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Abstract  

The aim of this study was to determine the effect of five days dietary nitrate (NO3
-) 

consumption on exercise tolerance and thermoregulation during cycling in hot, dry 

conditions. In a double-blind, randomised crossover design, 11 healthy males 

participated in an exercise tolerance test (Tlim) in the heat (35°C, 28% relative 

humidity), cycling above the thermoneutral gas exchange threshold, after five days of 

dietary supplementation, with either NO3
--rich beetroot juice (BR; ~ 9.2 mmol NO3

-) or 

placebo (PLA). Changes in plasma [NO3
-] and nitrite [NO2

-], core and mean skin 

temperatures, mean local and whole-body sweat rates, heart rate, perceptual ratings 

and pulmonary gas exchange were measured during exercise, alongside calorimetric 

estimations of thermal balance. Mean arterial pressures (MAP) were recorded pre-

Tlim. There were no differences in Tlim between conditions (BR = 22.8 ± 8.1 min; 

Placebo = 20.7 ± 7.9 min) (P = 0.184), despite increases in plasma [NO3
-] and [NO2

-] 

(P < 0.001) and a 3.8% reduction in resting MAP (P = 0.004) in the BR condition. There 

were no other differences in thermoregulatory, cardio-metabolic, perceptual or 

calorimetric responses to the Tlim between conditions (P > 0.05). Dietary NO3
- 

supplementation had no effect on exercise tolerance or thermoregulation in hot, dry 

conditions, despite reductions in resting MAP and increases in plasma [NO3
-] and 

[NO2
-]. Healthy, yet physically inactive individuals with no known impairments in 

vasodilatory and sudomotor function do not appear to require BR for ergogenic or 

thermolytic effects during exercise in the heat.   
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Introduction  

During exercise in hot environments, body heat is predominantly gained through 

internal metabolic heat production, with thermal equilibrium maintained via dry 

(conductive, convective or radiative) or evaporative heat transfer pathways (Gagge & 

Gonzalez, 1996). While dry heat transfer (Hdry) is sufficient to offset positive heat 

storage in cooler environments, in the heat (>33 °C), or in response to significant 

metabolic heat production experienced during exercise, there is a predominant 

reliance on sweating for latent heat transfer (Armstrong, 2000). Thus, in thermally 

strained humans exercising in hot laboratory conditions, cutaneous vasodilation and 

sweating chiefly support heat loss by attenuating the rate of core temperature 

increases (Sawka & Young, 2006).  

 

Evaporation of sweat from the skin surface is the largest modifiable heat loss pathway 

for maintenance of thermal balance during exercise in the heat (Gagge & Gonzalez, 

1996). The latent heat of vaporisation depends upon the efficiency of the sweating 

process and the surrounding water vapour pressure (i.e. humidity) (Parsons, 1993) – 

both of which can be acutely manipulated. For example, evaporative cooling capacity 

is greater in hot and dry conditions compared to humid ambient environments 

(Muhamed et al., 2016), which is explained by the larger vapour pressure gradient 

between the skin’s surface and the ambient air. Thus, the imposition of a dry, hot 

environment increases the maximal evaporative heat transfer capacity of the 

environment (Emax). However, reliance on evaporative cooling to achieve thermal 

balance (Ereq) is partly determined by the interplay of convective, conductive and 

radiative heat transfer (i.e. Hdry), as well as the internal metabolic heat production 

(Hprod) (Gagnon et al., 2013). Therefore, quantification of the individual components of 

thermal balance (using partitional calorimetry) permits a more accurate assessment 

of interventions that are intended to acutely enhance evaporative cooling capacity, yet 

this is seldom performed in empirical research (Cramer & Jay, 2018).  

