
Journal Pre-proof

Enhancing fully printable mesoscopic perovskite solar cell performance using
integrated metallic grids to improve carbon electrode conductivity

Dimitrios Raptis, Vasil Stoichkov, Simone Meroni, Adam Pockett, Carys Worsley,
Matthew Carnie, Dave Worsley, Trystan Watson

PII: S1567-1739(20)30034-1

DOI: https://doi.org/10.1016/j.cap.2020.02.009

Reference: CAP 5154

To appear in: Current Applied Physics

Received Date: 12 November 2019

Revised Date: 4 February 2020

Accepted Date: 14 February 2020

Please cite this article as: D. Raptis, V. Stoichkov, S. Meroni, A. Pockett, C. Worsley, M. Carnie, D.
Worsley, T. Watson, Enhancing fully printable mesoscopic perovskite solar cell performance using
integrated metallic grids to improve carbon electrode conductivity, Current Applied Physics (2020), doi:
https://doi.org/10.1016/j.cap.2020.02.009.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V. on behalf of Korean Physical Society.

https://doi.org/10.1016/j.cap.2020.02.009
https://doi.org/10.1016/j.cap.2020.02.009




 1 

Enhancing fully printable mesoscopic perovskite solar cell performance 

using integrated metallic grids to improve carbon electrode conductivity 

Dimitrios Raptis, Vasil Stoichkov, Simone Meroni, Adam Pockett, Carys Worsley, Matthew Carnie, Dave 

Worsley, Trystan Watson* 

SPECIFIC – Swansea University, Materials Research Centre, College of Engineering, Bay Campus, 

Swansea, SA1 8EN, United Kingdom   

 

Abstract 

Carbon based Perovskite Solar cells (C-PSCs) have emerged as the most promising candidates for 

commercialisation in the field of perovskite photovoltaics, as they are highly stable, low cost and make 

use of easily scaled manufacturing techniques. However, the limited conductivity of the carbon 

electrode inhibits performance and represents a significant barrier to commercial application. Τhis 

work presents a scalable method for enhancing the carbon electrode conductivity through the 

integration of aluminium and copper grids into prefabricated C-PSCs. Adhered to the cells using an 

additional low temperature carbon ink, the metallic grids were found to dramatically reduce top 

electrode series resistance, leading to a large improvement in fill factor and efficiency. After grid 

integration, the 1 cm
2
 C-PSCs yielded power conversion efficiency (PCE) of 13.4% and 13% for copper 

and aluminium respectively, while standard C-PSCs obtained PCE of 11.3%. Performance is also 

significantly augmented in the case of larger-scale 11.7 cm
2
 modules, where PCEs went from 7.7% to 

10% and 11% for aluminium and copper grids respectively. This technique offers a fast and low 

temperature route to high-performance, large-area C-PSCs and could therefore have serious potential 

for application to the high-volume manufacture of perovskite cells and modules. 
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1. Introduction 

Organic-inorganic lead halide perovskite solar cells (PSCs) have made rapid progress in recent years, 

with power conversion efficiency (PCE) improvements from 3.8% to 23.7% since 2009 [1-7]. However, a 

range of issues must still be overcome in order to produce commercially viable devices. The high cost 

of materials such as organic hole transporters [8], the stability of devices in operation, and issues 

related to upscaling all represent significant barriers to commercialisation [9].  

Mei et al. in 2014 presented a fully printable, hole transporter-free device, that consisted of 

sequentially applied layers of TiO2, ZrO2 and carbon applied to FTO glass [10]. The perovskite solution is 

deposited by liquid infiltration through the stack [11, 12] and subsequent drying. TiO2 acts as electron 

transporter from the perovskite to the FTO electrode while ZrO2 acts as an insulating spacer and the 

conductive carbon as the top electrode. This device structure is shown schematically in Fig. 1a. 
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These devices, so-called Carbon based Perovskite Solar Cells (C-PSCs), overcome the stability issues 

observed in many other perovskite architectures. For example, high stability of 10,000 h under 

continuous 1 sun illumination has been reported for C-PSC with the 2D/3D 5-ammonium valeric acid 

(NH3(CH2)4COOH
+
,5-AVA) perovskite [13]. This stability evidence combined with the industrially 

applicable screen-printing processes that are used has identified this device structure as a potential 

front-runner to the market [14]. Large area modules have already been demonstrated with PCE 

between 10 and 11% on 10 x 10 cm
2
 [15-17] and around 6% PCE for A4 sized modules [18]. 

