
 

 

 

Identification and characterisation of 
tracheal cartilage derived stem cells for 

airway tissue engineering  
 
 

Navid Moshkbouymatin 
 

 

 

 

Submitted to Swansea University in fulfillment of the 
requirements for the degree of 

Doctor of Philosophy 
 

Swansea University 
Medical School 

 

2019 

 

 

 



 1 

DECLARATION  

This work has not previously been accepted in substance for any degree and is not being 

concurrently submitted in candidature for any degree.  

Signed:   

Date ........................................................................  

 

STATEMENT 1  

This thesis is the result of my own investigations, except where otherwise stated. Where 

correction services have been used, the extent and nature of the correction is clearly 

marked in a footnote(s).  

Other sources are acknowledged by footnotes giving explicit references. A bibliography 

is appended.  

Signed:  

Date ........................................................................  

 

STATEMENT 2  

I hereby give consent for my thesis, if accepted, to be available for photocopying and for 

inter-library loan, and for the title and summary to be made available to outside 

organisations.  

Signed:   

Date ........................................................................  

 

 

 



 2 

Abstract  

The trachea is a complex organ composed of multiple cell types and is just one integral 

part of the respiratory system and as a result of injury or insult there is an immediate 

need to engineer a neo-trachea as there currently no long-term treatments for tracheal 

defects. This thesis has for the first time successfully identified a mesenchymal derived 

stem/progenitor cell component that reside within the tracheal C-ring cartilage by means 

of selective adhesion protocol of fibronectin for airway tissue engineering applications. 

These cells were found to be, plastic adherent, colony forming, expressed the minimal 

cell surface markers and were capable of undergoing tri-lineage. Further analysis 

revealed mechanical property changes in that the tracheal colony forming cells became 

stiffer with each passage and the gene expression of collagen I, II and X were reduced. 

To investigate the chondrogenic potential of tracheal stem/progenitor cells traditional 

pellet culture over a 21-day time course resulted in matrix formation consisting of 

collagen type II, aggrecan, collagen type I and possible calcification. To rule out the 

influence of plastic culture 3D gelatin- derived microcarrier culture techniques in both 

static and wave culture technology were employed for large expansion of tracheal 

chondroprogenitors. Post expansion analysis revealed that lubricin (PRG4) transcription 

was observed in all wave expanded cells which is indicative of superficial zone of 

articular cartilage and not tracheal cartilage. Post differentiation analysis of the 

microcarrier constructs revealed similar gene profiles to that observed in traditional 

pellet culture, although with a slight reduction in gene expression. However, 

microcarrier based differentiation reduced collagen type X gene expression when 

compared to traditional pellet culture in all the microcarrier groups. These findings taken 

together show great potential in the wider cartilage research community in that 

microcarrier and bioreactor expansion can induce the transcription of PRG4 which is 

specific to the superficial zone of articular cartilage. Furthermore, as a proof concept C-

ring like structures were fabricated using tracheal cartilage derived stem/progenitor cells 

and microcarriers in 3D printed moulds for use as a customisable new method for airway 

tissue engineering. 
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1.1 Airways  

The human respiratory system functions to enable the intake of oxygen and the 

expulsion of carbon dioxide. A complex system, it can be divided to multiple tissues and 

organs. As shown in Figure 1.1, the respiratory system is divided essentially to upper 

and lower airways. The upper airway consists of the conducting or cartilaginous zone; 

composed of the nose, sinuses, oral cavity, pharynx, larynx and trachea. The conducting 

zone is not directly involved in the gaseous exchange and the main purpose is to provide 

a course for inhaled and exhaled air, removal of foreign materials and to regulate the 

humidity of the incoming air [1]. The lower airway, the respiratory zone, is responsible 

for gas diffusion in and out of capillaries and is composed of bronchi, bronchioles, 

alveolar ducts, and alveolar sacs. The lower airway can further be subcategorised into 

the cartilaginous zones known as conducting zones and non-cartilaginous zones known 

as the respiratory zone [2]. Several organs of the respiratory system have functions other 

than non-vital purposes such as; speech production, sensing smell and straining during 

coughing. Coughing is a prime example to depict the role of the trachea in the airway 

system. During coughing, the trachea undergoes drastic deformations due to the high 

intrathoracic pressures and high expiratory flow rates [3]. From a mechanical point of 

view, trachea is a reinforced tube that has the ability to change its cross sectional area 

[4]. When coughing happens the cross sectional area changes in a contractile manner 

which leads to an increase in the velocity in the constriction area thus enhancing the 

cough efficiency [5].  

 

 



 18 

 

Figure 1.1. Anatomy of the respiration system. Air is breathed in through the nose 

or the mouth. Air then moves into the pharynx, a passage that contains the intersection 

between the oesophagus and the larynx. From the larynx, air moves into the trachea and 

down to the right and left primary bronchi. Each of these bronchi branch into smaller 

airways called bronchioles that eventually connect with tiny specialized structures 

called alveoli that function in gas exchange [2]. 

 

1.1.1 Embryonic development of airways 

Development of the airways initiates by the process of differentiation, where specific 

stem and progenitor cells generate cells that form tissues specialised in structure and 

function in order to perform certain tasks in the body. By understanding the stages of 

tissue formation during embryogenesis it may be possible to replicate such processes to 

tissue engineer replacement tissues and organs.  
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First stage of mammalian development begins by fertilization when a sperm and an egg 

combine, and their nuclei fuse together. This diploid single cell, called a zygote contains 

all of the genetic information required for foetal development. After fertilization the 

zygote gives rise to the first embryonic totipotent cells that have the ability to 

differentiate into all the cells required to support foetal development including the 

placental tissue, such as the trophectoderm [6]. As cell proliferation progresses a 

blastocyst with restricted differentiation capacity emerges, consequently the three major 

cell lineages are established within the embryo during gastrulation. Each of these 

lineages of embryonic cells forms the distinct germ layers from which all the tissues and 

organs of the mammalian body eventually form. Each germ layer is identified by its 

relative position: ectoderm (outer), mesoderm (middle), and endoderm (inner) (Figure 

1.2) [7]. 

One of the major milestones in embryonic development is the initiation and generation 

of the asymmetrical architecture, which underpins the orientation, and polarity of the 

three-axes, rostral (head) – caudal (tail), dorsal (back) – ventral (front), and left–right 

which will become the basic body plan along which embryonic development will follow 

[8].  

 

Figure 1.2. Summary of germ layer formation. Totipotent stem cells can be found in 

the early stages of embryo development. These cells have the capability to differentiate 

into all types of embryo tissues. Blastocyst contains a cluster of cells, which the embryo 
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develops and embryonic stem cells (ESCs) are isolated; ESCs are defined as pluripotent 

because they can differentiate into cells of the three germinal layers (ectoderm, 

mesoderm, endoderm). 

 

Understanding the developmental biology of the respiratory system is extremely 

complex due to the cross talk between the endoderm and mesoderm-derived cells that 

are involved in orchestrating the generation of the airway system [9]. Studies examining 

the early development of the airway system have mainly used mouse models [10]. It has 

been shown that the dorsal–ventral patterning is mediated by signalling molecules such 

as bone morphogenetic proteins (BMPs), sonic hedgehog (SHH) and transcription 

factors such as sex determining region y-box 2 (SOX2) and NK2 homeobox1 (NKX2.1) 

in the early foregut prior to the separation is crucial for the generation of oesophagus and 

trachea [11].  

 

Figure 1.3. Stages of lung formation. lung endoderm specification commences at E9.0 

in the foregut with initiation of NKX2.1 expression begins. By E10.0 the formation of 

trachea starts and the embryonic stage of lung development begins at E12.5[12]. 
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During development, the anterior portion of the endodermal foregut begins as a single 

lumen that separates into two tubes, the trachea on the ventral side and the oesophagus 

on the dorsal side (Figure 1.4A). Lung formation begins at mouse embryonic 

development stage 9 (E9.0), from endodermal cells of the anterior foregut that are 

marked by homeodomain protein gene NKX2.1 (Figure 1.3). By E9.5 trachea and lung 

bud modelling begins by evagination of the epithelial cells [13]. The interaction between 

the endoderm and surrounding mesenchyme results in separation of the airway from the 

oesophagus during embryonic stages E12.5-16.5 [14]. SOX2 is highly expressed 

dorsally in tissue that eventually develop into the oesophagus while NKX2.1 is 

expressed ventrally in the future trachea. The latter pattern of expression is highly 

dependent on signals from the surrounding mesenchyme including BMPs, noggin, 

fibroblast growth factors (FGFs) and wingless proteins (WNTs) (Figure 1.4B). It has 

been shown that depletion of some of these genes does not result in the separation of the 

foregut. The Wnt signaling plays a particularly important role at this stage [15]. Loss of 

WNT2 and WNT2B, results in the loss of NKX2.1 expression, expansion of SOX2 

expression, and failure in foregut separation [15]. 

 

Figure 1.4. Trachea formation and separation from the foregut. Schematics 

summarising the molecular mechanism involved in endoderm-mesoderm for early 

patterning and development of tracheal tube [16]. 
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Only in recent years, the importance of endoderm-mesoderm cross-talk in airway 

developmental biology has become apparent due to its role in the trachea formation. 

However, the precise function of each gene is unknown fully understood as researchers 

are at the early stages in identifying representative models on how the separation of the 

oesophagus and trachea take place [17]. Identifying specific genes involved in tracheal 

development is crucial and may lead to new insights for use in regenerative medicine.  

Cartilage tissue of the upper respiratory tract is formed by commitment of mesenchymal 

stem cells (MSC) towards a chondrogenic lineage, resulting in the production of specific 

cartilage matrices [18]. Mesoderm-derived cells are positioned ventral to the developing 

tube express SOX9 around E9 of embryonic development [19][20]. Expression of 

collagen type II in cartilaginous tissues, one of the earliest cartilage biomarkers, is 

observed at E11.5. This expression later becomes more sporadic, indicative of 

expanding tissue structures with tracheal C-ring cartilage development occurring at 

E13.5 [21]. Recent discoveries have identified genes with specific roles in lung 

branching morphogenesis and cartilage formation and involving multiple signaling 

pathways, including WNT2, FGF10, BMP4, transforming growth factor beta-2 (TGFβ2) 

and sonic hedgehog (SHH) [22]. SOX9 is the master chondrogenic transcriptional factor 

during precartilagenous formation and it is strongly expressed in trachea-bronchial 

mesenchyme. Ablation of SOX9 disrupts cartilage growth [23] but does not affect lung 

morphogenesis [24]. Molecules that influence SOX9 expression include TBX4 and 

TBX5, a subset of the T-box (TBX) transcription factor family that are vital during 

embryonic development for specifying limb identity. TBX4/5 are expressed by trachea-

bronchial mesenchyme, and regulate SOX9 expression [25]. Tracheal epithelium 

directly influences SOX9 expression in the ventral tracheal mesenchyme region through 

a BMP4 directed signalling mechanism [26][27]. Additionally FGF10 from 

mesenchymal regulates the periodic expression of SHH through epithelial receptor 

FGFR2 that is crucial for cartilage ring formations [28]. It has been demonstrated that 

deletion of Wntless (Wls), a putative G-protein coupled receptor that transports WNTs 

intracellularly for secretion from tracheal epithelium disrupts cartilage formation causing 

thickening and expansion of the muscle layer into a region of the lumen where tracheal 
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cartilage is normally laid down. Studies have concluded that Wnt signalling is 

significant in influencing differentiation and proliferation of cartilage and smooth 

muscle during tracheal development [29]. Therefore, SOX9 and wnt signalling play 

central roles in the process of chondrogenesis during early airway development and their 

deletion hinders cartilage ring formation [19][27]. 

 

1.2 Structure and function of the trachea 

The Trachea is a hollow tube that is situated midline in the neck and extends from 

the cartilaginous cricoid to the carina where it bifurcates into the left and right 

main bronchi. The trachea extends from the larynx and is a flexible, vascularised 

and cylindrical tissue that directs the airflow to the lungs [30] (Figure 1.5). The 

inhaled air is then directed to the respiratory bronchioles, alveolar ducts and 

alveoli where gaseous exchange takes place [31]. An adult trachea is structurally 

composed of 16 -20 C-shaped hyaline cartilage rings with the first ring being 

generally broader than the rest. On average, in an adult, the tracheas’ length ranges 

from 10cm to 13cm with a transversal diameter of 2.3cm and a sagittal diameter of 

1.8cm in the adult male (2.0cm and 1.4cm in female) and a 3mm wall thickness 

[30]. The length of the trachea is proportional to the size of the individual and 

varies with the persons’ height.  

 

C-shaped cartilaginous rings, annular ligament, trachealis muscle, and epithelium are the 

primary structural components of the trachea [32]. The rings are connected together with 

annular ligaments and this facilitates longitudinal extensibility. A highly elastic 

connective tissue, the adventitia, wraps around the rings tightly keeping the structure 

intact. The cartilage rings are lined internally with a pseudostratified mucosa layer and 

the posterior regions are fused to a fibromuscular membrane, providing extra flexibility 

[33]. The trachea is exposed to constant airflow during inspiration with velocities 

varying from 1mm/sec through quiet breathing mechanism to 250 km/hr during 

coughing in an adult. Throughout the coughing process narrowing of the trachea occurs 
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resulting in high velocities of air [30]. To comply with high pressures the trachea 

requires a highly elastic structure. The cartilage portion of the trachea embodies almost 

two thirds of the entire luminal structure that has to withstand the extreme force dynamic 

during expiration. An inner epithelial lining functions as a barrier to environmental 

exposure to foreign particles and also acts as clearing mechanism for airway secretion. 

This epithelium has extraordinary regenerative self-repairing properties for injured 

epithelium [34][35]. Submucosal glands are present in between cartilage rings and 

epithelium and are responsible for serous secretion and mucous production. 

 

 

Figure 1.5. Gross anatomy of trachea tissue. Trachea lumen is consisted of annular 

ligaments between cartilage rings, cartilage rings, muscles on the dorsal to close up the 

lumen and pseudostratified epithelium layer [36].  
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1.3 Tracheal disease   

The British Lung Foundation has reported respiratory diseases as the second largest 

cause of death globally after cardiovascular diseases [37]. There are more than 40 

conditions that affect the airway which in turn indirectly or directly perturb cartilage 

structure and organisation of the tissue [38][39]. The airway can be damaged due to 

cancer [40], infection [41], congenital abnormalities [42], trauma [43], stenosis [44] and 

calcification in the cartilageous part of the trachea due to aging, and causing limited 

breathing movement due to increased stiffness [45]. The clinical solutions to overcome 

these clinical problems range from minor surgical interventions to total organ 

replacement depending on the severity of the condition. 

Stenosis (Figure 1.6) is one of the conditions shown to affect tracheal cartilage directly, 

where a narrowing of the trachea is observed, as a result of a loss of mechanical 

stability. Stenosis affects 4-13% of adults in the USA alone and 1-8% of newborns [44], 

[46]. The aetiology of this condition is not well understood but it has been assumed that 

congenital stenosis starts during the fourth week of gestation and affects development of 

the remaining respiratory system [39]. Acquired tracheal stenosis develops from a 

number of origins; tracheotomy where an incision in the windpipe is made to relieve 

difficulties for breathing, surgical reconstruction, endotracheal intubation, cancer, 

autoimmune conditions such as; polychondritis (a rare disorder of painful and 

destructive inflammation of the cartilage and other connective tissues in many organs), 

sarcoidosis (where abnormal collections of inflammatory cells arrange into lumps) and 

fungal, viral and bacterial infections [44][47]. The gold standard to treat stenosis is an 

end-to-end anastomosis where the defect area is removed, and the other two ends are 

connected back together. This approach becomes problematic where the defect length 

exceeds 6cm and therefore other strategies are required [48].   
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Figure 1.6. Anatomic classification of tracheal stenosis. (1) Shows a generalized 

congenital under-developed trachea also known as hypoplasia, (2) is a funnel type 

stenosis and (3) is an example of short segment stenosis [44].  

The majority of airway diseases will lead to narrowing of the airway structure and 

eventually stenosis [49]. Standardised measurements have been proposed for 

laryngotracheal stenosis depending on the staging severity to reduce the influence of 

individual assessors on the analysis of outcome and are as follows: 

1) The McCafeery system [49][50] catalogs laryngotracheal stenosis based on the 

extent of the lesion: 

a. Stage I lesions are restricted to the subglottis or trachea and are less than 

1cm long. 

b. Stage II lesions are isolated from the subglottis and are greater than 1 cm 

long within the cricoid ring. 

c. Stage III is subglottic/tracheal lesion void of glottis. 

d. Stage IV lesions involve the glottis directly with fixation or paralysis of 

one of both vocal cords. 
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2) The Myer-Cotton staging system [51][52] is used for subglottis stenosis and it 

classifies the severity based on luminal obstruction. It is simple to use and easy 

to remember but has some limitations as an indicator of decannulation. These are 

divided into four grades of luminal narrowing which are as follow: 

a. Grade I lesions < 50% obstruction.  

b. Grade II lesions 51%-70% obstruction.  

c. Grade III lesions 71%-99% obstruction.  

d. Grade IV lesions complete stenosis.  

 

1.4 Tracheal repair 

The trachea is a multi-complex structure and to restore and recapitulate this composite 

biomaterial’s function is very challenging. Its exceptional cartilaginous rings maintain 

lumen integrity during respiration and provide effortlessness movement of the neck. 

Blood vessels penetrate the ligaments between each ring to perfuse the epithelium where 

effective mucosa clearance takes place. Removal of a tracheal segment due to non-

malignant and malignant obstruction requires airtight restoration of the missing 

fragment. When few methods such as an end-to-end anastomosis (Figure 1.7), 

permanent tracheostomy and palliative stenting are no longer an option, full tracheal 

reconstruction is required to restore full function. The missing tissue must be replaced 

with a vascularised, epithelium and elastic cartilaginous composite, which is non-

immunogenic, non-tumorigenic, functional and compatible and integrated with the 

surrounding tissues.  
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Figure 1.7. Typical example of short end-to-end anastomosis. (A) displays a distal 

trachea and (B) displays a proximal trachea of congenital tracheal stenosis treated by 

using the resection and suturing the two ends. Many approaches have been proposed for 

trachea replacement including autologous and allogeneic long-segment tracheal 

reconstruction, stents, synthetic prostheses and scaffolds, transplantation of vascularised 

and non-vascularised grafts, some techniques based upon regenerative medicine and 

tissue engineering approaches. Each technique will be further discussed with their 

advantages and shortcomings [44].  

 

1.4.1 Autologous long-segment construction  

Autologous donor tissue that is available can be used in a technique called slide 

tracheoplasty to treat tracheal stenosis with whole tracheal ring with normal epithelium 

attached. The procedure begins with dividing the middle point (Figure 1.8A) of the 

stricture horizontally and the upper and the lower segments vertically. The trimmed ends 

are slid onto one another and sutured together (Figure 1.8B & 1.8C) [53].  In this 

technique the circumference of the trachea is doubled and the cross-sectional area is 

almost quadrupled (Figure 1.8D,E) [53][54]. Although this is a preferred technique in 

many surgical centers the potential for recurrence of stenosis is high because of tissue 

granulation development [55]. Furthermore, It would be most troublesome in such 

patients with agenesis of the right lung or extensively long-segment stenosis as 
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shown in our series. In unilateral lung agenesis, mortality and risk of vascular 

compression are known to be higher with right lung agenesis [55]. 

 

 

Figure 1.8. Slide tracheoplasty procedure. (A) Stenotic segment is divided 

transversely in its midpoint. The upper stenotic segment is incised vertically posteriorly, 

and the lower segment is incised anteriorly for the full length of stenosis. (B) Right-

angled corners produced by these divisions are trimmed above and below. (C) The 2 

ends are slid together after placement of running sutures around the entire oblique 

circumference of the tracheoplasty. (D) and (E), the tracheal circumference is doubled, 

resulting in quadrupled cross-sectional area [44].In the situation where there are no other 

readily available autologous donor tissues to repair the defect in the tracheal composite, 

the alternative is to use autologous free flaps as vascular carriers for cartilaginous strips 

to assemble a neo-trachea. It must be mentioned that the following interventions, 

although have been reported to be successful, are extremely invasive and patient 

morbidity is high.  

A new method was developed to use rib cartilage and a free radial forearm 

fasciocutaneous flap to create a tube-like structure. Cartilage strips were integrated 

between skin and fascia to reinforce the tube and ensuring transverse rigidity. Out of 12 
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patients; 4 needed additional resections of which 2 died due to pulmonary infection and 

8 patients were reported a successful treatment after 36 months [56].  

Another surgical technique uses a corticoperiosteal-cutaneous free flap from the medial 

femoral condyle with local random-pattern skin flaps and has reported no change in 

shape, diameter or function of the fabricated neo-trachea 14 months following treatment 

[57]. Other innovative surgical solutions include the use of a tongue-shaped autologous 

pulmonary tissue flaps with alloy stents [58], an osteocutaneous radial forearm flap [59] 

and auricular cartilage prelaminated in radial forearm fascia [60].  

Regardless of the important progress made with autologous approaches there are some 

drawbacks. For example cartilages from non-tracheal sources sources have a high 

chance of undergoing distortion, leading to mechanical failure and stenosis [61]. 

Another problem is using radial forearm skin or fascia that may not be rigid enough or 

too thick for small trachea lumen [60]. Finally, if the ciliated epithelial layer is not 

replaced or even partially replaced the patient has to cough  excessively to overcome the 

deficient mucociliary transport, which ultimately exerts more force onto the 

reconstructed neotrachea. 

 

1.4.2 Allogeneic long-segment tracheal reconstruction 

Similar principles as for autologous tracheal reconstruction, are used for allogeneic 

transplantation. Donor tracheas from the same species are used in this method, and, the 

implanted tissue has to be vascularised, possess a rigid cartilaginous framework, be 

capable of mucocillary transport and have the ability to clear foreign materials upon 

inhalation. Allogeneic transplantation approach requires administrating patients with 

immuno-suppressive drugs to prevent immune-rejection [62].  

To vascularise an allografted trachea, a heterotopic prelamination-step can be 

incorporated. Once the trachea is perfused by a transplantable vascular pedicle of the 

recipient, a transfer of the organ and its pedicle to the orthotic position can be performed 

[63]. Various strategies have been proposed to restore the function of trachea 
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allogencially. Rose et al. [64] implanted a donor trachea heterotopically, in the 

sternocleidomastoid muscle of the male recipient and then transferred to the orthotopic 

position three weeks later without any immunosuppressive therapy. No long-term effect 

of the latter procedure has been documented. Wurtz et al. [65][66] took a new approach 

by using an allogeneic aorta enclosed with pectoralis muscle to repair long segment 

tracheal defects.. Wurtz et al. also reported significant shrinkage and partial focal 

epithelium formation. 

 

1.4.3 Stents 

Silicone [67] and expandable metallic [68] stents have been widely used as a choice of 

treatment for long segment treatments, which are sutured, to the upper and lower 

margins of the defect. They provide good mechanical stability but tissue remodelling 

and functioning is poor, and generally, this type of reconstruction must be considered 

temporary due to inevitable stent-related complications such as lack of neck movement, 

poor re-epithelisation, migration of stent and high chances of infection and reoccurrence 

of stenosis [69].  

 

1.4.4 Prostheses and scaffolds 

Vast majority of synthetic materials have been used in pre-clinical testing in large 

animal such as glass [70], polyethylene [71], silicone [72], stainless steel [73] and 

Teflon™ [74]. Clinical trials have also been carried out with stainless steel [75], steel 

coil [76], silicone [77], polythene [78] and Teflon™ [79]. The purpose for examining 

such vast choice of materials selection are due to obstructive tissue granulation and scar 

tissue formation, lack of cellular migration and lack of vascularity caused by 

implantation of foreign substances which ultimately results in further resection of the 

native undamaged/undiseased trachea.  
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The next generation of devices to counter the failure of solid biosynthetic tubular 

structures was the development of porous structures for better tissue integration [80]. To 

maintain biomechanical stability steels wire [81], polytetrafluoroethylene (PTFE) [82], 

titanium [83], Marlex™ [84] and polyurethane [85] have been used. In order to enhance 

the integration of prostheses with surrounding tissues porous structures have been 

wrapped with tissues such as omentum [86], fascia [87] or natural biopolymeric 

materials such as fibrin or collagen [88][89]. An improvement was observed but 

nevertheless, the lack of vascularisation, overgrowth of scar tissue and stenosis was 

persistent features of these latter biosynthetic approaches. 

 

1.5 Regenerative medicine and tissue engineering 

Regenerative medicine is a multidisciplinary field that relies on a triangular approach in 

which living cells (fully committed or precursor cells), a supportive 3D or matrix 

environment and biomolecules are used in order to repair, provide homeostasis, replace 

or enhance tissue function as well as developing new tissues/organs in cases of total 

organ replacement (Figure 1.9). Therefore, in recent years more attention has been 

given to tissue engineering applications in the hope of recreating  in vitro replacement 

biological tissues and organs. However, to date very few engineered tissues or organs 

have been successfully implanted and our original narrow concepts of the components 

required to successfully engineer a tissue have expanded. 

While the field of regenerative medicine, with its multidciplinary approach aims to 

replace damaged tissues with mimicry in mind; i.e. total replacement or tissue with a 

like for like replacement, the current clinical gold standard is replacement 

transplantation from unrelated donors [90]. Allogeneic transplantation is the standard 

procedure for severe cases of tracheal tissue damage but there are significant problems 

in terms of immune reaction, donor rejection, the need for repeated follow-up 

procedures and lack of donors for transplantation [91]. While regenerative medicine 

aims to recapitulate tissue, structure using autologous or allogeneic cell sources in the 
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presence and absence of a matrix support, similar issues regarding immunogenicity and 

rejection exist, alongside implant necrosis.  

Toovercome the issues associated with recapitulating complex tissue structures, 

regenerative medicine has evolved a three-pronged strategy (Figure 1.9). Underpinning 

these three components, which are often researched individually and occasionally 

collectively requires an in-depth understanding of fundamental components, both at 

molecular (signalling and structure) and cellular levels in which are the significant steps 

required for engineering a complex tissue . 

 

Figure 1.9. Typical triangular approach aiming recreating any tissues is depicted 

on the left. Individual factors to consider for successful experiment strategies on a wider 

scope are shown on the right.  
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The triangular approach, considering the biomaterial (scaffold) signalling and cellular 

properties required for tissue engineering branches off into more sub-segments, which in 

turn influence other parameters in developing optimised environments to enhance the 

growth and differentiation of the intended tissue. From the cellular point of view, the 

ease of harvest, proliferative capacities, differentiation potency and immuno-privileged 

nature of donor cells are the most significant factors (Figure 1.9).  

From the biomaterials point of view; material porosity, degradation and mechanical 

properties, the ability of a biomaterial to promote cellular attachment, cell survival, 

proliferation and differentiation, are all major contributors to consider for tissue 

engineering (Figure 1.9). An ideal 3D matrix should be biocompatible, bioactive, 

porous, biodegradable, non-immunogenic, cytocompatible for cell growth and 

differentiation, have an appropriate microarchitecture and functional properties, possess 

biomechanical strength, promote long term remodelling at a similar rate to degradation 

and be relatively inexpensive so as to be used as a clinical tool. Investigated materials 

can be categorised as natural and/or decellularised versus synthetic variants, and, further 

subdivided on the basis of biodegradability. Natural scaffolds can be further classified 

by the donor tissue source of origin (i.e. autologous/syngeneic/allogeneic/xenogeneic) 

each with their advantages and disadvantages [90][92][93]. Collectively synthetic 

materials provide more suitable mechanical stability but lack bio-inductive properties; 

therefore, attention has remained with biological materials. Most biomaterials do not 

meet the mechanical requirements to be considered as an implantable material. Next 

generation biomaterials have exploited co-polymer strategies to generate stiffer 

structures  [94] where a composite 3-layer scaffold consisting of a collagen sheet, a 

polyglycolic acid mesh, and a copolymer (l-lactide/ɛ-caprolactone) coarse mesh for the 

development of a tracheal lumen has been used [95]. Epithelisation, of the lumen in the 

latter biomaterial, occurred at day 14 in vitro but analysis had shown new cartilage 

formation did not match the native trachea composition. Regardless of the efforts being 

made no single pre-clinically validated strategy has been selected for clinical 

applications so far. In summary it is important to take into account many elements and 

understand the addition or removal of factors, but one clear strategy is to include and 
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consider the effects and traits that are seen in the in vivo environments and implement 

these to in vitro scenarios. 

 

1.5.1 A brief history of tracheal tissue engineering 

The three key components of airway tissue engineering are formation of the 

cartilaginous tube, its epithelisation and vascularisation, similar to the aforementioned 

criteria for long segment transplantations.  

For constructing a stable tissue engineered trachea, ideally a small biopsy tissue source 

must be used in which cells should ideally have high growth kinetics allowing them to 

be isolated and expanded to the necessary numbers for tracheal tissue generation in 

vitro. However as mentioned previously, to date no stem cell population from the 

postnatal upper airway has been identified that gives rise to all tissue components.  

The current standard tissue engineering procedure in airway tissue engineering relies on 

organ decellularisation. Decellularisation is believed to be a rich source of scaffold 

material where ECM content is well preserved. It has been shown that decellularised 

tissue can be bio-inductive and promote cell adhesion, viability, proliferation, tissue- 

specific differentiation, and functionality [96][97]. Although it is the best current choice 

of present tissue engineering-based treatments, it has it’s disadvantages, namely; the 

need for administration of immunosuppressive drugs, lack of available donors, 

inefficient decellularisation protocols for cartilage tissue (where the matrix to cell 

volume ratio is high), and mechanical stability deficits are documented shortcomings of 

this approach [98].  It has been suggested that re-epithelisation of decellularised matrices 

has a high rate of success whereas chondrocyte repopulation does not effectively take 

place [91]. Furthermore, current decellularisation protocols are lengthy, post analysis to 

confirm total removal of nuclear contents are also time-consuming. Decellularised tissue 

could be a useful baseline model for scaffold fabrication for tissue engineering strategies 

for future studies. 



 36 

1.6 Cartilage 

Tracheal cartilage is classified as a hyaline type cartilage. However, in the adult human 

body, there are three types of cartilage present that are classified based on their gross 

morphology and ECM components: hyaline, elastic and fibrocartilage. Fibrocartilage is 

a very stiff cartilage that is predominantly made form collagen type I [99] and is found 

in intervertebral discs and at the enthesis attachment sites of ligaments and tendon. 

Elastic cartilage can be found in the external ear and epiglottis and is characterised by 

the ECM being enriched in elastin fibers [100]. Hyaline cartilage is shiny, glass-like in 

appearance, avascular and aneural in nature and is the most frequent cartilage found in 

the body, covering synovial joints in tissues such as, hips, ribs and is also located in 

tracheal rings and larynx [101]. The cartilaginous ECM of hyaline cartilage is highly 

organised from the superficial surface to the deeper zones where there are topographical 

differences in the cartilage thickness, matrix composition and cellular alignment that are 

directly linked with the level of forces experienced and distributed throughout the tissue 

[102][103].  

Chondrocytes are the sole differentiated cellular component of hyaline cartilage and 

produce a proteoglycan (PG) and collagen-rich ECM. Chondrocyte alignment and 

matrix composition varies significantly from the superficial surface through to the deep 

zone of the tissue. The cells are flattened and discoid-like at the surface, in the mid zone 

chondrocytes are rounder and more randomly organised, and in the deeper zones, 

chondrocytes are aligned in columnar fashion (Figure 1.10). In articular cartilage, the 

calcified zone connects the overlying cartilage with underlying subchondral bone plate, 

and chondrocytes in this zone express collagen type X and is more hypertrophic. 
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Figure 1.10. Hematoxylin and eosin stain and schematic representation of hyaline 

cartilage morphology and structure for articular cartilage. SZ, superficial zone; MZ, 

middle zone; DZ, deep zone; CZ, calcified zone; SB, subchondral bone [104] 

 

The collagen fibril and proteoglycan organisation is zone specific. The collagen 

orientation in the superficial zone is densely packed and runs parallel to the apical 

surface of the cartilage and the content is high which allows cartilage to tolerate sheer 

and tensile forces [105]. The proteoglycan content is relatively low in the superficial 

zone [106]. The middle zone is characterized by randomly oriented collagen fibrils [106] 

and the highest proteoglycan content [107] that contributes to withstand high 

compression forces. The deep zone has the lowest concentration of collagen and the 

fibers are radially oriented and are arranged perpendicular to the surface [108]. The 

proteoglycan content is the highest in this zone and has the lowest concentration of 

water [109].  
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1.6.1 Composition of hyaline cartilage ECM 

Hyaline cartilage is the major cartilage tissue in the body and comprises 

chondrocytes and ECM, which together convey the tissue mechanical properties 

which are required to produce a structurally functional tissue. Hyaline cartilage has 

a large matrix to cell volume ratio and the basic structure is composed principally 

by dry weight of a collagenous scaffold, proteoglycans and chondrocytes [110]. The 

main collagen in hyaline cartilage is collagen type II but other collagen types (IX 

and XI) are present that are responsible for interfibrillar cross-linking and 

interactions with surrounding proteoglycans [111]. Aggregating proteoglycans such 

as aggrecan are the second most abundant matrix component by dry weight in hyaline 

cartilage.  

 

1.6.1.1 Collagens  

There are 29 distinct collagens present in animal tissues; they are the main ECM 

structural proteins. Collagens are triple-helix proteins that assemble into multimeric 

fibrils through end-to-end and lateral interactions. Collagen can be found in a number of 

different isoforms, of which the composition vary significantly across different tissues 

[112]. The fibril forming isoforms, such as collagen types I, II, III, V and XI provides 

mechanical strength and stability [113]–[115] . They are laid down as individual fibrils 

that later are able to form thick collagen fibres by linking together to form bundles. 

Collagen network gives cartilage its structural integrity and tensile strength, and 

accounts for the majority of the dry weight of mature tissue. The collagens composition 

of articular cartilage include types I, II, III, V, VI, IX, X, XI, XII and XIV [108].  

Type II collagen is the most abundant collagen [116] and is synthesised from precursors 

to form type IIA and type IIB procollagen that are abundantly found within extracellular 

space. Due to the high content of hydroxylysine, glucosyl and galactosyl residues; 

proteoglycans such as aggrecan, decorin and fibromodulin are incorporated into the 
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collagen type II meshwork. Collagen type II is able to promote chondrocyte attachment 

to the ECM through adhesion to its helical domain [111].  

 

1.6.1.2 Proteoglycans 

In addition to collagen, other macromolecules that form the backbone of cartilage ECM 

include proteoglycans, elastin and glycoproteins. Proteoglycans are present in the ECM 

of all connective tissues. Proteoglycans such as aggrecan contain sulfated 

glycosaminoglycan (GAG) chains, which are assembled from repeating disaccharide 

units that are then covalently attached to a protein core [117]. Hyaline cartilage contains 

predominantly aggregating proteoglycans, which are composed of many aggrecan 

molecules that interact with a long polysaccharide, hyaluronic acid (HA) through a link 

protein. The aggrecan molecule itself has an extended core protein with many 

chondroitin sulphate and keratin sulphate chains that lie perpendicularly to the core 

protein. The resultant sugar chains negative charge attracts and entrap water molecules 

within cartilage matrix to augment compressive resistance under loading. The 

proteoglycan aggregate provides the tissue with its resistance nature that withstands 

compression [117].  

 

1.6.2 Comparison of trachea cartilage with other hyaline cartilages  

Despite being relatively less studied, tracheal cartilage, comprising the C-ring structure, 

is analogous, in terms of structure and function to articular cartilage. Tracheal cartilage 

biopsy harvest for repair is extremely difficult because of its non-redundant structure 

and function, and therefore more attention has been given to other cartilage sources as 

alternatives for reconstructing airways. Although tracheal cartilage has been labelled as 

a hyaline type cartilage no definitive studies have been made to confirm this assumption 

and further examination is required. Some evidence regarding the nature of tracheal 

cartilage by comparison with other tissues have been presented and these are described 

below. 
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Thyberg et al. analysed proteoglycan monomers from guinea-pig costal cartilage, bovine 

nasal and bovine tracheal cartilages and observed similarities in the cartilage sources 

using electron microscopy. This study showed similarities in filament core length, 

number and length of side chain per core filament across all cartilage sources [118].  

