
1 
 

 

Use of in vitro 3D tissue models in genotoxicity testing: strategic fit, validation 

status and way forward. Report of the working group from the 7th International 

workshop on genotoxicity testing (IWGT) 

Stefan Pfuhler1*, Jan van Benthem2, Rodger Curren3, Shareen Doak4, Maria Dusinska5, Makoto 

Hayashi6, Robert H. Heflich7, Darren Kidd8, David Kirkland9, Yang Luan10, Gladys Ouedraogo11, 

Kerstin Reisinger12, Toshio Sofuni13, Frédérique van Acker14, Ying Yang15, Raffaella Corvi16 

 

1 Procter and Gamble, Mason Business Centre, Mason, OH, USA 

2 National Institute for Public Health and the Environment, Centre for Health Protection, Bilthoven, The 
Netherlands 
3 Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA 

4 Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, UK 

5 Health Effects Laboratory, MILK, NILU-Norwegian Institute for Air Research, Kjeller, Norway 

6 makoto international consulting, Ebina, Japan 

7 U.S. Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR USA 

8 Covance Laboratories Ltd, Otley Road, Harrogate, HG3 1PY, UK  

9 Kirkland Consulting, PO Box 79, Tadcaster LS24 0AS, UK  

10 School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of 
Medicine, Shanghai 200025, P. R. China. 

11 L’Oréal R&I, Aulnay-sous-bois, France 

12 Henkel AG & Co KGaA, Duesseldorf, Germany 

13 Formerly National Institute of Health Sciences, Tokyo, Japan 

14 Triskelion B.V., Zeist, The Netherlands 

15 Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, P. R. China. 

16 European Commission, Joint Research Centre (JRC), Ispra, Italy 

*corresponding author 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/287586052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

 

Abstract 

Use of three-dimensional (3D) tissue equivalents in toxicology has been increasing over the last decade 

as novel preclinical test systems and as alternatives to animal testing. In the area of genetic toxicology, 

progress has been made with establishing robust protocols for skin, airway (lung) and liver tissue 

equivalents. In light of these advancements, a “Use of 3D Tissues in Genotoxicity Testing” working group 

(WG) met at the 7th IWGT meeting in Tokyo, November 2017 to discuss progress with these models and 

how they may fit into a genotoxicity testing strategy. The workshop demonstrated that skin models have 

reached an advanced state of validation following over 10 years of development, while liver and airway 

model-based genotoxicity assays show promise but are at an early stage of development. Further effort 

in liver and airway model-based assays is needed to address the lack of coverage of the three main 

endpoints of genotoxicity (mutagenicity, clastogenicity and aneugenicity), and information on metabolic 

competence. The IWGT WG believes that the 3D skin comet and micronucleus assays are now 

sufficiently validated to undergo an independent peer review of the validation study, followed by 

development of individual OECD Test Guidelines.  
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1. Introduction 

Use of three-dimensional (3D) tissue equivalents in toxicology has been increasing over the last decade 

as novel preclinical test systems and as alternatives to animal testing [1-3]. In the area of genetic 

toxicology, progress with establishing robust protocols has been made for skin, airway and liver tissue 

equivalents. In light of these advancements, a “Use of 3D Tissues in Genotoxicity Testing” working group 

(WG) was formed that met at the 7th IWGT meeting in Tokyo, November 2017.  

Previous expert panels discussed the potential use and status of these assays and helped set the stage 

for the 2017 WG meeting. More specifically, at the 2009 IWGT meeting the WG “In vitro genotoxicity 

test approaches with better predictivity” discussed the best developed and most frequently used 

models based on human 3D reconstructed skin (RS). This WG agreed that RS-based genotoxicity models, 

once validated, will be useful to follow up on positive results from standard in vitro assays for dermally 

applied compounds [4]. It became clear, however, that more work was needed to ensure a robust model 

and the testing of more coded chemicals was recommended, as well as further evaluation of the 

metabolic capacity of the RS models. A broader discussion about the use of in vitro tissue equivalents, 

going beyond skin models, was held at the "New Technologies” Workshop in 2012 in Washington, 

hosted by the Health and Environmental Sciences Institute (HESI) Genetic Toxicology Technical 

Committee (GTTC) [5]. The strengths and weaknesses of 3D skin, airway and liver models were discussed 

at the Workshop. The Workshop report acknowledged that the ‘in vivo-like’ behavior of 3D tissue 

constructs was an important advantage of these models and recommended them as superior in this 

regard than the standard 2D static cell culture systems, which they concluded were artificial and far 

removed from the in vivo state. Conversely, it was noted that 3D tissue-based assays are more 

technically difficult to perform, more expensive, and have a lower throughput than assays conducted 

with 2D cell cultures. It was also noted that, at that time, assays with 3D cultured systems were used 

only in a small number of laboratories.  

At the IWGT in Tokyo, a diverse WG, comprised of representatives from regulatory institutions, 

academia and industry from Asia, North America and Europe, was chartered with the task of reviewing 

recent progress with the development, optimization and validation of in vitro tissue models for 

genotoxicity testing. The WG consisted of subject matter experts, some of whom were bringing 

experimental data to the WG to enable efficient and evidence-based discussions towards the specific 

WG goals, which were:  

 Review the available genotoxicity data generated in liver, airway and skin 3D tissue models 
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 Discuss the validation status of these assays and their fit in a genotoxicity testing strategy 

 Develop recommendations for further development of these assays and capture consensus 

statements 

 

2. Experimental data presented/discussed 

a. 3D liver models in genotoxicity testing  

Liver spheroids can be readily constructed from hepatocytes and one such model has been developed 

using HepG2 hepatocellular carcinoma cells, based upon growth in a hanging-drop format [6]. When 

HepG2 cells are cultured in this 3D spheroid format, they exhibit a substantial increase in liver-specific 

functionality, expressing significantly higher CYP1A1/2 activities and production of albumin and urea 

than the same cells grown in 2D monolayer format [6]. A protocol for utilizing 3D HepG2 liver spheroids 

with the cytokinesis blocked micronucleus (CBMN) assay has been established. To evaluate their 

suitability for genotoxicity testing in the CBMN assay, 3D HepG2 spheroids were exposed to the pro-

carcinogens, benzo[a]pyrene (BaP) and 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP). The 

performance of the standard CBMN assay in HepG2 cell monolayers (2D) was then compared to the 3D 

HepG2 spheroid assay [6]. Following exposure to BaP, the first significant increase (p< 0.05) in 

micronucleus (MN) frequency occurred at 3 μM BaP in both 2D monolayers and the 3D HepG2 hanging-

drop spheroids; however, the MN frequency induced by this concentration of BaP in the 3D hanging-

drop spheroids was 2-fold higher than in 2D monolayers. With respect to PhIP, the lowest observable 

effect level occurred at a lower concentration when the 3D liver spheroids were exposed to the 

compound, as compared to the standard 2D test system. The lowest concentration that resulted in a 

significant induction of micronuclei in the 3D hanging-drop spheroids was 5 μM PhIP, while in the 2D 

HepG2 culture system, it was 10 μM PhIP. Furthermore, the level of genotoxicity induced by this lowest 

observable effect level in the 3D spheroids was nearly 2-fold higher than in the standard 2D CBMN 

assay. Thus, both BaP and PhIP exhibited significantly higher MN frequencies at the same concentrations 

in the 3D models than in the standard 2D monolayer cultures of HepG2 cells. Additionally, PhIP was 

positive for genotoxicity at a lower concentration in the 3D model than in the 2D CBMN assay [6]. This 

higher level of chromosomal damage in the 3D CBMN assay with both BaP and PhIP is thought to be due 

to the higher metabolic activity exhibited in the HepG2 cells when cultured in a spheroid format, which 

more efficiently converts these compounds into their genotoxic metabolites. 

