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Abstract

In this paper, a novel discrete-time advance zeroing neural network (DT-
AZNN) model is proposed, developed and investigated for solving future
augmented Sylvester matrix equation (F-ASME). First of all, based on the
advance zeroing neural network (AZNN) design formula, a novel continuous-
time advance zeroing neural network (CT-AZNN) model is shown for solv-
ing continuous-time augmented Sylvester matrix equation (CT-ASME). Sec-
ondly, a recently published discretization formula is further investigated with
the optimal sampling gap of the discretization formula proposed. Then, for
solving F-ASME, a novel DT-AZNN model is proposed based on the dis-
cretization formula. Theoretical analyses on the convergence property and
the perturbation suppression performance of the DT-AZNN model are pro-
vided. Moreover, comparative numerical experimental results are conducted
to prove the effectiveness and robustness of the proposed DT-AZNN model
for solving F-ASME.
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1. Introduction

As one of the fundamental mathematical problems, Sylvester matrix equa-
tion is widely encountered in scientific and engineering fields [1, 2, 3, 4, 5],
the general form of which is formulated as

AX +XB = C ∈ Rm×n,

where A ∈ Rm×m, B ∈ Rn×n and C ∈ Rm×n are the known matrices; X ∈
Rm×n is the unknown matrix to be solved. For example, as a special case
of Sylvester matrix equation, Lyapunov matrix equation is broadly used to
analyze the stability of dynamic systems [6]. There exist a great number
of mathematical methods, e.g., the Bartels-Stewart algorithm [7] and its
extensions [8, 9], which is equipped with a time complexity O(n3) [9], for
effectively solving Sylvester matrix equation. However, on the one hand,
lots of methods are essentially designed for solving time-invariant (or say,
static) Sylvester matrix equation rather than time-variant Sylvester matrix
equation. In this sense, these methods do not possess enough efficiency for
handing nonstationary cases due to the lack of adaption to the time-variant
parameters [10]. On the other hand, few researches on investigating the
discrete-time Sylvester matrix equation compared with the continuous-time
one [9, 11, 12, 13, 14, 15, 16, 17]. With the development of digital circuits
and digital computers, the discrete-time problem fits well with the actual
applications, and the discrete-time models are more convenient for numerical
implementation on digital systems. Thus, it is important to investigate the
discrete-time Sylvester matrix equation.

Neural networks, especially recurrent neural networks, have been widely
utilized for solving various problems in the past decades [18, 19, 20, 21, 22,
23, 24]. A novel recurrent neural network is proposed by Zhang et al. for
solving Sylvester matrix equation with time-variant coefficient matrices for
the first time [11]. Such type of recurrent neural network aims at zeroing in-
definite error function for a specific problem, and is thus called zeroing neural
network (ZNN) [18, 25, 26, 27, 28]. Based on the previous researches, the
continuous-time classical zeroing neural network (CT-CZNN) model can ac-
curately obtain a solution of continuous-time Sylvester matrix equation [11].
However, most of these researches are considered under ideal conditions. In
fact, in the practical applications, perturbations always exist and have sig-
nificant influence on the solving system process. Jin et al. firstly proposed
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continuous-time advance zeroing neural network (CT-AZNN) models for solv-
ing perturbed continuous-time problems [29, 30]. As further researches, the
discrete-time advance zeroing neural network (DT-AZNN) model is verified
to possess excellent performance in the presence of perturbations [31, 32].

Together with previous researches, in this paper, a novel DT-AZNN
model is utilized to solve the future augmented Sylvester matrix equation
(F-ASME), which originates from the continuous-time augmented Sylvester
matrix equation (CT-ASME). Specifically, on the one hand, the augmented
Sylvester matrix equation (ASME) can be formulated as

AXB + CXD = E ∈ Rm×n,

where A ∈ Rm×m, B ∈ Rn×n, C ∈ Rm×m , D ∈ Rn×n and E ∈ Rm×n are
the known matrices; X ∈ Rm×n is the unknown matrix to be calculated.
Evidently, the above matrix equation includes the well-known Lyapunov ma-
trix equation, Stein matrix equation and Sylvester matrix equation [33, 34],
which means that the Lyapunov matrix equation, Stein matrix equation and
Sylvester matrix equation can be regarded as special cases of ASME. On the
other hand, the future problem is a special discrete-time problem. During the
solving process, based on the present and/or previous data, we compute the
results for future use before the next time instant [32]. That is, for solving
future problems, an effective method should not only obtain the solution of
discrete-time problems, but also should satisfy the requirement of real-time
computation.

The remainder of this paper is organized into five sections. In Section 2,
the problem formulation is described, and then the problem transformation
and corresponding continuous-time models are presented. In Section 3, a
recently published discretization formula is further studied, and we further
propose corresponding DT-AZNN model. Theoretical analyses of such model
are also proposed in this section. Section 4 shows comparative numerical
experiments to substantiate the effectiveness and robustness of the proposed
DT-AZNN model. Section 5 concludes this paper with final remarks. Before
ending this section, it is worth pointing out the main contributions of this
paper as follows.

1) In this paper, aided with the Kronecker product and vectorization tech-
niques, the CT-ASME is transformed into a simple continuous-time lin-
ear system, which is further solved by the proposed CT-AZNN model
with superior perturbation suppression performance.
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2) Based on the previous researches, a recently published one-step-ahead
discretization formula (termed 5-instant discretization formula) is pre-
sented for further investigation. As an important property of the dis-
cretization formula, in this paper, the optimal sampling gap of the
5-instant discretization formula is proposed and proved firstly, which
can be seen as a mathematical breakthrough in the research front of
the discretization formula.

