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A B S T R A C T

Improvement on assessment of air pollution exposure will enhance assessment of health risk-
benefit when active travel (cycling and walking). Earlier studies assessed air pollution exposure
according to travel time and city-level air pollution. The lack of spatially fine-grained travel data
is a barrier to an accurate assessment of air pollution exposure. Due to a high-level spatial
granularity, Strava Metro provides an opportunity to assessing air pollution exposure in com-
bination with spatially varying air pollution concentrations. Strava Metro anonymized and ag-
gregated a large volume of users’ traces to streets for each city. In this study, to explore the
potential of crowdsourced geographic information in research of active travel and health, we
used Strava Metro data and GIS technologies to assess air pollution exposure in Glasgow, UK.
Particularly, we incorporated time of the trip to assess average inhaled dose of pollutant during a
single cycling or pedestrian trip. Empirical results demonstrate that Strava Metro data provides
an opportunity to an assessment of average air pollution exposure during active travel.
Additionally, to demonstrate the potential of Strava Metro data in policy-making, we explored
the spatial association of air pollution concentration and active travel. As a result, we identified
areas that require investment priority, and finally offered implications for policies.

1. Introduction

Through enhancing physical activity, active travel (cycling or walking) produces health benefit (Forsyth et al., 2012; Oja et al.,
1998, 2011; Pucher et al., 2010; Wen and Rissel, 2008). At the same time, as outdoor physical activities cycling and walking are also
of risks, including traffic accidents and air pollution exposure (Weichenthal et al., 2011; de Nazelle et al., 2013; Hollingworth et al.,
2014). Generally speaking, recent studies support both empirically and theoretically that the total benefits of active travel tend to
outweigh the risks (Tainio et al., 2016; Doorley et al., 2015; Mueller et al., 2015). As the impact of air pollution exposure on health is
not as noticeable as that of traffic accidents, people are likely to ignore the harmful effect of air pollution exposure. In fact, air
pollution exposure tends to have both a short-term and long-term effects on human health (WHO 2016; Anderson et al., 2012; Lipsett
et al., 2011; Pope et al., 2015; Chen et al., 2012; Li et al., 2016; Shah et al., 2015).

Earlier studies assessed air pollution exposure according to travel time and city-level air pollution. However, air pollution con-
centrations tend to spatially vary over a city due to heterogeneously spatial distributions of motor vehicles, industrial emissions, and
reconstructions. Improvement on assessment of air pollution exposure was limited due to lacks of spatially fine-grained travel data.
Traditionally, stated preference surveys data (Forsyth and Oakes, 2015; Sener et al., 2009) have a good spatial coverage but a low
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spatial granularity, such as census tract level; while manual counts and annual average daily bicycle (AADB) data (El Esawey, 2014)
has a high spatial granularity, such as street level, but a poor spatial coverage as major roads (e.g., highways and motorways) other
than minor roads are covered. Volunteer geographic information (VGI) or crowdsourced geographic information (CGI) paves a new
way to tracking mobility and travel activities of people with a large spatial granularity (Sun and Li, 2015; Steiger et al., 2015; Li et al.,
2016a; Griffin and Jiao, 2015; Siła-Nowicka et al., 2015; Thakuriah et al., 2016). GPS-enabled mobile devices, such as smartphones
and smartwatches, allow individuals to track and share their cycling and walking tracks (Jesticoa et al., 2016; Broach et al., 2012;
Casello and Usyukov, 2014; Hood et al., 2011). In the era of Big Data, a large volume of cycling and walking traces generated by
individuals are becoming potential data for studies of travel and health (Prins et al., 2014; Duncan et al., 2009; Dill, 2009; Griffin and
Jiao, 2015; Sun and Mobasheri, 2017).