 

b. 3D airway models in genotoxicity testing  
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Human 3D airway models (sometimes referred to as lung models) consist of fully differentiated and 

functional human respiratory epithelium, including cilia, mucus layer, etc., and allow relevant exposure 

to air as they are cultured at an air-liquid interface (ALI). These models are formed from primary cultures 

of human airway epithelial cells (typically from the large airway of donor lungs at autopsy) which are 

allowed to differentiate at the ALI over approximately one month to form a mixture of basal, ciliated, 

goblet and possibly club cells, forming a layer of cells that closely resembles the lining of the human 

airway ([7]). It is anticipated that these models may enable a more realistic (geno)toxicity assessment of 

inhaled compounds; and unlike the RS models, these tissue equivalents remain stable in culture for 

months, opening the possibility of using subchronic treatments similar to those used in vivo. 

A protocol for the comet assay was established using two commercially available human reconstructed 

3D airway models (MucilAir™ produced by Epithelix Sàrl, Switzerland and EpiAirway™ produced by 

MatTek Corporation, US) and one model developed in-house (LUMC, The Netherlands). Background 

levels of DNA damage in both of the commercially available and in the in-house untreated models were 

low, and concentration-related responses were observed following treatment with various well known 

genotoxins, such as methyl methane sulfonate (MMS), 4-nitroquinolone-N-oxide (4-NQO) and 

cyclophosphamide (CP) (Figure 1). Positive responses for DNA damage using the comet assay also have 

been reported recently for 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone (NNK) by the US FDA/NCTR 

using a human ALI airway culture system developed in-house [8]. In addition to the comet assay, a 

protocol for the CBMN assay was applied. After several experiments to establish conditions for 

generating slides of good quality (with respect to cell density, nuclei and cytoplasm), it was concluded 

that the rate of cell division was too low to obtain a sufficient number of binucleated cells, making the 

detection of micronuclei less sensitive (Figure 2). 

The performance of the comet assay in a commercially available human 3D airway model, MucilAir™, 

was compared to the routinely used bronchial epithelial cell line BEAS-2B and the tumor cell line A549, 

which resemble alveolar pneumocyte Type II cells [9]. Upon receipt, the MucilAir models were 

maintained in culture (on 24-well Transwell™ culture supports) at the air-liquid interface using MucilAir 

culture medium. For air–liquid exposures of the A549 and BEAS-2B cells, cells were seeded onto track-

etched polyethylene terephthalate (PET) membrane inserts. After 72 h, the inserts were ‘air-lifted’ (i.e., 

culture medium was removed from the apical side of the inserts) and the cells were cultured for 16–24 h 

before exposure with the apical surface exposed to air, while the basal surface was fed with medium 

through the membrane support. Cerium oxide nanoparticles (CeO2; primary particle size 13.8 nm) were 

applied to the apical surface of the cultures via a dynamic airflow using the Vitrocell® system. The 

response of the different cell types upon exposure to an air stream (clean air) was determined by LDH 
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leakage (Figure 3A) and IL-8 release (Figure 3B) and expressed relative to the incubator controls (not 

exposed to an air stream). Exposure to air alone did not increase the LDH and IL-8 responses in 

MucilAir™ compared to incubator controls, but in both BEAS-2B and A549 cells, it resulted in significant 

increases [9]. This is most likely due to the protective morphology of the ALI culture, having cilia, mucus 

layer, etc. similar to the lining of the human airway. Aerosolizing CeO2 resulted in agglomeration or 

aggregation of particles. Such agglomerates or aggregates are likely to be the predominant form of 

particle that interact with all types of cells. Only 14% of particles were below 100 nm and the mean 

particle size was 300 nm. The deposited concentrations of CeO2 particles for the A549 and BEAS-2B cells 

were 0.04, 0.16, and 0.71 µg/cm2. MucilAir models received 0.15, 0.67, and 3.0 µg/cm2. Cellular 

responses to exposure via air to different concentrations of CeO2 for 1 hour varied according to cell type 

tested. Exposure of the MucilAir cultures did not result in significant effects in terms of inflammatory or 

cytotoxicity parameters and genotoxicity (comet assay), but it did affect the cell lines. Conversely, 

oxidative stress (increased Heme oxygenase 1 protein expression) was observed in the MucilAir cultures 

but not in the cell lines. This suggests that the human 3D airway models may predict a more realistic, in-

vivo-like response; whereas, 2D cultures might overestimate a potentially toxic effect of nanoparticles.  

 

c. 3D skin models in genotoxicity testing: 

The current status of the validation efforts for the reconstructed skin micronucleus test (RSMN) and RS 

comet assay was presented. Experimental data were shown from an international validation effort that 

started in 2006, with support from Cosmetics Europe (CE) and the German Federal Ministry for 

Education and Research (BMBF). This validation project is part of a strategy of the CE Genotoxicity Task 

Force towards developing an in-vitro-only genotoxicity testing strategy for cosmetic ingredients [10, 11]. 

This project was initiated as a result of the 7th Amendment to the EU Cosmetics Directive, which bans in 

vivo genotoxicity testing for cosmetics, effective since 2009 [12]. Addressing limitations of the skin 

assays discussed at the 5th IWGT in Basel [4], the CE project has added more coded chemicals to the 

validation dataset and also has investigated the metabolic competency of commercially available 3D 

human RS skin models, specifically EpiDermTM [13] and Phenion® FT [14, 15]. It was found that the 

metabolic competency of these RS models is similar to native human skin [13, 14], thereby confirming 

that RS skin models have in-vivo-like metabolic properties, consistent with their use as ‘2nd tier’ assays to 

follow-up on positive results from standard 2D testing battery assays. Advantageously, the use of comet 

and MN RS assays allows the investigation of all key modes of genotoxic activity mandatory for 

regulatory testing (albeit in the form of indicator assays), which should help improve the sensitivity of 

the follow-up test. 
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i. The reconstructed skin comet assay (RS comet), validation data and 

examples of regulatory use  

The state of RS comet assay protocol development [16] was discussed by the WG, with presentation of 

data from the first two phases of the validation exercise. In addition, the final protocol used for the 

validation study was presented, including criteria for assay validity and data evaluation. Phenion® Full-

Thickness (FT) skin tissues were used for the validation, although the general suitability of another FT skin 

tissue (EpiDerm FTTM) also has been shown [16]. For FT tissues consisting of keratinocytes and fibroblasts, 

the protocol foresees analyzing both cell types with the alkaline version of the comet assay to identify a 

wide spectrum of DNA damage. In the standard protocol, tissues are treated by repeated dosing at 48, 24 

and 3 h before dissociation of the tissues; in a second experiment, this protocol was amended by the 

addition of the DNA repair inhibitor, aphidicolin, in cases where there were negative or equivocal findings 

in the first RS comet experiment. 

Laboratories from Europe and the USA participated in the testing of 30 blinded chemicals. After decoding, 

independent statistical analysis revealed an overall accuracy (concordance) of 80% (sensitivity 73%, 

specificity 87%) when compared to in vivo animal genotoxicity test outcomes. After the IWGT meeting, 

further blinded chemicals were tested to increase the overlap with chemicals tested in the RSMN assay. 

This resulted in an increase of the RS comet assay’s predictivity, to an overall accuracy of 83% (sensitivity 

77%, specificity 88%)[17]. The positive predictivity increased when the RS comet and RSMN assays are 

combined in a test battery approach [18].  