3) By using the above discretization formula to discretize CT-AZNN model,
a novel DT-AZNN model is proposed, developed and investigated for
solving F-ASME with corresponding theoretical analyses presented to
show its convergence property and perturbation suppression perfor-
mance.

4) Comparative numerical experiments are conducted to substantiate the
effectiveness and robustness of the proposed DT-AZNN model in the
presence of various perturbations (including the constant perturbation,
the linear-form time-variant perturbation, the sine-form/cosine-form
time-variant perturbation and the exponential-decay-form time-variant
perturbation).

In addition, the list of acronyms is summarized as below.

Acronyms

ASME: Augmented Sylvester matrix equation.
AZNN: Advance zeroing neural network.
CZNN: Classical zeroing neural network.
CT-AZNN: Continuous-time advance zeroing neural network.
CT-ASME: Continuous-time augmented Sylvester matrix equation.
CT-CZNN: Continuous-time classical zeroing neural network.
DT-AZNN: Discrete-time advance zeroing neural network.
DT-CZNN: Discrete-time classical zeroing neural network.
F-ASME: Future augmented Sylvester matrix equation.
ZNN: Zeroing neural network.
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2. Problem formulation, problem transformation and continuous-
time ZNN models

To lay a basis for further investigation, in this section, problem formula-
tion is presented firstly. Then, the problem transformation and corresponding
continuous-time ZNN models are also presented.

2.1. Problem formulation

First of all, let us consider the following F-ASME, which should be solved
at time interval [tk, tk+1) ⊆ [t0,tf ] ⊆ [0,+∞), as

Ak+1Xk+1Bk+1 + Ck+1Xk+1Dk+1 − Ek+1 = 0 ∈ Rm×n, (1)

where future coefficient matrices Ak+1 ∈ Rm×m, Bk+1 ∈ Rn×n, Ck+1 ∈ Rm×m,
Dk+1 ∈ Rn×n and Ek+1 ∈ Rm×n are defined to be generated from the
smoothly continuous-form of time-variant matrices A(t) ∈ Rm×m, B(t) ∈
Rn×n, C(t) ∈ Rm×m, D(t) ∈ Rn×n and E(t) ∈ Rm×n by sampling at time in-
stant t = (k + 1)g (termed tk+1), respectively; Xk+1 ∈ Rm×n is the unknown
matrix. In addition, g > 0 denotes the sampling gap, and k = 0, 1, 2, · · ·
denotes the updating index. As mentioned above, the ASME includes the
well-known Lyapunov matrix equation, Stein matrix equation and Sylvester
matrix equation [33, 34], which highlights again the mathematical signifi-
cance and breakthrough of this paper. In addition, inspired by [31, 32], we
mainly focus on solving future problem, which can be regarded as a special
kind of discrete-time problem, and then the designed model should satisfy
the requirement of future computation during the solution process. Specifi-
cally, at time instant tk, the present and previous data (e.g., Xk, Ak, Bk and
corresponding derivatives) are gainable, but the unknown data (e.g., Xk+1

and corresponding derivative) have not been obtained yet. In other words,
these data can not participate in the computation at time instant tk [32].

2.2. ZNN design formulas

To obtain the solution to F-ASME (1), let us consider the following CT-
ASME, which is evolved from (1):

A(t)X(t)B(t) + C(t)X(t)D(t)− E(t) = 0 ∈ Rm×n, (2)

with t ∈ [0, tf ] ⊆ [0,+∞); continuous-form of time-variant matrices A(t) ∈
Rm×m, B(t) ∈ Rn×n, C(t) ∈ Rm×m, D(t) ∈ Rn×n and E(t) ∈ Rm×n. To mon-
itor and control (2), the time-variant zeroing error function can be defined
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as
Z(t) = A(t)X(t)B(t) + C(t)X(t)D(t)− E(t). (3)

Then, according to [11, 26], the CZNN design formula is selected for zeroing
out Z(t) such that the time-variant zeroing error function converges to zero
exponentially [35]:

Ż(t) = −γφ(Z(t)),

where Ż(t) denotes the time-derivative of Z(t); the design parameter γ >
0 is used to scale the convergence rate; φ(·) : Rm×n → Rm×n denotes an
activation function mapping array. For simplicity and clarity, applying the
linear activation function array [36] to the above CZNN design formula leads
to

Ż(t) = −γZ(t). (4)

Besides, the AZNN design formula has been recently presented for time-
variant problems solving [31, 32, 37]. For the convenience of presentation
and readability, the derivation process of AZNN design formula has been
presented in [32], and is omitted due to the space limitation. The AZNN
design formula is presented for zeroing Z(t) as follows:

Ż(t) = −2µZ(t)− µ2

∫ t

0

Z(σ)dσ. (5)

2.3. Problem transformation and continuous-time ZNN models

In this subsection, inspired by Kronecker product and vectorization tech-
niques [38, 39], the CT-ASME (2) can be vectorized equivalently as

vec(Z(t)) =
(
BT(t)⊗ A(t) +DT(t)⊗ C(t)

)
vec(X(t))− vec(E(t))

with Kronecker product ⊗ and matrix vectorization operation vec(·). In
addition, the time derivative of Z(t) can be presented as

Ż(t) =Ȧ(t)X(t)B(t) + A(t)Ẋ(t)B(t) + A(t)X(t)Ḃ(t) + Ċ(t)

X(t)D(t) + C(t)Ẋ(t)D(t) + C(t)X(t)Ḋ(t)− Ė(t),

which can be vectorized equivalently as

vec(Ż(t)) =
(
BT(t)⊗ Ȧ(t) + ḂT(t)⊗ A(t)

)
vec(X(t))+

(
DT(t)⊗ Ċ(t) + ḊT(t)⊗ C(t)

)
vec(X(t))+

(
BT(t)⊗ A(t) +DT(t)⊗ C(t)

)
vec(Ẋ(t))− vec(Ė(t)).
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Define{
M(t) = BT(t)⊗ A(t) +DT(t)⊗ C(t)

Ṁ(t) = BT(t)⊗ Ȧ(t) + ḂT(t)⊗ A(t) +DT(t)⊗ Ċ(t) + ḊT(t)⊗ C(t).