 

Among many other biological roles, nitric oxide (NO) acts as a signalling molecule for 

modifiable heat transfer mechanisms; namely, eccrine sweat gland function and 

cutaneous blood flow (Stapleton et al. 2014; Fujii et al. 2016). On the basis that NO 
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can be produced through the stepwise reduction of inorganic nitrate (NO3
-→NO2

-

→NO), its effects on thermoregulation in healthy populations during exercise in the 

heat has been investigated (Kuennen et al., 2015; Kent et al., 2017; 2018; McQuillan 

et al. 2017; Amano et al., 2018). Of these studies, none have reported a benefit of 

NO3
- consumption on exercise performance or reported advantages to 

thermoregulation. These results were unanticipated since increases in subcutaneous 

vascular conductance and reductions in blood pressure have been reported following 

beetroot supplementation in response to locally administered thermal skin stimuli 

(Keen et al 2015; Levitt et al., 2015), which are hallmarks of the physiological response 

to increases in NO availability. These apparent null effects may relate to 

inconsistencies in the adopted research designs, sub-optimal conditions for 

evaporative cooling or incomplete analyses of the thermoregulatory process. For 

example, the NO3
-→NO2

-→NO pathway is potentiated at higher exercise intensities, 

owing to the lowered O2 tension and resulting muscle pH (Jones et al., 2016). 

Sustaining exercise intensities above ‘moderate’ levels will also drive metabolic Hprod 

and Ereq, thus necessitating heat loss via evaporative cooling mechanisms (Cramer & 

Jay, 2018). Therefore, the lower (~45-60% V̇O2max) continuous exercise intensities 

utilised in some studies (Kuennen et al., 2015; Kent et al., 2018; Amano et al., 2018) 

could limit the actions of NO3
-→NO2

-→NO pathway on heat transfer. In addition, 

untrained or physically inactive participants are more likely to respond to dietary NO3
- 

supplementation (Porcelli et al., 2015) and have lower skin wettedness (Ravanelli et 

al., 2017), rendering them more susceptible to thermal stress and specific heat transfer 

deficiencies that are primed for NO targeting. It is also pertinent to note that most 

studies have been conducted in relative humidity ranging from 45% - 70% (Kent et al., 

2017; 2018; McQuillan et al. 2017; Amano et al., 2018) or have chosen to heavily 

clothe participants (Kuennen et al., 2015), limiting evaporative cooling potential and, 

thus, the capacity for NO-induced increases in latent heat transfer.  

 

The aim of the current study was to determine the effect of five days dietary NO3
- 

consumption on exercise tolerance and thermoregulation during cycling above the 

thermoneutral gas exchange threshold in hot (35 °C), dry (28% RH) conditions. We 

hypothesised that the dry, hot conditions, coupled with the higher exercise intensity, 
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would reveal the beneficial effects of NO3
- supplementation on evaporative cooling, 

dry heat losses and metabolic cost of untrained participants.     

 

Methods 

Participants 

Eleven non-heat acclimated healthy males volunteered for this study (age 25 ± 5 

years, stature 182.0 ± 4.6 cm, body mass 78.7 ± 7.5 kg, maximal oxygen uptake 

(V̇O2max) 41.1 ± 3.6 ml·min-1·kg-1). Participants were asked to refrain from consuming 

alcohol or any other dietary supplements for 24-h prior to the initial testing session or 

during the study period. None of the participants trained for endurance exercise on a 

regular basis and were deemed to be physically inactive based on exercising < 30 min 

of moderate exercise per week (Department for Health & Social Care, 2019). Trials 

were conducted between December and March in the UK, thereby avoiding additional 

external heat exposure during the period of the study. None of the participants had 

visited hot climates in the five months prior to the trial and were deemed to be non-

acclimated. All participants provided written informed consent to take part in the study. 

Ethical approval was provided by the institutional ethics committee. 

 

Design 

The study adopted a double-blind, placebo-controlled, randomised crossover design. 