In addition, the suggested use of the RS comet as a 2nd tier assay, specifically as a follow-up to positive 

findings from the bacterial reverse mutation test (OECD 471 [19]), was discussed during the Tokyo IWGT 

meeting. Cases were reported, in which data on three hair dyes were submitted to the Scientific 

Committee on Consumer Safety (SCCS), an independent expert committee of the EU Commission that 

provides opinions on health and safety risks of non-food consumer products, including cosmetic 

ingredients. Negative data obtained with the RS comet were accepted as part of a weight-of-evidence 

approach, and the hair dyes were considered “safe for use” based on all available data (SCCS/1531/14 

[20], SCCS/1563/15 [21], SCCS/1572/16 [22]). Since 2014, the SCCS has recommended using both the RS 

comet and RSMN assays as a follow-up for suspected misleading positive results from the standard in vitro 

test battery (SCCS/1532/14 [23]). Importantly, the in vivo comet assay efficiently detected in vivo and in 

vitro mutagens [24, 25] and the comet endpoint was therefore considered appropriate for follow-up 

testing of mutagenic substances in the in vitro battery. 
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ii. The reconstructed skin micronucleus test (RSMN): validation data 

The multi-year validation efforts for the RSMN using the EpiDermTM skin model have been finalized and 

the chemicals used for validation were decoded shortly before the Tokyo IWGT meeting. Detailed 

experimental data, as well as a preliminary analysis of the validation outcomes, were presented to the 

WG (for details see Pfuhler et al. [18]). Assay development was briefly described [26], transferability and 

protocol optimization efforts [27] were highlighted, and assay validity and data evaluation criteria were 

presented (for details see Pfuhler et al. [18]). The outcome of the blinded testing of over 40 coded 

chemicals was presented, showing an overall assay accuracy of 84%, with a sensitivity of 80% and a 

specificity of 87% when compared to in vivo genotoxicity outcomes. The WG concluded that the RSMN 

assay is an acceptable alternative to the in vivo test and that the high predictivity also demonstrates that 

the test complies with all requirements to be accepted as a 2nd tier test. It should be noted that the final 

validation outcome as per independent analysis of a biostatistician [18] differs slightly from the above 

numbers presented to the WG in Nov 2017. 

The use of the RSMN in the risk assessment process was discussed via a case study on a chemical that 

tested positive in one or both of the standard genotoxicity assays (i.e., mutagenicity and 

clastogenicity/aneugenicity in vitro). Para-phenylene diamine (PPD) tested positive in the Ames test but 

negative in the Hprt mammalian cell mutagenicity assay, and positive for clastogenicity in vitro; PDD, 

however, had a negative in vivo genotoxicity profile (SCCS/1443/11 [28]). Its apparent metabolic 

detoxification in the skin was supported by data indicating that it is N-acetylated when applied to human 

volunteers in a hair dye formulation [29]), and N-acetylated PPD was completely nongenotoxic in vitro, 

including in the Ames test and the in vitro comet assay [30]. Thus, PPD appeared to be a good candidate 

for a case study for follow-up of an in vitro genetox positive test article with skin-based 2nd tier models. 

Subsequent testing in two independent experiments showed negative results for PPD in the RSMN test 

(Figure 4), indicating that the skin-based assay could have been used as an alternative to the animal 

studies to demonstrate this chemical’s lack of genotoxicity via the dermal exposure route.  

 

iii. Establishment of a GLP method and proof of performance 

Following publication of the CE standard method by Dahl et al. in 2011 [27], Covance Laboratories 

performed an in-house validation of the 3D RSMN assay independently of the work described in Section 

2.c.ii above in order to establish a GLP protocol for testing unknown test substances. A summary of the 

results obtained from nine chemicals using the “standard method” 48-h exposure protocol was 

presented to the WG (Table 1). In addition, mixed results exist in the public literature for two 

metabolically activated genotoxins, cyclophosphamide and BaP, so new data generated following the 
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72-h exposure protocol (as described by Aardema et al. [26]) was also presented. This modified protocol 

incorporates a third addition of the test substance at the 48-h timepoint, followed by harvesting the 

cells at the 72-h timepoint. Replication Index (RI) data for the solvent controls between the 48- and 72-h 

exposure protocols indicated an increase in the number of cells undergoing division during the longer 

(72-h) exposure. In addition, the positive control data (for mitomycin C and vinblastine) also showed 

increases in the percentage of micronucleated binucleate cells (% MNBN) when using the 72-h exposure 

protocol compared to the responses observed using the standard 48-h method. Finally, theoretical and 

experimental data (Tables 2 and 3) were presented on the impact of scoring 1000 binucleate (BN) cells 

from each of two or three treated tissues per test concentration [31]. Both the theoretical and practical 

data showed that scoring 1000 binucleate cells from each of three tissues: 1) reduced the test substance 

concentration where an increase in MNBN cells was statistically significant (compared to the concurrent 

negative control) and 2) reduced the occurrence of scoring zero MNBN per 1000 BN scored. The RI data, 

% MNBN data and results varying by the number of cells scored were discussed, with the detailed 

experimental results and supporting data now published [31]. Documentation of training, management 

approval of SOPs and subsequent implementation, as well as independent Quality Assurance (QA) 

review of the resultant SOPs and protocol are GLP requirements and were satisfied as part of the 

laboratory’s validation process. 

 

iv. Method transfer to China and initial validation data  

The RSMN protocol used for the CE validation also was adapted to the EpiskinTM model with minor 

changes, i.e. milder conditions for cell dissociation and fixation onto the slides, to accommodate 

differences between the different skin models. A description of the protocol and the experiments that 

were performed are available in the paper by Chen et al. [32]. The initiative started at L’Oréal R&I China 

who then transferred the method to two other Chinese laboratories. A validation effort is currently 

ongoing that uses the EpiskinTM model and that is supported scientifically by the CE genotoxicity 

taskforce. All three laboratories have shown proficiency in performing the RSMN assay. At the time of 

the IWGT workshop in Tokyo, results for 5 compounds tested in two of the participating laboratories 

(Guangdong Center for Disease Control and L’Oréal R&I China), and 2 compounds from the third 

laboratory (Zheijiang IFDC) were presented. Based on the 5 compounds, a 100% inter-laboratory 

reproducibility was observed (see Table 4). One compound with mixed results in vivo (cyclohexanone) 

was found to be negative by the two laboratories that tested it. Due to the inconsistency of the in vivo 

results for this compound, it was dropped from the list of compounds for the validation. It also was 

emphasized that the validation of an additional skin model for the RSMN that is produced in China 
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would be advantageous since shipment and export/import of these tissues can be difficult and 

laborious. This would also enable broader access to and acceptance of the RSMN in Asia. 

 

d. Extension of applicability domain – example: nanomaterials  

The liver, airway and skin 3D models described above have all been evaluated for their use in the 

genotoxicity testing of engineered nanomaterials. Iron oxide nanoparticles (both maghemite and 

magnetite) were used to evaluate the performance of the CBMN assay using 3D HepG2 liver spheroids. 

Indeed, the 3D liver spheroids were capable of detecting chromosomal damage induced by the oxidative 

species typically associated with these nanomaterials [33] (Figure 5). A challenge with 3D models is the 

ability to evaluate the penetration of nanoparticles across the biological barrier presented by the 3D 

liver spheroid. This was achieved by the use of x-ray fluorescence mapping, which demonstrated that 

the iron oxide nanoparticles were primarily concentrated within the first few cell layers of the spheroid. 

Some nanoparticles, however, were able to penetrate up to 50 m into the spheroid, although no 

material was evident in the spheroid core. Transmission electron microscopy (TEM) performed on the 

outer cell layers of the spheroid structure demonstrated that the nanoparticles were internalized by 

these cells. 

Standard genotoxicity tests are typically based on a single cell type; however, a key observation in in 

vivo genotoxicity studies conducted with nanomaterials is that the DNA damage induced is often the 

result of secondary genotoxicity associated with inflammation [34, 35]. Lung co-culture models 

comprised of both human lung epithelial cells and differentiated macrophages have therefore been 

established and used for evaluating genotoxicity using the CBMN assay. Dextran-coated ultrafine 

superparamagnetic iron oxide nanoparticles (USPION) were tested in this lung co-culture model, which 

demonstrated that dFe3O4 nanoparticles illicit a genotoxic response in the co-culture, which is absent 

when tested in lung epithelial cells only (i.e. standard 2D CBMN assay; Figure 6) [36]. When cell uptake 

was evaluated in the co-culture model, the nanoparticles were only located in macrophages and were 

not internalized in the lung epithelial cells (where the genotoxicity was detected), thereby indicating a 

secondary genotoxic response was evident in this advanced culture system [36]. This particular model 

utilized a co-culture system, employing a mixture of two cell types, overlaid upon each other. This study 

therefore demonstrates a potential advantage of advanced models comprised of multiple cell types in 

detecting mechanisms in vitro which have not previously been detected in standard genotoxicity testing 

systems. 

