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Abstract 

A modeling error location method based on modal strain energy is presented in this paper. 

Errors in the design model with shell elements are located by an error indicator which is 

based on changes between the equivalent modal strain energy and the modal strain energy of 

the design model. The equivalent modal strain energy is defined as a quadratic form using the 

stiffness matrix of the design model and the mode shape of the reference coming from the 

sophisticated and high fidelity finite-element model, called the supermodel, or the full-field 

measurement. The major obstacle to obtain the equivalent modal strain energy is how to 

match the mode shapes of a solid element and those of a shell element since each node of the 

solid element contains only three translation degrees of freedom (dofs) while each node of the 

shell element has six dofs, including three translation and three rotation components. In order 

to solve this problem, a mode shape transformation method from the solid element to the shell 

element is proposed using the shape functions or linear approximation. Using this approach, 

the errors in the design model can be determined and the updating parameters can be selected 

so that the updated model has physical meaning and can represent the dynamic characteristics 

of the real structure. The simulation of a simple plate is used initially to illustrate the 

effectiveness of the proposed method. Then, a rotor test rig casing is taken as an example for 

further investigation. A comparison of the updating parameters selected by the proposed 

method and the traditional sensitivity analysis technique is then undertaken. It is verified that 

the updating parameters selected based on error location have physical sense and represent the 

true errors in the design model through the updating results. The advantage of this technique 

is that only detailed mode shapes from the reference is required. The approach shows 

potential for further industrial engineering applications.  

Key words: Mode shape transformation, Modal strain energy, Error Indicator, Error 
location. 

1. Introduction 

In modern structural design, finite element (FE) analysis is widely used for design prediction. 

In general, the sophisticated and high fidelity FE model of a real structure is capable of 
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representing all geometric features and its dynamic properties. Therefore, this model can be 

taken as representative of the structure for model updating or further analysis. Such a model, 

also called a supermodel [1, 2], is usually created with a highly refined mesh using 

second-order 3D solid elements. However, the supermodel will significantly increase the 

number of nodes and degrees of freedom (dofs), and therefore it significantly increases the 

computing cost. The supermodel is also not suitable for further analysis of the whole system 

through assembling all sub supermodels, such as the whole engine model (WEM). Therefore, 

a reduced model with higher efficiency is widely used, which is called the design model. The 

design model is usually built with beam or shell elements and is often obtained through model 

reduction, including geometrical simplification or a coarse mesh, in order to significantly 

reduce the number of dofs in the model. These reductions will cause errors in the design 

model and result in a lack of agreement between the design model predictions and the 

reference (experimental observations or simulations from supermodels). Therefore, one of the 

key issues is how to localize errors in the design model and adjust the design parameters to 

improve the prediction accuracy of the design model using the reference data. 

 In recent years, correcting errors in the design model through model updating based on 

test data has developed into a mature technology and the details were described in references 

[3, 4, 5]. The updating results critically depend on the updating parameter selection strategy. 

Currently, most parameter selection methods are based on sensitivity analysis. Lallement et al. 

[6] used an iterative procedure to select the optimal subset of parameters, commonly known 

as the forward selection method. Friswell et al. [7, 8] examined the relationship between the 

subset selection and the iteration required for the parameter estimation. Linderholt et al. [9] 

developed a Hessian-based error localization approach to identify the updating parameters 

with most confidence from a set of candidates. Combining the parameters with the similarity 

sensitivity to improve the updating procedure was proposed by Kim et al. [10, 11, 12]. The 

basic idea of these methods is to select the most sensitive parameters to minimize the 

objective function describing the difference between the prediction and the reference. 

However, the most sensitive parameters may not be the erroneous parameters, and thus an 

updated model based on the most sensitive parameters may only be a mathematical equivalent 

model. The most important issue to solve the above problem is to localize the actual model 

errors and select the corresponding updating parameters. 

The errors in the FE model arise from numerous sources and may be summarized as 

three types [5]: (1) discretization errors, (2) idealization errors, (3) parameter errors. 

Correction of the discretization and idealization errors normally occurs within the scope of 

model verification. After model verification, the discretization and idealization errors of 

design model can be assumed negligible and the design model may be used for model 

updating. The parameter errors of the verified design model are usually caused by inaccurate 

estimation within the model. Compared to the supermodel, the errors in the design model 
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often arise from improper simplification, particularly the simplification of detailed 

geometrical features. These improper simplifications can be described by stiffness or mass 

related parameters of the design model and can be updated. Locating these errors helps to 

improve the updated model fidelity and the model updating efficiency. 

Error localization methods have been investigated in recent decades. Larsson and 

Abrahamsson [13] proposed the Balancing Eigenvalue Equation Method (BEEM) to locate 

model errors using the unbalanced load vector in the early days. The Best Subspace Method 

[13] and the Substructure Energy Function Method [14] may be considered as extensions of 

the BEEM approach. These methods focus on locating the errors in matrix elements or dofs, 

but the selected parameters lack physical meaning. The localization of error parameters in the 

design model is similar to structural damage detection using vibration data. The basic idea of 

both is to compare the modal characteristics of different states, which are damaged and 

undamaged states for damage detection, and the design model and reference supermodel for 

error localization in this paper. Doebling et al. presented a detailed review on this subject [15]. 

The modal strain energy (MSE) method is one of the most powerful tools and widely used in 

engineering because of its high sensitivity and accuracy. The principle is that the modal strain 

energy at the damage location area will have a significant difference before and after damage. 