All participants reported to the laboratory on three separate occasions, across a 20-

day period. The first visit comprised preliminary testing and familiarisation, after which 

a five-day supplementation period commenced. Following supplementation, the 

participants completed an exercise test to the limit of tolerance (Tlim) (visit two). A 

seven-day washout period was provided prior to the second, five-day supplementation 

period. A final Tlim (visit three) was conducted following the counterbalanced 

supplementation period. Randomisation was conducted by generating random 

numbers for all participants, across each condition using online software 

(http://www.randomizer.org/). Each laboratory visit was conducted at the same time of 

day.  
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Preliminary testing 

During visit one, participants undertook an incremental exercise test to volitional 

exhaustion on a mechanically-braked cycle ergometer (Monark Exercise AB, 

Ergomedic 874E, Varberg, Sweden) in thermoneutral conditions (19.5 ± 1.1 °C) to 

determine V̇O2max and the power output at the gas exchange threshold. The test 

started at a workload of 120 W and increased 24 W·min-1 at a fixed cadence of 80 

rev·min-1 until volitional exhaustion or when cadence dropped below 70 rev·min-1 for 

more than 10-s. The rate of oxygen uptake (V̇O2) was measured using breath-by-

breath expired air analysis (Vyntus CPX, Hoechberg, Germany). The gas analyser 

was calibrated before every trial with gases of known concentration (15.95% O2, 

4.97% CO2, BAL. N2) and the turbine volume transducer was calibrated automatically 

by the system at flow values of 2 L·s-1 and 0.2 L·s-1. Heart rate was recorded 

throughout the trial (Polar Heart Rate Monitor M400, Warwick, UK). V̇O2max was 

calculated as the highest 30-s average V̇O2. Breath-by-breath V̇O2 and V̇CO2 data 

from the incremental cycling test were used to determine the gas exchange threshold, 

using the simplified v-slope method (Scheider, Phillips & Stoffolano, 1993). The mean 

power output at thermoneutral gas exchange threshold was 173 ± 32 W, which was 

fixed for all experimental trials. This threshold was selected as it was deemed 

appropriate to evaluate endurance capacity at a repeatable, fixed intensity, whilst 

increasing the rate of metabolic heat production sufficiently to induce thermoregulatory 

responses. After 20-min of rest, participants conducted a familiarisation trial, 

comprising constant load exercise at the power output associated with their 

thermoneutral gas exchange threshold in an environmental chamber (Sporting Edge 

UK, Basingstoke, UK) set to experimental conditions (35 ± 0.3 °C, 28 ± 1.9 % RH).  

 

Supplementation  

The participants received five days of dietary supplementation, with either NO3
--rich 

beetroot juice (BR) (~ 9.2 mmol NO3
-; Beet It, James White Drinks, Ipswich, UK) or 

NO3
--depleted BR as a placebo (PLA; 0.0034 mmol NO3

-; Beet It, James White Drinks, 

Ipswich, UK). This BR dose was based on the established dose-response profile 



7 
 

(Breese et al. 2017). The participants consumed either the BR or PLA (95 ml divided 

into equal morning and afternoon doses) on days one to four of the supplementation 

period. On day five of supplementation, the participants consumed all of the beverages 

2-h prior to the start of the exercise test. A seven-day washout period separated each 

supplementation period, where participants returned to their normal diet, as well as 

exercising freely up to 24-h testing. Throughout the study, participants completed a 

food diary, which was replicated for the alternative condition. The participants were 

also provided with a list of NO3
- dietary sources and asked to refrain from their 

consumption, as well as avoiding using mouthwash products, for the duration of each 

supplementation period.  

 

Experimental trials  

All subsequent tests were conducted in the heat (35 ± 0.3 °C, 28 ± 1.9 % RH), with 

participants wearing socks, trainers and cycling shorts. Upon arrival at the laboratory, 

the participants lay supine for 10-min, after which their resting blood pressure (BP) 

was measured from their left upper arm, with the last of three mean arterial pressures 

(MAP) recorded (Omron M7 BP Monitor, OMRON Healthcare Europe, Hoofddrop, 

Netherlands). Subsequently, venous blood was drawn from the participants’ right arm 

at the antecubital fossa, using a hypodermic needle and a lithium-heparinized 

vacutainer (4 mL). The whole blood was then centrifuged for 15-min at 1000 g and 

immediately stored at -20 °C. Blood plasma was later thawed and analysed for NO3
- 

an NO2
- using colorimetric assays (R&D Systems, Parameter Nitric Oxide Kit), with an 

intra-assay and inter-assay coefficient of variation of 2.1% and 4.2%, respectively.  

