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Abstract 
 
Collagen is an abundant structural protein in the extracellular matrix and plays a role 

in both structural integrity and support that guides tissue formation and homeostasis. 

Collagen or matrix disruption, leading to altered cell-matrix interactions, is 

implicated in disease pathophysiology. Collagen has in turn become an attractive 

biomaterial in regenerative medicine, proving valuable in various long-term, robust 

repair strategies. Osteoarthritis (OA) is a multifactorial disease leading to the 

degeneration of articular cartilage, affecting approximately 8.5 million in the UK 

population. Current repair procedures require surgical interventions, with varying 

degrees of success, easing pain and recovery time. Future repair strategies are now 

being focused around the formation of new tissue for implantation, incorporating 

collagen scaffolds, donor cell populations and functional differentiation.  

 

This thesis presents a thorough characterization of a novel jellyfish (R.pulmo) source 

of collagen, benchmarked against mammalian collagen like material compatible with 

human and bovine chondroprogenitor cell invasion, proliferation, and differentiation. 

Significantly, no increased immune response was observed compared to research and 

clinical grade mammalian collagen sources during in vitro examination. Excitingly, 

jellyfish collagen (JCol) also demonstrated hallmarks of chondro-mimicry, enabling 

bovine chondroprogenitor cell invasion, proliferation and differentiation. Using a 

sponge scaffold design JCol provides adequate structural cell-matrix support 

appropriate for enhanced chondrogenesis in the presence of TGFβ1. 

 

The robust body of evidence presented supports the development of JCol, a 

seemingly inert collagen source, for tissue engineering and/or regenerative medicine 

applications. Analogous to native articular cartilage, this supports further 

development of jellyfish collagen as a biomaterial for matrix assisted chondrocyte 

implantation (MACI) approaches in OA repair. Jellagen, industrial sponsor for the 

project, have adopted central observations from this thesis and are now progressing 

with wider commercial and development activities to support market and clinical 

research expansion.  
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1.1 Multicellular organisms, tissues and extracellular matrix 

 

Within multicellular organisms, tissues are organised as communities of cells that 

work together to carry out specific functions, such as protection, movement and 

response to stimuli. The exact role of a tissue in an organism depends on what types 

of cell it contains. The multitude of tissue specific cell types and functions are 

maintained by differential transcriptional programs and rates, which are essential to 

tissue maintenance and repair (Ong and Corces, 2011). The spatial organisation of 

the cells that form tissues is also central to their function and survival. This 

organisation depends in part on polarity and external signals from neighbouring cells 

and or from the extracellular matrix (ECM) (Frantz et al., 2010).  

 

The ECM is critical to tissue structure, providing attachment sites for cells and 

relaying information regarding the spatial position of the cell. The ECM consists of a 

mixture of proteins and polysaccharides produced by nearby cells. Once synthesised, 

these molecules move to the appropriate side of the cell – such as the basal or apical 

face – where they are secreted (Overeem et al., 2015). Final ECM construction and 

organisation then occurs outside of the cell and is in general a mix of collagen, 

proteoglycan and polysaccharide that undergo turnover over time as a consequence 

of growth, development and homeostatic maintenance (Birk, 2011).  

 

1.1.1 Extracellular matrix  

 

As well as a supportive function, the ECM has been shown to be involved in cellular 

processes such as migration, differentiation and apoptosis (Naahidi et al., 2017). At 

the most basic level, the ECM is composed of water, proteins and polysaccharides 

(Frantz et al., 2010). The exact composition of the ECM is tissue specific and offers 

specialised cues to cells through mechanical properties and acting as a reservoir for 

growth factors (Kayabolen et al., 2017).  

 

The ECM can be divided into two categories: basement or interstitial with each 

having distinct properties. The interstitial matrix is responsible for the tensile 

strength exhibited by the tissue. It is hydrated and highly charged due to its content 

of fibrillar collagens, proteoglycans (PGs) and glycosaminoglycans (GAGs). 
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Alternatively, the basement membrane (BM) primarily contains collagen IV and is 

compact and less porous than its counterpart (Lu et al., 2012). 

 

The basement membrane is a specialised extracellular matrix, approximately 50 – 

100nm thick, and separates cells from connective tissue within the human body 

(LeBleu et al., 2007). The sheet-like structure of the basement membrane is 

composed of individual collagen type IV and laminin networks that are linked by 

extracellular proteins including nidogen and perlecan. The BM’s interaction with 

cells is dependent on its anchorage to the cell surface, which is mediated through 

adhesion receptors and sulphated glycolipids (Jayadev and Sherwood, 2017). A 

difference in the molecular composition of BMs allow for them to be tissue specific 

and defines plasticity between epithelial and endothelial cells in different organs. The 

interaction with cellular components of tissue gives the BM various functions 

including the compartmentalisation of tissues, cellular support and regulation of cell 

behaviour (Kalluri, 2003). 

 

The interstitial matrix, also known as the extracellular matrix, appears in the same 

location as the BM however it may also appear between connective tissue cells. The 

ECM can be seen as an amorphous gel that is composed from collagens, elastin and 

fibronectin (Kular et al., 2014). Although the ECM was once viewed as a simple 

structural framework within tissue, a more dynamic role has been elucidated. A 

number of functions can be assigned to the ECM including highly regulated 

homeostasis and behaving as a reservoir for molecules such as growth factors and 

cytokines (Wilson, 2014). As well as these functions, the ECM also serves as a 

cellular microenvironment, influencing cell behaviour such as migration and 

proliferation (Hubmacher and Apte, 2013). The combination of different roles 

highlights the importance of the extracellular matrix and the necessity of the matrix 

during developmental and repair processes within the human body (Wilson, 2014). 

 

1.2 Collagen  

 
 

Collagen is an insoluble, fibrous protein that can be found both in the extracellular 

matrix and connective tissues. Although it was originally believed that connective 
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tissue fibroblasts secreted collagen, it has now been shown that epithelial cells are 

able to produce various different isoforms of the protein that vary in their structure, 

allowing tissues to have different, functionally driven, tensile properties (Lodish et 

al., 2000a).  

 

 
 
Figure 1.1: Type 1 collagen structure. α chains come together to form a triple 

helix. Repetitive Gly-X-Y regions allow for tight packing of the helix and major 

ligand binding regions (MLBR) allow for collagens to interact with other collagens 

and ECM proteins. The pro-collagen molecule has amino and carboxy regions 

cleaved to become a mature collagen molecule (Marini et al., 2017) 

 

Currently, the collagen superfamily is comprised of 28 members that present 

common structural features. Collagen molecules are formed by a combination of 

three homotrimeric or heterotrimeric alpha chains giving rise to a triple helix, seen in 

Figure 1.1 (Exposito et al., 2002). The definitive feature of collagen is the 

combination of three polypeptide chains in a left handed helix formation with a 

single amino acid residue stagger between each chain to form a right handed triple 

helical structure associated with tensile strength (Shoulders and Raines, 2009). The 

tightly packed helix is reliant upon the repetitive Gly-X-Y amino acid sequence 

within each individual polypeptide chain, with glycine taking the first position in 

each repeat and is depicted in α chain gene structures in Figure 1.2 (Parenteau-Bareil 

et al., 2010). This triple helical region can account for 95% of the total structure in 

collagen I to less than 10% in collagen XII (Ricard-Blum, 2011).  
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1.2.1 Collagen Biosynthesis 

 

Extensive research has been conducted centred on collagen biosynthesis, leading to a 

high level of understanding of fibrillar collagens and the single cells that have been 

shown to synthesise various types of collagen (Exposito et al., 2010). Precursor 

molecules, containing large amino (N) and carboxy (C) terminal pro-peptides are 

synthesised, with each pro-peptide N-terminus containing a signal sequence to allow 

for translocation into the lumen of the rough endoplasmic reticulum (Mouw et al., 

2014). A 15 amino acid region has been identified in the C-terminal pro-peptide that 

is thought to be involved in recognition of different chains showing that it plays a 

pivotal role in the assembly of the helix. Multiple sequence alignment of mammalian 

C-terminal peptides revealed that this region is composed of two hydrophilic 

portions of 12 and 3 amino acids separated by a highly conserved hydrophobic 

sequence (Exposito et al., 2010). 
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Figure 1.2: Comparison of gene structure of human procollagens. Human procollagen α1 (IV), α2 (I), α1 (II) and α1 (III) genes. 

Solid lines represent intron sequences black boxes represent Gly-X-Y repeats and hatched boxes represent NC-1 domain coding exons. 

Sizes of intron and exons are indicated by the corresponding numbers above sequences (Soininen et al., 1986).
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Post-translational modification of the polypeptide chain is initiated during 

translocation. These modifications include prolyl-4-hydroxylation and prolyl-3-

hydroxylation at the Y and X positions respectively, and lysyl hydroxylation giving 

rise to hydroxylysine residues (Koide and Nagata, 2005). During this process, 

galactose and glucose residues are also attached to hydroxylysine residues whilst 

oligosaccharides are added to the C-terminal pro-peptide. Following translocation 

and modification, pro-peptide chains trimerize at the C-terminal domain forming 

intermolecular disulphide bonds and halting any further modification, with 

association only occurring if the correct chains are present for the distinct collagen 

type (Lodish et al., 2000a). 

 

Many proteins are involved in the triple helix formation of procollagen molecules 

including heat shock protein 47 (HSP47) and peptidyl-prolyl cis-trans isomerase 

(PPI). The stabilisation of procollagen at body temperature takes an average of more 

than 20 heat shock proteins (Ricard-Blum, 2011). The importance of these two 

proteins in helix formation has been indicated through in vitro experiments involving 

murine models, leading to fatal consequences (Gelse et al., 2003). Previous reports 

have shown that HSP47 knockout mice cause improper formation of type I and IV 

collagen, aggregating in the endoplasmic reticulum and leading to cell death 

(Kawasaki et al., 2014) 

 

Once secreted into the extracellular matrix both amino and carboxy pro-peptides are 

enzymatically cleaved producing mature collagen molecules that proceed to 

assemble into fibrils. N-terminal peptides are cleaved by a disintegrin and 

metalloproteinase with thrombospondin motif (ADAMTs) family members 2 and 3, 

whilst C-terminal peptides are removed by bone morphogenetic protein 1 (BMP1) 

(Ricard-Blum, 2011).  Following telopeptide cleavage, collagen chains come 

together to form fibrils. Their longitudinal orientation is staggered creating 

alternating areas of high and low density that is known as a D periodicity repeating at 

approximately 67nm and can be seen at the ultrastructural level (Yamauchi and 

Sricholpech, 2012).  

 

The stabilisation of collagen fibrils is enhanced with the formation of covalent 

crosslinks that occur due to the hydroxylation of lysines at the telopeptide region. 
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The proportion of hydroxylated lysine varies between tissues and is dependent on 

their function within tissues such as cartilage showing a larger percentage of 

hydroxylation compared to skin. Lysyl oxidases are copper dependent oxido-

deaminases that catalyse the formation of aldehydes between lysine and 

hydroxylysine residues whilst spontaneous reactions form intermediate crosslinks. 

During maturation of tissues these intermediate reducible crosslinks can be converted 

into non-reducible crosslinks changing the physical and mechanical properties of the 

tissues (Gelse et al., 2003). 

 

Assembly of supramolecular structures begins with the trimerization of three alpha 

chains to form a triple helical protomer with each helical portion flanked by non 

collagenous regions varying in sequence and length (Veit et al., 2006). Specific 

protomers organise themselves into suprastructures by forming end to end 

connections, lateral associations and supercoiling of helices (Khoshnoodi et al., 

2006). The exact mechanisms of how alpha chains recognize each other to form 

superstructures is not fully understood. In the case of collagen I and III it is thought 

that the non collagenous C-terminal domain are key in the selection binding and 

recognition of alpha chains to complete trimerization (Doege and Fessler, 1986). 

 

1.2.2 Collagen family structural and functional variety  

 

Collagen molecules occur in various suprastructures, such as fibrils and networks 

outlined in Table 1.1. These basic scaffold structures form attachments to other 

macromolecular complexes such as cell surface receptors and proteoglycans in order 

to fulfill a variety of functional roles in tissue development and homeostasis 

(Khoshnoodi et al., 2006). These distinct subfamilies are then outlined in more detail 

in Table 1.1.  
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Subfamily Type Gene Tissue 

 

 

 

 

 

 

 

Fibrillar collagens 

I COL1A1-2 Bone, dermis, 

tendon, ligaments, 

cornea 

II COL2A1 Cartilage, vitreous 

body 

III COL3A1 Skin, vessel wall, 

reticular fibres 

V COL5A1-3 Lung, cornea, bone 

XI COL11A1-2 Cartilage, vitreous 

body 

XXIV COL24A1 Bone, brain, 

muscles, testis, 

ovaries 

XXVI COL26A1 Testis, ovaries 

XXVII COL27A1 Cartilage, skin, 

tendon 

Basement 

membrane 

IV COL4A1-6 Basement 

membranes 

Microfibrillar VI COL6A1-3 Dermis, cartilage, 

placenta, lungs 

Anchoring fibrils VII COL7A1 Skin, cervix, oral 

mucosa 

Network forming VIII COL8A1-2 Endothelial cells 

X COL10A1 Hypertrophic 

cartilage 

 

 

 

 

 

 

FACIT 

IX COL9A1-3 Cartilage, cornea 

XII COL12A1 Ligaments, 

tendons, 

perichondrium 

XIV COL14A1 Dermis, tendon, 

placenta, liver 

XIX COL19A1 Human 

rhabdomyosarcoma 

XX COL20A1 Sternal cartilage, 

corneal epithelium, 

embryonic skin 

XXI COL21A1 Blood vessel wall 

XXII COL22A1 Heart, skeletal 

muscle 

 

 

Transmembrane 

XIII COL13A1 Epidermis, lungs, 

liver 

XXV COL17A1 Dermal-epidermal 

junctions 

XXIII COL23A1 Lungs, tongue, 

kidney, cornea, 

brain 

XXV COL25A1 Brain 
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XXVIII COL28A1 Peripheral nerves 

 

 

Multiplexins 

XV COL15A1 Smooth muscle, 

kidney, pancreas 

XVI COL16A1 Amnion, 

keratinocytes 

XVIII COL18A1 Lungs, liver 

 
Table 1.1: Collagen subfamily members. Collagen types divided into subfamilies 

with given gene and tissue distribution (Gelse et al., 2003). 

 

1.2.2.1 Fibril forming collagens 

 

The collagen family was previously considered to form fibrillar structures that 

contribute to the structural integrity of tissues and organs. They are found in the 

extracellular matrix and the interstitial tissue of parenchymal organs and behave as a 

scaffold structure lending their properties to tissues. Any disruption in the collagen 

metabolism and degradation also leads towards diseases, such as osteoarthritis and 

osteoporosis, further highlighting the importance of collagen as a structural protein 

(Gelse et al., 2003). 

 

Fibril forming collagens include type I, III and V, which are widely distributed 

throughout the body whilst other types, such as II and XI are predominantly found in 

cartilage and eye (Ricard-Blum and Ruggiero, 2005).  The 12 fibril forming  chains 

contain an uninterrupted collagenous domain (COL1) flanked by non collagenous N- 

and C-terminal pro-peptides that are cleaved in order to aid in fibril formation 

(Khoshnoodi et al., 2006). The C-terminal pro-peptide is also referred to as the NC1 

domain whilst the N pro-peptide is split into a short NC2 sequence that links the 

main triple helix to a minor version (COL2) and NC3, a globular N terminal (Ricard-

Blum and Ruggiero, 2005).  

 

The NC3 domain of  chains 1(I), 1(IIA), 1(III) and 2(V) all contain a cysteine 

rich repeat (CRR) domain characterised by the presence of 10 cysteine residues that 

are able to form disulphide bonds (Bornstein, 2002). CRR domains have been found 

present in homologous proteins of Xenopus chordin and Drosophila sog and bind to 

members of the TGF superfamily. The release of these growth factors plays a 

crucial role in dorsal-ventral patterning (Zhu et al., 1999). However, deletions of 



Chapter 1                                                                                                               Introduction 
 

 11 

CRR-containing domains in mice have shown normal development is unaffected 

(Bornstein, 2002). Although the exact mechanism of CRR domains have not been 

found it is believed that they are involved in roles such as molecular assembly and 

regulation of procollagen synthesis and fibrillogenesis (Ricard-Blum and Ruggiero, 

2005).  

 

Conversely, the NC3 domain of 1(V), 3(V), 1(XI), 2(XI), 1(XXIV) and 

1(XXVII) contain a 200 residue thrombospondin N-terminal like (TSPN) domain 

(Eyre et al., 2002). The function of TSPN domains in fibrillar collagens has not been 

elucidated however it is observed that the domain is released during N-terminal 

maturation of collagen type V and XI. Spontaneous mutation of human COL5A1 

restricting the release of the TSPN domain disrupted fibrillogenesis and caused 

classical symptoms of Ehlers-Danlos syndrome (Takahara et al., 2002).  

 

The vast majority of collagen fibrils are heterotypic, comprised of different types of 

collagen (Wu et al., 2010). Although the initial stages of fibrillogenesis have not 

been clearly defined, it is a process that relies upon leucine-rich proteoglycans and 

collagen V and XIV for regulation and these molecules are also thought to play roles 

in collagen crosslinking (Ricard-Blum, 2011).  

 

1.2.2.2 Fibril-associated collagen with interrupted triple helix (FACIT) 

collagens 

 

FACIT collagens are a specific collagen subtype, grouped together due to the regions 

of high homology combined with unique regions not found in other collagen 

classifications (Shaw and Olsen, 1991). Collagens classified as FACITs include 

types IX, XII, XIX, XX and XXII (Khoshnoodi et al., 2006). These collagens are 

classified by the presence of two or more short triple helical domains interrupted by 

several non collagenous domains (Ricard-Blum, 2011). The helical conformation is 

comprised of glycine side chains occupying the centre of the helix whilst Xaa and 

Yaa amino acids of the side chains point outwards. This organisation ensures that 

there are numerous amino acids at the surface of the protein that have the ability to 

interact with other molecules (Rest et al., 1991). Another characteristic feature of 

FACITs is a short C-terminal triple helical domain, comprised of 75 residues in 
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collagen XII to fewer than 30 residues in collagen IX that is contained by a cysteine 

containing motif and a non helical region (Birk, 2011).  

 

FACIT collagens display variances in the size and composition of their N-terminal 

domains. Collagens IX, XVI and XIX maintain a single TSPN module at the N-

terminal however in collagens XXI and XXII a von Willebrand factor A-like domain 

next to the TSPN domain. In certain species alternative splicing of collagens XIV, 

XII and XIX mRNA occurs in the N-terminal domains making FACIT collagens a 

complex molecule to study at protein level (Ricard-Blum et al., 2000). The specific 

function of FACIT collagens has yet to be elucidated however they are believed to 

stabilise the extracellular matrix. The expression of FACITs appears in 

developmentally regulated patterns suggesting that they have more diverse functions 

(Ricard-Blum and Ruggiero, 2005).  

 

Whilst fibrillar collagens aggregate, FACITs may interact with them in order to 

control fibril diameter and also aid in interaction with other ECM components (Rest 

and Garrone, 1991). Of the several collagens in the FACIT family, collagen IX is the 

most well studied FACIT collagen in structure and function. In the case of collagen 

IX and its association with fibrillar collagen, the non-C-terminal triple helix domains 

are incorporated into the collagen fibrils and stabilise the fibrillar organisation. 