The 3D RSMN assay also has been used for the genotoxicity evaluation of silica nanoparticles of two 

different sizes, 16 and 85 nm diameter [37]. The ability of these materials to induce chromosomal 
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damage was compared across both the 3D RSMN and the standard 2D MN assay after standardising the 

test substance concentrations in the 2D and 3D assays by determining the total nanoparticle mass to cell 

number tested. In this study, all exposures ≥100 μg/mL in the 2D CBMN assay resulted in significant 

increases in MN frequency as both test materials were able to readily enter the cells (as determined by 

TEM evaluation). In contrast, 2D-equivalent exposures to the 3D models caused no significant DNA 

damage. Uptake analysis in the 3D skin models using TEM revealed the nanomaterials that had been 

applied topically were not capable of penetrating the 3D microarchitecture of the tissue model; thus, 

there was no direct exposure of the test nanoparticles to the living cells in the model [37]. This study 

demonstrated that, when the RSMN protocol is applied to testing nanomaterials, it is important to 

ensure that the nanomaterials are not used at an excessively high concentration, which would 

compromise the surface of the skin construct and lead to an artifactual result. One such extreme 

concentration of silica nanoparticles was tested by Wills and colleagues, who noted that, although overt 

toxicity was recorded at this concentration, it was likely artifactual. Surface imaging of the 3D RS tissue 

at this toxic concentration revealed excessive particle coverage that likely would have inhibited gas 

exchange at the air interface. Nonetheless, this study demonstrated that the use of RS models for 

nanomaterials offers a more realistic biological barrier that better represents the protective nature of 

the skin’s 3D cellular microarchitecture, thereby improving the physiological relevance of the 

genotoxicity testing results. 

 

3. Discussion 

Why use 3D tissues for genotoxicity testing, and how do they fit into a testing strategy? 

The WG initially discussed the status of development for RS, liver, and airway 3D tissue-based 

genotoxicity assays, as well as their fit within a genotoxicity testing strategy. In concordance with a 

previous expert review [5] and based on the data presented, the IWGT WG agreed that ‘3D tissue 

models offer a more ‘in-vivo-like’ behavior for key parameters like cell viability, proliferation, 

differentiation, morphology, gene and protein expression, and function and therefore provide a valuable 

complement to the classical ‘2D’ cell culture-based assays’. Using more complex, in-vivo-like systems is a 

strong trend in toxicology and in pharmacology that has gained much attention in recent years and, as 

endorsed by this WG for tissue-based genotoxicity assays, is generally seen to provide data that are 

more relevant to evaluating genotoxicity in humans than traditional ‘2D’ assays, [2, 3, 38, 39].  

With regard to their genotoxicity testing strategy fit, the WG initially discussed whether the 3D assays 

could be used as 1st tier assays to replace the standard in vitro 2D testing battery. This was not seen 
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currently as a preferred option since it is assumed that regulatory agencies would like to see a 

mutational endpoint, e.g. gene mutations, as part of a submission. It also was pointed out that starting a 

genotoxicity testing program with the 3D assays would be a more time consuming and expensive 

approach compared to using them as follow-up for positive results from the standard 2D test battery. 

With tissue models being more complex, 3D assays are technically more difficult to perform and, 

consequently, their throughput is reduced when compared to 2D assays. One additional argument 

against using 3D assays as 1st tier tests was that the best use of 3D tissues would be to choose the 

respective model according to exposure conditions, e.g., RS tissues for dermal exposures, airway tissues 

for inhalation exposures, and liver tissues for systemic/oral exposures. The WG agreed that such a 

concept ‘allows for exposure-specific investigations’. It should also be noted that most 3D models are 

based on human cells, enhancing the relevance of the results to assessing potential human genotoxicity. 

To summarize the discussion relating to strategic fit, the WG agreed that ‘3D tissue-based genotoxicity 

assays can be used as ‘2nd tier’ assays to follow-up on positive results from standard in vitro assays’ and 

sees the strength of 3D genotoxicity assays as an alternative to animal studies. 

Subsequently, the WG discussed the strategic use of these assays in a ‘test battery’ approach. In this 

context, the expectation was that the assays would be used as follow-up of positive results from the 1st 

tier in vitro testing battery (e.g., Ames and in vitro MN test). The WG agreed that the use of an assay 

(consisting of a specific tissue model and a genotoxicity read-out) for regulatory purposes will depend 

on its validation status. In order to be considered useful as ‘2nd tier’ assays ‘it is important that, for each 

tissue model, the full range of genotoxic damage (leading to mutagenicity, clastogenicity, aneugenicity) 

can be detected’. Therefore, while it would be ideal that each 3D tissue type would be validated for all 

genotoxicity endpoints at the same time, this may not always be the case. It was therefore emphasized 

that ‘these assays can be used in combination or alone depending on the scenario since these 3D models 

are suitable for “endpoint-specific” follow-up of positives from standard in vitro testing battery’. With 

respect to the positioning of 3D assays, the following three scenarios were discussed and agreed:  

(1) in vitro clastogenicity/aneugenicity positives lead to 3D MN testing,  

(2) in vitro mutagenicity positives lead to 3D comet 

(3) in vitro mutagenicity & clastogenicity/aneugenicity positives lead to both 3D comet and 3D MN.   

In this context, it was emphasized that the more frequent scenario likely will address a single positive 

from the standard battery. It is recognized by all WG members that there are other assays/readout 

methods available that could potentially be used in 3D organoid models (e.g., a gene mutation readout 

such as Pig-a) [40] and could serve as a follow-up of positive results from the standard in vitro battery. 
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The focus on the comet and MN assays was triggered by the existing experimental datasets for the 3D 

skin, airway and liver tissues, which was limited to these endpoints.  

How can advantages of in-vivo-like ‘3D’ models be leveraged further? 

Most of the experimental data presented at the meeting were generated with chemicals; however, the 

WG acknowledged that the specific advantages of 3D models in terms of more in-vivo-like ADME 

properties, in particular penetration/absorption, make them an interesting model for studying potential 

genotoxic effects of nanomaterials. Examples presented included the determination of the genotoxic 

potential of silica nanomaterials after dermal exposure. While giving a positive response in standard 2D 

cell culture systems, RS models offer a more realistic biological barrier for testing effects via the dermal 

exposure route and the lack of a genotoxic response in the RS models likely reflect the in vivo situation 

since silica nanomaterials do not penetrate the dermis in vivo [37]. Conversely, in a co-culture model 

with macrophage and lung epithelial cells, it was shown that dFe3O4 nanoparticles were taken up only by 

macrophage cells and not by the lung epithelial cells. Genotoxic effects, likely secondary in nature, were 

detected in lung epithelial cells in the 3D co-culture system but not when exposed in 2D lung cell 

cultures where no macrophages were present [36]. These examples demonstrate advantages of such 

complex in vitro models, leading the WG to conclude that ‘3D tissue-based assays provide a more 

realistic test system to study particulate materials (e.g. nanomaterials), compared to 2D test systems’. It 

was also emphasised that it is critical to have a clear understanding of the fate of the nanomaterials 

used under the respective assay conditions [41] and also to include measurements of cellular uptake 

(e.g. electron microscope analysis of penetration / uptake) to help understand the outcome of the assay. 

In situ characterization and uptake measurements have been recommended by several expert 

committees and are already included in a genotoxicity testing guidance for nanomaterials [41]. The WG 

also recommends that any future guideline for ‘3D’ model-based genotoxicity assays consider these 

factors when testing nanomaterials. 