 

Prior to exercise testing, participants were instructed to insert a rectal probe 10 cm 

past the anal sphincter to measure core temperature (Tcore). Tcore was recorded every 

1-min via a data logger (SQ2010, Grant Instruments Ltd., Cambridge, UK). A urine 

sample was also provided to determine hydration status using a refractometer (Pocket 

Osmochek, Vitech Scientific Ltd, West Sussex, UK). A reading of >600 mOsm·kg-

1·H2O-1 indicated hypohydration, in which case the participant consumed 500 ml of 

water and waited 30-min before being re-tested and beginning the trial. The 

participants’ nude body mass was recorded (MPMS-230, Marsden Weighing Group, 
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Oxfordshire, UK), with the mass of the probe subtracted, after which no further drinking 

fluids were consumed until after the test. Skin thermistors (Grant Instruments Ltd., 

Cambridge, UK) were then attached to four sites on the participants’ right side: upper 

chest, mid-ventral forearm, mid-calf and mid-thigh. Skin temperature was recorded 

continuously (SQ2010, Grant Instruments Ltd., Cambridge, UK) and reported every 

30-s. Mean skin temperature (Tskin) was calculated based on the four measured sites 

(Ramanathan, 1964). Prior to fitting skin thermistors, the skin was cleaned with soap 

and water and dry shaved, before being thoroughly dried. Local sweat rate was 

measured using a Q-Sweat system (WR Medical Electronics Co., Stillwater, MN). 

Ventilated capsules were fixed proximal to the skin thermistors on the right-side of the 

body. Sweat rate was calculated using standard vapour pressure equations and 

expressed in nL·min-1. Mean sweat rate was calculated by averaging the four sweat 

sites and reported every 1-min.  

 

Participants then entered the environmental chamber and were instructed to maintain 

a pedal cadence of 70 rev·min-1 at an intensity equivalent to thermoneutral gas 

exchange threshold until complete exhaustion. Given the effect of the hot environment 

on sub-maximal endurance thresholds (Aleksander et al., 2010), the intensity was 

deemed to be above the thermoneutral gas exchange threshold. Exhaustion was 

defined as voluntary withdrawal or when pedal cadence dropped below 70 rev·min-1 

for more than 10-s. The coefficient of variation for power output in this test in our 

laboratory is 3.8% while cycling in the heat. Ratings of perceived exertion (RPE) were 

recorded on a 6 to 20-point Borg scale. Thermal sensation (TS) was recorded on a 9-

point scale where -4 = “very cold”, 0 = “neutral”, and 4 = “very hot”. RPE and TS were 

recorded every 2-min but are reported at the start, mid-point and at completion of the 

Tlim. Skin thermistors and sweat capsules were also removed post-exercise, before 

being towel-dried and re-weighed to indicate fluid losses during exercise. 

 

Partitional calorimetry 

Using standard partitional calorimetry equations, elements of heat production and heat 

dissipation were estimated (see supplementary material).  
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Statistical analysis 

Two-way repeated measures analyses of variance were conducted to test for effects 

of condition (BR or PLA), time (10% epochs across the trials) and their interactions on 

dependent variables measured across the exercise trials. A Greenhouse-Geisser 

correction was applied when the assumption of sphericity was violated. Where time or 

interaction effects were found, post-hoc analyses was performed with Bonferroni tests 

to identify pairwise differences. Paired samples t-tests were used to assess 

differences between the performance trials (Tlim), plasma [NO3
-] and [NO2

-], body mass 

changes (∆%BM) during the Tlim test and pre-test urine osmolality during PLA and BR 

conditions. A paired t-test was also used to assess the trial-order effects. A one-way 

ANOVA was performed on resting blood pressure (mean arterial pressure; MAP) 

during preliminary testing and pre-test for PLA and BR conditions. Statistical 

significance was accepted at P ≤ 0.05 and all analyses were performed on IBM SPSS 

Statistics (Version 21, IBM Corp., Armonk, NY, USA). 