Several typical damage indicators based on the change in modal strain energy have been 

proposed and can successfully detect damage or cracks in plate structures [16, 17, 18, 19, 20].  

The MSE calculation depends on the accuracy of the mode shapes of the structure. The 

mode shapes measured using traditional accelerators are generally spatially incomplete and 

also lack the rotational components. The modal expansion technique could be used to expand 

the sparse mode data. Guyan static expansion [21] is the simplest method, which is based on 

the assumption that the inertial force terms for the unmeasured dofs can be ignored, although 

the accuracy is insufficient in many cases. Hence, the Improved Reduction System (IRS) 

method [22], the iterated IRS method [23] and the System Equivalent Reduction Expansion 

Process (SEREP) [24] have been proposed to obtain better performance. Considering that 

uncertainty or errors may be contained in the model, several methods have been proposed to 

improve the accuracy of the expanded shapes of offshore jacket structures [25, 26, 27, 28]. In 

addition, Guan and Karbhari [17] used polynomial functions to expand the mode shapes of 

beam structures. However, modal expansion will bring in extra errors and mix them with the 

model errors, which will increase the difficulties of error location. Another critical problem is 

that the measurement noise in the mode shapes also has a great influence on the modal strain 

energy calculation. Thus, we can use the supermodel to replace the test data to provide the 

reference mode shapes. Compared to the measured mode shapes, the supermodel can produce 

accurate mode shapes in as many dofs as required. However, there are generally only three 

translation dofs at each node of the supermodel, whereas there are six dofs at each node of the 

shell elements in the design model, including three rotational components. As a result, the 
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equivalent modal strain energy (EMSE) using the shell element stiffness matrix from the 

design model and the mode shapes from the supermodel cannot be combined easily. Thus the 

correct error indicator and location results cannot be obtained. For the purpose of error 

location using modal strain energy with the supermodel, the problem of mode shape 

transformation from the supermodel to the design model should be solved.  

In this paper, a mode shape transformation method from the supermodel to the design 

model is proposed and applied to error localization based on modal strain energy. The mode 

shape transformation is formulated and derived based on the theory of finite element analysis 

using the element shape functions. An alternative transformation method with linear 

approximation is also proposed and discussed to simplify the transformation procedure for 

complex structures. An error indicator based on modal strain energy is also presented. The 

application of the proposed method is demonstrated by a simulated plate structure with 

geometrical feature simplification and the casing structure of a rotor test rig. Compared with 

the traditional sensitivity analysis method, it is demonstrated that the proposed method using 

modal strain energy and modes from the supermodel can be applied to locate the errors in the 

design model and guide the parameter selection in model updating. 

2. Methodology 

2.1 Strain energy descriptions of solid and shell elements 

The flexural vibration of a flat plate structure can be modeled and analyzed by both solid 

and shell elements, as shown in Fig. 1, in the finite element method The 3D solid element 

consists of 8 nodes, named as 1~8. The shell element nodes are I, J, K, and L at the middle 

surface of the element. 

 

Fig. 1 The model of the flat plate (a) 3D solid element and shell element, (b) deformed plate 

 

The strain energy expression for a finite element is 

 T

V
U dV= ∫ Dε εε εε εε ε   (1) 

where D  is the matrix of material constants and εεεε  is the strain component vector 

expressed as 
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T

x y z xy xz yzε ε ε γ γ γ =  εεεε   (2) 

 The strain vector εεεε  for a finite element can be expressed as 
 = Baεεεε   (3) 

where B  is the strain matrix, and a  is the displacement vector. Thus eq.(1) may be written 

in the form 

 ( ) ( ) ( )1 1 1

2 2 2

T T T T

V V
U dV dV= = =∫ ∫Ba D Ba a B DB a a Ka   (4) 

where K  is the element stiffness matrix. It is clear that the strain energy depends on the 

displacement vector. If the displacement vector is replaced by the mode shape, the element 

modal strain energy is given by 

 ,

1

2
T

i j j i jU = Kϕ ϕϕ ϕϕ ϕϕ ϕ   (5) 

where ,i j  represent the element number and mode number respectively, and ,i jK ϕϕϕϕ  are the 

element stiffness matrix and the mode shape vector. For the solid element, the mode shape 

jϕϕϕϕ  can be expressed as 

 [ ]1 1 1 8 8 8

T

j u v w u v w= Lϕϕϕϕ   (6) 

It can be seen that the mode shape of a solid element is represented by the displacement 

at the eight nodes and each node has three translation degrees of freedom. The shell element 

is the combination of a membrane element and a plate bending element and the mode shape 

jϕϕϕϕ  is given by 

 , , , , , ,

T

j I I I x I y I z I x L y L z Lu v w θ θ θ θ θ θ =  Lϕϕϕϕ   (7) 

 Obviously, the mode shape of a shell element is described by the displacement of four 

nodes with six dofs at each node. These six dofs are three translational and three rotational 

dofs. If the mode shape of a shell element is divided into translational and rotational 

components 

 d r
j j j =  ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ   (8) 

 Then, the modal strain energy of the shell element can be written in the following matrix 

form 

 

,

, r, ,

, , ,

1 1

2 2

1

2

1 1 1

2 2 2

TT d r d r
i j j i j j j i j j

dd dr
Td r d ri i

j j j jrd rr
i i

d T dd d T rr r d T dr r
j i j j i j j i j

dd rr dr
i j i j i j

U

U U U

   = =    

 
   =     

 