Onnertjord et al. compared the proteome from eight different cartilage sources from 

articulating joints, trachea, rib and intervertebral disc in humans [119]. There were 

significant variations in the protein composition of the ECM of cartilage from different 

anatomical sources, such as the amounts of collagen types I and III between the tracheal 

and articular cartilage. Other proteins with substantial differences between these latter 

two cartilages include fibronectin, cartilage oligomeric protein (COMP), and lysozyme 

C. Comparison of rib and tracheal cartilage, although much more similar to each other, 

still had significant differences in COMP and lysozyme C. Thus, hyaline cartilages from 

different anatomical location have differences in their proteomic composition, possibly 

because of differences in the various mechanical, biological stresses experienced by 

each cartilage. Wachsmuth et al. compared various types of human cartilage tissues and 

reported that tracheal cartilage has high cellularity and collagen types II, III, V, VI, and 

X were present in tracheal cartilage, with some variation between the ring margins and 

centre [120]. However, no microscopic images of immunohistochemical analaysis of 

collagen types I, II and X were reported in the latter study. Furthermore, this paper also 

lacked western blotting analysis and gene expression analysis. Nevertheless, another 

study reported ossification of tracheal cartilage at the lateral peripheral region in humans 

with an age range of 40-70 years old [45] similar to the range targeted as Wachsmuth et 

al. study.  

 

1.7 Cell sources for tracheal tissue engineering 

 
As traditional approaches for tracheal repair have proven to be either limited or 

unsuccessful, tissue engineering is a promising strategy to deliver clinical therapies. The 

sources of the cells are particularly important as they constitute the primary resource for 

tissue engineering. Appropriate cells can possibly accelerate regeneration of damaged 

tissue even without scaffolds. Apart from autologous mature cells, various other stem 
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cells, including bone marrow-derived mesenchymal stem cells, adipose tissue-derived 

stem cells, umbilical cord blood-derived mesenchymal stem cells, embryonic stem cells 

(ESCs) and induced pluripotent stem cells, have received extensive attention in the field 

of trachea tissue engineering. 

 

1.7.1 Hierarchy of stem cells  

The shared ability of stem cells is their ability for unlimited self-renewal capacity and 

multi-lineage differentiation potential, which make them fundamental during embryonic 

development and throughout the adult life. The hierarchy of stem cells can be 

categorised based on their differentiation abilities: totipotent, pluripotent, multipotent, 

progenitors and finally committed cells (Figure 1.11). Totipotent stem cells are found in 

the early stages of embryonic development and they are capable to give rise to the 

placenta and blastocyst. The blastocyst contains a cluster of cells of which embryonic 

stem cells (ESC) are isolated. These cells are pluripotent and have the ability to give rise 

to the germ layers. Lower down the hierarchical tree multipotent or oligopotent 

progenitors that give rise to complete tissues. Unipotent progenitors generally are 

committed to undergo division to generate a terminally differentiated cell and a self-

renewing progenitor. 
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Figure 1.11. Stem cell hierarchy. Schematic representation summarizing the 

specification of stem cells during development from totipotency to terminal 

differentiation with intermediate stem cell types highlighting the divergence of cell 

lineages. 

Stem cells exist in specific niches within many organs and can generate many 

differentiated cell types. Progenitor cells with more restricted differentiation potential, 

which are defined as tissue specific or adult stem cells and in general, are committed to 

producing cells from the tissue of origin [121].    

 

1.7.1.1 Tracheal derived epithelial cells 

The trachea is lined with a pseudostratified epithelium, which is derived from the 

endodermal germ layer during embryonic development post-cavitation. The epithelium 

consists of basal, ciliated, goblet, Clara and less well categorised cells known as 

indeterminate or intermediate cells [122]. Each cell type has a very unique 
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morphological feature. Basal cells are recognised by their rounded shape with pyramidal 

nuclei; ciliated cells and goblet cells are identified by their columnar shape.  The goblet 

cells are distributed within the epithelium and they contribute to a small proportion of 

the mucous produced compared to mucous glands [123]. The ciliated cells are exposed 

to the inhaled air and protect the airway by propelling secretions and inhaled particles.  

The epithelium lining is continuously exposed to the outer environment, including 

airborne bacterium and viruses [124]. It must maintain a constant and extensive turnover 

to balance proliferation and differentiation of cells in order to compensate for the cell 

loss that occur during normal tissue’ function [125]. This has prompted many recent 

studies to isolate stem/progenitor cells that are responsible for such delicate and precise 

tissue stability. 

Studies have shown the majority of tracheal basal cells have the ability of self-renewal 

and differentiation capacity to generate the surface epithelium [126][127]. It has been 

reported that Clara cells in a postnatal mouse bronchiole give rise to ciliated cells and a 

similar trait was observed in the trachea where the derived ciliated cells did not possess 

extensive self-renewal capacity but retained a repair mechanism [128]. There is also 

evidence that the residing basal cells from the submucosal gland possess regenerative 

capacity [129]. 

Thus far no single stem/progenitor cell source from the airway has been identified that 

can give rise to both endoderm and mesoderm compartments of the conducting pathway. 

The regeneration of epithelium is very complex due to variety of different types of 

epithelial cells such as ciliated, goblet and basal cells. Epithelial cells for airway tissue 

engineering are either isolated from nasal, bronchial mucosa or tracheal mucosa [130] or 

are derived from multipotent cells that can be directed towards specific lineages to 

synthesis an epithelial layer [131]. However, the degree of differentiation towards 

cellular and tissue specificity for the native tracheal function of epithelial layer varies 

greatly. Research has also focused on using endogenous stem/progenitor cells present in 

the respiratory tract such as ductal cells, basal cells and Clara cells; and exogenous 

stem/progenitor cells isolated from other sources such as MSC, ES and induced 

pluripotent stem cells (iPS) cells [131].  
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1.7.1.2 Mesoderm-derived tracheal progenitor populations 

Thus far no studies have identified a mesoderm-derived stem/progenitor cell that give 

rise to solely to tracheal chondrocytes. Peripheral mesenchyme cells that express FGF10 

have been identified and these cells serve as a progenitors for smooth muscle and 

vascular tissues [132] [133]. Derks et al. isolated a potential perichondrial progenitor 

cell-type from the tracheal compartment. However the isolation and purification 

techniques to classify these cells was ambiguous and it was not possible to state whether 

cells were isolated from adventitia or tracheal cartilage [134]. In a following section 

(Section 1.10) the range of cell types as cell sources for tissue-engineered tracheal 

cartilage will be addressed, including chondrocytes, adult stem cells, ES cells, iPS cells 

and other cells obtained from many different donor tissues. 

 

1.7.1.2.1 Stem cell/progenitor isolation criteria 

Presently there are two main methods available for isolation of MSC/progenitor cells. 

Fluorescence-activated cell sorting (FACS) is a widely used technique to isolate specific 

cell populations from tissues and relies on a series of positive and negative markers 

known as cluster of differentiation (CD) cell surface markers . The positive panel for 

mesenchymal stromal cells includes CD29, CD44, CD73, CD90, CD105, CD166 and 

STRO-1 and negative surface markers include hematopoietic markers CD13, CD34 and 

CD45 [135]. The appropriate isolation panel in terms of specificity is debatable as 

certain surface markers are also expressed by fully differentiated cells which could 

potentially result in lack of purity and chondrogenic potential [136].   

A more convenient technique relies on differential adhesion to fibronectin where it has 

been demonstrated that stem or progenitor cells originating from a region of tissue 

expressing higher levels of integrins α5 and β1 fibronectin receptors can be isolated on 

fibronectin coated culture dishes [137]. Differential adhesion to fibronectin is relatively 

inexpensive, easy to set up and it allows for enrichment and isolation of monoclonal 

cell-lines, resulting in less experimental variability following culture expansion. As 

stated previously chondroprogenitors have similar biological properties as MSCs, they 
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are oligopotent, capable of differentiating into only a few cell types, but they 

preferentially differentiate towards the permanent (hyaline) chondrogenic lineage and 

therefore are advantageous for cartilage tissue engineering. Although differential 

adhesion to fibronectin has not been used to isolate chondroprogenitors from tracheal 

cartilage, cells with progenitor-like properties have been successfully isolated from 

articular and auricular cartilage [137][138]. 

 

1.8 Smooth muscle tissue engineering 

One of the areas of the greatest improvement has been dedicated to the smooth muscle 

development. Fabricating smooth muscle would be invaluable to patients who suffer 

from the loss of motor function in the airway. This is vital for swallowing, phonation 

and coughing. An accessible source of smooth muscle is important as satellite cells are 

not capable to regenerate the damaged muscle tissue when the loss is greater than 20% 

of the total length [139]. Tissue-engineered muscle cells should meet the following 

criteria: be from a non-invasive source with high yield, be able to grow homogenously 

for a long time without losing phenotype and be able to reach sites of muscle 

regeneration through a systemic delivery route [140]. Regarding the first criterion, the 

urinary bladder [141] and small intestine submucosa in pigs [142] have aided in the de 

novo formation of large amounts of skeletal muscle. How applicable this technique 

would be in humans has yet to be determined. Stem cells have also been investigated as 

inducers of smooth muscle. Mesangioblasts have been tested in vitro and in vivo in 

mouse [143] and dog [144] muscular dystrophy. One study induced skeletal muscle 

lineage cells from human, rat and canine BM-MSCs with 89% efficiency and 

transplanted the cells into injured posterior cricoarytenoid muscles. The muscle choice is 

significant as the posterior cricoarytenoid is the only abductor muscle in the human 

larynx. The authors found that autologous induced muscle cells effectively restored 

vocal fold moment, whereas control and allograft transplants did not [145]. The use of 

stem cells has been furthered by the first reported transplantation of iPSCs into a mouse 

muscular dystrophy model [146]. Not only did the iPSCs resolve the dystrophic 

phenotype, but they also replenished the depleted progenitor supply. 
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1.9 Vascularisation 

Vascularization is crucial to extend the survival of a transplanted graft and avoid 

necrosis, especially in a large and thick graft as diffusion is inadequate to meet 

metabolic demands and remove metabolic waste [147]. In a rabbit model, Luo et al. 

implanted tracheal scaffolds intramuscularly in the sternohyoid muscle for 4 weeks to 

pre-vascularise the graft [148]. Compared to an unvascularised scaffold pre-implanted 

subcutaneously, pre-vascularised graft wrapped with a muscle flap demonstrated better 

epithelialization with the presence of epithelial formation. Furthermore, they also found 

that pre-vascularisation helped to maintain the cartilage structure of the graft. For short 

tracheal grafts, endothelial cells can grow inward from the native trachea to form blood 

vessels in time in order to maintain the survival of the epithelium. In contrast, 

neovascularization cannot reach the midpoint of a long tracheal graft in time, thus 

resulting in ischemic changes. Poor cell survival after in vivo implantation due to 

delayed neovascularization not only happens to tissue- engineered trachea, but it is a 

common problem faced by all engineered tissues that are large and thick, with a high 

cell number and considerable metabolic demands. Several approaches can be applied to 

accelerate new vessel formation. Walles et al. generated a vascularized tissue- 

engineered trachea by seeding autologous endothelial cells into the vascular network of 

decellularized porcine jejunum segments [149]. However, the functionality of the 

vascular network in terms of withstanding the system's arterial pressure and cell 

shedding upon reperfusion were not tested. Multiple factors, such as human recombinant 

erythropoietin (hrEPO) and vascular endothelial growth factor (VEGF) have been tested 

to expedite the neovascularization of tracheal grafts [150]. Furthermore, decellularized 

scaffolds were found to contain basic fibroblast growth factor (bFGF), which pro- mote 

angiogenesis [151].  
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1.10 Chondrogenesis 

Chondrogenesis is the initiation process of cartilage development and also occurs during 

repair and regeneration of damaged tissues. In early development chondroblasts 

(mesenchymal progenitor cells) proliferate and form condensates that undergo 

differentiation under the control of signalling pathways that regulate SOX9 expression 

[152], which cooperatively functions with L-SOX5 and SOX6 [153] to induce the 

expression of COL2B encoding collagen type II, and, other components of the ECM 

(e.g., aggrecan). 

The first step in guiding multipotent cells to become fully differentiated chondrocytes is 

to provide the right biochemical cues to direct their differentiation and this is promoted 

by growth factors. Pre-chondrocytes undergo condensation, forming cell aggregates as a 

prerequisite step to chondrogenesis [154]. The process is regulated by multiple cell-cell 

and cell-matrix interactions [155]. Cells in the condensate then differentiate into 

chondrocytes, which secrete the ECM proteins such as collagen types I, II, IX and XI as 

well as proteoglycans that ultimately form the cartilage template that pre-figures the 

skeletal system in animals [156].  

Many factors have been identified which stimulate chondrogenesis [157] such as TGFβs, 

BMPs, insulin-like growth factors (IGFs), FGFs, hedgehog proteins (Hh) and the Wnt 

growth factor family. Of these latter factors, TGFβs and BMPs are the two most potent 

growth factors families used in research to induce chondrogenesis [158]. 

1.10.1 Methods to optimise chondrogenesis  

As outlined, studies in developmental biology have shown that a number of factors are 

important in the process of chondrogenesis. In order to engineer a hyaline cartilage in 

vitro it would be useful to design approaches that are analogous to those occurring 

during normal development of cartilage.  

Many studies have shown that use of non-native MSCs sources for chondrogenesis 

results in an inferior type of cartilage, both biochemically and biomechanically [159], 

[160]. Recently other parameters such as co-culture strategies coupling fully 
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differentiated chondrocytes with MSCs have been identified to positively affect the 

degree of chondrogenesis. Such methods have improved the proliferative capacity of 

MSCs and enhanced in vitro chondrogenesis [148][149]. Some groups have shown that 

the biomolecules released by chondrocytes provide chondroinductive signals, which 

ultimately result in improved chondrogenesis and inhibition of MSC hypertrophic 

maturity [163][164].  

 

1.10.1.1 Mechanical loading 

Hyaline cartilage experiences a variety of complex combinations of tensile, shear, and 

compressive stresses and strains during development, maturation and throughout daily 

life. The influence of mechanical loading has therefore been reported to improve MSC 

metabolic activity and chondrogenic differentiation capacity [165]. Mechanical loading 

has a direct effect on the matrix synthesis and acts as a signalling factor; providing a 

crucial influence in musculoskeletal development [166]. 

 

1.10.1.2 Bioreactors  

Another important aspect for successful tissue formation in vitro is bioreactors. 

Bioreactors are pivotal in the field of tissue engineering because they enhance the 

interaction between cells and biomaterials that are important in regulating cell function 

and tissue remodelling, to produce an engineered tissue that closely resembles the 

dynamic native tissue. Bioreactors allow for successful large tissue-engineered 

constructs to be formed where using conventional static culture systems have reached 

their potentials. Bioreactors can be classified into static and dynamic systems and when 

compared to the static one, the dynamic culture system has the advantages of a more 

homogenous cell distribution, allowing for fluid flow that aids in nutrient supply and 

waste removal, and providing mechanical stimuli (such as hydrodynamic shear stress, 

compression, pressure and stretch) that guide cell differentiation, matrix secretion and 

tissue formation [167].  
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For a tissue-engineered trachea, the bioreactor should be constituted of double chamber 

for the seeding and culturing of different cell types on the inner and outer surfaces of the 

tubular construct. It should also rotate to homogeneously distribute the cells to the 

matrix and to enhance oxygenation, nutrient supply and waste removal, and provide a 

hydrodynamic stimulus to promote proper cell growth and differentiation [168].  

The first tissue-engineered trachea transplanted clinically was cultured inside a 

bioreactor that aided in cell seeding, nutrient distribution and waste removal while 

providing the necessary shear stress through constant rotation to stimulate cell growth 

[168]. The bioreactor permitted the seeding of chondrogenic-induced mesenchymal stem 

cells and epithelial cells on the outer and inner surfaces of the tracheal graft, 

respectively. Chondrocytes are quite responsive to mechanical signals, remodelling the 

matrix according to the loads, and thus the choice of loading regime is important for 

regulating development of a structure like native cartilage [169], [170]. Lin et al. 

demonstrated chondrocytes seeded on a poly(ε-caprolactone)-type II collagen scaffold 

and grown in a rotational bioreactor had a higher proliferation rate, increased matrix 

deposition, aligned along the direction of flow and achieved a morphology similar to 

that of native tracheal tissue, confirming that shear stress plays an important role in 

regulating cell function [171]. Kajbafzadeh et al. implanted a decellularized tracheal 

graft in a mouse to use the body as an in vivo bioreactor to recellularize the construct 

[172]. The graft was harvested 12 months after implantation and showed well-organized 

cartilage and connective tissue formation with the presence of blood vessels. 

Nevertheless, the epithelial layer was not regenerated and the feasibility of this graft for 

tracheal replacement was not tested. 

 
 

1.10.1.3 Oxygen tension 

Since cartilage is an avascular tissue and lacks blood supply a hypoxic environment is 

generated [166]. Propagating adipose MSCs in low-tension oxygen environment 

improved proliferation and differentiation and induced a better chondrogenic growth and 
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remarkably prevented calcification by suppression of collagen type X expression and 

synthesis [96], [173]. 

 

1.10.1.4 Growth factors 

Chondrogenesis in vitro is initiated by several growth factors such as TGFβ, BMP, IGF, 

FGF, and regulated by other soluble factors such as hedgehog proteins and the Wnt 

[158]. These biomolecules play an essential role in modulating cell-to-cell signalling and 

cellular activities within developing and maturing hyaline cartilage. To obtain hyaline-

like cartilage in vitro is extremely challenging and no consistent protocols have been 

founded to date.  

The TGFβ family have been shown to be potent inducers of chondrogenesis, widely 

used in cartilage tissue engineering studies, due to their critical roles in all stages of 

chondrogenesis including mesenchymal differentiation, chondrocyte proliferation, ECM 

production and terminal differentiation [174]. As well as their role in development, 

TGFβ are extensively expressed in mature chondrocytes that play a pivotal role in the 

maintenance of cartilage homeostasis. TGFβ sequentially binds to type II receptors 

which then phosphorylate type I receptors that then activate signaling proteins small 

mothers against decapentaplegic  (SMAD) 2 and 3 [175]. Research has also shown that 

SMAD3 is required primarily during chondrogenesis and chondrocytes maturation 

[176]. Activated SMAD2/3 complexes have been shown to switch on SOX9 gene 

expression, a key transcriptional factor in regulating chondrocyte differentiation and 

cartilage formation which in turn regulates the expression of chondrogenic genes such as 

collagen type II [177]. Lack of SOX9 expression has been studied in MSC-derived 

chondrocytes where its inactivation caused inhibition of chondrocyte proliferation, 

prompting defects in joint formation [178]. Moreover conditional loss of SOX9 causes 

an acceleration of chondrocyte maturation and cellular hypertrophy, due to the fact that 

under normal conditions SOX9 suppresses the activity of RUNX2 and thus inhibits up-

regulation of genes such as collagen type X and osetocalcin [179][180]. TGFβ is 

comprised of different isoforms including TGFβ1, 2 and 3 [158]. Each subtype has a 
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different impact on chondrogenesis. It has been shown that treatment with 10 ng/ml of 

TGFβ1 gives the most favourable results in terms of abundant production of 

proteoglycan and collagen II and least amount of collagen X and calcification [181]. 

Additionally it has been reported that both TGFβ1 and TGFβ3 induce hypertrophy [182] 

during MSC chondrogenesis but generate distinct differences in the cartilage made. 

TGFβ3 promotes better cellular proliferation while TGFβ1 induces an enhanced 

chondrogenesis [183]. 

BMPs are TGFβ superfamily ligands that are involved in chondrogenesis and 

osteogenesis in vivo play a pivotal role in the induction of mesenchymal cells along 

chondrogenic pathway influencing cellular proliferation, differentiation and maturation 

during the, formation of joints and bones [184]. Although BMPs are part of the TGFβ 

family the signalling cascade to induce chondrogenesis are facilitated by distinct 

pathways; TGFβ signalling is regulated by SMAD2/3 whereas BMP signalling is 

mediated by SMAD1/5/8 [175]. The SOX family are similarly involved in 

chondrogenesis via the BMP pathway. Zehentner et al. showed that BMP treatment 

upregulates the expression of SOX9 which in turn encourages increased cartilage marker 

expression [185]. Liao et al. reported an overexpression of SOX9 by BMP2, which 

resulted in chondrocyte proliferation and condensation in an ex-vivo limb culture system 

[186]. The role of SOX6 has also been highlighted in relation to BMP2, where collagen 

type II expression was upregulated demonstrating an important role of SOX6 in 

regulating BMP signalling during chondrogenesis [187]. The correlation between BMP 

signalling and SOX expression is essential in the initial stages of chondrogenesis while 

the role of BMP has also been highlighted in later stages of growth and maturation via 

chondrocyte proliferation and hypertrophy [184]. In addition to BMP2, other BMPs are 

involved in the process of chondrogenesis including BMPs 4, 6, 7, 9, 12 and 14 [158]. 

BMP2 is the most studied isoform of the BMP family. BMPs 4, 7 and 14 exhibit the 

ability to stimulate chondrogenesis to some degree, each having differential outcomes. 

BMP4 expression correlates with an increased collagen type II and aggrecan and 

suppression of collagen type X regulation [188]. In the presence of BMP7 it has been 

reported that there is an enhancement in cartilage matrix production but a reduction in 

MSCs proliferation [189]. BMP14 has been identified to have a role in the survival of 
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MSCs and chondrocyte maturation [190]. BMP9 is the least investigated amongst all the 

other isoforms. Compared to BMP2 and BMP6 a study revealed the potency of BMP9 to 

be the most promising in chondrogenic differentiation [189]. It was also demonstrated 

that BMP9 induces the phosphorylation of SMAD1/5 in a dose and time dependent 

manner [191]. 

 

1.10.1.5 Soluble metabolites 

Supplementing chondrogenic media with ascorbic acid [192] and dexamethasone (Dex) 

[193] in conjunction with the use of growth factor causes up-regulation of chondrogenic 

gene expression. Ascorbic acid (vitamin C) is required for efficient collagen synthesis 

[175][176] specifically it is required for enzyme activity in the synthesis of 

hydroxyproline and hydroxylysine [177][178]. The presence of the modified amino 

acids is crucial as hydroxyproline stabilises the collagen helix and hydroxylysine is 

involved in collagen crosslinking, further enhancing the mechanical stability of the 

collagen mesh [197]. This supplementation effect was also shown by Temu et al. who 

observed an increase in collagen type II produced by chondrogenically induced ATDC5 

cells in the presence of ascorbic acid [192]. Dexamethasone, a steroid molecule, is 

another widely used culture supplement used as an inducer of cartilage matrix formation. 

When bovine MSCs were treated with Dex and TGFβ1 upregulation of chondorgenic 

genes was observed, however no significant changes occurred when Dex used in 

conjunction with BMP2 [192]. 

 

1.11 Cell types used for cartilage tissue engineering 

Cartilage should, in theory, be one of the simplest tissues to reverse engineer as it only 

contains one cell type, the chondrocyte. One currently employed therapy in clinical 

practice is autologous cartilage implantation (ACI). Where a biopsy of the articular 

cartilage is taken and from it cells are isolated and expanded ex vivo. Once an adequate 

number of cells have been sub-cultured from the original biopsy the cellular component 
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is then used to repair the defect site [198]. Thus far research has shown that using 

expanded chondrocytes for surgical procedures provides temporary relief from the 

symptoms of pain and swelling for articular cartilage repair [199]. Post-analysis of 

biopsied tissue revealed that cartilage produced by chondrocyte implants is inferior to 

that of native tissue, both in terms of mechanical properties and biochemical 

composition, in essence it is analogous to fibrocartilage rather than true hyaline cartilage 

[200] [201]. The same complications arise during tissue engineering of tracheal cartilage 

where lack of biophysical functionality and biochemical composition is observed even 

when using fully differentiated cells [183][184]. Auricular chondrocytes are usually 

preferred in airway reconstruction approaches because of their ready availability and 

minimally invasive procedure to obtain tissue and cells [94][184]. Another study has 

targeted bovine chondrocytes from four different cartilage sources and found that each 

tissue type derived chondrocyte had different biophysical and biochemical 

characteristics, indicating that cellular selection is an important consideration when used 

for non-orthotopic transplantation [204].  

In order to regenerate any damaged cartilage an ideal cell source should have an ability 

to be non-immunogenic, be harvestable using minimally invasive surgical procedures 

and be expandable in vitro without losing any chondrogenic potency. Presently the ideal 

cell source for cartilage tissue engineering remains elusive and the current stem cell 

research has identified ESCs [205], iPSCs [206], and, MSCs from various tissues such 

as bone marrow [207], adipose tissue [208] and umbilical cord [209] as ideal candidates 

for cartilage regeneration. Although early results seem very promising the ethical issues 

arising from the use of ESCs may provide intractable obstacles and therefore more 

attention should be given to adult progenitors.  

To obtain a sufficient number of cells for defect treatment, a long term culture system is 

needed which does not result in the loss of cell potency, i.e. the ability to re-differentiate 

into the chondrogenic lineage, a common problem when culturing full-depth articular 

chondrocytes [210][211]. Fully differentiated chondrocytes have the ability to reproduce 

cartilage [180][181] but culture expansion of these cells beyond 5-6 population 

doublings causes cellular de-differentiation. Redifferentiation of culture-expanded 
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chondrocytes is inefficient, and the resultant ECM is therefore not equivalent to native 

tissue and therefore deficient in integrity and biomechanical function[212]. Alternatives 

to chondrocytes are MSCs that have the potency to undergo multilineage differentiation 

including chondrogenesis, osteogenesis and adipogenesis [213] as well as having high 

proliferation capacity in culture [121] making them ideal candidates to re-surface larger 

lesions. Johnstone et al. for the first time formulated an efficient in vitro model of 

chondrogenesis by using pellet culture in the presence of TGFβ1 and dexamethasone 

[214]. This method of culture, is commonly used to examine the potency of 

chondrogenic factors [215]. Pellet culture provides a three-dimensional culture 

environment, with cells in close contact with each other, similar to that is observed 

during pre-cartilage condensation during embryonic development. In vitro 

differentiation using MSCs does not necessarily reproduce hyaline cartilage as the cells 

transition through to an endochondral developmental programme resulting in an up-

regulation of collagen type X [214] and alkaline phosphatase (ALP) both of which are 

indicative of hypertrophic epiphyseal chondrocyte markers [216]. Furthermore, due to 

lack of specific surface markers isolating pure MSC population is difficult as there are 

non-MSCs cellular contaminants, which interfere and minimise the chondrogenic 

potential of MSCs.  

In recent years it is becoming clearer that tissue-specific stem and progenitor cells exist 

[217] and it is more logical to target and study the progenitor populations from relevant 

tissues. In the past decade chondroprogenitors a cell source native to adult cartilage have 

been identified [218][219]. It is a rational strategy to use progenitors that originate from 

the native tissue for repair as they require less manipulations to direct their 

differentiation and produce the required ECM. Chondroprogenitors have the same 

characteristics as MSCs, possessing the same minimal surface biomarker profile, which 

can be used to isolate progenitors from a mixed cellular population, and they also have 

the potential for multi-lineage differentiation [220][221]. Chondroprogenitors display 

higher expression of integrins α5/β1 and therefore have a high affinity for fibronectin 

which can be exploited for the purpose of enrichment, they have high colony forming 

efficiency that is indicative of self-renewal ability, they maintain telomerase activity and 

SOX9 expression during extended monolayer culture and thus retain their chondrogenic 
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potential upon serial expansion [222][136]. It has also been shown, that upon 

chondrogenic induction, chondroprogenitors do not express any epiphyseal chondrocyte 

markers and are negative for markers such as RUNX2 and ALP and the synthesized 

matrix resembles hyaline cartilage [220][223].   

 

1.11.1 3D culture (environment) 

Cells naturally interact with other cells, grow and differentiate within their ECM. These 

interactions regulate complex biological functions like cellular migration, apoptosis, or 

receptor expression. Most of these interactions are significantly dampened, in traditional 

2D cell cultures. 3D culture systems allow scientists to provide a biomimicry 

environment and bridge the gap between classical 2D cell culture and in vivo animal 

models (Figure 1.12). Recently, the use of advanced 3D cell culture methods such as 

pellet culture, tumour spheroids, stem cell organoids and tissue engineering via 3D 

bioprinting has produced environments closer to that of native tissue. Improving 3D cell 

culture models to accurately replicate the natural environment will provide more 

meaningful scientific data and ultimately enhanced health care. To recapitulate the 3D 

environment, it is crucial to understand the role of ECM in a given native environment.   

The ECM is characterised as a three-dimensional network of extracellular 

macromolecules, such as; collagens, proteoglycans, glycoproteins and enzymes that 

provide structural and biochemical support for tissues, and, is important for maintaining 

tissue function. All cells are in contact with the ECM, which is a dynamic environment 

of macromolecules with different physical and biochemical properties providing 

structural integrity, promoting cellular adhesion and supporting signal transduction. 

Surrounding cells constantly maintain and remodel the ECM’s components to maintain 

homeostasis. Matrix metalloproteinases (MMPs) and proteolytic enzymes play a critical 

role in tissue homeostasis and ECM-cell signaling [205][206] by creating a balance 

between ECM degradation and remodelling which ensures that mechanical stiffness is 

not compromised and that adequate diffusion through the scaffold is maintained. From a 

biophysical point of view the ECM is the non-cellular component of tissues and organs 
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and owing to its properties such as topography, porosity and stiffness it can directly 

influence cellular behaviour such as cell migration and division [226].  In terms of 

biochemistry, the ECM has direct and indirect signalling properties by anchoring to 

integrins, which are transmembrane cellular receptors, that integrate cells with their 

surrounding protein microenvironment to mediate cell attachment, shape, and motility. 

These microenvironments/niches can greatly influence biological responses such as 

proliferation and differentiation events. 

 

Figure 1.12. 3D environment recapitulates in vivo niches. (A) Cells on a rigid 2D 

surface organise focal adhesions and actin stress fibers at the basal surface of the cell 

and transfer forces to their surface and to other cells. With their apical side, cells 

interface with secreted factors present in the medium, whereas with their basal side they 

interact with the ECM, which confers mechanical properties. (B) Inside a 3D 

microenvironment, the curvature and the softness of matrix materials limit the formation 

of actin stress fibers. Cells inside a 3D environment experience stress around the whole 

structure, both in planar and perpendicular directions to the cell basal surface. Secreted 

factors can be highly concentrated in the inner compartment [227]. 
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Stem cells are usually in a quiescent state in the adult tissue and in order for them to 

undergo self-renewal they have to divide and give rise to a pool of progenitors of 

undifferentiated cells [209][210]. Through this mechanism stem cells maintain tissue 

homeostasis. Stem cells reside in very highly interactive and specialised local 

microenvironments called the stem cell niche in which communications between stem 

cells and ECM are reciprocal.  These interactions regulate stem cell behaviour regulating 

the  balance between quiescence, self-renewal and differentiation states [211][212]. 

Niches are highly specific depending on the anatomical localisation; the diverse dynamic 

composition of ECM provides precise biochemical, physical, structural, and mechanical 

signatures to stem cells regulating their behaviour. Moreover, factors such as signalling 

molecules, shear stress, oxygen tension and temperature also contribute to control stem 

cell function [213][214]. 

The ECM varies in composition and concentration, both within and between tissues, 

leading to different ECM properties and therefore the complexity of different niches 

adopts based on their function and forms the necessity protection uniquely for tissue 

specific stem cells. However, identifying and characterising stem cell niches have been 

challenging mostly due to lack of specific markers for their precise in vivo localisation. 

This has led to a shift in designing smart materials to replicate the native environment to 

some degree to better monitor the cell-matrix interaction. This will be discussed further 

how mechanotransduction takes a critical role in stem cells fate. Nevertheless, much 

effort has been made in identifying stem cell niches in several tissues, including the 

hematopoietic, epidermal, intestinal, muscular and neural stem cell compartments [234]. 

Replicating niches in tissue engineering, particularly in developing materials that exploit 

the ability of cells to remain quiescent and promote long term renewal of tissues is still a 

largely an unexplored aspect of tissue engineering.  

 

1.11.1.1 Biomaterials 

Culturing cells in 2D does not recapitulate the in vivo situation and as previously stated 

differentiated chondrocytes tend to become de-differentiated and MSCs express more 
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collagen type I than collagen II and GAG. One of the first strategies to mimic the 

condensation procedure during developmental biology is pellet culture where cells are 

aggregated to form a cell pellet and treated with chondrogenic media to study the cell 

signalling and molecular pathways leading to cartilage formation [235]. Although this 

model has provided initial information about molecular mechanisms of chondrogenesis, 

cell necrosis in the centre of the pellet and lack of suitability as a model for 

transplantation are the major drawbacks [217][218]. Because of the many critical 

functions that are ascribed to the ECM it is logical to employ a biomimicry environment 

to replicate both the organisation and function of ECM proteins in new scaffold 

materials. In doing so, biomimetic ECM materials are able to engage integrins, create 

cell adhesions, and initiate signaling cascades that are typically seen in vivo. 

Biomaterials have been used as a 3D scaffold to provide a temporary biophysical 

support for adhered cells to maintain their phenotypes and stimulate the synthesis of 

cartilage specific ECM. However, the choice of materials, fabrication techniques and 

design parameters directly affect the rate and quality of matrix synthesis. When 

designing biomaterials for tissue engineering applications two factors need to be 

considered. From a biochemical point of view the material backbone and biological 

properties that influences cellular behaviour and secondly the physical design which 

entails the interior and exterior structure, degradation properties and overall mechanical 

stability. The starting material is one of the main design considerations to take into 

account. The scaffold material must maintain its structural integrity during fabrication, 

clinical handling and fixation at the implant site [238]. It should also provide a stable 

structural support to protect embedded cells from harmful mechanical stresses and allow 

them to withstand the in vivo loading environment until the neo-tissue is formed. In the 

following section we focus more on the physical architecture and fabrication techniques 

that directly influence the formation of tissues.   

The most common 3D designs are porous 3D sponges, nonwoven fibrous structures 

[239], gradient fibrous [240] and woven architectures [241]. What differs between these 

designs are the pore distribution, pore sizes and geometry and tortuosity which are all-

important in the maintaining morphology, composition, mechanical properties and 

formation of the new tissue. The presence of both macropores and micorpores are 
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proven to be important in the design criteria. Macropores are important as they assist in 

cell migration [242] and micropores enhance cell-cell interaction and mass transport, 

which directly improves the formation of tissue especially in vivo [243]. The general 

belief is that small pore sizes help to maintain cellular phenotypes and ECM contents 

[225][226] whereas bigger pore sizes enhance the ECM formation [246]. Subsequently 

3D scaffolds must be designed as interconnected network with sufficient porosity while 

maintaining mechanical integrity. The choice of fabrication techniques to create 3D 

constructs can influence different parameters of the scaffold, including structural 

architecture, mechanical properties, biocompatibility, and biochemical properties 

(cell/bioactive agent incorporation) [247].  

The conventional fabrication techniques include solvent casting, particulate leaching, 

melt moulding, phase separation, freeze-drying, and gas foaming. Using such methods 

involve highly toxic solvents and processing conditions such as high temperatures or 

pressure to enable to create porous structures, [248] and scaffold properties can only be 

controlled by equipment parameters rather than design parameters [249]. Such 

techniques although suitable to study the structure aspect of 3D designs, are not very 

suitable for clinical settings. They are disadvantages for advanced designs and strategies, 

such as integration of biological agents such as viable cells and bioactive molecules 

during biofabrication [247].  

Alternative methods such as electrospinning offer the opportunity of building scaffolds 

from fibres that are similar in size of collagens found in the ECM of cartilage [250]. 

Electrospinning allows for creation of oriented meshes with similar anisotropic structure 

of cartilage tissue [232][233]. However fabricating nanofibres and building scaffolds 

with greater structural complexity such as gradient structure and spatially controlled 

properties are difficult technically to achieve.   

Rapid prototyping is a computer-assisted fabrication method that enables construction of 

scaffolds with precise internal and external architectures. Briefly additive manufacturing 

(AM) uses data computer-aided-design (CAD) software or 3D object scanners to direct 

hardware to deposit material, layer upon layer, in precise geometric shapes. The main 
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benefits of this technique are to achieve designs with a range of mechanical properties, 

copolymer composition, and porosity and pore geometry [230][234]. Some modern AM 

techniques such as 3D bioprinting have made it possible to closely monitor the cellular 

response to scaffold architectural design [235][236]. The ability to reproduce 3D 

constructs by bioprinting with similar architectures as found in vivo greatly increases the 

scope for generating larger, organized and vascularised structures. Critical factors for the 

success of bioprinting include; maintenance of cell viability and function during 

bioprinting and post-printing and shape fidelity [256].  