 

Results 

Limit of exercise tolerance (Tlim) 

There were no differences (t(10)= 1.4, P = 0.184) in Tlim between the BR and PLA 

conditions, despite seven out of the eleven participants extending their performance 

after BR supplementation (BR = 22.8 ± 8.1-min; Placebo = 20.7 ± 7.9-min). There were 

also no trial order effects on the time to exhaustion (P = 0.168). 

 

Plasma nitrate ([NO3
-]) and nitrite ([NO2

-]) concentrations   

There were condition effects on plasma [NO3
-] (t(10) = 12.3, P < 0.001) and plasma [NO2

-

] (t(10) = 6.4, P < 0.001). Specifically, the values for [NO3
-] in the PLA and BR conditions 

were 22.9 ± 5.5 𝜇M and 604 ± 158 𝜇M, respectively, whilst those for [NO2
-] were 99.5 ± 

30.2 nM and 430.7 ± 149.8 nM, respectively.  
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Core (Tcore) and skin (Tskin) temperature 

Tcore increased with time (F(9,90) = 89.598, p < 0.001), with no main effect of condition 

(F(1,10) = 0.248, p = 0.629) or interaction with condition (F(9,90) = 1.873, p = 0.066) (Figure 

1A). The highest core temperatures reached were 37.9 ± 0.2 °C and 38.0 ± 0.4 °C in 

the BR and PLA conditions, respectively. Tskin increased with time (F(9,90) = 7.179, P < 

0.001), without condition effects (F(1,10) = 0.796, P = 0.096) or an interaction with time 

(F(9,90) = 0.122, P = 0.099) (Figure 1B). 

 

*** Insert Figure 1 here *** 

 

Mean local sweat rate and heart rate 

Mean local sweat rate increased with time (F(9,90) = 102.491, P < 0.001) but there were 

no effects of condition (F(1,10) = 0.047, P = 0.832) or condition × time interactions (F(9,90) 

= 0.101, P = 1.000) (Figure 2A). Heart rate increased with time (F(9,90) = 214.520, P < 

0.001); however, there were no main effects for condition (F(1,10) = 0.175, P = 0.685), 

and no significant interaction (F(9,90) = 1.178, P = 0.319) (Figure 2B). 

 

Oxygen consumption (𝑉̇O2) and carbon dioxide production (𝑉̇CO2) 

Both V̇O2 (F(9,90) = 12.240, P < 0.001) and V̇CO2 (F(9,90) = 6.379, P < 0.001) changed 

across time. Neither V̇O2 (F(1,10) = 0.172, P = 0.687) nor V̇CO2 (F(1,10) = 0.010, P = 

0.922) were different between conditions and no interactions were observed (P > 0.05) 

(Figure 2C & 2D, respectively).  

 

*** Insert Figure 2 here *** 

 

Thermal sensation (TS) and rating of perceived exertion (RPE) 

Both TS (F(9,90) = 30.507, P < 0.001) and RPE (F(9,90) = 64.895, P < 0.001) changed 

across time. Neither TS (F(1,10) = 0.034, P = 0.858) nor RPE (F(1,10) = 0.239, P = 0.635) 

were different between conditions and no interactions were observed (P > 0.05).  
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Hydration, whole-body sweat rate (∆%BM) and resting mean arterial pressure 

As presented in Table 1, there was a significant main effect of condition on MAP (F(2,20) 

= 7.772, P = 0.003), with post-hoc tests demonstrating higher (P = 0.004) values in 

the PLA compared to the BR condition. There were also differences between PLA (P 

= 0.050) and preliminary measures but not between preliminary and BR (P = 1.000). 

There were no changes in osmolality (t(10) = 0.595, P = 0.565) or ∆%BM (t(10) = 1.473, 

P = 0.172) between conditions.    