Thus, we have
ż(t) = Ṁ(t)x(t) +M(t)ẋ(t)− ė(t), (6)

where ż(t), ẋ(t) and ė(t) denote the vectorization of Ż(t), Ẋ(t) and Ė(t),
respectively. Note that the above equation (6) is the time derivative of the
following one:

z(t) = M(t)x(t)− e(t), (7)

which can be viewed as a standard continuous-time linear system [26]. It
can be concluded that, based on the Kronecker product and vectorization
techniques, the CT-ASME (2) can be transformed into a relatively simple
continuous-time linear system. In other words, we present a link between
the CT-ASME (2) and continuous-time linear system (7).

Combining the continuous-time linear system (7) with the AZNN design
formula (5) generates the following CT-AZNN model:

M(t)ẋ(t) =− 2µ (M(t)x(t)− e(t))− µ2

∫ t

0

(M(σ)x(σ)− e(σ)) dσ

− Ṁ(t)x(t) + ė(t).

(8)

Considering the effect of the perturbations in the solving process, the per-
turbed CT-AZNN model can be obtained as

M(t)ẋ(t) =− 2µ (M(t)x(t)− e(t))− µ2

∫ t

0

(M(σ)x(σ)− e(σ)) dσ

− Ṁ(t)x(t) + ė(t) + p(t),

(9)

of which p(t) signifies the measurement perturbations including the ambi-
ent perturbations and the hardware errors. For comparison, the CT-CZNN
model based on the CZNN design formula (4) is presented as

M(t)ẋ(t) = −2µ (M(t)x(t)− e(t))− Ṁ(t)x(t) + ė(t). (10)

Theorem 1. Consider perturbed CT-AZNN model (9) with time-variant per-
turbation p(t). The Laplace transformation result of time-variant perturba-
tion p(t) is defined as p(s). If lims→0s

2p(s) exists, the perturbed CT-AZNN
model (9) converges toward theoretical solution to CT-ASME (2) with corre-
sponding residual error.
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Proof. Consider perturbed CT-AZNN model (9) with time-variant perturba-
tion p(t). Using the Laplace transformation [40] to the jth subsystem of the
perturbed CT-AZNN model (9) generates

zj(s) =
s(zj(0) + pj(s))

s2 + 2sµ+ µ2
,

where µ > 0. It can be concluded that the subsystem is stable [29, 30, 31].
For such a stable system, the final value theorem can be applied [30]. Hence,
we have

lim
t→∞

zj(t) = lim
s→0

szj(s) = lim
s→0

s2(zj(0) + pj(s))

s2 + 2sµ+ µ2
= lim

s→0

s2zj(0)

(s+ µ)2
+ lim

s→0

s2pj(s)

(s+ µ)2
.

Thereinto, zj(0) is a constant, and thus lims→0s
2zj(0)/(s+ µ)2 = 0. More-

over, it can be seen that if lims→0s
2pj(s) exists, lims→0szj(s) exists, and then

limt→∞‖z(t)‖2 exists. In this situation, the perturbed CT-AZNN model (9)
converges toward theoretical solution to CT-ASME (2) with corresponding
steady-state residual error. The proof is thus completed.

Based on the Theorem 1, we have the following corollaries.

Corollary 1. Consider perturbed CT-AZNN model (9) with the constant
perturbation p(t) ∈ Rmn of which the jth element pj(t) = cj with cj being
constant with j = 1, 2, · · · ,mn. The perturbed CT-AZNN model (9) con-
verges toward theoretical solution to CT-ASME (2).

Corollary 2. Consider perturbed CT-AZNN model (9) with the linear-form
time-variant perturbation p(t) = αt + β ∈ Rmn of which the jth element
pj(t) = αjt + βj with αj and βj being constants with j = 1, 2, · · · ,mn. The
perturbed CT-AZNN model (9) converges toward theoretical solution to CT-
ASME (2) with residual error.

Corollary 3. Consider perturbed CT-AZNN model (9) with the sine-form
time-variant perturbation p(t) = α sin(β(t − ω)) ∈ Rmn or the cosine-form
time-variant perturbation p(t) = α cos(β(t − ω)) ∈ Rmn of which the jth
element pj(t) = αj sin(βj(t−ωj)) or pj(t) = αj cos(βj(t−ωj)) with αj, βj and
ωj being constants with j = 1, 2, · · · ,mn. The perturbed CT-AZNN model (9)
converges toward theoretical solution to CT-ASME (2) with residual error.
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Corollary 4. Consider perturbed CT-AZNN model (9) with the exponential-
decay-form time-variant perturbation p(t) = α exp(−βt) +ω ∈ Rmn of which
the jth element pj(t) = αj exp(−βjt) +ωj with αj, βj and ωj being constants
and βj > 0 with j = 1, 2, · · · ,mn. The perturbed CT-AZNN model (9)
converges toward theoretical solution to CT-ASME (2) with residual error.