Discussion of the validation status of 3D liver, airway and skin-based genotoxicity assays 

The three different tissue models are at various stages of development and validation, with the RS 

model being the only one that has undergone formal validation. For assays based on airway tissue and 

liver organoids, existing data is sparser [8, 42-44]. While consensus statements specific to each tissue 

model are captured further below, for both the liver and airway  the WG encourages ‘development of a 

robust protocol and testing of an initial set of chemicals representing expected positives and negatives 

covering different chemical classes before following up with other validation steps, like transferability, 

intra- and inter-laboratory reproducibility, applicability domain and predictive capacity [45-47]’. This 
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supports the goal of having validated methods that enable exposure-specific assessments. The 

respective models have the capacity to represent dermal, oral and inhalation exposure routes in safety 

assessment and there was agreement supporting efforts directed at the continued development and 

validation of these models.   

Next, the organ-specific status was discussed in more detail and the WG agreed that for 3D liver 

spheroids ‘Initial data show that the MN assay can be applied to 3D liver spheroids and the WG 

encourages further development of this assay’. During the discussion of the protocol, it was 

recommended that for further protocol development, exposure time and the concentration of 

cytochalasin B could be further optimized, and the determination of cell cycle time might be useful in 

this context. Experience with endpoints other than MN, however, is much more limited and it was 

concluded that ‘the lack of 3D liver assays that can detect substances that induce gene mutation is 

considered a gap and the development of such an assay is strongly encouraged. Some preliminary data 

indicate that the comet assay can be useful in this respect [48]. It was also mentioned that HepaRG cell-

derived 3D liver spheroids are being investigated in detail within the framework of the EU HORIZON 

2020 project PATROLS (www.patrols-h2020.eu), including characterization of their metabolic 

competence. 

For 3D airway model-based assays, the WG concluded, based on the data presented, that ‘Initial data 

show that the comet assay can be applied to the 3D airway models and the WG encourages further 

development of this assay’. It was emphasized that ‘the lack of 3D airway assays that can detect 

aneugenicity is considered a gap and the development of such an assay is strongly encouraged.’ In this 

context, several WG members pointed out that the limited proliferation rate of the cells in the 3D airway 

model currently makes the MN assay problematic. More effort is needed to resolve this problem. User 

experience was shared, and it was pointed out that proliferation rates will depend on the cell type and 

source used for the model. It was also suggested that, instead of MN, testing of ɣH2AXmay be helpful, 

since cells do not need to divide for this readout system. However, this is an indicator test that does not 

detect aneugens, and further research in this area is therefore highly encouraged. 

It also was pointed out that only limited information on the metabolic competence of the 3D lung 

models was available at the time of the WG meeting [49] and that a better understanding in this regard 

would be important. It is encouraging that, subsequent to the IWGT WG meeting, data on the metabolic 

competence of the human ALI airway model has begun to appear [8]. 

In contrast to liver and airway 3D models, development of 3D skin model-based genotoxicity assays 

started over a decade ago and they have been explored for their utility as follow-up assays for dermal 
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exposures. This work is in accordance with the recommendation of Maurici and colleagues that was 

developed at an expert meeting charged with the question of what in-vitro-only approaches would be 

most appropriate for genotoxicity hazard identification [50]. This question originated in the context of 

the EU Directive for cosmetic ingredients which prohibits animal testing for genotoxicity [12] and the 

first experimental data were published shortly after by Curren et al. [51]. Based on the data presented at 

the Tokyo IWGT meeting, which reflect the outcome of a multi-year international validation exercise 

[17, 18], the WG concluded that ‘following extensive validation and practice (in use for over 10 years) we 

are now in the position to define standard protocols for the 3D skin comet and RSMN assays’. 

Furthermore, it was concluded that ‘transferability of the assays to a large number of laboratories across 

3 continents has been demonstrated’, and it was emphasized that ‘the assays are now available at 

several CROs and are performed under GLP (Good Laboratory Practice)’. 

There was considerable discussion specific to the RSMN protocol, since initial work for this assay used a 

48 h treatment protocol (two exposures with a 24 h interval), whereas there is growing evidence from 

the validation dataset [18] as well as CRO experience [31] that a 72 h protocol with three exposures is 

superior since it increased the sensitivity of the assay. The WG concluded that ‘validation data and CRO 

experience show that the 72 h protocol for the RSMN has higher sensitivity than the 48 h protocol and 

we therefore agree that the assay can be routinely performed using the 72 h protocol’. Importantly, with 

this move to a 72 h protocol, the specificity of the assay decreased only marginally. It is expected that 

these findings will influence protocol modifications such that the initial testing of an unknown substance 

will start with a 72 h and 3-exposure protocol rather than with the original 48 h protocol.  

The key elements of validation that help assess the maturity of an assay were then discussed, i.e. 

reproducibility, sensitivity, specificity and predictive capacity. It was concluded from the data presented 

that ‘international validation studies with coded chemicals have demonstrated good intra- and inter-

laboratory reproducibility of the methods’, and that ‘through the testing of 56 coded chemicals across 

assays (3D skin comet and RSMN), the combination of the methods has been shown to be highly 

predictive of the expected genotoxicity in vivo’. The WG members agreed that the RS comet and RSMN 

assays have reached an advanced stage of maturity and concluded ‘that the 3D skin comet and 

micronucleus assays are now sufficiently validated to move towards the development of individual OECD 

Test Guidelines’. Although the WG considered the assays to have undergone sufficient validation, it is 

envisaged that an independent peer review of the validation study will need to be carried out, as 

recommended in OECD Guidance Document 34 [45], before developing an OECD TG. This can be 

conducted by various organizations, including the OECD or specific ‘validation bodies’ specializing in 
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independent review of validation data, such as, for example, the EURL ECVAM Scientific Advisory 

Committee (ESAC). 

4. Conclusions 

The workshop demonstrated that extensive progress has been made in the last few years on the 

development of 3D genotoxicity models. Different 3D culture models are now available that represent 

the major routes of exposure: dermal, systemic (liver spheroids, organ on a chip), and inhalation. The 

IWGT WG believes that the 3D skin comet and MN assays are now sufficiently validated to begin the 

development of individual OECD Test Guidelines. Although the WG considered the assays to have 

undergone sufficient validation, an independent peer review of the validation study will need to be 

carried out as recommended by OECD Guidance Document 34.  

Genotoxicity assays using the two other 3D models are at an early stage of development and still do not 

sufficiently cover the three key endpoints of genotoxicity. For the 3D airway model, clastogenicity and 

gene mutation can be measured, at least indirectly, by the comet assay, but the development of a 3D 

airway MN model for detection of aneuploidy is desirable. Likewise, for the 3D liver model, where MN 

can be detected, a test that can evaluate gene mutations is essential. In addition, for airway 3D models, 

‘more information on the metabolic competence of the cells is considered important.’  Finally, for both 

the liver and airway models the considerable hurdle of assay validation remains: thus, we ‘recommend 

developing a robust protocol and testing of an initial set of chemicals representing expected positives 

and negatives covering different chemical classes before following up with other validation steps, being 

transferability, intra- and inter-laboratory reproducibility, applicability domain and predictive capacity’ 

[45, 46].  

  



17 
 

 

References 

[1] N. Alepee, A. Bahinski, M. Daneshian, B. De Wever, E. Fritsche, A. Goldberg, J. Hansmann, T. Hartung, 
J. Haycock, H. Hogberg, L. Hoelting, J.M. Kelm, S. Kadereit, E. McVey, R. Landsiedel, M. Leist, M. 
Lubberstedt, F. Noor, C. Pellevoisin, D. Petersohn, U. Pfannenbecker, K. Reisinger, T. Ramirez, B. Rothen-
Rutishauser, M. Schafer-Korting, K. Zeilinger, M.G. Zurich, State-of-the-art of 3D cultures (organs-on-a-
chip) in safety testing and pathophysiology, Altex, 31 (2014) 441-477. 