 

1.11.1.2 Microcarriers  

Tissue engineering relies on a large number of cells that are phenotypically stable for a 

successful implantation. To obtain a sufficient number of cells extensive cell expansion 

is needed. There is certain complication involved with conventional 2D cell culture of 

chondrocytes, namely cellular dedifferentiation and inefficient redifferentiation, 

therefore research has focused on 3D culture to maintain chondrogenic potency, in 

particular using microcarrier culture. Another disadvantage of 2D culture is the need for 

extensive materials for large-scale culture expansion of cells; using microcarriers which 

amplify the surface area for cell growth can circumvent this limitation on space and 

resources. Anchorage-dependent cells are able grow on suspended microcarriers either 

cultured on low adhesive dishes or stirred bioreactor vessels. Propagated cells then can 

be retrieved in large numbers for further analysis or implantation. One gram of 

microcarriers is equivalent to a surface area of fifteen T75 culture flasks [257]. This 

culture method is therefore more cost effective in terms of the culture medium usage and 

other biological additives such as serum and growth factors. It also provides a more 

effective gas-liquid oxygen transfer and creates a better culture environment for the 

cultured cells, and therefore may encourage retention of critical phenotypic determinants 

for stability and potency.  
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The successful attachment of cells to microcarriers depends on some crucial factors such 

as their chemical composition, degree of porosity and surface topography, in particular, 

cells adhesion to microcarrier surfaces is highly dependent on the pore diameter. Also, 

the chemical composition of microcarriers influences the ease of retrieving viable cells 

by enzymatic digest. Trypsin and collagenase are the most common enzymes used to 

recover cells from the microcarriers, but the efficiency of viable cells retrieved directly 

correlates with the chemical composition and degree of porosity. Lastly, the 

microcarriers must be able to withstand sterilization conditions that involve high 

temperature and pressure without losing their structural integrity.   

Various cell types have been coupled with microcarrier culture systems to induce 

proliferation and differentiation.  Freed et al. for the first time reported culturing of 

chondrocytes on collagen-coated dextran beads that remained viable for more than four 

months though the doubling time was much lower than in static culture [258]. Human 

articular chondrocytes expanded in bovine type I collagen microcarriers showed similar 

characteristics to hyaline cartilage even after long period of culture in monolayer, which 

demonstrates that 3D microcarriers have the capability of retaining the native tissue 

phenotype [259]. Moreover, improved phenotypic stability by microcarriers has been 

reported in chondrocytes from other tissue sites. Human nasal chondrocytes were 

propagated on collagen microcarrier beads derived from bovine corium showed 

enhanced proliferation and maintained features of hyaline cartilage [260]. Malda et al. 

also showed bovine articular chondrocytes grown on Cytodex-1 microcarriers improved 

chondrogenic properties as opposed to 2D culture [261].  

As previously described MSCs are mechanosensitive cells, which are responsive to their 

microenvironment such as applied forces and substrate stiffness. Furthermore, these 

cells are responsive to the biochemistry of the substrates for cell adhesion and 

proliferation. In an effort to recapitulate these properties various natural and synthetic 

materials have been widely used as the backbone of commercially available 

microcarriers for stem cell proliferation and differentiation. The list of materials 

available materials can be found in Table 1.1. 
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Table 1.1. Properties of commercially available microcarriers used for the large-scale 

manufacturing of various types of stem cells [262].  

 

Though a brief summary of microcarriers is provided in Table 1.1 extensive structural 

characterisation of these biomaterials have not been performed. For example, 

Cultispher-S and Cytodex-3 have distinct differences in their surface composition and 

gelatin composition. Cultispher-S exhibits a homogeneous gelatin composition whereas 

Cytodex-3 is found to be more heterogeneous and consisted of gelatin and 

polysaccharides [244][245]. These differences could be the reasons why MSCs behave 

differently on these two types of microcarriers. The stiffness of microcarriers also play a 

critical role for better cellular responses but biomechanical characterisation using 

conventional instrumentation of microcarriers is challenging due to their small sizes. 

Nevertheless, using reconstructed relative elasticity images it's been demonstrated that 

CultiSpher-S is stiffer compared with the gel of the same material [249]. Most of the 

microcarriers are usually derived from cross-linking or polymerisation of raw materials 
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in which the preparation methods can affect the stiffness and in turn have differential 

outcomes when combined with cells such as; chondrocytes, MSCs and iPS cells [246] 

[247]. One study compared different microcarriers to screen the proliferative capacity of 

human placental-derived MSCs. Seeding efficiency was reported to be over 70% for 

Cytodex-1, -3 and Cultispher-S. However, Cultispher-S had the highest cell retrieval and 

a 15-fold cell expansion rate [267]. Yang et al. reported that Cultispher-S gave the best 

outcome for cell expansion and proliferation in comparison to Cytodex-1 and Cytopore-

2 when coupled with rat bone marrow MSCs [268]. Therefore, based on this evidence 

seen bulk 3D culture differences in biomechanical properties of microcarriers have the 

potential to regulate stem cell proliferation.  

ECM proteins, growth factors and other biological compounds can be functionalised to 

microcarriers, or, they can adhere to microcarriers dependent on microcarrier 

biochemical and geometrical properties [269]. For example the topography and 

architecture of microcarriers has an effect on fibronectin and laminin adsorption that in 

turn can regulate stem cell focal adhesion [251][252]. Cytodex-1 microcarriers, a 

cationic-based microbead display better binding to bovine serum albumin and 

fibronectin than neutral charged microcarriers [272]. Fibronectin binds specifically to 

Cultispher-S microcarriers due to their gelatin composition [273]. Chen et al. showed 

that coating different microcarriers with ECM proteins and synthetic peptides increased 

cellular adhesion and proliferation of pluripotent cells [264].    

Compared to cellular proliferation studies, less attention has been paid towards the 

potential of MSC differentiation on microcarriers. The norm is to propagate cells on 

microcarriers and, after dissociating them, re-plate onto 2D culture dishes, seed 

biomaterial constructs or make pellet cultures. Recently the ability of MSCs to 

differentiate towards chondrogenic lineage on microcarriers showed that there is a 

relationship between actin organisation and differentiation capacity of cells. It was 

shown that microcarriers that induced a spherical morphology and disorganised actin 

filament organisation in adhered cells enhanced chondrogenesis while the opposite was 

observed on beads favouring cell spreading and formation of stress fibres [263]. 

Cultispher-S and Cytodex-3 and collagen microcarriers were found as ideal choices for 
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MSC osteogenesis independent of tissue origin and species [249][255][256]. These 

findings show the benefits of 3D culture, although the underlying mechanisms 

accounting for such improvements are still unclear. They might be due to the 

biomechanical factors that regulate cell-cell interactions and activating the relevant 

signalling pathways and in turn upregulating their downstream genes. There is also a 

clear indication that the composition of the scaffolding material and the biomechanically 

active environment provide molecular cues that activate both proliferation and 

phenotype expression, which subsequently induces differentiation. 

 

Table 1.2. MSC differentiation on various types of microcarriers [160]. 

 

1.11.2 Mechanotransduction and substrate stiffness 

All living entities are exposed to mechanical forces ranging from the forces around a 

bacterium to more extreme cases such as in a human knee during climbing or sprinting. 

The process of converting mechanical forces into biochemical signals to influence 

cellular response is known as mechanotransduction. Mechanotransduction occurs as a 

multi-stage process where initially conversion of mechanical forces into biochemical 

signals are sensed by cells, secondly the signal will be received by cells through 
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integrins and finally the cell can be responsive to signal through gene activation. 

Integrins are transmembrane receptors for intercommunication between cells and ECM 

proteins. They are responsible for creating cytoskeleton-matrix adhesions and signal 

transduction [276]. Integrins are heterodimers that are composed of both α and β 

subunits, each with multiple types. The binding affinity and specificity of these subunits 

for various ECM ligands are different, and some integrin receptors have an especially 

strong affinity for a specific ECM ligand. As an example β3 integrin modulates MSC 

myogenic differentiation with medium substrate stiffness whereas α2 integrin regulates 

osteogenic differentiation of MSCs in stiffer matrix [277]. Cells are not only sensitive to 

extrinsic dynamic mechanical loading in ECM but are also sensitive to the mechanical 

properties of the ECM such as the stiffness. Understanding the underlying mechanism of 

mechanical stimulation and stiffness during differentiation of MSCs is of great interest 

for tissue engineering applications. Research has shown even without any exogenous 

growth factor stimulation, introducing mechanical loading enhances collagen type II and 

aggrecan gene expression, and sGAG production of MSCs. The degree of chondrogensis 

has been shown to be synergistic when growth factor treatment such as TGFβ1 is 

coupled with mechanical loading [278]. 

 

Cells reside and function within various biomechanical environments from soft brain 

tissue to stiff cortical bone. In vitro, matrix or substrate stiffness have been shown to 

play a role in regulating the differentiation of MSCs towards specific lineages [279], 

[280]. It has been shown that culturing MSCs on 2D substrates with different stiffnesses 

has profoundly different outcomes for cellular differentiation as shown by cellular 

morphology, transcriptional markers and protein expression [279].  Parker et al. showed 

MSCs grown on softer substrates had greater adipogenic and chondrogenic potential 

whereas on stiffer substrates stronger myogenic and osteogenic differentiation was 

observed [280]. 

Cell morphology also has been identified as a key property for differentiation studies. 

McBeath et al. showed that cell shape is a key regulator of MSC differentiation [281]. 

Cell shape is regulated by both interactions with ECM and adjacent cells and the internal 

configurations of cytoskeleton. Many studies have shown that matrix stiffness influence 
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cellular morphology and this in fact could be due to changes in integrin binding, cellular 

stiffness and adhesion strength [282]–[284]. 

 

1.11.3 Atomic force microscopy 

To further understand the biomechanical attributes of single cells, atomic force 

microscopy (AFM), a high-resolution scanning probe microscopy, has been used to 

monitor single cell biomechanical properties. When using AFM, a tip is attached to a 

microcantilever, which scans over a sample immobilized onto a flat substrate. A laser 

beam then is reflected on the back of the cantilever and the upward and downward 

deviations of the cantilever are detected on a photosensor. As stated in 1.10.2 living cells 

are responsive to forces exerted from their surrounding environments. Cellular responses 

[285] to external forces have drawn the attention of the fields of nanomedicine, cell 

biology, cancer studies and tissue engineering [267][268]. During tissue development 

and remodeling cells are exposed to mechanical stimuli with biological changes such as 

alterations to nuclei [288], cell spreading [289], and cytoplasmic changes such as actin 

and microtubules reorganisation. These changes may in fact modify cellular functions 

and in turn alter the mechanical properties of cells. For example, it has been shown that 

tumor cells inherit different elastic moduli compared to normal cells [290]. AFM enables 

performing mechanical analysis on single cells at the nanometer scale, which would be a 

beneficial step for characterisation and control of the mechanical properties of 

reconstituted tissues particularly in tissue engineering [291].  

AFM is used to measure the local elastic responses of cell content and it has been 

reported that mammalian cells have stiffness typically ranging from 1-100 kPa [292], 

[293]. Recently, single-cell mechanical properties were found to be akin to gene and 

protein expressions, capable of distinguishing differences in cellular subpopulations, 

disease state, and tissue source [275] [277]. It has been shown that that the difference 

between a malignant and benign cell type could be utilised as a biomarker. Softness 

associated with cancerous cells has been linked to the deformability of the cytoskeleton, 

which has long been known to play a role in metastasis [297]. Darling et al. reported 

viscoelastic properties of zonal articular chondrocytes by AFM using colloidal tips and 



 67 

found that the chondrocytes residing on the superficial zone are stiffer than  the 

chondrocytes residing in the middle/deep zone [298]. Guilak et al. found that there are 

distinct differences across primary human chondrocytes, adipocytes, osteocytes and 

bone marrow MSCs, where, the osteocytes were reported to be stiffest followed by 

MSCs, adipocytes and chondrocytes [294]. Early results suggest mechanical profiling of 

cells may be utilized as suitable biomarkers. 

Although AFM is capable of reporting differences across different cell types there are 

some drawbacks involved with this microscopic technique. As of now, we are still at 

early stages in embracing the ability of AFM for nanomechanical characterisation of 

cells, and many more refinements in hardware and software are needed. For example, 

many research groups use different methods and varied elasticity reports can be reported 

for the same cell type [299]. This is due to differences in animal models used, 

mathematical modelling, tip geometry and localisation and preparation of cells [300], 

[301]. For example, the biggest hurdle with measurements above the cytoplasm arise 

where the mechanical data is obtained blindly, and the localisation is not accurate and 

therefore it is not clear what part of the structural component of the cytoplasm is being 

deformed: F-actin, microtubules or intermediate filaments. Thus it is more logical to 

target the nucleus as it may be involved in mechanotransduction through changes in 

gene expression and nuclear transport [302].  

 

1.12 Mechanical properties of trachea tissue  

The trachea is constantly exposed to a variety of forces during quiet breathing or in a 

forced expiration or a cough. Despite being the stiffest structure of the bronchial tree, the 

trachea undergoes significant deformation. Accurate characterisation of the tracheal 

deformation has significant clinic relevance in order to estimate baseline values for 

biomaterial integrity evaluation. It is well documented that prosthetic materials have 

reached their potentials, as dislodgement, migration and occlusion are frequent 

occurrences when they are used. In terms of biomaterials; collapsing, lack of 

longitudinal extensibility, radial rigidity are still problematic concerns, however, even in 
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cases where mechanical stability is sufficient, stenosis is still a serious clinical problem 

[284][285].  

The trachea lumen consists of cartilaginous rings, annular ligament, trachealis muscle, 

and epithelium. Although the epithelium layer is a very crucial part of this composite 

material from a biological point of view, it does not contribute structurally to 

maintaining a patent airway. Other components in trachea are highly anisotropic 

materials where each component tissue’s properties are different for the same sample 

measured in different orientations. These data correlate with the previous findings which 

discovered that tracheal cartilage, smooth muscle and annular ligaments demonstrate 

longitudinal extensibility and lateral rigidity of the native trachea [305]. The general 

belief is that the cartilage rings are responsible for holding the trachea lumen open 

despite changes in interthoracic pressure which occur during respiration, yet are capable 

of significant deformations to allow for changes in the cross-sectional area [306]. The 

ligaments and muscle provide flexibility by allowing changes in diameter and length.  

It has been reported that tracheal cartilage is exposed to both transient and sustained 

loads. For example during coughing, maximum expiratory flow results in higher 

magnitude of transient loads whereas contraction of the tracheal muscle can apply 

sustained loads [307]. There is a large variation in reporting Young’s modulus of the 

human trachea and this is due to both variation in measurements methods and 

mathematical modelling; this discrepancy ranges from 1 to 20 MPa [307]–[309]. Table 3 

summarizes the mechanical properties of trachea across various types of species. Both 

tensile and compressive values have been reported and these values are relevant to the 

performance of tracheal cartilage as rings are loaded in such a way that bending 

generates tensile loads on the outer half of the rings and compressive loads on the inner 

half [307]. Whilst efforts have been done to provide insights into biomechanical 

properties of tracheal cartilage it is very challenging to establish longitudinal mechanical 

properties of ligaments due to short inter-ring length. Safshekan et al. through 

mathematical modelling evaluated the properties of annular ligaments from whole strips 

of tracheal cartilage and assuming that the hard cartilage segment accounts as ligaments 

[310].   
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Table 1.3. Mechanical characterisation of tracheal cartilage across different species 

using various methods and mathematical modeling. 

 

1.13 Summary 

The surgical interventions for long-segment circumferential tracheal segments have 

shortcomings and the postoperative care is intense as opposed to treating the short 

segments. It is becoming more apparent that fabrication of a functional prosthetic 

trachea for grafting is very challenging, and, following failures in their implantation and 

engraftment the main lesson learnt has been that the trachea must not be viewed as a 

‘simple cylindrical tube’. Therefore, it is crucial to understand the anatomy, 

developmental biology, molecular pathways and cellular components needed to generate 

a trachea that resembles the native tissue not only in anatomical features but also in 
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tissue architecture and function. This project aims to describe the complexity of trachea 

and uniqueness of tracheal cartilage.  

The cellular and extracellular matrix components required for its precise function at 

cellular, molecular, nano and macro level are examined to provide a wide spectrum 

platform for future studies. This thesis aims to identify a novel autologous mesoderm-

derived stem/progenitor cell type from relatively small initial trachea tissue sources, 

from which cells can be significantly expanded for reconstruction of the tracheal 

cartilage as an ideal cell source to consider for chondrogenesis in the hope of providing a 

functional cell source and the potential to scale up airway tissue engineering approaches. 

 

Hypothesis: 

Tracheal C-ring cartilage contains a progenitor population, which is capable of in vitro 

chondrogenesis and that will provide an expandable cell source for tissue engineering C-

ring cartilage for repair and replacement of damaged tissues.  

 

Aims and objectives:  

This study aims to isolate tracheal cartilage specific stem/progenitor and characterise 

these cells for autologous repair strategies. However, other relevant tracheal components 

will also be identified and characterised. Stem cell international society minimum 

criteria was used as an initial guideline to characterize these cells to identify their 

differentiation potency in particular chondrogenesis. Once characterised and 

chondrogenically induced we then attempt as a proof of concept to recreate the tracheal 

cartilage C-ring for airway tissue engineering applications.  
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To achieve this:  

• Characterisation of native tracheal cartilage at mRNA level, protein level using 

immunohistochemistry and biomechanical analyses 

• Determine mesoderm-origin of isolated stem/progenitor cells using minimal stem 

cell surface markers at gene level and tri-lineage potency assays. 

• Examine cellular biophysical characteristics such as morphology and nano-

mechanics to further assess our cellular isolation technique 

• Assess chondrogenesis in 3D pellet culture to further assess chondrogenic ability of 

tracheal cartilage tissue specific stem/progenitor cells with biochemical assays, gene 

expression and immunohistological studies 

• Using materials-based moulding techniques, biofabricate a C-ring like tissue model 

for assessment of functional tracheal characteristics.  
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Chapter 2: Materials and methods 
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2.1 Sources of cartilages and ethical permissions 

 
Suitable animal models mimic physiological processes, which occur in disease states 

and are used for cell and molecular research investigation prior to translational strategies 

toward human clinical applications. Choosing an animal model in accordance to the 

designated application is critical and is dependent on ethical approval, availability, 

required housing, experience and expertise. For airway tissue engineering and tracheal 

tissue, large animals are recognized as the most suitable models with respect to gross 

morphological and physical appearances [292][293]. Six-month-old male welsh large 

white porcines were chosen for this study due to their abundance, ease of access to tissue 

and number of relevant literature publications. All animal work conducted in this study 

conformed to the guidance issued by Swansea University regarding ethical permissions, 

working standards and disposal. The European Council’s directive for all Establishments 

to be registered for the use of Animal By-products (No. 1069/2009) was followed (ABP 

Registration: U1268379/ABP/OTHER). 

 

2.2 Tissue isolation 

2.2.1 Tracheal tissue  

 
Fresh-6-months-old, juvenile porcine lung tissue with attached trachea lumen was 

obtained on the day of slaughter, from Maddock Kembrey Meats abattoir (Bridgend Rd, 

Swansea). Following transport at ambient temperature to the lab, the tracheal lumen was 

detached from the lungs and rinsed in deionized (DI) water three times to eliminate any 

debris or clotted blood. The lumen was then incubated at 37 °C and 5% carbon dioxide 

(CO2) in  phosphate buffered saline (PBS; Gibco, UK) supplemented with a mixture of 

10 μg/mL gentamicin  (Gibco, UK) and 100 μg/mL antibiotic-antimycotic (Gibco, UK) 

prior to tissue harvest. This process was repeated three times for a period of 30 minutes 

per cycle. The inner luminal epithelial tissues were then removed as well as the outer 

connective layer using a scalpel blade and scissors, to obtain pure hyaline tracheal 

cartilage. Using disposable scalpels (Swann-Morton), cartilage tissues, epithelial 

membrane and adventitia were cut into 1-2 mm2 pieces ready for enzymatic digestion 

(Figure 2.1).  
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Figure 2.1. Image showing porcine tracheal cartilage extraction. (A) Anterior view 

of semi-mature 6 months old trachea. (B) Dissected trachea free from associated tissue. 

(C) Shows the structure of C-shaped cartilage and removal of the mucosa and 

submucosa membrane. (D) White pearlescent cartilage component void of connective 

and adventitia which was used for sequential digest to obtain chondrocytes and 

chondroprogenitors.   

 

2.2.2 Articular cartilage 

Porcine articular cartilage (AC) from the metacarpal phalangeal joint was used to 

provide baseline data for chondrogenesis and primer validation. Articular cartilage from 

6-month-old juvenile porcine trotters was harvested as follows. Following transport at 

ambient temperature, pig trotters were thoroughly washed with soap and water and 

sprayed with 70% ethanol before removal of skin to reduce the risk of contamination. 

Articular cartilage explants were harvested by opening up the joint using a sterile scalpel 

(Swann-Morton, Sheffield) enabling tissue collection from the lateral ridges, lateral 

condyles and femoral condyles (Figure 2.2). Similarly, to tracheal cartilage, articular 

cartilage tissues were then diced into 1-2 mm2 sections prior to sequential enzymatic 

digestion using pronase and collagenase.  
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Figure 2.2. Porcine articular cartilage extraction. (A) Shows the juvenile 6-month-

old porcine trotters after washing and sterilisation with 70% ethanol. (B) A dissected and 

opened joint displaying the cartilage surfaces that were harvested for explant tissue.  

 

 

2.3 Cell isolation and in vitro culture 

 
2.3.1 Enzymatic digestion and cellular isolation  

Primary cartilage, adventitia and connective tissue derived cell populations were isolated 

from each tissue compartment and were subjected to sequential digestion in a sterile 50 

mL Falcon tube with pronase (70U/mL; Sigma, UK) for 2 hours and following removal 

of the latter solution, with collagenase (300 U/mL; Sigma, UK) overnight at 37 °C and 

5% CO2 on a roller platform (Miltenyi Biotec, UK). The digested tissue solution was 

then sieved through a 40 μm cell strainer (BD Biosciences, UK) into a 50 mL Falcon 

tube and diluted with serum-free Dulbecco’s modified Eagle’s medium (DMEM, 

Thermofisher, UK). Isolated cells were mixed with Trypan Blue (Gibco, UK) at a 

volume ratio of 1:1 and counted using a TC20TM automated cell counter (Bio-Rad, UK) 

to obtain the total number of cells as well as a live cell count. Counted cells were then 

plated either as full depth population or subjected to differential fibronectin adhesion for 

active selection of stem/progenitor cells from each tissue compartment [200][202].  
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2.3.2 Stem/progenitor selection using differential adhesion to fibronectin 

Tissue specific stem/progenitors have been shown to have higher affinity for fibronectin-

coated culture plates when compared to full depth chondrocytes, due to relatively higher 

protein expression of integrin 51. To isolate progenitor cells from each tissue layer, 

six-well culture plates were coated with 10 μg/mL fibronectin (FN; Sigma, UK) in 0.1 M 

PBS (pH 7.4) containing 1 mM magnesium chloride (MgCl2) (Gibco, UK) and 1 mM 

calcium chloride (CaCl2) (Gibco, UK) and incubated overnight at 4°C. One thousand 

cells isolated from full depth tissue were then seeded onto the FN coated plates for a 

period of 20 minutes at 37 °C and 5% CO2 in serum-free DMEM. After incubation the 

cell culture media containing non-adherent cells was aspirated and replaced with fresh 

media supplemented with 10% FBS (DMEM+; see 2.3.4). Adherent cells were kept in 

culture prior to clonal isolation.  

 

2.3.3 Colony isolation 

Following 2-3 weeks of culture with media changes taking place every 3 days, single 

colonies had formed. Colonies of 32 cells or more derived from a single cell were 

isolated using 8mm diameter sterile cloning rings (Sigma, UK). At this point, all culture 

media was aspirated, and cells were rinsed in PBS prior to sterile cloning rings coated in 

Vaseline being immobilised over the colonies in order to isolate them for clonal 

expansion. One hundred microlitres of trypsin was added to each colony and incubated 

at 37 °C and 5% CO2 for 5 minutes before the trypsinised cells were lifted by pipetting 

inside the ring and transferred to T25 flasks (Corning, UK) containing DMEM+. 

 

2.3.4 Cell culture 

DMEM+ culture medium used in this study contained low glucose DMEM (1g/L D-

glucose, Gibco) supplemented with; 1 mM sodium pyruvate, 25 mM HEPES pH 7.5, 4 

mM L-glutamine, 10% foetal bovine serum (FBS), 100 μg/mL antibiotic-antimycotic 

containing 10,000 U/mL penicillin and 10,000 µg/mL streptomycin, 25 µg/mL of 
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amphotericin B and 100 μg/mL non-essential amino acids (NEAA). 

 

2.3.4.1 Monolayer expansion 

Cells were propagated in DMEM+ with fresh media changes every 72 hours. For routine 

sub-culture when the cells were 80% confluent, cells were rinsed in PBS pre-warmed to 

room temperature (RT) prior to incubation with 0.05% trypsin-EDTA, at 37 °C and 5% 

CO2 for 5-10 minutes. Following gentle agitation, free-floating cells were transferred to 

a 50 mL Falcon tube and diluted with an equal volume DMEM+. The cells were 

centrifuged at 200g for 5 minutes at room temperature using an S-4-104 rotor (5810R, 

Eppendorf, UK). The supernatant was aspirated, and the pelleted cells were re-

suspended in 5 mL of fresh DMEM+ and seeded into a sterile culture flask with the 

appropriate volume of fresh media. 

 

2.3.4.2 Chondrocyte medium 

Full depth tracheal or articular chondrocytes were plated as single cell isolates from 

tissue without selective fibronectin adhesion assay capture and expanded in culture with 

DMEM/F12 (Gibco, UK), supplemented with 0.2 mM ascorbic acid-2-phosphate, 1% 

v/v insulin transferrin selenium (ITS, Invitrogen), 10 mM HEPES (pH 7.5), 10% FBS 

and 100 μg/mLantibiotic-antimycotic (AA). For routine sub culture when the cells were 

80% confluent, cell preparations were rinsed in pre-warmed PBS prior to incubation 

with 0.05% trypsin-EDTA, at 37 °C and 5% CO2 for 5-10 minutes. Following gentle 

agitation, free-floating cells were transferred to a 50 mL tube and diluted with an equal 

volume DMEM/F12 with supplements. The cells were centrifuged at 200g for 5 minutes 

at room temperature using an S-4-104 rotor. The supernatant was aspirated, and the 

pelleted cells were re-suspended in 5 mL of fresh DMEM/F12 with supplements and 

seeded at a 1:3 or 1:4 dilution into fresh sterile culture flasks with the appropriate 

volume of fresh media. 
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2.3.5 3D culture  

2.3.5.1 Pellet 

A pellet culture system was used initially to assess the chondrogenic ability of 

stem/progenitor cells with various growth factors. Prior to 80% confluency, cells were 

trypsinised as described in section 2.3.4.1, and total viable cell number was counted. 

500,000 cells were placed in 1.5 mL low retention tubes with chondrogenic media (see 

2.4.1) and then centrifuged at 200g for 10 minutes and incubated 37 °C and 5% CO2. 

Pellets remained in culture for a period of 21 days and media was changed every 3 days. 

 

2.3.5.2 Cultispher® microcarrier cell expansion 

The media used for the expansion of cells on the Cultisphers® G contained low glucose 

DMEM (1g/L D-glucose, Gibco) supplemented with; 1mM sodium pyruvate, 25 mM 

HEPES pH 7.5, 4mM L-glutamine, 10% (FBS), 100 μg/mL AA containing 10,000 

U/mL penicillin, 10,000 µg/mL streptomycin, 25 µg/mL of amphotericin B, 100 μg/mL 

NEAA supplemented with 1 ng/mL TGFβ1 (Peprotech, UK) and 10ng/mL FGF-2 

(Peprotech, UK). 

 

2.4 Tests of progenitor phenotypic plasticity 

To examine the stem-like potential of the stem/progenitor cell populations 

differentiation studies were undertaken. 

 

2.4.1 Chondrogenic differentiation (Monolayer and 3D) 

To induce stem/progenitor cells to undergo chondrogenesis, DMEM/F12 plus 10% heat-

inactivated FBS (FBS was inactivated in 60 °C water bath for 45 minutes) was 

supplemented with; 0.1μM dexamethasone (dex) and either 10 ng/mL of TGFβ1 or 100 

ng/mL of BMP9 (Peprotech, UK). Media was changed twice weekly.  
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2.4.2 Osteogenic differentiation 

To induce stem/progenitor cells towards the osteogenic lineage α-minimal essential 

media (α-mem) (Gibco, UK) contained 2mM glutamine and was supplemented with 

10% heat inactivated FBS, 100 μg/mL AA, 0.1 μM dexamethasone, 0.2 mM ascorbic 

acid-2-phosphate and 10 mM β-glycerophosphate. Media was changed twice weekly. 

 

2.4.3 Adipogenic differentiation  

To induce stem/progenitor cells towards adipogenesis α-mem (Gibco, UK) contained 2 

mM glutamine and was supplemented with10% heat inactivated FBS100 μg/mL AA, 1 

μM dexamethasone, 1.72 μM of bovine insulin, 0.2 mM indomethacin and 0.5 mM of 

isobutylmethylxanthine (IBMX). Media was changed twice weekly. 

 

2.5 Cultispher® preparation for cell seeding 

2.5.1 Sterilisation  

Porous gelatin derived micro-carriers with diameter ranging between 130-380 μm 

(Cultispher® G standard porosity, Sigma, UK) were weighed and added to 50 mL of 

PBS and let stand for 1 hour. Cultisphers® were then placed in an autoclave at 15 PSI at 

121°C for one 20 minutes cycle and allowed to cool down. After PBS/Cultispher® 

microcarriers had reached room temperature they were spun down at 230g for 10 

minutes and the PBS aspirated off. The Cultisphers® microcarriers were then washed 3 

times with sterile PBS containing 100 μg/mL AA. After each wash the suspension was 

centrifuged at 230g for 10 minutes to allow complete settlement of the Cultispher® 

microcarriers. After the washing cycles the excess PBS was removed and the 

Cultispher® microcarriers were placed in appropriate coating solution. 
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2.5.2 Coating of microcarriers  

Sterilised Cultisphers® microcarriers were coated with either 50 mL of 10% FBS or 3% 

gelatin from bovine skin (w/v) (Sigma) to enhance cellular attachment. FBS/Cultispher® 

or Gelatin/Cultispher® microcarriers were mixed with cells on a platform roller at 37 °C 

and 5% CO2 for 30 minutes and allowed to stand for 1 hour. This cycle was repeated 4 

times for even coating of the microcarriers surface. 

 

2.5.3 Seeding and expansion of progenitor cells on Cultispher® microcarriers 

Passage 4 monoclonal progenitor cells were trypsinised as described in section 2.3.4.1 

and re-suspended in a fresh media (refer to 2.3.4). Twenty cells per Cultispher® 

microcarrier were seeded for each experimental group (8x106 cells in 0.4 g as there are 

1x106 microcarriers per gram as stipulated by the manufacturer) in a 50 mL tube and 

further suspended to 20 mL per experimental group. Seeded Cultispher® microcarriers 

were placed on a platform roller at 37 °C and 5% CO2 for 30 minutes and allowed to 

stand for 1 hour. This cycle was repeated 4 times for better cellular distribution 

throughout the microcarriers. Cells and Cultispher® microcarriers were then transferred 

to 25 cm2 polystyrene ultra-low attachment surface flasks (Corning, UK) and cellular 

propagation on 3D culture occurred either in static mode or wave mode on a PMR-30 

compact-fixed angle platform rocker at a speed of 15 rocks per minutes (Grant-Bio) at 

37 °C and 5% CO2. Media changes took place every 3 days, at which point cell counts 

were taken.  
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2.5.4 Assessment of cellular attachment and cell number 

2.5.4.1 Cell number 

To monitor the seeded Cultisphers® microcarriers growth cell number measurements 

were made by assaying the metabolic activity of chondroprogenitors by PrestoBlueTM 

cell viability reagent (Life Technologies, UK). Serial dilution of a known number of 

cells was used to derive a standard curve. In brief, every 3 days Cultisphers® 

microcarriers were spun down and the media was aspirated off and 25 μL (n=3) of each 

experimental group was taken out and incubated with 10μl of PrestoBlueTM at 37 °C and 

5% CO2 for an hour. The absorbance was measured by a plate reader (FLOUstar Omega, 

BMG labtech) at an excitation and emission wavelengths of 544 nm and 590 nm 

respectively. The cell number was then calculated against the standard curve of known 

cell number. The total cell number was attained by multiplying the total remainder 

volume of cells/Cultisphers® by the number of cells calculated from the standard curve.  

 

2.5.4.2 Cellular attachment 

3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) staining was 

used to visualise cell growth on microcarrier beads. Samples, which were used for 

PrestoBlueTM, were utilised for MTT staining. Briefly, PrestoBlueTM was aspirated off 

and 100 μL of 5mg/mL MTT solution (Sigma, UK) was added to each sample and 

incubated for 1 hour at 37 °C and 5% CO2. After one hour had elapsed samples were 

fixed and then imaged under light microscopy (Primo Vert, Zeiss) [313].  

 

2.5.5 Transwells culture for chondrogenic differentiation  

300 μL aliquots of each cell/Cultisphers® experimental group were pipetted onto dry 12 

mm diameter hydrophilic polytetrafluoroethylene (PTFE), 0.4 μm pore size inserts 

(Millipore Ltd, UK) in a 24-well plate. One mL of chondrogenic media (2.4.1) was 

added to the inserts making sure that media covered the top of the inserts.  
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2.5.6 Mould fabrication 

3D scaffold fabrication was done with polylactic acid (PLA) filament (Flashforge, 

China). Briefly PLA was melted at 110°C in a heating cylinder using CreatorPro 3D 

printer (Flashforge, China). PLA was ejected through a heated nozzle and deposited 

layer-by-layer. The C-ring shape was deposited at (55 mm x 56 mm x 110 mm) (Figure 

3). Following printing, the moulds were sterilised by incubation in alcohol and placed 

under UV light. Filter papers was sterilized in the same fashion and used as a membrane 

between cells/Cultisphers® for improved media exchange with the construct.  

 

 

Figure 2.3. Preparation of 3D-printed PLA scaffolds for seeding of 

cells/Cultispher® microcarriers. Same principle as transwells were adopted in the C-

ring scaffold. The 3D printed tracheal C-ring mould was designed to be placed in a 6-

well plate with porous structure for improved nutrient diffusion.  
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2.6 Ribonucleic acid (RNA) extraction and complementary deoxyribonucleic 

acid (cDNA) synthesis 

2.6.1 RNA protocol 

Total RNA was extracted from cells and tissue (native or tissue engineered) using 

RNeasy kit and a DNase1 on-column digest; manufacturer’s instruction was followed 

accordingly (Qiagen, UK).  

  

2.6.2 RNA from cells 

2.6.2.1 Cells after digest 

Immediately after sequential pronase/collagenase (2.2.1; 2.2.2) 1 million cells were 

aliquoted and pelleted down in an Eppendorf tube in a microcentrifuge (Centrifuge 

5424, VWR). Media was removed, and the pellet was disrupted and washed with PBS 

and centrifuged. This process was repeated twice. 350 μL of RLT lysis buffer 

(RNAEasy kit: Qiagen) was added to the pelleted cells which were gently disrupted 

using a pipette and stored at -80°C until further use. On the day of RNA extraction, cells 

were thawed on ice and the manufacturer’s protocol for downstream processing for 

RNA extraction was followed with no deviation. 

 

2.6.2.2 Primary cultured cells 

RNA from monoclonal cultured cells were lysed by a cell scraper (Greiner Bio-one) at 

various passages by primarily washing the cells by PBS and adding 350 μL of RLT 

buffer. Samples were then stored at -80 °C until further use. On the day of RNA 

extraction, cells were thawed on ice and the manufacturer’s protocol was followed to 

process to total RNA isolation using mini-columns. 

 

2.6.3 RNA from pellets  

After 21 days of chondrogenesis treatment was over pellets were snap frozen in a hexane 

ethanol dry ice bath and samples were stored at -80 °C. On the day of RNA lysing, 
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samples were thawed on ice and 350 μL of RLT buffer was added to each sample. 

Pellets were lysed and homogenized for 20-30 seconds using a probe and TissueRuptor 

(Qiagen, UK) at full speed. The lysis process took place on ice to reduce the heat 

produced by vigorous grinding. Lysed pellets were then stored at -80 °C for further use. 

On the day of RNA extraction, lysed pellets were thawed on ice and the manufacturer’s 

protocol was followed.   