In summary, the above theoretical results indicate the convergence per-
formances of the proposed perturbed CT-AZNN model (9) for solving CT-
ASME (2).

Remark 1. Correspondingly, in the presence of perturbations, the CT-AZNN
model (8) still possesses excellent performance. As shown in Theorem 1 and
Corollary 1 through Corollary 4, the CT-AZNN model (8) can restrain all
eligible perturbations with different steady-state residual errors. In fact, con-
sidering the Laplace transformation of the time-variant perturbation p(t),
Theorem 1 implies the upper bound of perturbation suppression ability of
CT-AZNN model (8). Generally speaking, if the time-variant growth rate
of unknown perturbation is no more than linear-form time-variant perturba-
tion p(t) = αt + β, the perturbed CT-AZNN model (9) can converge toward
theoretical solution of CT-ASME (2) with residual error.

3. Discretization formula and DT-AZNN model

In this section, a novel DT-AZNN model is proposed, developed and
investigated for solving F-ASME (1).

3.1. 5-instant discretization formula

Recently published 5-instant discretization formula, which can be derived
by exploiting Taylor expansion [41], is defined as follows [32, 42]:

u̇k =
3

7g
uk+1 +

5

42g
uk −

3

7g
uk−1 −

3

14g
uk−2 +

2

21g
uk−3 +O(g3), (11)

where the term O(g3) denotes the truncation error of the discretization for-
mula. In addition, to show the performance of the sampling gap g involved
in the discretization formula, we have the following property.

Property 1. The optimal sampling gap g of above 5-instant discretization
formula (11) is

g =

(
18εmax

49κmax

) 1
4

,
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where εmax denotes the maximal absolute value of round-off errors and κmax

denotes the maximal absolute value of u(4)(c1), u(4)(c2), u(4)(c3) and u(4)(c4).

Proof. Considering the existence of round-off errors in the numerical compu-
tations, the round-off errors in the 5-instant discretization formula (11) can
be simplified as the following equations:

uk+1 = vk+1 + εk+1;

uk = vk + εk;

uk−1 = vk−1 + εk−1;

uk−2 = vk−2 + εk−2;

uk−3 = vk−3 + εk−3,

where uk+1, uk, uk−1, uk−2 and uk−3 are approximated by numerical values
vk+1, vk, vk−1, vk−2 and vk−3, respectively, and εk+1, εk, εk−1, εk−2 and εk−3
are the corresponding round-off errors. According to the 5-instant discretiza-
tion formula (11), we obtain

u̇k =
3

7g
vk+1 +

5

42g
vk −

3

7g
vk−1 −

3

14g
vk−2 +

2

21g
vk−3 + er + et,

in which the term er denotes the round-off error and the term et denotes the
truncation error. Furthermore, we have

er =

∣∣∣∣
3

7g
εk+1 +

5

42g
εk −

3

7g
εk−1 −

3

14g
εk−2 +

2

21g
εk−3

∣∣∣∣ 6
9

7g
εmax

and

et =

∣∣∣∣
1

24
g3u(4)(c1)−

1

24
g3u(4)(c2)−

1

3
g3u(4)(c3) +

3

4
g3u(4)(c4)

∣∣∣∣ 6
7

6
g3κmax,

where c1, c2, c3 and c4 lie in (kg, (k + 1)g), ((k − 1)g, kg), ((k − 2)g, kg) and
((k − 3)g, kg), respectively. In view of εmax denoting the maximal absolute
value of round-off errors of uk+1, uk, uk−1, uk−2 and uk−3 as well as κmax

being a positive constant, it is known that 9εmax/(7g) is the upper bound of
the round-off error er, and 7g3κmax/6 is the upper bound of the truncation
error et. Thus, we have

|er + et| 6
9

7g
εmax +

7

6
g3κmax.
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Note that floating-point numbers have limited precision in digital computer.
For example, the precision of floating-point number in MATLAB environ-
ment is of order 10−16 (with its “eps” being 2.2× 10−16). Thus, the optimal
sampling gap g of the 5-instant discretization formula (11) can be obtained
as

g =

(
18εmax

49κmax

) 1
4

.

Based on the above analyses, the proof is thus completed.

To substantiate the efficacy of the optimal sampling gap, we exploit the
following function as the target function: f(x) = sin(x), and thus the first-
order derivative of the target function is f ′(x) = cos(x). Then, for the above
target function, we have κmax = 1 and εmax = 2.2 × 10−16. Here, we use
x = 1 as the target point in the following numerical experiment. At the
target point, the errors between the theoretical value and the approximate
value of the first-order derivative are presented in Table 1. As shown in Table
1, when the sampling gap g decreases, the value of the error decreases and
then increases. Specifically, when the sampling gap g = 7.5 × 10−5 s, the
minimal value of the error in approximation to the first-order derivative of
the target function is coincident with the theoretical result.

Remark 2. In this paper, as a further research of the 5-instant discretization
formula (11), we derive the optimal sampling gap, which is an important
property of the 5-instant discretization formula (11). As shown in Table 1,
sampling gap g = 1× 10−4 s can be seen as a demarcation line. Specifically,
on the one hand, when the value of sampling gap g is greater than 1× 10−4

s, the value of the error decreases by 1000 times when the sampling gap g
decreases by 10 times, which is because when the value of g decreases, the
truncation error et is dominant relative to round-off error er at this stage.
On the other hand, when the value of sampling gap g is smaller than 1×10−4

s, the value of the error increases slightly, which is due to the nonnegligible
influence of round-off error er relative to the truncation error et at this stage.