= + +

= + +

K

K K

K K

K K K

Kϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ

ϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕϕ ϕ ϕ ϕ ϕ ϕϕ ϕ ϕ ϕ ϕ ϕϕ ϕ ϕ ϕ ϕ ϕ

  (9) 

where , , ,, ,dd rr dr
i j i j i jU U U  are given as follows 
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 , , ,
, , ,

1 1 1
, ,

2 2 2
dd d T dd d rr r T rr r dr d T dr r
i j j i j i j j i j i j j i jU U U= = =K Kϕ ϕ ϕ Κ ϕ ϕ ϕϕ ϕ ϕ Κ ϕ ϕ ϕϕ ϕ ϕ Κ ϕ ϕ ϕϕ ϕ ϕ Κ ϕ ϕ ϕ   (10) 

 If the rotation component is neglected, then the mode shape of the shell element can be 

written as 

 j j =  0ϕ ϕϕ ϕϕ ϕϕ ϕ   (11) 

Substituting eq.(11) into eq.(10), the energies , ,,rr dr
i j i jU U  are equal to zero and 

 ( ) ( ), , , ,, 0, 0d dd rr dr
i j j i j i j i jU U U U  = = = 0ϕϕϕϕ   (12) 

Setting the rotation component to zero is equal to applying fixed constraints to these dofs. 

According to the virtual work principle, these added constraints will increase the structure's 

ability to resist deformation and more energy is required to generate same deformation, which 

means the modal strain energy without considering rotation component will be larger than the 

real value 

 ( ) ( ), ,
d d r

i j j i j j jU U   >   0ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ   (13) 

The same conclusion could be drawn for the translation dofs, as 

 ( ) ( ), ,
r d r

i j j i j j jU U   >   0 ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ   (14) 

Because the modal strain energy is positive, the cross terms ,
dr
i jU  are negative and the 

modal strain energy of all components can be expressed as the algebraic sum 

 , , , ,
dd rr dr

i j i j i j i jU U U U= + −   (15) 

Fig. 2 shows a typical comparison of the modal strain energy components of the shell 

elements of a plate using a logarithmic scale. It clearly shows that the modal strain energy 

components , , ,, ,dd rr dr
i j i j i jU U U  are orders higher than the correct value ,i jU . The results mean 

that the rotational components of the mode shape of shell elements have a great influence on 

the modal strain energy. 

Note that, in practice, if the rotational dofs were not measured they would not simply be 

neglected, and the element stiffness matrices in the design model could be reduced to only the 

translational dofs using the IRS method or the iterated IRS technique. 
 

  
Fig. 2 Typical comparison of modal strain energy components of shell elements of a plate, (a) the 1st 
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mode, (b) the 2nd mode 

 

2.2 Mode shape transformation from a solid element to a shell element 

 Taking the element in Fig. 1 as an example, the translational mode shape at any location 

in the solid element can be described using the shape functions in the x, y, z-directions as 

 
8 8 8

1 1 1

, ,i i i i i i
i i i

u N u v N v w N w
= = =

= = =∑ ∑ ∑   (16) 

where iN  are the shape functions of the solid element. Thus, the translational elements of the 

mode shape at nodes I, J, K, L of the shell element can be obtained as 

 ( ) ( ) ( )
8 8 8

1 1 1

, , , , , ,p i i p i i p i i
i i i

u N p u v N p v w N p w p I J K L
= = =

= = = =∑ ∑ ∑   (17) 

According to the finite element theory of shell elements, there are only two out-of-plane 

rotational dofs in the elemental coordinate system. The in-plane rotational dof is used for 

coordinate transformation and doesn’t make physical sense in element coordinate system. The 

relationship between the normal translation w  and the rotations ,x yθ θ  of the shell element 

are 

 ,x y

w w

y x
θ θ∂ ∂= = −

∂ ∂
  (18) 

 However, the polynomial function degree of the normal translation w  of the solid 

element is less than the polynomial function degree of the shell element. The direct 

calculation using the partial derivative of the normal translation within the solid element is 

not accurate enough. According to the assumption of shell element theory [29], the translation 

of the shell element parallel to the undeformed middle surface is given by 

 ,
w w

u z v z
x y

∂ ∂= − = −
∂ ∂

  (19) 

 Combining eq.(18) and eq.(19), the rotations ,x yθ θ  can be expressed as 

 ,x y

v u

z z
θ θ= − =   (20) 

Clearly the rotations ,x yθ θ  could be obtained through the quotient of the translation 

along the z-direction, which represents the slope of translation change along the normal 

direction. Therefore, these slopes can be expressed as the partial derivatives 

 ,x y

v u

z z
θ θ∂ ∂= − =

∂ ∂
  (21) 

Substituting eq.(17) into eq.(21), the rotational components of the mode shapes at nodes I, 

J, K, L in the plate element can be expressed as 
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( ) ( )

( ) ( )

8

8
1

,
1

8

8
1

,
1

, , ,

i i
i i

x p i
i

i i
i i

y p i
i

N p v
N p

v
z z

p I J K L

N p u
N p

u
z z

θ

θ

=

=

=

=

  ∂   ∂  = − = −
 ∂ ∂

=
  ∂   ∂ = =

∂ ∂

∑
∑

∑
∑

  (22) 

 The above derivation defines the process of mode shape transformation from the solid 

elements to the shell elements via the shape functions, where eq.(17) and eq.(22) give the 

components of the equivalent mode shape. 