 

2.6.4 RNA extraction from native tissue and Cultispher® microcarrier-based 

constructs 

2.6.4.1 Native tissue 

3mm2 native tissue was prepared as outlined in (2.2.1, 2.2.2) and snapped frozen in a 

hexane ethanol dry ice bath and stored at -80 °C for further use. RNA processing took 

place in a clean fume hood. The frozen samples were placed in  metal chamber lids 

containing grinding ball and 250 μL TRI reagent that was previously immersed in liquid 

nitrogen and further snapped frozen in liquid nitrogen. Tissue was then immediately 

lysed and homogenised using a micro-dismembranator (B. Braun Biotech) for 2 minutes 

at 230g. The powdered tissue/TRI was then transfer to a new Eppendorf tube with a 

spatula and transferred to -80 °C for further use. On the day of RNA extraction, lysed 

tissues were thawed on ice and 150 μL of chloroform was added to each sample and left 

at room temperature for 5 minutes. The next stage is as outlined in section 2.6.1.  

The chambers and grinding balls were cleaned between each cycle of dismembration by 

placing in soapy water, rinsing with tap, ddH2O and placing in 5 M NaOH for 5 minutes 

and rinsing three times with ddH2O. 

 

2.6.4.2 Constructs  

Same principle as outlined in section 2.6.4.1 was applied to Cultispher® microcarrier 

discs and constructs after the chondrogenic incubation period was completed. The discs 

were cut into quarter sized pieces and a single quarter was harvested and homogenised 
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for RNA isolation.  

 

2.6.5 RNA quantification and purity 

Purity of RNA was measured by absorbance at 260 nm and 280 nm using a NanoDrop 

NDI100 spectrophotometer (NanoDrop Technologies, UK). Nuclease-free water was 

used as a blank and samples were measured against it. The A260/A280 ratio was used to 

assess RNA purity. An A260/A280 ratio of ~2.0 is indicative of highly purified RNA.  

 

2.6.6 Complementary DNA (cDNA) conversion  

cDNA was synthesized from the purified RNA. 1 μg of RNA was used per reaction. The 

master mix contained 400 μM dNTPs (Promega, UK), 0.4μg of random primers 

(Promega), 0.2U/μL reverse transcriptase (RT) enzyme (Promega), 0.5U/μL RNasin 

(Promega) in a 50 μL volume.  Samples were placed in a T100 thermocycler (Bio-Rad, 

UK) at 25°C for 10 minutes, 48°C for one hour and then 95°C for 5 minutes. Samples 

were immediately transferred to -20°C and kept for further use.   

*For pellets 50-100 ng of purified RNA was used per reaction. Shredders (QIAshredder; 

Qiagen) were used to increase the amount of RNA recovered from pellets.  

2.7 End-point polymerase chain reaction 

To analyse the genes of interest cDNAs were amplified. The reaction mixtures were 

carried out in 100 μL volume consisting of 1.5 mM MgCl2, 200 nM of each forward and 

reverse primer, GoTaq Flexi buffer and 1 unit of GoTaq Hot start DNA polymerase with 

the addition of 200 μM dNTPs and 0.2 ng/μL of template DNA. Amplification of cDNA 

occurred at the following protocol; denaturation at 95 °C for 3 minutes, amplification for 

40 cycles at 95 °C for 30 seconds, allowed annealing at a specific temperature (Tm) for 

30 seconds and the extension stage was held for 30 seconds at 72 °C. A final extension 

was held at 72 °C for 10 minutes. Samples were immediately transferred to -20 °C and 

kept for further use. 
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2.7.1 Primer design and sequences  

The primers for this study were designed using porcine gene sequences from NCBI Map 

Viewer or Ensemble Genome Browser. Designed primers were evaluated in NCBI 

Primer-BLAST to check for binding specificity. Primer sets were purchased from 

(Sigma, UK). Primers are shown below. RT-PCR and quantitative polymerase chain 

reaction (qPCR) were performed using the listed primers. 

 

Table 2.1. Porcine gene primer sequence. 

 

2.7.2 Agarose gel electrophoresis and imaging 

The agarose gel was prepared one hour prior to the electrophoresis run by adding 2% 

agarose (w/v; Promega, USA) to 1 x TAE (20 mL of 50x TAE buffer was added to 980 

mL of ddH2O to obtain a working concentration of 1x TAE buffer). The agarose in TAE 

buffer was heated using a laboratory microwave set to full power (800W) until the 

agarose was fully dissolved and the solution was completely clear. Once the agarose was 
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dissolved 10 μL of SYBRTM safe DNA gel stain (Invitrogen, UK) solution was added, 

and the solution poured into the gel mould and allowed to set with a gel comb in place 

for 45 minutes to allow the gel to set. The gel was removed from the mould and placed 

in the electrophoresis tank containing 1x TAE buffer. The comb was removed from the 

gel and the ladder (Thermofisher, UK) and samples were then mixed with 5x loading 

dye (Sigma, UK) and loaded into the wells. The gel was visualised using a ChemiDoc 

MP system (Bio-Rad, UK).   

 

2.8 qPCR  

qPCR was undertaken using CFX96 Real Time PCR Detection system (Bio-Rad, UK). 

Primers were designed to amplify a single PCR product of approximately 100-200bp in 

length. An internal reference glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was 

used for normalisation as well as non-reverse transcribed RNA as a negative control. 

Each reaction was prepared to a total volume of 10 μL; 2.5 μL 4μM primer mix (forward 

and reverse), 2 μL sample cDNA and 5 μL SYBR Green. All PCR reactions were 

conducted in triplicate to reduce pipetting error. All PCR reactions were performed in a 

clear unskirted 96 well plate (cat: MLL-9601, Bio-Rad) sealed with a microseal (cat: 

MSB-1001, Bio-Rad). Plates were heated for 30 seconds at 95 °C then real time data 

was collected during 40 cycles containing a 2 second step at 95 °C and 5 seconds at the 

optimal annealing temperature for specific primers outlined in Table 2.1. 

 

2.9 Biochemical analysis 

To measure the main extracellular matrix content biochemical assays were used to 

compare the levels present in tissue-engineered constructs against the native tissue.  

 

2.9.1 Sample digestion (native tissue, pellets, constructs) 

Snap frozen samples were digested with papain (Sigma, UK). The digestion buffer 

consisted of 20 mM sodium acetate (NaAc) pH 6.8, 1 mM ethylenediaminetetraacetic 
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acid (EDTA), 2mM DL-dithiothreitol (DTT), 300 μg/mL papain. One millilitre of 

papain digestion buffer was added to the samples and incubated at 60 °C in water bath 

for 60 minutes or longer if any tissue had remained after this time. Digested samples 

were stored at -20 °C prior to biochemical analysis.  

 

2.9.2 DNA quantification  

Assessment of cell numbers in samples were performed by quantitating the total DNA 

content in the samples using Quant-iTTM (Invitrogen) PicoGreen dsDNA according to 

the manufacture’s protocol. Samples were quantified against a series of λ DNA standard 

diluted in 1x TE buffer provided in the kit (0-10 μg/mL). Fluorescent absorbance was 

measured using FLUOstar Omega plate reader. 

 

2.9.3  Dimethyl methylene blue (DMMB) assay  

For each reaction, 25 μL of papain-digested samples were added to 200 μL of DMMB 

reagent (16 mg/L DMMB, 3 g Polyvinyl alcohol (PVA), 3.04 g glycine, 2.37 g sodium 

chloride (NaCl), 95 mL 0.1M HCl at final pH 3) in a 96 well. Concentrations of 

glycosaminoglycan were determined against standards of chondroitin-4-sulphate (0-40 

μg/mL-diluted in ddH2O) by spectrophotometric measurement of absorbance at 525 nm 

using a FLUOstar Omega plate reader. 

 

2.9.4 Hydroxyproline assay 

Hydroxyproline content was determined as a measure of total collagen present in each 

construct by assaying acid hydrolysates of papain digested samples. Briefly, standard 

concentrations of trans-4-hydroxy-L-proline (Sigma) were produced (0-100 μg/mL-

diluted in ddH2O) to determine the quantity of the total collagen. Papain digested 

samples were firstly hydrolysed in 6N HCl for 24 hours at 110°C using a heating block. 

Hydrolysed samples were then vacuum dried overnight and subsequently reconstituted 

in ddH2O. After centrifugation to remove impurities, 30 μL of each sample was added to 
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a 96 well plate and 120 μL (70 μL of diluent plus 50 μL oxidant) was added to each 

sample prior to shaking for 5 minutes at room temperature. 125 μL of colour reagent was 

then added and samples shaken prior to incubating at 70 °C for 15 minutes. 

Hydroxyproline content was then quantified against a standard curve and a plate reader 

to measure absorbance at 540nm.  

• Stock buffer: 28.5 g sodium acetate trihydrate, 18.75 g tri sodium citrate 

dehydrate, 2.75 g citric acid, 200 mL Propan-2-ol 

• Diluent: 100 mL propan-2-ol, 50 mL H2O 

• Oxidant: 0.7 g Chloramine T, 10 mL H2O, 50 mL stock buffer 

• Colour reagent: 7.5 g dimethylamino benzaldehyde, 11.25 mL perchloric acid 

(60%), and 62.5 mL propan-2-ol 

 

2.10 Histological analysis  

 
2.10.1 Sample embedding (native tissue, pellets, constructs) 

Samples were washed with PBS then fixed in 10% neutral buffered formalin solution 

(NBFS; Sigma, UK) overnight at 4 °C. After fixation, samples were washed twice with 

PBS and stored in 4°C fresh PBS. Samples were then handed over to the Pathology Unit 

at Singleton Hospital (ABMU, NHS) for wax embedding and stored at 4 °C prior to 

sectioning.  

 

2.10.2 Paraffin wax sectioning  

Samples in wax blocks were placed on ice for an hour before sectioning. A microtome 

was used to section the samples at 8μm thickness. Samples were then placed into a water 

bath at 45 °C to flatten. Flattened samples were removed from the water bath and 

immobilised to poly-l-lysine coated Poly-Prep slides (Sigma, UK) and dried at 45 °C for 

48h. Samples were then stored at room temperature, in darkness until histological 

staining was performed.  
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2.10.3 Sample processing 

On the day of staining samples were deparaffinised in xylene (2x10 minutes) and 

rehydrated in graded alcohol for 2 minutes at each concentration; concentrations of 

ethanol were 100% (x2), 95% and 70% followed by 2 minutes in tap water. Following 

each staining protocol samples were dehydrated in graded alcohols (70%, 95% and 

100% x 2) with changes of 2 minutes each before being cleared in xylene (one change of 

10 minutes). Stained sections were and mounted using DPX and then dried at 45°C 

overnight (Raymond A Lamb Medical, UK).  

 

2.10.4 Haematoxylin and eosin 

Nucleus and tissue morphology were detected by haematoxylin (TCS Biosciences, UK) 

and eosin (TCS Biosciences, UK) staining. Rehydrated slides were stained in 1% (w/v 

aqueous) haematoxylin for one minute and then washed in running water until excess 

stain had removed. The stain was differentiated in 1% acid-alcohol for 2 seconds and 

washed with running water before proceeding to staining with 1% (w/v aqueous) eosin 

for two minutes and then washed in running water until excess stain had been removed. 

Samples were dehydrated in graded alcohols and cleared in 2 changes of xylene before 

mounting under DPX on a cover slip.  

 

2.10.5 Alcian blue 

Sulphated GAGs were detected by alcian blue (Sigma, USA) staining. 1% alcian blue 

staining solution was made by dissolving 1g in 100 mL of 0.1N hydrochloric acid (HCL; 

Sigma, UK). On the day of use the pH was adjusted to 2.5. Cells stained in alcian blue 

solution for 30 minutes and rinsed three times with 0.1N HCL.  

 

2.10.6 Toluidine blue staining  

Sulphated GAGs were detected by toluidine blue (BDH chemicals, England) staining. 
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Rehydrated slides were stained in 0.5% aqueous toluidine blue for 30 seconds. 

Following staining, sections were washed in running water for 2 minutes. Toluidine blue 

stained sections were air-dried overnight and mounted on coverslips using DPX the 

following day.  

 

2.10.7 Oil red-O staining  

To confirm lipid deposition oil red-O (Sigma, UK) staining was carried out. Cells were 

fixed in 10% neutral buffered formalin with saline (NBFS) for 10 minutes and washed in 

PBS. Fresh Oil red-O was prepared from a stock solution of 3% (w/v) Oil red-O in 

100% isopropanol by diluting 30mL stock solution in 20ml distilled water. Cells were 

rinsed in 60% isopropanol and stained with Oil red-O working concentration for 30 

minutes at room temperature.  

 

2.10.8 Alizarin red staining  

To detect calcium deposition alizarin red (Sigma, UK) staining was carried out. Slides 

were rehydrated, and cells were fixed in 10% NBFS for 10 minutes then washed in PBS. 

Samples were stained in 2% aqueous alizarin red with adjusted pH 4.22 solution for 30 

minutes. Samples were dehydrated in acetone for 20 seconds, then acetone: xylene (1:1) 

for 20 seconds before clearing in xylene. Samples were mounted using DPX under a 

cover slip prior to light microscopic analysis.  

 

2.10.9   Crystal violet staining  

To visualise colonies derived from single progenitor/stem cells crystal violet (Sigma, 

UK) staining was used. Cells were fixed in 10% NBFS for 10 minutes and washed in 

PBS. Samples were stained in 0.05% aqueous crystal violet solution in dH2O for 30 

minutes and washed multiple times in tap water until excess stain was removed. Cells 

were then imaged using light microscopy.  
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2.10.10 Verhoeff's 

To detect elastin fibers Verhoeff’s staining was carried out. Slides were deparaffinised 

and rehydrated. Samples were then placed in Verhoeff’s solution for 15 minutes and 

were washed with running water until cleared. Samples were then differentiated until the 

elastic fibres were visible based on the appearance of fibres in area of interest. Samples 

were then washed with running tap water and placed into 95% ethanol for 5 minutes to 

remove iodine discolouration. Samples were washed in running water and dehydrated in 

graded alcohols and cleared in 2 changes of xylene before mounting under DPX on a 

cover slip. 

• Stock Verhoeff A: Hematoxylin 1 g, absolute ethanol 20 mL 

• Stock Verhoeff B: Ferric chloride 10 g (Sigma, UK), ddH2O 100 mL 

• Stock Verhoeff C: Potassium iodide 4 g (Sigma, UK), iodine 2 g (Sigma, UK), 

ddH2O 100 mL 

• Working Verhoeff’s solution: Stock solution A: 20 mL, stock solution B: 8 mL, 

stock solution C: 8mL 

• Differentiator solution: Stock solution B: 10 mL, ddH2O 40 mL 

 

2.11 InCell analysis 

An InCell Analyser 2000 (GE Healthcare) was used to examine the physical 

characteristics of different stem/progenitor cells from tracheal cartilage, adventitia and 

connective tissue by staining F-actin and nucleus of cells using phalloidin and 4′,6-

diamidino-2-phenylindole (Dapi) respectively. All cells were expanded as described in 

Section 2.3. The earliest passage cells that were utilized for physical property analysis 

were P2 cells as monoclonal cells were propagated and analysed. In brief 20,000 cells 

were seeded in a 12-well plate and left at 37 °C and 5% CO2 overnight. After 24 hours 

had elapsed cells were fixed with 10% NBFS for 10 minutes and washed with PBS 

twice. Following fixation, cells were permeabilised with 0.01% Triton X-100 (Sigma, 

UK) in PBS for 10 minutes at room temperature. Cells were then stained with 

phalloidin-Atto 594 (Sigma, UK), Stock solution was prepared at 10 nM in methanol 
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and working concentration was prepared by adding 15 μL of stock to 985 μL of PBS 

with the working concentration of 66 pM. Fixed cells were incubated with phalloidin at 

37°C and 5% CO2 for 3 hours, then washed twice with PBS and countered stained with 

Dapi (1:500, Sigma, UK) for 5 minutes at room temperature and washed twice with PBS 

and re-suspended in PBS prior to imaging. Image data was obtained using two emission 

spectra channels; Dapi nuclear staining (Channel 1: λ 470 nm for 0.1 seconds) and 

phalloidin-Atto F-actin staining (Channel 2: λ 594 nm for 3 seconds). The exposure time 

kept consistent throughout all samples. For each well, 6 random fields were chosen and 

once analysis was completed, a data file (XDCE) was produced containing all 

accumulated images from the channels and fields of view selected. Segmentation 

settings were applied the same way in all samples and it was made sure no overlapping 

had occurred. Morphological parameters were selected on the software for analysis of 

the shape and gross morphology of different stem/progenitor cells.  

 

2.12 Mechanical properties 

Mechanical integrity of the native tissue and constructs were analysed both at nano-

indentation level and macro tensile level. Atomic force microscopy was further used to 

assess the mechanical properties of different stem/progenitor cells.  

 
2.12.1 Nanoscale (AFM) 

2.12.1.1 Single cells 

The biomechanical properties of the progenitor cells at various passages were examined 

by nano-indentation. Cells were prepared as previously described in 2.3. one thousand 

cells were seeded onto a polystyrene petri dish (Corning, UK) and incubated at 37 °C 

and 5% CO2 overnight. After 24 hours had elapsed cells were fixed with 10% NBFS for 

10 minutes and washed with PBS twice.  

Cells were analysed in fluid using a BioScope Catalyst atomic force microscope (Bruker 

Instruments, Santa Barbara, California, USA). Bruker MLCT-D pyramidal silicon 

nitride cantilevers were used as probes, with spring constant of (k ~ 0.03-0.04 N/m), 
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225μm length, and 20μm width and deflection sensitivity experimentally determined 

prior to each measurement. For each cell type, a minimum of 20 cells from a 5μm2 area, 

consisting of nucleus and cytoskeleton, were analysed, by mapping 25 force curves 

within each area. 1nN was applied to all the cell types and the contact regime of the 

approach curve was fitted with the equation of a spherical indenter (Hertz model), using 

the fitting module of Nanoscope Analysis software, v1.50, and only curves with a 

goodness of fit between 0.90 and 1 were considered for statistical analysis. 

 

2.12.1.2 Native tissue, pellets and constructs 

Snap frozen tracheal tissues were brought to room temperature and localized nano-

indentation took place in fluid at 37 °C with MLCT-E pyramidal silicon nitride 

cantilevers as probes, with spring constant of (k ~ 0.1-0.2 N/m), 140 μm length, and 

18μm width and deflection sensitivity experimentally determined prior to each 

measurement. Three individual biological samples were analysed with contact mode for 

each tissue compartment and 5nN was applied to all the tissue type. 50 force curves 

were obtained from 5 μm2 area. Tissue elasticity was obtained by Hertz model by 

calculating the Young’s Modulus. Only curves with a goodness of fit between 0.90 and 

1 were considered for statistical analysis. 

Due to sample surface’s roughness and comparing the matrix produced by pellets and 

constructs with different chondrogenic medias paraffin embedded sections were utilized 

[314]. Slides were prepared as described in Section 2.10.3 Similarly to native tissue 

analysis sections were indented in fluid with identical scenarios as mentioned at ambient 

temperature. The indentation perpetually took place at <10% of total sample thickness, 

hence choosing a small triggering force to track the differences in-between sample 

conditions.   

 

2.12.2 Macroscale (Tensile testing) 

Uniaxial materials testing system (Instron Model 5900, UK) was employed to determine 

tensile properties with a 2 kN load cell. Briefly, samples were trimmed to the same size 
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(10 mm x 5 mm) and a thickness of 1-2 mm. Samples were placed to paper on tensile 

grips with sand paper to ensure stability during the measurement. Specimens were 

mounted with an initial grip-to- grip distance of 10 mm and were subjected to ramp 

displacements at a rate of 5 mm/s up to rupture. All samples broke within the gauge 

length. Applied displacements were normalized to initial grip- to-grip distance to yield 

values for tissue strain. Sample width and thickness were used to calculate cross- 

sectional area, which was used to convert measured loads to stresses. The tensile 

modulus was determined from the stress-strain data by calculating the slope of the linear 

region of the curve. 

 

2.13 Immunohistochemistry 

Paraffin wax embedded tissues/pellets/construct sections were dewaxed and rehydrated 

as describe in Section 2.10.3. To reduce background stain samples were treated with 3% 

hydrogen peroxide (H2O2) in methanol. Following this step samples were washed in 

PBST (PBS plus 0.05% Tween-20) for 5 minutes. Samples were then treated for antigen 

retrieval and initially incubated at 65 °C in Tris EDTA at pH 9 overnight and washed 

with PBST before the next stage. Next, sections were subjected to enzymatic treatment 

using hyaluronidase (Sigma-Aldrich; 2U mL-1) in PBST at 37 °C for 1 hour. Samples 

were then washed with PBST for 5 minutes and using a hydrophobic wax pen, circles 

were drawn around the samples before proceeding to the blocking step. 2.5% normal 

horse block serum (RTU Vectastain Kit, Vector Laboratories, USA) was added for 30 

minutes to prevent non-specific biding of antibodies. Blocking serum was then tipped 

off and primary antibodies diluted in PBST was added to specimens and left at room 

temperature for 30 minutes. PBST was used instead of antibodies for negative control 

samples. Samples were then washed with PBST for 5 minutes and secondary antibodies 

were added for 10 minutes at room temperature (RTU Biotinylated pan specific antibody 

Universal Biotinylated Anti-Mouse/Rabbit /Goat IgG derived from horse). Samples 

were then washed with PBST for 5 minutes. Streptavidin/peroxidase complex reagent 

(RTU Vectastain Kit, Vector Laboratories, USA) was applied to samples at room 

temperature for 5 minutes, and then samples were rinsed in PBST for 5 minutes. After 

washing samples were developed for 5 minutes with NovaRED kit (Vector Laboratories, 
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USA) for detection of streptavidin/peroxidase enzymatic activity. Samples were then 

washed and in dH2O and nuclei were counterstained with hematoxylin for one minute. 

The specimens were then dehydrated in graded alcohol and mounted. Samples were then 

analysed using light microscopy to examine extracellular matrix quality.  

 

• List of antibodies used: Collagen type II (1:250, Devlopmental Studies 

Hybridoma Bank (DSHB) II-II6B3 raised in mouse); Aggrecan (1:10, DHSB 

12/21/1-C-6 raised in mouse), Collagen type I (1:2000 Sigma C2456, UK). 

 

 
2.14 Statistical analysis 

All statistical approaches were performed using Minitab software for data analysis and 

Excel for plotting graphs. All data sets were first analysed for normality using the 

Anderson Darling test, as previously described [315]. For parametric data sets, statistical 

significance was calculated using student’s t test for paired wise analysis and one-way  

or two-way ANOVA depending on the number of variance followed by Tukey’s posthoc 

test.  For non-parametric testing a whole sample analysis of variance was applied using 

the Kruksal-Wallace test, followed by differences in means assessment between pairs of 

data using the Mann Whitney U-test [316]. In this study, all statistical significance 

threshold values are p <0.05, unless otherwise stated in the text. All statistical analysis 

for each data set described is listed in the figure legends.  
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Chapter 3: Identification and characterisation of 

tracheal C-ring derived stem cell populations 
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3.1 Introduction 

 

Tissue engineering applications generally require high cell numbers and these are 

generated through long-term cell culture expansion in vitro, with the aim of maintaining 

phenotypic stability and potency of cells [89]. Culture expansion remains a challenge, 

with both cell source and culture conditions significantly affecting cell number yields 

[317]. Therefore, the ability to harvest stem/progenitor cells capable of extended 

expansion in culture is a prerequisite for stem cell-based therapies, enabling the 

regeneration or repair of damaged and diseased tissues [121]. Thus far the two major cell 

sources used to date in airway cartilage tissue engineering are chondrocytes from 

various locations and bone-marrow derived MSCs [297][298].  

Despite considerable efforts to repair and regenerate damaged and missing tracheal 

tissues using native chondrocytes and MSCs, the engineered tissues lack organisation 

and functional properties at multiple levels [130]. At the genetic level, up-regulation of 

collagen types I and X are indicative of either inappropriate, incomplete or the failure of 

chondrocyte differentiation, or, epiphyseal-type chondrocytes and their terminal 

differentiation to form calcified cartilage, a precursor to bone formation, especially when 

bone-derived MSC derived progenitors are used [136]. The mechanical properties of 

repair tissues made using bone-derived MSCs have been shown to be compromised, 

with cartilage repair tissue unable to match native tissue properties [192][299]. Cell 

choice therefore is at the heart of the complex regenerative challenge; an optimal cell 

source would have stem/progenitor cell characteristics, with the capacity for extensive 

cell expansion and the maintenance of a latent ability to undergo chondrogenic 

differentiation when exposed to inducing stimuli [321]. 

Many cartilage tissue engineering strategies now employ stem or progenitor cell 

populations especially where, as is the case with tracheal repair, residual tissue as a 

source for cells is scarce or not available [301][302]. To isolate stem/progenitor cells of 

the mesenchymal lineage certain minimal selection criteria have been suggested based 

upon the inability to use cell-specific biomarkers [303][304]. Generally, isolation of 

MSCs relies primarily on their ability to bind to plastic culture dishes, their expression 

of a specific subset of cell surface markers which consist of panels of positive and 
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negative hematopoietic-related biomarkers, as well as having the potency to differentiate 

into multiple mesodermal-derived lineages [135]. The latter criteria can be further 

refined by incorporating techniques such as differential adhesion to fibronectin as in the 

case of chondroprogenitor isolation in articular cartilage [219] and also using 

biophysical markers such as cytoplasmic/nuclei ratios to enhance isolation strategies 

[326]. 

New strategies are exploiting the use of tissue specific stem cells as they may contain the 

prerequisite memory to differentiate towards the tissue of origin. Approaches to isolate 

pure stem/progenitor subpopulations in cartilage exploit the fact that they express higher 

levels of fibronectin receptor integrins α5 and β1 [327]. Limited exposure of an unsorted 

freshly isolated cell populations to fibronectin coated culture dishes results in the 

binding of subpopulations with highest fibronectin receptor levels, with the remaining 

unbound population removed by washing. This form of enrichment generates colonies at 

higher frequency allowing expansion of either polyclonal or monoclonal progenitor 

populations. As an example, Jones et al. utilised differential adhesion to fibronectin in 

vitro to identify and isolate epidermal stem cells [328]. It was found that the epidermis 

layer contains two types of proliferative cells; sub-population of cells with lower 

expansion capacity and higher differentiation capacities known as transient amplifying 

cells, and, stem cells with significantly higher expansion capacity, termed progenitor or 

stem cells. Keratinocytes with stem cell-like behavior could be isolated using FACS 

based on high surface expression of integrin β1 and high affinity for ECM proteins such 

as fibronectin. In their studies, keratinocyte colony forming efficiency directly correlates 

to the relative levels of integrin β1 and fibronectin expression. Their study also 

delineated strategies to enrich and purify homogenous sub-populations capable of 

extensive proliferative capacity, as opposed to transient amplifying cells that undergo 

terminal differentiation after only five population doublings [329]. Prior to this finding 

Barrandon et al. identified three distinct types of colonies formed by keratinocytes when 

cultured at clonal density. They found that large circular colonies exhibit a high self-

renewal capacity and that were proliferative. Small irregular shaped colonies containing  

32-128 cells were also observed which had characteristics similar to transient amplifying 
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cells and a third type of clone which had intermediate characteristic to the first and 

second clones [330]. 

As mentioned previously, differential adhesion to fibronectin was used by Dowthwaite 

et al. [219] to enrich colony forming cell sub-populations from articular cartilage of the 

metatarsophalangeal joint of 7-day old bovine articular cartilage [331]. Previous studies 

have shown that chondrocytes in the superficial surface of articular cartilage express 

relatively higher expression of α5 and β1 integrin subunits compared to chondrocytes in 

the mid and deep zones [331]. Using this information, Dowthwaite et al. used 

differential adhesion to fibronectin to measure the frequency of colony forming cells in 

chondrocytes specifically isolated from the superficial, middle and deep zones of 

articular cartilage. They reported that chondrocytes isolated from the superficial zone 

formed significantly larger colonies and at higher frequency than chondrocytes from the 

other zones. Their results also showed that integrin β1 by itself could not be used as a 

chondroprogenitor marker as chondrocytes from middle zone expressed more affinity 

for fibronectin as opposed to the superficial zone cells, but lacked colony forming 

ability. The latter cell population showed similar characteristics to transient amplifying 

cells. Clonal chondroprogenitors were shown by Khan et al. to maintain telomerase 

activity and SOX9 expression during extended monolayer culture and retain 

chondrogenic potential when compared with their chondrocyte counterparts [222]. 

Further confirmation of the stem/progenitor status of colony forming cells isolated from 

articular cartilage required verification using the minimal criteria set down by The 

International Society for Stem Cell Research (ISSCR). The ISSCR set down a minimal 

criteria for the classification of MSCs to include; adhesion to plastic, expression of 

surface markers CD73, CD90, CD105 and lack of expression for haematopoietic lineage 

markers including CD11b, CD14, and CD45 and tri-potential differentiation into 

chondrogenic, osteogenic and adipogenic lineages [135]. 

Friedenstein first reported plastic adherent, clonogenic fibroblastic-like cells derived 

from bone marrow extracts [332]. These marrow stromal cells (MSCs) were inherently 

more prone towards differentiation towards the osteogenic lineage. Accumulation of 

data from many studies has shown that MSCs can be identified and also isolated from 
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heterogeneous populations using positive and negative markers. MSCs commonly 

express CD29, CD44, CD49a-f, CD51, CD73, CD90, CD105, CD106, CD166, and Stro-

1 [121], [333]–[335] and must be negative for haematopoietic lineage markers including 

CD11b, CD14, and CD45 [336]. Based on this isolation criteria many tissue-specific 

MSCs have been identified and characterised [189][204]. For example, Williams et al. 

were able to isolate tissue specific chondroprogenitors using the cell surface criteria 

from healthy human adult articular cartilage; these cells differentially bound fibronectin, 

had a high colony forming efficiency, were capable of extensive self-renewal and 

multipotent differentiation [220]. 

Although efforts have been made to isolate pure MSC populations, the lack of specific 

biomarkers for these cells makes this process challenging. Using cartilage as an 

example, Alsalameh et al. identified a sub-population of stem-like cells expressing cell 

surface markers CD105 and CD166 in human cartilage at a frequency of 1.5% from 

normal cartilage and 3% from diseased osteoarthritic cartilage [337]. The majority of 

chondrocytes were found to express CD105 and a minority CD166. Grogan et al. 

reported using the expression and distribution of stem cell markers Notch-1, Stro-1 and 

CD105 a large sub-population of cells in articular cartilage, 45% of cells were labeled 

for these cell surface markers, therefore, the specificity of this combination is thought to 

be insufficient to isolate a putative low ratio progenitor MSC sub-population. It is 

clearly challenging to define a unique set of criteria that enables robust identification and 

isolation of a pure multipotent MSC cells [317][318]. Therefore, new approaches to 

describe and isolate specific subpopulations of MSCs and chondroprogenitors will 

significantly contribute to basic biological understanding of tissue growth, development 

and dysfunction and in turn consequently improve cell-based therapies. 

MSCs lose their differentiation capacity over a long period of 2D culture expansion 

[340]. This decreased differentiation potential has been correlated with environmental 

cues that directly affects genetic and metabolic features of MSCs (refer to 1.9.1) 

[260][262]. The lack of specific biomarkers, and, non-optimal culture conditions that 

affect the expression of the minimal criteria cell surface markers following extensive 

expansion, has therefore  prompted researchers to investigate alternative methods to 
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predict the potency and stem/progenitor status of MSCs. The biophysical properties of a 

cell, which are known to change during growth and development, could potentially be 

used as an indicator of a cell identity, function and potency. Physical changes that take 

place over time in cells include measurable parameters such as cell size, morphology 

and stiffness [320][321], and these can potentially be used as predictive markers of 

cellular fate. For instance, metastatic cancer cell lines show an average mechanical creep 

compliance [343], and malaria infected [344] or sickle red blood cells [345] mechanical 

membrane stiffness have been directly linked to disease stage and progression. Common 

biophysical traits can also be interpreted as measures for cellular change. For example, 

changes in cell size are linked with cell cycle events [346] and cellular proliferation rates 

[347], but also indicate the differentiation capacity of progenitor cells derived from 

corneal epithelium [348], adipose tissue [349], or adult bone marrow [350]. Therefore, it 

is evident that a more comprehensive physical profile of stem cells can supplement the 

minimal criteria to form more reliable indicators. 

Lee et al. used multivariate biophysical analysis of culture-expanded; bone marrow-

derived MSCs, correlating these quantitative measures such as cell diameter and 

stiffness with biomolecular markers and in vitro and in vivo functionality. They reported 

no single biophysical property robustly predicts stem cell multipotency, but a 

combination of three biophysical markers together have the potential to predict 

multipotent subpopulations in vitro and in vivo. Subpopulations of culture expanded 

MSCs from adult and fetal bone marrow were found to have small cell diameter, low 

cell stiffness, and higher nuclear membrane fluctuations, and in addition they were 

highly clonogenic and also exhibited gene, protein, and functional signatures of 

multipotency [326]. Darling et al. revealed that terminated differentiated cells consisting 

of chondrocytes, adipocytes, osteocytes and MSCs isolated from adipose and bone 

marrow tissues had distinct mechanical properties indicating that even undifferentiated 

MSCs from two unique tissue sources exclusively differ from one another [294]. 

This chapter hypothesises that there is a mesodermal derived stem cell residing in the 

tracheal C-ring cartilage that would be an ideal source for repair strategies. Furthermore, 

an efficient and informative biological selection criterion of suitable cells will lead to an 
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isolated cellular population with the required gene expression and matrix deposition 

programmes which may in turn lead to repair strategies that reflect the correct functional 

cell and tissue mechanical properties. To test this hypothesis, the aim was to use 

differential adhesion to fibronectin to isolate cellular populations from each tissue layer 

of the trachea (adventitia, cartilage and connective tissues) and subsequently characterise 

these cells in line with ISSCR minimal criteria as well as biophysical properties. 

Mechanical stability is of great importance in airway tissue engineering. Identifying a 

population of cells with stem cell characteristic and epigenetic ‘memory’ towards 

cartilage differentiation that is able to maintain its phenotypic stability over long term 

culture will help researchers towards the successful generation of constructs with genetic 

and mechanical functionality 

3.2 Results 

Porcine trachea possesses functional and gross morphological similarities with human 

trachea, and therefore it was chosen as a suitable model for translational research [311].  

The aims of this experimental chapter can be broken down into two distinct objectives as 

shown in Figure 3.1; first, characterisation of the key structural components of the 

tracheal cartilage C-rings utilising histological staining, mechanical testing and mRNA 

comparison to articular cartilage. Secondly, isolation of tracheal C-ring derived 

progenitor-like subpopulations utilising, differential adhesion to fibronectin and 

characterisation of these progenitor subpopulations using minimal criteria as 

recommended by the ISSCR, as well as morphological analysis and mechanical 

properties of single cells. 
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Figure 3.1. Pipeline of porcine trachea characterisation. Experimental plan for 

tracheal tissue and identification and characterisation of tracheal tissue and stem cells. 

3.2.1 Tracheal tissue characterisation 

Fresh juvenile (6-month-old) porcine tracheal tissue was obtained from the local abattoir 

and used in compliance with institutional guidelines as set out by the University 

Research Ethics Committee. 

 

3.2.2 Histological analysis of native porcine trachea 

 
To visualise tissue and cellular organisation as well as detecting and localising the 

hyaline type matrix of tracheal cartilage, histological and immunohistochemical analysis 

were performed [351]. Upon arrival from the abattoir fresh trachea from 6-month-old 

porcine animals (Figure 3.2A) was sterilised and rinsed with PBS, dissected free from 
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annular ligaments and muscles, and cut into representative explants prior to fixation 

(Figure 3.2B) with 10% NBFS. The tissue was processed into wax and sectioned at 7 

μm prior to rehydration and histological staining (Materials and methods Chapter 2, 

section 2.10.1- 2.10.3).  

 

Figure 3.2. Porcine trachea haemotoxylin and eosin staining. (A) Location of trachea 

in the upper airway system (arrowed). (B) Trachea lumen dissected away from the 

lungs. (C) Shows a half-dissected portion of the tracheal ring structure and (D) a sagittal 

section displaying the morphology of tracheal tissue. Bar equals 100 microns. 

 

Haematoxylin and eosin (H&E) stain was employed to display the cellular (with the cell 

nuclei stained blue) and tissue morphology (stained pink-purple).  H&E staining was 

performed on tracheal C-rings excluding the muscle and annular ligament (Figure 

3.2C). Trachea is a multi-layered tissue, as shown in Figure 3.2D. The mucosal layer 

stained deep pink, as visualised in Figure 2D, at the top surface of the image identified 

clearly due to its pseudostratified ciliated columnar epithelium. The submucosal layer 

has a less organised architecture with submucosal glands present. There is also an 

https://en.wikipedia.org/wiki/Pseudostratified_ciliated_columnar_epithelium
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extensive underlying perichondrium or adventitia which is shown as a thin layer above 

tracheal cartilage, that itself, shows a typically large matrix to cell volume ratio. 