3.2. Novel DT-AZNN model

Based on the above 5-instant discretization formula (11), a novel DT-
AZNN model is investigated for F-ASME (1) solving. First of all, considering
the proposed CT-AZNN model (8), we have the following theorem.
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Table 1: Errors in approximation to f(x) = sin(x) using 5-instant discretization formula
(11) with different values of sampling gap g (s).

Sampling gap g Error Sampling gap g Error Sampling gap g Error

7.5× 10−1 3.0641× 10−2 7.5× 10−4 6.3336× 10−11 7.5× 10−7 5.0746× 10−11

5.0× 10−1 1.2788× 10−2 5.0× 10−4 1.8686× 10−11 5.0× 10−7 1.0895× 10−10

2.5× 10−1 2.0183× 10−3 2.5× 10−4 2.3150× 10−12 2.5× 10−7 2.5447× 10−10

1.0× 10−1 1.4269× 10−4 1.0× 10−4 7.2387× 10−14 1.0× 10−7 5.4551× 10−10

7.5× 10−2 6.1043× 10−5 7.5× 10−5 7.2342× 10−13 7.5× 10−8 7.9849× 10−11

5.0× 10−2 1.8329× 10−5 5.0× 10−5 1.0956× 10−12 5.0× 10−8 7.7834× 10−10

2.5× 10−2 2.3201× 10−6 2.5× 10−5 1.0956× 10−12 2.5× 10−8 5.4551× 10−10

1.0× 10−2 1.4965× 10−7 1.0× 10−5 1.6329× 10−12 1.0× 10−8 6.1334× 10−9

7.5× 10−3 6.3171× 10−8 7.5× 10−6 1.6329× 10−12 7.5× 10−9 2.4082× 10−9

5.0× 10−3 1.8739× 10−8 5.0× 10−6 8.9089× 10−12 5.0× 10−9 1.4356× 10−8

2.5× 10−3 2.3451× 10−9 2.5× 10−6 3.8241× 10−12 2.5× 10−9 3.1798× 10−9

1.0× 10−3 1.5011× 10−10 1.0× 10−6 5.0746× 10−11 1.0× 10−9 8.8861× 10−8

Theorem 2. The DT-AZNN model is formulated as follows:

xk+1 =− 7

3
M−1

k

(
2h (Mkxk − ek) + (h2/g)yk + gṀkxk − gėk

)

− 5

18
xk + xk−1 +

1

2
xk−2 −

2

9
xk−3 + O(g4),

(12)

where Mk = BT
k ⊗ Ak +DT

k ⊗ Ck; Ṁk = BT
k ⊗Ȧk+ḂT

k ⊗Ak+DT
k ⊗Ċk+ḊT

k ⊗
Ck; variables xk and ek denote the vectorization of Xk and Ek, respectively;
h = µg denotes the step length; term O(g4) denotes the truncation error
matrix with each element being O(g4).

Proof. According to the definitions of ż(t), z(t) and
∫ t

0
z(σ)dσ, the AZNN

design formula (5) can be discretized as

żk = −2µzk − µ2yk,

which can be rewritten as

Ṁkxk +Mkẋk − ėk = −2µ(Mkxk − ek)− µ2yk,

where

yk =
7

3
gzk−1 −

5

18
yk−1 + yk−2 +

1

2
yk−3 −

2

9
yk−4 + O(g4).
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Considering that the discrete-form of time-variant matrix Mk is nonsingular
for all duration time [0, tf ] ⊆ [0,+∞), the following equation is obtained:

ẋk = M−1
k

(
−2µ(Mkxk − ek)− µ2yk − Ṁkxk + ėk

)
.

Applying the 5-instant discretization formula (11) to above equation yields,
we have

3

7g
xk+1 +

5

42g
xk −

3

7g
xk−1 −

3

14g
xk−2 +

2

21g
xk−3 + O(g3)

=M−1
k

(
−2µ(Mkxk − ek)− µ2yk − Ṁkxk + ėk

)
.

Thus, we further have the following DT-AZNN model:

xk+1 =− 7

3
M−1

k

(
2h (Mkxk − ek) + (h2/g)yk + gṀkxk − gėk

)

− 5

18
xk + xk−1 +

1

2
xk−2 −

2

9
xk−3 + O(g4).

The proof is thus completed.

For the convenience of further discussions and theoretical analyses, based
on the recent research [32], the following properties about DT-AZNN model
(12) are provided, which theoretically demonstrate its 0-stability, consistency
and convergence performance for solving F-ASME (1) in the absence of per-
turbations.

Property 2. The DT-AZNN model (12) is 0-stable, consistent and conver-
gent with the truncating error of the order O(g4).

Proof. According to the Result 1 in [32], the solutions of characteristic poly-
nomial include two real roots and a couple of conjugate imaginary roots (i.e.,
ς1 = 1, ς2 = 0.2976, ς3 = −0.7877+0.3552i and ς4 = −0.7877−0.3552i, where
i denotes imaginary unit). Evidently, these roots are in the unit circle, and
only one root (i.e., ς1 = 1) is on the unit circle, then the proposed DT-AZNN
model (12) is 0-stable. Furthermore, based on the Theorem 2, the truncation
error of DT-AZNN model (12) is O(g4). Therefore, according to Result 2
in [32], the proposed DT-AZNN model (12) is said to be consistent of order
4. According to Results 3 and 4 in [32], the proposed DT-AZNN model (12)
is 0-stable and consistent, which converges with the truncating error of the
order O(g4). The proof is thus completed.
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Property 3. The maximal steady-state residual error ‖Mk+1xk+1 − ek+1‖2
of the proposed DT-AZNN model (12) is of the order O(g4) with symbol ‖·‖2
denoting the Euclidean norm of a vector.