Actually, the computation procedure and the derivative of the shape function are both 

complicated and time consuming, especially for irregular high order hexahedron elements. If 

the thickness parameter h  of the shell element is thin enough, the linear approximation 

method could be used as an alternative to obtain the mode shapes at nodes I, J, K, L and 

simplify the transformation procedure. For example, the mode shape at node I are given by 

 1 5 1 5 1 5 5 1 5 1
, ,2 2 2 2 2I I I x I y I

u u v v w w v v u u
u v w

h h
θ θ+ + + − −

= = = = − =   (23) 

Because the mode shape transformation process is within the elemental coordinate 

system, it needs to be transformed to the global coordinate system using the direction cosine 

matrix. All the derivations above are based on the basic principles and assumptions of the 

finite element method, and so the transformation method can be extended to all kinds of shell 

elements. 

2.3 Error indicator based on modal strain energy 

The characteristic equation for the design model can be expressed as 

 ( )λ− =K M 0ϕϕϕϕ   (24) 

where K  and M  are the stiffness matrix and mass matrix, respectively, and ,λ ϕϕϕϕ  are the 

eigenvalue and eigenvector of the design model, respectively. The mass distribution of the 

design model can be checked by comparing with that of the supermodel and the mass 

parameters tuned to make them consistent with the supermodel. It is reasonable that the errors 

in the mass distribution of the design model could be considered as negligible after the mass 

tuning procedure. The characteristic equation of the reference supermodel can be expressed as 

 ( )* * * *λ− =K M 0ϕϕϕϕ   (25) 

where *K  is the stiffness matrix of supermodel, *M  is the mass matrix, and * *,λ ϕϕϕϕ  are the 

eigenvalue and eigenvector of the supermodel respectively. With reference to the strain 

energy damage indictor, the error indicator can be defined as 

 , ,
,

,

E
i j i j

i j
i j

U U

U
χ

−
=   (26) 

where ,i jU  represents the modal strain energy of the thi  element of the thj  mode of the 
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design model. ,
E
i jU  represents the equivalent modal strain energy of the thi  element of the 

thj  mode, and can be written as 

 ,
,

1

2
E E T E
i j j i jU = Kϕ ϕϕ ϕϕ ϕϕ ϕ   (27) 

where the equivalent mode shapes, E
jϕϕϕϕ , are extracted from the reference mode shapes, *

jϕϕϕϕ , 

using the mode shape transformation method. iK  is the stiffness matrix of the thi  element 

of the design model. Because the error in the model will cause all of the terms in the mode 

shapes to change, the equivalent mode shape of those elements without errors are still slightly 

different from the mode shape of corresponding design model. Therefore, none of the error 

indicators of the design model elements are exactly zero. In order to determine the elements 

with real errors, a normalized error indicator is defined as 

 ,

,
,

i j j

i j
jχ

χ χ
η

σ
−

=   (28) 

where ,,j jχχ σ  represent the mean value and the standard deviation of indicator for the thj  

mode and are given by 

 ( )2

, , ,
1 1

1 1
,

1

n n

j i j i j i j j
i in n

χ χ σ χ χ
= =

= = −
−∑ ∑   (29) 

Furthermore, a criterion can be set that the normalized indicator should be larger than 2, 

which means the confidence of the error is real is larger than 0.95. Then, small indicator 

errors are truncated since the corresponding elements do not contain real error. Thus 

 , ,0 2i j i jifη η= <   (30) 

For some particular modes, the elements in error may be located in a position that is very 

insensitive to the strain energy, such as the nodal line area, and the error indicator may not be 

able to indicate its position. Therefore, all of the m  modes of concern should be considered, 

and the combined normalized error indicator for the thi  element is defined as 

 ,
1

1 m

i i j
jm

η η
=

= ∑   (31) 

 In a summary, the process of error localization based on modal strain energy consists of 

three steps, as shown in Fig. 3. The first step is to establish the supermodel and the design 

model and extract the model data information. Then, the next step is to offset the nodes of the 

design model by half the thickness of each element and establish virtual elements, as shown at 

the left of step 2 in Fig. 3, and determine the mode shape transformation from the supermodel 

to the design model using the proposed method. The modal strain energy and the equivalent 

modal strain energy are then calculated. The error indicators then enable the updating 

parameters to be selected based on the localization results. Finally, model updating using 

sensitivity analysis is performed and the updating results evaluated. 
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Fig. 3 The block diagram of error localization based on modal strain energy and model updating 

3. Numerical Case Study 

To verify the proposed method, a numerical example of plate structure with multiple 

errors is studied to demonstrate the effectiveness. All the simulations are calculated by the 

finite element analysis code MSC.NASTRAN and processed using MATLAB. 