In terms of efficiency, lab scale cells lag behind other types of PSCs. The record for triple mesoporous 

C-PSCs stands at 15.9% for a methylammonium lead iodide (MAPI) perovskite, chemically modified by 

adding SrCl2 [19]. One of the main reasons for the limited C-PSCs performance is the low conductivity 

of the carbon electrode compared to conventional evaporated metal electrodes [20]. Although several 

other cathode materials including Au [21, 22] and Ni [23] have been explored, carbon materials remain 

the most promising as they are cheap, printable, stable and inherently water resistant. Improving the 

carbon electrode conductivity is therefore key to achieving the PCE improvements required for 

commercially competitive performance.  

The potential benefits of using metallic grids to improve the conductivity of a transparent conductive 

electrode has been previously discussed by Meredith et al [20]. In this work, we show that the use of 

copper and aluminium grids can also lead to highly conductive top electrodes for use in C-PSCs. For the 

placement of the metallic grids on the top contact, we use a home-made, low temperature carbon ink 

that acts as a conductive binder (Fig. 1b). We chose this structure over thin foils as the grid design 

allows for conducting ink permeation, and thus coverage on both sides of the metal, firmly adhering it 

on the cell without destroying the carbon layer (Fig. 1c). We also avoided a vacuum evaporation 

process because of its high energy consumption [24].  

The conventional C-PSC, shown in Fig. 1a, requires a porous carbon electrode in order to facilitate 

infiltration of the perovskite ink; following drying this layer is responsible for charge extraction and 

conductivity. The direct application of the metallic grids to this existing layer would create an even 

thicker scaffold whereby infiltration and penetration of the subsequent perovskite liquid ink would be 

impossible. Furthermore, there would be no adhesion between the grid and the underlying layer 

leading to instant delamination. To resolve this, the C-PSC devices were infiltrated prior to the 

application of the grid electrode and the grid itself combined with a separate carbon conducting ink 

acting as a binder. This sequence can be seen in Fig. 1.  

The standard carbon paste formulation used for the top contact in the original device structure 

typically requires heating at 400
o
C in order to achieve the porosity necessary for enabling perovskite 

infiltration and for overall conductivity. This formulation therefore is inappropriate as a subsequent 

additional electrode due to these temperature requirements degrading the underlying perovskite [25, 

26]. Hence, the use of it as conducting glue for the post-infiltration grids placement is unsuitable. A low 

temperature carbon ink was therefore developed for this purpose. 

The effect of grid placement on device performance is examined for 1 cm
2
 cells before application to 

larger modules of series-interconnected cells. Standard C-PSCs are used as reference samples and C-

PSCs with the additional carbon ink, in the absence of grid, are also examined for comparison (Fig. 1a, 

b and c). It is revealed that the metallic grid integration significantly enhances device performance in 

both 1cm
2
 and upscaled devices. These improvements are a consequence of drastically improved fill 

factors, due to the enhanced electrode conductivity. This simple, low temperature method offers an 
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easy route to improve device performance and therefore has serious potential for application in the 

high-volume manufacture of large-area perovskite devices. 

 

2. Experimental 

 

2.1 Materials 

PbI2 (99%, Sigma-Aldrich), MAI (CH3NH3I, anhydrous, Dyesol), 5-ammonium valeric acid iodide (5-AVAI, 

Dyesol) and γ-Butyrolactone (Sigma Aldrich) were used as received for preparation of perovskite 

precursors. Stacks were prepared using the following: anhydrous 2-propanol (IPA, 99.5%), carbon paste 

(Gwent electronic materials), ZrO2 paste (Solaronix), TiO2 paste (30NR-D, Dyesol), terpineol (95%, 

Sigma-Aldrich), and titanium diisopropoxide bis(acetylacetonate) (TAA, 75% in IPA, Sigma-Aldrich). The 

materials for the additional home-made carbon ink are as follows: Graphite Timrex SFG 15 (Imerys), 

Carbon black Ensaco 250G (Imerys), Ethyl Cellulose (Sigma-Aldrich), 1-Butanol (Sigma-Aldrich). 