To further analyse the ECM components of the native tissue toluidine blue histological 

staining was performed on the native trachea to localise the proteoglycan content of the 

C-ring. Toluidine blue labeling of proteoglycans was particularly evident in the cartilage 

layer, where it was stained intensely dark purple (Figure 3.3B). Staining the native 

tracheal tissue with Verhoeff’s stain revealed that elastin fibers are localised to the inner 

connective layer of the C-ring (Figure 3.3C) but not the cartilaginous component.  

 

 

Figure 3.3. Histological analysis of native trachea tissue embedded for various 

stains in order to obtain the baseline control for the future production of C-ring 

cartilage in vitro. (A) Shows haeamotoxylin and eosin stain to represent the cellular 

structure and surrounding matrix. (B) Toluidine blue stain of tracheal tissue section to 

localise proteoglycan deposition. (C) Verhoeff’s staining to identify elastin fibers in 

tracheal tissue where tracheal cartilage did not illustarte any stain uptake (arrowed). Bar 

equals 100 microns. Images represent one porcine donor. 
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Immunohistochemical analysis of the 6-months-old porcine tracheal cartilage C-ring 

revealed strong collagen type II and aggrecan labelling throughout the cartilage layer 

(Figure 3.4A-C). The connective and adventitia tissue layers were negative for antibody 

labeling for the two-main cartilage-specific ECM components.   

 

Figure 3.4. Immunohistochemical analysis of 6-month-old porcine trachea. Collagen 

type II (A), and aggrecan (B) immunostaining was performed and counterstained with 

haeamatoxylin to detect ECM specific proteins. (C) Mouse IgG was used at the same 

concentrations as the primary antibodies to identify any non-specific labelling in 

sections. Arrows indicate the tracheal cartilage. Bar equals 100 microns. Images 

represent one porcine donor. 

 

Immunohistochemical collagen type I expression was absent in porcine tracheal 

cartilage and bovine auricular cartilage. However, the adventitia and the perichondrium 
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in trachea and auricular cartilage (used as a comparison of hyaline tissue) were both 

positive for labelling (Figure 3.5).  

The combined immunohistochemical and histological analysis enabled accurate 

identification of the mucosa, cartilage and adventitia components of the C-ring to enable 

uniaxial testing of the whole C-ring and different tissue layers of the tracheal C-ring (see 

below). 
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Figure 3.5. Immunohistochemical analysis of 6-months-old porcine tracheal 

cartilage and immature bovine auricular cartilage. Collagen type I 

immunohistochemical labelling of tracheal cartilage (A, arrowed) and auricular cartilage 

(B, arrowed) counterstained with haeamatoxylin. Control sections were examined using 

mouse IgG at the same concentrations as the primary antibodies and run in parallel to 

confirm specificity of labelling (C, D; cartilage is arrowed). Bar equals 100 microns. 

Images represent one porcine donor. 
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3.2.3 Uniaxial testing of native trachea tissue  
 

Cartilage plays a crucial role in the mechanical function of the trachea and directly 

affects physiological respiratory function [4]. The cartilaginous parts are the stiffest 

tracheal constituents and they keep the lumen of the trachea open even during negative 

pressures, hence inhibiting tracheal collapse and maintaining airflow [306]. To 

understand how the mechanical properties of tracheal cartilage contribute to its function, 

the elastic and relaxation behaviors of cartilage samples were measured. 

The mechanical strength of the trachea tissues was measured by ultimate tensile testing 

(Chapter 2, Section 2.12.2). To differentiate the contribution of different tissue 

components to withstand the most amount of force applied, tracheal C-ring tissue layers 

were separated into connective tissue layer, cartilage layer, and cartilage with adventitia 

layer (due to difficulties in removing the adventitia layer intact in shape) and the 

composite tissue - comprised of all three tissue layers 

The groups of tissue were trimmed to the same size (10 mm x 5 mm) and a thickness of 

1-2 mm. Uniaxial testing was undertaken using fixed parameter of 5mm/s. The Young’s 

modulus was obtained from the linear region of the stress-strain curves (Figure 3.6A). 

Fixed cartilage had the highest value of 228.8 kPa and was  higher  when compared with 

fresh cartilage 122.7 kPa. All the groups were  higher when compared with fresh 

connective 3.97 and fixed connective tissue 3.1 kPa. However, no major difference was 

found across cartilage, cartilage ADV 148 kPa and composite 197.6 kPa (Figure 3.6B). 

From Figure 3.6A it is evident that cartilage is the stiffest tissue whereas the connective 

tissue is highly elastic giving trachea its remarkable deformability properties. This data 

correlates with the immunohistological and histology images where connective tissue 

has heavily stained for elastin making this tissue more elastic, cartilage which is mostly 

made up of aggrecan and collagen type II provide mechanical rigidity, and, adventitia 

that is made up of collagen type I re-enforce the mechanically stability of the tracheal C-

ring.   
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Figure 3.6. Comparison of stress–strain curves of different tracheal tissues from the 

same sample in uniaxial direction (elongation to break at 5 mm/min). Young’s 

modulus of native tracheal tissue components calculated from the linear portions of 

stress-strain curves (A) and plotted as bar charts (B). All data are presented from two 

biological repeats each containing three technical replicates. 

 
Having now identified the histological components of the tracheal C-ring and the 

mechanical properties of the components, the tracheal cartilage was then characterised at 

mRNA level to examine if tracheal cartilage exemplified the typical hyaline-type 

baseline cartilage gene profile based on the common markers used for the tissue 

engineered articular cartilage, using end-point RT-PCR.  
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3.2.4 mRNA expression of cartilage matrix markers between two sources of 

hyaline cartilage 

 
Articular cartilage tissue was used as a baseline validator for hyaline cartilage properties. 

Articular cartilage showed weak band intensity of collagen type I (COL1) and elastin 

(ELN) genes and a stronger band intensity for collagen type II (COL2), collagen type X 

(COLX), SOX9, aggrecan (ACAN) and proteoglycan-4 (PRG4, also known as 

superficial zone protein or (lubricin) specific for hyaline cartilage found in articulating 

joints. 

Tracheal cartilage tissue also showed weak banding for COL1 and ELN, whilst being 

strongly positive for COL2 and SOX9 and ACAN. The most notable differences 

amongst the two sources of hyaline cartilage was COLX (a hypertrophic chondrocyte 

marker) and PRG4 that are present in articular and absent in tracheal cartilage (Figure 

3.7).  

 
 

Figure 3.7. PCR gene expression characterisation of 6 months old articular and 

tracheal cartilage. The expression of several cartilage matrix biomarkers was analyzed 

by RT-PCR. Articular tissue was utilised as a comparison and to validate the expression 

of cartilage-specific genes, collagen type I (COLI), collagen type II (COL2), collagen 

type X (COLX), sry-box protein 9 (SOX9), aggrecan (ACAN), proteoglycan-4 (PRG4), 

elastin (ELN). Articular and trachea tissue showed very similar molecular signature, the 

main difference was in the presence and absence of collagen type X and PRG4 

(Superficial zone protein, lubricin) in articular and trachea respectively. Hypoxanthine 

Phosphoribosyltransferase 1 (HPRT1) was used as a control for PCR amplification. Gels 

were constructed from various individual gels and separated with white banding.  

 

 
Having made a preliminary analysis of the morphological and mechanical properties of 

6-months-old porcine tracheal cartilage, these measurements may provide a useful 

comparison for tissue-engineered structures that are fabricated as part of this study. To 
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provide a cell source for tissue-engineered constructs an effort was made to isolate and 

characterise putative stem/progenitor sub-populations derived from the tracheal C-ring. 

 

3.2.5 Isolation of colony forming cells from tracheal tissue using differential 

adhesion to fibronectin  

 
 
Stem/progenitor cells in vivo have the ability to self-renew and facilitate growth and 

repair unlike differentiated cells. The ability of self-renewal is evident in 2D culture as 

assessed by colony forming ability. The colony forming efficiency (CFE) of cell 

populations can be quantified based on a known cell seeding density. In this study we 

used differential adhesion to fibronectin to isolate tracheal tissue-specific 

stem/progenitor cells and visualised colony forming cells using crystal violet staining 

(Figure 3.8A-C). Colonies comprised of over 32 cells can arise from stem/progenitor 

populations whereas more committed transit-amplifying populations, whose 

proliferation rate is limited to five population doublings <=32 cells, will not generate 

large colonies.   

In this study the CFE of connective tissue (CT), adventitia (ADV) and tracheal cartilage 

(TC) colony forming cells were calculated by initially seeding 1000 enzymatically 

isolated cells from carefully dissected tissue onto fibronectin-coated culture dishes for 

differential adhesion assays. Following 10 days of culture incubation the cells were fixed 

and stained with crystal violet and colonies larger than 32 cells counted and the CFE 

calculated. Distinct colony formations with different morphologies were observed across 

all three types of the stem/progenitor cells (Figure 3.8A-C). TC-derived cells showed 

significant increases of 1.6-fold higher in CFE, 10.46±1.44% and 3.6-fold higher CFE 

when compared to ADV 6.5±1.5% (p < 0.005) and CT 2.9±0.5% (p < 0.05). Distinct 

morphological appearances were also observed between TC, ADV and CT colony 

forming cells, which was further investigated. 

 



 114 

 

Figure 3.8. Colony forming efficiency (CFE) of cell sub-populations from distinct 

dissected tracheal tissue. Image showing colony formation by (A) connective tissue 

(CT) cell sub-populations, (B) adventitia tissue (ADV) cell sub-populations and (C) 

tracheal cartilage (TC) tissue cell sub-populations stained with crystal violet. Colonies 

containing at least 32 cells arose from an initially mixed cell population from each 

tissue. (D) Colony forming efficiency of specific progenitor populations. All data shown 

is average CFE (± standard deviation) from five biological repeats, tested for 

significance using one-way ANOVA analysis. * and ** are used to indicate p < 0.05 and 

p < 0.005 respectively. Images represent one porcine donor. 
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3.2.6 Cell shape analysis of trachea tissue specific stem/progenitor populations 

 

Using InCell (GE Healthcare, UK) an immunofluorescence-imaging platform, a 

morphological study was undertaken to confirm whether distinct differences exist 

between colony forming cells isolated from the three distinct tracheal tissues; connective 

tissue, adventitia and cartilage.  

20,000 cells at passage 2 (P2) were plated and fixed with 10% NBF to analyse their 

cytoskeleton by staining of F-actin with phalloidin and the cell nucleus by staining with 

DAPI (Figures 3.9A, B and C). Of primary interest was the cell area and roundness of 

the stem/progenitor cells. A significant difference was observed between all cell types 

for cytoplasmic area (Figure 3.9D). Fixed cell images of TC, CT and ADV colony 

derived cells following fibronectin adhesion are shown in Figure 3.9A-C respectively. 

Cells were stained with phalloidin (red) and DAPI (blue) and the images captured by 

InCell pseudo confocal microscopy. The images demonstrated clear differences in cell 

shape and morphology which were then subjected to software specific algorithm 

analysis which uses a segmentation analysis to evaluate cell and nuclear circularity or 

shape. These images were analysed at single cell level across whole populations, and 

these quantitative parameters were used to analyse any potential changes in cell 

morphology between the tracheal tissue compartment derived progenitor cells. 

The CT cells had a more spindle-shaped morphology whereas; TC and ADV were more 

cuboidal. TC cells had a 2-fold increase in circularity versus ADV and CT and ADV 

showed a 0.4-fold increase compared to CT (TC: 0.42 interquartile range 0.31-0.54; CT: 

0.2 interquartile range 0.16-0.29; ADV: 0.24 interquartile range 0.18-0.36), which was 

also significantly different (p < 0.005). 
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Figure 3.9. Fluorescent images of isolated colony forming cells stained for F-actin 

filament with phalloidin and cell nucleus with Dapi for morphological analysis. 

Tracheal cartilage (TC), connective tissue (CT) and aventitia tissue (ADV) single cells 

from the three different tissue components (A-C). (D) Quantitative morphological 

analysis of cytoplasm area shows that TC cells possess the largest cytoplasmic area 

followed by ADV and CT. (E) shows the circularity of three cell types and TC cells are 

more rounded and cuboidal compare to CT and ADV cells. These differences are 

visualised in the boxplot representation and were shown to be significant through 

Kruskal-Wallis statistical analysis. (300 cells per cell type were analysed  three 

biological repeats; ** represents p < 0.001 and * represents p < 0.05). Images represent 

one porcine donor. 

 

The cytoplasmic area of TC colony forming-derived cells showed a 1.7-fold and 1.3-fold 

increase versus CT (p < 0.001) and ADV colony forming-derived cells respectively, and 

ADV showed almost a 2-fold increase versus CT (TC: 3235.4 interquartile range 

2435.7-6745.8; CT: 1867.7 interquartile range 1643.7-2863.2; ADV: 2435.2 

interquartile range 2236.9-3756.5), which was significantly different (p < 0.05). This in 

fact followed the same trend for the circularity where values range from 0 to 1, where 1 

represents a perfect circle. TC cells were most rounded following by ADV and CT 

(Figure 3.9E).  
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Having now isolated three distinct morphological different cell populations the minimal 

criteria for the characterisation of adult mesenchymal stromal cells as set out by ISSCR 

was used. Due to the lack of well-characterised and validated commercially available 

antibodies to porcine MSC cell surface markers, the presence or absence of markers was 

characterised using RT-PCR. 

 

3.2.7 Tracheal cartilage colony forming cells displayed progenitor-like qualities 

 
Molecular analysis of specific gene expression profiles was undertaken, to further assess 

the presence of progenitor-like transcriptional profiles of colony forming populations in 

the distinct tissue layers of the porcine trachea. An accepted panel of stem cell surface 

markers was adopted according to the criteria outlined by ISSCR. 

Gene expressions of several stem cell surface markers were analysed for isolated 

articular chondroprogenitors (ACP), TC, ADV and CT cells by RT-PCR (Figure 3.10). 

ACPs were used as a control as these cells had previously been characterised as adult 

tissue specific progenitor cells by other groups [201][331]. Both articular 

chondroprogenitors and TC cells were negative for hematopoietic markers CD34 and the 

leukocyte marker CD45. ACPs and TC cells were positive for CD14, CD73, CD90, 

CD105, CD166 and nestin (NES). Conversely, ADV and CT cells were positive for both 

CD34 and CD45. ADV and CT cells were also positive for CD14, CD73, CD90, CD105, 

CD166 and NES. Thus, at the transcript level, ACPs and TC colony forming cells match 

the minimal requirements to be classified a potential source of adult stem/progenitor 

cells. However, to fully validate stem/progenitor cell characteristics tri-lineage 

differentiation was performed. 
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Figure 3.10. RT-PCR analysis of articular cartilage-derived chondroprogenitors 

(ACP), adventitia (ADV), connective tissue (CT) and tracheal cartilage (TC) 

derived colony forming cells. Articular progenitor cells were used as reference point as 

these cells have previously been characterized. Gels were constructed from various 

individual gels and separated with white banding. 

 

Phenotypic plasticity of CT, ADV and TC colony forming cells was assessed through a 

tri-lineage differentiation assay. Previously it’s been shown that ACP derived cells 

through differential adhesion to fibronectin are capable of tri-lineage differentiation into 

chondrogenic, osteogenic and adipogenic lineages [220]. 

All cells were seeded at P3 at 10,000 cells per well. CT cells did not exhibit any 

evidence of lineage specific differentiations (Figure 3.11A, D & G). However, ADV 

and TC colony forming cells both successfully committed to all three lineages. 

Chondrogenesis was indicated by alcian blue staining, which labels the GAG chains of 

proteoglycans in the extracellular matrix. Adipogenesis was confirmed by Oil-red-O 

staining of the intracellular fat containing vacuoles, and osteogenesis, in which 

intracellular and extracellular calcium deposits stain red with alizarin red, was present in 

cells derived from ADV and TC colony forming populations.  The degree of 

differentiation varied between TC and ADV cells where TC cells showed a more potent 

differentiation capability (Figure 3.11 C, F & I). CT cells were not capable of 

performing any of the mesoderm lineages.  
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Figure 3.11. Tri-lineage potential of tracheal-derived colony forming cell 

populations. Tri-lineage was performed by 2D culture to analyze the multipotent 

differentiation potential of connective tissue (CT), adventitia (ADV) and tracheal 

cartilage (TC) derived colony forming cell populations. (A-I) Alcian blue staining 

labelled nodule formation of ADV and TC cells indicative of successful differentiation 

(A-C). Oil red O stains lipid vacuoles confirming adipogenic differentiation (D-F) and 

alizarin red staining demonstrating osteogenic differentiation (G-I) was also evident in 

ADV and TC cells. Connective stem/progenitor cells were not capable of tri-lineage 

differentiation (A, D and G). Bar equals 100 microns. Images represent one porcine 

donor. 

  

Having now shown the minimal criteria for classification of adult stem cells and tri-

lineage capability of CT, ADV & TC, we further explored the possibility of cellular 

mechanics as a further refinement in the characterisation of stem cells isolated from the 

tracheal tissue C-ring cartilage. 
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3.2.8 Nanomechanical characterisation of trachea tissue specific colony forming 

populations 

Nanomechanical analysis has the capability of providing high-resolution analysis of cell 

characteristics and these measurements may be associated with cellular origin. Here, 

nanomechanical analysis was used to assess the presence of any association between 

porcine tracheal-derived cell population nanomechanical properties and progenitor-like 

features. 

Tracheal cells were fixed with 10% NBFS for 10 minutes at room temperature and 

washed with PBS thrice prior to preforming the analysis to avoid inconsistency with 

ambient temperature and oxygen tension.  An AFM cantilever with a pyramidal probe 

was used, in force volume, nanoindentation mode, to measure the mechanical properties 

of the single cells. The indentation depth was confined to be in the range of 100-500nm 

to avoid the effect of substrate, therefore the limit of deformation was assumed to be 

10% of the total cell thickness [353]. All the measurements took place by placing the 

probe at the centre of the nuclear region due to in part the smaller cytoplasmic area of 

connective tissue cells, as shown in Figure 3.9B.  

A series of increasing loads ranging from 1-3 nN indentations was used primarily on full 

depth chondrocytes as previous studies have shown chondrocytes to be the softest and 

most viscoelastic when compared with other types of MSCs [294]. Only curves with R2 

between 0.9 and 1 were chosen by proprietary manufacturers software were chosen for 

the analysis. To provide physiological relevant data freshly isolated full depth 

chondrocytes (FD) along with TC, ADV and CT colony forming cells were analysed  

(because they did not experience the 2D culture shock and were analysed directly after 

tissue enzymatic digest). The FD cells were plated immediately after the enzymatic 

digest and fixed whereas colony-forming cells had to remain in culture for a minimum 

of 10 days in order to derive the cells and to ensure that transit-amplifying committed 

populations were not included. 

TC colony forming cells were the stiffest cell type (p < 0.05) when compared to ADV 

and CT-derived cells  (TC: 4.57 pN/nm interquartile range 4.87-3.31; ADV 3.05 pN/nm 

interquartile range 4.45-2.76 and CT 3.50 pN/nm interquartile range 3.92-3.41). 
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However, the FD cells (1.51 pN/nm interquartile range 1.42-2), was shown to be the 

most elastic compare to all other cell types analysed (p < 0.001) (Figure 3.12).  

 

 
 

Figure 3.12. Nanomechanical profiling of nuclei using atomic force microscopy of 

freshly isolated tracheal cells. Tracheal cartilage (TC), adventitia and connective tissue 

colony forming cells and tracheal cartilage full depth (FD) populations were fixed with 

10% NBFS for 10 minutes prior to obtaining the nanomechanical data. Full depth cells 

were used on day of isolation whereas colony forming cells required a minimum of 7 

days of culture before performing the experiment. The FD population showed the softest 

mechanical profile compared to the colony forming populations and these differences 

are shown as boxplot representations. Results are shown to be significant through 

Kruskal-Wallis statistical analysis. (30 cells per cell type was analysed from five 

biological repeats; ** represents p < 0.001 and * represents p < 0.05). 

 

 

 
3.2.1.1 Nanomechanical characterisation of tracheal tissue derived colony forming 

populations during long term passage 
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Cells have been shown to de-differentiate or change their phenotype during long-term 

culture. In order to analyse the culture stability, AFM nano-indentation was used to 

monitor changes in cellular mechanical phenotype over long periods of culture (P0-P6). 

The same experimental protocol for nanomechanical analysis was followed as described 

in Section 3.2.8 (above).  

TC at P6 and P0 were significantly stiffer (p < 0.001) than P2 cells. TC P4 cells were 

also significant when compared with P2 cells (p < 0.05). No significance was observed 

between TC populations between P0 and P6.  

No significant changes were observed between ADV progenitors between P0 and P2 but 

a sharp increase in stiffness was seen from P2 onwards. P6 and P4 progenitors were both 

significantly stiffer than P0 and P2 (p < 0.05).  

CT cells showed a similar stiffness pattern to the ADV cells. Cells at P6 were 

significantly stiffer compared with P4, P2 and P0 (p < 0.05). No significance was 

observed between P4 and P2, but they were both stiffer than P0 cells. 

The only tissue compartments isolated cell populations that maintained a constant 

mechanical phenotype between P0 and P6 were the TC colony forming cells. While 

significant variation was observed at P2 and P4, the data distribution recovered at P6. 

Otherwise, significant increases in stiffness were observed associated with increased 

passage across all cell types. Order of magnitude: (TC: P6 ≥ P0 > P4 > P2; ADV: P4 > 

P6 > P2 > P0; CT: P6 > P4 > P2 > P0). All the measurements from the nanomechanical 

analysis are summarised in Table 3.1.  
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Figure 3.13.  Nanomechanical profiling of long-term cultured tissue specific colony 

forming cells. Cells were fixed with 10% NBFS for 10 minutes prior to obtaining the 

nanomechanical data. At each passage 10 cells were analysed to monitor 

nanomechanical changes. Differences in nanomechanical profiling of colony forming 

cell populations weare visualised as boxplot representations and were analysed for 

significance by Kruskal-Wallis statistical analysis. (30 cells per cell type and passage 

was analysed from  fivebiological repeats; ** represents P < 0.001 and * represents p < 

0.05). Cells were re-plated at 1:4 ratio at each passage and underwent approximately 

three population doublings per passage. 

 
 

Table 3.1. Stiffness (pN/nm) range of TC, ADV and CT cells over long-term 

passage culture. 
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COL1 and COLX are known markers for chondrocyte de-differentiation and 

hypertrophy respectively [159]. No significant expression of COL1 and COLX were 

observed in native tissue. In order to determine if TCP cells had maintained a 

mechanical and genetic phenotypic stability at P0 and P6, COL2, COL1 and COLX 

expression were analysed by qPCR and normalised against the housekeeping gene 

GAPDH. COLII expression was used here as a positive control and to analyse for 

potential differentiation.  

Gene expression levels for COL2 showed significant 10000-fold reduced expression in 

TCP cells (p < 0.001; Figure 3.14A). Despite a reduction in COL1 and COLX being 

observed at P6, these differences were not significant (p > 0.05).  

 

 

Figure 3.14. Chondrogenic gene expression with monolayer expansion of tracheal 

chondroprogenitor at an early and late stage of 2D culture using ∆CT method. Gene 

expression levels for collagen type II (COL2) fell approximately 10000-fold after 6 

passages in culture. Gene expression levels for collagen type I (COL1), and collagen 

type X (COLX) showed no significant changes. All data shown (A, B and C) are 
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averages (± standard deviation) from three biological repeats, tested for significance 

using Student’s t-test. ( ** represents p < 0.001). 

 

3.3 Discussion 

More advanced understanding of cellular phenotypes are needed if promising, novel 

stem cell-based regenerative therapy for the repair of airway cartilage defects [354], are 

to progress to successful clinical trials and translation to patient benefit. Recently, 

various cartilages have been shown to contain a stem/progenitor cell reservoir 

[200][201][302], and cartilage-derived stem/progenitor cells have been hypothesised to 

be suitable starting populations for tissue engineering repair tissue. Presented in this 

chapter is the ISSCR-compliant characterisation of tracheal tissue compartment isolated 

progenitor cells. Fibronectin-adherent cellular populations were detected in the 

adventitia, cartilage and connective layers, with single cell isolates from each layer 

capable of plastic adherence, formation of colony forming units and stable proliferation. 

Importantly, tracheal cartilage progenitor cell population demonstrated unstable culture 

expansion, correlating with COL1, COL2 and COLX expression profiles. This tissue-

specific progenitor cell population will form the focus for the following experimental 

work; to analyse their phenotypic plasticity in the presence of growth factors and in 

early tests of tissue engineering of C-ring cartilage. 

Studies have shown that non-tissue-specific stem/progenitor cell sources, such as bone 

marrow [355] and adipose tissue [356], are not the ideal cell sources for the treatment of 

cartilage injuries and the optimum cell source remains to be definitely identified.  

Although efforts have been made to characterise the trachea tissue there is insufficient 

information for baseline characterisation of native trachea for the ECM composition to 

match functional mechanics as well as the potential presence of progenitor populations 

as a source for tissue specific regenerative medicine suitable cells. Trachea cartilage is 

believed to be a mostly hyaline type cartilage, due to the shiny appearance and protein 

expression of the specific hyaline cartilage biomarker collagen type II. Further analysis 

of the immunohistochemistry of 6-month-old porcine trachea was undertaken for 

collagen type I, collagen type II and aggrecan to identify the major cartilage proteins 
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within the tracheal C-ring cartilage. Collagen type I was absent within the dense 

cartilage component of the C-ring while collagen type II stained strongly throughout the 

cartilage C-ring in a banding architecture alongside a periodic banding architecture 

observed for aggrecan. Conversely, the periphery of the tracheal cartilage C-ring 

exhibited strong staining for collagen type I which is indicative of perichondrial and 

connective tissue layers and agrees with previous publications [351].  

Onnertjord et al. compared the proteome of human cartilages from eight distinct tissue 

locations throughout the body. There were significant variations in the protein 

composition of the ECM from different anatomical sources, and it was reported tracheal 

cartilage has similarities with rib cartilage particularly in matrilin-1 and epiphycan 

expression [119]. Similarly, Wachsmuth et al. compared various types of human 

cartilage tissues and reported that tracheal cartilage has high cell to matrix ratio and is 

composed of collagen types II, III, V, VI, and X with some variation between the ring 

margins and centre [120]. However, collagen type X was not detectable at mRNA level 

in the porcine trachea, just as had been described in this study. Yet, Wacshmuth et al. 

presented no microscopic images validating the claim of the presence of collagen type 

X. Tracheal cartilage has no functional relevance or proximity to bone, in comparison to 

the deep zone articular cartilage and therefore no requirement for the hypertrophic 

chondrocyte marker collagen type X. The presence of collagen type X in human tracheal 

tissue may be indicative of tracheal calcification as observed in some congenital 

disorders [357], trauma post-surgery [358], chondrodysplasia and diastrophic dysplasia 

[359]. Elastin was noticeable in the connective layer of the C-ring trachea beneath 

mucosa and submucosa and its presence is in agreement with what has previously been 

reported in mouse lung epithelium where elastin is the most abundant ECM protein in 

the submucosa layer [360].  

To date, no mesoderm derived stem/progenitor population has been identified within the 

tracheal tissue. This study is the first to report the presence of porcine stem/progenitor 

sub-populations in tracheal C-ring cartilage. Isolated cells from all three tissue 

compartments (adventitia, cartilage and connective) were able to attach to fibronectin-

coated culture dishes after 20 minutes, a methodology previously used to enrich for 
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stem/progenitor cells [219]. Adhesion to fibronectin can be explained by high expression 

of α5β1 integrin subunits, the ‘classical’ fibronectin receptor [331] which has been 

reported in many stem cell lines such as bone marrow MSC [324], auricular derived 

chondroprogenitor cells [138] and articular cartilage derived chondroprogenitors [137]. 

Up to ten integrin αβ subunit combination of receptors have been shown to bind 

fibronectin, many of these are also expressed by mesenchymal cells, such as α3β1, α5β1 

and α5β3 integrins, and the binding of these receptors to fibronectin cannot be excluded 

[361], [362]. Nevertheless, previously the isolation and characterisation of mesenchymal 

stem cells from adult mouse bone marrow using differential adhesion to human 

fibronectin has been reported where the isolation technique was not clear in terms of 

length of time for fibronectin adhesion and whether the analysed cells were past the 

transient amplifying stage [363]. 

The cell populations isolated from the tracheal tissue were capable of colony forming 

from an initially low seeding density. This is in accordance with other studies using 

differential adhesion to fibronectin to isolate stem/progenitor cells [200][202]. Colony 

forming TC cells had the highest CFE (10% of the initial cell density) and this could be 

due to partial adventitia tissue remaining on the top surface of tracheal cartilage or the 

presence of a high frequency of stem/progenitors, which may be linked to the young age 

of the porcine donor of 6 months. The CFE value observed here is greater than that of 

Dowthwaite et al. [219] who reported a mean CFE of 0.27% in cells digested from 7-

day-old bovine articular cartilage. The increase in CFE in porcine tissue could be due to 

species variation or difference between an immature tissue and a juvenile 6-months-old 

porcine tissue. It is also worth noting, that results from previous papers isolating 

stem/progenitor cell within articular cartilage specifically targeted clonogenic cells 

residing in the surface zone of articular cartilage. This study has used full thickness 

biopsies and, therefore, may contain progenitors from other regions of tracheal cartilage 

[200][201]. We hypothesised that tracheal progenitor cells are derived from cartilage 

based on the amount of tissue in which cartilage outweighed adventitia. The CT cells 

that originally came from mucosa and submucosa layer were able to form colonies, and 

this follows  what previously has been reported i.e. the human epidermal stem cells with 

the highest colony-forming efficiency adhered most rapidly to fibronectin and there was 
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a log linear relationship between the relative level of β1 integrins on the cell surface and 

proliferative capacity [328]. The CT cells may be basal derived stem cells from 

epithelium as previously identified in lungs. Further characterisation to confirm this 

requires utilising specific cell surface markers such as cytokeratin-5 (Krt5) and 

cytokeratin-14 (Krt14). Cells expressing cytokeratin markers have shown the capacity to 

be self-renewal and form secretory and ciliated cells [364]. During microscopic 

evaluation of the fibronectin selective adhesion expansion of the isolated colony forming 

cells it became apparent two morphologically different cell populations were present. 

One colony was observed to be fibroblastic in appearance whilst the second cellular 

morphology appeared more cuboidal. Therefore, we utilised colony isolation to sub-

culture pure populations of the morphologically different cells for gene analysis based 

on ISSCR marker panel for mesenchymal stem cell classification  used along with tri-

lineage. To be categorised as mesenchymal stem cells, cells must express CD90, CD105 

and CD166 and lack expression of haematopoietic markers CD34 and CD45 [135]. 

Previous studies have used cell surface markers, to isolate potential stem cell 

populations from bone marrow stromal cells and from articular cartilage [316][344]. The 

colony forming TC, ADV and CT cells agree with the major characteristics of stem cells 

in that they adhere to plastic, express surface markers and are able to undergo tri-lineage 

differentiation.  

Due to lack of verified antibodies able to label for cell surface markers the isolated cells 

were only characterised at mRNA level. Rapid characterisation using gene expression 

analysis of cell surface markers has been used previously to provide evidence to confirm 

the identity of ovine articular and auricular cartilage [138][345]. Nevertheless, there are 

discrepancies in the criteria for the minimum cell surface markers when applied to 

certain tissues, articular cartilage for example. In articular cartilage, CD105 and CD166 

have been proposed as possible surface biomarkers but studies have demonstrated that 

mature chondrocytes also widely express these two markers [316][346]. Nestin in the 

panel of markers seemed logical as nestin-expressing cells are restricted to defined 

niches, where they may function as a quiescent stem cell reserve capable of 

proliferation, differentiation and migration once activated [368]. Nestin is widely 

utilised as a marker of proliferating and migrating adult stem cells [368]. Both ACP and 
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colony forming TC showed identical gene expression whereas ADV and CT colony 

forming cells were also positive for CD34 and CD45. Multi-lineage analysis 

demonstrated that TC and ADV, mesodermal derived colony forming cells were capable 

of tri-lineage. This is in accordance with other studies where cartilage derived 

stem/progenitor cells showed the same potency [138][201]. CT cells from mucosa and 

submucosa layer, an endodermal derived population was unable to perform tri-lineage 

differentiation.   

Biophysical analysis of cells was undertaken to further provide quality control of our 

isolation technique [305][348]. It is clearly demonstrated here, that the nano-mechanical 

properties of cells may serve as phenotypic biomarkers at early cell culture passages and 

follow the same trend of stiffness as their tissue of origin as was shown in Figure 3.6. 

The FD cells had the lowest stiffness values and were utilised here as controls, to 

examine the effect of 2D culture on colony forming cells. The FD cells are thought to be 

comprised of stem/progenitors and chondrocytes from the superficial and middle zones 

of cartilage. In this study FD cells that had a rounded morphology were measured to 

avoid obtaining data from possible chondroprogenitors or dedifferentiated cells. 

Previous studies have reported chondrocytes from different zones exhibit varying 

mechanical properties, showing middle/deep zone cells are less stiff than superficial 

zone cells [370].  

Our findings are in general agreement with previous studies when comparing the 

cartilage component of tracheal tissue with other cartilage-derived cells [275][279], 

certain unsurprising differences exist. These differences arise from variations in cell 

source, testing apparatus, culture environment and mathematical modelling employed to 

generate the data. In this study cells were harvested from several different locations 

within a 6-months-old porcine trachea and treated with the same culture environment. 

Testing methodology could also play a role. For example, AFM indentation tests 

occurred on cells adhered to an underlying substrate, which could affect the measured 

properties [371]. Moreover, the type of probe tips used whether spherical or pyramidal 

can influence measurements. Indentation experiments using sharp-tipped probes 

typically result in higher measured moduli than those obtained with spherical-tipped 
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indenters [351][352]. The indentation depth in this study was confined to within 200-500 

nm; for deeper indentations, the effect of the cell-culture substrates on the measurement 

becomes significant and makes the subsequent analysis complicated [374]. Therefore, 

the deformation limit is 10% of the thickness of the cells. It is also important to note that 

all measurements were performed at the centre of the nuclear region to allow reliable 

comparison of different cells [300]. However, the trend of stiffness correlates with that 

shown at tensile level where the relationship between stress and strain determines the 

stiffness of tissues. Previously it has been shown that osteocytes are the stiffest cell types 

when compared to chondrocytes and adipocytes [294]. This data follows the same 

outcome as the macro-mechanics data of the parent tissue layers where the order of 

stiffness from highest to lowest was bone, cartilage and fat tissue [294], [375]. This data 

coupled with mRNA and the histology data could be indicative of tissue specific stem 

cells residing in each tissue compartment.  

The mechanical signals exerted on stem/progenitor cells by their surrounding 

environment are vital in determining their phenotype and activity. In recent years it is 

becoming more apparent that culture conditions may affect MSC properties [159]. Since 

preparing high-quality stem/progenitor cells are a necessity for cell therapy treatment, 

efforts have been made to evaluate the consequences of cultivation processes on stem 

cell behaviour. The elastic moduli of a substrate that cells reside on greatly influence the 

cellular behaviour. Whilst most of research utilises plastic culture flasks to propagate the 

desired cells, it is mainly effective for the cell growth. High growth ultimately leads to 

morphological and genetics changes that can affect the functionality of cells [376]. It has 

been reported that long-term culture of bone marrow MSCs is associated with several 

functional changes, including reduced proliferation, ultimately inducing replicative 

senescence [377] and associated molecular changes [378], together with reduced [379] 

or shifting multilineage differentiation potentials [380].  

Prolonged culture of the tracheal derived colony forming cells  on tissue culture plastic 

resulted in gene transcriptional change that clearly correlated to passage number. This 

observation may be due to matrix protein expression changes, which may subsequently 

convey architecture changes in the protein matrix composition that contribute to the 
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observed mechanical signature changes [200]. Future studies should include protein 

analysis of the matrix composition along with telomere analysis to confirm the 

observations in this study, as any compositional matrix protein change will have an 

effect on not only the quality of the tissue engineered tracheal C-ring but may also 

ultimately affect the mechanical properties of the engineered tissue. During long-term 

culture, across all colony forming cells, a general increase in cell stiffness was observed, 

possibly indicating that cellular mechanical properties may provide a proportional 

insight into the state of the cells for stem cell characteristics and differentiation 

[359][360].  