3.1 Finite element model 

A rectangular plate structure with length 100mm, width 20mm and thickness 2mm is 

shown in Fig. 4 (a), with small boss and notch features of size 3x3x1 mm in the structure. The 

material properties are those of aluminum with an elastic modulus of E=79GPa, a mass 

density of ρ=2700kg/m3, and a Poisson’s ratio of μ=0.3. The supermodel was created by 

20-node second-order hexahedral elements with a mesh size of 1×1×1mm. The design model 

was created with 8-node second-order shell elements with a size of 5mm and a total of 80 

elements, as shown in Fig. 4 (b). The boss and notch features are modelled in the supermodel, 

but not in the design model. By comparison with supermodel, the error due to the boss is 

located in the 3rd element of the design model and the error due to the notch is located in the 

57th element. The first five modes of the supermodel and the design model are used to 

demonstrate the procedure of error location, and the mode shapes of the design model are 

shown in Fig. 5. The 1st, 2nd and 4th modes are the first three bending modes in the z-direction, 

and the 3rd and 5th modes are the first and second torsional modes. 
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Fig. 4 Finite element models of the plate, (a) Supermodel, (b) Design model  

 
Fig. 5 First five mode shapes of the design model of the plate, (a) the 1st mode, (b) the 2nd mode, (c) the 

3rd mode, (d) the 4th mode, (e) the 5th mode 

 

3.2 Mode shape transformation using the shape function method and error location 

 In order to locate the errors in the design model, the mode shape transformation from the 

supermodel to the design model and the equivalent modal strain energy should be calculated 

first. Following the error localization process described in Fig. 3, the equivalent mode shape 

from the supermodel and the equivalent modal strain energy are obtained at the first and 

second steps. First, the node coordinate information is extracted from both models. Then, the 

nodes of the design model are offset by half of the thickness, 1.0h mm= , along the normal 

direction and coordinates of these nodes are extracted, as shown in Fig. 3. These nodes are 

then projected onto the supermodel, via a virtual solid element, and the mapping relationship 
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between these nodes and those of elements of the supermodel is established. Next, the three 

translational components of the equivalent mode shape of these nodes using the shape 

function of the supermodel element is determined. The rotational components of the 

equivalent mode shape are calculated by the partial derivatives of the shape functions of the 

virtual element. Finally, the equivalent modal strain energy of every element for each mode 

can be calculated using the equivalent mode shape and the element stiffness matrix of the 

design model. The pseudocode for the whole procedure to calculate the modal strain energy 

and the equivalent modal strain energy is given in Fig. 6. 

 
Fig. 6 The pseudocode of the analysis procedure to calculate the modal strain energy and the equivalent 

modal strain energy 

The comparison of the equivalent modal strain energy and the modal strain energy of the 

design model for the first five modes are plotted in Fig. 7. It clearly shows that the equivalent 

modal strain energies are different from the modal strain energy of the design model, 

especially at those elements in error and the adjacent elements. There are also some 

deviations for other elements, such as those elements near elements 30 and 50 for the 3rd 

mode and elements 35 and 55 for the 5th mode. These deviations are caused by the influence 

of model error with different element types. In these modes, the absolute difference for these 

elements are significantly larger than the deviations for the 3rd element. However, these 

elements are not the elements with physical errors. The 3rd and 5th modes are torsional modes 

which causes errors in the element formulation which are particularly noticeable for elements 

with high strain energy in twisting motion. This makes the absolute sensitivity of the modal 

strain energy of these elements for these two modes to be much higher than for the 3rd element. 

Thus, the relative change is preferred as an error indicator rather than the absolute difference. 

Obviously, the relative changes at these elements are much smaller than those for the 
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elements with real errors. The error indicators, χ , for the first five modes are shown in Fig. 8, 

and it clearly shows that error indicators for the 3rd and 57th elements stand out from the 

others. The negative indicator value of the 3rd element indicates that the stiffness of that area 

of the supermodel is larger than the design model because of a boss in the 3rd element. 

Similarly, due to the notch feature, the indicator value of the 57th element is positive. 
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Fig. 7 The comparison of modal strain energy (MSE) and equivalent modal strain energy (EMSE) for 

the plate example, (a) the 1st mode, (b) the 2nd mode, (c) the 3rd mode, (d) the 4th mode, (e) the 5th mode 
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Fig. 8 Error indicators for the first five modes of the plate example, (a) the 1st mode, (b) the 2nd mode, 

(c) the 3rd mode, (d) the 4th mode, (e) the 5th mode 

 

In order to eliminate the non-physical error indicators for the elements, the normalized 

and truncated indicators for the first five modes are used, and the combined error indicators 

are shown in Fig. 9. The results in Fig. 9 (a) ~ (e) show that these normalized indicators for 

the first five modes can correctly locate the errors to the 3rd and 57th elements, with a boss and 

notch feature respectively. The first mode indicator gives a false result at the 77th element 

since the notch influences the mode shape amplitudes of all nodes of element 57, and the 

elements sharing nodes with element 57 will be affected. The combined indicator for all five 

modes, shown in Fig. 9 (f), clearly reveals the location of the protrusion at the 3rd element and 

the notch at the 57th element. The indicator value of the boss element is significantly less than 

the notch element. This is because the stiffness change caused by the notch is much bigger 

than the effect of the boss feature. The localization results show that the mode shape 

transformations are correct and may be used for error location. 
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Fig. 9 Normalized error indicators for the first five modes of the plate example and combined using the 

shape function method, (a) 1st mode, (b) 2nd mode, (c) 3rd mode, (d) 4th mode, (e) 5th mode, 

(f) Combined Error Indicator for the first five modes 

 

3.3 Verification of the linear approximation method 

The shape function method has been proved to be accurate for mode shape 

transformation. However, the time and cost of computation will grow rapidly for larger and 

complex models. Compared with the shape function method, the linear approximation method 

can simplify the transformation process and improve the efficiency. But the accuracy of this 

method should be checked further. Compared to the equivalent modal strain energy using the 

shape function method, the deviation of the equivalent modal strain energy according to the 

linear approximation method are plotted in Fig. 10. The errors in strain energy for the 

elements located at the left and right edge of the plate are higher because the energies are very 

small and the numerical error caused by the approximation makes the deviation larger. But 

overall, the maximum deviation for all of the elements is 1.10% in the fourth mode. These 

results show that the linear approximation method retains high accuracy and can be applied as 

an alternative to the shape function method. 