Conductive fluorine-doped tin oxide glass (FTO, TEC7, XOP) was used as the substrate. Aluminium and 

copper grids (25 μm thick) were provided by Dexmet. 

 

2.2 Device fabrication 

For 1cm
2
 devices FTO substrates were patterned with a Nb:YVO4 laser (532 nm) before cleaning with a 

solution of ~2 % Hellmanex in deionised water, rinsing with acetone and IPA and a 5 minute plasma 

clean in O2. A compact TiO2 (cTiO2) blocking layer was then deposited at 300
o
C by spray pyrolysis of 

10% titanium diisopropoxide bis(acetylacetonate) in IPA. Next, the mesoporous TiO2 paste was diluted 

1:1 by weight in terpineol before screen printing and subsequent sintering at 550 
o
C. The mesoporous 

ZrO2, and carbon were then screen printed and annealed at 400 
o
C. Room temperature perovskite 

precursor solution (14 µlcm
2
, made using 0.439 gcm

-3 
PbI2, 0.1514 gcm

-3 
MAI and 0.0067 gcm

-3  
5-AVAI 

in γ-Butyrolactone) was then drop cast onto the cooled stack. Devices were left in air for ten minutes 

to allow the solution to percolate through the stack before annealing in a fan oven for 1 h at 50 
o
C. The 

finished cells were then exposed to a standard 70% relative humidity process at 40 °C for 24 hours to 

induce a recrystallisation [27] and then dried in a vacuum oven before measuring.   

Module substrates (5 cm
2
) were laser etched with lines every 6.5 mm before cTiO2 and mesoporous 

layer depositions as described above. The annealed layers were then mechanically scribed 0.3 mm 

away from the etched lines to define the contact area width (0.4 mm). The carbon layer was then 

printed and annealed as outlined above before a final scribing step every 5.2 mm to separate the cells. 

Perovskite was deposited using the automated infiltration method described in previous work [11] and 

annealed for 1 hour at 50 
o
C in an extraction oven.  

Electrodes used for conductivity measurements were printed on clean glass and annealed at 400 
o
C. 

Standard samples were tested as produced. Ink samples were prepared by coating standard electrodes 

with the additional homemade, low temperature ink and drying at 60 
o
C for 5 minutes in air. Metal 

grids were applied as described below. 
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2.3 Ink Fabrication, Grid Application and Encapsulation 

The additional low temperature ink consisted of a polymeric binder and a mix of carbon allotropes. 

Ethyl Cellulose was chosen as the polymeric binder due to its high solubility, low toxicity and low cost. 

The ink prepared contained 12.5% Ethyl Cellulose resin in 1g 1-Butanol and had 29.4% carbon loading. 

Grids are placed directly onto the carbon electrode and the additional ink is applied on-top. Due to the 

porous nature of the grids, the ink travels through the pores allowing coverage of both sides. The grid 

is then firmly placed on top of the mesoporous carbon layer and dried at 60
o
C for 5 minutes in air. The 

thickness of the additional ink was controlled by using polyimide tape around the cell active area. By 

this way, a stable and reproducible carbon electrode with integrated metallic grid was produced (Fig. 

1c).  

Devices for stability testing were encapsulated using commercially available two-part epoxy resin and 

a glass back cover (Fig. 1d). 

 

Fig. 1. Schematic representation of (a) standard C-PSC (b) + Additional ink overlayer (c) + Additional ink overlayer 

containing Cu grid and (d) encapsulation mechanism used. 

 

In the case of larger upscaled devices, a mask made by polyimide, was used to protect the inter-

connect areas from shorting during grid integration. After the placement of polyimide at junctions, the 

ink/grid application on the active areas of the module is completed as described above (Fig. 2). 
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Fig. 2. Schematic representation of a module with copper grid. Layers thicknesses are the same as Fig.1. 