TC derived cells showed a dramatic decrease in COL2 gene expression with increasing 

passage. Although morphological changes were minimal over long-term passage and 

plastic culture dish supported proliferation, COLX was detectable. This may be due to 

the fact that plastic substrate stiffness is very close to that found in bones and teeth 

[375]. Cell culture in 2D may have stimulated this upregulation, as COLX was not 

detectable at tissue level when comparing tracheal cartilage against articular cartilage. 

Interestingly the stiffest cell type, which was TC, adapted to the culture environment at a 

steadier rate, where-as ADV and CT showing stiffer behaviour at P2 and P4. Due to the 

nature of the cells and their parent tissue this adaptation to 2D culture may stem from the 

initial matrix where they reside prior to cultivation. Cells from the stiffer native matrix 

may adapt slower whereas cells from a more elastic or less stiff matrix may adapt to the 

culture substrate faster. These finding could be indicative as a marker to stem cell 

senescence and decrease in differentiation potential as previously published in regards to 

MSCs [381].  

 
3.4 Conclusion 

Using differential adhesion to fibronectin we have successfully isolated mesodermal 

derived tracheal stem/progenitor cells. These cells showed the ability to be plastic 

adherent, undergo self-renewal and demonstrate multipotent differentiation. Next, the 

chondrogenic ability of colony forming tracheal cartilage cells was assessed.  
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Chapter 4: Evaluation of chondrogenic capacity 

of tracheal cartilage derived stem cells using 

traditional pellet culture 
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4.1 Introduction 

 
Identification and harvesting of an ideal cell source for the generation of functional, 

tracheal hyaline cartilage, remains an unmet challenge, which has been highlighted in 

the recent scandal concerning the work of Paolo Macchiarini [188][361]. While many 

regenerative medicine approaches have been applied in tracheal repair, significant 

deficiencies are attributed to current cellular,  acellular and combined cell-scaffold 

approaches [89][130]. Autologous cell therapies are preferred mechanisms, representing 

an ideal model, preventing the need for immunosuppression drugs and tissue rejection 

[90]. The search for autologous, tracheal derived cell sources able to create hyaline like 

cartilage is a major theme of this study.  

Many of an organism’s tissues such as adipose tissue, muscle tissue, skin and tendon 

contain stem cells, that are capable of driving continual maintenance and reparative 

responses throughout its lifetime [217]. Therefore, identifying and targeting tissue-

specific stem cells is the logical approach for better understanding endogenous repair 

and disease processes but also for tissue engineering applications. To date, airway tissue 

engineering has mainly focused on chondrocytes from other ‘redundant’ anatomical 

tissue sources other than trachea, such as nasal septum cartilage that has similar 

properties to tissue found in tracheal cartilage, and, MSCs from various tissues [130]. 

Nasal tissue is preferred for tracheal tissue engineering due to its ease of harvest and the 

presence of all required cell types such as chondrocytes, epithelial cells, and connective 

tissue that can all be obtained from a small biopsy of nasal septum [319]. 

Use of culture-expanded chondrocytes is proven to be disadvantageous and unfeasible 

due to donor site morbidity, low harvestable cell numbers, and, loss of cellular 

specialisation/functionality and inefficient recapitulation of cell function and 

specialisation following long-term culture [382]. Being plastic adherent, colony-

forming, and multi-potential cell types [363][364], adult MSCs are a promising source 

of cells for such repair strategies. However, the final tissue derived from typical MSCs 

such as bone marrow-derived cells during chondrogenesis is fibrocartilage [385] and 

mineralization [386] characterised by the up-regulation of collagen type X that leads to 

calcification to produce epiphyseal-like tissue [387]. This latter biological process 
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resembles the earliest stages of endochondral ossification, which subsequently leads to 

bone formation [388]. Therefore, identification of a stem cell population that inherently 

differentiates towards a hyaline chondrogenic lineage should produce a more favorable 

outcome in terms of phenotype stability. In hyaline cartilage such stem cell populations 

have been isolated from various tissues using differential adhesion to fibronectin [137] 

and it has been shown that these cells are superior in culture than their chondrocyte 

counterparts and MSCs in their ability to differentiate into permanent hyaline cartilage 

[223].  

Chondrogenesis is the initiation of cartilage formation when precursor stem/progenitor 

cells give rise to chondrocytes which in turn secrete tissue-specific extracellular matrix 

components such as collagen type II and aggrecan [136]. Many factors drive 

chondrogenesis, as previously mentioned in Chapter 1 Section 1.9, but in general this 

process is growth factor-dependent [389].  

Many growth factors have been identified to regulate the stem/progenitor differentiation 

such as fibroblast growth factors (FGFs), transforming growth factor-beta (TGFβ), 

wingless-type integration site family (WNTs), bone morphogenetic proteins (BMPs) and 

insulin-like growth factors (IGFs) [390]. To date, many cell lineages have been 

differentiated from MSCs. MSCs have successfully been differentiated towards the bone 

lineage using BMP2, BMP6, BMP7 and BMP9 [391], chondrocyte lineage using 

individual growth factors such as TGFβ1, TGFβ2 or TGFβ3 or combinational exposure 

to BMP2 and TGFβ1 [175]. Therefore, this study will use TGFβ1, the most common 

growth factor used for chondrogenesis of MSCs, and also BMP9 which has been 

previously identified as a potent osteogenic and chondrogenic growth factor, to test the 

ability of tracheal-derived colony forming cells to undergo chondrogenic differentiation. 

The TGFβ ligands, which bind activin-like kinase receptors 1 and 5, signal via 

intracellular proteins SMADs 2/3 and are the most established drivers of in vitro 

chondrogenesis [176]. Activation of the latter two receptors is believed to modulate 

chondrocyte phenotype and differentiation by upregulating SOX9 and in turn synthesis 

of collagen type II and aggrecan [372][373]. The role of TGFβ ligands in 

chondrogenesis during limb development rationalises their use in in vitro models of stem 



 135 

cell chondrogenesis [394]. Hence, the TGFβ family of growth factors have been used 

extensively for cartilage tissue engineering for both differentiated and non-differentiated 

cells [395]–[397].  

It is currently unknown how tracheal cartilage stem/progenitor cells react to growth 

factors when induced to undergo chondrogenesis, therefore, the chondrogenic ability of 

newly identified tracheal chondroprogenitors was tested with a well-defined medium 

containing TGFβ1 or BMP9. The BMP signaling cascade to induce chondrogenesis is 

facilitated by distinct pathways to TGFβ signaling; BMP signaling is mediated by 

SMADs 1/5/8 (Figure 4.1) [398]. BMPs are involved in all stages of chondrogenesis 

and endochondral bone formation [158], and BMP2 the most well studied BMP growth 

factor is associated with chondrocyte proliferation and matrix synthesis through 

regulation of SOX9 [399]. Deletion of BMP2 and BMP4 has also been reported to result 

in the lack of mesenchymal chondrogenesis and in turn loss of proliferation and 

differentiation in chondrocytes which ultimately affect cartilage formation [380][381]. 

The role of BMP4 has been highlighted in trachea formation and ablation of BMP4 that 

reduces epithelial and mesenchymal proliferation results in loss of tracheal cell 

phenotypes [402]. BMP9 is the least investigated of the BMP growth factor family 

members in the field of cartilage tissue engineering and this is mainly due to their 

induction of chondrocyte hypertrophy generated from MSCs [145][383]. However, 

BMP9 was selected to induc tracheal chondroprogenitors as previous results in our 

laboratory resulted in significant matrix deposition consisting of high levels of collagen 

type II and aggrecan using bovine immature and mature articular chondroprogenitors 

when compared with TGFβ1[data not shown]. 
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Figure 4.1. Summary of major signal transduction pathways of both TGFβ and 

BMP. The aim was to utilise two growth factors with two distinct pathways analyse the 

chondrogenic potential of tracheal chondroprogenitors [404].  
 

 
To replicate condensation during the initial stages of in vivo cartilage formation, pellet 

culture is employed in vitro to mimic the microenvironment of developing cartilage and 

to facilitate chondrogenesis [405]. Pellet culture aims to promote 3D intercellular and 

cell-to-matrix interactions similar to those experienced by cells in vivo compared to 

those experienced by cells in 2D culture [406]. The supplementation of culture medium 

with TGFβ1 induces MSCs condensation during the differentiation phase, resulting in 

the stimulation of ECM production and deposition [407]. Based on these original 

findings, TGFβ1 is now routinely used during stem cell proliferation and chondrogenesis 

to induce cartilage formation [408], [409]. in general pellets are cultured with 10ng/ml 

of TGFβ1 for a period of 21-28 days, parameters that have been optimised through 

chondrogenic induction in bone marrow-derived MSCs [410]. TGFβ1 also is used in 
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conjunction with dexamethasone [411], l-proline [412] and ascorbic acid-2-phosphate 

[197] due to the synergistic role of these supplements in promoting cartilage ECM 

production and deposition in vitro. 

 
4.2 Results 

In this chapter we will compare the effect of two chondrogenic growth factors, TGFβ1 

and BMP9, on the in vitro differentiation of tracheal chondroprogenitors. Histological, 

immunohistochemical, biochemical and qPCR analysis was performed to determine the 

extent of differentiation of cells under the stated culture conditions (Figure 4.2). 

To obtain a single cell suspension of tracheal chondrocytes, full-thickness tracheal 

cartilage was digested by sequential enzymatic incubation using first pronase and then 

collagenase. Full-depth chondrocytes were immediately pelleted down to act as a 

baseline control of native cell cartilage production. Tracheal cartilage-derived colony-

forming cells were enriched from the full-depth population using differential adhesion to 

fibronectin. Colony forming cells (cells that had undergone more than 5 population 

doublings therefore ≥ 32 cells, were selectively trypsinised from dishes using 6 mm 

diameter cloning rings after 7-10 days in culture and the derived monoclonal cell-lines 

culture-expanded and treated with chondrogenic media as set out previously in materials 

and methods (Chapter 2, Section 2.3.5.1) and then further supplemented with either 

TGF1 (10 ng/mL) or BMP9 (100 ng/mL). 
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Figure 4.2. Pipeline of chondrogenic induction of porcine tracheal 

chondroprogenitors.   

 
 
To ensure that culture expanded porcine tracheal chondroprogenitor (CP) monoclonal 

cell lines maintained the criteria for adult mesenchymal-like stem cells, PCR-based gene 

expression analysis was undertaken of relevant surface markers to monitor the 

expression of the positive biomarkers and negative haematopoietic-related markers prior 

to pellet culture. As shown in Figure 4.3A, the tested tracheal chondroprogenitor cell 

line was negative for both the hematopoietic marker CD34 and the leukocyte marker 

CD45, but weakly positive for monocyte cell surface marker CD14 (TLR4 co-receptor). 

Tracheal chondroprogenitors were weakly positive for CD166 (alcam) and CD105 

(endoglin), and strongly positive for CD90 (thy-1) and CD73 (ecto-5’-nucleotidase). In 

addition, cells were also positive for gene transcription of nestin (NES) a well-

characterised marker of stem/progenitor cells [368] Culture-expanded tracheal cartilage 

chondroprogenitors were pelleted down by low-speed centrifugation and incubated at 37 

°C for a period of 21 days to analyse their chondrogenic ability in a three-dimensional 

(3D) pellet model of in vitro cartilage formation (Figure 4.3B). Figure 4.3B clearly 

shows the smallest pellet as being the media that did not contain growth factors. The 
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pellet cultured in the presence of TGFβ1 was larger than the pellet cultured in the 

absence of growth factors and BMP9 supplemented media produced the largest pellet of 

all. 

 

 

Figure 4.3. Characterisation of tracheal cartilage derived stem/progenitor cells 

before pellet culture. (A) Gene expression of stem cell surface markers defined by 

International Society for Stem Cell Research (ISSCR) for tracheal derived 

chondroprogenitors (TCP). Gels were constructed from various individual gels and 

separated with white banding. (B) Tracheal chondroprogenitors were pelleted down with 

chondrogenic medias supplemented with TGFβ1 and BMP9.  

 

 
 
4.2.1 Histological analysis of 3D pellet culture 

Tracheal chondroprogenitors and their full depth (FD) chondrocyte counterparts were 

cultured for 21 days with chondrogenic media, as described in Chapter 2, Section 

2.3.5.1, in the presence of 10 ng/mL TGFβ1 and 100 ng/mL BMP9. After 21 days, 

pellets were fixed, and paraffin wax embedded to assess the deposition and localisation 

of proteoglycans and collagens within the extracellular matrix. Full depth chondrocytes 
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were only treated with TGFβ1 whereas, chondroprogenitors were treated with both 

TGFβ1 and BMP9. 

Haematoxylin and eosin staining were used to differentiate cell and extracellular matrix 

morphology. Using light microscopy, as shown in Figure 4.4A, the full-depth tracheal 

chondrocyte pellets displayed a more organised cellular and matrix orientation when 

compared to TGFβ1 (Figure 4.4B) and BMP9 (Figure 4.4C) treated chondroprogenitor 

pellets. Furthermore, both TGFβ1 and BMP9 cultured pellets presented with a dense 

cellular layer which formed the periphery of the pellet with a halo-like appearance. The 

full-depth tracheal chondrocyte pellet formed a small C-shape body while tracheal 

chondroprogenitor pellets formed rounder structures with column like banding. The 

most obvious differences were that in full-depth tracheal and BMP9 treated pellet 

cultures there was more extracellular matrix evident between cells, whereas the TGFβ1 

treated pellet was more cellular with considerably less extracellular matrix between 

chondrocytes. All three pellet types exhibited a darker pink stain around their periphery 

indicating a more defined matrix deposition.  

 

 

Figure 4.4. Haematoxylin and eosin stain of chondrogenic induced pellets after 21 

days of chondrogenic culture. (A) Shows tracheal full depth chondrocytes (FD) in 

presence of TGFβ1, (B) tracheal chondroprogenitors (CP) in presence of TGFβ1 and (C) 

presence of BMP9. Images represent one porcine donor.  
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Toluidine blue is a basic thiazine metachromatic dye that selectively binds to acidic 

proteoglycans specifically glycosaminoglycans (GAGs) and is used as a histological 

stain to assess the quality of proteoglycan deposition in pellets. Light microscopy images 

of full depth tracheal pellet sections showed that the posterior convex part of the pellet 

stained very strongly for toluidine blue indicating abundant presence and deposition of 

proteoglycan. The anterior concave surface of the pellet stained less with toluidine blue 

and was more fibrous in appearance indicating the presence of more collagenous matrix 

in this location. Cell pellets formed with TGFβ1 (Figure 4.5B) also were positive for 

GAG content, however the GAG deposition was mostly observable around the periphery 

of the pellets. In the centre of the TGFβ1 pellets there were spaces, probably due to 

sections breaking apart during sectioning and this was probably due to the lack of 

extracellular matrix present. The latter distribution of extracellular matrix and cells is 

characteristic of the necrotic centres visible in articular cartilage pellets caused by either 

incomplete differentiation of cells by TGFβ1 growth factor, or, the lack of diffusion of 

nutrients and oxygen to cells at the core of the pellet [215]. In contrast, BMP9 treated 

pellets showed strong toluidine blue labelling throughout the whole depth of the pellet, 

with little evidence of a necrotic core, though there was relatively less staining at the 

pellet core. Chondroprogenitors grown in the presence of expansion medium but without 

growth factor did produce pellets but did not deposit substantial amounts of toluidine 

blue staining matrix (Figure 4.5D).  
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Figure 4.5. Toluidine blue stain of chondrogenic induced pellets after 21 days of 

chondrogenic culture to detect GAG deposition. (A) shows tracheal full depth 

chondrocytes (FD) in presence of TGFβ1, (B) tracheal chondroprogenitors (CP) in 

presence of TGFβ1 and (C) BMP9. (D) Shows tracheal chondroprogenitor cells (CP) in 

presence of growth media without any chondrogenic supplements. Images represent one 

porcine donor. 
 

 
Alizarin red stain was performed to determine if any calcium deposition occurred as a 

consequence of cells undergoing terminal chondrocyte differentiation and possible 

osteogenic differentiation, as previously reported for bone marrow-derived 

mesenchymal stem cells [386].  No obvious staining for alizarin red was detected in the 

native tissue (Figure 4.6A), tracheal full depth differentiated (Figure 4.6B) or tracheal 

CP expansion medium pellets (Figure 4.6C). Some intense staining was evident on the 

margins of pellets treated with the chondrogenic medias, but this may be non-specific 

(Figure 4.6C& 6D).  
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Figure 4.6. Alizarin red stain of chondrogenic induced pellets after 21 days of 

chondrogenic culture to detect calcium deposition. (A) shows the native tracheal 

tissue. Tracheal cartilage is indicated (arrowed). (B) shows tracheal full depth 

chondrocytes (FD) in presence of TGFβ1, (C) tracheal chondroprogenitors (CP) in 

presence of TGFβ1 and (D) BMP9. (E) Tracheal chondroprogenitor cells (CP) in 

presence of growth media without any chondrogenic supplements. Images represent one 

porcine donor. 
 

 

4.2.2 Immunohistochemical analysis of pellets 

4.2.2.1 Aggrecan 

Immunohistochemical analysis revealed that tracheal full-depth chondrocyte pellets 

(Figure 4.7A) differentially labelled for aggrecan antibodies with clear aggrecan column 

banding. Labelling was localised to the posterior convex part of the pellet with the 

highest levels of labelling at the periphery of this structure. The anterior convex surface 

did not label for aggrecan, indicating possibly that the surface is more collagenous. 

Tracheal chondroprogenitor pellets treated with TGFβ1 also labelled for aggrecan 

antibodies and with labelling at the periphery of the pellet (Figure 4.7B) in line with the 

observations seen with GAG deposition in toluidine blue stained sections and lacked the 

presence of aggrecan column. Tracheal chondroprogenitor pellets treated with BMP9 
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(Figure 4.7C) showed strong labelling for aggrecan throughout the full depth of the 

pellet (see inset, Figure 7C) with the exception of a non-labelling streak near the 

surface. Tracheal chondroprogenitors pelleted and cultured with non-growth factor 

supplemented medium (Figure 7D) labelled very weakly for aggrecan antibodies 

indicating that cell-cell contact induced by 3D culture also induces aggrecan expression, 

though weakly in comparison.  

 

 
 
Figure 4.7. Immunohistochemical analysis chondrogenic induced pellets after 21 

days of chondrogenic culture to detect aggrecan (A) shows tracheal full depth 

chondrocytes (FD) in presence of TGFβ1, (B) Tracheal chondroprogenitors (CP) in 

presence of TGFβ1, (C) tracheal chondroprogenitors (CP) in presence of BMP9, (D) 

tracheal chondroprogenitor cells (CP) in presence of growth media without any 

chondrogenic supplements and (E) Mouse Ig was used at the same concentrations as the 

primary antibodies to identify any non-specific labelling in sections. Images represent 

one porcine donor. 

 
 

 
4.2.2.2 Collagen type II 

Immunohistochemical analysis revealed that tracheal full-depth chondrocyte pellets 

(Figure 4.8A) labelled strongly for collagen type II antibodies, (Figure 4.8A). Labelling 
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in full depth pellets was again predominantly in the posterior convex body, although 

some labelling was also evident on the anterior surface. The layer beneath the anterior 

end was not labelled by antibodies. Tracheal chondroprogenitor pellets treated with 

TGFβ1 labelled for collagen type II differentially, with weak labelling throughout the 

full depth of the pellets and more intense labelling at the periphery (Figure 4.8B). 

BMP9-treated tracheal chondroprogenitor pellets displayed intense and even labelling 

throughout the whole pellet (see inset Figure 4.8C), especially in the extracellular 

regions surrounding the lacunae of differentiated progenitors. Tracheal 

chondroprogenitors grown in non-growth factor supplemented medium also labelled for 

collagen type II antibodies (Figure 4.8D) but this labelling was confined to the centre of 

the pellet and to a thin band on the surface of pellets. The mouse IgG control  displayed 

little or no labelling (Figure 4.8E).  

 

 

 
 
Figure 4.8. Immunohistochemical analysis chondrogenic induced pellets after 21 

days of chondrogenic culture to detect collagen type II (A) shows tracheal full depth 

chondrocytes (FD) in presence of TGFβ1, (B) tracheal chondroprogenitors (CP) in 

presence of TGFβ1, (C) tracheal chondroprogenitors in presence of BMP9, (D) tracheal 

chondroprogenitor cells (CP) in presence of growth media without any chondrogenic 

supplements and (E) Mouse IgG was used at the same concentrations as the primary 

antibodies to identify any non-specific labelling in sections. Images represent one 

porcine donor. 
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4.2.2.3 Collagen type I 

Collagen type I labelling was evident throughout the whole depth of the tracheal full 

depth chondrocyte pellets (Figure 4.9A) mainly located around chondrocytes and less 

intensely in the extracellular matrix. In tracheal chondroprogenitors induced to 

differentiate with TGFβ1 there was again differentiated labelling with weak labelling 

throughout the whole pellet with more intense labelling confined to the surface (Figure 

4.9B). Tracheal chondroprogenitors treated with BMP9 also exhibited strong labelling to 

collagen type I antibodies (Figure 4.9B) throughout the full-depth of the pellet. 

Labelling to collagen type I antibodies was less evident in tracheal chondroprogenitors 

cultured as pellets in non-chondrogenic medium (Figure 4.9D) and present as a weak 

signal on the surface of pellets. around the periphery of the pellet. No expression was 

observed on the control pellet labelled with mouse IgG (Figure 4.9E).  

 
 

 
 

Figure 4.9. Immunohistochemical analysis chondrogenic induced pellets after 21 

days of chondrogenic culture to detect collagen type I (A) shows tracheal full depth 

chondrocytes (FD) in presence of TGFβ1, (B) tracheal chondroprogenitors (CP) in 

presence of TGFβ1, (C) tracheal chondroprogenitors (CP) in presence of BMP9, (D) 

tracheal chondroprogenitor cells (CP) in presence of growth media without any 

chondrogenic supplements and (E) Mouse IgG was used at the same concentrations as 
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the primary antibodies to identify any non-specific labelling in sections. Images 

represent one porcine donor. 

 

 

 

4.2.2.4 Collagen type X 

Collagen type X immunostaining was performed to further validate alizarin red staining 

in pellets by detecting any specific chondrocytes hypertrophic markers such as collagen 

type X (Figure 4.10). The antibody labelling however, was not specific and therefore 

both positive and negative controls stained false positive (Figure 4.10A& 4.10B).   

 

 

Figure 4.10. Immunohistochemical analysis chondrogenic induced pellets after 21 

days of chondrogenic culture to detect collagen type X (A) shows the native tracheal 

tissue. Tracheal cartilage is indicated (arrowed). (B) mouse IgG was used at the same 

concentrations as the primary antibodies to identify any non-specific labelling in 

sections. (C) tracheal full depth chondrocytes in presence of TGFβ1 and (D) and (E) 

shows tracheal chondroprogenitor cells in presence of BMP9 and TGFβ1 respectively. 

(F) shows tracheal chondroprogenitors in presence of growth media without any 

chondrogenic supplements. Images represent one porcine donor. 

 

 
 

4.2.3 Biochemical quantification of pellet extracellular matrix content 

To complement histological analysis, spectrophotometric quantification of GAG, 

collagen and DNA was performed using DMMB, hydroxyproline and DNA assays 
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respectively. The GAG content was quantified using DMMB dye, which is a cationic 

dye, that directly binds to negatively charged sulphated glycosaminoglycans (sGAG). 

The collagen content was measured indirectly by quantifying hydroxyproline content. 4-

Hydroxyproline is an amino acid commonly found in hyaline cartilage collagen and 

functions to stabilise the helical structure. DNA was quantified using the picogreen dye 

assay to analyse whether the pellet culture induced proliferation as well as for 

normalisation of sGAG and hydroxyproline measurements in pellet cultures.  

Full-depth tracheal chondrocyte pellets stimulated with TGFβ1 (120.3±7.6 μg/mL) 

produced significantly higher levels of proteoglycan, measured as raw sGAG, (p < 

0.0001) than tracheal chondroprogenitors when stimulated with either TGFβ1 (1.6±0.8 

μg/mL) or BMP9 (6.2±2.1 μg/mL) growth factors. Full depth tracheal chondrocyte 

pellets showed a 100-fold and 60-fold increase in total sGAG when compared to TGFβ1 

and BMP9 pellets. There was also a 3.28-fold increase in BMP9 when compared to 

TGFβ1 pellets (p < 0.05) (Figure 4.11A). 

DNA quantifications revealed that full depth tracheal chondrocyte pellets (0.95±0.13 

μg/mL) were significantly higher in DNA content than  TGFβ1 (0.31±0.09 μg/mL; p < 

0.0001) and not significantly different than BMP9 treated tracheal chondroprogenitors 

(0.88±0.35 μg/mL). Pellets formed with BMP9 had a 2.5-fold higher level of DNA than 

TGFβ1 treated pellets (p < 0.05; Figure 4.11B).  

Raw hydroxyproline measurements (Figure 4.11C) showed that the total collagen 

amount was highest in full-depth tracheal chondrocyte pellets (0.098±0.0009 μg/mL) 

followed by BMP9 (0.097±0.0008 μg/mL) and TGFβ1 (0.096±0.0004 μg/mL) 

chondroprogeitor pellets. There was a significance difference when comparing FD with 

TGFβ1 and BMP9 treated pellets (p < 0.001; p < 0.05 respectively).  
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Figure 4.11. Quantification of tracheal full depth chondrocytes (FD) and 

chondroprogenitors (CP) for (A) sulphated GAG content, (B) DNA content and (C) 

total collagen content. All data shown is average (± standard deviation) from three 

biological repeats, tested for significance using two-way ANOVA analysis. * and ** and 

*** are used to indicate p < 0.05, p < 0.001 and p < 0.0001 respectively. 
 

 
When total sGAG content was normalised to DNA for all pellet culture groups, full 

depth tracheal chondrocyte pellets (128.41±21.2 μg/μg) showed a 26-fold and 18-fold 

increase compared to TGFβ1 (5.17±2.21 μg/μg) and BMP9 (7.11±0.69 μg/μg) 

respectively (Figure 4.12A). No significant difference was found between sGAG 

between TGFβ1 and BMP9 treated pellets. Similarly, when total collagen content was 

normalised to DNA (Figure 4.12B), TGFβ1 pellet (0.33±0.097 μg/μg) was significantly 

higher than FD pellet (0.1±0.02 μg/μg; p < 0.001) and BMP9 pellet (0.122±0.05 μg/μg; 

p < 0.05). No significance difference in averages was observed between full depth 

tracheal chondrocyte pellets and BMP9-treated pellets. 
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Figure 4.12. sGAG and collagen contents of pellets normalised to DNA. Tracheal full 

depth chondrocytes (FD) and tracheal chondroprogenitors (CP) pellets following 21 

days chondrogenesis was analysed biochemically and normalized to DNA. All data 

shown is average (± standard deviation) from three biological repeats, tested for 

significance using two-way ANOVA analysis. * and ** and *** are used to indicate p < 

0.05, p < 0.001 and p < 0.0001 respectively. 

 
 

 
4.2.4 Gene expression analysis 

To further quantify the extracellular matrix of pellets, steady-state gene expression 

levels of the most predominant cartilage matrix components were measured after 21-day 

culture period. Chondrogenesis in vitro is initiated by the expression of SOX9, the main 

chondrogenic transcriptional factor, which in turn, is required for the transcriptional 

activation of aggrecan and collagen type II promoters leading to the production of an 

organised extracellular matrix. Collagen types I and X were used to distinguish between 

the production of fibrocartilage (collagen type I) or calcified cartilage (collagen type X), 

as tracheal cartilage is principally classified as a hyaline-type cartilage. Glyceraldehyde 

3-phosphate dehydrogenase (GAPDH) was used as a housekeeping gene.  

Relative gene expression levels of SOX9 (Figure 4.13C) were significantly decreased 

for chondroprogenitor pellets when cultured in TGFβ1 (0.51±0.11; p < 0.001) and 

BMP9 (0.67±0.4; p < 0.05) when compared with full depth tracheal chondrocyte pellets 

(1.05±0.35). No significance difference in averages was observed between TGFβ1 and 

BMP9-treated tracheal chondroprogenitor pellets.  
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Figure 4.13. SOX9 gene expression shown as a fold change using ∆∆CT method. (A) 

shows the melt-curve. (B) shows the efficiency of amplification which was 110%. (C) 

shows the fold change expression of tracheal full depth chondrocytes (FD) and tracheal 

chondroprogenitors (CP) after 21 days chondrogenic culture period. All data shown is 

average (± standard deviation) from three biological repeats, tested for significance 

using two-way ANOVA analysis. * and **  are used to indicate p < 0.05 and p < 0.001 

respectively. 
 

 
After 21 days culture the relative expression levels of collagen type II in full-depth 

tracheal chondrocyte pellets (1.01±0.16) were (Figure 4.14C) significantly higher (p < 

0.0001) compared to TGFβ1 (0.03±0.01) and BMP9-treated tracheal chondroprogenitor 

pellets (0.09±0.01) showing a 33-fold and 11-fold increase respectively. BMP9-treated 

pellets had transcribed more collagen type II RNA when compared to TGFβ1 and 

showed a 3-fold increase (p < 0.05).   

 

 

 

 



 152 

 

Figure 4.14. COL2 gene expression shown as a fold change using ∆∆CT method. (A) 

shows the melt-curve. (B) shows the efficiency of amplification which was 101%. (C) 

shows the fold change expression of tracheal full depth chondrocytes (FD) and tracheal 

chondroprogenitors (CP) after 21 days chondrogenic culture period. All data shown is 

average (± standard deviation) from three biological repeats, tested for significance 

using ANOVA analysis. * and  *** are used to indicate p < 0.05 and  p < 0.0001 

respectively. 

 

The same trend as observed for collagen type II gene expression was seen for aggrecan 

(ACAN) expression. Aggrecan expression in full-depth tracheal chondrocyte pellets 

(1.1±0.44) was significantly higher when compared to chondroprogenitor pellets 

stimulated with either TGFβ1 (0.2±0.08) or BMP9 (0.45± 0.04) (Figure 4.15C). BMP9-

treated pellets had higher ACAN expression levels when compared to TGFβ1-treated 

tracheal chondroprogenitor pellets and showed a 2.25-fold increase overall in 

comparison (p < 0.05).    
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Figure 4.15. ACAN gene expression shown as a fold change using ∆∆CT method. 

(A) shows the melt-curve. (B) shows the efficiency of amplification which was 91.9%. 

(C) shows the fold change expression of tracheal full depth chondrocytes (FD) and 

tracheal chondroprogenitors (CP) after 21 days chondrogenic culture period. All data 

shown is average (± standard deviation) from three biological repeats, tested for 

significance using two-way ANOVA analysis. * and ** and *** are used to indicate p < 

0.05, p < 0.001 and p < 0.0001 respectively. 
 

Tracheal chondroprogenitor pellets stimulated with TGFβ1 (3.9±1.18) showed the 

highest relative gene expression levels of collagen type I followed by BMP9 induced 

pellets (3.27±2.05) and full-depth tracheal chondrocyte pellets (1.01±0.2). There was a 

3.86-fold increase in TGFβ1-treated progenitor pellets (p < 0.0001) and 3.23-fold 

increase by BMP9 progenitor pellets (p < 0.05) when compared to the relative levels of 

expression in full-depth tracheal chondrocyte pellets (Figure 4.16C).  
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Figure 4.16. COL1 gene expression shown as a fold change using ∆∆CT method. (A) 

shows the melt-curve. (B) shows the efficiency of amplification which was 140%. (C) 

shows the fold change expression of tracheal full depth chondrocytes (FD) and tracheal 

chondroprogenitors (CP) after 21 days chondrogenic culture period. All data shown is 

average (± standard deviation) from three biological repeats, tested for significance 

using two-way ANOVA analysis. * and *** are used to indicate p < 0.05  and p < 

0.0001 respectively. 
 

 
BMP9-induced chondroprogenitor pellets (98.1±40.06) showed the highest relative 

expression of collagen type X followed by TGFβ1-treated progenitor pellets 

(15.98±5.09) and full depth tracheal chondrocyte pellets (1.05±0.4). Both BMP9 and 

TGFβ1 displayed significantly higher transcriptional levels compared to full depth 

tracheal chondrocyte pellets with a 93-fold (p < 0.001) and 15-fold (p < 0.05) increase, 

respectively (Figure 4.17C). 
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Figure 4.17. COLX gene expression shown as a fold change using ∆∆CT method. 

(A) shows the melt-curve. (B) shows the efficiency of amplification which was 109%. 

(C) shows the fold change expression of tracheal full depth chondrocytes (FD) and 

tracheal chondroprogenitors (CP) after 21 days chondrogenic culture period. All data 

shown is average (± standard deviation) from three biological repeats, tested for 

significance using two-way ANOVA analysis. * and ** are used to indicate p < 0.05, p 

< 0.001  respectively. 
 

 
 

4.3 Discussion 

As previously stated the choice of cell and its origin tissue is a primary pivotal step 

towards reconstruction of aneural and avascular tracheal cartilage tissue [204]. In airway 

tissue engineering a particular focus has been placed on autologous approaches with 

chondrocytes and MSCs from other anatomical sources (nasal septum, auricular, adipose 

and bone marrow MSCs) being investigated [130]. To our knowledge no previous 

attempt has been taken to assess the chondrogenic ability of tracheal-derived 

chondroprogenitors, and therefore, the chondrogenic potential of tracheal 

chondroprogenitors was assessed by a standard chondrogenic pellet assay [23] [159]. 

This assay used a defined culture medium containing TGFβ1 [235] a widely used growth 
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factor in the field of cartilage tissue engineering and also another member of the TGFβ-

superfamily, BMP9.  

Tracheal full-depth chondrocytes were pelleted directly after tissue digest to provide a 

baseline control and were stimulated with TGFβ1 only, as the effect of this growth factor 

is well studied as opposed to BMP9. Tracheal chondroprogenitors cultured in the 

absence of growth factors were also included as a control group to examine the effect of 

cell-cell and cell-matrix interaction in matrix synthesis. Only histological images were 

shown for tracheal chondroprogenitors pellets grown in non-chondrogenic medium, and 

because of the lack of matrix deposition it was not feasible to perform other analysis. 

Therefore full-depth tracheal chondrocytes were considered as the main control group, a 

baseline for optimal induction of the chondrogenic phenotype.   

Many studies have used chondrocytes or MSCs where these cells are expanded for many 

generations in 2D culture prior to chondrogenic induction [192][393]. In this study full-

depth chondrocytes were not cultured in 2D plastic culture to avoid phenotypic changes 

caused by loss of cellular function and specialisation. It is well established that 

chondrocytes lose their phenotypic stability upon long-term 2D culture and therefore it 

is more logical to use fully chondrocyte committed cells directly after tissue enzymatic 

digest, as currently there are no published strategies to maintain the chondrogenic 

capacity of cells during long-term in vitro expansion [414]. For differentiation studies, 

pellet culture is employed as a standard model as this model recreates the initial stages 

of mesenchymal condensation observed during embryonic development of skeletal 

structures [415]. Although cell necrosis, principally due to a lack of diffusion of oxygen 

and nutrients, at the centre of pellet cultures can be problematic [196][396] and might 

interfere with some important aspects of chondrocyte function, such as ECM deposition, 

it is an acceptable model to understand if cells are capable of efficient chondrogenesis. 

Therefore, it is crucial to use fully differentiated cells alongside with stem/progenitor 

cells as a baseline of normal function to give a more physiologically relevant 

comparison to the degree of chondrogenesis produced by progenitor cell lines. It has 

been previously shown that stem/progenitor cells are more responsive when compared 

against their fully differentiated progeny and bone marrow MSCs during in vitro 
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chondrogenesis [138][204][345]. 

The standard concentration of TGFβ1 to induce chondrogenesis is 10 ng/mL for 21 days. 

This treatment was therefore adopted, as the standard quantity to induce chondrogenesis 

as shown in various cell sources [410]. BMP9 was used at a concentration of 100 ng/mL 

in this study as this concentration has been shown to optimally induce chondrogenesis in 

immature and mature bovine articular cartilage [data not shown]. This result agreed with 

a previous publication where 100ng/mL of BMP9 was able to potently induce 

chondrogenic induction of human bone marrow MSCs and resulted in the 

phosphorylation of SMAD1/5, which ultimately up-regulated SOX9 [191]. 

Chondrogenic induction of tracheal chondroprogenitors with BMP9 was more 

significant when compared with TGFβ1 treatment, using raw GAG and collagen content 

measurements. This data is in accordance with previous work done by Blunk et al. 

showing increased synthesis of sGAG and collagen from immature chondrocytes when 

cultured in polyglycolic acid in presence of 1-100 ng/mL of BMP9 against untreated 

samples [417]. Hills et al. also reported an increase in sGAG and collagen content in 

immature explants using 100 ng/mL BMP9 when compared with non-treated explants 

[418].  