The normalized and truncated error indicators based on the equivalent modal strain 

energy using the linear approximation method are plotted in Fig. 11. Obviously, the 

localization results based on the linear approximation method can correctly locate the 

modeling errors. Therefore, the mode shape transformation based on the linear approximation 

will be used for the following example of the error localization in large and complex casing 

structures. 
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Fig. 10 The deviation of equivalent modal strain energy between linear approximation and shape 

function methods 

 

  

  

  
Fig. 11 The normalized and truncated error indicators for the first five modes of the plate example and 

combined using the linear approximation method, (a) 1st mode, (b) 2nd mode, (c) 3rd mode, (d) 4th mode, 

(e) 5th mode, (f) Combined Error Indicator for the first five modes 

201918

57

1716151413121110
0

98

5

71 62 5

3

43

(a)

324 1

201918

57

1716151413121110
0

98

5

71 62 5

3

43

(b)

324 1

201918

57

1716151413121110
0

98

5

71 62 54

3

3

(c)

324 1

201918

57

1716151413121110
0

98

5

71 62 5

3

43

(d)

324 1

201918

57

1716151413121110
0

987

5

1 62 543

3

(e)

324 1

201918

57

1716151413121110
0

98

5

71 62 54

3

3

(f)

324 1



 

 18

4. Experimental case study 

4.1 Description of the experiment 

To demonstrate the application of the error location method in an engineering example, a 

casing structure of a test rig was tested. The casing structure and experimental setup is shown 

in Fig. 12(a). There are eight bolt holes in both flanges and a small protrusion feature with a 

through hole for lubrication near the upper (corresponding to the left flange in the mode shape 

figures) flange. The modal test of the casing was conducted with two accelerometers and 

hammer excitation using SIMO (Single -Input and Multiple -Output) method. Four elastic 

ropes were tied to four bolt holes of the upper flange to simulate the free-free boundary 

condition. The casing was divided into a grid of 16×6 measurement points. The first and last 

set of measurement points around the casing were located at the flanges and the other four 

sets were located on the outer face of the casing. Because the casing is approximately 

axisymmetric, the frequencies of the repeated nodal diameter modes will be very close. 

Therefore, two accelerometers were bonded to the structure in the circumference direction at 

an angle to identify the repeated modes. A PCB hammer was used to provide the impulse 

force. The roving excitation and fixed response signals were collected by a four channel data 

acquisition system. Three averages were used to enhance the data accuracy and the final 

frequency response functions (FRFs) were calculated. Modal analysis was performed using 

ICATS and the modal characteristics were obtained. The first ten modes are shown in Fig. 13. 

Due to the limitation of the experimental measurement points and locations, the complete 

mode shape data at all nodes is difficult to obtain. A supermodel without any geometric 

simplification was used as an alternative to provide the reference mode shape data and the 

supermodel was validated through the modal test. The modal frequency error and MAC value 

were used to evaluate the similarity between the prediction results of the supermodel and the 

test results. In general, if the modes within the frequency range of interest of the two models 

can be paired one by one, the MAC values of the paired modes is greater than 0.80 and the 

frequency error is less than 2.0%. Then, the supermodel could be used as an alternative of the 

experimental data to provide reference data for model updating or other purposes. 
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Fig. 12 Experimental configuration of the casing, (a) Experimental setup, (b) Measurement points 

 

Fig. 13 The first ten mode shapes of the casing 

 

4.2 Finite element analysis 

The supermodel and design model are shown in Fig. 14. The material properties are 

taken from stainless steel where the elastic modulus is E=197GPa, the mass density is 

ρ=7900kg/m3, and Poisson’s ratio is μ=0.24. There are more than 70,000 elements and 

140,000 nodes in the supermodel, but the design model only has 240 elements and 768 nodes 

in total. The predicted natural frequency errors and the MAC between the analysis and the test 

results are shown in Table 1. Correlation results for the first ten modes between the 

supermodel and the test show a close agreement; the maximum frequency error is 1.45% and 

the MAC values are larger than 0.82. The results show the supermodel can provide accurate 

predictions and can be used as an alternative to the test data. 

Compared to the supermodel, the design model, with the bolt holes and protrusion 

removed, is built with shell elements. The red and blue parts are the left and right flanges 
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respectively. The four elements with a dark green color represent the protrusion feature area 

approximately, and have been initially assigned the same stiffness property as the other 

elements of the cylinder part. The correlation results between the design model and the test 

data show that the frequency errors for most modes are larger than 3.77% and up to 8.92% for 

the first mode, and the MAC values for all ten modes are larger than 0.79. The natural 

frequency errors are larger than engineering requirements and some incorrect parameters of 

the design model should be updated to reduce these errors. 