Recently, as a popular platform dedicated to tracking users’ cycling, walking, running and hiking activities, Strava is gaining
attention from both researchers and planners after a data service called Strava Metro was launched. There are millions of users
uploading their rides, walks, runs and hikes to Strava each week (Strava Metro, 2016). To protect user privacy, Strava Metro
anonymized and aggregated users’ traces to streets for each city. Although being aggregated, Strava Metro data is of high potential in
a wide range of applications, including mapping cycling activities (Jesticoa et al., 2016), investigating effects of environmental
factors on cycling behavior (Griffin and Jiao, 2015; Heesch et al., 2016) and assessing air pollution when cycling (Sun and Mobasheri,
2017). Due to a high-level spatial granularity, Strava Metro provides an opportunity to assessing air pollution exposure in combi-
nation with spatially varying air pollution concentrations (Sun and Mobasheri, 2017). Moreover, by comparing cyclist counts be-
tween Strava data and realistic traffic data in count stations, some studies have demonstrated that Strava Metro data tends to be a
good representation of cycling population (Jesticoa et al., 2016; Herrero, 2016). Therefore, we could utilise Strava Metro data for
assessing air pollution exposure based on local air pollution concentrations instead of city-level air pollution concentrations. Ad-
ditionally, we could make use of Strava Metro data to support policy-making. As Strava Metro data can indicate spatial distribution of
cycles or walks across a city, we could combine the map of cycles and walks with the map of air pollution to identify: 1) areas with
low-level air pollution and low-volume cycles and walks; and 2) areas with high-level air pollution and high-volume cycles and walks.
Policymakers would consider investment priority in bicycle infrastructure of those areas to 1) attract more people to cycle or walk in
areas of low-level air pollution; or 2) separate cyclists and pedestrians from motor vehicles in areas of high-level air pollution (e.g.,
major roads).

Sun and Mobasheri (2007) used Strava Metro data to estimate instantaneous air pollution exposure when cycling considering the
only spatial distribution of cycling activities but no time spent cycling. In this study, we aimed to estimate average air pollution
exposure during a single cycling or pedestrian trip. Particularly, we incorporated time of trip into an assessment of air pollution
exposure when cycling and walking. Specifically, we assessed inhaled dose of pollutant during a cycling or pedestrian trip by con-
sidering air pollutant concentration, the duration of exposure and the ventilation rate. To demonstrate that Strava Metro data could
provide an opportunity to an assessment of average air pollution exposure during a single cycling or pedestrian trip, we conducted
empirical experiments in Glasgow, UK. Additionally, to demonstrate the potential of Strava Metro data in policy-making, we explored
spatial association of air pollution concentration, cycling count and pedestrian count. Consequently, we identified areas with low-
level air pollution and low-volume cycles and walks, and areas with high-level air pollution and high-volume cycles and walks.
Finally, we discussed the empirical results and offered implications for policies.

2. Materials and methods

In this section, the approach to assessment of air pollution exposure during a single cycling or pedestrian trip is presented. Section
2.1 introduces the research data, and Section 2.2 introduces the approach to assessing air pollution exposure by using Strava Metro
data and GIS technologies. Section 2.3 introduces the exploration of spatial associations of air pollution concentration, cycles and
walks.

2.1. Research data

2.1.1. Strava Metro data
Strava (Strava, San Francisco, CA, USA) consists of a website and a mobile app. Strava apps installed in GPS devices such as

smartphones and smartwatches can record distance, time, average speed and GPS route of each ride, run, walk or hike. Users also can
upload their GPS-tracked activities from their Strava apps to the Strava's website, a social media platform where Strava users share
their rides, runs, walks and hikes. Users can further add textual information to portrait their trips. Strava has collected approximately
a trillion GPS points globally and keeps collecting millions of activities every week (Riordan, 2016). To exploit such a huge amount of
GPS-tracked activities, Strava launched Strava Metro, a suite of data services that enables cutting-edge views into cycling and pe-
destrian patterns (Strava Metro, 2015). To prevent privacy issues and keep geographic information, Strava Metro anonymized and
aggregated users’ GPS-tracked activities to streets for each city (Strava Metro, 2015).

Recently, the Urban Big Data Centre, UK publicly released a Strava Metro dataset (Urban Big Data Centre, 2016). This dataset has
287, 833 cycling activities and 156,002 pedestrian activities (including walks, runs and hikes) within the Glasgow Clyde Valley
Planning area (including Glasgow City and seven contiguous council areas) in 2015. This dataset contains three subsets with three
different formats: Streets, Origin-Destination, Nodes (Strava Metro, 2015). In this study, we used the Streets and Nodes sets. Both the
Streets and Nodes sets were created based on a street network which was extracted from OpenStreetMap. The Streets set contains all
edges of the street network; while the Node set contains all nodes of the street network. An edge represents a street, and a node
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represents an intersection of streets (see Fig. 1). Table 1 lists attributes of nodes and edges, including the count of cycling activities
(regardless of unique riders) in the node (street intersection) and count of activities (regardless of unique riders) in the edge (street) at
a specific time. Note that the temporal granularity is the minute level. Additionally, Strava Metro explains that median time instead of
mean time was used because there were instances where cyclists or pedestrians will stop on a piece of road to go into a store or talk
with a friend while their GPS is still running (Strava Metro, 2015).