Collagen content normalized to DNA content however showed there is more potential 

for tracheal chondroprogenitor cells to secrete collagen per cell when stimulated with 

TGFβ1 as opposed to BMP9. When comparing full-depth tracheal cartilage pellets with 

tracheal chondroprogenitors treated with TGFβ1 and BMP9, the full-depth tracheal 

chondrocyte pellet outperformed both treatments for sGAG and collagen deposition. 

This result is not in line with what previously reported where chondrocytes were unable 

to synthesis sGAG and collagen as efficiently as articular and auricular 

chondroprogenitors incorporated in gelatin methacryloyl in the presence of TGFβ1. 

However, in both the latter referenced studies, equine culture expanded chondrocytes up 

to passage 1 were used and the period of chondrogenesis was 56 days [138][345]. 

Therefore, the latter studies used chondrocytes that might have partially undergone loss 

of function and specialisation and may have demonstrated an inability to efficiently 

recapitulate the chondrocyte functionality and specialisation. Hence, using full-depth 
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unexpanded cell populations provides a more physiologically relevant insight into the 

chondrogenic behavior of tracheal progenitors. However, to fully comprehend the main 

factor of chondrogenic potency it would be more desirable to utilize full depth 

chondrocytes and perform pellet cultures with the presence of BMP9 and also basal 

medium only.  

Messenger RNA expression of cartilage specific markers confirmed tracheal 

chondroprogenitors differentiation towards the chondrogenic lineage. SOX9 expression 

was higher in BMP9 treated pellets when compared against TGFβ1 treated pellets after 

21 days of chondrogenic induction. This ultimately resulted in elevated gene expression 

of ACAN and COL2A1 respectively in BMP9 compared to TGFβ1. A study done by 

Majumdar et al. demonstrated the chondrogenic differentiation of BMP2 and BMP9 

combined on human MSCs in alginate beads. It showed that there was an increase in 

collagen type II and aggrecan gene expression showing similarities with our data when 

comparing the effects of BMP9 and TGFβ1 on chondrogenic differentiation of 

progenitors [403]. Although BMP9 seemed superior in producing the appropriate 

hyaline type matrix proteins, full-depth tracheal cartilage pellets treated with TGFβ1 

outperformed both BMP9 and TGFβ1 progenitor treated cells at gene level and in turn 

protein matrix synthesis and secretion. This was also evident as shown by the 

histological and immunohistological images where the full-depth tracheal cartilage pellet 

produced a more homogenous and C-shape construct rich in aggrecan and collagen type 

II protein similar to their parental tissue by the presence of the columnar banding, as also 

shown in the previous chapter (Chapter 3). Tracheal chondroprogenitors pellets grown in 

the absence of growth factor supplemented and defined chondrogenic medium also 

exhibited positive staining for aggrecan and collagen type II indicating showing that 

close cell-cell contact also plays a role in stimulating chondrogenesis and therefore the 

synthesis of relevant matrix proteins. The fact that full depth tracheal pellets showed 

superior outcome could be indicative of chondroprogenitors being in the progressive 

differentiation phase and not that they are not fully committed, or that not all cells are 

committed. This was in accordance to previous data using chondroprogenitors from 

various cartilage sources upon chondrogenic induction [138][201][345].  
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The gene expression of COL1 and COLX was minimal in the full depth tracheal pellet, 

however an increase was observed with tracheal chondroprogenitor pellets treated with 

both TGFβ1 and BMP9. This effect was not observed in chondroprogenitors derived 

from articular and auricular cartilage embedded in gelatin methacryloyl in presence of 

TGFβ1 for a period of 56 days when compared with their counterparts’ chondrocytes. 

The opposite effect was reported where chondrocytes exhibited an up-regulated 

expression of COL1 and COLX and chondroprogenitors displayed a negligible up-

regulation of the aforementioned genes [138], [366]. This down-regulation could be due 

to incorporation of chondroprogenitors in a 3D scaffold and the longer period of 

chondrogenesis as at day 1 there was no significant difference in COL1 and COLX 

expression across the cell types. With regards to BMP9, previous publications have 

shown that up-regulation of COLX results in induced hypertrophic chondrocyte 

differentiation in bone marrow MSCs [217][373][399] which is in accordance with our 

data where tracheal chondroprogenitor pellets stimulated with BMP9 exhibited the 

highest expression of COLX a marker of chondrocyte hypertrophy which may lead to 

mineralization [386] . However, whether the levels of COLX produced are 

physiologically relevant, i.e. sufficient to induce calcification of tissues under the 

appropriate conditions has yet to be fully tested as the immunohistochemistry results for 

collagen type X was found to be non-specific. TGFβ receptors ALK-1 and ALK-5 

activate Smad1/5/8 and Smad 2/3 respectively [372][400].  Activation of ALK-5 and 

subsequent signaling of Smad 2/3 have shown to provide inhibitory effects of 

chondrocyte hypertrophy [401][402]. Conversely the activation of Smad 1/5/8 that could 

stem from TGFβ and BMP correlates with RUNX-2, which directly results in 

hypertrophic differentiation with consequent production of collagen type X, osteocalcin 

and osteopontin [377][403]. Future studies should further investigate the ratio of 

ALK1/ALK5 signalling on stimulated chondroprogenitors and perform a time point 

analysis to constructively  understand the effects of various chondrogenic growth 

factors. 

The mRNA expression data matched the immunohistological images where BMP9 

demonstrated the highest amount of collagen type I synthesis followed by TGFβ1 and 

full-depth pellets, but it was not visible for tracheal chondroprogenitors pellet within the 
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non-chondrogenic medium or native tracheal cartilage tissue, suggesting fibrocartilage 

formation. In a previous study using human articular chondroprogenitors and TGFβ2 

treatment [220], the presence of collagen type I at protein level was associated with 

recapitulation of developmental processes in matrix synthesis, where primarily collagen 

type I is deposited and as well as collagen type II, then is progressively lost as cells 

mature [424]. The presence of collagen type I have also been shown 

immunohistochemically and by quantitative gene expression by Khan et al. in the 

superficial zone of juvenile (mature) and immature bovine explants [425]. We did not 

obtain similar observations with native tracheal tissue as shown in the previous chapter 

and the presence of collagen type I was absent as shown by immunohistochemical 

analysis yet present at mRNA level of the 6 months old native porcine tracheal tissue. 

This pattern was the same where COLX gene expression and alizarin red stain was 

performed. Although minimally visible for tracheal chondroprogenitors in absence of 

chondrogenic medium and full-depth pellets, a more intense staining was visible within 

the TGFβ1 and BMP9 pellets especially around the outer edges. However, it has been 

shown that alizarin red stain is not always specific for hypertrophic chondrocytes [426], 

but is routinely used for the detection and is specific to calcium deposition routinely 

used for detection of micro calcium crystals in synovial fluid when detecting 

osteoarthritis in relation to articular cartilage degeneration [427]. These results suggest a 

possible calcification where this trend is not seen within the tissue especially on the 

cartilage component of the native tracheal C-ring. Previous studies have outlined lack or 

minimal of collagen type X expression upon chondrogenic differentiation of 

chondroprogenitors at mRNA and protein level within human, bovine and equine animal 

models using the TGFβ family [138][201][204][345].  

Therefore, these results suggest that the standard chondrogenic formulation adopted 

from articular cartilage chondroprogenitors needs further refining and given the right 

environment the likelihood formation of hyaline type cartilage derived from tracheal 

chondroprogenitors would improve. For example based on the developmental biology of 

the airway growth factors such as TGFβ2 and BMP4 have been shown to be heavily 

involved in up-regulating SOX9 resulting in cartilage patterning and formation [22]. 

Oxygen tension has been shown to play a pivotal role in cartilage tissue engineering. 
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Hypoxia, low-tension oxygen blocks hypertrophy and ossification of chondrocytes and 

bone marrow MSC [428]. From the formation of the limb bud, through to cartilage 

growth plate formation and during homeostasis of adult articular cartilage, there exists a 

hypoxic state in which mesenchymal progenitors and articular chondrocytes reside and 

function [429]. Hypoxia and hypoxia-inducible factor (HIF) play essential roles in the 

proliferation, differentiation and maintenance of the articular chondrocyte phenotype 

[430]. Unlike that of specific growth factors, which are expressed in specific temporal 

patterns, hypoxia is constitutively present and plays active role throughout articular 

cartilage development [411][412]. This suggests a potential role for hypoxia and 

cartilage tissue engineering. In terms of differentiation, the lineages of differentiation of 

BM-MSCs have been shown to be differentially altered in response to hypoxia, with 

adipogenesis and chondrogenesis being elevated by hypoxia and osteogenesis inhibited 

[413][414]. Currently, we are still at early stages of identifying the genetic mechanisms 

underlying trachea formation, growth and development, and thus far no studies have 

targeted the effect of hypoxia on trachea. Additionally, the role of hypoxia has been 

highlighted in developing lung where cellular hypoxia triggers diverse physiological 

responses in lung epithelial, endothelial, and smooth muscle cells that are mediated by 

transcriptional and posttranslational mechanisms [435].  

 

4.4 Conclusion 

This chapter focused on the chondrogenic capacity of the newly identified tracheal 

chondroprogenitor populations and demonstrated using traditional 3D pellet culture, 

these cells have the potential to undergo chondrogenesis. However, the presence of 

collagen type I and X could be indicative of fibrocartilage and possible hypertrophy 

using the current chondrogenic protocols. Overall the tracheal full-depth chondrocytes 

pellet produced the best outcome of chondrogenesis  where the histological images, 

biochemical data (GAG and collagen) and gene expression analysis for the positive and 

negative matrix collagens proved to be the most ideal scenario. This is accepted as these 

cells were not expanded in 2D prior to chondrogenic induction and were terminally 

differentiated. 
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5.1 Introduction 

There is a global clinical need for effective therapies for patients suffering from tracheal 

stenosis. Of the many approaches proposed for airway tissue engineering (refer to 

Chapter 1, Section 1.5) decellularisation of donated cadaveric tracheal tissue has 

proved to be the most promising method but lack of donor availability and potential 

issues with immunogenicity are the major drawbacks [98]. Tissue engineering, the use 

of biosynthetic scaffolds, stem cells and growth factors, has the exciting potential to 

offer new approaches to overcome the current problems. For cellular based strategies 

preparing sufficient number of cells capable of either generating the correct tissue or 

driving a reparative response, for implantation is the crucial factor.  It is becoming clear 

that the traditional 2D culture cannot economically generate enough cells, whether fully 

differentiated or dedifferentiated chondrocytes [416][417] or MSCs, with the required 

phenotypic properties in order to produce a physiologically relevant tissue resembling 

the characteristics found in the native tissue [262]. For example, in order to regenerate 

articular cartilage, approximately 15 to 45 million cells are needed for a small 1-2cm3 

defect, and, there are constraints on the amount of donor tissue that can be harvested to 

fill the defect and also economic constraints due to the time and materials required to 

expand a cell population that retains functionality for tissue engineering applications 

[418][419]. In recent years the use of biomaterials to create a 3D environment to guide 

cells to encourage proliferation and differentiation have thus become of greater interest.  

The field of biomaterials is an ever-expanding discipline containing numerous 

classification and groups of materials (refer to Chapter 1, Section 1.10.2). An ideal 

biomaterial should promote proliferation, cellular viability, provide a temporary hosting 

environment and be biodegradable without releasing toxic by-products as well as being 

immunologically inert. The chemical and architectural properties of biomaterials are 

major contributors of triggering and promoting cellular responses [440]. A prerequisite 

characteristic for scaffold materials is the ability to facilitate cellular attachment. Not all 

scaffold materials permit direct cell-material interactions, principally due to extensive 

crosslinking shielding potential binding sites [441], and, coating either natural or 

synthetic biomaterials is often used to improve or enhance [442]. For cell culture and 
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growth of constructs, interconnected porous materials are usually preferred as they 

provide larger surface areas, enhance cell-cell interaction, enable homogenous cell 

distribution, and allow for the diffusion of oxygen, carbon dioxide, glucose and growth 

factors (media content), properties which together enhance cellular growth and 

differentiation  [9,10]. A notable approach in the field of tissue engineering, cartilage in 

particular is the use of porous polymer scaffolds. As previously stated in Chapter 1 

Section 1.6 both natural and synthetic polymers have been exploited in cartilage tissue 

engineering [445]. Natural polymers possess intrinsic abilities to support biological 

functions but one of the major drawbacks is the high variability between batches 

resulting in irreproducibility as well as a lack of mechanical stability [446]. Tuning the 

chemistry of synthetic biomaterial to optimise their architecture and consequently their 

biomechanical properties could potentially circumvent the latter disadvantages but 

modifications tend to remove binding sites for cells (for example by increased 

crosslinking to enhance material stiffness or stability) leading to a reduction in cell 

adhesion [447].  

Microcarriers, a subtype of biomaterials with distinct set of characteristics such as high 

porosity, adaptable surface chemistry and surface topography have been developed for 

cell expansion and tissue engineering applications [257]. Although a wide variety of 

microcarriers manufactured from synthetic or natural materials with different properties 

are commercially available (refer to Chapter 1, Section 1.10.3), natural porous 

microcarriers are usually preferred for ease of homogenous distribution of cells, 

enhanced biological responses, nutrient diffusion and cell-cell contact as well as 

migration. This study focuses on gelatin-derived Cultisphers® microcarriers. Gelatin is a 

naturally derived polymer from collagen and has been widely used in food industry and 

medical applications due to its biodegradability, biocompatibility and cost-effectiveness 

[428][429]. Macroporous gelatin Cultispher® microcarriers have been previously shown 

in conjunction with different human and animal cell types to offer substantial surface 

areas for cell adhesion and proliferation [242][294][430][431]. 

Use of coating materials coupled with microcarriers is a common approach to promote 

functional attachment and support cellular growth. The surface of a microcarriers can be 
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chemically functionalised, for example with peptides or positively charged molecules to 

enhance cell adhesion (e.g. the RGD peptide). Positively charged microcarriers can then 

attract cells (which are overall negatively charged), by electrostatic forces [262]. 

Melero-Martin et al. showed that scaling up chondroprogenitor cell numbers using 

coated Cultispher® G with 10% and 40% FBS could be easily achieved by gradual 

addition of empty microcarriers in a spinner flask, where their work showed that cells 

were able to detach from confluent microcarriers and reattach to newly added 

microcarriers [313].  

While many studies have used microcarrier technology to successfully expand both 

human and animal-derived chondrocytes [257], recently the use of microcarrier has also 

been highlighted as a potential aid towards maintaining the long term phenotypic 

stability of expanded human MSCs [452] and subsequently their ability to undergo 

cartilage differentiation. Experiments have shown that culturing human bone marrow 

MSCs on various types of microcarriers such as Cytodex1, Cytodex3, collagen and glass 

modulates the actin organisation of cells and allowed researchers to systematically guide 

MSCs to efficiently differentiate cells to all the mesoderm-lineages, most efficiently for 

adipogenesis [452]. Other studies by Tseng et al. and Chen et al. reported spontaneous 

osteogenesis of various types of MSCs on collagen-coated microcarriers [453] and 

aggregated cell-seeded Cultispher® S microcarriers [454], in order to fabricate large 

bone structures. This chapter focuses on using newly identified tracheal 

chondroprogenitors and gelatin-based Cultispher® microcarriers for culture expansion 

and on-scaffold differentiation of these cells towards chondrogenesis in the hope of 

developing robust methodologies for fabricating functional autologous tracheal C-rings. 
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5.2 Results  

 
The first objective was to use tracheal chondroprogenitors and Cultisphers® 

microcarriers for large-scale cellular expansion of monolayer cultured 

chondroprogenitors. Initially, chondroprogenitors were grown on monolayer to Passage 

4 (P4), to expand their numbers sufficiently to seed Cultisphers® G microcarriers. The 

overall aim was to improve chondroprogenitor expansion and then use microcarriers as 

intra- and inter-scaffolding material to support differentiation and fabrication of 

customisable cartilage C-rings. Three monoclonal chondroprogenitor cell lines (from 

colonies of more than 32 cells) were used and pooled together for Cultispher® 

microcarrier experiments to avoid excessive 2D expansion (Figure 5.1).  

 

 

Figure 5.1. Pipeline of tracheal chondroprogeniotrs expansion and differentitaion 

on 3D microcarriers.  
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5.2.1 Growth analysis of monoclonal tracheal chondroprogenitors  

First the growth kinetics of chondroprogenitors in the presence of various growth factors 

was tested in order to derive and optimise culture medium for cellular expansion. One 

thousand monoclonal chondroprogenitors at P4 were seeded per well in a 48-well plate. 

The control wells contained chondroprogenitor cells in expansion medium with no 

growth factor supplementation, as described in Material and Methods (Chapter 2, 

Section 2.3.4). The control medium was then also supplemented with various growth 

factors including fibroblast growth factor 2 (FGF2 at 10 ng/mL), transforming growth 

factor β1 (TGFβ1 at 1 ng/mL) and platelet-derived growth factor (PDGF at 10 ng/mL) 

plus combinations of these growth factors. The rate of cell growth was measured by the 

increase in absorbance of PrestoBlue™ dye incorporated into cells. At day 2 no 

significant changes from control medium values occurred across the treatments, whereas 

from day 5 onwards the growth rate using growth factor addition experienced a dramatic 

increase in relative cell number. At day 8 FT (FGF2+ TGFβ1), FTP (FGF2+ 

TGFβ1+PDGF) and PDGF were significantly (p < 0.005) higher in absorbance when 

compared to other groups (Figure 5.2A). There were no significant differences in dye 

absorbance between FT, FTP and PDGF at day 8 and these 3 groups showed a 96-fold 

increase compared to day 0 where the initial cellular density was a 1000 cell – indicating 

cells had undergone at least 7 population doublings. The control group was also capable 

of rapid proliferation but when compared with growth factor groups there was a only a 

3.84-fold decrease by day 8 (Figure 5.2B). This experiment was performed to identify 

the appropriate growth factors to increase proliferation rate for chondroprogenitors when 

cultured on 3D Cultispher® microcarriers. 
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Figure 5.2. Growth curve analysis of chondroprogenitor cells on 2D cell culture in 

presence of growth factors using colorimetric PrestoBlue™ assay.  Fibroblast growth 

factor (FGF2), transforming growth factor β (TGFβ1) and platelet-derived growth factor 

(PDGF) were used individually or combined to monitor the growth analysis of tracheal 

chondroprogenitors at 10ng/ml, 1ng/ml and 10ng/ml respectively to establish the 

optimum cell proliferative condition that would be used in 3D culture environment to 

expand cells on microcarriers. (A) Growth rate over a period of 8 days and (B) Cell 

number generated against untreated chondorprogenitors standard curve using 

Prestoblue™. All data in (A) is shown as average (± standard deviation) from a  five 

biological monoclonal repeats, tested for significance using one-way ANOVA analysis. 

** is used to indicate and p < 0.001 on day 8 only. 
 

 

5.2.2 Expansion of tracheal chondroprogenitors on Cultispher® microcarriers 

 

Cultispher® microcarriers were prepared as described in Material and Methods (Chapter 

2, Section 2.5). The initial attempts at cell seeding with uncoated microcarriers proved 

inefficient for cellular attachment. Therefore, Cultispher® microcarriers were coated 

with 10% FBS or 3% gelatin to enhance attachment of porcine tracheal 
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chondroprogenitors. Chondroprogenitors were seeded onto the microcarriers as 

described in Materials and Methods (Chapter 2, Section 2.5.3) at a ratio of 20 cells per 

bead (8x106 cells in 0.4g as there are 1x106 microcarriers per gram as stipulated by the 

manufacturer). The proliferative capacity of coated microcarriers plus seeded 

chondroprogenitors (±FT growth factors at 10 ng/mL FGF2 and 1 ng/mL TGFβ1) were 

assessed qualitatively using fluorescence microscopy detection of Dapi stained fixed 

cells bound to microcarriers over a period of 15 days. Both FBS and gelatin +FT treated 

groups showed higher expansion capacities when compared against their -FT 

counterparts and therefore all the future experiments utilised FT growth factor in 

conjunction with coated microcarriers to expand chondroprogenitors (Figure 5.3). FBS 

exhibited a more supportive proliferative environment than gelatin in presence or 

absence of FT. However, gelatin was not excluded for the future studies, as we were 

interested in the potential effects of both coating solutions on chondrogenic 

differentiation.     

 

 
 

Figure 5.3. Visualising of tracheal chondroprogenitor distribution on macroporous 

Cultispher® microcarriers using fluorescent light microscopy. To further improve 

cell attachment and proliferation on 3D culture, microcarriers were coated with 10% 

FBS and 3% gelatin (± 1 ng/ml TGFβ1 and 10 ng/ml FGF2). 20 μl aliquots from each 

condition were collected on different days  and fixed prior to staining with Dapi to 

visualise cell growth. Images represent one porcine donor. 
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5.2.3 Culture regime and its effect on proliferation  

To further improve the growth rate and homogenous spreading of chondroprogenitors on 

microcarriers in the presence of growth factors FGF2 and TGFβ1 a comparison between 

static culture and wave culture at 37 °C and 5% CO2 was undertaken. Microcarriers 

cultured in either of the culture formats (wave or static) were at each time point stained 

with MTT then fixed as described in Materials and Methods (Chapter 2, Section 

2.5.4.2). The stained microcarriers were visualised under light microscopy, and as 

shown in Figure 5.4. All four conditions supported proliferation where FBS-coated 

microcarriers were qualitatively superior in static and wave culture compared to gelatin-

coated microcarriers. Gelatin-coated microcarriers in wave culture were the slowest 

proliferators as clearly indicated in Figure 5.4D & H.  

 

 

Figure 5.4. Combined effect of growth factors and culture regime on tracheal 

chondroprogenitors and Cultispher® microcarriers. To achieve a fast screening 

cultural effects on the cells and microporous beads 20 μl samples were selected and 

stained with MTT and imaged using a light microscopy at day 5 (A-D) and day 30 (E-

H).  Images represent one porcine donor. 
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To quantitatively assess the growth rate of chondroprogenitors grown in static or wave 

culture, cell numbers were quantified against a standard curve generated from pooled 

monoclonal tracheal chondroprogenitors grown on 2D using colorimetric PrestoBlue™ 

as described in Materials and Methods (Chapter 2, Section 2.5.4.1) (Figure 5.5A). A 

general trend of increased cell number was observed in FBS-coated microcarriers in 

static (3.8-fold increase) and wave culture (3-fold), and gelatin-coated microcarriers in 

static culture (3.6-fold) for a period of 35 days. For the initial first 10 days, gelatin-

coated microcarriers in static culture exhibited an accelerated growth and maintained 

this growth. Similarly, for the first 10 days FBS-coated microcarriers in static culture 

showed no dramatic growth kinetic and after, maintained a steady increasing growth rate 

to the end of the culture period. However, gelatin-coated microcarriers grown in wave 

culture showed fluctuation in growth over a period of 35 days (Figure 5.5B & C). From 

this point onwards, it was concluded that the optimised culture conditions should be 

static culture, coated microcarriers with FBS and gelatin in presence of FGF2 and 

TGFβ1 growth factors, and these conditions were used for 3D fabrication of C-rings.   

 

 
Figure 5.5. Growth curve analysis of chondroprogenitor cells on Cultispher® 

microcarriers on different regime of culture in presence of growth factors using 

colorimetric PrestoBlue™ assay.  Cell numbers were quantified against the standard 

curve generated from tracheal chondroprogenitors grown on 2D (A) and plotted over the 
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period of 35 days of culture (B and C). All data  is shown as average (± standard 

deviation) from a  five biological repeats  
 

 

5.2.4 Characterisation of tracheal chondroprogenitors expanded on Cultispher® 

microcarriers 

Three hundred microlitre aliquots of each culture condition (FBS or gelatin-coated, 

grown as static or wave cultures) were taken out to analyse the gene expression of 

minimal cell markers for the identification of mesenchymal stem cells. Cartilage gene 

biomarkers were also included in the panel. All four groups complied with the minimal 

criteria to be designated as MSC-like cells (Figure 5.6). The most obvious differences 

were in chondroprogenitors expanded in FBS-coated microcarriers and gelatin-coated 

microcarriers in wave culture where PRG4 was transcribed upon the rocking movement. 

COL1 expression was evident when compared to COL2 and FBS wave showed the 

lowest band intensity of the latter gene.  

 
 

 
 

Figure 5.6. Characterisation of tracheal chondroprogenitors grown on Cultispher® 

microcarriers over 35 days of different regimes of culture. Gene expression of stem 

cell surface markers defined by International Society for Stem Cell Research (ISSCR) 

for tracheal derived chondroprogenitors and chondrogenic markers exhibits similarities 

for stem cell characteristics and district differences across the wave culture where 

presence of lubricin (PRG4) is evident.   
 

 
 

5.2.5 Chondrogenesis of tracheal chondroprogenitors seeded upon Cultisphers® 

microcarriers 
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For early proof-of-concept experiments at tissue engineering airway cartilage, tracheal 

chondroprogenitors seeded and expanded upon Cultisphers® microcarriers were placed 

upon dry 12 mm diameter transwells with 0.4 μm pore size and cultured under 

chondrogenic conditions. Figure 5.7A represents the constructs in expansion medium in 

the presence of FT for 21 days where matrix formation was either not apparent or very 

poorly formed, resulting in the construct falling apart during routine sample handling. 

Figure 5.7B represents constructs cultured under chondrogenic conditions, with medium 

containing 10 ng/mL of TGFβ1, and all four groups were capable of self-assembly into 

malleable disks which were robust enough to be handled. By using a transwell support 

as a mould, the Cultisphers® microcarriers were able to form disk-like structures using 

gravity and weight of the medium to aggregate microcarriers. Figure 7C is an example 

of a light microscopy image of cell and matrix spanning multiple Cultisphers® 

microcarriers as arrowed.  

 

 
 
Figure 5.7. Tracheal chondroprogenitors and Cultispher® microcarriers placed on 

transwells. (A) represents tracheal chondroprogenitors and Cultispher® microcarriers in 

expansion medium containing 1 ng/ml TGFβ1 and 10 ng/ml FGF2. Lack of matrix 

formation is evident as the constructs have collapsed upon collection. (B) represents 

tracheal chondroprogenitors and Cultispher® microcarriers in presence of chondrogenic 

medium containing 10 ng/ml TGFβ1 for a period of 21 days. (C) Light microscopy 

image of matrix formation post chondrogenesis showed by arrow.  
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To examine whether different coatings and culture regimes influenced the disks physical 

appearance, gross morphological measurements were undertaken using a caliper. 

Gelatin-coated static samples exhibited the lowest average diameter (8.09±0.29 mm) and 

were significantly different when compared with larger FBS coated static-cultured disks 

(8.6±0.15 mm, p < 0.001) and gelatin-coated wave cultured disks (8.52±0.24 mm, p < 

0.05). FBS-coated wave cultured disks (8.35± 0.3 mm) showed no significant 

differences compared with other groups (Figure 5.8A). Same trend was observed for the 

height measurement (Figure 5.8B) where gelatin-coated static disks (2.73±0.5 mm) 

showed the lowest height and were significantly lower when compared against disks 

grown in FBS static (3.78±0.18 mm, p < 0.001) or FBS-wave cultured groups (3.3± 0.17 

mm, p < 0.05). There were also significant differences (p <0.001) in height between 

FBS-static and wave coated groups. Gelatin-wave cultured disks (3.55± 0.94 mm) 

exhibited no differences in height when compared against other groups. 

 

 
 

Figure 5.8. Gross morphological analysis of disks fabricated from tracheal 

chondroprogenitors and Cultispher® microcarriers placed on transwells after 21 

days of chondrogenesis. Using a caliper the diameter (A) and height (B) was 

measured. All data shown is average (± standard deviation) from  three biological 

repeats, tested for significance using one-way ANOVA analysis. * and ** are used to 

indicate p < 0.05 and p < 0.001 respectively. 

5.2.6 Histological analysis of disks fabricated from tracheal chondroprogenitors 

and Cultisphers® microcarriers 
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After 21 days of culture in chondrogenic medium the disks were cut into quarters and 

prepared for analysis as described in Materials and Methods (Chapter 2, Section 2.6.4.2). 

Haematoxylin and eosin staining (Figure 5.9) showed the weak formation of matrix 

around the periphery of all four groups of disks. Cellular alignment is clearly visible 

around the periphery disks. Cultisphers® microcarriers displayed uneven distribution of 

cells, and cellular density decreases were associated with increased depth from the 

periphery of microcarriers. Furthermore, within the central region of the disk, large 

spaces were present which were void of cells and Cultisphers® microcarriers and this 

may have been caused by a lack of matrix holding the structure together which would 

have been exposed following sectioning and this may have been caused by chemotaxis 

for the cells to the periphery.  

 

 
 

Figure 5.9. Haematoxylin and eosin stain of chondrogenic induced disks fabricated 

from tracheal chondroprogenitors and Cultispher® microcarriers after 21 days of 

chondrogenic culture in the presence of 10 ng/ml TGFβ1. (A) Shows FBS coated 

beads in static culture, (B) shows FBS coated beads in wave culture, (C) shows gelatin 

coated beads in static culture and (D) shows gelatin coated beads in wave culture. 

Images represent one porcine donor. 

Figure 5.10 represents the cartilaginous matrix formation around the periphery of each 

group. Although all four groups supported differentiation there are no obvious 
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differences in degree of differentiation and majority of matrix formation has weakly 

formed around the edges with cellular density highest in this region.  

 

 

Figure 5.10. Toluidine blue stain of chondrogenic induced disks fabricated from 

tracheal chondroprogenitors and Cultispher® microcarriers after 21 days of 

chondrogenic culture in the presence of 10 ng/ml TGFβ1. (A) Shows FBS coated 

beads in static culture, (B) shows FBS coated beads in wave culture, (C) shows gelatin 

coated beads in static culture and (D) shows gelatin coated beads in wave culture. 

Images represent one porcine donor. 

 

 

Figure 5.11 shows alizarin red staining of constructs and the same trend of matrix 

staining is visible round the periphery of the disks. The major difference was seen in the 

gelatin wave group where clusters of cells and Cultisphers® microcarriers stained red. 

This intensity was less around the edges the intensity is less, and the matrix formation 

was denser.  

 



 177 

 
 

Figure 5.11. Alizarin red stain of chondrogenic induced disks fabricated from 

tracheal chondroprogenitors and Cultispher® microcarriers after 21 days of 

chondrogenic culture in the presence of 10 ng/ml TGFβ1. (A) Shows FBS coated 

beads in static culture, (B) shows FBS coated beads in wave culture, (C) shows gelatin 

coated beads in static culture and (D) shows gelatin coated beads in wave culture. 

Images represent one porcine donor. 

 

 

5.2.7 Biochemical quantification of tracheal chondroprogenitors and 

Cultisphers® microcarriers 

 

Chondroprogenitors seeded onto microcarriers and expanded in FBS-coated static disks 

exhibited the highest raw sGAG measurements (9.5±5 μg/mL) following 21 days of 

chondrogenic induction when compared to other groups. However, the only significant 

differences observed was between gelatin -coated static disks (9±1 μg/mL, p < 0.05) and 

gelatin-coated wave cultured disks (5.7±0.8 μg/mL), which produced the least sGAG 

synthesis (Figure 5.12A). No significant difference was observed in FBS-coated 

microcarriers wave condition (6.3±4.8 μg/mL). 

FBS-coated wave cultured disks (1.95±0.32 μg/mL) were significantly higher (p < 0.05) 

in DNA content compared to the other groups. Gelatin -coated static cultured disks 

(0.96±0.17 μg/mL contained the least DNA content and was significantly (p < 0.05) 
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different compared with FBS-coated static cultured disks (1.30±0.15 μg/mL). No 

significant difference was observed in gelatin-coated wave cultured disks (1.23±0.16 

μg/mL) (Figure 5.12B). 

FBS-coated wave cultured disks (35.74±0.45 μg/mL) showed the lowest collagen 

synthesis (deposition) ability when compared with other groups but this data was not 

significantly different from the values in the other experimental groups. FBS-coated 

static cultured disks (36.4±0.18 μg/mL) produced the highest collagen content when 

compared with gelatin-coated wave cultured disks (35.9± 0.13 μg/mL) and gelatin-

coated static cultured disks  (0.96±0.17 μg/mL) and was more significant at p < 0.05 and 

p < 0.001 respectively (Figure 5.12C).  

 

 
 

Figure 5.12. Quantification of disks fabricated from tracheal chondroprogenitors 

and Cultispher® microcarriers placed on transwells after 21 days of 

chondrogenesis for (A) sulphated GAG content, (B) DNA content and (C) total 

collagen content. All data shown is average (± standard deviation) from three biological 

repeats, tested for significance using ANOVA analysis. * and ** are used to indicate p < 

0.05 and p < 0.001 respectively. 
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The normalised sGAG to DNA data of gelatin-coated static cultured disks (9.6±1.95 

μg/μg) showed a 2-fold and 2.7-fold increase compared with gelatin-coated wave 

cultured disks (4.68±0.79 μg/μg, p <0.05) and FBS-coated wave cultured disks 

(3.45±2.27 μg/μg, p <0.05) respectively (Figure 5.13A). The total collagen content 

normalised to DNA exhibited no significant differences across FBS-coated static 

cultured disks (28.22±3.13 μg/μg), gelatin-coated wave cultured disks (29.5±3.5 μg/μg) 

and gelatin-coated static cultured disks (38.07±5.91 μg/μg). However, FBS-coated wave 

cultured disks (18.7±3.5, p <0.05) were significantly lower compared to other groups 

(Figure 5.13B).  

 

Figure 5.13. sGAG and collagen contents of disks fabricated from tracheal 

chondroprogenitors and Cultispher® microcarriers normalised to DNA. tracheal 

chondroprogenitors and Cultispher® microcarriers following 21 days chondrogenesis 

was analysed biochemically and normalized to DNA. All data shown is average (± 

standard deviation) from three biological repeats, tested for significance using ANOVA 

analysis. * is used to indicate p < 0.05. 

 

 

5.2.8 Relative gene expression of disk constructs  

 

Total RNA was isolated from the chondroprogenitor seeded microcarriers that had 

undergone chondrogenesis in transwell supports, and 10 ng of this RNA from each 

sample was converted into cDNA for gene expression analysis. Tracheal 

chondroprogenitor pellets induced with TGFβ1 from the previous chapter was used as 

calibrator sample to examine whether the disk constructs are a comparable to pellet 

culture. After 21 days of chondrogenesis the relative expression of SOX9 in pellets 
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(1±0.06) was significantly higher (p < 0.001) when compared with other groups. FBS-

coated wave cultured disks (0.80± 0.14) showed the highest relative expression of SOX9 

when compared with FBS-coated static cultured disks (0.39±0.09, p < 0.05), gelatin-

coated wave cultured disks (0.42±0.016, p < 0.005) and gelatin-coated static cultured 

disks (0.43±0.057, p < 0.05) (Figure 5.14A). Figure 14B shows the relative expression 

of COL2 and tracheal chondroprogenitor pellet (0.87±0.14) was significantly (p < 0.001) 

higher than the disk groups. Gelatin-coated static cultured disks (0.55±0.07) showed a 

2.75-fold and a 2.2-fold increase against gelatin-coated wave cultured disks (0.20±0.09, 

p < 0.05) and FBS-coated static cultured disks (0.25±0.02, p < 0.001) respectively. FBS-

coated wave cultured disks (0.38±0.09) exhibited a higher relative expression of COL2 

than gelatin-coated wave cultured disks and FBS-coated static cultured disks, but no 

significant differences were observed. The same order of magnitude as COL2 expression 

was observed in relative expression of ACAN (Figure 5.14C). Tracheal 

chondroprogenitor pellet (1±0.1, p < 0.001) once again showed the highest expression of 

ACAN when compared with the disk groups. Gelatin-coated static cultured disks 

(0.33±0.02) showed a 1.73-fold and a 1.5-fold increase against gelatin-coated wave 

cultured disks (0.19±0.02, p < 0.001) and FBS-coated static cultured disks (0.22±0.02, p 

< 0.001) respectively. FBS-coated wave cultured disks (0.33±0.05) was significantly 

higher than FBS-coated static cultured disks and gelatin-coated wave cultured disks (p < 

0.05).  
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Figure 5.14. Relative gene expression shown as a fold change using ∆∆CT method. 