 

***Insert table 1 here*** 

 

Partitional calorimetry 

SkBF requirements did not change between the PLA (7.7 ± 2.4 L∙min-1) and BR (7.5 ± 

4.4 L∙min-1) conditions (t(10) = 0.207, P = 0.840). There were no differences between 

PLA and BR for Hprod (t(10) = 0.103, P = 0.920), Hdry (t(10) = 1.913, P = 0.085), Ereq (t(10) 

= 0.789, P = 0.448), heat storage (t(10) = 0.941, P = 0.369), Emax (t(10) = 1.919, P = 

0.084) or W (t(10) = 0.101, P = 0.337) (Table 2).  

 

 

***Insert table 2 here*** 

 

Discussion 

 

We investigated the effects of five days dietary NO3
- supplementation on exercise 

tolerance and thermoregulation in hot, dry conditions among physically inactive males. 

Contrary to our hypothesis, there were no effects of the supplement on core or shell 

temperatures, nor were there any physiological changes during cycling exercise, 

despite participants in the BR condition descriptively increasing their Tlim by 2.1-min 

and demonstrating significant reductions in MAP compared to PLA. Further 
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investigation of thermal balance using partitional calorimetry revealed no change in 

dry or latent heat exchange between conditions during exercise. Thus, in accordance 

with the findings of others (Kuennen et al., 2015; Kent et al., 2017; 2018; McQuillan et 

al. 2017; Amano et al., 2018), there appears to be no thermoregulatory or performance 

benefits associated with the consumption of NO3
--rich beetroot juice prior to exercise 

in the heat. 

 

Although the null effects of NO3
- supplementation on exercise tolerance are in contrast 

to our hypothesis, these results were not completely unanticipated, given the equivocal 

findings reported on exercise performance to date (McMahon et al., 2017). While a 

noteworthy mean increase in Tlim of 2.1-min (9.4%) was observed in the BR condition, 

the variability in response among individuals precluded any clear ergogenic effect, 

thus highlighting the potential for individual responders. Training status has been 

proposed to account for the variability in thermoneutral performance responses to 

NO3
-, (Porcelli et al., 2015). On this basis, coupled with the likelihood of inferior heat 

tolerance (Ravanelli et al., 2017), we intentionally recruited those of lower fitness 

levels. The lower V̇O2max and reported training frequency, alongside W values (i.e. 

Ereq/Emax) provide evidence to support the physically inactive and non-acclimated 

status, respectively. However, based on the null and variable findings, it is likely that 

other phenotypic factors explain variance in the response to NO3
- supplementation 

during hot exercise. Further research is required in this regard but it is likely that 

individual responses are related to factors that directly limit heat tolerance, such as 

baseline deficiencies in peripheral avenues of heat dissipation or variable responses 

to the BR supplement. Indeed, despite no whole-body sweat rate changes, three 

participants lost > 1% of their body mass during the Tlim following BR, compared to ~ 

0.5% following PLA. Given that sweat production and subcutaneous vasomotor 

function can be modified by serial thermal exposures among both healthy (Lorenzo & 

Minson, 2010) and some clinical populations with peripheral impairments (Kenny et 

al., 2016), these factors provide a logical basis for individual variation in response to 

BR during exercise in the heat and require further investigation. 
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The hot, dry environment of the current study was conducive to evaporative cooling 

and the untrained status of the male participants, exercising at intensities above gas 

exchange threshold was hypothesised to potentiate the effects of the NO3
-→NO2

-→NO 

pathway on exercise capacity and heat transfer. Given the capacity of this pathway to 

facilitate NO availability, it was assumed that an effect would be identified in the sweat 

gland or sub-cutaneous vasculature, capable of assisting with heat dissipation during 

exhaustive exercise. Indeed, increasing circulating plasma NO2
- might enhance its 

delivery to the skin microvasculature (Fujii et al. 2016; McNamara et al. 2014) or sweat 

gland (Weller, 1996), where reduction of NO2
- to NO can facilitate cutaneous 

vasodilation and/or sweat production. Furthermore, the prescribed exercise intensity 

was intended to enhance reliance upon NOS-independent pathways (Fujii et al., 

2014), thus potentiating the effect of NO3
-→NO2

-→NO cascade on cutaneous 

vasculature. However, despite these conditions, the similarity in local sweat rates, skin 

temperatures, SkBF requirements and Ereq reported herein question the 

thermoregulatory advantages of dietary NO3
- among healthy participants exercising at 

higher intensities in the heat.    