Although this function has been elucidated in type IX collagen it is not seen as a 

phenomenon that occurs with all FACITs (Birk, 2011). 

 

1.2.2.3 Network forming collagens  

 

Individual types of collagen (type IV, VI, VIII and X) are able to aggregate in a 

linear and lateral fashion in order to form open networks that carry out a variety of 

functions such as anchorage and support for cells and serving as a molecular filter. 

Type IV collagen is often seen as the most important network forming collagen as it 

is the major constituent of the basement membrane (Knupp and Squire, 2005).  

 

Collagen VI is expressed throughout connective tissues and is formed by 3 alpha 

chains, 1, 2 and 3 that form beaded filaments (Ball et al., 2001). Each alpha 
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chain consists of a collagenous domain of approximately 335 residues that is capped 

by non-collagenous domains at the C- and N-terminals. Whilst the 1 and 2 chains 

are similar in size and possess three non-collagenous subdomains (N1, C1 and C2), 

the 3 chain is significantly longer with the N-terminal possessing 10 subdomains 

and the C-terminal possessing five (Khoshnoodi et al., 2006).  

 

Unlike fibrillar collagens, network-forming collagens, in particular type IV collagen, 

do not require cleavage of C- and N-terminal propeptides to form networks at the 

basement membrane. Collagen in the basement membrane is unique in its structure 

due to the self-assembly of individual protomers via aggregation and crosslinking 

forming a complex meshwork (Harvey and Thorner, 2005). 

 

1.2.2.4 Transmembrane collagens 

 

Transmembrane collagen function as cell surface receptors and matrix components 

and include collagen types XIII, XVII, XXIII and XXV as well as collagen related 

proteins such as macrophage receptor MARCO and ectodysplasin A (Franzke et al., 

2005). The alpha chains of this collagen type host a non collagenous N terminal 

domain that has three subdomains (intracellular, single transmembrane and 

extracellular linker) and a large extracellular domain (Khoshnoodi et al., 2006). 

Deletion studies conducted on type XIII and XVII N terminal regions show that they 

are necessary for the formation of the triple helix and that the process occurs in a N- 

to C-terminal manner, which is unlike all other collagen classifications (Areida et al., 

2001). 

 

1.2.2.5 Collagen receptors 

 

As well as offering a supportive role as part of the extracellular matrix, collagens 

also participate in cell-matrix interactions through receptor families that aid in 

various physiological processes including cell anchorage, polarity and differentiation 

(Ricard-Blum, 2011). Interaction of matrix components with collagen may occur in 

the helical COL domain or non-collagenous domains (Leitinger, 2011). Within the 

COL region specific amino acid motifs provide a site for interactions however the 
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COL region also plays host to cryptic binding sites that are able to form interactions 

following denaturation of the protein (Heino, 2007). Cryptic motifs have been shown 

to be important in the removal of denatured and degraded collagen (Engelholm et al., 

2009). Specific 6-12 amino acid motifs are found within the COL region for integrins 

and dimeric discoidin receptors (DDRs) whilst common motifs such as GPO, where 

O represents hydroxylysine, are recognised by GPVI and LAIR-1 (Leitinger, 2011).  

 

Integrins are a family of extracellular matrix receptors for cell adhesion that are 

formed through the non-covalent association of  and  subunits (Hynes, 2002). 

Four integrins behave as collagen receptors: 11 expressed by mesenchymal cells, 

21 primarily expressed in epithelial cells as well as platelets, 101 in 

chondrocytes and 111 in fibroblasts. GFOGER was the first motif identified as a 

high affinity binding site for 11 and 21 as well as 111 whilst a later study 

also identified GLOGER and GASGER as two additional binding motifs (Leitinger, 

2011).  

 

The discoidin domain receptors DDR1 and DDR2 belong to a subfamily of receptor 

tyrosine kinases where the ectodomain is split into two domains: N-terminal 

discoidin homology (DS) domain and a unique DDR globular domain. A single 

transmembrane domain connects the extracellular domain and the cytoplasmic 

domain (Leitinger, 2011). Both DDR1 and DDR2 are found throughout foetal and 

adult tissues with DDR1 found in epithelial cells and DDR2 found in mesenchymal 

(Alves et al., 1995). DDRs bind to a broad range of collagen types and have been 

shown to need an intact triple helix in order to bind (Leitinger, 2003).  

 

DDRs are regulators of cell adhesion, migration, proliferation and differentiation. 

They also influence matrix metalloproteinases to remodel the matrix (Leitinger, 

2011). Once DDR binding to collagen has occurred, phosphorylation of cytoplasmic 

tyrosine residues takes place and behaves as a docking site for adaptor molecules 

however it is uncertain how this process links to cellular processes (Ikeda et al., 

2002). As with integrins, DDRs bind to specific motif within the collagen molecule. 

DDR1 and DDR2 binding had been found to occur in the COL region at a GVMGFO 

motif that appears in collagens I-III (Xu et al., 2011). DDR1 and DDR2 extracellular 
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domains regulate collagen deposition within the extracellular matrix by inhibiting 

fibrillogenesis. When bound to collagen I, DDR2 affects mechanical properties of 

the fibre by reducing their length and Young’s modulus (Ricard-Blum, 2011). 

 

1.3 ECM structure, cell function and disease development  

 

Combinations of characteristics possessed by the ECM have an effect upon cellular 

functions, ranging from physical properties such as stiffness to the biochemical 

signature of tissue specific ECM exhibited by proteins, growth factors and signal 

receptors (Kim et al., 2011). The dynamic environment within a tissue is dependent 

upon the interactions of cells with the ECM as well as neighbouring cells.  These 

interactions allow for the regulation of cell function and homeostasis of the tissue, 

with a lack of interaction between cells and ECM leading to anoikis, a specific form 

of cell death (Marastoni et al., 2008). Adherent cells are protected from anoikis and 

the phenomenon is seen as a hallmark of cancer and is linked with tumour metastasis 

(Barthes et al., 2014).  

 

The primary function of the ECM is as a supportive structure and the physical 

properties of the extracellular matrix plays a role in cell fate, migration, proliferation 

and survival (Kim et al., 2011). The human body presents a wide range of tissues 

with various degrees of elasticity, from pliable brain tissue with an elastic modulus in 

kilopascal to hard, calcified bone exhibiting a modulus in megapascals. Cells within 

these tissues become accustomed to the environment in which they reside and are 

able to maintain their phenotype. However, studies have shown that the ECM 

environment is able to guide differentiation of mesenchymal stem cells down 

osteoblastic, skeletal muscular and neural lineages in an ECM biomechanical-

dependent manner (Park et al., 2011). 

 

Cleavage of the ECM is needed for regulating composition and structure as well as 

the release of specific growth factors and is undertaken by different families of 

proteases (Bonnans et al., 2014). Two major classes of proteases that are involved in 

matrix remodelling are matrix metalloproteinases (MMPs) and a disintegrin and 

metalloproteinases with a thrombospondin motif proteins (ADAMTS). MMPs are 
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secreted as zymogens and are activated either by proteolytic cleaveage by Ser 

preoteases or other MMPs or oxidation that modifies thiol groups, enabling the 

degradation of ECM proteins (Hynes and Naba, 2012). MMPs are capable of 

breaking down a multitude of ECM components including proteoglycans, fibronectin 

and laminin (MMP3 and MMP10). Collagen type III is typically targeted by MMP1 

whilst collagen I and II are targets of MMP8 and MMP13, respectively (Lu et al., 

2011). ADAMTS are proteinases that contain thrombospondin motifs are the 

carboxy terminal and are known to degrade collagen and proteoglycans found within 

the ECM (Bonnans et al., 2014).  

 

1.3.1 Increased ECM degradation 

 

Deregulation of ECM breakdown by MMPs and ADAMTs proteases, can affect 

matrix and cell interactions, leading to disease development and pathogenesis 

(Bonnans et al., 2014). Increased expression of MMP1, which is specific to the heart, 

results in a loss of collagen and subsequently contractility leading to cardiomyopathy 

(Kim et al., 2000). Whereas in osteoarthritis an increase of ADAMTS4 and 

ADAMTS5 are responsible for the degradation of the cartilage tissue (Bondeson et 

al., 2008).  The mechanisms that are responsible for upregulation of these 

degradative enzymes have yet to be discovered however it is thought that receptors 

involved in cell-matrix interaction may promote increased activation of MMPs and 

ADAMTs (Echtermeyer et al., 2009).  

 

1.3.2 Excessive ECM production 

 

Following chronic injury, the excessive production and deposition of ECM without 

appropriate breakdown can lead to fibrosis (Bonnans et al., 2014). The abnormal 

tissue development may result in fatalities due to organ failure and has also been 

shown to increase the risk of cancer when occurring in certain organs such as breast 

and liver (El-Serag, 2011).  Fibrosis is primarily mediated by fibroblasts and other 

stromal cells whereby the expression of approximately 60 ECM related genes are 

upregulated including those for collagen type I and III (Verrecchia et al., 2001). 

Fibrosis may also be stimulated immune cells that have been activated by 
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interleukin-33 (IL-33), in turn promoting the production of IL-13, which 

downregulates MMPs and stimulates collagen accumulation at the site of 

inflammation (Bailey et al., 2013).  

 

1.4 Regenerative medicine 

 

Currently, organ donation is unable to meet transplantation needs of patients 

suffering with chronic conditions (Mahla, 2016). Also, due to the expanding aged 

population being particularly susceptible to chronic degenerative diseases healthcare 

expenditure continues to increase (Nelson et al., 2008). Regenerative medicine is a 

distinct and major field in basic and translational research, linking to clinical need, in 

addressing the deformation or abnormal homeostasis of tissues in a wide variety of 

disease. Major advancements in medical treatment have been undertaken based on 

the principles of cellular and acellular/matrix associated technologies and tissue 

engineering, in order to replace or regenerate human tissues and organs while aiming 

to restore function (Mao and Mooney, 2015).  

 

Multiple strategies are being employed in order to achieve regeneration of tissues 

including stem cell biology, biomechanics and nanotechnology (Sampogna et al., 

2015). A successful tissue engineered construct is seen to combine three separate 

categories; biomaterials, cells and growth factors, shown in Figure 1.3, in order to 

mimic the numerous properties a single tissue may exhibit. Components of the triad 

can be used to manipulate the growth and development of tissues for the desired 

outcome (O'Brien, 2011). This triangular strategy is also known as the R3 paradigm 

where replacement of tissue, regeneration of damage tissue and rejuvenation of cells 

must occur (Nelson et al., 2008).  
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Figure 1.3: Tissue engineering triad. Successful tissue engineering is dependent on 

the work between cells, signals and materials (O'Brien, 2011) 

 

1.5 Articular cartilage, osteoarthritis and regenerative medicine   

 

Adults possess three main types of cartilage: fibrocartilage, elastic cartilage and 

hyaline cartilage. Fibrocartilage, composed primarily of collagen type I in the form 

of fibres, is thought to be the strongest form found within the body and appears in 

intervertebral discs and between ligaments, tendons and bones. Elastic cartilage is 

present in sections of the trachea, outer ear and epiglottis. Randomly oriented elastin 

fibres provide the characteristic elasticity that aids in maintaining the shape and 

flexibility of organs (Camarero-Espinosa et al., 2016). 

 

Articular cartilage (AC) is hyaline cartilage found lining the osseous ends of 

diarthrodial joints, at approximately 2-4mm thick, and protects the underlying bones 

allowing for frictionless, pain-free movement (Musumeci et al., 2014). The tissue is 

avascular, aneural, alymphatic and has a white, glassy appearance and unlike 

fibrocartilage, there is no evidence to show that hyaline cartilage possesses collagen 

fibres at a macroscopic level (Temenoff and Mikos, 2000).  
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1.5.1 Articular cartilage structure  

 

The overall composition of articular cartilage can be seen as relatively simplistic as it 

contains a single, highly specialised cell type, the chondrocyte, which accounts for 

approximately 2% of the total volume of articular cartilage. These cells are encased 

within a dense and organised extracellular matrix that has three main components: 

water, collagen and proteoglycans (Fox et al., 2009). Indicated in Figure 1.4, 

articular cartilage has distinct zonal organisation comprising of a superficial, 

transitional, deep and calcified zone. The varying degrees of organisation found 

within articular cartilage are key to the mechanical, metabolic and transport 

properties it exhibits (Klein et al., 2009).  

 

 

 
 
Figure 1.4: Schematic representation of health articular cartilage along side 

histological staining of cartilage tissue. Chondrocytes maintain a flattened 

morphology at the superficial zone before becoming more rounded deeper into the 

tissue. Collagen fibrils change their orientation throughout the tissue to give its 

tensile properties (Fox et al., 2009) 

 

Zonal organisation transitions from the superficial zone, closest to the synovial fluid, 

to the calcified zone, adjacent to bone. This zonal structure varies the composition of 

the extracellular matrix and collagen orientation, increasing in stiffness through the 

tissue and allowing for cartilage to possess the tensile strength necessary for its role 

(Zhu et al., 2017). 
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The superficial or tangential zone of cartilage is the thinnest zone, closest to synovial 

fluid, that plays hosts to cells that appear ellipsoidal in morphology (Bhosale and 

Richardson, 2008). Chondrocytes within this zone secrete lubricin, an important 

lubricant that allows for the fluid, frictionless movement associated with cartilage. 

Lubricin or superficial zone protein, synthesised by synoviocytes and chondrocytes, 

is an O-glycosylated protein found on the articular surface and synovial fluid 

(Gleghorn and Bonassar, 2008). The structure of lubricin is such that the central 

domain holds a negative charge whilst the terminal portions of the protein are 

positively charged (Estrella et al., 2010). This charge distribution is believed to be 

the lubricating properties of the protein (Jay and Hong, 1992). The importance in 

lubricin is demonstrated in patients presenting with camptodactyly-arthropathy-coxa 

vara-pericarditis (CACP) syndrome where there is a lack of lubricin expression 

leading to fibrosis and failure of the joint (Jones et al., 2009).  

 

Three types of collagen are present in the superficial zone, type II, IX and XI, and 

are aligned parallel to the articular surface (Fox et al., 2009). The orientation of these 

collagen fibres allows for the articular surface to withstand the high tensile stresses 

(Klein et al., 2009). The transitional zone, also known as the middle zone, 

encompasses 40-60% of articular cartilage volume and is less organised in structure 

than the other zones (Pearle et al., 2005). Collagen fibrils within the deep zone are 

tightly packed together in a perpendicular manner and it is this arrangement in the 

region that leads to the deep zone being the provider of the greatest compressive 

resistance (Fox et al., 2009). The zone of calcification is separated from the other 

zones by the tidemark, also known as the chondro-osseous junction, and allows for a 

smooth transition in the mechanical properties exhibited by cartilage and bone as 

well as tethering the tissues together (Schultz et al., 2015). It is believed that damage 

in this zone leads to disease of both cartilage and bone with lesions causing an 

increase in vascularity and remodelling of the bone whilst a duplication of the 

tidemark is an indicator of osteoarthritis (Mansfield and Winlove, 2012).  

 

The articular cartilage matrix is predominantly made up of collagen type II, that 

provides the tensile strength that is characteristic of the tissue (Cohen et al., 1998). 

Other important contributors to the ECM include proteoglycans (PGs), in particular 

aggrecan a negatively charged proteoglycan that plays a major role in the ECM of 
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articular cartilage (McNary et al., 2012). Aggrecan is composed of a linear core 

protein that contains 3 globular domains: GD1, GD2 and GD3, that form aggregates, 

where multiple aggrecan molecules are attached, non-covalently, to a central 

hyaluronic acid filament, stabilised by the Link protein (Roughley and Mort, 2014). 

Glycosaminoglycans (GAG) chains are found between GD2 and GD3 and are most 

frequently found to be chondroitin and keratan sulphate (Chandran and Horkay, 

2012).  

 

One such GAG is chondroitin sulphate (CS), which exists as an unbranched 

sulphated GAG composed of repeating disaccharide units of N-acetylgalactosamine 

and glucuronic acid. CS is considered a highly charged polyanion due to the 4 and 6 

position of the N-acetylgalactosamine being sulphated (Henrotin et al., 2010). 

Negatively charge, CS is linked to osmotic swelling of cartilage due to its negative 

charge, while it has also been shown to play various protective roles within cartilage 

(James and Uhl, 2001). In vitro studies have proven that CS has the ability to reduce 

chondrocyte apoptosis as well as the production of MMPs, while it is needed to 

induce proteoglycan production (Martel-Pelletier et al., 2010). Another GAG, is 

keratan sulphate (KS), a linear polymer of N-acetylactosamine that is sulphated at 

carbon-6 of both sugar moieties (Meyer et al., 1953). KS expression has been 

observed in both the cornea and cartilage, with the latter tissue containing KSII 

specifically, which is O-linked via GalNAc to serine or threonine residues and binds 

exclusively to aggrecan in articular cartilage (Funderburgh, 2002). 

 

Hyaluronic acid (HA), also known as hyaluronan, is the simplest GAG as it is 

unbranched and unsulphated, consisting of between 2500 and 25000 repeating 

disaccharide units (Bastow et al., 2008). HA associates itself with HA binding 

proteins significantly contributing to the structural integrity of articular cartilage 

(Seyfried et al., 2004). HA is found bound to aggrecan in the cartilage matrix. 

Decrease HA size has ben attributed to diseased cartilage using histological staining 

(Bastow et al., 2008). Hyaluronic acid has been shown to interact with chondrocytes 

via the CD44 receptor, which plays a role in pericellular matrix assembly as well as 

intacellular signalling and matrix remodelling (Responte et al., 2012).  
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1.5.2 Osteoarthritis 

 

Osteoarthritis (OA) is a degenerative disease that affects the entire synovial joint 

including bone and synovium. The most critical damage however occurs to the 

articular cartilage (Amoako and Pujalte, 2014). Diagnosis of OA can be observed 

radiographically to visualize joint space narrowing, through magnetic resonance 

imaging (MRI) or optical coherence tomography (OCT), or directly with an 

endoscope (Braun and Gold, 2012). Histological analysis of cartilage biopsies is a 

routine procedure that is undertaken in the grading of OA, with the OARSI system 

commonly used as the chosen guidelines, and is graded from 0 through to 6. Figure 

1.5 shows examples of articular cartilage at each grade (Waldstein et al., 2015). 

Grade 0 is healthy articular cartilage with no signs of OA. As grading increases the 

smooth superficial surface begins to break down, chondrocytes cluster and undergo 

apoptosis, formation of fissures and proteoglycan depletion is evident (Pritzker et al., 

2006). OA is a chronic condition that has the largest economic burden on medical 

and social services within the developed world due to healthcare costs and is 

expected to increase due to the rise in the aging population. Due to these reasons 

prevention and repair are critical (Bitton, 2009). 

 

 



Chapter 1                                                                                                               Introduction 
 

 23 

 
 
Figure 1.5: Histological staining of articular cartilage demonstrating grades 0-5 

of OA. Histological staining with haematoxylin and eosin, Safranin O and 

counterstained with Fast Green shows depletion of proteoglycan and lesion 

formation (Waldstein et al., 2015). 