Additionally, the dataset contains a file that offers demographics of the cycling and pedestrian trips (see Table 2), including
average trip distance, average trip time, and user base structure by sex and age. There are over 280 thousand cycling trips and over
150 thousand pedestrian trips contributed by over 10 thousand of cyclists and over 10 thousand of pedestrians respectively. It is
noted that, although this data set has a large user sample set, average annual cycling frequency and average annual pedestrian
frequency of Strava users seems to be much smaller than the real frequencies. Specifically, on average, each cyclist has 21 cycling
trips while each pedestrian had 14 pedestrian trips in 2015. Moreover, average annual cycling frequency is 1.5 times of average
annual pedestrian frequency. Interestingly, male cyclists outnumber male pedestrians; while female pedestrians outnumber female
cyclists. The largest male group for both cyclists and pedestrians is aged 35–44 while the largest female group for both cyclists and
pedestrians is aged 25–34. Almost half of cycling and pedestrian trips were contributed by users aged 25–44 (25–34 and 35–44).
Additionally, a large portion of trips is recreational trips (Strava Metro, 2015). Therefore, the majority of the Strava users are likely to
be young and sporty cyclists and pedestrians.

2.1.2. Air pollution data
In this study, fine particulate matter (PM2.5) was used to measure levels of air pollution concentrations as it is a common air

pollutant used in related studies (Anderson et al., 2012; Pope et al., 2015; Chen et al., 2012; Li et al., 2016b). Although annual mean
PM2.5 estimates in 2015 are available in the Air Quality in Scotland (Ricardo Energy & Environment, 2016), the spatial resolution of
the PM2.5 concentration data is 1 km × 1 km. This seems to be low considering high spatial granularity of the Strava Metro data. To
better exploit spatial granularity of the Strava Metro data, we used a 100 m × 100 m PM2.5 concentration map (SAHSU, 2016) to
represent annual average estimates of background PM2.5 concentrations over the study area (see Fig. 2). This 100 m annual PM2.5
map is based on European-wide models for PM2.5, developed for 2010 which are based on routine air pollution monitoring data
(AIRBASE database, 2013) incorporating satellite-derived and chemical transport model estimates plus road and land use data (de
Hoogh, et al. 2016). The latest version of the 100 m PM2.5 map is for 2010 but not for 2015. In this study, we used 2010 PM2.5 map
to roughly represent PM2.5 concentrations across Glasgow in 2015. We mapped the annual average estimates of background PM2.5
concentrations in 2010 over the study area (see Fig. 2). Areas with low-level background PM2.5 concentrations are mainly situated in
green spaces (parks, gardens or hills) or along rivers; while areas with the highest level of background PM2.5 concentrations are
situated along motorways.

Fig. 1. Nodes and edges of Strava Metro data (Basemap: OpenStreetMap, licensed under the Open Database License).
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2.1.3. Comparison of Strava cycling volumes and regular cycling volumes
To examine whether Strava Metro data could be a good proxy for estimating real cycling volumes across space, we compare Strava

ridership with realistic regular ridership at the street-level. UK Department for Transport offers annual average daily flow (AADF)
data covering some major roads in Glasgow (Department for Transport, 2016). An AADF is an average over a full year of the number
of vehicles passing a point in the road network each day. The data provides the volume of cycles and the volume of motor vehicles.
We could measure the correlation between cycling volume from AADF data and cycling volume from Strava Metro data by calculating
Pearson's R coefficient.

2.2. Assessment of air pollution exposure

In this study, we mainly aimed to calculate inhaled dose of pollutant during a cycling or pedestrian trip. We are not able to know
realistic annual cycling frequency and pedestrian frequency of Strava users because the majority of the users tend to upload part of
their cycling and pedestrian trips. We thus did not assess annual inhaled dose of Strava users when they were riding or walking. The
inhaled dose of pollutant is a product of the air pollutant concentration, the duration of exposure and the ventilation rate (Schepers
et al., 2015; Tainio et al., 2016). We first could calculate total inhaled dose of pollutant (PM2.5) of all Strava cyclists and that of all
Strava pedestrians respectively. Afterwards, as the total numbers of Strava cycling and pedestrian trips are known, we could figure
out average inhaled dose of pollutant (PM2.5) during a single cycling trip and that during a single pedestrian trip respectively.