 

Nitric oxide is a primary regulator of arterial pressure, acting as a signalling molecule 

for smooth muscle endothelia (Gilchrist et al. 2011). These mechanisms facilitate 

vasodilation of blood vessels and blood flow to the working musculature in 

thermoneutral environments (Ferguson et al. 2013). Accordingly, reductions in resting 

(Bailey et al. 2009; Bond et al. 2014; Fujji et al., 2015; Levitt et al., 2015; Kent et al., 

2018) and exercising (Bond et al. 2014; Amano et al., 2018) blood pressure have been 

frequently reported after consumption of NO3
-. These reports support our findings, 

where resting MAP was reduced by 3.8% in the BR condition compared to PLA. Whilst 

the effects of dietary NO3
- on blood pressure are consistently reported and ascribed 

to NO-mediated actions on the macro-vasculature (Gilchrist et al., 2011), the effects 

on the subcutaneous vessels are less clear. For example, increases in resting 

subcutaneous vascular conductance have been demonstrated in response to whole-

body and local limb heating (43 °C), following 3-days of NO3
- supplementation (Levitt, 

et al. 2015; Keen et al., 2015). However, a subsequent study did not report any 

changes in subcutaneous vascular conductance or local sweat rates after 3-days of 

dietary NO3
- supplementation among healthy participants, despite similar reductions 
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in exercising blood pressure (Amano et al., 2018). Unlike previous investigations, we 

and others (Amano et al., 2018) increased thermal load in a more ecologically valid 

manner, via heating of ambient room air and controlling exercise intensity, rather than 

water suit perfusion and ventral forearm heating (Levitt et al., 2015). These contrasting 

approaches provide markedly different afferent signals to the thermoregulatory centre, 

with the controlled water-suit and ventral forearm heating methods preventing typical 

dry cooling mechanisms and delivering a more focussed artificial stimulus, 

respectively (Romanovsky, 2018). The different heating methods, therefore, most 

likely explain the discrepancies between studies. Thus, the typical thermal stresses 

posed by exercise in a hot room environment appear to be insufficient to require 

additional NO availability (i.e. via NO3
-→NO2

-→NO pathway) for heat loss mechanisms 

that rely on sudomotor and subcutaneous microvascular function.  

  

The current participants were recruited without any known impairment in sudomotor 

function or vasodilatory capacity that would limit the autonomic response to whole-

body heating and exercise. Consistent with our aforementioned argument regarding 

the severity of the imposed thermal signal, it is also feasible that impairments in 

sweating or microvascular function are necessary to observe changes in 

thermoregulation during hot exercise, since this would effectively lower the 

participant’s individual threshold of thermal tolerance. Indeed, there are age-related 

impairments in NOS-dependent sweating during exercise (Stapleton et al., 2014; Fujji 

et al., 2015), such that older adults may experience thermoregulatory deficits in 

response to heat exposures. Therefore, future research could consider the effects of 

NO3
- supplementation among elderly populations and, perhaps, other clinical 

conditions known to impair sweating or skin microvascular function in response to 

thermal challenge. For example, it was recently reported that dietary NO3
- 

supplementation can improve peripheral blood flow following cold exposure among 

those with Raynaud’s phenomenon (Shepherd et al., 2019) and it is known that both 

type 1 and 2 diabetics demonstrate irregular peripheral responses to hot and cold 

exposures (Kenny et al., 2016), which could be modified by supplements with vaso-

active properties.   
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The absolute final core temperatures reached in the current study were not as high as 

anticipated, given the high exercise intensity and thermal environment, and are a 

possible limitation. However, the rate of change in core and skin temperature, as well 

as the substantial local sweat response and fluid losses (0.71 to 0.85% body mass 

loss in ~ 20 min) are evidence of a notable thermoregulatory response to the heat. 