 
Fig. 14 Finite element model of the casing, (a) Design model, (b) Supermodel 

 
Table 1  

Predicted natural frequencies and errors between the finite element models and the test data 

Mode Test/Hz 
Supermodel Design Model 

FEM/Hz Error/% MAC FEM/Hz Error/% MAC 

1 556.19 558.59 0.43 0.82 605.82 8.92 0.79 

2 559.06 566.29 1.29 0.84 605.82 8.36 0.83 

3 720.11 719.60 -0.07 0.83 763.82 6.07 0.81 

4 728.77 737.33 1.18 0.89 763.82 4.81 0.87 

5 1309.14 1328.14 1.45 0.91 1421.84 8.61 0.89 

6 1334.04 1348.07 1.05 0.88 1421.84 6.58 0.87 

7 1813.76 1829.93 0.89 0.95 1882.21 3.77 0.92 

8 1890.41 1871.64 -0.99 0.93 1882.22 -0.43 0.88 

9 1934.36 1938.89 0.23 0.93 2059.24 6.46 0.96 

10 1955.5 1972.90 0.89 0.92 2059.24 5.31 0.84 

 

4.3 Parameter selection with error location method and sensitivity analysis 

 The objective of the error location is to identify the design model errors and select 

updating parameters within the identified regions. In order to reduce the number of 

parameters and provide more physical meaning, ten substructures are defined first and the 

symmetry of the model is preserved as much as possible. These substructures are the left 
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flange (LF), the right flange (RF) and eight components of the cylinder part along the axial 

directions (C1, C2, … ,C8), as shown in Fig. 14(a). The equivalent mode shapes were 

extracted from the supermodel using the linear approximation method.  

The error indicators for the ten substructures are shown in Fig. 15(a). It is clearly seen 

that the errors in both flanges and the C1 component of the cylinder are much more 

significant than the other components of the cylinder. The error indicator for the right flange 

(RL) is especially high, mainly because the inner part of the right flange has a spigot and the 

simplification of this feature makes the error indicator larger. The protrusion feature located 

on the C1 part makes the error indicator of C1 larger than the results for other components of 

the cylinder. The results for components C2~C8 can be considered negligible, because these 

components are not geometrically simplified. In order to determine the exact element of the 

design model at the protrusion position, the 24 elements of the C1 component were selected 

and the error indicators for these elements ware calculated. Because of the axial symmetry of 

the design model, mode shape angles exist between the design model and supermodel. For 

these reasons, the equivalent modal strain energy of these elements should be rearranged for 

every mode to match the design model. The numbers of the elements located at the protrusion 

position were set as 1, 2, 13 and 14. The truncated normalized error indicator for the first ten 

modes are shown in Fig. 15 (b). The results show that the error is located mainly at the 1st and 

13th elements, and a few modes indicate all four elements. According to the error location 

results, the elastic modulus of both flanges and the 1st and 13th elements of the protrusion 

should be updated. 

As a comparison, the normalized sensitivities of the natural frequencies with respect to 

the elastic modulus of the ten substructures are plotted in Fig. 16. The elastic modulus of both 

flanges are the most sensitive parameters. But overall, the sensitivities of the cylinder 

substructures are within the same range. The conclusions drawn from the sensitivity results 

are obviously different from the localization results. In fact, the sensitivity analysis depends 

on the design model and cannot reflect the difference between the design model and the 

reference model. Compared with the sensitivity analysis results, these localization results are 

more consistent with the results of the geometric simplification. 

  
Fig. 15 Error localization for parameter selection for the casing: (a) Error localization, (b) The 

truncated normalized error indicator of the protrusion elements in C1 
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Fig. 16 Error localization for the casing based on sensitivity analysis  

 

4.4 Model updating and results discussion 

The mature model updating method based on sensitivity analysis is used here. Three 

parameters, namely the elastic modulus of the left flange, the right flange and the protrusion 

elements in C1 are selected as the updating parameters. The objective of model updating is to 

reduce the frequency deviation and increase the MAC values of paired modes. The correlation 

between the design model and the supermodel and the test data before and after model 

updating are shown in Table 2. The results clearly show that significant improvements were 

achieved through model updating. The maximum frequency error was reduced from 8.46% to 

1.64% based on the supermodel and decreased from 8.92% to 2.79% based on the test data. 

The MAC value is still high. As an alternative for comparison, the elastic modulus of all the 

ten substructures were selected as the updating parameters. Unfortunately, the updating 

process did not converge satisfactorily and the updating results failed to represent the 

reference data. 

 The updating parameter changes according to the supermodel and the test data are shown 

in Table 3. These changes in the updating parameters not only reflect the errors in the model 

of the structure, but also the deviation in the different type of finite element model. Because 

of the simplification of the spigot feature and the eight bolt holes, the stiffness of this part is 

increased and hence parameters 1 2,E E  will decrease after model updating. The protrusion 

stiffness parameter, 3E , decreased after updating, mainly because the stiffness increases due 

to the through hole of the protrusion and the other parts of the protrusion mainly increase the 

additional mass rather than stiffness. The significant deviation in the correction factor 3E  is 

based on the different reference data, since the protrusion and the left flange are integrated in 

the real test structure, while in the supermodel they are not, and so the real test structure is 

stiffer. The results of model updating verify that the error location method can be used to 

effectively locate the errors in the design model. 
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Table 2  