 

2.4 Characterization techniques 

All IV testing was performed under a class AAA solar simulator (Newport Oriel Sol3A) at AM1.5 100 

mW cm
−2 

illumination, calibrated using a KG5 filtered reference cell. Cell area was masked to 0.49 cm
2
 

for 1 cm
2
 devices, while modules were not masked. Devices were light soaked for 3 minutes before 

current density (J) – voltage (V) sweeps were performed from open-circuit voltage (VOC) to short-circuit 

current density (JSC) and vice versa at a rate of 330 mV/s using a Keithley 2400 source meter. Stability 

measurements were performed at 1 sun illumination using a Solaronix Solixon A-20 AM1.5G AAA solar 

simulator. Cells were placed on a cooled platform to maintain a temperature of ~21 
o
C and scanned 

once every hour using a Keithley 2400 source meter.  

Sheet resistances were measured using a JANDEL RM 3000 Four-Point Probe System. Electrochemical 

impedance spectroscopy (EIS) measurements were performed on unmasked devices using a Zahner 

CIMPS-X photoelectrochemical workstation. Devices were scanned from 10MHz to 1 Hz at open circuit 

under red LED illumination (630nm) at 1 sun equivalent intensity. Electrode topography was examined 

using a HITACHI scanning electron microscope (SEM), while films thicknesses (Fig. 1) were measured 

with a DEKTAK 150 profilometer system.  

 

3. Results and discussion 

Aiming to attain a high conductive top electrode for hole-transporter-free carbon perovskite solar 

cells, aluminium and copper grids were placed on-top of the standard carbon electrode by using an 

additional homemade carbon ink as glue. Initial tests compared the conductivity of four different 

electrodes: the standard carbon electrode (std), standard carbon electrode plus additional ink 

overlayer (+ink), standard carbon electrode plus additional ink overlayer containing copper grid (+Cu) 

and standard carbon electrode plus additional ink overlayer containing aluminium grid (+Al). Fig. 3a 

shows the sheet resistance of the different electrodes. The standard carbon electrode produces 22.5 

Ω/□ sheet resistance on a glass substrate while the electrode with additional carbon ink produces 13.6 

Ω/□ sheet resistance. When metallic grids are also applied, this value is drastically decreased. The 

aluminium grid lead to less than 1 Ω/□ sheet resistance while the copper produces an electrode with 

almost metallic (0.005 Ω/□) electrical resistance.  
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Typically, increasing the electrode thickness can cause a reduction in measured sheet resistance and so 

this should be considered when comparing values. This is accounted for in Fig. 3b where electrode 

thickness is accounted for by multiplying the measured resistivity with the corresponding electrode 

thickness. The measured decrease in resistance remains significant for both electrodes containing 

metal grids, even when accounting for the large increase in thickness. This is not the case for the 

additional ink coated samples, in the absence of grids, where the observed conductivity improvement 

is clearly a consequence of the thicker layer.  

 

Fig. 3. (a) Sheet resistance of different carbon electrodes (b) Sheet resistance multiplied with sample thickness 

of different electrodes. 

 

Device performances were measured before and after grid application, with multiple devices 

measured in order to ascertain that observed differences were not a consequence of in-batch 

variability. The statistical results are presented, before and after enhancement, in Fig. 4 and the 

average values in Table 1. In all cases metallic grid placement vastly improves device performance: 

Average PCE increased from 11.19 ± 0.27% to 13.15 ± 0.12% with copper grid application and from 

11.08 ± 0.14% to 12.83 ± 0.06% with aluminium. These improvements are mainly due to a >10 % 

increase in fill factor (FF). A small improvement in Jsc was also observed in the case of copper grids, 

which explains the higher increase in device PCE. A smaller enhancement in average PCE from 11.32 ± 

0.06% to 11.80 ± 0.13%, was observed in the case of additional ink on top of the cells without any 

metallic grid. 
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Fig. 4. Box plots of main photovoltaic parameters of several C-PSCs. (a) before and after the placement of 

aluminium grid (b) before and after the placement of copper grid (c) before and after the placement of 

additional carbon ink. Data comprises an average of 3 devices per case. 