 

The cause of OA is abnormal mechanical loading that increases the vulnerability of 

the joint and occurs due to a variety of factors including aging, nutritional 

deficiencies and blunt trauma or injury (Hunter and Felson, 2006).  The change in 

loading leads to inflammation of the joint and deregulation of tissue homeostasis 

favouring the catabolic process (Goldring and Goldring, 2007). The mechanisms of 

matrix degradation are shown in Figure 1.6.  
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Figure 1.6: Structural changes and signaling pathways involved in the 

development of OA (Glyn-Jones et al., 2015) 

 
OA is a progressive disease and occurs in stages (Blalock et al., 2015);  Firstly, 

changes or loss of the ECM occur, which are thought to be remodelled and repaired 

by resident chondrocytes and finally degradation occurs at a faster rate than 

synthesis/repair causing cartilage loss (Hendren and Larson, 2009). Other common 

features associated with OA are the spread of hypertrophic chondrocytes, osteophyte 

formation and narrowing of the joint (Ashkavand et al., 2013).  

 

1.5.2.1 Disease aetiology  

 

OA is now seen as a multifactorial disease, age however, remains the most common 

risk factor with the majority of patients over the age of 65 having radiographic 

differences in at least one joint (Jordan et al., 2007). Aging also affects the muscle 

and bone that in turn causes additional changes to joint loading. Studies conducted 

on articular chondrocytes show that aging promotes cell senescence and have 

reduced reparative capability due to alteration in receptor expression (Chen et al., 

2017).  
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Obesity has also been shown to be prominent in the aetiology of OA. Patients with 

obesity (BMI greater than 30kg/m2) are 6.8 times more likely to develop OA earlier 

in their life than those classified as normal weight (King et al., 2013). In addition to 

increased biomechanical loading on the knee joints there is increased secretion of 

cytokines IL1, IL6, IL8 and TNF linked to obesity, that lead to increased catabolic 

activity through MMP secretion (Kapoor et al., 2011). Inflammation is also observed 

in patients that present with OA following blunt trauma from sports injuries causing 

activation of the NF- B pathway, unbalancing anabolic and catabolic activity 

(Lieberthal et al., 2015).  

 

Degradative enzymes play an important role in the breakdown of cartilage by 

targeting components of the ECM, such as collagen and aggrecan for proteolysis. 

The molecular signature of OA cartilage, regardless of the cause, points towards the 

deregulation of pathways that give rise to excessive hypertrophy. During ossification 

chondrocytes become hypertrophic, remove ECM by expression of a disintegrin and 

metalloproteinase with thrombospondin motifs (ADAMTS) and MMPs; eventually 

undergoing apoptosis and subsequent replacement by osteoblasts. The Wnt/-catenin 

pathway is also known to drive endochondral ossification due to the upregulation of 

ADAMTS and MMPs (Takamatsu et al., 2014) causing the loss of proteoglycan in 

articular cartilage (Yuasa et al., 2008). ADAMTS4 and -5 are key enzymes involved 

in the degradation of aggrecan (Wang et al., 2011). ADAMTS5 is seen to be widely 

distributed in OA cartilage however both ADAMTS4 and ADAMTS5 may have 

variable activity depending on their localisation within the tissue (Dancevic and 

McCulloch, 2014). Another degradative enzyme involved in AC deterioration is 

MMP13, which targets collagen type II, IV and IX as well as proteoglycans (Wang et 

al., 2013). MMP13 has a higher catalytic affinity for collagen type II than any other 

collagen making it a potent enzyme for degradation of the cartilage matrix (Wang et 

al., 2011). Clinical studies have shown that patients with articular damage have 

higher levels of MMP13 whilst research with transgenic mice overexpressing 

MMP13 has also shown spontaneous OA-like articular cartilage (Wang et al., 2013). 
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1.5.2.2 Osteoarthritic repair 

 

Although non-surgical treatment may provide pain relief for the patient it is not seen 

as a preventative or restorative treatment option (Mushtaq et al., 2011). Partial and 

full thickness treatments require surgical intervention for long-term repair of the 

tissue, with the choice of surgery being dependent upon the depth of sustained 

lesions and surgical preference (García-Carvajal et al., 2013). Total arthroplasty, 

where the entire load bearing joint is replaced, is a popular option for elderly patients 

presenting with end stage OA but due to the limited lifespan of the prostheses it is 

unsuitable for younger patients (Bhosale and Richardson, 2008). Early intervention 

of damaged cartilage, such as an osteotomy, can be carried out to reduce further 

deterioration of cartilage however these are not seen as long-term solutions. An array 

of non-surgical options have been developed for the management and repair of OA 

cartilage from acellular techniques through to cell based technology with and without 

the use of scaffold materials (Makris et al., 2015).  

 

1.5.2.2.1 Non-surgical intervention 

 

Non-surgical OA treatments to reduce patient pain include both non-pharmacological 

and pharmacological treatments (Yusuf, 2016). The primary non-pharmacological 

treatment is exercise to achieve weight loss that can alleviate pressure on the joints 

however individualised exercise programs must be designed based upon the patient’s 

needs so not to further aggravate the condition (Yusuf, 2016). Non-steroidal anti-

inflammatory drugs (NSAIDS) are a popular pharmacological treatment for OA 

patients suffering with moderate-severe pain (Pelletier et al., 2016). These drugs 

alleviate pain by altering the damaged structure of OA, by reducing the amount of 

inflamed synovial fluid (Pelletier et al., 2016). NSAIDs block the production of 

prostaglandins by inhibiting the activity of cyclooxygenase (COX) enzymes and 

come in a variety of forms, ranging from topical gels and patches, to intravenous and 

oral preparations. Topical NSAIDs are typically the first line of treatment as they 

maintain their efficacy whilst reducing systemic exposure, this is however dependent 

upon patient history, due to concerns around cardiovascular and gastrointestinal 

complications (Crofford, 2013) (Pelletier et al., 2016). 
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1.5.2.2.2 Acellular approaches 

 

Arthroscopic treatment of cartilage defects is seen as a minimally invasive and cost 

effective procedure (Redman et al., 2005). A characteristic symptom of osteoarthritis 

is the chronic pain suffered by patients. Since the 1940’s a popular treatment option 

available to surgeons was lavage and debridement of the defects (Minas, 2011). 

During the procedure a saline solution is introduced to the joint to remove loose 

tissue (lavage) before smoothing the underlying bone of any damaged or dead tissue 

(debridement) (Ontario, 2005). 

 

A high tibial osteotomy is usually preformed with pain relief as the goal rather that 

cartilage repair. This surgical procedure realigns the joint so that biomechanical 

loading is not focused upon the damaged tissue (Hunziker, 2001). Although the aim 

of the surgery is not concentrated on repairing the tissue, patient follow up studies 

have shown that approximately 2 years after an osteotomy surgery cartilage lesions 

exhibit a fibrous, membranous tissue resembling fibrocartilage (Sabzevari et al., 

2016). 

 

1.5.2.2.3 Cellular approaches 

 

In 1997, Steadman suggested microfracture, a marrow stimulation technique, as a 

viable treatment of symptomatic focal defects in articular cartilage (Mancò et al., 

2016). During this treatment damaged cartilage is removed to reveal the subchondral 

bone plate and an arthroscopic awl is used to form 3-4mm holes, while avoiding 

lesion merging and/or collapsing (Schrock et al., 2017). The penetration of the 

underlying bone allows for lesion specific recruitment of mesenchymal stem cells 

(MSC) that then perform tissue reformation. The MSC clot that is formed is not 

mechanically stable however, placing emphasis on appropriate post-surgical 

rehabilitation with regards to creating an environment in which mesenchymal cells 

can migrate and differentiate within the lesion (Bark et al., 2014) (Erggelet and 

Vavken, 2016). 

 

While being viewed as a simple technique in terms of execution, with low 

complication rates, microfracture often fails to produce hyaline cartilage, instead  
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forming a tissue that is too rigid for the biphasic characteristic needed for shock 

absorption (Reilingh et al., 2017). Despite the fact that the tissue produced contains a 

lower collagen II content, microfracture continues to be an intervention chosen for 

patients of a younger age, with small (<2cm2) lesions. It has been noted that patients 

who have undergone this reparative surgery find improvements in regards to pain 

however the revision rates for surgery range between 2% and 31% and is likely due 

to the degradation of the fibrocartilage layer (York et al., 2017) (Kraeutler et al., 

2018).  

 

1.5.2.2.4 Autologous chondrocyte implantation 

 

Autologous chondrocyte implantation (ACI) was first developed in 1994 and has 

become a routine method in the treatment of full thickness cartilage defects 

(Brittberg et al., 1994).  This surgical option involves implantation of autologous 

chondrocytes into the defect and sealed under a periosteal patch (Dunkin and 

Lattermann, 2013). During this two-stage procedure, chondrocytes are harvested 

from a healthy area of cartilage before undergoing monolayer, cell culture 

proliferation. Following 3-4 weeks the cells are placed into the defect in hopes of 

replacing the damaged tissue (McCarthy et al., 2016).  

 

Currently, chondrocytes are the chosen cell source for ACI surgery. When cultured 

in monolayer however these articular chondrocytes have been shown to reduce their 

collagen II and proteoglycan expression, as a result of 2D culture shock and de-

differentiation (Dewan et al., 2014). This may be a contributor to the several 

disadvantages observed with ACI, despite the good clinical outcome observed in 60 

to 90% of follow up (between 1 to 11 years) ACI patients (Iwasa et al., 2009). The 

main issue is the hypertrophic nature of the regenerated tissue that often leads to the 

need for another operation (Gooding et al., 2006).  

 

1.5.2.2.5 Stem cells 

 

Multiple alternative cell sources have been sought for OA repair purposes, due to the 

disadvantages of using chondrocytes. Stem or pluripotent cells are a popular option, 
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in particular mesenchymal stem cells (MSCs) and induced pluripotent stem cells 

(iPSCs), due to the capability for self-renewal and ability to differentiate down 

different lineages (Lietman, 2016). MSCs are multipotent cells that have been proven 

to differentiate through chondrogenic, osteogenic and adipogenic lineages, outlined 

in Figure 1.7, and can be harvested from various sources including bone marrow and 

adipose tissue (Marion and Mao, 2006). Although they have lower differentiation 

potential than iPSCs they express low levels of major histocompatibility complex, 

which may lead to a lower risk of immunogenicity (Lee and Wang, 2017). 

 

 
 
Figure 1.7: Differentiation of MSCs through different lineages. MSCs are often 

chosen for regenerative medicine due to their plasticity.  Minimal criteria dictate that 

MSCs must be able to undergo chondrogenesis, osteogenesis and adipogenesis 

(Caplan and Bruder, 2001) 

 

MSCs are multi-lineage non-hematopoietic stem cells that are able to differentiate 

into cells with a mesodermal origin and can be identified through their expression of 

specific markers (Mahla, 2016). The minimal criteria for cells to be considered an 

MSC include the ability to adhere to plastic, differentate into osteoblasts, 

chondrocytes and adipocytes and express cell surface markers CD105, CD73 and 

CD90 whilst lacking the expression of haematopoietic markers CD45, CD34, and 

CD14 (Dominici et al., 2006). MSCs can be isolated from various tissues including 
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bone marrow, umbilical cord, adipose tissue and placenta. Aside from their ability to 

differentiate down osteogenic, chondrogenic and adipogenic lineages, MSCs have 

also been shown to integrate into the outer walls of arteries of organs and behave as 

pericytes to support blood vessel stability (Rohban and Pieber, 2017). All of these 

factors, multipotency, ease of isolation and capability for self-renewal, make MSCs a 

promising cell source for regenerative medicine purposes (Samsonraj et al., 2017). 

Allogenic MSCs may be isolated for ‘off the shelf’ availability but the ability to 

isolate autologous MSCs eliminates concerns of rejection and disease transmission 

(Marion and Mao, 2006). Although this cell source holds promise, clinical 

applications have brought to light the limitations of MSCs in regenerative medicine 

and tissue engineering. Direct injection and intravenous delivery of MSCs has led to 

inconsistent results within host tissue due to issues with long term survival 

(Samsonraj et al., 2017). MSCs have also been shown to exhibit inhibitory effects on 

T-cell proliferation and secrete cytokines that supress the immune response as well 

as encourage tumour growth in allogenic transplants (Rosenbaum et al., 2008).  

 

Mesenchymal stem cells have provided satisfactory clinical outcomes in regards to 

microfracture treatment. Despite this the tissue produced by the clot is often fibrous 

in nature and lack the durability for sustained movement required from the joint 

(Elvenes et al., 2009). 

 

1.5.2.2.6 Chondroprogenitors 

 

Stem cells are classified by functional attributes that include self-maintenance, 

proliferation and the ability to differentiate down different lineages (Potten and 

Loeffler, 1990). Progenitor cells are a populations of cells found within tissues that 

aid in homeostasis and retain a degree of plasticity and have the ability to 

differentiate into specific cell types (Mahla, 2016). Under specific biological, 

chemical and physical conditions tissue specific progenitor cells are able to 

differentiate and form cells that populate mature tissue and harvesting this potential 

holds promise within the tissue engineering and regenerative medicine fields (Heath, 

2000). Adult progenitor cells are cells that are capable of differentiation and self-

renewal and are usually found in a niche close to tissue containing mature cells 
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(Barry et al., 2001). Populations of multipotent mesenchymal progenitor cells have 

been found to be isolated from various tissues including cartilage, liver, fat and skin 

(Caplan, 2013). 

 

Chondroprogenitor cells can be harvested from the surface of articular cartilage via 

their affinity for fibronectin (Dowthwaite et al., 2004). This population of cells 

exhibits a high colony forming efficiency, expression of Notch-1 and possess the 

ability to undergo chondrogenesis in a 3D culture (Mazor et al., 2014). Recent 

studies using equine-derived chondroprogenitor cells have showcased an enhanced 

ability for cartilage repair when compared to bone marrow derived MSCs due to the 

lack of expression of RUNX2 and type X collagen, which are markers of epiphyseal 

chondrocytes (Somoza et al., 2014). 

 

1.6 Matrix-assisted approaches 

 

Matrix-assisted autologous chondrocyte implantation (MACI) is a popular next 

generation surgical technique that is similar to ACI with the addition of a matrix 

scaffold for guidance of tissue formation (Jacobi et al., 2011). Autologous 

chondrocytes are harvested and expanded to an appropriate number before being 

seeded into a 3-dimensional scaffold structure. After 4 weeks of culture within the 

scaffold the structure is implanted into the defect after being cut to size (Nixon et al., 

2015). The use of a 3D matrix is believed to minimise the chance of cell 

dedifferentiation and increase the chondrogenic potential of the implant 

(Niethammer et al., 2016).  

 

Various materials have been used for the fabrication of MACI scaffolds and are used 

within clinical settings including collagen and hyaluronan as well as synthetic 

materials like polyglycolic and polylactic acid, agarose and alginate based hydrogels 

and protein based matrices fabricated from collagen and gelatin (Armiento et al., 

2018). It is critical that the surrounding cartilage is healthy and any loose tissue is 

debrided before implantation. Unlike in ACI where the periosteal flap spans the 

entire defect, MACI requires the matrix to fit within the defect without any overlying 

flaps to allow for integration into the native tissue (Dunkin and Lattermann, 2013). 
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The use of a matrix is seen as an advantage as there is a higher chance of even cell 

distribution as well as a reduced risk of cell loss from the damaged area (Kreulen et 

al., 2017). 

 

MACI surgery can be seen as successful however there have been reports of graft 

failure due to lack of integration and the formation of fibrous tissue. In these cases it 

is vital to acknowledge that the development of cartilage is dependent on several 

factors such as exposure to growth factors and mechanical stimulation and the 

addition of these to MACI surgery may increase successful tissue repair outcome for 

patients (Collarile et al., 2017). MACI offers a technique that is attractive due to the 

reproducibility, safety and reduction in intraoperative time but requires further 

investigation in order to understand whether the long term benefits are superior to 

other surgical techniques that are available (Makris et al., 2015). 

 

One of the most popular materials to use is collagen due to the fact that the protein 

accounts for a large proportion of articular cartilage. Membranes such as Maix® and 

Chondro-Gide® are produced from a bilayer of porcine collagen I/III that can then 

be seeded with chondrocytes. The surface of these scaffolds provides mechanical 

strength whilst the inner surface stimulates cells to produce cartilage matrix (Fuss et 

al., 2000). Studies conducted on this conformation of scaffold have shown cell 

attachment and maintenance of chondrocytic phenotype as well as the limitation of 

cell migration from the defect (Ehlers et al., 1999). 

 

1.6.1 Scaffold properties and function 

 

Stem cells are often the cell source of choice for regenerative medicine due to their 

plasticity allowing them to repair the damaged tissue by repopulating the area with 

mature, differentiated cells (Ding et al., 2013). However, in order for tissues to be 

functional they require specific mechanical and structural properties that can be 

acquired through the introduction of a scaffold structure and material (Hosseinkhani 

et al., 2014). A large research field has developed around biomaterial biomimicry, 

where the choice material, examples of which are outline in Table 1.2, and basic 

structure of a scaffold is fabricated to imitate the structure and environment of the 
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native tissue that is designated for regeneration (Mahboudi et al., 2018). With this in 

mind, a number of properties must be taken into account when fabricating a scaffold, 

including architecture, mechanical integrity, biodegradability, biocompatibility and 

manufacturing technology (O'Brien, 2011). 

 

 

Classification Biomaterial Applications 

 
 

Natural 

Collagen Bone, cartilage, heart, 
ligament 

Agarose Cartilage, heart, nerve 

PEG Adipose, bone, 
cartilage, nerve 

Ceramics Bone, cartilage 

 
Table 1.2: Natural and synthetic materials used in tissue engineering. A example 

of the range of natural and synthetic biomaterials has been used for different tissue 

engineering applications, often for the same tissue with differences in cellular 

response (Melton, 2008) 

 

Scaffolds fabricated for tissue engineering and regenerative medicine should have a 

highly porous and interconnected structure to allow for adequate cell migration and 

nutrient diffusion as well as the diffusion of waste products (Phelps and Garcia, 

2009). Pore size is also a crucial characteristic of scaffold design. Cells attach to the 

scaffold via ligands and peptide sequences, such as the GFOGER and RGD peptide 

sequences; on the material surface and ligand density is determined by surface area. 

Therefore average pore size must strike a balance whereby they are large enough to 

allow for cell migration but small enough to maintain adequate ligand density for 

efficient binding (Yannas et al., 1989). Scaffolds involved in chondrogenesis have 

been able to facilitate differentiation of chondrocytes with small pores (20-150μm) 
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whilst larger pore sizes (250-500μm) have been found to be better for proliferation 

and matrix deposition (Matsiko et al., 2015). 

 

Scaffolds produced from natural materials such as collagen, chitosan and cellulose 

are advantageous due to their occurrence in native ECM and allow for the attachment 

of cells via surface receptors (Saha et al., 2007). The surface properties of scaffolds 

play an important role in cell-matrix interaction and are responsible for proliferation 

and differentiation after attachment (Liu et al., 2014). An example of this is seen in 

chondrogenic differentiation of adipose derived stem cells which has been proven to 

be more effective on gelatin compared to alginate and agarose due to the similarity to 

native ECM environment (Awad et al., 2004). 