[2] J. Augustyniak, A. Bertero, T. Coccini, D. Baderna, L. Buzanska, F. Caloni, Organoids are promising 
tools for species-specific in vitro toxicological studies, J Appl Toxicol, (2019). 

[3] M. Weinhart, A. Hocke, S. Hippenstiel, J. Kurreck, S. Hedtrich, 3D organ models-Revolution in 
pharmacological research?, Pharmacol Res, 139 (2019) 446-451. 

[4] S. Pfuhler, M. Fellows, J. van Benthem, R. Corvi, R. Curren, K. Dearfield, P. Fowler, R. Frotschl, A. 
Elhajouji, L. Le Hegarat, T. Kasamatsu, H. Kojima, G. Ouedraogo, A. Scott, G. Speit, In vitro genotoxicity 
test approaches with better predictivity: summary of an IWGT workshop, Mutat Res, 723 (2011) 101-
107. 

[5] E. Zeiger, B. Gollapudi, M.J. Aardema, S. Auerbach, D. Boverhof, L. Custer, P. Dedon, M. Honma, S. 
Ishida, A.L. Kasinski, J.H. Kim, M.G. Manjanatha, J. Marlowe, S. Pfuhler, I. Pogribny, W. Slikker, L.F. 
Stankowski, Jr., J.Y. Tanir, R. Tice, J. van Benthem, P. White, K.L. Witt, V. Thybaud, Opportunities to 
integrate new approaches in genetic toxicology: an ILSI-HESI workshop report, Environ Mol Mutagen, 56 
(2015) 277-285. 

[6] U.K. Shah, J.O. Mallia, N. Singh, K.E. Chapman, S.H. Doak, G.J.S. Jenkins, A three-dimensional in vitro 
HepG2 cells liver spheroid model for genotoxicity studies, Mutat Res Genet Toxicol Environ Mutagen, 
825 (2018) 51-58. 

[7] X. Cao, H. Lin, L. Muskhelishvili, J. Latendresse, P. Richter, R.H. Heflich, Tight junction disruption by 
cadmium in an in vitro human airway tissue model, Respir Res, 16 (2015) 30. 

[8] Q. Qin, Q. Wu, Y. Wang, R. Xiong, L. Guo, X. Fu, H. Rosenfeldt, M. Bryant, X. Cao, Effects of cellular 
differentiation in human primary bronchial epithelial cells: Metabolism of 4-(methylnitrosamine)-1-(3-
pyridyl)-1-butanone, Toxicol In Vitro, 55 (2019) 185-194. 

[9] I.M. Kooter, M. Gröllers-Mulderij, M. Steenhof, D. Evert, F.A.A. van Acker, Y.C.M. Staal, P.C. Tromp, E. 
Schoen, C.F. Kuper, E. van Someren, Cellular Effects in an In Vitro Human 3D Cellular Airway Model and 
A549/BEAS-2B In Vitro Cell Cultures Following Air Exposure to Cerium Oxide Particles at an Air–Liquid 
Interface, Applied In Vitro Toxicology, 2 (2016) 56-66. 

[10] S. Pfuhler, A. Kirst, M. Aardema, N. Banduhn, C. Goebel, D. Araki, M. Costabel-Farkas, E. Dufour, R. 
Fautz, J. Harvey, N.J. Hewitt, J. Hibatallah, P. Carmichael, M. Macfarlane, K. Reisinger, J. Rowland, F. 
Schellauf, A. Schepky, J. Scheel, A tiered approach to the use of alternatives to animal testing for the 
safety assessment of cosmetics: genotoxicity. A COLIPA analysis, Regul Toxicol Pharmacol, 57 (2010) 
315-324. 

[11] S. Pfuhler, R. Fautz, G. Ouedraogo, A. Latil, J. Kenny, C. Moore, W. Diembeck, N.J. Hewitt, K. 
Reisinger, J. Barroso, The Cosmetics Europe strategy for animal-free genotoxicity testing: project status 
up-date, Toxicol In Vitro, 28 (2014) 18-23. 

[12] EU, EU Regulation EC No. 1907/2006 OF The European Parliament and of the Councilof concerning 
the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a 
European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 
793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and 
Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC., (2006). 



18 
 

 

[13] N.J. Hewitt, R.J. Edwards, E. Fritsche, C. Goebel, P. Aeby, J. Scheel, K. Reisinger, G. Ouedraogo, D. 
Duche, J. Eilstein, A. Latil, J. Kenny, C. Moore, J. Kuehnl, J. Barroso, R. Fautz, S. Pfuhler, Use of human in 
vitro skin models for accurate and ethical risk assessment: metabolic considerations, Toxicol Sci, 133 
(2013) 209-217. 

[14] C. Wiegand, N.J. Hewitt, H.F. Merk, K. Reisinger, Dermal xenobiotic metabolism: a comparison 
between native human skin, four in vitro skin test systems and a liver system, Skin Pharmacol Physiol, 27 
(2014) 263-275. 

[15] C. Jackh, V. Blatz, E. Fabian, K. Guth, B. van Ravenzwaay, K. Reisinger, R. Landsiedel, 
Characterization of enzyme activities of Cytochrome P450 enzymes, Flavin-dependent monooxygenases, 
N-acetyltransferases and UDP-glucuronyltransferases in human reconstructed epidermis and full-
thickness skin models, Toxicol In Vitro, 25 (2011) 1209-1214. 

[16] K. Reisinger, V. Blatz, J. Brinkmann, T.R. Downs, A. Fischer, F. Henkler, S. Hoffmann, C. Krul, M. 
Liebsch, A. Luch, R. Pirow, A.A. Reus, M. Schulz, S. Pfuhler, Validation of the 3D Skin Comet assay using 
full thickness skin models: Transferability and reproducibility, Mutat Res Genet Toxicol Environ Mutagen, 
827 (2018) 27-41. 

[17] S. Pfuhler, R. Pirow, T.R. Downs, A. Haase, N.J. Hewitt, S. Hoffmann, A. Luch, M. Merkel, C. Petrick, 
A. Said, M. Schäfer-Korting, K. Reisinger, Validation of the 3D reconstructed human skin Comet assay, an 
animal-free alternative for following-up positive results from standard in vitro genotoxicity assays, 
Mutagenesis, submitted (2019). 

[18] S. Pfuhler, M. Aardema, R. S., J. Scheirer, R. Kulkarni, G. Mun, N. Wilt, E. Costin, R. Curren, B. 
Barnett, S. Hoffmann, N.J. Hewitt, Validation and application of the 3D human reconstructed skin 
micronucleus assay (RSMN) using the EpiDermTM tissue to the safety assessment of cosmetics 
ingredients, Mutagenesis, In preparation (2019). 

[19] OECD, Test No. 471: Bacterial Reverse Mutation Test, 1997. 

[20] SCCS, Scientific Committee on Consumer Safety Opinion on Basic Brown 17 COLIPA n° B007, 
SCCS/1531/14, Revision of 18 June 2014, The SCCS adopted this opinion at its 5th plenary meeting of 24 
March 2014, 2014. 

[21] SCCS, Scientific Committee on Consumer Safety. Opinion on 2,6-Dihydroxyethylaminotoluene 
COLIPA n° A138,  SCCS/1563/15, The SCCS adopted this opinion at its 10th plenary meeting on 25 June 
2015, 2015. 

[22] SCCS, Scientific Committee on Consumer Safety Opinion on N,N'-Bis-(2-hydroxyethyl)-2-nitro-p-
phenylenediamine (B34), SCCS/1572/16, Final version of 16 September 2016, The SCCS adopted the final 
version of this Opinion by written procedure on 16 September 2016 2016. 

[23] SCCS, Scientific Committee on Consumer Safety. Addendum to the SCCS's Notes of Guidance (NoG) 
for the Testing of Cosmetic Ingredients and their Safety Evaluation, 8th Revision (SCCS/1501/12). This 
Addendum replaces the section 3-4.7 Mutagenicity/Genotoxicity and 3-4.8 Carcinogenicity of the NoG, 
from pages 26 to 29. SCCS/1532/14, Revision of 22 October 2014. The SCCS adopted this Addendum on 
9 April 2014 by written procedure., 2014. 