Proof. Let x∗k+1 denote the vectorization of X∗k+1, which is the theoretical
solution of F-ASME (1). In this sense, it can be obtained that Mk+1x

∗
k+1 −

ek+1 = 0. Moreover, according to the Theorem 2, xk+1 = x∗k+1 + O(g4) for
k → +∞. Therefore, we have

lim
k→+∞

sup ‖Mk+1xk+1 − ek+1‖2
= lim

k→+∞
sup

∥∥Mk+1x
∗
k+1 − ek+1 +Mk+1O(g4)

∥∥
2

= lim
k→+∞

sup
∥∥Mk+1O(g4)

∥∥
2

≤ lim
k→+∞

sup ‖Mk+1‖FO(g4)

=O(g4),

where ‖·‖F denotes the Frobenius norm of a matrix. Thus, the maximal
steady-state residual error of the proposed DT-AZNN model (12) is of the
order O(g4). The proof is thus completed.

The above Property 2 and Property 3 show that the proposed DT-AZNN
model (12) converges toward the theoretical solution of F-ASME (1). Fur-
thermore, considering the effect of kinds of perturbations, the perturbed
DT-AZNN model can be obtained as

xk+1 =− 7

3
M−1

k

(
2h (Mkxk − ek) + (h2/g)yk + gṀkxk − gėk − gpk

)

− 5

18
xk + xk−1 +

1

2
xk−2 −

2

9
xk−3 + O(g4),

(13)

where pk denotes the discrete-form of the time-variant perturbation vector.
Moreover, the following theoretical analyses further reveal the superior per-
formance of the proposed DT-AZNN model (12).

Corollary 5. Consider perturbed DT-AZNN model (13) with the constant
perturbation pk = c ∈ Rmn of which the jth element pkj = cj with cj be-
ing constant with j = 1, 2, · · · ,mn. The perturbed DT-AZNN model (13)
converges toward theoretical solution of F-ASME (1) with residual error.
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Corollary 6. Consider perturbed DT-AZNN model (13) with the linear-form
time-variant perturbation pk = αtk + β ∈ Rmn of which the jth element
pkj = αjtk + βj with αj and βj being constants with j = 1, 2, · · · ,mn. The
perturbed DT-AZNN model (13) converges toward theoretical solution of F-
ASME (1) with residual error.

Corollary 7. Consider perturbed DT-AZNN model (13) with the sine-form
time-variant perturbation pk = α sin(β(tk − ω)) ∈ Rmn or cosine-form time-
variant perturbation pk = α cos(β(tk − ω)) ∈ Rmn of which the jth element
pkj = αj sin(βj(tk − ωj)) or pkj = αj cos(βj(tk − ωj)) with αj, βj and ωj

being constants with j = 1, 2, · · · ,mn. The perturbed DT-AZNN model (13)
converges toward theoretical solution of F-ASME (1) with residual error.

Corollary 8. Consider perturbed DT-AZNN model (13) with the exponential-
decay-form time-variant perturbation pk = α exp(−βtk) + ω ∈ Rmn of which
the jth element pkj = αj exp(−βjtk) + ωj with αj, βj and ωj being constants
and βj > 0 with j = 1, 2, · · · ,mn.. The perturbed DT-AZNN model (13)
converges toward theoretical solution of F-ASME (1) with residual error.

Remark 3. Considering DT-AZNN model (12), in the absence of perturba-
tions, the computational precision is mainly affected by the discretization for-
mula; in the presence of perturbations, the computational precision is mainly
affected by the ability of perturbation suppression of the model [32]. Gen-
erally speaking, for the model with poor stability, slight perturbations may
generate relatively serious distortion of steady-state residual error, which
means the generated solutions synthesized by the model can not converge
to the theoretical ones with a satisfying computational precision. As the
analyses presented in Theorem 1, the proposed CT-AZNN model (8) can
suppress the continuous-form of time-variant perturbations effectively, and
then the corresponding DT-AZNN model (12) can also suppress the discrete-
form of time-variant perturbations with appropriate sampling gap g. Specif-
ically, as shown in Corollary 6, given the perturbed DT-AZNN model (13)
with linear-form time-variant perturbation pk = αtk + β ∈ Rmn, we have
limk→∞ sup ‖e(tk+1)‖2 = ‖α‖2/µ2 + O(g4) = ‖α‖2g2/h2 + O(g4) = O(g2)
[32], which shows that the computational precision is mainly affected by the
ability of perturbation suppression of model rather than the discretization for-
mula.
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Figure 1: Residual errors synthesized by proposed DT-AZNN model (12) for solving F-
ASME (14) in absence of perturbations. (a) Residual errors synthesized by DT-AZNN
model (12) with g = 0.001 s and randomly-generated initial states. (b) Residual errors
synthesized by DT-AZNN model (12) with different values of g.

4. Numerical experiments and comparisons

In this section, the comparative numerical experiments are presented for
substantiating the effectiveness and robustness of the proposed DT-AZNN
model (12). First of all, without loss of generality, consider the following
F-ASME with Xk+1 to be computed at each computational time interval
[kg, (k + 1)g) ⊆ [0, 30]:

Ak+1Xk+1Bk+1 + Ck+1Xk+1Dk+1 = Ek+1, (14)

where

Ak =




a11(tk) a12(tk) · · · a1m(tk)
a21(tk) a22(tk) · · · a2m(tk)

...
...