 

A range of critical pore sizes exists and is specific to the tissue to be repaired. An 

example of this is outlined in Table 1.3 (Murphy et al., 2010).  

 

Application Pore Size (μm) 

Bone regeneration 100-300 

Chondrogenesis 90-300 

Vascular smooth muscle growth 38-150 

Aggregation of cardiomyocytes 60 

 
Table 1.3: Examples of optimal pore sizes for specific applications in tissue 

engineering (Bružauskaité et al., 2016) 

 

Biological and chemical modifications to a scaffold may help to influence cell 

behaviour through the manipulation of specific signalling pathways (Dawson et al., 

2008) through the binding of different integrins (Liu et al., 2014). Synthetic materials 

used for tissue engineering can be chemically modified in order to help cellular 

differentiation however this may not be a cost effective method (Dawson et al., 

2008). 
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Proliferation of cells within a 3D environment occurs with a sufficient supply of 

oxygen and nutrients as well as the avoidance of the build up of waste materials 

(Hosseinkhani et al., 2014). The effect of dynamic culture, with the use of  

bioreactors, has proven effective in the proliferation and differentiation of stem 

cells as well as a more uniform distribution of nutrients (Ghasemi-Mobarakeh et al., 

2015). When static and dynamic culture were compared in chondrogenic culture of 

human MSCs within a hydrogel, static culture was better in differentiating cells. 

However, additional compression during dynamic culture improved chondrogenic 

differentiation (Guo et al., 2016). 

 

The topography of the ECM effects the cell in various ways with nano and micro 

patterned structures shown to stimulate cell alignment, migration, proliferation and 

gene expression (Ghasemi-Mobarakeh et al., 2015). These topographical features are 

often achieved through fabrication methods such as photolithography and chemical 

vapour deposition. Elecrospinning has been of particular interest as this method 

produces nanofibers that are similar in morphology to native ECM (Prabhakaran et 

al., 2012). In vitro chondrogenic differentiation of MSCs has been documented as 

more effective on chitosan microfibers compared to sponges (Ragetly et al., 2010).  

 

The mechanical properties of the scaffold should resemble the tissue it is to be 

implanted (Chan and Long, 2008). This has proven to be a difficult task for specific 

tissues, for example orthopaedic applications prove challenging as they must 

continue to have mechanical integrity from implantation through to the completion 

of matrix remodelling (Hutmacher, 2000). Although mechanical properties play an 

important role, tissue architecture has often been sacrificed in order to achieve a 

mechanically stable structure, which in turn has been detrimental for tissue growth 

and vascularisation. Therefore it is crucial that a balance is found between 

architecture and mechanics for a successful scaffold (O'Brien, 2011).  

 

Matrix stiffness is variable across tissues present in the human body from soft brain 

tissue (1kPa) to hard bone (30kPa) (Vincent and Engler, 2011). Stem cells possess 

the ability to differentiate into cells of different lineages and survive in environments 

that possess different mechanical properties. The material and overall structure of the 

scaffold play a role in the physical properties and may affect the differentiation 



Chapter 1                                                                                                               Introduction 
 

 36 

potential of cells (Ghasemi-Mobarakeh et al., 2015). As an example, bone tissue 

engineering studies have shown that MSCs have a higher rate of attachment, 

increased alkaline phosphatase activity and increased expression of osteopontin and 

collagen type I when cultured upon a stiff (25kPa) hydrogel compared to a soft 

(2kPa) hydrogel (Gandavarapu et al., 2014). Whereas studies considering 

cardiovascular regeneration showed an increased attachment in softer scaffolds 

(Wingate et al., 2012) and increased expression in endothelial markers when 

compared to harder substrates (Wingate et al., 2014). 

 

Scaffolds designed for tissue engineering purposes are not seen as permanent 

implants and should be resorbed with a balance between degradation and new tissue 

formation (Peters and Mooney, 1997). The bioresorbability of the material must 

occur over time via biological processes such as enzymatic degradation or hydrolysis 

(Parisi et al., 2018). Due to the nature of the scaffold being a temporary implant 

within the human body, care must be taken when choosing a material to ensure that 

the native material and its degraded products do not induce response such as 

inflammation or release toxins, carcinogens and mutagens (Williams, 2008). The 

most critical characteristic of a scaffold fabricated for tissue engineering purposes is 

that it should be biocompatible. Biocompatibility encompasses the ability for cells to 

adhere, function and migrate and proliferate whilst interacting with the construct and 

producing a negligible immune response so that rejection does not occur (O'Brien, 

2011).  

 

1.6.2 Biocompatibility 

 

The formal definition of biocompatibility is stated as “the ability of a biomaterial to 

perform with an appropriate host response in the specific application” (Williams, 

2008). Materials chosen for regenerative medicine can be manipulated in order to 

achieve the functional properties required for its purpose, which include regeneration 

of the damaged tissue and cellular differentiation whilst inhibiting an immune 

response (Yang et al., 2008). Once a biomaterial has been implanted the body 

responds in a natural cascade that consists of interaction with blood and cells, 

provisional matrix formation and temporary inflammation. Under normal 
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circumstances the cascade will end at this point however if the material is not 

biocompatible the cascade will continue with the formation of granulation tissue and 

fibrotic tissue that may infiltrate the porous material and render it unfit for purpose 

(Naahidi et al., 2017).  

 

Aside from scaffold design, biocompatibility of the scaffold must be tested to ensure 

it does not cause any toxic effect to the body causing side effects. Three major 

responses that may occur are inflammation, fibrosis and immunogenicity (Anderson 

et al., 2010). The International Organization for Standardization has implemented 

standards that are required for the evaluation of medical devices (ISO: 10993) 

(Naahidi et al., 2017).  

 

Both clinical and research grade collagen is sourced from a wide variety of animals 

with mammalian collagen being the most common source due to the ease in 

obtainment and cost effective nature (Rodríguez et al., 2017). Whilst research grade 

products are produced using good laboratory practice, clinical grade collagen must 

adhere to set regulations such as those set out in good manufacturing practice (GMP) 

guidelines and includes quality assurance records, dedicated production suite and 

validated cleaning methods (Crawford et al., 2015). Porcine and bovine collagen is 

typically sourced from waste products after slaughter and can be obtained from 

calfskin, bones and tendons via acid extraction (Karim and Bhat, 2009).  

 

1.6.3 Alternative sources of collagen 

 

Collagen is a popular material and has been used in food, medical and 

pharmaceutical industries. Industrial applications of collagen have primarily been 

sourced through mammals, in particular bovine and porcine origins (Silva et al., 

2014). The concerns regarding the use of collagen from a bovine source has risen 

due to the outbreak of zoonotic diseases such as bovine spongiform encephalopathy 

(BSE) as well as the discovery that approximately 3% of the population are allergic 

to the material (Silvipriya et al., 2015). Another common mammalian source for 

collagen is porcine skin and bones, which are also obtained as waste material after 

slaughter (Karim and Bhat, 2009). Similar concerns of the transmission of zoonotic 
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disease is also applied to porcine material with the additional constraints of pigs 

being forbidden in some religions (Silvipriya et al., 2015). Research for an 

alternative source of collagen has increased over the past few years due to 

economical interest in industrial by-products found in the meat and fish industry as 

well as for sustainability issues (Gómez-Guillén et al., 2011).  

 

1.6.3.1 Recombinant collagen 

 

In vitro production of recombinant collagen I and III from human fibroblast cells was 

reported in the early 1980s (Uitto et al., 1980). The advances in genetic engineering 

have lead to the possibility of using a number of hosts, including bacteria, yeast and 

insect cells, for the production of recombinant collagen (Yu et al., 2014). A key 

enzyme, prolyl 4-hydroxylase, involved in the folding of collagen into a triple helix 

has no activity in bacteria and yeast and is only found at low levels in insect cells 

leading to collagen produced in these hosts as non-functional although this may be 

amended by the introduction of prolyl 4-hydroxylase into the recombinant system 

(Dong and Lv, 2016). Due to setbacks such as the lack of cofactor and enzymes 

needed for stabilisation, high cost and low yield, animal sourced collagen continues 

to remain the standard in research and clinical tests (Browne et al., 2013) 

 

1.6.3.2 Evolutionary conservation 

 

Collagens have been found in a variety of species and have been linked to metazoan 

evolution (Hynes, 2012). The ancestral origin of collagen has been investigated 

through phylogenetic and genomic analysis of the protein as well as studying intro-

exon organisation (Rodrigues-Pascual and Slatter, 2016). Intron-exon organisation 

analysis had led to specific hypotheses regarding the evolutionary lineage of 

collagen. The exons encoding for the triple helix in type I and III collagens are 54 

base pairs (bp) in length whilst multiples of 54 or 54 minus 9 bp encode other types. 

These observations have led to the suggestion that the original ancestral fibrillar 

collagen included an exon of 54 bp with a glycine codon and ending with a Y codon 

and encoding six Gly-X-Y repeats. Differences in gene length and triplet repeats are 
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believed to have arisen from multiple duplications of the primordial unit (Exposito et 

al., 2010). 

 

1.6.3.3 Sources of marine collagen 

 

Alternative sources of collagen have been investigated in a bid to circumvent the 

issues raised from traditional mammalian sourced collagen (Silva et al., 2014). 

Particular interest in marine collagens has arisen, as fish skin and bones are abundant 

in collagen and a by-product of the fish industry, usually seen as waste (Subhan et 

al., 2015). The qualities of waste marine collagen, specific to regenerative medicine, 

depend on a number of factors, including animal age, diet, and the habitat it resides 

within before capture (Silva et al., 2014).  

 

The denaturation temperature of collagen is highly dependent on the composition of 

amino acids, notably the proline and hydroxyproline content, with cold-water fish 

exhibiting lower denaturation temperatures than their mammalian counterparts 

(Subhan et al., 2015). The thermostability of marine collagen has been shown to be 

improved with the use of chemical compounds such as 1-ethyl-3-(3-

dimethylaminopropyl)-carbodiimide (EDC) and glutaraldehyde making it more 

suitable for implantation in clinical applications (Yamada et al., 2014). 

 

A large amount of fish, approximately 75%, is discarded during processing for the 

food industry (Silva et al., 2014). A considerable amount of waste from fisheries is 

discarded back into the sea and so an alternative method of dealing with waste 

products would be the use of products in collagen and gelatin extraction (Sotelo et 

al., 2015). Extraction of collagen from marine species is achieved by dilute acid due 

to fewer crosslinks being present when compared to mammalian sources (Yamaguchi 

et al., 1976). Despite this, fish collagen has been shown to have structurally similar 

α1 and α2 chains when compared to collagen type I obtained from calf (Yamada et 

al., 2014). Elastic salmon collagen has previously been prepared for vascular grafts 

producing little inflammatory reaction upon subcutaneous implantation in rats (Nagai 

et al., 2008) whilst Tilapia fish collagen sponges implanted into paravertebral 
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muscles in rabbits gave a similar inflammatory response to porcine collagen implants 

(Sugiura et al., 2009).  

 

Sea urchins have been examined as a source of collagen from the peristomial 

membrane that surrounds their mouth (Benedetto et al., 2014). Characterisation of 

the collagen showed it to be similar to mammalian type I in terms of the chain 

composition and D periodic banding pattern (Ribeiro et al., 2011). Unlike its 

mammalian counterpart, collagen from sea urchins is extracted in an insoluble  

fibrillar form, which is believed to be advantageous in mimicking the natural ECM 

without further modifications (Benedetto et al., 2014) 

 

1.6.3.3.1 Jellyfish collagen 

 

Jellyfish are free moving plankton with movement that coincides with the ocean 

current (Rastogi et al., 2017). These creatures are considered a model source for 

collagen isolation due to their gelatinous nature and the possession of a collagen rich 

mesogloea, shown in Figure 1.8. Collagen obtained from various species have been 

tested for their potential use in regenerative medicine, with promising results (Addad 

et al., 2011). The structure of jellyfish collagen has previously been reported to 

contain a high content of glutamine or glutamic acid and alanine whilst proline 

content was found to be lower when compared to collagen obtained from calfskin 

(Subhan et al., 2015). Extracts of jellyfish collagen obtained from Rhizostoma pulmo 

subjected to gel electrophoresis showed bands corresponding to alpha chains at a 

similar position to that of rat tail collagen (Addad et al., 2011). Isolated collagen 

from jellyfish is reported to resemble vertebrate collagen type II and support 

differentiation of cells, maintain cellular phenotype without dedifferentiation and 

cause little cytotoxicity when cells are cultured upon it (Hoyer et al., 2014).  
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Figure 1.8: Schematic diagram showing anatomy of a jellyfish. Jellyfish collagen 

is often isolated from the collagen rich mesogloea or oral arms (Cronodon, 2016) 

 
Collagen isolated from jellyfish can be manipulated into constructs, typically 

sponges, for research into tissue engineering applications. Hoyer and colleagues 

produced sponges from Rhopilema esculentum, crosslinked with 1% EDC (Hoyer 

et al., 2014) whilst other studies have used Rhizostoma pulmo collagen 

crosslinked with different ratios of EDC/NHS (Addad et al., 2011). Jellyfish 

collagen (R. esculentum) has also been used in combination with salmon 

collagen to produce a biphasic scaffold with properties better suited for 

osteochondral implants (Bernhardt et al., 2018). 

 

Jellyfish derived collagen tested in vitro for biocompatibility has been shown to elicit 

no toxic effect towards primary human fibroblasts (Song et al., 2006). When 

compared directly to bovine collagen sources, increased cellular viability was 

observed for a wide variety of cells including fibroblastic, epithelial and osteoblastic 

cells (Subhan et al., 2015). Cytotoxicity tests on immune cell populations, antibody 

secretion and pro-inflammatory cytokines displayed that jellyfish collagen from 

Stomolophus nomurai meleagris gave a comparable response to the bovine 

counterpart (Song et al., 2006). Collagen isolated from Rhopilema esculentum has 

been evaluated for applications in cartilage regeneration producing porous scaffold 

structures that encourage chondrogenic differentiation of human mesenchymal stem 

cells with no cytotoxic effects (Hoyer et al., 2014). Another study using R. esulentum 
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collagen for nasal cartilage repair also reported that jellyfish collagen scaffolds 

showed no cytotoxic effect on rat and human nasal chondrocytes and produce an 

ECM that mimics that of native septal cartilage (Bermueller et al., 2013). The use of 

collagen obtained from R. pulmo has been tested for different applications such as for 

aptamer sensing applications for thrombin related neurodisease (Derkus et al., 2016). 

 

The extraction of marine collagen can be achieved in a similar fashion to mammalian 

collagen. Chemical treatment prior to the extraction allows crosslinks between 

collagen to be broken whilst basic treatment removes any non-collagenous materials 

without modifying the structure of collagen chains (Ehrlich et al., 2010). Acetic acid 

is typically used for the extraction of collagen from marine species although citric 

and lactic acid has also achieved isolation of collagen from marine tissues (Schmidt 

et al., 2015). 

 

1.7 Research aims 

 

Mammalian collagen is isolated from tissues and used in regenerative medicine and 

tissue engineering scaffolds. This collagen source has the required mechanical and 

biological properties required for specific tissue growth however ethical and 

immunological issues have lead to research for alternative sources. Research 

regarding marine collagen has shown that material isolated from a variety of species, 

particularly jellyfish, circumvents these problems. 

 

The assessment of alternative collagen sources must be undertaken to assess the 

maintenance of structural componsition through isolation procedures. Jellyfish 

collagen was examined for any sequence similarity, against mammalian collagen, for 

functional properties and as an indication of immunogenic potential. This structural 

characterization further informs the ability of the material to be moulded into 

structures and validated for biocompatibility and immunogenicity. 

 

Follow up data from cartilage repair surgery has shown that matrix assisted repair is 

superior to microfracture, a cell only technique. Matrix free (pellet) cultures has been 

standard in vitro technique used in research to investigate chondrogenesis. Cells 
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seeded in jellyfish collagen scaffolds and pellet cultures were differentiated and 

compared to analyse enhaced chondrogenic potential. 

 

These objectives were investigated using the following techniques; 

 Fourier transform infrared spectroscopy 

 Peptide sequencing and multi sequence alignment 

 Fluorescence activated cell sorting 

 Biochemical analysis of matrix formation 

 Histological analysis of matrix formation 

 Quantitative polymerase chain reaction 

 

1.8 Hypothesis 

 

Collagen can be isolated from R. pulmo jellyfish and maintains the structural 

composition to allow fabrication of robust scaffolds. In depth, in vitro, examination 

of physical and biological properties of scaffolds and chondrogenic potential will be 

assessed for suitability of jellyfish collagen as a biomaterial for regenerative 

medicine applications.  
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Materials and Methods  
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In line with the specific aims and objectives designed to test the stated hypothesis, 

this thesis is split into three results chapters. Identifying novel collagen sources for 

regenerative medicine requires exhaustive pre clinical development, encapsulating  

material science, biocompatibility and proof of concept research and development 

centred on a specific application (O'Brien, 2011), as outlined in Figure 2.1.  

 

 
 
Figure 2.1: Approach to jellyfish collagen extraction and characterisation 

 

Each of these components has identified methodologies, which provide a standard of 

data required as a body of evidence to support the utility of each collagen source 

(Abraham et al., 2008). In this section the methods used to derive collagen from 

jellyfish (harvest), characterise that material for purity, structural integrity and 

malleability and also assess in vitro biocompatibility are outlined. The utility of pure 

jellyfish derived collagen is then assessed using an enhanced chondrogenesis model, 

with all biological assays outlined in detail.  
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2.1 Material characterisation (collagen) 

 

Jellyfish harvest, collagen isolation and characterisation  

 

2.1.1 Jellyfish harvest  

 

Rhizostoma pulmo jellyfish were caught in Camarthen Bay, Wales during May-

October using a stern trawling vessel with a 25mm net. Once caught, jellyfish were 

separated into bells and tentacles and stored on ice in insulated containers before 

being taken back to the facility in Cardiff and stored at -20°C. 

 

2.1.2 Optimised collagen isolation  

 

Established collagen isolation methods utilised in mammalian and marine collagen 

processes were utilised and optimised during this project to produce high yield 

jellyfish collagen (JCol). Based on acid solubilisation, a simple flow diagram of this 

process is outlined in Figure 2.2. Specific acid conditions such as molarity and 

incubation times/temperatures are outlined in detail in chapter 3.  
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Figure 2.2: Collagen extraction condition testing. Sodium acetate was used to 

remove non-collagenous materials before testing different acid solubilisation 

methods. The addition of pepsin was tested to increase yield and salting out stage 

was also tested. All samples were lyophilised following extraction for further 

analysis.  

 

At each stage, collagen material was characterised for electrophoretic banding, 

characteristic amide peak banding (Fourier transform Infra red spectroscopy) and 

yield (dry weight to starting weight ratio) in line with basic characterisaiton 

requirements (Abraham et al., 2008). Outlined below are the methodologies used in 

each assay. The optimised isolation process was then selected based on a 

combination of these factors allied to speed and scalability. This protocol was then 

used for each batch isolation prior to downstream analysis for peptide sequencing of 

the α1 band and analysis of functional peptide composition.  
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2.1.2.1 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) 

 

Mini-PROTEAN®TGX® precast 4-20% gels (cat: 4561093, Bio-Rad) were used for 

sodium dodecyl polyacrylamide gel electrophoresis to separate proteins according to 

electrophoretic mobility. Protein samples were diluted 1 in 2 with 2x Laemmli buffer 

(cat: 1610737, Bio-Rad) and incubated at 95°C for 10 minutes to ensure protein 

samples were denatured, soluble and possessed a negative charge for SDS-PAGE. 