 

Top 

Electrode 

PCE (%) FF (%) Voc (Volts) Jsc (mA/cm
2
) 

Std 11.08 ± 0.14  60.70 ± 0.40  0.81 ± 0.01 22.42 ± 0.40 

+Al 12.83 ± 0.06 69.04 ± 0.97 0.80 ± 0.01 23.19 ± 0.24 

Std 11.19 ± 0.27 62.12 ± 0.75 0.82 ± 0.01 22.06 ± 0.42 

+Cu 13.15 ± 0.12 68.48 ± 0.40  0.81 ± 0.01 23.79 ± 0.03 

Std 11.32 ± 0.06 61.92 ± 0.29 0.82 ± 0.01 22.46 ± 0.28 

+ink 11.80 ± 0.13 65.48 ± 0.64 0.81 ± 0.01 22.29 ± 0.10 

Table 1. Average performance of cells with different carbon electrodes.  

 

The J-V curves for the highest performing devices are shown in Fig. 5a with detailed photovoltaic 

parameters listed in Table 2. The champion devices exhibit PCEs of 12.95%, 13.37% and 12.05% for 
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aluminium, copper and additional ink-only electrodes respectively. The largest improvement was 

observed with copper, which showed an increase in device performance of 23.3%, while the 

aluminium showed an increase of 18.81%. Addition of ink alone results in a modest improvement of 

6.45%. Series resistance values calculated from the J-V curves of the cells are also presented in Table 2. 

A reduction of Rs is evident after grid application for both aluminium and copper and is responsible for 

the enhanced performance of our devices. 

The above results can be easily rationalised using the conductivity data (Fig. 3). Fill factor is 

determined by competition between charge extraction and recombination. A more conductive 

electrode results in enhanced charge extraction and therefore improved fill factor, which in turn 

increases the PCE. Although addition of the homemade carbon ink was also found to decrease Rs 

values this was to a much lesser degree, consistent with the difference in measured conductivity. 

It is well known that the use of standard characterization techniques can easily lead to inaccurate 

experimental efficiency [28]. Previous reports on mesoscopic hole transporter-free carbon cells have 

accounted for this problem by measuring devices at their maximum power point to obtain the 

stabilised power output [29, 30]. Peak power tracking was therefore performed on devices before and 

after top electrode modifications. The corresponding graphs from the champion devices are presented 

in Fig. 5b. The standard cells used for grid testing exhibited similar stabilized PCEs before grid 

placement, 9.62% for aluminium samples and 9.77% for copper. These values increased to 11.50% 

(+Al) and 11.87% (+Cu) after grid application, while the performance of the additional ink-only cells 

improved by a smaller degree (9.85% for standard samples, 10.42% for samples with ink). These values 

both support the original J-V data and verify that observed improvements in device performance are a 

direct consequence of grid application. 

Fig.5. (a) J-V curves of the champion devices before and after the placement of grids/ink (b) Stabilised PCE at 

one sun of champion devices before and after the placement of the relevant grids and ink. 
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Top 

Electrode 

 PCE 

(%) 

FF 

(%) 

Voc 

(Volts) 

Jsc 

(mA/cm2) 

Rs 

(Ωcm2) 

std  10.90  61.17 0.82 21.78 8.73 

+Al 

(champion) 

12.95 69.54 0.80 23.27 4.86 

std  10.84 60.65 0.83 21.65 8.42 

+Cu 

(champion) 

13.37 68.26 0.82 23.75 4.85 

std  11.32 62.08 0.81 22.45 7.92 

+ink 

(champion) 

12.05 66.50 0.81 22.37 5.96 

Table 2. Photovoltaic parameters of champion solar cells before and after ink and grid application. 

 

Once the positive effect of grid inclusion on electrode conductivity and device performance had been 

confirmed, the impact of the metal grids was further analysed using impedance spectroscopy. In Fig. 

6a we present an equivalent circuit for the carbon devices, where RS,1 and RS,2 are the resistances 

associated with the FTO and carbon (with or without metallic grid) respectively. RP and C represent the 

combination of resistances and capacitances that contribute to the impedance response of the active 

layer of the device [31, 32]. For example, RP, is the total resistance arising from the parallel 

combination of the recombination resistance, and shunt resistance due to pinholes. Similarly, C is the 

total capacitance due to the geometric capacitance of the device, and charge accumulation (chemical 

capacitance) in the active layer. As RS,1 and RS,2 are electrically indistinguishable they can be combined 

to give RS, as shown in the further simplified equivalent circuit in Fig. 6b, along with the expected 

impedance response of such a circuit. At high frequency, the impedance of the capacitive elements 

tends to zero – the capacitor therefore represents a short-circuit to current flow, and so the overall 

impedance response is governed by RS. The effect of the metal grids on the resistance of the carbon 

layer can therefore be interpreted by analysing the high frequency intercept of the impedance 

response with the x-axis of a Nyquist plot, which gives the value of Rs.  