Suppose a cycling or pedestrian trip could be divided into different segments based on edges (streets) and nodes (intersections).
There are two statuses for cyclists or pedestrians: waiting in nodes or moving in edges. Time of trip equals time waiting in nodes plus
time moving in edges. In Fig. 3, a cycling trip starts from n1 and ends at n4. Simply, time of the trip equals to the sum of time waiting

Table 1
Fields in Nodes and Edges files (Strava Metro, 2015).

Field Description

node_id Unique and permanent Node ID number for delivery.
year Numerical year format (yyyy).
day Numerical day format (1–365).
hour Numerical hour format (0–24).
minute Numerical minute format (0–59).

Num act_ Bike
Node Count of cycling activities (cycling trips) at the intersection for the day, hour and minute. This

number represents the number of cycling activities (cycling trips) that meet at the intersection.

Med time wait_ _ Bike
Node Median wait time of cycling activities at the intersection for that minute.

Num act_ Walk
Node Count of pedestrian activities (pedestrian trips) at the intersection for the day, hour and minute.

This number represents the number of pedestrian activities (pedestrian trips) that meet at the
intersection.

Med time wait_ _ Walk
Node Median wait time of pedestrian activities at the intersection for that minute.

Field Description

edge_id Unique and permanent Street ID number for delivery.
year Numerical year format (yyyy).
day Numerical day format (1–365).
hour Numerical hour format (0–24).
minute Numerical minute format (0–59).

D num act_ _ Bike
Edge Count of cycling trips (regardless of unique riders) on the piece of street for the day, hour and

minute. This number represents the number of cycling trips going the direction the street was
digitized.

D med time move_ _ _ Bike
Edge Median time in seconds that cycling trips on the piece of street for the day, hour and minute. This

number represents the time of cyclists going the direction the street was digitized.

R num act_ _ Bike
Edge Count of cycling trips (regardless of unique riders) on the piece of street for the day, hour and

minute. This number represents the number of cycling trips going against direction the street was
digitized.

R med time move_ _ _ Bike
Edge Median time in seconds that cycling trips on the piece of street for the day, hour and minute. This

number represents the time of cyclists going against direction the street was digitized.

D num act_ _ Walk
Edge Count of pedestrian trips (regardless of unique pedestrians) on the piece of street for the day, hour

and minute. This number represents the number of pedestrian trips going the direction the street
was digitized.

D med time move_ _ _ Walk
Edge Median time in seconds that pedestrian trips on the piece of street for the day, hour and minute.

This number represents the time of pedestrians going the direction the street was digitized.

R num act_ _ Walk
Edge Count of pedestrian trips (regardless of unique pedestrians) on the piece of street for the day, hour

and minute. This number represents the number of pedestrian trips going against direction the
street was digitized.

R med time move_ _ _ Walk
Edge Median time in seconds that pedestrian trips on the piece of street for the day, hour and minute.

This number represents the time of pedestrians going against direction the street was digitized.

Y. Sun et al. Journal of Transport & Health 6 (2017) 93–104

96



in the four nodes (n1, n2, n3, n4) and time moving in the three edges (e1, e2, e3). As cycling and pedestrian trips were aggregated to
streets and nodes, times of trips were aggregated to streets and nodes. Specifically, moving times of trips were aggregated to streets
while waiting times of trips were aggregated to nodes. We could cumulate inhaled dose of pollutant during all cycling trips or all
pedestrian trips to figure out total inhaled dose of Strava users when they were cycling or walking (including running, hiking). After
that, we were able to calculate average inhaled dose of Strava users during a single cycling or pedestrian trip after dividing the total
inhaled dose for Strava cyclists or pedestrians by a total number of cycling trips or the total number of pedestrian trips. The rest of this
section will elaborate on how to calculate average inhaled dose of cyclists during a single cycling trip and average inhaled dose of
pedestrians during a single pedestrian trip.

Table 2
Demographics of cycles and walks of Strava users in 2015.