Thus, the intensity of the exercise, in combination with the ambient temperature, 

appear to have induced notable physiological adjustments to the heat, sufficient to 

prevent the continuation of exercise. The participants’ perceptions of this hot 

environment also confirm this. This outcome appears to be a consequence of the 

deliberately chosen higher intensities. Finally, while there have been inconsistent 

findings to date (Balsalobre-Fernández et al., 2018), it was feasible that BR 

supplement would lower V̇O2 during fixed-intensity exercise (Larsen et al., 2011). 

Indeed, it was possible that an improved exercise efficiency would be useful for 

thermal balance via reductions in metabolic heat gain. There are a number of reasons 

for the null effects reported herein, such as the increased energy demands (such as 

myocardial oxidative demand; Nielsen et al. 1990) or reduced mitochondrial efficiency 

(Willis & Jackman 1994) induced by exercising in the heat – all of which might have 

offset the reported metabolic advantages conferred by BR supplements in 

thermoneutral environments.  

 

Conclusion 

Five days of dietary NO3
- supplementation had no effect on exercise tolerance or 

thermoregulation in hot, dry conditions among physically inactive male participants, 

despite the typically observed reductions in pre-exercise resting MAP and increases 

in plasma [NO3
-] and [NO2

-]. To enhance our understanding of dietary NO3
- on thermal 

tolerance, future research should consider populations with impaired vasodilatory or 

sudomotor function in response to thermal challenge or consider increasing the 

severity of the whole-body temperature changes.   
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Figures 

 

Figure 1. Core (A) and skin (B) temperature during exercise at the power output 

associated with gas exchange threshold following beetroot (black squares) 

supplementation or placebo (white squares) in a hot, dry environment. Data are 

expressed as a proportion of the exercise trial (n = 11). $ = main effect of time (P < 

0.05). 
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Figure 2. Mean local sweat rate (A), heart rate (B), oxygen consumption (V̇O2; C) and 

carbon dioxide production (V̇CO2; D) during exercise at the power output associated 

with gas exchange threshold following beetroot (black squares) supplementation or 

placebo (white squares) in a hot, dry environment. Data are expressed as a proportion 

of the exercise trial (n = 11). $ = main effect of time (P < 0.05). 
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Tables 

 

Table 1. Urine osmolality, pre-to-post exercise body mass changes, and resting pre-

exercise mean arterial pressure during preliminary testing or following 5-days of 

placebo or beetroot supplementation.     

  Pre-testing Placebo Beetroot 

Urine osmolality (mOsm·kg-1·H2O-1)  -  292 ± 166 262 ± 115 

Body mass change (%)  -  0.71 ± 0.18 0.85 ± 0.36 

Mean arterial pressure (mmHg) 98.9 ± 5.1* 99.8 ± 6.7* 96.1 ± 5.1 
                    

Note: * = sig. different from beetroot condition (P ≤ 0.05).  

 

 

 

Table 2. Partitional calorimetry during fixed-intensity exercise trials 

in a hot, dry environment following 5-days of placebo or beetroot 

supplementation (n = 11). 

         Placebo         Beetroot 

Hprod (W∙m-2) 428.4 ± 41.4 426.9 ± 54.8 

Hdry (W∙m-2) 7.7 ± 3.6 5.8 ± 2.4 

Ereq (W∙m-2) 276.7 ± 60.6 299.5 ± 55.9 

Heat storage (W∙m-2) 142.1 ± 64.5 121.2 ± 35.3 

Emax (W∙m-2) 316.2 ± 8.6 314.2 ± 9.2 

W (Ereq:Emax) 0.89 ± 0.15 0.95 ± 0.14 

Note: Hprod = Heat production; Ereq = required evaporative heat transfer; Emax = 

maximal evaporative cooling capacity of the environment; Hdry = dry heat transfer.  

 

 

 

 

 

 