. . .
...

am1(tk) am1(tk) · · · amm(tk)


 ∈ Rm×m;

Bk =




b11(tk) b12(tk) · · · b1n(tk)
b21(tk) b22(tk) · · · b2n(tk)

...
...

. . .
...

bn1(tk) bn1(tk) · · · bnn(tk)


 ∈ Rn×n;
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Ck =




c11(tk) c12(tk) · · · c1m(tk)
c21(tk) c22(tk) · · · c2m(tk)

...
...

. . .
...

cm1(tk) cm1(tk) · · · cmm(tk)


 ∈ Rm×m;

Dk =




d11(tk) d12(tk) · · · d1n(tk)
d11(tk) d12(tk) · · · d1n(tk)

...
...

. . .
...

dn1(tk) dn1(tk) · · · dnn(tk)


 ∈ Rn×n;

Ek =




e11(tk) e12(tk) · · · e1n(tk)
e11(tk) e12(tk) · · · e1n(tk)

...
...

. . .
...

em1(tk) em1(tk) · · · emn(tk)


 ∈ Rm×n.

Thereinto,

aij =





5 + cos((5/2)tk), for i = j
(2/3) sin((3/2)tk)/(i− j), for i > j
(2/3) sin((3/2)tk)/(j − i), for i < j,

bij =





sin(2tk), for i = j
− cos(2tk), for i > j

cos(2tk), for i < j,

cij =





2 + sin(tk), for i = j
cos(tk)/(i− j), for i > j
cos(tk)/(j − i), for i < j,

dij =





(1/2) sin(tk), for i = j
−(1/2) cos(tk), for i > j

(1/2) cos(tk), for i < j,

and

eij =





sin(0.15t), for rem(i) = 1, j being odd
cos(0.15t), for rem(i) = 1, j being even
cos(0.2t) + 1, for rem(i) = 2, j being odd
sin(0.2t) + 1, for rem(i) = 2, j being even
cos(0.2t) sin(0.25t), for rem(i) = 3,

with rem(·) denoting the remainder operation.
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Figure 2: Residual errors synthesized by perturbed DT-AZNN model (13) and perturbed
DT-CZNN model (15) for solving F-ASME (14) with γ = 5 and g = 0.01 s in presence of
constant perturbations. (a) Constant perturbation gpkj = 20. (b) Constant perturbation

gpkj = 100. (c) Constant perturbation gpkj = 200. (d) Constant perturbation gpkj = 1000.

For convenience, in this paper, we set the parameters of matrix dimensions
m = 6 and n = 4. First of all, the fundamental numerical experimental
results synthesized by DT-AZNN model (12) for solving F-ASME (14) are
shown in Figure 1. On the one hand, without loss of generality, starting
from 20 randomly-generated initial states of x0 ∈ [0, 1]24×1 and y0 = 0 ∈
R24×1, we use the conventional Euler method to compute the other initial
states. As seen from Figure 1(a), the state trajectories of residual errors
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Figure 3: Residual errors synthesized by perturbed DT-AZNN model (13) and perturbed
DT-CZNN model (15) for solving F-ASME (14) with γ = 5 and g = 0.01 s in presence of
linear-form time-variant perturbations. (a) Linear-form time-variant perturbation gpkj =

0.5tk. (b) Linear-form time-variant perturbation gpkj = 1.5tk + 10. (c) Linear-form time-

variant perturbation gpkj = 5tk + 20. (d) Linear-form time-variant perturbation gpkj =

2
√

5tk +
√

10.

‖Mk+1xk+1 − ek+1‖2 always converge to near zero accurately and rapidly,
which means that the obtained solutions always converge to the theoretical
solution. On the other hand, for comparison convenience, starting from initial
states of x0 = 0 ∈ R24×1 and y0 = 0 ∈ R24×1, we also use the conventional
Euler method to compute the other initial states, and set the parameter
of integral part of the DT-AZNN model (12) as 1 (i.e., h2/g = 1). As
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Figure 4: Residual errors synthesized by perturbed DT-AZNN model (13) and perturbed
DT-CZNN model (15) for solving F-ASME (14) with γ = 5 and g = 0.01 s in presence
of sine-form time-variant perturbation and cosine-form time-variant perturbations. (a)
Sine-form time-variant perturbation gpkj = 10 sin(0.5(tk − 10)). (b) Cosine-form time-

variant perturbation gpkj = 3 cos(0.2(tk − 2)). (c) Sine-form time-variant perturbation

gpkj = 5 sin(tk+20). (d) Cosine-form time-variant perturbation gpkj =
√

10 cos(2/3(tk+4)).

illustrated in Figure 1(b), we can see that the maximal steady-state residual
error of the proposed DT-AZNN model (12) changes in the manner of O(g4)
approximatively, which coincides with the aforementioned theoretical results.