Cycling Pedestrian

Athlete ID count (User count) 13,684 11,249
Activity count (Trip count) 287,833 156,002
Average distance of trips 24 km 7 km
Average time of trips 81 min 46 min

Gender Male Female Blank Gender

Cycling 11,212 1698 770
Pedestrian 7546 2973 727

Under 25 25–34 35–44 45–54 55–64 Over 64 No Birth date

Cycling Male 718 2176 2957 2028 448 73 2812
Female 141 417 346 217 44 2 531

Pedestrian Male 513 1750 2118 1034 180 30 1921
Female 243 779 635 260 44 4 1008

Fig. 2. 100 m × 100 m map representing annual average background PM2.5 concentrations in 2010 (Basemap: OpenStreetMap, licensed under the Open Database
License).
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2.2.1. Inhaled dose when waiting in nodes
First of all, we could calculate concentrations of cyclists and pedestrians when they were waiting in nodes. Suppose there was one

cycling activity at a node, meaning that there was one cyclist at this node at a particular time. We could convert background PM2.5
concentration at a node (street intersection) to travel mode specific exposure concentrations at the moment when the cyclist or
pedestrian was at that node. Earlier studies suggest that the mode specific exposure concentrations could be estimated by multiplying
background PM2.5 concentration by 2.0 for cycling or 1.1 for walking (Tainio et al., 2016; Kahlmeier et al., 2014). For cycling and
walking, we used ventilation rates of 2.55 and 1.37 (unit: m3/h) respectively, according to earlier studies (de Nazelle et al., 2009;
Kahlmeier et al., 2014; Tainio et al., 2016).

We could start with calculating total waiting time for cyclists and pedestrians when they were at the node i by

∑=
∈

Time wait i Num act i t Med time wait i t_ ( ) _ ( , ) * _ _ ( , )Bike
Node

t T
Bike
Node

Bike
Node

i (1)

∑=
∈

Time wait i Num act i t Med time wait i t_ ( ) _ ( , ) * _ _ ( , )Walk
Node

t T
Walk
Node

Walk
Node

i (2)

where Num act i t_ ( , )Bike
Node and Num act i t_ ( , )Walk

Node are the number of cyclists and number of pedestrians at the node i for the time t
(minute-level); and Med time wait i t_ _ ( , )Bike

Node and Med time wait i t_ _ ( , )Walk
Node are median waiting time of cyclists and median waiting time

of pedestrians at the node i for the time t. Besides, Ti is the set of t at the node i.
Then we could calculate total inhaled dose of cyclists and pedestrians when they were waiting at the node i by

=− −ID wait i PM i Convert Time wait i VR( ) ( ) * * ( ) *Bike
Node

BG
Node

Bike
PM

Bike
Node

Bike
PM

(3)

=− −ID wait i PM i Convert Time wait i VR( ) ( ) * * ( ) *Walk
Node

BG
Node

Walk
PM

Walk
Node

Walk
PM (4)

where PM i( )BG
Node is the background PM2.5 concentration at the node i, and it equals the background PM2.5 concentration at the

PM2.5 grid where the node i is situated; ConvertBike
PM and ConvertWalk

PM are the converting factors for cycling and walking; VRBike
PM and

Fig. 4. Calculation of the background PM2.5 concentration in an edge intersecting two different PM2.5 grids.

Fig. 3. Composition of a cycling or pedestrian trip.
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VRWalk
PM are ventilation rates for cycling and walking. In this study, ConvertBike

PM = 2, ConvertWalk
PM = 1.1,VRBike

PM = 2.55 andVRWalk
PM =1.37.

Accordingly, we could calculate total inhaled dose for cyclists and pedestrians when they were waiting in all nodes by

∑=
∈

Total ID wait Bike ID wait i_ _ _ _ ( )
i S

Bike
Node

N (5)

∑=
∈

Total ID wait walk ID wait i_ _ _ _ ( )
i S

Walk
Node

N (6)

where SN is the set of all nodes.

2.2.2. Inhaled dose when moving in edges
We further could calculate inhaled dose of cyclists and pedestrians when moving in edges. Unlike nodes, edges might spatially

intersect more than one PM2.5 grids (see Fig. 4). Assuming cyclists and pedestrians are moving at a constant speed on an edge, the
time cyclists or pedestrians are staying within a grid is proportional to the length of the edge's overlapping part with that grid. In this
case, a weighted mean of background PM2.5 concentrations in grids intersecting an edge was used to represent the background
PM2.5 concentration at the edge. Fig. 4 shows a simple case that an edge intersects two different PM2.5 grids.