Comparison of natural frequency errors and the MAC before and after model updating for the casing 

example 

Mode 

Updating based on supermodel Updating based on test data 

Initial 

Error/% 

Updated 

error/% 

Initial 

MAC 

Updated 

MAC 

Initial 

Error/% 

Updated 

error/% 

Initial 

MAC 

Updated 

MAC 

1 8.46 0.15 0.99 0.99 8.92 -0.84 0.79 0.81 

2 6.98 -0.49 0.99 0.99 8.36 -0.91 0.83 0.82 

3 6.14 0.68 0.99 0.99 6.07 0.59 0.81 0.79 

4 3.59 0.1 0.99 0.99 4.81 0.79 0.87 0.84 

5 7.05 0.92 0.99 1.00 8.61 1.51 0.89 0.90 

6 5.47 0.03 0.99 1.00 6.58 0.00 0.87 0.87 

7 2.86 0.41 0.99 1.00 3.77 1.18 0.92 0.93 

8 0.57 -1.64 0.99 0.99 -0.43 -2.79 0.88 0.88 

9 6.21 0.24 0.99 0.99 6.46 0.14 0.96 0.89 

10 4.38 -0.35 0.99 0.99 5.31 -0.10 0.84 0.89 

 
Table 3  

The correction factors of updated Young’s modulus for the casing example 

 Parameter 
Correction factors based on 

supermodel/% 

Correction factors based on 

test data/% 

1 Left flange 1E  -6.59 -4.59 

2 Right flange 2E  -31.97 -36.55 

3 Protrusion 3E  -61.30 -47.21 

For further comparison, the updating was also undertaken based on the parameter 

selection from the sensitivity analysis. According to Fig. 16, the four parameters named as LF，

C1，C8，RF were first selected and the reference data were taken from the supermodel. After 

eight iterations the updating process converged and stabilized. Table 4 and Table 5 show the 

Young’s modulus change and the frequency errors of the first ten modes before and after 

updating. It can be seen the model can still be updated and the maximum error in the natural 

frequencies is less than 1.5%. However, the Young’s modulus of parameter C8 reduced by 

around 26%. This indicates that the updating is an inverse problem and there are no unique 

solutions. The selection of the parameters for updating is crucial so that the updated model is 

physically meaningful for real structures. Another approach is to select all ten parameters (LF, 

C1, …, C8, RF) as updating parameters. This updating exercise was ill-conditioned and did 

not converge after 50 iterations.  
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Table 4 

The correction factors of the updated Young’s modulus using the sensitivity method for localization for 

the casing example 

Parameter Values before and after updating Changes /% 

LF (197,162) -17.8 

C1 (197,310) 57.4 

C8 (197,146) -25.9 

RF (197,148) -24.9 

 
Table 5 

Comparison of the natural frequency errors and the MAC before and after model updating using the 

sensitivity method for localization for the casing example 

No. Supermodel 
Design 

Model 

Frequencies of 

Supermodel/Hz 

Frequencies of 

design model/Hz 

Frequencies 

error/% 

MAC/

% 

1 1 1 558.59 557.87 -0.13 97.87 

2 2 2 566.29 557.87 -1.49 98.23 

3 3 3 719.60 727.21 1.06 94.56 

4 4 4 737.33 727.21 -1.37 96.99 

5 5 5 1328.14 1341.27 0.99 99.07 

6 6 6 1348.07 1341.27 -0.50 99.23 

7 7 7 1829.93 1849.39 1.06 99.52 

8 8 8 1871.64 1849.40 -1.19 99.58 

9 9 10 1938.89 1956.40 0.90 97.77 

10 10 9 1972.90 1956.40 -0.84 98.56 

 

5. Conclusion 

A mode shape transformation method for model error localization with modal strain 

energy has been presented. The supermodel is modelled with all the detailed features using 

solid element and the design model is built with shell elements without detailed features. 

Taking the supermodel as reference, the mode shape transformation from the solid elements to 

the shell elements is applied to obtain the equivalent mode shapes, including the rotational 

dofs. Based on these mode shapes, the equivalent modal strain energy can be calculated 

correctly and the error indicators can be established accurately and effectively to identify the 

model errors.  

The effectiveness of the proposed mode shape transformation and error location method 

was demonstrated by a numerical case study of a plate structure. The numerical results show 

that the shape function method and the linear approximation method can both be used to 
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extract the equivalent mode shape data with high accuracy. The error indicator can locate the 

error element correctly, which is caused by simplification of protrusion and notch features. 

Finally, a casing structure of a rotor test rig was experimentally tested to verify the 

capabilities of the proposed method in engineering. The supermodel was validated using the 

experimental modal data and then taken as the reference for error location and model 

updating. The error indicator could locate the substructure of the design model which had 

been simplified. The updating parameter selection and model updating results based on the 

proposed method verified that the updating parameters are the real physical errors of the 

design model. 

This study paves the way for the application of the error location method based on modal 

strain energy in the process of finite element modeling, updating and validation. The novel 

concept of the node displacement transformation method was proposed and it can be easily 

extended to solid models or other arbitrary models. With the development of full field 

measurement techniques, such as the continuously scanning Laser Doppler Vibrometer 

(CSLDV) or Laser Speckle measurement, these methods could be used based on the test data 

and to locate the errors in the structural model directly. Therefore, further study needs to 

investigate a wider range of model error types for more complex structures to improve the 

accuracy and applicability of the method. 
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