Secondly, to further illustrate the perturbations suppression performance
of the proposed DT-AZNN model (12), the perturbed discrete-time classical
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Figure 5: Residual errors synthesized by perturbed DT-AZNN model (13) and perturbed
DT-CZNN model (15) for solving F-ASME (14) with γ = 5 and g = 0.01 s in presence
of exponential-decay-form time-variant perturbations. (a) Exponential-decay-form time-
variant perturbation gpkj = exp(−0.5tk) + 0.5. (b) Exponential-decay-form time-variant

perturbation gpkj = 10 exp(−2tk) + 2. (c) Exponential-decay-form time-variant pertur-

bation gpkj = 2 exp(−6tk) + 5. (d) Exponential-decay-form time-variant perturbation

gpkj = 100 exp(−5tk) +
√

10.

zeroing neural network (DT-CZNN) model introduced in [32, 42] is presented
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here for comparison, which is designed as

xk+1 =− 7

3
M−1

k

(
2h (Mkxk − ek) + gṀkxk − gėk − gpk

)

− 5

18
xk + xk−1 +

1

2
xk−2 −

2

9
xk−3 + O(g4).

(15)

Here, starting from initial states of x0 = 0 ∈ R24×1 and y0 = 0 ∈ R24×1, we
also use the conventional Euler method to compute the other initial states,
and fix the parameter γ and sampling gap g (i.e., γ = 5 and g = 0.01 s). The
residual errors of the perturbed DT-AZNN model (13) (denoted by mazarine
solid curve) and the perturbed DT-CZNN model (15) (denoted by red dash-
dotted curve) are illustrated in Figure 2 through Figure 5. These numerical
experiments indicate that the proposed DT-AZNN model (12) is effective
(in terms of a relatively tiny residual error) on F-ASME (14) solving with
time-variant perturbations suppressed. Specifically, the following analyses
are obtained as shown in Figure 2 through Figure 5.

1) As shown in Figure 2, consider the constant perturbations gpkj = 20,
gpkj = 100, gpkj = 200 and gpkj = 1000 with j = 1, 2, · · · , 24, the per-
turbed DT-AZNN model (13) converges toward the theoretical solution
of F-ASME (14) with a tiny residual error. Whereas, the residual er-
rors synthesized by the perturbed DT-CZNN model (15) remain at rel-
ative large level, which are approximately 107 times through 109 times
(with different constant perturbations) larger than those synthesized by
the perturbed DT-AZNN model (13). These results illustrate that the
perturbed DT-CZNN model (15) can not converge to the theoretical
solution of F-ASME (14) in the presence of constant perturbations.

2) As shown in Figure 3, consider the linear-form time-variant pertur-
bations gpkj = 0.5tk, gpkj = 1.5tk + 10, gpkj = 5tk + 20 and gpkj =

2
√

5tk +
√

10 with j = 1, 2, · · · , 24, the perturbed DT-AZNN model
(13) converges toward the theoretical solution of F-ASME (14) with a
stabilize residual error, while the residual error of the perturbed DT-
CZNN model (15) keeps increasing with the time. This means that
the proposed DT-AZNN model (12) can suppress the linear-form time-
variant perturbation efficiently.

3) As shown in Figure 4, consider the sine-form time-variant perturba-
tions gpkj = 10 sin(0.5(tk − 10)) and gpkj = 5 sin(tk + 20) as well as
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the cosine-form time-variant perturbations gpkj = 3 cos(0.2(tk−2)) and

gpkj =
√

10 cos(2/3(tk + 4)) with j = 1, 2, · · · , 24, the perturbed DT-
AZNN model (13) and the perturbed DT-CZNN model (15) all con-
verge toward the theoretical solution of F-ASME (14) with periodic
fluctuations. However, it is evident that the maximum steady-state
residual errors of perturbed DT-CZNN model (15) are larger than those
of the perturbed DT-AZNN model (13), which means that the com-
putational performance of the latter model is better than the former
model.

4) As shown in Figure 5, consider the exponential-decay-form time-variant
perturbations gpkj = exp(−0.5tk) + 0.5, gpkj = 10 exp(−2tk) + 2, gpkj =

2 exp(−6tk) + 5 and gpkj = 100 exp(−5tk) +
√

10 with j = 1, 2, · · · , 24,
the perturbed DT-AZNN model (13) converges toward the theoretical
solution of F-ASME (14) with a tiny residual error, and the perturbed
DT-CZNN model (15) can not converge toward the theoretical solution
of F-ASME (14). In fact, the determinate exponential-decay-form time-
variant perturbations tend to a constant value with time, and thus the
discussions on the performance of the models (13) and (15) can refer
to 1).

In summary, above comparative numerical experimental results in accord
with the theoretical analyses offered in Section 3 further substantiate the
effectiveness and robustness of the proposed DT-AZNN model (12) for solving
F-ASME (14) in comparison with the classical model.

5. Conclusion

In this paper, a novel DT-AZNN model (12) has been proposed, devel-
oped and investigated for solving F-ASME (1). Specifically, first of all, based
on the Kronecker product and the vectorization operation, the CT-ASME
(2) has been transformed into a simple continuous-time linear system. By
exploiting the AZNN design formula (5), a CT-AZNN model (8) has been
developed and presented for solving time-variant linear system. Secondly,
the theoretical analysis about the optimal sampling gap of the 5-instant dis-
cretization formula has been provided. Then, by exploiting the 5-instant dis-
cretization formula to discretize the CT-AZNN model (8), a novel DT-AZNN
model (12) has been designed and generalized for solving F-ASME (1). Note
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that the proposed models (8) and (12) keep efficient and robustness in the
presence of perturbations. Furthermore, the comparative numerical experi-
ments have been conducted to substantiate the superior convergence perfor-
mance and robustness of the proposed DT-AZNN model (12). In the future
researches, we will mainly focus on investigating a series of derived prob-
lems, e.g., future unknown-transpose matrix. Moreover, more comparisons
between the recently published ZNN models and the other related methods
are also significant.
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