30μg of protein were loaded into each well, including a protein molecular weight 

marker (Dual Colour Protein Standards, cat: 1610374, Bio-Rad). A dual colour 

marker was used for ease in downstream analysis allowing for gel orientation and 

excision of chosen bands. The current was set to 120V until samples reached the 

bottom of the gel. After proteins were run by SDS-PAGE they were stained using 

Coomassie Blue. 

  

2.1.2.2 Coomassie Blue staining 

 

Following electrophoresis gels were stained with Coomassie Blue (94ml methanol, 

94 ml water, 38ml acetic acid and 1.25g Coomassie R250 (Sigma Aldrich, USA) for 

30 minutes. Gels were then destained using destaining buffer (100ml methanol, 

825ml water, 75ml acetic acid). Buffer was replaced frequently until background 

staining was no longer present and stained bands could be seen. 

 

2.1.3 Fourier transform infrared spectroscopy (FTIR) 

 

Collagen samples were lyophilized before the experiment. Lyophilsation was 

achieved using a Scanvac Coolsafe 55-9 freeze drier (Labogene, Denmark). A 

standard protocol was followed where samples were frozen at -20°C and placed in a 

vacuum chamber at -180°C until all liquid has sublimated. An equal quantity of 

collagen was added to the ATR-FTIR ZnSe/ diamond crystal stage. ATR FTIR 

spectra were performed using the ATR FITR Spectrum Two (Perkin Elmer) 

equipped with a deuterated triglycine sulphate (DTGS) detector. The system was 

illuminated by a Globar MIR source. ATR-FTIR spectra were acquired in absorption 

mode, using 64 co-added scans and a 4 cm−1 spectral resolution. The frequency range 
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used during each replicate experiments  were varying from 4000 cm−1 to 400 cm−1. 

Background spectra were achieved using the same parameters as the sample spectra 

in order to subtract the CO2 bands hence ensuring optimal spectra acquisitions and 

processing. 

 

Research grade rat tail collagen (cat: 08-115, Merck, UK) was used as a standard to 

determine amide peak positions in a mammalian collagen source, shown in figure 

2.3. 

 

Each spectrum was visualised and analysed using Spectrum 10 software (Perkin 

Elmer) and spectra data points were then extracted and plotted using excel software 

for convenience purposes. 

 

2.1.4 Protein sequencing 

 

Specific bands of interest were excised from the gel using a disposable sterile scalpel 

and placed in an eppendorf. Samples were then sent to Proteome Factory, Germany 

for peptide identification. The process consisted of cleavage via trypsin digestion 

followed by separation and detection with liquid chromatography – mass 

spectroscopy (LCMS). Mass spectroscopy spectra were then subjected to a database 

Figure 2.3: Research grade rat-tail collagen type I FTIR spectrum. FTIR spectra 

of rat-tail collagen depicting amide I, amide II and amide III peaks at 1635cm-1, 

1528cm-1 and 1245cm-1, respectively. 
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search against NCBI or Swissprot and data collated into an excel spreadsheet for 

further analysis.  

 

2.1.4.1 Informatics  

 

Peptide sequences were individually input into basic local alignment search tool 

(BLAST) and searched against a non-redundant protein sequences database to 

identify proteins with sequence similarity. Following BLAST alignment, specific 

human collagen sequence alignment to jellyfish peptides was conducted using 

Clustal Omega, a multi sequence alignment tool. Peptides and human collagen 

FASTA sequences were inputted into the system to give numbered graphical 

alignment output for ease in identifying nucleotide position.  Functional peptide 

analysis was then conducted using AbDesigner where human FASTA sequence was 

input and graphical output was used to inform functionality of areas with high 

sequence similarity to jellyfish peptides from multi sequence alignment.  

 

2.2 Material characterisation (scaffold) 

 

Sponge scaffold moulding, fabrication, Scanning electron microscopy, pore size 

analysis, thermal stability and resistance to collagenase digest  

 

2.2.1 Scaffold fabrication  

 

250μl of collagen was pipetted into a 96 well plate (Corning, UK) at a concentration 

of 4mg.ml-1 before being frozen at -20°C and lyophilised. The constructs were then 

cross-linked using 1-ethyl-(3-3-dimethylaminopropyl) carbodiimide hydrochloride 

(EDC) (cat no: E1769, Sigma Aldrich) in 80% ethanol at 1%, 0.5% and 0.25% w/v 

for 90 minutes. Scaffolds were rinsed in deionised water three times and left in 1% 

glycine overnight, at room temperature, to quench the reaction. The cross-linked 

constructs were then rinsed three times in deionised water before being lyophilised to 

dry and regain their cylindrical shape.  
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2.2.1.1 Scanning electron microscopy (SEM) 

 

Tissue and scaffold samples were washed three times at room temperature, in 50mM 

sodium cacodylate (Sigma, UK)-HCl buffer solution (pH 7.2-7.4) at 10 to 20 minute 

intervals to remove excess salt. The scaffolds were fixed overnight in 2% 

glutaraldehyde and then dehydrated in a series of graded ethanol (30% to 100%). 

Dehydrated samples were rinsed in 50% hexamethyldiasilazane solution (HMDS, 

Sigma, UK) in 100% ethanol for 10 minutes in a fume hood and then three times in 

100% HMDS and left overnight, at room temperature, to dry. The samples were then 

coated in a thin layer of chromium (~15nm) using sputter coating and were imaged 

using scanning electron microscopy (Hitachi 4800). A standard sputter coating cycle 

was followed according to manufacturers instruction (Quorum, UK).  

 

2.2.1.2 Pore size analysis 

 

Average scaffold pore size was calculated by measuring the widest point of pores 

within scaffold structures using proprietary SEM software (Hitachi). A total of 30 

pores were analysed per replicate and a total of 3 replicates were analysed from 

separate fabrication runs. 

 

2.2.2 Plastic compression 

 

Collagen scaffolds were fabricated as described in section 2.2.1 using a 24 well 

plate. Scaffolds were then hydrated with deionised water at room temperature, before 

a 24 well absorber (cat: 016-1R33, Lonza) was placed on top for 30 minutes to 

dehydrate and compress structures. Following compression scaffolds were placed in 

fresh deionised water and weighed. Wet weight prior to and following compression 

was used to analyse scaffold reswelling, quoted as milligrams.   

 

2.2.3 Differential scanning calorimetry 

 

Scaffolds were placed in platinum crucibles and heated in a Netzsch STA 449F1. 

Heating and cooling were performed in flowing argon gas with a temperature ramp 
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of 10C.min-1 from room temperature to 100°C. An empty platinum crucible was used 

for reference. This work was carried out alongside an experienced DSC technician 

and data provided for downstream analysis.  

 

2.2.4 Collagenase digest 

 

Scaffolds were placed in 5ml bijous tubes containing 3ml of standard culture  

(DMEM, Gibco, UK) media supplemented with 300U ml-1 collagenase and 

incubated at 37°C on a tube rotator (Miltenyi Biotec, UK). At specific time points (0, 

1, 2, 4, 6 and 12 hours), scaffolds were removed from media, blotted dry and 

weighed before returning to collagenase solution. All experients were carried out in 

triplicate.  
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2.3 JCol biocompatibility testing  

 

2D lawn culture, viability and proliferation, morphology (cell shape), 3D in vitro 

immunogenicity and cytokine release profiling.  

 

2.3.1 Tissue culture of human cell lines 

 

Human endometrial stromal cells (hESC), HEC50 and Ishikawa cells were cultured 

with DMEM: Nutrient Mixture F-12 supplemented with 10% foetal bovine serum 

(FBS), 1.5mM glutamine, 1mM sodium bicarbonate, 1mM sodium pyruvate, 1%  

penicillin streptomycin and maintained at 37°C and 5% CO2 until 80% confluency. 

At this point cells were washed with PBS before being subjected to trypsin treatment 

to allow for detachment from plastic. Trypsin was then neutralised before 

transferring to a 15ml falcon tube and centrifuging at 1200 rpm for 5 minutes to 

obtain a pellet. The resultant supernatant was removed and the cell pellet 

resuspended in culture media before subculturing into a new flask with fresh media.  

 

2.3.2 Sources of articular cartilage 

 

Animal models are seen as an effective tool for the development of therapeutic and 

surgical interventions intended for human application due to their mimicry of human 

tissue and disease progression. Smaller animals such as mice and rats are regularly 

used for research purposes however these animals often present with an open growth 

plate after skeletal maturity and are likely to confer enhanced reparative properties 

that are not comparable to human tissue (Chu et al., 2010). Larger animals have been 

shown to more closely mimic human cartilage than smaller animals (Reinholz et al., 

2004). Bovine metacarpophalanegeal (MCP) joints have been widely used as a 

model for human articular cartilage due to similarities in components and structure 

(Stockwell, 1978). The animal tissue used in this study was obtained from healthy 

animals entering the food chain. The tissue is classed as a food grade material that is 

discarded during food processing.  
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2.3.2.1 Bovine tissue isolation 

 

Fresh immature (approximately 7-14 days) bovine metacarpophalangeal (MCP) 

joints were obtained on the day of slaughter (Cig Calon Cymru Cyf, Llanelli, Wales). 

All joints were cleaned with soap and tap water before removing skin and inspecting 

for bruising and damaged joints were discarded. Healthy joints were sprayed with 

70% ethanol in order to minimise risk of contamination before being transferred to a 

sterile cabinet. Full thickness cartilage tissue was harvested from the medial and 

lateral condyles, as well as condylar ridge, using a 6mm biopsy punch. Harvested 

cartilage was placed in low glucose Dulbecco’s Modifies Eagle’s Medium (DMEM) 

(cat: 21885-108, ThermoFisher Scientific) before cell isolation was undertaken.  

 

2.3.2.2 Enzymatic digestion and cell isolation 

 

Whole tissue samples were subjected to sequential digestion using pronase and 

collagenase, respectively, to isolate cellular components of bovine MCP tissue. 

Tissue samples were placed in pronase diluted to 70 U ml-1 in DMEM for 2 hours at 

37°C and 5% CO2 on a tube rotator (Miltenyi Biotec, UK). Pronase solution was 

removed and tissue re-suspended in DMEM supplemented with 300 U ml-1 bacterial 

collagenase (cat: C9263, Sigma Aldrich) for 16 hours at 37°C and 5% CO2. 

Following sufficient tissue digestion, assessed by eye, the digest was passed through 

a 40μm cell strainer (cat: 15360801, Fisher Scientific) to separate debris and cells 

were collected into a 50ml falcon tube. Cells were counted using an automated cell 

counter (Bio-Rad, UK) and subjected to differential adhesion assay to select for 

chondroprogenitor (CP) cells.  

 

2.3.2.3 Differential fibronectin adhesion assay 

 

Stem cells can be classified by their ability to adhere to plastic surfaces (Dominici et 

al., 2006). CPs have previously been shown to be selected for via differential 

fibronectin adhesion assay (Dowthwaite et al., 2004). Six well plates (Grenier 

CELLSTAR®, cat: M8562, Sigma Aldrich) were coated with 10ug.ml-1 of 

fibronectin (cat: FN, Sigma, UK) in 0.1M phosphate buffered saline (PBS) at pH 7.4 

containing 1mM MgCl2 and 1mM CaCl2 at 4°C for 24 hours. Following incubation, 
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fibronectin was removed and wells washed with serum free DMEM. Full depth 

populations of cells were seeded at 1000 cells ml-1 and incubated for 30 minutes at 

37°C and 5% CO2. Media and non-adherent cells were then removed and replaced 

with DMEM supplemented with 1% penicillin and streptomycin, 0.5% ml-1 L-

glucose, 10mM HEPES, 1 mM sodium pyruvate, 2mM L-glutamine and 10% foetal 

bovine serum (FBS). Plates containing adherent cells were then incubated for 6 days 

prior to colony isolation. 

 

2.3.2.4 Clonal population isolation 

 

Following 6 days of culture, colonies comprising of 32 cells or more were isolated 

using sterile cloning rings (Sigma, UK) to discount transit-amplifying cells. Cloning 

rings were sealed to the plate by the application of Vaseline to the edge of the ring 

before being positioned upon suitable colonies. Once secured, 200μl of 0.05% 

trypsin (Gibco, UK) was added to detach cells from the surface of the plate. After 3 

minutes incubation, cell suspension was removed and transferred to a 6 well plate 

containing 3ml of DMEM containing FBS to inactivate trypsin activity.  

 

2.3.3 Cell culture medium  

 

DMEM was supplemented with 1% penicillin and streptomycin, 4.5g L-1 L-glucose, 

10mM HEPES, 1mM sodium pyruvate, 2mM l-glutamine and 10% foetal bovine 

serum (DMEM+) was used to culture CP cells.  

 

2.3.3.1 Monolayer expansion 

 

Cells were expanded in DMEM+ in an incubator at 37°C and 5% CO2, with media 

change taking place every 3 days. At 80% confluence, culture media was removed 

and cell monolayer washed with sterile PBS (Gibco, UK). Following PBS wash, 

cells were incubated in 0.05% trypsin-EDTA (Gibco, UK) for 5 minutes at 37°C and 

5% CO2. After gentle agitation, detached cells were transferred to a 15ml tube and 

centrifuged at 1200rpm for 5 minutes at room temperature. The supernatant was 
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discarded and cell pellet re-suspended by aspiration of 5ml of DMEM+ before cells 

were reseeded at a suitable density into a sterile tissue culture flask.  

 

2.3.4 Cellular differentiation 

 

Differentiation studies were undertaken to determine the phenotypic plasticity of 

cells.  

 

2.3.4.1 Chondrogenic differentiation 

 

Specific chondrogenic medium was used to induce chondrogenic differentiation of 

chondroprogenitors in 2D and 3D culture. Chondrogenic medium consisted of high 

glucose DMEM (Gibco, UK), supplemented with 10% heat inactivated FBS, 1% 

insulin transferring selenium (ITS) and 1% penicillin and streptomycin and 10ng ml -1 

TGFβ1. 

 

Sulphated GAGs were detected via alcian blue (Sigma, USA) staining (Williams et 

al., 2010). Monolayer cells were fixed with 10% NBFS for 20 minutes and washed in 

PBS 3 times. Cells were stained with 1% staining solution comprised of 1g alcian 

blue in 100ml of 0.1M hydrochloric acid (pH 2.5) for 30 minutes. Excess stain was 

removed and well washed with 0.1M HCl before immersing in PBS and imaging 

with a light microscope 

 

2.3.4.2 Osteogenic differentiation 

 

Osteogenesis of cells was induced with -MEM (Gibco, UK) culture media 

containing 2mM glutamine and supplemented with 10% heat inactivated FBS, 1% 

penicillin and streptomycin, 0.1μM dexamethasone, 0.2mM ascorbic acid-2-

phosphate and 10mM -glycerophosphate 

 

Alizarin red staining was used to show tissue calcification of monolayer cultures 

subjected to osteogenesis (Williams et al., 2010). Monolayer cultures were fixed in 

10% NBFS for 20 minutes and washed 3 times with PBS. After rinsing the cells were 
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stained with 2% Alizarin red (pH 4.22) solution for 30 seconds and excess stain 

removed. Samples were blotted dry and immersed in PBS before being viewed under 

a light microscope.  

 

2.3.4.3 Adipogenic differentiation 

 

Specific adipogenic media was used to induce adipogenesis and consisted of α-MEM 

media containing 2mM glutamine and supplemented with 10% heat inactivated FBS, 

1% penicillin and streptomycin, 1μM dexamethasone, 1.72μM of bovine insulin, 

0.2mM indomethacin and 0.5mM of isobutylmethlxanthine (IBMX). 

 

Oil red-O staining was used to indicate lipid deposits in monolayer culture (Williams 

et al., 2010). Monolayer cells subjected to adipogenesis were fixed in 10% NBFS for 

20 minutes and washed with PBS. Oil red-O was prepared from 0.5% Oil red-O in 

100% isopropanol by diluting 30ml of stock solution in 20ml distilled water. Cells 

were washed with 60% isoproponal prior to staining with Oil red-O for 15 minutes at 

room temperature. Excess stain was removed and wells immersed in PBS and 

viewed under a light microscope.  

 

2.3.5 Coating plates 

 

24 well plates (Corning, UK) were coated with 30μg/ml of collagen solution in 0.1M 

acetic acid and allowed to dry for overnight in sterile conditions before unoccupied 

areas were blocked with 1% BSA. Cells were seeded onto coated plates at a density 

of 5000 cells per well and cultured for a predetermined period of time.  

 

2.3.6 InCell image acquisition 

 

InCell Analyser 2000 (GE Healthcare) was used to analyse viable and dead cells 

Following culture period media was removed from monolayer cultures and washed 

gently with PBS. Phenol free media was supplemented with using 5μM 

carboxyfluorescein succinimidyl ester (CFSE) and 1μM EthD-2 to visualise live and 

dead cells respectively. 150μl of media containing fluorescent dye was added to each 
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well and incubated at 37°C for 20 minutes in the dark before removal of media and 

PBS wash. 4μM Hoescht in phenol free media was added to the wells and incubated 

at room temperature for 10 minutes before final wash and immersing wells in phenol 

free media.  

  

Image data was obtained using three emission spectra channels; DAPI nuclear 

staining (Channel 1 excitation/emission λ 358/461nm for 0.2 seconds), Texas Red 

protein staining (Channel 2 excitation/emission λ 589/615nm for 2.0 seconds) and 

FITC (Channel 3 excitation/emission λ 492/517nm for 3.0 seconds). Time exposure 

for each channel was consistent between experiments. Low magnification images 

were taken with the 10x with 20 fields of view taken for each well. The InCell 

analyser allows for random distribution of fields across the surface of the well, 

allowing for regions such as the edge of the well boundary to be excluded. Once 

analysis was completed, a data (XDCE) file is produced containing all accumulated 

imaged from the channels and fields of views chosen.  

2.3.6.1 InCell analysis 

 

XDCE data files were analysed using InCell Developer (GE Healthcare) to quantify 

number CFSE and EthD-2 stained cells allowing quantification of live and dead 

cells. Analysis software can segment objects by the intensity of the DAPI channel. 

The intensity of fluorescence produced by DAPI allows segmentation of the nucleus 

against background fluorescence. Fluorescence signal was determined pixel by pixel 

in absolute grey areas across each cell and individual cells were counted based upon 

the channel fluorescence was identified from. Data was accumulated and compressed 

before converting to an excel spreadsheet to show cell count.  

 

2.3.7 Cell morphology 

 

Cells were seeded at a density of 1x104 per well and cultured for a maximum of 5 

days. Images of cells were taken every 24 hours using a light microscope (Zeiss, 

UK). Morphological analysis of cells was undertaken using ImageJ software to 

obtain the shape index (SI). SI was calculated using the formula:  
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SI = 4π x Area/Perimeter2 

 

Cells that are deemed to have a circular shape have an SI of 1 whilst those that are 

more fibroblastic in morphology will have a value of 0 (Tiryaki et al., 2015).  