(A) shows the SOX9 expression of disks fabricated from tracheal chondroprogenitors 

and Cultispher® microcarriers placed on transwells after 21 days of chondrogenesis. (B) 

shows the COL2 expression of disks fabricated from tracheal chondroprogenitors and 

Cultispher® microcarriers placed on transwells after 21 days of chondrogenesis and (C) 

shows the ACAN expression of disks fabricated from tracheal chondroprogenitors and 

Cultispher® microcarriers placed on transwells after 21 days of chondrogenesis. All data 

shown is average (± standard deviation) from three biological repeats, tested for 

significance using one-way ANOVA analysis. * and ** are used to indicate p < 0.05 and 

p < 0.001 respectively. 

 
Figure 5.15A shows the relative expression of COL1 where tracheal chondroprogenitor 

pellets (1.03±0.3, p <0.001) were significantly lower than disks. Gelatin-coated static 

cultured disks (3.26±0.06) exhibited a 1.56-fold and 1.41-fold increase versus FBS-

coated static cultured disks (2.08±0.27, p <0.001) and FBS-coated wave cultured disks 

(2.32±0.41, p <0.05) respectively. Gelatin-coated wave cultured disks was also 

significantly higher (p <0.05) in COL1 expression against FBS-coated static cultured 

disks. Figure 5.15B displays the relative expression of COLX where tracheal 

chondroprogenitor pellet (1.2±0.84) showed no significance difference compared with 

the disk groups. Gelatin-coated static cultured disks (1.5±0.47) exhibited the highest 
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COLX expression and was only significant (p <0.05) when compared with FBS-coated 

static cultured disks (0.75±0.08). Gelatin-coated wave cultured disks (0.63±0.43) 

demonstrated the lowest expression but no significant differences were observed across 

the disk groups. 

 

 

Figure 5.15. Relative gene expression shown as a fold change using ∆∆CT method. 

(A) shows the COL1 expression of disks fabricated from tracheal chondroprogenitors 

and Cultispher® microcarriers placed on transwells after 21 days of chondrogenesis. (B) 

shows the COLX expression of disks fabricated from tracheal chondroprogenitors and 

Cultispher® microcarriers placed on transwells after 21 days of chondrogenesis. All data 

shown is average (± standard deviation) from three biological repeats, tested for 

significance using ANOVA analysis. * and ** are used to indicate p < 0.05 and p < 

0.001 respectively. 

 

 

5.2.9 Cartilage C-ring fabrication using tracheal chondroprogenitors and 

Cultisphers® microcarriers 

 
The goal of this experiment was to use microcarriers as intra-scaffolding material and 

fabricate cartilage C-rings using 3D printed polylactic acid moulds using the same 

principles as the experiments conducted using transwell supports, as described in 

Section 2.5.6. FBS-coated tracheal chondroprogenitor seeded Cultisphers® 

microcarriers and gelatin-coated tracheal chondroprogenitor seeded Cultisphers® 

microcarriers, expanded under a static culture regime were, used for this experiment. 

Once individual C-rings were printed the ultimate aim was to suture individual C-rings 
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together to make a lumen-like cartilaginous structure. As shown in in Figure 16 this 

method of C-ring fabrication was very highly reproducible in bulk structure, but the 

same problems occurred as with transwells where the internal structure lacked cartilage 

formation (shown by histological staining) throughout the whole depth of construct. 

Therefore, the decision was made not to further analyse the fabricated C-ring at other 

levels until refinement and improvements of 3D culture and differentiation medias was 

undertaken.   

 

 

Figure 5.16. Proof of concept of 3D-printed PLA scaffolds seeded with tracheal 

chondroprogenitors and Cultispher® microcarriers coated with gelatin and FBS 

placed on to the mould for 21 days of chondrogenesis. Same principle as transwells 

were adopted in the C-ring scaffold. This mould was designed to be placed in a 6-well 

plate with porous structure for improved nutrient diffusion. As a proof of concept this 

method exhibited a reproducible C-ring fabrication where Cultispher® acted as intra 

scaffolding support. 
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5.2 Discussion 

In order to regenerate or replace any damaged tissues large numbers of cells with stable 

phenotypes are needed from expansion to differentiation and maturation. The current 

techniques for cellular expansion are heavily reliant on 2D culture in order to generate 

enough cells to be seeded into scaffolding biomaterials in order to generate large enough 

constructs to be clinically useful. However, the use of 2D culture has reached its 

potential as shown by many groups expanding differentiated and undifferentiated cells 

[455]. Hence the aim of this chapter was to use naturally derived microcarriers to expand 

tracheal chondroprogenitors as it has been shown in Chapter 3, that long term passage of 

these cells will dramatically results in loss of genetic function, stiffening of cells which 

could be indicative of possible aging and upregulation of undesirable genes such as 

COL1 and COLX (refer to Chapter 3, Figure 3.14). The initial results of seeding 

uncoated Cultisphers® microcarriers with chondroprogenitors led to extremely low 

attachment of cells and slow proliferation rates which was far from optimal. Therefore, 

to enhance attachment and consequently the proliferation rate, FBS and gelatin coated 

microcarriers (± growth factors) were used. Initially the effect of growth factors on 

tracheal chondroprogenitors were examined on 2D by measuring the individual and 

combinatorial effect of fibroblast growth factor (FGF2 at 10 ng/mL), transforming 

growth factor β (TGFβ1 at 1 ng/mL) and platelet-derived growth factor (PDGF at 10 

ng/mL) on cell kinetics. After 8 days of culture FT (FGF2+TGFβ1), FTP 

(FGF2+TGFβ1+PDGF) and PDGF showed the highest growth kinetics (Figure 5.2). 

Based on our observations and previous publications FGF2 and TGFβ1 were chosen as 

the growth factor culture supplement during the growth phase of tracheal 

chondroprogenitors seeded upon macroporous Cultisphers® microcarriers. Previous 

studies have demonstrated that embryonic stem cells and MSCs cultured with FGF2 

(5ng/mL) and TGFβ1 (10ng/mL) in vitro remain undifferentiated while also exhibiting 

increased rates of proliferation [456]. Solchaga et al. also reported that FGF2 exposure 

during monolayer expansion delays the loss of MSC chondrogenic potential [457], 

which is  consistent with the upregulation of SOX9 by mouse chondrocytes when treated 

with FGF2 [458]. Thus, increased expression of SOX9 therefore maintains chondrogenic 

phenotype of stem cells in vitro. FGF2 may also promote proliferation of a specific sub-
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population of chondroprogenitors that possess an increased chondrogenic potency [459] 

or alter the intrinsic molecular machinery of the entire or subset population to become 

more chondrogenically potent [460]. A very recent study done by Komura et al. also 

demonstrated that single injection of FGF2 in New Zealand white rabbit resulted in 

enlargement of mean tracheal luminal area [461].  

In this study FBS or gelatin were used as microcarrier coating materials. FBS was 

employed as a control coating material, as it has been previously shown to successfully 

improve the  expansion of chondroprogenitors on microcarriers [313]. However using 

animal derived serums for clinical applications are not ideal, therefore, gelatin was also 

included as a coating material as the use of this denatured collagen derived material is 

more suitable for clinical settings [462]. The combinatorial effect of FGF2 and TGFβ1 

was also evident when applied to Cultisphers® microcarriers seeded with tracheal 

chondroprogenitors. After 15 days of culture FBS-FT (FGF2+TGFβ1) and gelatin-FT 

(FGF2+TGFβ1) were evidently supporting cellular proliferation more than their 

counterparts without growth factor supplementation (Figure 5.3). This data agrees with 

what Melero-Martin et al. reported when immature bovine articular chondroprogenitors 

were expanded on Cultisphers® G microcarriers in conjunction with FGF2 and TGFβ1 

growth factors in FBS-containing medium [313]. The FBS and gelatin appeared to 

increase cell attachment to microcarriers probably due to some  serum proteins within 

FBS (for example, fibronectin) and gelatin itself acting as a cell adhesion substrate. To 

enhance homogenous cellular distribution, static and rocking culture regimes in the 

presence of FBS or gelatin-coated microcarriers (supplemented with FGF2 and TGFβ1) 

was tested to assess their effect on cellular proliferation (Figure 5.4). The static culture 

condition exhibited a higher proliferation rate after 30 days when compared with the 

wave culture, and FBS-coated microcarriers appeared to be more advantageous for 

proliferation as observed from microscopic images of MTT stained Cultispher® 

microcarriers. The growth data showed that both FBS and gelatin static culture 

conditions are the most supportive for proliferation while the microscopic images of 

MTT stained microcarriers showed that gelatin coated beads on static culture were 

largely acellular. There are also cluster/aggregates of cells visible on microcarriers in 

every condition which is in line with that previously shown by Chen et al. [264] and 
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Eibes et al. [463], and in addition, dynamic culture also positively affects aggregate 

formation of microcarriers [464]. Aggregate formation has been associated with negative 

proliferative effects on human MSCs [243][445]. Another reason for lack of 

proliferation during wave culture could be due to cells detaching from the microcarriers 

caused by the shear stresses during the rocking motion of the platform, and therefore, 

further optimising the speed of the platform may reduce aggregation and improve this 

method of culture [160].  

 

The preservation of stemness in microcarrier culture was important to demonstrate, as 

cell phenotype can be significantly influenced by differences in substrate material and 

geometry, as well as agitation induced stresses [466]. All four culture conditions (FBS-

coated microcarrier static and wave, gelatin-coated microcarrier static and wave) agreed 

at gene level with the minimal requirements of ISSCR for the designation of cells 

maintaining mesenchymal stem cell characteristics [463]. Whilst all four groups showed 

a strong positive band intensity for COL1, the band visibility for COL2 expression was 

most obvious for gelatin-coated microcarriers in wave culture followed by gelatin-

coated microcarriers in static culture, FBS-coated microcarriers grown in static culture 

and barely visible for FBS-coated microcarriers grown in wave culture. This could be an 

indicative of possible shift in change of cellular phenotype as the switch of collagen type 

II to collagen type I is associated with chondrocyte dedifferentiation and therefore the 

lack of chondrogenic potential of tracheal chondroprogenitors [261]. Another interesting 

observation was the presence of PRG4 in both microcarriers grown in wave conditions, 

which could be due to shear stress experienced by the chondroprogenitors during the 

rocking motion of the platform during wave culture. PRG4 was included in the panel as 

a distinct marker between articular and tracheal cartilage as previous studies had shown 

the correlation between shear stress and up-regulation of PRG4 both in vivo and in vitro 

both in chondrocytes and bone marrow MSCs at gene and protein level [467], [468].   

Once characterised at the gene expression level, tracheal chondroprogenitors seeded and 

expanded on microcarriers were placed onto transwell culture supports and cultured 

either with expansion medium containing FGF2+TGFβ1 or chondrogenic medium 

containing 10 ng/mL of TGFβ1. As shown in Figure 5.6A samples in transwell inserts 
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containing expansion medium lack structural integrity and during sample handling the 

constructs had collapsed. The top row are the FBS-coated microcarriers expanded in 

static conditions constructs where the samples were too soft and ‘slushy’ and sample 

handling was not possible, and this followed by FBS-coated microcarriers expanded in 

wave culture (2nd row), gelatin-coated microcarriers expanded in static and gelatin-

coated microcarriers expanded in wave culture. Figure 5.6B shows the formation of 

disks following 21 days of chondrogenesis. All four culture pre-conditions successfully 

formed solid structures with gelatin wave culture having hollow spaces mainly in the 

centre of disks, a possible indication of the lack of matrix formation. The gross 

morphological analysis of the disks was almost identical with gelatin-coated 

microcarriers expanded in static culture being significantly lower in diameter and height 

indicating a possible denser disk formation. Using microcarriers for macrotissue 

formation had previously been reported when culturing human fibroblasts on 

Cultisphers® S in a perfusion bioreactor resulted in cylindrical formations very similar 

to the disks fabricated in this study in terms of gross morphology and histology with 

edges clearly forming matrix [313], [463], [469]. 

The histological staining showed that most of the matrix formation occurred at the 

periphery of the disks and the middle section was free of matrix formation. There was a 

lack of evidence for cellular attachment post chondrogenesis in the middle/deep zone of 

the disks apart from the occasional cluster of tracheal chondroprogenitors and 

Cultisphers® microcarriers. The matrix in all four groups of pre-conditioned 

microcarriers induced to undergo chondrogenic differentiation stained positively for 

proteoglycan. The intensity of alizarin red staining was minimal on the periphery of 

disks where matrix deposition had occurred but stained stronger for individual 

microcarriers throughout the depth of construct. This could be due to the presence of 

high number of cells on individual Cultisphers® microcarriers and also indicative of a 

differentiation or possible nonspecific staining. The lack of matrix synthesis in the centre 

and middle part of disks could be explained by lack of cell-cell contact, which is a pre-

requisite for cartilage condensation and formation [154]. Lack of cellular content in the 

centre of the disk may also be due to chemotaxis of cells [470] to the surface of the disk 

for the purpose of access to nutrients or cellular necrosis due to reduced oxygen and 
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nutrients in the centre of the disks. One possibility is that the periphery of constructs had 

formed matrix around the edges and possible lack of diffusion in nutrients to the inner 

depth of disks could have impacted cells to migrate towards the periphery [470]. Using 

blood derived biological glues have shown to improve disk formation when coupled 

with human articular chondrocytes and microcarriers, and this effect may have been due 

to the fibrin scaffold reducing cellular migration. The latter study extended the length of 

chondrogenesis to 12 weeks which ultimately resulted in mature disk formations [471].  

The biochemical raw data revealed that FBS and gelatin-coated microcarriers expanded 

in static conditions produced higher sGAG content, whereas FBS-coated microcarriers 

expanded in wave culture had higher DNA content. FBS-coated microcarriers expanded 

in static culture were more successful in collagen synthesis followed by gelatin-coated 

microcarriers expanded in wave and gelatin static culture. The values for hydroxyproline 

content are highly magnified due to the collagenous nature of Cultisphers® 

microcarriers. However, the level of collagen synthesis still can be validated as the level 

of collagen microcarriers are constant across all the conditions hypothesising that same 

number of Cultisphers® microcarriers were present in each disk condition. When 

collagen was normalised to DNA both gelatin conditions were more reactive in 

synthesising collagen when compared with FBS conditions but not significantly 

different.  

The relative gene expression of disks was compared with the tracheal chondroprogenitor 

pellets stimulated with TGFβ1 from the previous chapter as calibrator samples. The 

disks expressed much lower levels of positive chondrogenic markers (SOX9, COL2 and 

ACAN) and conversely higher levels of COL1. The lack of up-regulation SOX9 and 

consequently COL2 and ACAN could be again due to the lack of cell-cell contact and 

resulting in the lack of matrix formation. Conversely, COLX was upregulated which is 

less than traditional pellet culture and the presence of calcium deposition was still 

evident showing potential mineralisation of the disk constructs. Taken together, the 

presence of both COLX and PRG4 would be indicative of articular cartilage 

differentiation rather than tracheal cartilage and as a direct result of 



 189 

mechanotransduction induced by shear stress within the wave expansion of the 

chondroprogenitors, showing a distinct mechano-responsiveness of the cells [471]. 

 

An attempt was made to fabricate customisable C-ring structures using a 3D printed 

mould and chondroprogenitor-seeded microcarriers. This method is advantageous for 

cases where the length of defect/disease is over half the diameter of the total tracheal 

length. Although gross morphology of the fabricated rings looked very similar and 

reproducible, identical problems like those mentioned in the transwell disks were 

observed such as lack of cell-to-cell contact and matrix formation. To date no other 

study has used microcarriers for tracheal macro-tissue engineering. Given time to 

optimise culture conditions, both expansion and differentiation, this method of 

engineering individual rings and assembling to form lumen like structures can be of 

great promise for clinically relevant specific dimensions. Recently one study showed 

using high-density human bone marrow MSCs coupled with TGFβ1 incorporated 

microspheres, it was possible to take a modular tissue assembly approach. The gross 

morphology and reproducibility was highly achievable in terms of similarity to native 

rabbit trachea and a tri-layer tissue consisting of cartilage, vascular and epithelium was 

achieved [471]. 

 

 
5.3 Conclusion 

 

Tracheal chondroprogenitors were successfully expanded on macroporous gelatin 

derived microcarriers. Upon expansion chondroprogenitors retained their stemness and 

were able to undergo limited chondrogenesis. Using additive manufacturing, we were 

able to fabricate C-rings with customisable properties that could, if the future culture 

conditions are optimised, be more advantageous for clinical applications. 
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Chapter 6: General discussion 
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Tracheal tissue engineering in order to find a suitable solution for the regeneration and 

repair of diseased or damaged trachea still remains a challenging subject area and 

continues to be under researched. Currently, it is very difficult, at multiple levels, to 

produce a trachea substitute prosthetic resembling the native tissue. The trachea is a 

biological composite material consisting of adventitia, cartilage rings, interconnecting 

ligament-like tissue, mucosa and submucosa, muscle. In addition, the trachea is well 

perfused through an extensive vascular network [30]. The majority of tracheal tissue 

engineering approaches have in large concentrated on recreating the cartilage rings and 

the epithelium layer [89]. As the cartilage provides the main structural component of the 

respiratory tract and the epithelium provides the first line of defense in prevention of 

infection and disease during reparation, engineering these tissues into substitute 

biological prostheses are viewed as the prerequisite steps [139].  

Tissue engineering aims to reverse engineer the functional tissue via embryonic 

developmental program, which contains sequential steps of events ultimately leading to 

the stepwise formation and maturation of multiple cellular and extracellular components 

and tissues of the functional respiratory system. So far, we are at the infancy of 

identifying these sequential steps that occur during airway development. What is clear is 

the presence of crosstalk between the endoderm and mesoderm during trachea 

development which needs to be further understood in order to systematically generate 

ordered structures in vitro [9]. In addition, we must be able to identify the critical 

stem/progenitor cells involved in airway development, and thus far, the only 

mesodermal stem cell identified resides in the perichondrium of cartilage, and has the 

ability to give rise to cartilage and other mesodermal-derived tissues of the trachea 

[134].  

In this study it was fundamentally important to characterise the trachea at the cellular 

and tissue level in order to identify the minimal or ideal characteristics of tissue-

engineered cartilage C-rings in order for them to mimic native tissue features, especially 

mechanical properties. Therefore, characterisation of native juvenile porcine tracheal 

cartilage was undertaken to create a comprehensive baseline measurement for this and 

future studies. It was concluded, that tracheal cartilage contains aggrecan, collagen type 
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II and lacked protein expression for collagen type I and elastin. However, collagen type I 

was present in the adventitia layer, and, elastin was localised to the mucosal and 

submucosal layers. Interestingly, these findings correlated with the macro mechanical 

data of the various tissue layers of the tracheal ring, where connective tissue had  very 

elastic properties, this latter finding was associated with elastin staining being localised 

to the connective tissue of the tracheal ring [32][330]. The tracheal cartilage on the other 

hand, was extremely stiff as predicted from the matrix composition, agreeing with 

previous studies where the presence of both aggrecan and collagen type II are linked 

with the mechanical stability and stiffness of articular cartilage [105]. So far, many 

attempts to mathematically model the tracheal C-ring structure have been attempted 

[306]. However, a model that includes the finite and complex interactions of all the 

structural components has yet to be generated. In this study, a simple elongate-to-break 

(tensile stiffness) method was adopted to eliminate other variables, such as the 

asymmetrical and anisotropic morphological and histological properties of the trachea, 

as the main objective was to obtain a reproducible measurement of the cartilage 

unidirectional tensile strength for future comparisons [319]. 

Given tracheal cartilage is generally assumed to be hyaline in nature [472], a comparison 

was undertaken between articular and trachea cartilages to further examine the extent of 

similarities and differences between these two cartilage-based tissues. The main 

differences observed were the presence of COLX and PRG4 at gene level in articular 

cartilage. Collagen type X is present surrounding chondrocytes embedded in the 

calcified zone of cartilage, which connects cartilage with subchondral bone 

(osteochondral interface) [473]. The main function of articular cartilage is to provide 

frictionless movements between the joints and the presence of PRG4 in the superficial 

zone is in line with the functionality of this tissue [474]. Lubrication is not required in 

the tracheal cartilage and therefore the finding that PRG4 was expressed by tracheal 

chondroprogenitors undergoing gene regulation in a wave bioreactor which is capable of 

producing mechanical stimuli indicates that these cells harbor the ability to adapt to 

specific environmental cues by being mechano-responsive and reproduce a location-

dependent phenotype as observed in articular cartilage superficial zone.  
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Recently it is becoming clearer that tissue-specific stem cells reside within many, if not 

the majority of adult tissues [217]. Isolation, expansion and the use of tissue-specific 

stem cells for tissue engineering applications is a logical approach as these stem 

cells/progenitors have an epigenetic pre-disposition towards differentiation to the tissue 

of origin. The extracellular matrix the latter cells produce has a prominent role in 

maintaining tissue homeostasis and cell function [475]. Based on this logic tracheal 

cartilage-derived chondroprogenitors/stem cells were isolated using differential adhesion 

to fibronectin as a source of colony forming, mesodermal-derived stem cells [219].  

During the first stages of this project different types of colonies with distinct 

morphologies were identified which led to further analysis of tissue specific cells from 

different tissue compartments of the trachea such as cartilage, adventitia and the 

connective layer consisting of mucosa and submucosa. The morphological data clearly 

indicated distinct morphological differences allowing a reliable way to separate tissue 

layers by dissection and identify and distinguish between the adventitia, cartilage and 

connective derived colony forming cells. The AFM based nano-mechanics of single 

cells and the multipotential differentiation assays of the newly identified colony forming 

cells also varied significantly, with cells derived from cartilage and adventitia being 

mechanically stiffer and more potent in tri-lineage differentiation when compared to 

connective, sub-mucosa and mucosal derived cells, These observations showed cells 

with differing mechanical and morphological appearance were capable of tri-lineage 

differentiations, with the exception being cells derived from the connective tissue layer. 

Tracheal stem/chondroprogenitors had a higher colony forming efficiency compared 

with adventitia and connective tissue-derived stem/progenitor cells and a more rounded 

morphological appearance when compared to connective and adventitia-derived cells. 

Their expression of surface markers also agreed with the minimal criteria set by the 

ISSCR for classification for mesenchymal stem cells. These requirements rely on the 

expression of a specific set of surface biomarkers to identify potential mesodermal stem 

cell populations [135]. Although all three types of colony forming cells from different 

compartments of the trachea tissue were plastic adherent and showed the same gene 

expression to meet minimal criteria, tri-lineage assays showed colony forming cells from 

cartilage and adventitia were able to differentiate to osteocytes, adipocytes and 
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chondrocytes whereas connective tissue-derived colony-forming cells had a more 

limited differentiation capacity. This was expected as the literature had previously 

identified the cells from connective layer that has the ability to give rise to ciliated and 

basal epithelial cells [364]. Differential adhesion to fibronectin therefore has the ability 

to isolate colony-forming cells that can further be expanded in vitro regardless of them 

being mesodermal or endodermal derived. The colony forming cells can be isolated as 

monoclonal cell lines and be used for in vitro studies or maintained as a polyclonal 

culture, which may reduce the physiological stresses experienced by monoclonal cell 

lines for extensive expansion and losing phenotypic stability. 

One of the main advantages of enrichment of colony forming cells using differential 

adhesion to fibronectin is it's ease of use and cost-effectiveness as opposed to cell 

surface marker isolation, as well as the ability to derive homogeneous (monoclonal) cell 

populations using cell cloning of colonies [159]. Dowthwaite et al. utilised differential 

adhesion to fibronectin to isolate articular cartilage-derived chondroprogenitors from the 

superficial zone of articular cartilage [219]. Others have utilised the same technique to 

isolate chondroprogenitors using cells from the full depth of various cartilage tissues 

[138][202][345]. Other studies have also previously shown that differences in cellular 

properties exist between chondrocytes from different depths of articular cartilage, from 

nano-mechanical, to protein expression and gene expression [279][349][457]. Based on 

these data, variations in the properties of clonal isolates might exist depending on where 

the progenitor isolated might be derived from (whether superficial, middle or deep zone) 

and thus, by analogy, further analysis may require understanding if any differences exist 

between monoclonal and polyclonal cell populations from various zones of the trachea 

tissue. However, this would be extremely challenging as isolation of specific populations 

from the various zones would be technically difficult to achieve. 

 

The single cell nano-mechanics analysis of colony forming cells derived from three 

different tissue layers in trachea showed a general trend of increased stiffness from 

passage P0 to P6 when grown and analysed on plastic tissue culture substrate. This type 

of result has previously been associated with decreased proliferation, differentiation 

[477] and potential aging [348][359] and senescence [384]. Chondrocyte gene 
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expression of tracheal chondroprogenitors decreased from passages P0 to P6, and this 

may be due to potential ageing or senescence and therefore more extensive analysis of 

telomere length analysis and differentiation potential from each passage could be 

undertaken in the future to confirm the current findings. Previously it has been shown 

the effect of culture substrate mediates cells function and differentiation potential and 

therefore more in depth analysis needs to be undertaken for in vitro expansion [260] 

[459][460].  

The presence and expression of COLX gene transcription in tracheal-derived colony 

forming cells as early as P0 was unexpected, as this was not observed at the tissue level 

mRNA. Previous findings had highlighted the use of hypoxia [480] and matrix stiffness 

in dampening the expression of COLX, as cells are mechanosensitive entities responsive 

to the microenvironment they reside in, and therefore, this directly affects the actin 

filament organisation and in turn gene expression and functionality of cultured cells 

[481]. These finding could be useful in the future studies as the media used in this study 

is a standard basal medium containing 10% FBS which is used for the expansion of 

many mesodermal derived stem/progenitor cells ruling media choice out as a major 

contributor for the upregulation of COLX. Furthermore, a normoxic rather than hypoxic 

cell culture conditions along with altered adhesion environment may have more 

contribution to COLX expression as previously shown for articular chondrocytes and 

bone marrow MSCs [413][463]. Furthermore, batch-to-batch variations  of FBS have 

previously been shown to influence cell behavior, and so a move towards animal-free 

derived expansion medium may also be advantageous for future clinical applications 

[483]. Further immunocytochemical studies should confirm the protein expression of 

collagen type X to validate the latter observations. This finding was used as a threshold 

of passage number in future chapters, which was designated to be P4 for differentiation 

studies and 3D expansion and differentiation of tracheal derived cartilage 

stem/progenitor which agrees with threshold for differentiation studies using 

mesenchymal stem cells where the earlier the passage used the higher the differentiation 

potential [369].  
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Once tracheal chondroprogenitors were identified their chondrogenic potential was 

examined by testing their differential potential using two different growth factors, 

TGFβ1 and BMP9, both members of the TGFβ-super-family. The tracheal 

chondroprogenitors were able to effectively undergo chondrogenesis but when compared 

with their native counterparts, full-depth freshly isolated chondrocytes treated with 

TGFβ1, the performance wasn’t as optimal and distinctive differences were observed. 

Firstly, as was previously observed during 2D culture expansion of progenitors the 

expression of COLX was upregulated and the ratio of COL2 to COL1 dropped 

significantly and these changes could ultimately affect the differentiation outcome. 

Secondly, the duration of chondrogenesis induction and dose of growth factor 

administered may require further optimisation by means of titration analysis so that the 

differentiation of progenitors could reach the level of native cells. Thirdly it’s been 

shown that environmental cues such as hypoxia could regulate chondrogenesis as 

conventional differentiation is undertaken at normoxic O2 concentrations, whereas, the 

native environment for cartilage is between 3%-7% O2 [429], [480].  

Recent studies have shown the use of hypoxic cell culture results in the down regulation 

of expression of COLX gene transcript [428]. Fourthly, the growth factor choice could 

be further optimised, since the effect of TGFβ1 was previously uncharacterised for 

tracheal progenitors, and in airway development BMP4 and FGF10 has been reported to 

be involved in tracheal cartilage formation and patterning [22]. Therefore, TGFβ1 may 

not play any part in native tracheal cartilage formation. Fifthly, the question is: do 

different cartilage subtypes develop from distinct chondroprogenitor subtypes, which are 

developmentally restricted, or are their molecular, morphological, and functional 

differences determined by site-specific environment (e.g., load bearing for articular 

cartilage, tensile and compression in trachea), or both? And finally does the current 

protocol result in terminally differentiated events and progression to an osteoblast like 

phenotype? Or, are chondroprogenitors still in an early developmental growth stage? For 

example, the expression of collagen type 1 is associated with the early developmental 

program of articular cartilage and is transcribed both at gene and protein levels, whereas 

in trachea it’s expression is absent [424]. Regardless, a sequential order of events was 

obvious at gene and protein level. The chondrocytes that had not been cultured on 2D 
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had the most elastic single cell mechanical properties, and produced the highest amount 

of GAG and collagen, had a homogenously distributed matrix formation and lacked 

collagen type 1 and calcified zone gene expression.  

For future studies perhaps, adventitia colony derived cells could be targeted as an ideal 

cell source for the regeneration of tracheal cartilage. This tissue can be harvested from a 

patient whilst keeping the lumen intact and therefore having more suitable clinical 

applications in terms of surgical procedure and as shown before adventitial derived cells 

had very similar traits as tracheal chondroprogenitors. 

To fabricate a cartilage C-ring large numbers of cells were required. To achieve this 

tracheal chondroprogenitors were expanded on microporous gelatin-derived Cultispher® 

microcarriers coated in either 3% gelatin or 10% FBS. These cells seeded microcarriers 

were then cultured in medium containing 10 ng/ml FGF2 and 1 ng/ml TGFβ1 in both 

static and wave culture. Cultispher® microcarriers supported better expansion in static 

culture in both FBS and gelatin coated formats. Static and wave culture groups both 

retained the stem cell phenotypic criteria during long-term culture, but a major finding 

was the presence of PRG4 in wave condition whereas this was absent in static. This data 

showed that the tracheal chondroprogenitors/stem cells are responsive to their 

microenvironment and the shear stress occurring between the cells might have resulted 

in a cellular sensing of mechanical forces produced by wave culture and subsequent 

mechanotransduction from the cell surface resulting in the transcription of PRG4. 

Previous research has shown the upregulation of lubricin (PRG4) due to shear stress 

induction [467]. During differentiation studies all four groups of Cultispher® 

microcarriers formed disk structures as a preliminary step towards fabricating multiple 

C-rings, even though the gross morphology of disks seemed robust the histological data 

showed very weak matrix formation with lack of architectural organisation. Although 

Cultispher® microcarriers encouraged cells to undergo chondrogenesis the large spaces 

in between each individual microcarriers in all four conditions mean lack of cell-cell 

contact which is one of the main key factors in cartilage formation [154]. Moreover, the 

matrix deposition exclusively occurred on the periphery of the constructs in all four 

groups and the lack of nutrient supply to the center of constructs might have caused cell 
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death or chemotaxis of cells [470] to the periphery where a layer of viable cells was 

clearly visible. To improve mechanical strength and shape fidelity the use of bioprinting 

and other co-polymers may be further investigated. Malda et al. demonstrated 

mechanical improvement and better structural organisation and in turn better osteogenic 

differentiation when encapsulating bone marrow MSCs grown on microcarriers in 

gelatin methacrylamide [352]. In this way the cells were shielded by the hydrogel and 

protected during the printing and also act as reinforcement for the entire construct. On 

the other hand, the mixture of solid and porous microcarriers can be further investigated 

to check whether mechanical improvements can be achieved.   

In general, the pellet system showed an enhanced chondrogenesis at gene and protein 

level mainly due to the close cell-cell contact but further refining of culture conditions 

for 3D microcarrier constructs could perhaps improve matrix synthesis and deposition. 

The presence of calcium deposition observed with alizarin staining and the presence of 

COLX should not be overlooked as COLX is not present in tracheal C-ring and calcium 

deposition is a significant indicator to tracheal cartilage disease [336][337]. Although 

pellet models are not mechanically feasible, they are useful models to evaluate and study 

the effect of cell-cell contact and cell-matrix interactions [215]. The potency of 

chondrogenic factors were examined on stem cells/chondroprogenitors with two distinct 

growth factors before moving onto 3D culture with microcarriers. Due to financial 

constraints chondrogenesis induction with BMP9 was not included and perhaps future 

studies should first examine the effect of BMP9 in a 3D culture during differentiation. 

However, full data sets are required to be reported as showing chondrogenic 

differentiation is one element of successful tissue engineering, it is also equally and if 

not more important to show further developmental as progression towards early bone 

formation has not been initiated and therefore reporting histological, protein and genes 

specific to bone formation should be incorporated 

Further improvements could be made on seeding strategies where Cultispher® 

microcarriers and cells could be made as small microtissues/aggregates first and then 

assemble these in a form of C-ring for enhanced cell-cell contact and optimised 

differentiation [484]. This was not feasible to do in our case as a bioprinting system 
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would have been an ideal way to perform this type of scaffold generation. Also, the 

effect of cell-matrix could be further investigated with AFM but requires an exposure to 

collagenase or trypsinised to dissociate cells from the microcarriers and recover viable 

cells [262].  

In this project, attempts were made to provide a more comprehensive overview of the 

native tissue and the journey of the cells from isolation to post-differentiation analysis. 

Unfortunately, this is not the case in most airway/tracheal cartilage tissue engineering 

research papers. The discrepancy lies mostly between the epithelial and cartilage tissues 

where comprehensive datasets are described at cell, genetic and protein level for only 

the epithelial layer [485]. This could be due to its biological function and the level of 

complexity of tissue function and cell types present in the native epithelial layer. The 

same principle must be applied when designing cellular based strategies for cartilage 

regeneration. Although, from a cellular point of view, cartilage is seen as a relatively 

simple tissue due to its sole cellular component, the chondrocyte, the possibility of 

cross-talk cannot be ruled out or ignored between adjacent tissues/compartments and 

perhaps future studies can further investigate the cross-talk between tracheal cartilage 

and adjacent tissues to elucidate this complex molecular interaction. The choice of cell 

selection for repair strategies may define the outcome of the fabricated tissues whether 

chondrocytes from different anatomical locations or cartilage-derived MSCs [100]. Due 

to the urgency to find a feasible solution for long segment tracheal replacements and the 

importance of the mechanical stability the focus therefore lies on the biochemistry, the 

positive gene regulation and protein expression of cartilage ECM and the mechanical 

properties which currently fails to report the whole image of the outcome. For example, 

assays such as hydroxyproline and sGAG report the total content of the matrix 

synthesized. Similarly stains such as toluidine blue and picrosirius red show the total 

GAG and collagen architectures respectively but lack specificity. It is well established 

that the use of chondrocytes or MSCs, which are the main cell focus in airway tissue 

engineering using the traditional culture methods have reached their potential limits, 

which do not fulfill the requirements for the clinical settings. Therefore, due to the 

common problems seen with current cell types and animal models selected, proliferation 

and differentiation media coupled with many different growth factors each having 
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unique signaling cascades it is necessary to report the full scale of results to narrow 

down feasible strategies and models to further enhance our understanding of tissue 

engineering these tissues [89], [90].     

Realistically, we are far from re-creating the complexity of developmental biology to 

generate nascent tracheal tissues by reverse engineering, and therefore, a radical re-think 

is required. What is obvious is that the cellular and molecular mechanisms involved 

during development and post-natally produce highly dynamic environments and a 

synergy and sequence of specific events leads to formation of tracheal tissue. Traditional 

in vitro approaches using normoxia, 2D culture and various chemical based protocols 

which mainly focus on one type of growth factor, although effective to some degree 

cannot recapitulate or replicate the native environment, they result in cartilage-like 

formation but not true hyaline cartilage. If using chondrocytes that are already 

committed is troublesome, using undifferentiated cells and subsequently reprogramming 

these cells to become differentiated is a more complex challenge with many variables to 

consider and overcome. Therefore, new strategies in cartilage tissue engineering have 

started to take a different approach and include as many physiological relevant factors as 

possible such as hypoxia, mechanical induction and 3D cultures and therefore we enter a 

new dawn of tissue engineering where we implement native cellular environments in an 

attempt to replicate developmental biological processes.  

 

Ideal experimental set up: 

Isolate chondroprogenitors via flow cytometry, immediately seed onto coated 

Cultispher® microcarriers and expand cells by addition of empty microcarriers in the 

presence of FGF2 and TGFβ1, to avoid environment as 2D is not an optimised 

environment and mechanotransduction is a well-known fact, use a low oxygen tension 

system at all times for propagation and differentiation, bioprint microaggregates of cells 

and microcarriers encapsulated within a hydrogel and stimulate chondrogenesis by 

mechanical induction, growth factors or a combination of both.  
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Conclusion: 

This study indicates that tracheal cartilage tissue specific chondroprogenitors were 

identified as plastic adherent, colony forming, proliferative and tri-potent. As a proof of 

concept, it was shown that customisable C-ring cartilages could be fabricated using 

ste/progenitor seeded gelatin microcarriers. However, further investigation is needed for 

optimisation of culture conditions and fabrication techniques. Therefore, tracheal 

chondroprogenitors have the potential as suitable cell sources for airway tissue 

engineering.  
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