The impedance response of the carbon cells with different top electrode configurations is shown in 

Fig. 6c. It can be seen that the impedance response is not simply a single semi-circular arc as given by 

our equivalent circuit. The analysis of the electronic and ionic processes occurring in the active layer of 

these devices is beyond the scope of this work [30], and the equivalent circuit given here is simply 

used to demonstrate that the properties of the carbon layer can be interpreted from the value of Rs. 

The extracted values of Rs for each of the cathode configuration devices are shown in the inset table in 

Fig. 6c. The inclusion of metallic grids leads to a four-fold decrease in the value of RS relative to the 

standard device – a smaller decrease than that, observed for the additional ink alone. This shows that 

the effective resistance of the carbon contact has been decreased, which is consistent with the 

improvement in fill factor observed above in the J-V measurements (Fig. 3, 4). The difference between 

the two metallic grids can not be resolved as they are both highly conductive, with the remaining 

resistance of 2.1 Ω cm
2
 for both the aluminium and copper grid devices likely dominated by the 

resistance of the FTO contact. It should be noted that Rs in the equivalent circuit does not relate to the 
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series resistance as defined by the J-V measurements – the ‘dc’ or low frequency limit of the 

impedance response relates to the slope of the J-V curve near open-circuit. 

 

 

Fig. 6. (a) Equivalent circuit of carbon cell. RS,1 is FTO resistance, RS,2 is carbon resistance and RPC represents 

active layer effective resistance and capacitance (b) Simplified equivalent circuit and expected impedance 

response (Nyquist plot). RS is the sum of the FTO and carbon resistances (c) Impedance response of carbon 

devices with different top electrode configurations. Inset table shows the Rs values, calculated from impedance 

response for each of the different top electrode configuration devices 

 

Scanning electron microscope (SEM) was performed to show the morphology of the grids in-situ and 

the extent of additional ink coverage. Fig. 7a and b present the surface SEM images, including Energy-

dispersive X-ray spectroscopy (EDX) analysis, of the cells with the integrated copper and aluminium 

grid respectively. Ιt is clear that the additional ink permeate the mesh structure and is present on both 

sides of the grid, which accounts for the mechanical stability of the layer. 
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Fig. 7. Surface SEM images, including EDX analysis, of devices with (a) copper and (b) aluminium grid. 

 

Long term stability of the cells with grid addition was tested under continuous illumination after 

encapsulation. Standard cells were used as a reference sample. The time evolution of normalized 

device PCEs over 700 hours is displayed in Fig. 8. Compared to standard cell, both grid samples exhibit 

slightly improved stability. This fact indicates that the additional carbon ink not only helps the grids to 

adhere on top of the cell but also may provide an additional protection to the device. Therefore, 

metals do not negatively affect device lifetime.  

Fig. 8. Normalised PCE values showing the long term stability of C-PSCs with different cathode electrodes. 

 

The above results demonstrate the positive effect of metallic grid application on 1cm
2
 solar cells. As 

previously stated, these device architectures are considered one of the most commercially applicable 
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and have been used to produce large scale modules. The negative impact of the highly resistive carbon 

electrode is known to be more detrimental to performance as device area increases [15, 33]. 

Consequently, the effect of grid application on module performance was examined, as well. Upscaling 

devices are constructed by 6 interconnected cells with total active area, 11.7 cm
2

, as shown 

schematically in Fig. 2. The relevant current-voltage (IV) characteristics are shown in Fig. 9a, while the 

corresponding photovoltaic parameters are summarized in Table 3. A significant reduction of Rs values, 

calculated from IV curves, can be observed in all devices after grid placement. The introduction of 

copper has as a result a high improvement of fill factor from 43.44% to 59.18% which in turn increases 

the PCE from 7.70% to 11.05%. The introduction of aluminium achieves enhanced performance on 

another device, as well. The fill factor of the standard module before the aluminium application was 

46.68% with an efficiency at 7.73%, increasing to 56.77% and 9.97% respectively post-application.  