 

2.3.8 Whole blood patient recruitment 

 

Human peripheral blood was collected from healthy adult volunteers with informed 

written consent. Blood was collected into either 3.2% sodium citrate or lithium 

heparin anticoagulant 9ml Vacuette® tubes (Grenier Bio-One, Stonehouse, UK). 

Venesection was performed by trained phlebotomists in the Joint Clinical Research 

Facility, Institute of Life Science. This study was approved by the Wales Research 

Ethics Committee 6 (13/WA/0190).  

 

2.3.9 Fluorescent activated cell sorting 

 

Cells stained as described below were analysed within 2 hours using a 10 colour, 3 

lasers, Navios Flow Cytometer (Beckman Coulter, High Wycombe, UK). The 

instrument was turned on at least 1 hour prior to running to allow lasers to warm up 

and for quality control checks. To check instrument performance, FlowCheck and 

FlowSet beads (Beckman Coulter) were run. All samples were recorded without 

compensation, which was applied later in data analysis. Voltages were set on 

unstained samples.  

 

2.3.9.1 Leukocyte activation analysis 

 

Whole blood, taken from 3 individual, healthy donors, was stained with the 

following: CD15 and CD14; 100ng/μl CD3-APC-AF750 (clone UCHTI, IgG1, 

Backman Coulter); 25ng/μl CD62L-PE (clone DREG-56, IgG, eBioscience); 

100ng/μl CD11b-APC (clone CBRMI/5, IgG, eBioscience); 220ng/μl fMLP 

receptor-FITC (clone REA169, IgG, Miltenyi Biotec). Samples were vortexed, 

incubated and lysed using EasyLyse as it is formaldehyde free and will not affect 

dead cell staining. 1μl DRAQ7, final concentration 20uM (BioStatus, UK) was 
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added before running the samples. Whole blood stimulated with 10ng/ml LPS for 4 

hours at 37°C and 5% CO2 was used as a positive control and unstained samples 

were used for gating purposes. Blood exposed to 1% Triton-X 100 was used to 

determine DRAQ7 positive cell gates. AbC beads (Life Technologies, UK) were 

stained singly with each antibody and used for compensation. Within 2 hours of 

staining, samples were acquired on the Navios flow cytometer (three lasers (violet: 

405nm, blue: 488nm, red: 638nm) using linear forward scatter (FSC) versus side 

scatter (SSC) scale, flow rate set to high, and stop gate on 10,000 CD15+ events 

which would allow for the acquisition of approximately 10,000 total lymphocytes 

and 1,000 monocytes. Compensation and data analysis were performed using Kaluza 

1.3 (Beckman Coulter).  

 

2.3.9.2 Platelet activation analysis 

 
For platelet activation analysis, whole blood, from three individual, healthy donors 

was stained with 200μg/μl CD42b-FITC (clone HIPO, IgG1, eBioscience). Samples 

were vortexed, incubated and lysed using BD FACS lysing solution. Whole blood 

stimulated with 4 mM phorbol 12-myristate 13-acetate (PMA) for 20 minutes was 

used as a positive control; tubes were run on a logarithmic scale with 10,000 events 

as the stopping gate.  

 

2.3.10 Whole blood culture 

 
Whole blood culture (100ul blood/300ul RPMI, 2μM GlutaMax, 0.1mM 2-

mervaptoethanol) were left unstimulated or stimlulated with 10ng/ml E.coli OIII:B4 

lipopolysaccharide (Ultrapure LPS, Invivogen, France). After 24 hours at 37°C and 

5% CO2 cell free supernatants were harvested by centrifugation at 4°C, 515xg for 7 

minutes. Supernatants were stored at -20°C until analysis.  

 

2.3.11 ELISA 

 
Blood serum collected in section 2.3.8 was thawed for cytokine quantification using 

enzyme-linked immunosorbant assay (ELISA). IL-6 (cat: DY206, R&D Systems, 
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USA) and IL-10 (cat: DY217B, R&D Systems, USA) were detected using 

commercially available kits with protocol and antibodies provided.  

 

Capture antibodies were added to a 96 well ELISA plate (cat: 650001, Grenier Bio-

One, UK) following dilution to working concentration in PBS and sealed with a 

polyester film (cat: 391-1250, VWR, UK). The plate was incubated overnight at 4C 

on a rocker to allow adequate binding of antibodies to the plate. Each plate was 

washed with wash buffer (PBS with 0.05% Tween-20) 3 times. Any remaining wash 

buffer was removed by inversion and blotting against paper towels. Following this, 

the ELISA plate was blocked using blocking buffer (1% BSA in PBS) for 1 hour at 

room temperature to block unbound areas and prevent false positives. The plate was 

then washed as before and assay could be preformed.  

 

Known concentrations of IL-6 and IL-10 were used to generate a standard curve. The 

standards were provided with ELISA kits and contained 180ng/ml human IL-6 

standard and 150ng/ml of human IL-10 standard. IL-6 and IL-10 standards were 

produced by serial dilution using blocking buffer for each assay, to concentrations 

600, 300, 150, 75, 37.5, 18.75 and 9.38 pg/ml and 2000, 1000, 500, 250, 125, 62.5, 

31.25 pg/ml, respectively. Blocking buffer was prepared without standard to account 

for background and was subtracted from readings. Standards and samples were 

added to 96 well plates and incubated for 2 hour at room temperature to allow for IL-

6 and IL-10 to bind to capture antibodies. After incubation, excess samples were 

removed and plates washed with wash buffer, three times to remove unbound 

proteins.  

 

A biotinylated secondary detection antibody, which contained goat anti-human IL-6 

and goat anti-human IL-10. The plate was incubated with a secondary antibody for 2 

hours at room temperature to allow binding to target protein. The plate was washed 

with wash buffer, three times before streptavidin-horseradish peroxidase (HRP) was 

added to the plate and incubated for 20 minutes at room temperature in the dark. 

Plates were the washed as previously described.  

 

A substrate solution was added to the plate containing hydrogen peroxide and 

tetramethylbenzidine, which reacts with HRP and results in the development of a 
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blue colour that is directly proportional to target protein concentrations. Sulphuric 

acid (1M) was used to stop the reaction resulting in a colour change from blue to 

yellow. Optical density of each well was determined using the FLUOstar plate reader 

at an absorbance of 450nm.  

 

2.4 Biomaterial application 

 

3D chondrogenic culture, histology, biochemical assays, gene expression. 

2.4.1 Pellet formation 

 

Confluent cells were removed from the surface of the flask via trypsinisation 

(section 2.3.3.1). Cells were counted using an automated cell counter and 5x105 cells 

were added to a sterile eppendorf tube containing 500μl of expansion culture 

medium. The cell suspension was centrifuged at 2000rpm for 10 minutes at room 

temperature (5425, Eppendorf). The pellet was incubated for 24 hours at 37°C and 

5% CO2. Following 24 hours cell pellets were gently aspirated from the surface of 

the Eppendorf surface using a pipette in order to facilitate pellet rounding. 

Chondrogenic media was changed every 2 days until the end of the culture period.  

 

2.4.2 Scaffold seeding 

 

Scaffolds were equilibrated in culture media for 10 minutes prior to seeding and 

placed in 24 well plates coated with 2% agarose to stop cell attachment to the bottom 

of the plate. Confluent cells were removed from the surface of the flask and counted 

using an automated cell counter and 5x105 cells were resuspended in 80μl of media 

before seeding on the surface of the scaffold. Plates containing scaffolds were placed 

in an incubator at 37°C and 5% CO2 for 20 minutes to allow cell attachment to 

scaffolds before filling each well with 200μl of media. After 24 hours, culture media 

was changed to chondrogenic media and refreshed every 2 days until the end of the 

culture period. 
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2.4.3 Paraffin wax embedding  

 

Tissue and scaffold samples were washed in PBS before being fixed in neutral 

buffered formalin with saline (NBFS) at 4°C for 15 minutes. Samples were then 

washed and stored in PBS before being embedded at Singleton Hospital (ABMU, 

NHS). Wax embedding consisted of dehydrating samples through a series of graded 

ethanol (70%, 95% and twice at 100%) before being cleared in xylene for 20 minutes 

and infiltrated with paraffin wax for 1 hour at 56°C.  

 

2.4.3.1 Paraffin wax sectioning 

 

Wax embedded samples were sectioned at a thickness of 7μm using a microtome. 

Wax ribbons containing sections of sample were flattened by placing into a water 

bath at 45°C. Sections were removed by transferring onto poly-l-lysine histology 

slides and dried for 24 hours at 45°C. Prior to any staining, slides were 

deparaffinised by washing in xylene twice for two minutes. They were then 

rehydrated in a series of graded ethanol (100% twice, 95% and 70%) for two minutes 

and then immersed in tap water for two minutes.  

 

2.4.3.2 Haematoxylin and eosin 

 

Nuclear staining and tissue architecture were detected by haematoxylin and eosin 

(TSC biosciences, UK). Haematoxylin was diluted in water (1:2 ratio) and 1% eosin 

was prepared by dilution in water. Rehydrated slides were stained in haematoxylin 

for 1 minute and washed in water to remove excess stain. The stain was 

differentiated in 1% alcohol and washed in water before staining in eosin for 2 

minutes.  Slides were washed in water to remove excess stain and dehydrated in 

ethanol before clearing in xylene and mounted with DPX.  

 

2.4.3.3 Toluidine blue 

 

Sulphated GAG deposition was indicated via Toluidine blue staining (Williams et 

al., 2010). Rehydrated pellet sections were stained with 0.04% toluidine blue for 15 
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minutes and washed until water was clear. Stained sections were dried over night at 

45°C and mounted using DPX mounting medium before viewing under a light 

microscope.  

 

2.4.3.4 Picrosirius red 

 

Collagen fibrils were indicated histologically with picrosirius red staining. Sectioned 

sampled were hydrated through descending concentrations of ethanol before being 

stained with 0.1% (w/v) picrosirius red solution for 1 hour at room temperature 

before washing with water. Slides were then dehydrated in ethanol before being 

mounted in DPX mounting fluid and adding a coverslip before being examined under 

polarised light.  

 

2.4.3.5 Immunohistochemistry 

 

Paraffin wax embedded samples were dewaxed and rehydrated as described in 

section 2.4.3.1. Samples were treated in 3% hydrogen peroxide in methanol to 

reduce background staining and were then washed in PBST (PBS with 0.05% 

Tween-20) for 5 minutes. Following this, samples were treated for antigen retrieval 

and incubated at 65C in Tris-EDTA overnight before being washed in PBST and 

subjected to enzymatic treatment with 2U ml-1 hyaluronidase in PBST for 1 hour at 

37C. Samples were then washed in PBST for 5 minutes before blocking to prevent 

non-specific binding of antibodies with 2.5% normal horse block serum (RTU 

Vectastain Kit, Vector Laboratories, USA) for 30 minutes. Blocking serum was 

removed and primary antibodies diluted (dilutions stated below) in PBST was added 

to samples for 30 minutes at room temperature, with negative controls using PBST 

containing no primary antibodies. Following incubation with antibodies, samples 

were washed for 5 minutes in PBST and secondary antibodies were added for 10 

minutes at room temperature (RTU Biotinylated pan specific antibody Universal 

biotinylated Anti-Mouse/Rabbit/Goat IgG derived from horse) before washing for 5 

minutes in PBST. Streptavidin/peroxidase complex reagent (RTU Vectastain Kit, 

Vector Laboratories, USA) was applied to samples at room temperature for 5 

minutes before rinsing with PBST for a further 5 minutes and samples were 



Chapter 2                                                                                                Materials & Methods 
 

 65 

developed using NovaRED kit (Vector Laboratories, USA) for 5 minutes to allow for 

detection of streptavidin/peroxidase enzymatic activity.  

 

Samples were washed with deionised water and nuclei were counterstained with 

haematoxylin for 1 minute before dehydration in a series of graded alcohol. Sampled 

were then mounted with DPX and analysed via light microscope to examine the 

extracellular matrix.  

 

Project specific antibodies used; 

- Collagen type II (1:250, DHSB II-II6B3 raised in mouse) 

- Aggrecan (1:10, DHSB 12/21/1-C-6 raised in mouse) 

- Collagen I (1:2000, Sigma C2456, raised in mouse) 

 

2.4.4 Scaffold and pellet digestion 

 

Papain is a cysteine protease that is used for the digestion of samples for subsequent 

biochemical analysis (Estes and Guilak, 2011). Whole scaffold/pellet samples were 

digested in papain buffer (20mM NaAc pH 6.8, 1mM EDTA, 2mM DTT, 300μg ml-

1 papain) following completion of experimentation. Samples were incubated within 

an eppendorf containing papain buffer at 60°C in a water bath for 60 minutes or until 

no visible tissue remained. Digested samples were stored at -20°C until needed for 

biochemical analysis of DNA, GAG and hydroxyproline content. 

 

2.4.4.1 DNA quantification 

 

DNA quantification is assessed in order to normalise data obtained from GAG and 

hydroxyproline assays (Estes and Guilak, 2011). Quant-iT TM Picogreen dsDNA 

assay kit  (cat: P11496, ThermoFisher Scientific, UK) was used to quantify DNA 

content from scaffolds and pellets, in triplicate from three repeats, in accordance to 

the manufacturers protocol. Samples were quantified against a standard curve 

composed of a series of lambda DNA diluted in 1xTE buffer provided in the kit (0-

10ug/ml). Fluorescence was measured using a FLUOstar Omega plate reader at 
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520nm and cell number calculated with the assumption that every mammalian cell 

contains 7.7pg of DNA (Röder et al., 2015). 

 

2.4.4.2 DMMB assay 

 

A standard curve consisting of chondroitin sulphate (cat: C4348, Sigma-Aldrich, 

UK) diluted in water, ranging from 0-10μg ml-1 was produced. For each reaction, 

20μl of papain-digested sample was added to 200μl of DMMB reagent (16mg L -1 

dimethlmethylene blue, 3g polyvinyl alcohol, 3.04g glycine, 2.37g NaCl, 95ml 0.1M 

HCl) in a 96 well plate and shaken for 5 seconds. Glycosaminoglycan content  from 

scaffold and pellets was determined, in triplicate from three repeats, by 

spectrophotometric measurement of absorbance against the standard curve at 525nm 

using a plate reader (FLUOstar Omega, BMG) and normalised through division by 

the corresponding DNA content.  

 

2.4.4.3 Hydroxyproline assay 

 

Hydroxyproline assays were run to calculate collagen content samples. Papain 

digested samples were hydrolysed in 6M HCl for 24 hours at 110°C using a heating 

block and vacuumed dried overnight before reconstituting in deionized water. 

Following centrifugation to remove impurities, 30μl of each sample were added to a 

96 well plate and 70μl of diluent solution and 50μl oxidant were added to each 

sample before shaking for 5 minutes at room temperature. 125μl of colour reagents 

was added and samples shaken prior to 15 minutes incubation at 70°C. 

Hydroxyproline content was measured in terms of absorbance at 540nm using a plate 

reader and quantification determined against the standard curve of trans-4-hydroxy-

L-proline (0-100μg/ml).  

 

Composition of buffers is as follows 

- Stock buffer: 28.5g sodium acetate trihydrate, 18.75g tri sodium citrate 

dyhydrate, 2.75g citric acid, 200ml propan-2-ol 

- Diluent: 100ml propan-2-ol, 50ml H2O 

- Oxidant: 0.7g Chloramine T, 10ml H2O, 50ml stock buffer 
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- Colour reagent: 7.5g dimethylaminobenzaldehyde, 11.25ml perchloric acid 

(60%), 62.5ml propan-2-ol 

 

2.4.5 RNA extraction from native tissue 

 

Articular cartilage biopsy samples were placed in a shaking flask with a grinding ball 

and 250μl of trizol reagent. The flasks were then sealed and snap frozen in liquid 

nitrogen before homogenization of the sample via shaking at 2000rpm for 1 minute 

using a Mikro dismembrator-S (B. Braun Biotech International, Germany). The 

powdered material was collected and stored at -80°C until needed. RNA was 

extracted from the powdered material using RNeasy columns with a DNase1 on-

column digest as outlined in the Qiagen user manual. Isolated RNA was stored at -

80°C prior to quantification. 

 

2.4.6 RNA extraction from pellets and scaffolds 

 

RNA was extracted from samples on the day of experimental completion. Samples 

were placed in a 2ml eppendorf with 350ul RLT buffer (Qiagen, UK) and 

mechanically homogenized for 20 seconds using a TissueRuptor fitted with a sterile 

probe (Qiagen, UK). RNA was extracted using RNeasy columns with a DNase1 on-

column digest and stored at -80°C prior to quantification. 

 

2.4.6.1 RNA quantification 

 

Prior to quantification, RNA samples were thawed and mixed gently. RNA 

concentration was determined by spectrophotometric measurement of UV 

absorbance at 260nm and 280nm using a NanoDrop ND2000 instrument 

(ThermoFisher Scientific, UK) with molecular biology grade RNA free water 

(Ambion, UK) used as a reference. The shape and ratio of the absorbance curve was 

used to determine RNA quality and potential contamination. Purity was regarded as 

suitable if an A260/A280 value of approximately 2.0 was achieved.  
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2.4.6.2 cDNA conversion 

 

RNA was reverse transcribed to cDNA for the analysis of gene expression from 

samples. RNA samples were adjusted to a concentration of 100ng/μl with nuclease 

free water. 2μl of RNA at 100ng/μl was diluted with 38μl nuclease free water and 

used as a negative control for quantitative real-time PCR. A master mix was prepared 

using components from the high capacity cDNA reverse transcriptase kit (cat: 

3468814, Applied Biosystems) to reduce pipetting error. For each sample 2μl 10x 

RT buffer, 0.8μl 25x dNTP mix (100mM), 2μl 10x RT random primers, 1μl 

multiscribe™ reverse transcriptase, 1μl RNase inhibitor (cat: N8080119, Ambion) 

and 3.2μl nuclease free water was used. 10μl of master mix was added to 10μl of 

RNA sample for a 20μl total volume per reaction to obtain single stranded cDNA. 

The T100™ Thermal Cycler (cat: 186-1099, Bio-Rad) was programmed for the 

following steps 25°C for 10 minutes, 37°C for 120 minutes, 85°C for 5 minutes and 

then 4°C. Following completion of cDNA conversion, serial dilutions were made 

from cDNA stocks using nuclease free water for generation of a standard curve. 

cDNA at 1:10 was used as the working concentration for target gene expression 

analysis. cDNA was stored at -80°C until required. 

 

2.4.6.3 Quantitative polymerase chain reaction (qPCR) 

 

Quantitative polymerase chain reaction (qPCR) was undertaken using CFX96 Real 

Time PCR Detection system (Bio-Rad, UK). Primers were designed to amplify a 

single PCR product of approximately 75-150bp in length. An internal reference 

ribosomal protein S19 (RPS19) was used for normalisation as well as non-reverse 

transcribed RNA as a negative control. Each reaction was prepared to a total volume 

of 10μl; 2.5μl 4μM primer mix (forward and reverse), 2.5μl sample cDNA and 5μl 

SYBR Green. All PCR reactions were conducted in triplicate to reduce pipetting 

error. All PCR reactions were preformed in a clear unskirted 96 well plate (cat: 

MLL-9601, Bio-Rad) sealed with a microseal (cat: MSB-1001, Bio-Rad). Plates 

were heated for 30 seconds at 95°C then real time data was collected during 40 

cycles containing a 2 second step at 95°C and 5 seconds at the optimal annealing 

temperature for specific primers outlined in Table 2.1.  