We could start with calculating total moving time for cyclists and pedestrians when they were at the edge j by

∑

∑

= +

=

=

∈

∈

Time move j D time move j R time move j D time move j

D num act j t D med time move j t R_time move j

R_num act j t R_med_time move j t

_ ( ) _ _ ( ) _ _ ( ) _ _ ( )

_ _ ( , ) * _ _ _ ( , ) _ ( )

_ ( , ) * _ ( , )

Bike
Edge

Bike
Edge

Bike
Edge

Bike
Edge

t T
Bike
Edge

Bike
Edge

Bike
Edge

t T
Bike
Edge

Bike
Edge

j

j (7)

∑

∑

= +

=

=

∈

∈

Time move j D time move j R time move j D time move j

D num act j t D med time move j t R time move j

R num act j t R med time move j t

_ ( ) _ _ ( ) _ _ ( ) _ _ ( )

_ _ ( , ) * _ _ _ ( , ) _ _ ( )

_ _ ( , ) * _ _ _ ( , )

Walk
Edge

Walk
Edge

Walk
Edge

Walk
Edge

t T
Walk
Edge

Walk
Edge

Walk
Edge

t T
Walk
Edge

Walk
Edge

j

j (8)

where D_num act i t_ ( , )Bike
Edge and D_num act i t_ ( , )Walk

Edge are the number of cyclists and number of pedestrians at the edge j for the time t
when cyclists and pedestrians going the direction the street was digitized; R_num act i t_ ( , )Bike

Edge and R_num act i t_ ( , )Walk
Edge are the number

of cyclists and number of pedestrians at the edge j for the time t when cyclists and pedestrians going against the direction the street
was digitized; similarly, D_med_time wait i t_ ( , )Bike

Edge , D_med_time wait i t_ ( , )Walk
Edge , R_med_time wait i t_ ( , )Bike

Edge and
R_med_time wait i t_ ( , )Walk

Edge are median moving time of cyclists and median moving time of pedestrians at the edge j for the time t with
a direction along and against the direction the street was digitized respectively. Besides, Tj is the set of t at the edge j.

Then we could calculate total inhaled dose of cyclists and pedestrians when they were moving at the edge j by

=− −ID move j PM i Convert Time move j VR( ) ( ) * * ( ) *Bike
Edge

BG
Edge

Bike
PM

Bike
Edge

Bike
PM (9)

=− −ID move j PM j Convert Time move j VR( ) ( ) * * ( ) *Walk
Edge

BG
Edge

Walk
PM

Walk
Edge

Walk
PM (10)

=
∑

∑

=

=

PM j
length s PM s

length s
( )

( ) * ( )

( )
BG
Edge l

K
l BG

Edge
l

l
K

l

1

1 (11)

where PM i( )BG
Edge is the background PM2.5 concentration at the edge j; ConvertBike

PM = 2, and ConvertWalk
PM = 1.1; sl represents a segment

of the edge j and it intersects a unique PM2.5 grid, Kmeans that the edge j spatially intersects K different PM2.5 grids, in other words,
the edge j is split into K segments by PM2.5 grids; length s( )l is the length of the segment sl and PM s( )BG

Edge
l is the background PM2.5

concentration at the grid that intersects sl.
Accordingly, we could calculate total inhaled dose of cyclists and pedestrians when they were moving in all edges by

∑=
∈

Total ID move bike ID move j_ _ _ _ ( )
j S

Bike
Edge

E (12)

∑=
∈

Total ID move walk ID move j_ _ _ _ ( )
j S

Walk
Edge

E (13)

where SE is the set of all edges.

2.2.3. Total inhaled dose and average inhaled dose
Finally, we could figure out total inhaled dose for cyclists and pedestrians by combining total inhaled dose of cyclists and

pedestrians when they were waiting in nodes and total inhaled dose of cyclists and pedestrians when they were moving in edges.
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= +Total ID bike Total ID wait bike Total ID move bike_ _ _ _ _ _ _ _ (14)

= +Total ID walk Total ID wait walk Total ID move walk_ _ _ _ _ _ _ _ (15)

Accordingly, average inhaled dose of cyclists during a cycling trip and average inhaled dose of pedestrians during a pedestrian trip
could be computed as

=Ave ID bike Total ID bike
Num bikes

_ _ _ _
_ (16)

=Ave ID walk Total ID walk
Num walks

_ _ _ _
_ (17)

where Num_bikes and Num_walks are the total number of cycling trips and the total number of pedestrian trips respectively.

2.3. Spatial associations of cycles, walks and air pollution concentration

In this study, spatial associations of cycles, walks and air pollution concentration were explored by using the bivariate local
Moran's I statistic method. The bivariate local Moran's I statistic method (Anselin, 1995) is widely used to measure the spatial
association of two distinct attributes. Specifically, we explored the spatial association of background PM2.5 concentration and cycling
count, and spatial association of background PM2.5 concentration and pedestrian count respectively. For simplicity, we used the
number of cycling activities, the number of pedestrian activities and background PM2.5 concentration at each node to represent the
spatial distributions of cycling activities, pedestrian activities and background PM2.5 concentration. We could identify: 1) areas with
low-level air pollution and low-volume cycles; 2) areas with low-level air pollution and low-volume walks; 3) areas with high-level air
pollution and high-volume cycles, and 4) areas with high-level air pollution and high-volume walks.