For a more accurate reading of device efficiency and to confirm the PCE enhancements observed from 

J-V data, peak power tracking measurements were performed (Fig. 9b). The stabilised efficiencies of 

the standard devices are 7.02% and 7.03%, improving to 9.88% and 8.86% for copper and aluminium 

respectively after grid application. 

Fig. 9. (a) J-V curves of the 11.7 cm2 modules before and after grid application (b) Stabilised PCEs of modules 

before and after the placement of metallic grids. Inset shows the photo of a 11.7 cm
2
 module  

 

Cathode 

Electrode 

of 

modules 

 PCE 

(%) 

FF 

(%) 

Voc 

(Volts) 

Average 

Voc per 

cell 

(Volts) 

Isc 

(mA) 

Minimum 

Isc per cell 

(mA) 

Jsc 

(mA/cm
2
) 

Rs 

(Ohms) 

Std  7.73 46.68 4.95 0.83 39.20 20.10 3.35 56.68 

Al  9.97 56.77 5.03 0.84 41.84 21.45 3.49 35.85 

Std  7.70 43.44 5.02 0.84 41.35 21.21 3.53 64.87 

Cu  11.05 59.18 5.11 0.85 42.73 21.91 3.65 29.99 
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Table 3. Photovoltaic parameters of modules before and after application of different carbon 

electrodes. 

 

Module improvements compare to those observed at small scale samples are much higher because, 

placing the metallic grid on the active area of each cell decreases the series resistance and therefore 

improves the fill factor of every separate cell. Consequently, the whole device records much higher 

overall fill factor and efficiency. This fact may pave the way for an industrial module with high 

conductive top electrode. Despite similar standard device performance before grid placement, the 

application of copper grids led to greater performance enhancement than aluminium in all trialled 

devices. This is likely a consequence of the higher conductivity of the produced electrode (Fig. 3). It 

should be noted that the measured performance enhancements are significant in both cases with both 

materials offering substantial improvements in efficiency. 

 

4. CONCLUSION 

A simple technique is presented for enhancing C-PSCs PCE through the application of low resistance 

top electrodes. The high resistance of the carbon electrode in C-PSCs limits device performance by 

negatively impacting on the fill factor and represents a significant barrier to commercialisation. This 

work shows that integration of copper and aluminium grids onto the carbon layer of pre-fabricated 

devices using low-temperature carbon ink drastically improves the performance of both small and 

upscaled devices. This is particularly notable in the case of copper, where grid application to a 1cm
2
 

device resulted in a champion PCE of 13.37%, a 23.3% improvement compared to the standard cell. 

Efficiencies were also improved with aluminium grids, where measured PCE reached 12.95%, up from 

10.90% pre-application. The slightly lower impact of aluminium was found to be a consequence of 

lower electrode conductivity. 

This method is perhaps most applicable to large scale modules, where high resistance electrodes are 

more detrimental to device performance. When grids applied to 11.7 cm
2
 modules, PCEs improved 

from 7.70% to 11.05% for copper and 7.73% to 9.97% for aluminium. Again, fill factor was significantly 

enhanced (36.23% and 21.62% for copper and aluminium respectively).  

The development of cheap and simple methods for improving baseline performance is essential for 

commercialisation. This technique offers a simple, ambient, low temperature route to drastically 

improve device performance without adversely affecting stability. Combined with improving the TCO 

conductivity, this method would allow the production of high efficiency devices and modules, and 

therefore represents a simple potential route to the production of commercially competitive C-PSCs. 
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Highlights 

 

• A simple and scalable method for attaining a highly conductive carbon electrode 

through the integration of metallic grids into prefabricated C-PSCs. 

 

• A low temperature carbon ink was developed to act as conducting glue for grid 

placement. 

 

• The champion PCE of 1 cm
2
 C-PSCs is boosted from 11.3% to 13.4% by copper grid 

integration. 

 

• When grids applied to 11.7 cm
2
 modules, PCEs improved from 7.7% to 10 % and 11 % 

for aluminium and copper grids respectively. 
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