 



Chapter 2                                                                                                Materials & Methods 
 

 69 

 

Target Primer Primer Sequence (5’-3’) Tm 
(C) 

Product 
size (bp) 

RPS18 Forward CACTGGAGGCCTACACGCCG 65.26 119 
Reverse AGGCAATTTTCCGCCGCCCA 65.84 

COL2A1 Forward CTGGATGCCATGAAGGTTTT 56.27 93 
Reverse GCTCCACCAGTTCTTCTTGG 58.47 

COL1A1 Forward TAGGCCCAACCAGTCACCTGCGTAC 68.22 64 
Reverse GTTTCCACACGTCTCGGTCA 60.25 

COL10A
1 

Forward CCCATGCTTGGGTAGGTCTG 60.11 131 
Reverse CCATACCTGGTCGTTCTCGG 59.90 

ACAN Forward GCTACCCTGACCCTTCAT 55.51 76 
Reverse AAGCTTTCTGGGATGTCCAC 57.79 

SOX9 Forward TCAGCAAGACTCTGGGCAAG 59.96 151 
Reverse CCGTTCTTCACCGACTTCCT 59.68 

RUNX2 Forward GCGCATTCCTCATCCCAGTA 59.89 198 
Reverse TGGATGGACGGAGGAGTCAT 60.03 

 
Table 2.1: Primers used for qPCR 

 

2.5 Statistical analysis 

 

Statistical analysis was performed using SPSS software version 22. All data sets 

were first analysed for normality using the Shapiro-Wilk test. Statistical significance 

of parametric data was determined with an independent T-Test. If data was found to 

be significantly different from normal distribution, non-parametric testing using 

Mann Whitney –U testing was applied. All statistical significance threshold values in 

this study are p<0.05 unless otherwise stated.  
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3.1 Introduction 

 
Collagen has proven itself to be an efficacious biomaterial accepted due to its 

biocompatibility, with a wide variety of clinical requirements and applications 

(Ramshaw et al., 2009). Type I collagen belongs to the fibrillar collagens and is 

potentially the best investigated collagen subfamily. It is found abundantly expressed 

throughout the human body and is a critical component of the interstitial membrane 

(Henriksen and Karsdal, 2016). The most predominant market source of collagen I is 

porcine skin and bovine tendons and hide (Silva et al., 2014). New sustainable 

collagen sources are continually being sought as an alternative to traditional 

mammalian protein for biomaterial use in regenerative medicine applications (Addad 

et al., 2011).   

 

There are drawbacks from using mammalian collagen sources, with primary 

concerns resting around zoonotic disease transmission, allergic reactions to the 

material and religious restrictions (Browne et al., 2013). Understanding the structure 

and functional conservation of collagen sources, compared to human/mammalian 

sources, is a crucial indicator of suitability for purpose. These processes are essential 

in identifying any indication of potential downstream biocompatibility issues, early 

in the research and development phase (Lynn et al., 2004). Marine sources are of 

increasing interest, with waste from the fishing industry as well as sponges and/or 

jellyfish being used as alternatives to mammalian sources (Silva et al., 2014). 

Interestingly, jellyfish derived collagen has proven to be an appropriate source, 

capable of isolation and biocompatible cell expansion (Addad et al., 2011). 

 

3.1.1 Sequence informed structure function analysis  

 
Collagen is a triple helical molecule, shown to have evolutionary stability amongst 

mammalian species (Lynn et al., 2004). A complex structure, collagen comprises of 

non-helical C and N telopeptides that aid with fibrillar formation as well as 

crosslinking that allows for the stabilisation of the triple helix formation (Artym and 

Matsumoto, 2010). It is these non-helical regions that contain a greater degree of 

structural variability with approximately half of the amino acids exhibiting 

interspecies variation of collagen molecules. (Lynn et al., 2004). 
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Native to Mediterranean, North Sea, Black Sea and Atlantic Ocean, numbers of the 

R. pulmo peak during the spring and summer (March to August) months with an 

increase in the water temperature (Muhammed and Sultana, 2008). Jellyfish possess 

a collagen content of approximately 60% of their body and are thought to have a 

high degree of conservation with various species showing similarities to vertebrate 

collagens type I, IV, V and a similar glycosylation patterns to type II (Hoyer et al., 

2014). Sequencing jellyfish collagen to confirm its homology with the human 

protein, as well as others commercially available, is the first step towards 

understanding biocompatibility.  

 

3.1.1.2 Collagen Extraction and Characterisation 

 
Collagen extraction is typically carried out through (a) chemical hydrolysis or (b) 

enzymatic hydrolysis, with the chemical process favoured within the food industry 

(Schmidt et al., 2015). Acid soluble extraction is usually the preferred process, as the 

traditional extraction procedure is laborious, taking between 7-10 days to complete 

(Pacak et al., 2011). A pre-wash stage is used to remove all non-collagenous 

substances, before collagen extraction via solubilisation in neutral saline solutions, 

acidic solutions or acidic solutions with the addition of enzymes such as pepsin and 

separation using filtration or centrifugation. The optimisation of particular steps in 

the extraction protocol, such as the use of inorganic or organic acid during 

solubilisation, can affect the final collagen yield and must be considered for every 

new collagen source (Schmidt et al., 2015).  

 

A suite of techniques is currently used to characterise extracted collagen; broadly 

categorised into structural, chemical and morphological analysis. Collagen purity, 

helical content as well as thermal properties are assessed through methods such as 

SDS PAGE and differential scanning calorimetry, respectively. The chemical 

features of collagen are analysed focusing on surface elemental analysis and 

hydrophobicity whilst morphological analysis includes the presentation of 

characteristic D banding, topographical analysis and fibre orientation, determined via 

SEM or AFM (Abraham et al., 2008). Other techniques, such as fourier transform 
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infrared spectroscopy (FTIR) have been used to analyse extracted collagen from 

different species. Collagen exhibits characteristic amide peaks, that can be used to 

confirm the presence of the triple helix (Silva et al., 2014).  

 

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) is 

a fingerprint technique that can be used for molecular identification by measuring the 

vibrational modes of molecular bonds to obtain a spectrum (Baker et al., 2014). The 

sensitivity of detection has been demonstrated in various experiments. An example 

of ATR-FTIR fingerprint detection has been exhibited in experiments by Bobroff et 

al. where the shift in peaks was observed for poly-L-lysine (PLL) with fatty-acyl- 

chains of differing length giving each molecule a distinct spectrum (Bobroff et al., 

2016). Collagen has previously been assessed via this technique for confirmation 

with particular attention paid to amide I, II and III peaks found in the region of 

approximately 1650cm-1 as a result of the stretching vibration from peptide carbonyl 

(-C=O) groups, 1530cm-1 resulting from a vibrational bending from amine (N-H) 

groups and 1240cm-1 attributed to amide bending, respectively (Vidal and Mello, 

2011). 

 

3.1.2 Scaffold fabrication 

 
Tissue engineering scaffolds are a representation of the physical structure and space, 

supporting cell growth and allowing tissue development (Carletti et al., 2011). 

Collagen based tissue devices are flexible in their fabrication with characteristics 

such as strength and durability tailored by variation in the crosslinking materials and 

methods (Davidenko et al., 2015). Although the triple helix structure of the molecule 

aids stability, depending on hydroxyproline content, the structure can be further 

stabilised for different applications ranging from a lesser crosslinked structure for 

wound healing and heart valves to highly crosslinked and stable scaffolds for 

osteochondral tissue repair (Ramshaw et al., 2009). Scaffold composition, 

architecture and mechanical properties all play important roles in guiding correct cell 

formation for repair of damaged tissues (Davidenko et al., 2015). Another vital 

component when designing scaffolds for tissue engineering is the biodegradability of 

the material. A scaffold must degrade in an adequate time frame to allow for the cells 
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to remodel the tissue. Collagen scaffold biodegradability can be verified in vitro by 

the use of collagenase, a family of enzymes that break peptide bonds within the 

protein (Bitar and Zakhem, 2014).  

 

Scaffolds designed for tissue engineering strike a balance between mechanical 

function and bio-factor delivery (Iwasa et al., 2009). A critical component of scaffold 

fabrication is its porous architecture dictating many factors including nutritional 

transport, cell migration and attachment (Hollister, 2005). SEM is used to assess the 

porous nature of scaffolds (Zhang et al., 2014b). Extracted collagen must be assessed 

for its fabrication suitability and potential for ideal scaffold composition and 

structure. Physical and biochemical scaffold properties can be modified to better 

mimic natural matrix properties (Davidenko et al., 2015). The degree of crosslinking 

should ideally mirror the mechanical properties of the tissue being replicated. One of 

the most successful chemical crosslinking agents for collagen sponges and hydrogels 

is EDC, which exhibits low cellular toxicity (Bax et al., 2017).  

 

3.1.3 Hypothesis 

 
The chapter hypothesis states that R. pulmo derived marine collagen is a suitable 

material for human regenerative medicine. In order to contribute significant evidence 

base to test this hypothesis, extracted collagen alpha bands are processed for protein 

level sequencing and analysis conducted to assess homology against mammalian 

collagen sources. Potential downstream regenerative medicine applications are 

dependent on the ability to mould or fabricate a 3D scaffold structure compatible 

with cell invasion. This chapter assesses the suitability of R.pulmo extracted collagen 

for sponge scaffold fabrication. 

 

3.1.3.1 Aims and objectives 

 
A series of aims and objectives were designed in order to test the stated hypotheses; 

 

 Identify a fast, high yield collagen isolation methodology compatible with 

industry scale production  
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 Incorporate a suite of characterisation techniques to inform quality control at 

the multiple stages of collagen extraction, including gel electrophoresis, and 

FTIR analysis to identify amide peaks indicative of maintained collagen 

confirmation   

 Sequence the alpha1 band of the extracted R. pulmo collagen to align with 

published peptide sequences from mammalian sources to assess the degree of 

sequence conservation  

 Develop scaffold fabrication protocols and assess the suitability of the 

collagen source for moulding methodologies, forming stable, potentially 

biomimetic 3D scaffolds for downstream applications in regenerative 

medicine  

 Utilise a multidisciplinary suite of material characterisation techniques 

(porosity, thermal stability and biodegradability properties) to assess scaffold 

suitability and functional compatibility with downstream regenerative 

medicine applications   

 

3.2 Results  

 
Current industrial scale collagen extraction processes are defined by four major 

stages; (A) acid extraction for collagen solubilisation (B) pepsin digestion for 

telopeptide cleavage (C) salt precipitation for efficient collagen isolation and (D) 

separation, through filtering or centrifugation to yield pure collagen. Following this 

process, the isolated, pure research grade collagen is re-suspended in acetic acid prior 

to storage and shipment to customers (Schmidt et al., 2015).   

 

In order to develop a faster, scalable R. pulmo collagen extraction process, a critical 

review of the literature was conducted, identifying crucial extraction stages and cross 

referenced to Jellagen Pty Ltd’s current/proprietary extraction. From this, a defined, 

robust optimisation process outlined in Figure 3.1 was identified.  
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Figure 3.1: Optimised extraction process for testing. Critical stages in collagen 

extraction outlined (A-D) and mapped against known collagen extraction for 

Rhizostoma pulmo (E).  

 

For each stage (A to D) a number of variables were identified and tested for their 

effect on collagen yield, purity and confirmation, using FTIR analysis and gel 

electrophoresis, respectively. These outputs were used to select quality control end 

point measurements to inform a new, optimised extraction process compatible with 

industry scale up.  

 

R.pulmo jellyfish was fished from Camarthen Bay, immediately stored on ice and 

shipped back to Jellagen UK premises in Cardiff. Flash frozen R. pulmo material was 

stored at -20°C over a period of 6-12 months and used for collagen extraction as and 

when appropriate. Five individual extraction processes were conducted using the 



Chapter 3                                                                     R. pulmo Collagen Characterisation 
 

 77 

same fished batch of R. pulmo and the extracted collagen analysed for yield (dry 

weight relevant to start material), purity and confirmation (FTIR).  

3.2.1 Sodium citrate collagen extraction 

 
Acid extraction methods for collagen stabilisation are variable in the literature, with 

differing acids used. Acetic acid, used traditionally, is proven to solubilise collagen. 

This stage however is slow, with efficient solubilisation requiring up to 3 days 

(Schmidt et al., 2015). Alternatively, sodium citrate is an alternative acid 

solubilisation step, which may be as efficient, when combined with agitation (Pacak 

et al., 2011).  

 

Sodium citrate (0.1M) was used here, with downstream digestion, in the presence 

and absence of pepsin, according to the rapid extraction outlined in Pacak et al 

(Pacak et al., 2011). Centrifugal separation was used to rapidly precipitate. Figure 

3.2 demonstrates the results for R. pulmo extracted collagen using this method, 

reported against research grade rat-tail collagen bought from Merck (cat: 08-115, 

UK). 
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Figure 3.2: Sodium citrate R.pulmo collagen extraction in the presence and 

absence of pepsin. A bespoke extraction protocol was devised using sodium citrate 

stabilisation and downstream centrigugation (A).  Images of freeze dried material 

and FTIR spectra were obtained after extraction in the absence (B) and presence (C) 

of pepsin. 

 

Figure 3.2 (A) shows a simplified flow diagram of the devised sodium citrate 

extraction. An initial sodium acetate wash and centrifugation was followed by pellet 

re-suspension in 0.1M sodium citrate (17% wt/vol). During this point of the protocol, 

the addition of pepsin is optional. Followed by a final centrifugation step lead to the 

yield of collagen within the supernatant. The final yield of material (dry weight) 

from a starting weight of 5g jellyfish tissue was 0.278g ± 0.02 (5.55%) and 0.342g ± 

0.02 (6.83%) for extraction without and with pepsin digestion, respectively.  
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The image, in Figure 3.2 (B), shows a brittle white powder, obtained following 

freeze-drying, that was difficult to re-suspend in acid leading to a viscous solution 

with precipitate. When processed for FTIR, Figure 3.2 (C), a difference in peaks 

across the collected spectrum was observed, when compared to a control rat-tail 

collagen preparation. The nearest major peaks from this extraction protocol, when 

compared to the control, were observed at 1720cm-1, 1599cm-1 and 1207cm-1. The 

peak at 1720cm-1 is typically associated with aldehydes or ketones (C=O) showing 

this extraction causes a loss in the characteristic amide I peak. The loss of the amide 

II peak is also seen in this extraction, observed at a higher wavelength, 1599cm-1. 

Although a shift occurs in the position of the amide III peak it remains within the 

range of wavelength used for classification, between 1300-1180cm-1. 

 

An identical extraction, with the addition of a pepsin digestion, was also tested in 

Figure 3.2 (D). A similar white, brittle powder was obtained after freeze-drying. The 

collagen was difficult to resuspend in acetic acid, producing a viscous solution with 

precipitates. FTIR analysis, shown in Figure 3.2 (E), displayed altered spectrum 

with a change in peaks when compared to a rat-tail collagen standard, with the most 

similar peaks observed at 1689cm-1, 1593cm-1 and 1221cm-1. The addition of pepsin 

in the extraction allows for the amide I peak to be regained at 1689cm -1 as well as 

maintenance of the amide III peak at 1221cm-1. The addition of pepsin with a sodium 

citrate extraction leads a peak at 1593cm-1, which falls outside the amide II 

classification region of 1575-1500cm-1. 

 

The lack of particular amide peaks along with the brittle nature of the final material 

led to the conclusion that sodium citrate was not an appropriate acid for 

solubilisation and extraction of collagen from R. pulmo. 

 

3.2.2 Acetic acid extraction 

 
Organic acids, such as acetic acid, are routinely used for collagen extraction. Acetic 

acid is capable of solubilising non-crosslinked collagen as well as the inter-strand 

crosslinks also found in collagen (Schmidt et al., 2015). To test the appropriate use 
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of acetic acid, 0.25M was used with downstream digestion in the absence and 

presence of pepsin followed by centrifugation yielding 1.9% and 7.2%, respectively.   

 

 
 
Figure 3.3: Acetic acid R.pulmo extraction in the presence and absence of 

pepsin. Extraction protocol was devised using acetic acid (A) and images of freeze 

dried material and FTIR spectra were obtained after extraction in the absence (B) and 

presence (C) of pepsin. 

 

A flow diagram of the extraction protocol is outlined in Figure 3.3 (A) where, 

following a sodium acetate wash and centrifugation, the pellet was resuspended in 

0.25M acetic acid to solubilise collagen (10% wt/vol), in the presence and absence of 

pepsin. The resultant solution was then analysed for collagen content.  

 

Figure 3.3 (B) shows material obtained from acetic acid extraction without the use 

of pepsin digestion. A yield of 0.038g ± 0.001 (1.9%) was achieved from 2g of raw 
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jellyfish tissue. A brittle, white material was obtained after freeze-drying, that 

became a sticky precipitate when attempting to resuspend in acetic acid. FTIR 

analysis, Figure 3.3 (C), of this material revealed peaks closest to rat-tail control 

samples at 1655cm-1, 1597cm-1 and 1182cm-1. The spectrum from this extraction 

revealed that the amide I and amide III peaks remained within the expected 

wavelength range whilst the amide II peak was positioned at an increased 

wavelength falling outside the expected amide II range.  

 

Using an identical extraction with the addition of a pepsin digestion stage, material 

was obtain and analysed, shown in Figure 3.3 (C). Using this extraction method a 

yield of 0.144g ± 0.02 (7.2%) was obtained from 2g of raw jellyfish tissue. The 

material obtain from acetic acid extraction with the aid of pepsin yielded a less brittle 

material than extracted in the absence of pepsin however resuspension lead to a 

solution with large precipitates. Figure 3.3 (D) shows FTIR analysis of acetic acid 

extraction with pepsin digestion showed peaks similar to control rat-tail collagen at 

1652cm-1, 1560cm-1 and 1261cm-1. In a similar manner to the extraction lacking 

pepsin digestion, the amide I peak is maintained however the addition of pepsin 

appears to show the amide II and amide III peak within the expected range of 

wavelengths.  
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Figure 3.4: Acetic acid R.pulmo extraction with salt precipitation. Extraction 

protocol was devised using acetic acid with salt precipitation (A) and images of 

freeze dried material (B) and FTIR spectra were obtained after extraction (C). 

 

A pre-wash stage with an alkaline buffer in addition to salt precipitation, following 

acid solubilisation, is thought to improve purity and yield by removing non-

collagenous material from native tissue samples (Pacak et al., 2011). In Figure 3.4 

(A), the protocol of pre-wash and downstream salt precipitation is shown. Depicted 

in Figure 3.4 (B) is the freeze-dried material that had a soft texture and could be 

easily resuspended into acetic acid with no visible precipitates. The final yield of 

material obtained after this extraction was 0.375g ± 0.01 (0.7%) from 50g (40% 

wt/vol) of raw jellyfish tissue. When compared to rat-tail collagen FTIR spectrum, 

Figure 3.4 (C), the material gave similar peaks at 1685cm-1, 1554cm-1and 1243cm-1 

which although shows a shift in peak positions, are still within the amide regions I, II 

and III, respectively.          