3. Results and discussions

This section demonstrates the empirical results in the study area and makes discussions about the results.

3.1. Comparison of Strava cycling volumes and regular cycling volumes

Unlike Strava Metro data which has a large spatial coverage, AADF data covers only 119 links (major roads) across Glasgow.
Therefore, we matched those links with streets from the Strava Metro data based on spatial proximity (a 5-m threshold), road name,
start junction name and end junction name. Accordingly, the correlation between AADF's annual average daily cycling volume and
Strava's annual cycling volume equals 0.83, indicating spatial distribution of Strava cycling volume is fairly proportional to that of
realistic cycling volume on major roads across Glasgow.

3.2. Assessment of air pollution exposure

By the Eqs. (1)–(17) we calculated average inhaled dose of Strava users during a cycling trip and a pedestrian trip step by step (see
Table 3). For both cyclists and pedestrians, the total inhaled dose when moving in edges is more than two times of the total inhaled
dose when waiting in nodes. Average inhaled dose of Strava users during a single cycling trip is four times of that of Strava users
during a pedestrian trip. According to annual variation of PM2.5 concentration at the monitoring site Glasgow Kerbside (urban
traffic) in Glasgow (Ricardo Energy & Environment, 2016), it is likely that annual PM2.5 concentration across Glasgow decreases
from 2011 to 2015 as well. Therefore, it is likely that realistic intake of PM2.5 in 2015 is smaller than the one assessed in this study as
the 100 m PM2.5 concentration map used is for 2010.

Moreover, one the one hand, almost half of cycling and pedestrian trips were contributed by users aged 25–44, and a large portion
of Strava cycling and pedestrian trips are recreational trips (Strava Metro, 2015). On the other hand, the spatial distribution of Strava
cycles is fairly proportional to that of realistic cycles on major roads across Glasgow. Therefore, we might use average inhaled dose of
Strava users during a cycling trip to roughly represent average inhaled dose of young and sporty cyclists during a cycling trip. Once
Table 3
Total and average inhaled dose of Strava cyclists and pedestrians.

Inhaled dose Total_ID_bike Total_ID_walk Ave_ID_bike
Ave_ID_walk
Unit: μg 9,436,394 1,246,793 33 8

Inhaled dose Total_ID move_bike_ Total_ID_wait_bike
Total_ID_move_walk Total_ID_wait_walk

Unit: μg 6,722,580 2,713,814 867,121 379,672
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Fig. 5. Clusters and outliers representing spatial associations of air pollution, cycling count and walking count in Glasgow.

Y. Sun et al. Journal of Transport & Health 6 (2017) 93–104

101



the annual frequency of those cyclists was known from other data sources such as travel survey, we could further try to assess average
annual inhaled dose of young and sporty cyclists in Glasgow.

3.3. Spatial associations of cycles, walks and air pollution concentration

The bivariate local Moran's I method was implemented in the open software GeoDa (Center for Spatial Data Science, 2016). First,
59,722 nodes with cycling count, pedestrian count and background PM2.5 concentration were input into GeoDa. Second, 600 nearest
nodes of a node are used to represent the neighbours of this node. In other words, each node has 600 neighbours. As there are
approximately 60,000 nodes, 600 neighbours (nodes) take 1% of the total number of nodes. Finally, after 999 Monte Carlo simu-
lations, statistically significant clusters and outliers were detected. Fig. 5 displays the clusters and outliers detected in Glasgow. In
Fig. 5, a High-High cluster indicates spatial clustering of high-value PM2.5 concentration and high-value cycling count (or pedestrian
count), whereas a Low-Low cluster indicates spatial clustering of low-value PM2.5 concentration and low-value cycling count (or
pedestrian count). A Low-High outlier indicates that low-value PM2.5 concentration is associated with high-value cycling count (or
pedestrian count); whereas a High-Low outlier indicates that high-value PM2.5 concentration is associated with low-value cycling
count (or pedestrian count). Besides, the category Not Significant means that there is no statistically significant spatial association
between PM2.5 concentration and cycling count (or pedestrian count). Fig. 5 shows that 1) areas with low-level air pollution and low-
volume cycles are mainly situated in the north of the city and southern outskirts of the city; 2) areas with low-level air pollution and
low-volume walks are mainly situated in the north of the city and southern outskirts of the city; 3) areas with high-level air pollution
and high-volume cycles are mainly situated in the south of the city excluding southern outskirts of the city; and 4) areas with high-
level air pollution and high-volume walks are mainly situated in the south of the city excluding southern outskirts of the city.

