive values in Table 6 show an 

improvement in the related costs, while the negative values show a deterioration. For instance, 

in the case study, there are 7% improvement in 𝑇𝐼𝐶 , 27% deterioration in 𝑇𝑉𝑃𝐶 , 37% 

improvement in 𝑇𝑆𝐶. Overall, for the case study, using different transport vehicles in SLTVSP 

has resulted in 8% improvement in 𝑇𝐶 compared to identical transport vehicles in SLP. 

 

Table 6. Avg. 𝑅𝑃𝐼 for SLTVSP compared to SLP in terms of different costs (in percent). 

 Problem TIC TVPC TSC TC 

Case study 7 -27 37 8 

Small 4 -25 39 9 

Medium 4 -34 43 10 

Large 6 -40 44 11 

Total 4 -32 42 10 

 

By moving from small to large problems, the amount of improvement in TIC has shown 

growth meaning that using SLTVSP has resulted in a lower number of supermarkets compared 

to SLP. On the other hand, due to an increase in the supermarket demand caused by a fewer 

number of supermarkets, there is a growing degrading trend in TVPC caused by implementing 

transport vehicles with higher capacities. In other words, from small to large-sized problems 

there is a trend to use transport vehicles with higher capacities and accordingly, higher 

procurement cost. However, in line with this trend, while moving from small to large-sized 

problems, the amount of saving and improvement in TSC has shown a growing trend caused 

by lower shipment costs for transport vehicles with higher capacities. Finally, by taking into 

account that TC is the main measure for managers in which a trade-off among the above 

different costs occurs, there is a growing improvement trend in TC when moving from small 

to large-scale problems. Overall, by comparing SLTVSP with SLP in total, there are 4% 

improvement in TIC, 32% deterioration in TVPC, 42% improvement in TSC, and finally 10% 

improvement in TC. Thus, it can be inferred that using different transport vehicles is beneficial 

for those managers who seek to optimize the TC of PF, which can be achieved through 

addressing the integrated SLTVSP.                       

6. Conclusions 

Recently, many manufacturers have adopted the so-called supermarket to allow flexible and 

reliable just-in-time parts feeding (PF) to their ALs. However, to be able to apply supermarkets 

into practice, two primary and interrelated decision problems namely supermarket location 

                                                           
1 TC= TIC+ TVPC+ TSC. 



problem (SLP) and transport vehicles selection problem (TVSP) have to be addressed, wherein 

SLP aims to determine the number and locations of supermarkets while TVSP determines the 

type and the number of transport vehicles assigned to each supermarket. In this study, a mixed-

integer programming (MIP) model for the integrated SLP and TVSP (called as SLTVSP), 

which was inspired from a real-world PF decision problem of an automotive manufacturing 

company, was proposed so that the total cost (TC) of PF, including the part shipment, transport 

vehicles procurement and supermarkets installations costs are simultaneously optimized. 

Furthermore, due to the complexity of the problem, a genetic algorithm (GA) with custom 

representations, initialization, crossover and mutation mechanisms was proposed to deal with 

the large-sized problems. To improve the search capability of GA, it was hybridized with a 

variable neighborhood search (GA-VNS). The computational results on the real-world case and 

over several generated test problems verified that the proposed GA-VNS provides a good 

approximation of the exact solutions obtained by MIP at a much shorter computational time, 

particularly for the large-sized problems. To further validate the efficiency of GA-VNS, its 

performance was also compared with conventional GA and SA, and the analyses of results 

proved the superiority of GA-VNS over other considered meta-heuristics. Finally, the 

comparison of SLTVSP and SLP results showed that using different transport vehicles is 

beneficial for optimizing the TC of PF by addressing the integrated SLTVSP rather than SLP 

with identical transport vehicles.    

In this study, it is assumed that there is no limitation on the number of different transport 

vehicles that can be applied at each supermarket. However, in practice, there might be 

restrictions on the number of transport vehicles available at each supermarket due to the labor, 

space, and transportation system considerations. Moreover, considering the inter-dependency 

of different decisions made regarding the corporate objectives, the impact of SLTVSP on other 

operational decision problems such as scheduling and loading problems can be further 

investigated. Also, unlike this study which assumed that the station demand is deterministic, 

developing SLTVSP and the proposed approach to cope with the stochastic stations’ demands 

can be another interesting research direction. Moreover, developing new features for the 

proposed algorithm (e.g., solution representation, crossover, mutation, etc.) and investigating 

their effects on the results can be further studied. Finally, the performance of other meta-

heuristics can be compared with the proposed GA-VNS in this study when addressing the 

SLTVSP.  
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Appendices 

Table A1. Transport vehicles’ capacity (in bins), shipment and procurement costs (unit cost). 

Transport vehicle ID Transport vehicle type Sample figure Capacity Shipment cost  Procurement cost  

1 Trolley  

 

5 3 100 

2 Tow train 

 

20 2 500 

3 AGV 

 

30 1 1000 

 

 

 

 

 

 

Table A2. The stations’ demands (in bins) for the case study.  

Station # Demand  Station # Demand  Station # Demand  

1 10 16 5 31 10 

2 6 17 2 32 4 

3 7 18 5 33 7 

4 4 19 7 34 4 

5 5 20 4 35 7 

6 4 21 1 36 2 

7 10 22 4 37 5 

8 6 23 10 38 3 

9 3 24 7 39 2 

10 3 25 4 40 10 

11 9 26 10 41 8 

12 2 27 2 42 10 

13 8 28 6 43 9 

14 9 29 2 44 1 

15 8 30 9 45 5 

 

 