[24] D. Kirkland, D.D. Levy, M.J. LeBaron, M.J. Aardema, C. Beevers, J. Bhalli, G.R. Douglas, P.A. Escobar, 
C.S. Farabaugh, M. Guerard, G.E. Johnson, R. Kulkarni, F. Le Curieux, A.S. Long, J. Lott, D.P. Lovell, M. 
Luijten, F. Marchetti, J.J. Nicolette, S. Pfuhler, D.J. Roberts, L.F. Stankowski, Jr., V. Thybaud, S.K. Weiner, 
A. Williams, K.L. Witt, R. Young, A comparison of transgenic rodent mutation and in vivo comet assay 
responses for 91 chemicals, Mutat Res Genet Toxicol Environ Mutagen, 839 (2019) 21-35. 



19 
 

 

[25] D. Kirkland, Y. Uno, M. Luijten, C. Beevers, J. van Benthem, B. Burlinson, S. Dertinger, G.R. Douglas, 
S. Hamada, K. Horibata, D.P. Lovell, M. Manjanatha, H.-J. Martus, N. Mei, T. Morita, W. Ohyama, A. 
Williams, In vivo genotoxicity testing strategies: Report from the 7th International Workshop on 
Genotoxicity Testing (IWGT), Mutat. Res. , This issue (2019). 

[26] M.J. Aardema, B.B. Barnett, G.C. Mun, E.L. Dahl, R.D. Curren, N.J. Hewitt, S. Pfuhler, Evaluation of 
chemicals requiring metabolic activation in the EpiDerm 3D human reconstructed skin micronucleus 
(RSMN) assay, Mutat Res, 750 (2013) 40-49. 

[27] E.L. Dahl, R. Curren, B.C. Barnett, Z. Khambatta, K. Reisinger, G. Ouedraogo, B. Faquet, A.C. 
Ginestet, G. Mun, N.J. Hewitt, G. Carr, S. Pfuhler, M.J. Aardema, The reconstructed skin micronucleus 
assay (RSMN) in EpiDerm: detailed protocol and harmonized scoring atlas, Mutat Res, 720 (2011) 42-52. 

[28] SCCS, Scientific Committee on Consumer Safety Opinion on p-Phenylenediamine COLIPA n° A7, 
SCCS/1443/11, Revision of 18 September 2012, The SCCS adopted this opinion at its 15th plenary 
meeting, Of 26 – 27 June 2012 2012. 

[29] G.J. Nohynek, J.A. Skare, W.J. Meuling, D.W. Hein, A.T. De Bie, H. Toutain, Urinary acetylated 
metabolites and N-acetyltransferase-2 genotype in human subjects treated with a para-
phenylenediamine-containing oxidative hair dye, Food Chem Toxicol, 42 (2004) 1885-1891. 

[30] A. Zeller, S. Pfuhler, N-acetylation of three aromatic amine hair dye precursor molecules eliminates 
their genotoxic potential, Mutagenesis, 29 (2014) 37-48. 

[31] Kidd, Covance RSMN in-house validation data, Mutagenesis, (2019), in press, 
10.1093/mutage.gez1037. 

[32] L. Chen, N. Li, Y. Liu, B. Faquet, N. Alépée, C. Ding, J. Eilstein, L. Zhong, Z. Peng, J. Ma, Z. Cai, G. 
Ouedraogo, RSMN on Episkin, Mutagenesis, submitted (2019). 

[33] N. Singh, G.J. Jenkins, B.C. Nelson, B.J. Marquis, T.G. Maffeis, A.P. Brown, P.M. Williams, C.J. Wright, 
S.H. Doak, The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide 
nanoparticles, Biomaterials, 33 (2012) 163-170. 

[34] S. Pfuhler, T.R. Downs, A.J. Allemang, Y. Shan, M.E. Crosby, Weak silica nanomaterial-induced 
genotoxicity can be explained by indirect DNA damage as shown by the OGG1-modified comet assay and 
genomic analysis, Mutagenesis, 32 (2017) 5-12. 

[35] S.J. Evans, M.J. Clift, N. Singh, J. de Oliveira Mallia, M. Burgum, J.W. Wills, T.S. Wilkinson, G.J. 
Jenkins, S.H. Doak, Critical review of the current and future challenges associated with advanced in vitro 
systems towards the study of nanoparticle (secondary) genotoxicity, Mutagenesis, 32 (2017) 233-241. 

[36] S.J. Evans, M.J.D. Clift, N. Singh, J.W. Wills, N. Hondow, T.S. Wilkinson, M.J. Burgum, A.P. Brown, G.J. 
Jenkins, S.H. Doak, In vitro detection of in vitro secondary mechanisms of genotoxicity induced by 
engineered nanomaterials, Part Fibre Toxicol, 16 (2019) 8. 

[37] J.W. Wills, N. Hondow, A.D. Thomas, K.E. Chapman, D. Fish, T.G. Maffeis, M.W. Penny, R.A. Brown, 
G.J. Jenkins, A.P. Brown, P.A. White, S.H. Doak, Genetic toxicity assessment of engineered nanoparticles 
using a 3D in vitro skin model (EpiDerm), Part Fibre Toxicol, 13 (2016) 50. 

[38] S.C. Ramaiahgari, S.S. Ferguson, Organotypic 3D HepaRG Liver Model for Assessment of Drug-
Induced Cholestasis, Methods Mol Biol, 1981 (2019) 313-323. 

[39] L.M. Norona, D.G. Nguyen, D.A. Gerber, S.C. Presnell, E.L. LeCluyse, Editor's Highlight: Modeling 
Compound-Induced Fibrogenesis In Vitro Using Three-Dimensional Bioprinted Human Liver Tissues, 
Toxicol Sci, 154 (2016) 354-367. 



20 
 

 

[40] B. Kopp, J. Vignard, G. Mirey, V. Fessard, D. Zalko, L. Le Hgarat, M. Audebert, Genotoxicity and 
mutagenicity assessment of food contaminant mixtures present in the French diet, Environ Mol 
Mutagen, 59 (2018) 742-754. 

[41] R. Elespuru, S. Pfuhler, M.J. Aardema, T. Chen, S.H. Doak, A. Doherty, C.S. Farabaugh, J. Kenny, M. 
Manjanatha, B. Mahadevan, M.M. Moore, G. Ouedraogo, L.F. Stankowski, Jr., J.Y. Tanir, Genotoxicity 
Assessment of Nanomaterials: Recommendations on Best Practices, Assays, and Methods, Toxicol Sci, 
164 (2018) 391-416. 

[42] A. Reus, Y. Staal, J. van Triel, F. van Acker, F. Kuper, Human 3D airway models to explore in vivo 
inhalation, European Respiratory Journal, 38 (2011) p3093. 

[43] C. Frieke Kuper, M. Grollers-Mulderij, T. Maarschalkerweerd, N.M. Meulendijks, A. Reus, F. van 
Acker, E.K. Zondervan-van den Beuken, M.E. Wouters, S. Bijlsma, I.M. Kooter, Toxicity assessment of 
aggregated/agglomerated cerium oxide nanoparticles in an in vitro 3D airway model: the influence of 
mucociliary clearance, Toxicol In Vitro, 29 (2015) 389-397. 

[44] A. Haase, N. Dommershausen, M. Schulz, R. Landsiedel, P. Reichardt, B.C. Krause, J. Tentschert, A. 
Luch, Genotoxicity testing of different surface-functionalized SiO2, ZrO2 and silver nanomaterials in 3D 
human bronchial models, Arch Toxicol, 91 (2017) 3991-4007. 

[45] OECD, OECD series on testing and assessment. Number 34. Guidance document on the validation 
and international acceptance of new or updated test methods for hazary assessment. 
ENV/JM/MONO(2005)14, 18-Aug-2005 2005. 