3.4. Discussions

Altitude of northern Glasgow is higher than that of southern Glasgow, and northern Glasgow is hillier than southern Glasgow.
Cycle commuters and pedestrian commuters seem to rely more on the road network in southern Glasgow than recreational cyclists
and pedestrians. Therefore, we could offer implications for policies that 1) improvement of bicycle infrastructure in northern Glasgow
to attract more recreational cyclists and recreational pedestrians; 2) improvement of bicycle infrastructure in southern Glasgow to
separate cycle commuters and pedestrian commuters from motor vehicles; and 3) reducing traffic-related air pollution in southern
Glasgow to decrease journey-time exposures of cyclists and pedestrians. Furthermore, although there is a difference of population
structure between Strava cyclists and regular cyclists, Strava Metro data has a good spatial granularity and spatial coverage across a
city. As it is expensive and time-consuming to conduct a travel survey every year, Strava Metro data offers a good opportunity to
explore the annual variations of cycles and walks, which could be used to roughly evaluate the realistic effects of policies or in-
terventions on modal shift from inactive travel (motorized vehicles) to active travel (cycles or walks), and decrease in journey-time
exposures of cyclists and pedestrians with reduction of air pollution emissions.

There are still some limitations in this paper. First, the median time was used to represent the average time of moving in edges and
waiting in nodes. The gap between median time and mean time (realistic average time) is likely to influence the accuracy of air
pollution exposure assessment. Second, the assessment of air pollution in this study is also sensitive to some parameters such as
converting factor and ventilation rate. We used the values for converting factor and ventilation rate based on earlier studies; however,
how to better determine more appropriate values for them needs more efforts. Third, there is representativeness bias in both cycling
and pedestrian trips. The population structure (gender, age and other socio-economically personal characteristics) between Strava
cyclists and regular cyclists is likely to be different. As young people are more active in social media, old cyclists and pedestrians are
likely to be under-represented by Strava users. Some users like to upload a large proportion of their cycling or pedestrian trips; while
other users might upload a small proportion of their trips. As they upload a small proportion of their trips, their realistic trips are
under-represented by trips of Strava. Fourth, although Strava has the original GPS traces of cycles and walks, it only offers aggregated
data to researchers due to a risk of privacy issues. The original GPS trace data has a larger potential than the aggregated data. Ideally,
we would select GPS traces of cycles and walks created by the number of Strava users who compose a cohort. This would enable a
cohort study of cyclists or pedestrians in a city.

4. Conclusions

In this study, to explore the potential of Strava Metro data in research of active travel and health, we used Strava Metro data to
estimate air pollution exposure in Glasgow, UK. Empirical results demonstrate that Strava Metro data provides an opportunity to the
assessment of air pollution exposure during active travel. Additionally, to demonstrate the potential of Strava Metro data in policy-
making, we explored the spatial association of air pollution concentration and active travel. As a consequence, we identified areas
that require investment priority, and finally offered implications for policies.

In the future, we will take account of some aspects to enhance this study. First, with health impact modelling we will investigate
the risk–benefit balance between air pollution exposure and physical activity when people are riding or walking. Particularly,
knowing cycling and walking time enables not only assessment of air pollution exposure but also assessment of physical activity
(Tainio et al., 2016; Ainsworth et al., 2011). Second, as some people think that harm from air pollution might exceed benefit from
physical activity of active travel in severely polluted regions or bad weather conditions, we will examine reverse impacts of air
pollution on active travel, particularly in extremely polluted regions. Typically, we are interested to explore whether high-level air

Y. Sun et al. Journal of Transport & Health 6 (2017) 93–104

102



pollution would reduce outdoor activities. Third, although Strava only offer aggregated data to researchers due to privacy issue, it is
still possible to publicize original GPS traces of some Strava users. As some Strava users probably are glad to make their traces
publicly and be used for research, Strava might send requests to users and ask whether they are glad to publicize their original GPS
traces. Once some original GPS traces were available, Strava data would have a larger potential in studies of active travel and health.
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