[46] T. Hartung, S. Bremer, S. Casati, S. Coecke, R. Corvi, S. Fortaner, L. Gribaldo, M. Halder, S. Hoffmann, 
A.J. Roi, P. Prieto, E. Sabbioni, L. Scott, A. Worth, V. Zuang, A modular approach to the ECVAM principles 
on test validity, Altern Lab Anim, 32 (2004) 467-472. 

[47] R. Curren, J.A. Southee, H. Spielmann, M. Liebsch, J. Fentem, M. Balls, The role of prevalidation and 
validation in the development, validation and acceptance of alternative methods. ECVAM Prevalidation 
Task Force Report 1, ATLA, 23 (1995) 409-470. 

[48] E. Elje, M. Hesler, E. Runden-Pran, P. Mann, E. Mariussen, S. Wagner, M. Dusinska, Y. Kohl, The 
comet assay applied to HepG2 liver spheroids, Mutat Res, 845 (2019) 403033. 

[49] J. Boei, S. Vermeulen, B. Klein, P.S. Hiemstra, R.M. Verhoosel, D.G.J. Jennen, A. Lahoz, H. Gmuender, 
H. Vrieling, Xenobiotic metabolism in differentiated human bronchial epithelial cells, Arch Toxicol, 91 
(2017) 2093-2105. 

[50] D. Maurici, M. Aardema, R. Corvi, M. Kleber, C. Krul, C. Laurent, N. Loprieno, M. Pasanen, S. Pfuhler, 
B. Phillips, E. Sabbioni, T. Sanner, P. Vanparys, Genotoxicty and mutagenicity, Altern Lab Anim, 33 Suppl 
1 (2005) 117-130. 

[51] R.D. Curren, G.C. Mun, D.P. Gibson, M.J. Aardema, Development of a method for assessing 
micronucleus induction in a 3D human skin model (EpiDerm), Mutat Res, 607 (2006) 192-204. 

   



21 
 

 

Figures 

a) 

 

b) 

 

c) 

 

Figure 1 a-c: Examples of concentration responses obtained with MMS, 4NQO and CP in 3D airway 

models  
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Figure 2: Percentage binucleated cells after incubation of MucilAir™ with different concentrations of 

cytochalasin B. 

 

 

 Figure 3: LDH (A) and IL-8 (B) response of MucilAir, BEAS-2B, and A549 to air exposure (without any 

CeO2). The biological LDH (A) and IL-8 (B) response (y axis) of the cells tested is expressed as %LDH and 

%IL-8 of air-exposed samples (n = 3) divided by the average expression of incubator control samples (n = 

2). Indicated are the average and standard deviation of the resulting three ratios multiplied by 100 to 

obtain percentage values. */*** = statistically significant (0.01 < p < 0.05 / p < 0.0001) 
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a) 

b) 

Figure 4 a, b: RSMN assay with p-phenylene diamine – two independent experiments 
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Figure 5: Micronucleus frequency induced by dextran coated iron oxide nanoparticles in HepG2 cells 

cultured in standard 2D monolayer format and in 3D spheroid format. BaP at 8 µM was included as a 

positive control. N=3; * p≥0.05. 
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Figure 6a, b: Quantification of chromosomal damage and cell viability of 16HBE14o- cells following 

dSPION exposure. (A) Mono-cultured 16HBE14o- cells treated with Fe3O4; (B) lung co-culture model 

consisting of 16HBE14o- lung epithelial cells and differentiated THP-1 macrophages, treated with Fe3O4 

dSPION. *p < 0.05 when compared to negative control (0 µg/ml).  MMC (0.1 µg/ml) was used as positive 

control (micronuclei frequency 4.01%).  

Figures 5 and 6 were reproduced with permission from Evans et al, 2019 (34); this open access article is 

distributed under the terms of the Creative Commons Attribution 4.0 International License 

a) 

b) 
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(http://creativecommons.org/licenses/by/4.0/), and the article was published by BMC (part of Springer 

Nature). 

  

http://creativecommons.org/licenses/by/4.0/
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Tables 

Table 1: Summary of the testing (using EpiDerm™) for the standard 48-hour method as performed at 

Covance Laboratories when compared to the available data in the literature for nine chemicals. From 

Kidd [31]. 

 

 

Table 2: Statistical Power calculations - 1000 cells scored for 2 replicates per group. From Kidd [31] 

 
Control  

Incidence (Mean MNBN 
cell frequency (%)) 

Test Group(1)  

(Mean MNBN cell 
frequency (%)) 

Difference (Test – 

Control) (Mean MNBN 

cell frequency (%)) 

Fold difference (Test / 

Control) 

0/2000 (0.000) 5/2000 (0.250) 0.250 N/A 

1/2000 (0.050) 7/2000 (0.350) 0.300 7.00 

2/2000 (0.100) 9/2000 (0.450) 0.350 4.50 

3/2000 (0.150) 10/2000 (0.500) 0.350 3.33 

4/2000 (0.200) 12/2000 (0.600) 0.400 3.00 

5/2000 (0.250) 13/2000 (0.650) 0.400 2.60 

6/2000 (0.300) 15/2000 (0.700) 0.450 2.50 

 (1) Response in Test group that could be detected as statistically significant 

Assuming a control incidence of 0.100%, 1000 cells scored for 2 replicates would allow a difference of approximately 0.350% 

(4.50 fold increase) between groups to be detected as statistically significant at the 5% level using a one-sided Chi-squared test. 

 

Table 3: Statistical Power calculations - 1000 cells scored for 3 replicates per group. From Kidd [31] 

Control  

Incidence (Mean MNBN 
cell frequency (%)) 

Test Group(1)  

(Mean MNBN cell 
frequency (%)) 

Difference (Test – 

Control) (Mean MNBN 

cell frequency (%)) 

Fold difference (Test / 

Control) 

0/3000 (0.000) 5/3000 (0.167) 0.167 N/A 

1/3000 (0.033) 7/3000 (0.233) 0.200 7.00 

2/3000 (0.067) 9/3000 (0.300) 0.233 4.50 

3/3000 (0.100) 10/3000 (0.333) 0.233 3.33 

4/3000 (0.133) 12/3000 (0.400) 0.267 3.00 

Covance Published Literature

Genotoxicity Compound 48-hour 48-hour

Mitomycin C Positive Positive

Methyl methansulphonate Positive Positive

n-Ethylnitrosourea Positive Positive

Aneugens Vinblastine Positive Positive

Cyclophosphamide Negative Mixed results

Benzo(a)pyrene Negative Mixed results

4-Nitrophenol Negative Negative

Cyclohexanone Negative Negative

2-Ethyl-1,3-hexanediol Negative Negative

Direct Acting 

clastogens

Metabolically 

activated clastogens

Non-Genotoxins
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5/3000 (0.167) 13/3000 (0.433) 0.267 2.60 

6/3000 (0.200) 15/3000 (0.500) 0.300 2.50 

 (1) Response in Test group that could be detected as statistically significant 

Assuming a control incidence of 0.100%, 1000 cells scored for 3 replicates would allow a difference of approximately 0.233% 

(3.33 fold increase) between groups to be detected as statistically significant at the 5% level using a one-sided Chi-squared test. 

 

Table 4: Outcome of the pre-validation testing efforts from 3 Chines laboratories 

Chemical name 
 

CAS No. 
 

In vivo 
micronucleus 

outcome 
 

RSMN 
outcome 

RSMN 
outcome 

RSMN 
outcome 

L’Oréal GDCDC ZIFDC 

      48h 48h 48h 

Mytomycin C 50-07-7 Positive Positive Positive Positive 

Vinblastine 143-67-9 Positive Positive Positive Positive 

5-Fluorouracil 120-83-2 Positive Positive Positive Not tested 

2,4-Dichlorophenol 108-94-1  Negative Negative  Negative  Not tested 

Cyclohexanone  108-94-1  Negative/Positive Negative  Negative  Not tested 

 

 