 

Table 3.1 outlines the summary of the modified rapid extractions protocols and their 

effect on collagen yield. Clearly indicated here, alongside the physical properties of 
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the materials is that acetic acid followed by salt precipitation is the ideal rapid 

extraction process of choice.                                                                                                                                  

 

 
 

Table 3.1: Summary of collagen extraction yield and characterisation. 

 

Sodium citrate extraction in the absence and presence of pepsin digestion gave a 

product that was brittle and sticky and FTIR analysis revealed the shift in peak 

positions leading to the loss of amide I and II, respectively. Acetic acid extraction in 

the absence of pepsin yielded a brittle material that was difficult to resuspend and 

FTIR spectrum obtained showed a shift in the amide II peak, falling out of the 

characteristic range. When acetic acid was used in the presence of pepsin, FTIR 

analysis revealed that amide I, II and III peaks were present within the expected 

wavelength values but resuspension of the material lead to large precipitates 

remaining in the solution. The removal of the pepsin digestion in favour of a salt 

precipitation led to a soft material that was resuspended with ease in acetic acid and 

displayed amide I, II and III peaks on the FTIR spectrum.  

 

3.2.3 Scalable collagen extraction  

 
An established, protracted (12 day) collagen extraction protocol exists within 

Jellagen Pty Ltd and is also used by Contract Research Organisations (CROs) in the 

field. In order to assess the effect of this process on collagen confirmation and purity, 
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specific variable testing and FTIR quality control measurements were conducted. 

This was done with the aim of integrating the rapid extraction process stages (section 

3.2.2). While this process was convoluted, once again a series of extractions were 

performed where distinct variables were adjusted, merging the scalable and rapid 

protocols for a new, optimised industry scale process. This process is now embedded 

in Jellagen production facility, and is outlined in Figure 3.5.  
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Figure 3.5: Optimised scalable extraction for conserved collagen confirmation. An early R. pulmo extraction protocol adopted by 

Jellagen taking a total of 12 days used 0.5M acid to solubilise collagen (left) whereas an in house extraction protocol used a pre-wash 

step using sodium acetate and salt precipitation to obtain collagen (right). A final protocol was adopted by combining both in house and 

Jellagen’s early protocol to include a pre-was stage and add further extraction stages using differing molarities of acetic acid (centre).  
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Two batches were analysed from the Jellagen scalable process, outlined in Figure 

3.6, aiming to incorporate the rapid scale extraction stages. This process was then 

modified according the devised in house protocol in Figure 3.5, the results of which 

are shown in Figure 3.7.  

 
 
Figure 3.6: Jellagen batch collagen extraction analysis. FTIR (A and C) and gel 

electrophoresis (B and D) were used to analyse collagen extraction from 2 separate 

batch runs.  

 

Figure 3.6 (A) shows the FTIR spectra and gel electrophoresis results from the first 

batch of collagen extracted via the existing Jellagen protocol. When compared to rat-

tail collagen the FTIR spectra depict the major peaks closest to those found in 

collagen at 1647cm-1, 1477cm-1 and 1181cm-1. Gel electrophoresis of rat-tail and 

bovine collagen show α1 and α2 bands (highlighted in red) at approximately 115 and 

135kDa, respectively. Collagen obtained from batch one extraction was also 

subjected to gel electrophoresis and no visible bands were revealed upon staining, 
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shown in Figure 3.6 (B). The analysis of the second batch of collagen produced by 

Jellagen was also conducted. FTIR spectrum of jellyfish collagen, shown in Figure 

3.6 (C) is compared against commercially available rat-tail collagen with peaks 

visible at 1645cm-1, 1590cm-1 and 1112cm-1. Figure 3.6 (D) shows gel 

electrophoresis of rat-tail collagen α1 and α2 band at approximately 115 and 

135kDa, highlighted, however jellyfish collagen obtained from batch two showed no 

visible bands at this molecular weight following staining at two different loading 

concentrations but displays bands at lower molecular weights.  

 

3.2.4 Collagen protein analysis  

 

Protein sequence is capable of indicating the degree of conservation between 

R.pulmo collagen and human variants, in terms of functional peptides and cell 

binding peptides, providing essential structure/function information, which can 

determine the suitability of the collagen as a base material for scaffold fabrication. 

These alongside mechanical and morphological parameters will provide the essential 

base to assess potential applications in regenerative medicine, later in this thesis.  

Proteins are coded for by the DNA sequence, which is unknown for the collagen 

locus in R.pulmo species, however the obtainment of R.pulmo collagen peptide 

sequences allows for the analysis and subsequent identification of functionally 

important amino acid chains (Choi et al., 2010).  

 

Alpha chains are of particular interest when investigating collagen. Collagen fibrils 

are formed through three α chains in heterotrimeric or homotrimeric combinations 

(Gelse et al., 2003). The polypeptide structures of α chains is primarily composed of 

Gly-X-Y repeats and are joined together through interstrand hydrogen bonds that aid 

in the stability of the protein structure (Bhowmick and Fields, 2013). 

 

3.2.4.1 Peptide sequence quality control  

 

Peptide sequencing was used to identify the amino acid composition of the α1 band 

following tryptic digestion (Grundy et al., 2009). In this ‘bottom up’ approach the 

peptides obtained through cleavage are analysed through mass spectrometry however 
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this technique undergoes various quality control measures to ensure the achievement 

of reproducible data (Bittrremieux et al., 2017). These include a minimum length of 

12 amino acids and ideally 2 positive changes from tryptic digestion for mass 

spectrometry without ionisation issues (Steen and Mann, 2004), the identification of 

contaminants such as skin and hair (Keller et al., 2008) and peak shape during the 

liquid chromatography phase to avoid oversampling (Rudnick et al., 2010).  

 

Total R.pulmo collagen was denatured and separated using gel electrophoresis prior 

to extraction of the alpha1 band for sequencing. Shown in Figure 3.7 is the 

acrylamide gel acquired from pure collagen before processing for sequencing.  

 

 
 
Figure 3.0.7: Alpha1 collagen band extraction for sequencing. Rat-tail and bovine 

collagen type I run against jellyfish collagen to locate alpha 1 band. Alpha 1 band for 

rat-tail and bovine collagen is found at ~135kDa (green arrow) and jellyfish collagen 

alpha 1 is found at ~175kDa (red arrow).  

 

R.pulmo derived α1 band sequencing yielded 436 rows of peptides detected. Each 

data file consisting of detected peptide sequences listed against quality control 

parameters including tag length that enables identification of peptides, average level 

of confidence (ALC), length of detected peptide, mass to charge (m/z) ratio, charge 
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(z) value, retention time (RT), area of the peak, mass of the sample, value in parts per 

million (ppm), accession value for contaminated peptides, post translational 

modifications (oxidation and hydroxylation), local confidence values and mass 

spectrometry mode. The resultant peptides were analysed for their quality, using the 

accepted quality control range of 90% or above average confidence level, according 

to Renard et al. (Grundy et al., 2009).  

 

In total, 436 peptides were reported, 123 with an ALC of 90+; 99 with an ALC of 

80+; 80 with an ALC of 70+; 63 with an ALC of 60+ and 70 with an ALC of 50+. 

From these 23.9% were contaminated and discarded. Of the remaining 331 

sequences, only those with an ACL above 90 were considered for analysis. Table 3.2 

lists the 32 peptide sequences detected based on the ALC, an arbitrary cut off 

provided, length and post translational modifications, once all duplicates had been 

removed. 

 



 

 

 

Peptide Sequence ALC 
(%) 

Length PTM 

SGLEGEVGPR 99 10 N/A 

GPPGQVGPAGLEGK 98 14 Oxidation/Hydroxylatio
n 

GNLGPDGLAGR 97 11 N/A 

GTAGLLGATGK 97 11 N/A 

GPLGNQGLPGPR 97 12 Oxidation/Hydroxylatio
n 

GLAGPAGLLGR 96 11 N/A 

GENGLTGASGLQGR 96 14 Deamidation 

TGSSGLPGMLGR 96 12 Oxidation/Hydroxylatio
n 

QGPFGGVGLPGLAGSAQR 96 18 Oxidation/Hydroxylatio
n 

GDTGPQGPMGPLGER 96 15 N/A 

QAPGVTGVAGETGAMGPR 96 18 Oxidation/Hydroxylatio
n 

GLTGQVGQGAGPVGK 95 15 N/A 

GMLGNQGDDGLQGK 95 14 Deamidation 

GPLDGANGLDGNDGKDGR 94 18 Oxidation/Hydroxylatio
n/Deamidation 

AGAPGVTGVAGETGAMGPR 94 19 N/A 

VATGEVGQGAGPVGK 94 15 N/A 

GPVGPNGPTGPQR 94 13 N/A 

GPNQTGQPGAQGPTGPAANR 94 20 N/A 

VLVLLTDGEQTK 93 12 N/A 

GPLNGADGLDGNDGKDGR 93 18 Oxidation/Hydroxylatio
n 

NGPPGPEGPGGALGSPGASYYR 93 22 Oxidation/Hydroxylatio
n 
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GPPPGPEGPGGALGSPGASGDPGR 93 24 Oxidation/Hydroxylatio
n 

GLTGQVGQEGPVGK 93 14 N/A 

GPVGPDGPTGPQR 93 13 N/A 

DGQDGEQGDEGSVGPQGDKGPR 92 22 Oxidation/Hydroxylatio
n/Deamidation 

QNGDVGALGNAGR 91 13 Deamidation 

GPERGPPGPDGESGPR 91 16 N/A 

GPVGPDGPTGPAGR 91 14 N/A 

EGNGLTGASGLQGR 90 14 Deamidation 

GPVGPNGPTGQPR 90 13 Deamidation 

DANGLTGASGLQGR 90 14 Deamidation 

DGTGPQGPMGPLGER 90 15 Oxidation 

 
Table 3.2: Output from mass spectometry following trypsin digestion of 

R.pulmo alpha1 band. 

 

3.2.4.2 Alignment 

 
In order to assess the functional content of the peptides reported all 90+ ACL 

peptides identified were alignment searched against any known peptide sequence 

stored within the basic local alignment search tool (BLAST) database (Madden, 

2013). BLAST searches through the database to find matches to a query sequence 

and gives an output highlighting names and lengths of the results from the target 

database as well as scored and expect (E) value (Pertsemlidis and Fondon, 2001) 

Individual peptides, as shown in Table 3.2, were inputted and BLAST output 

recorded according to the related protein, species from which the related protein 

belongs and an E value. E values are given as a statistical indicator to how significant 

a match is. The E value indicates how well the sequence matches to the database and 

how likely the similarity occurred by chance. The closer the E value is to 1, the more 
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likely the match is to be genuine rather than by chance due to multiple match 

searches (Donkor et al., 2014). 

 

Of the unique, high quality peptide sequences identified, 32 with an ALC of 90% and 

above were BLAST aligned to show the top three most similar sequences, with 100% 

aligned to non-mammalian sources, further sub divided to marine (18.75%) and 

bacterial (58.33%) species as summarised in Table 3.3.  

 

Sequence Related Protein Species E 
value 

SGLEGEVGPR Collagen a2(VIII) chain like Sincocyclocheilus 
grahami 

68 

 Hypothetical protein Myxococcus 
stipitatus 

69 

 Phage tail region protein  Myxococcus 
stipitatus 

69 

GPPGQVGPAGLEGK Cuticle collagen dpy-5 Trichinella papuae 1.1 

 Fibril forming collagen alpha 
chain like  

Spodoptera litura 1.6 

 Collagen alpha1(V) chain 
isoform X2 

Esox lucius 2.3 

GNLGPDGLAGR Class I SAM dependent 
methytransferase 

Olsenella 42 

 Hypothetical protein 
CEUSTIGMA 

Chlamydomonas 
eustigma 

59 

 MATE family efflux transporter Oleispira 
antarctica 

84 

GTAGLLGATGK Hypothetical protein Aquabacterium 
parvum 

118 

 Polyketide synthase Streptomyces 167 

 Type I polyketide synthase Streptomyces 
catelarensis 

167 

GPLGNQGLPGPR Collagen alpha1(XXVIII) chain Nothoprocta 
perdicaria 

1.5 

 Collagen alpha1(XXVIII) chain Tinamus guttatus 1.5 

 Collagen alpha1(IX) chain 
precursor 

Danio rerio 2.2 

GLAGPAGLLGR Hypothetical protein Acidobacteria 
bacterium 

7.4 
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 Collagen alpha6(IV) chain 
isoform X1 

Lepisosteus 
oculatus 

14 

 Collagen alpha6(IV) chain 
isoform X2 

Lepisosteus 
oculatus 

14 

GENGLTGASGLQGR Collagen triple helix repeat 
containing protein  

Thermoactinomyc
es 

3.2 

 Collagen alpha1(XXVII) chain Parus major 4.5 

 Collagen alpha1(I) chain like Cyanistes 
caeruleus 

4.5 

TGSSGLPGMLGR Glycosyltransferaase Actinoplanes 36 

 Acetylcholinesterase collagenic 
tail peptide 

Krytolebias 
Marmoratus 

36 

 Acetylcholinesterase collagenic 
tail peptide like 

Monopterus albus 36 

QGPFGGVGLPGLAGSAQR Hypothetical protein Verruconis 
gallopava 

4.5 

 Signal recognition particle 
protein 

Jannaschia rubra 13 

 Alpha mannosidase Xanthomonas 
prunicola 

18 

GDTGPQGPMGPLGER LPXTG cell wall anchor domain 
containing protein 

Streptococcus 
didelphis 

0.06 

 Hypothetical protein Glaesserella 
parasuis 

0.084 

 Hypothetical protein Glaesserella 
parasuis 

0.084 

QAPGVTGVAGETGAMGPR Collagen like protein Paenibacillus 
catalpae 

0.8 

 Collagen triple helix repeat 
containing protein 

Paenibacillus 
catalpae 

0.8 

 Collagen like protein Paenibacillus 
pectinilyticus 

1.1 

GLTGQVGQGAGPVGK Nitrate reductase Marine 
microorganism 

31 

 Hypothetical protein Amycolatopsis 
orientalis 

44 

 Hypothetical protein Paenibacillus 62 

GMLGNQGDDGLQGK Collagen alpha1(XXVII) chain Melopsittacus 
undulatus 

6.4 

 Collagen alpha1(XXVII) chain 
like 

Nestor notabilis 6.4 

 Hypothetical protein Salpingoeca 
rosetta 

9.1 
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GPLDGANGLDGNDGKDGR Autotransporter/adhesin Mannheimia 
varigena 

0.013 

 Autotransporter/adhesin Mannheimia 
varigena 

0.013 

 Autotransporter/adhesin Mannheimia 
varigena 

0.013 

AGAPGVTGVAGETGAMGP
R 

Collagen like protein Lysunubacillus 
fusiformis 

0.042 

 Collagen like protein Paenibacillus 
catalpae 

0.12 

 Collagen triple helix repeat 
containing protein 

Paenibacillus 
catalpae 

0.12 

VATGEVGQGAGPVGK Hypothetical protein Streptomyces 
noursei 

7.7 

 Molecular chaperone DnaJ Tetrasphaera 
duodecadis 

31 

 Molecular chaperone DnaJ Tetrasphaera 31 

GPVGPNGPTGPQR C terminal target domain 
containing protein 

Catalinimonas 
alkaloidigena 

0.23 

 Collagen alpha1(I) chain like Mizuhopecten 
yessoensis 

0.23 

 Hypothetical protein Runella 0.33 

GPNQTGQPGAQGPTGPAA
NR 

Hypothetical protein Rhizobiales 
bacterium 

0.012 

 Nematode cuticle collagen 
domain protein 

Oesophagostomu
m dentatum 

0.2 

 Nematode cuticle collagen 
domain protein 

Oesophagostomu
m dentatum 

0.2 

VLVLLTDGEQTK Hypothetical protein Alphaproteobacter
ia bacterium 

4.4 

 BatB protein Sphingopyxis 6.3 

 VWA domain containing 
protein 

Imhoffiella 
purpurea 

6.3 

GPLNGADGLDGNDGKDGR Hypothetical protein Rodentibacter 
myodis 

0.036 

 Putative uncharacterised 
protein 

Alistipes 0.1 

 Hsf Actinobacillus 
minor 

0.28 

NGPPGPEGPGGALGSPGAS
YYR 

Hypothetical protein Bacillus populi 0.002 

 Collagen alpha1(III) chain Tinamus guttatus 0.012 
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 Collagen alpha1(XXII) chain 
like 

Sinocyclocheilus 
anshuiensis 

0.067 

GPPPGPEGPGGALGSPGAS
GDPGR 

SMC protein Elmeria necatrix 0.006 

 Cutile collagen 34 Loa loa 0.011 

 Hypthetical protein Scleropages 
formosus 

0.012 

GLTGQVGQEGPVGK Hypothetical protein Chara braunii 13 

 TonB-dependent receptor Woodsholea 
maritima 

37 

 Collagen alpha1(I) chain Tetranychus 
urticae 

52 

GPVGPDGPTGPQR Putative tail protein Erwinia phage 0.23 

 Collagen like protein Bacillus 
thuringiensis 

0.47 

 Collagen like protein Bacillus 
thuringiensis 

0.47 

DGQDGEQGDEGSVGPQGD
KGPR 

Phage tail fiber protein Phage NCTB 0.008 

 Collagen alpha1(I) chain like Orbicella faveolata 0.009 

 Collagen alpha1(V) chain like Schistosoma 
haematobium 

0.024 

QNGDVGALGNAGR ABC transporter ATP binding 
protein 

Nocardioides 7.6 

 ABC transporter ATP binding 
protein 

Nocardioides 
terrigena 

7.6 

 ABC transporter ATP binding 
protein 

Nocardioides 7.6 

GPERGPPGPDGESGPR Inner ear specific collagen like Cyprinodon 
variegatus 

0.036 

 Collagen alpha1(XXIV) chain Paramormyrops 
kingsleyae 

0.051 

 Collagen alpha1(I) chain like 
isoform X1 

Haplochromis 
burtoni 

0.1 

GPVGPDGPTGPAGR Collagen alpha1(XVIII) chain 
like 

Clupea harengus 0.035 

 Collagen like protein Mesorhizobium 
ciceri 

0.035 

 Collagen like protein Mesorhizobium 
ciceri 

0.035 

EGNGLTGASGLQGR Collagen triple helix repeat 
containg protein 

Thermoactinomyc
es 

13 
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 Hypothetical protein Rhodosalinus 52 

 LysM peptidoglycan binding 
domain containing protein 

Sphingomonas 74 

GPVGPNGPTGQPR Hypothetical protein Bacillus korlensis 0.48 

 Nematode cuticle collagen 
domain protein 

Teladorsagia 
circumcincta 

1.3 

 Collagen alpha1(IV) chain Latimeria 
chalumnae 

1.9 

DANGLTGASGLQGR Collagen triple helix repeat 
containing protein 

Thermoactinomyc
es 

1.6 

 LysM peptidoglycan domain 
containing protein 

Sphingomonas 37 

 Hypothetical protein Sphingomonas 37 

DGTGPQGPMGPLGER Collagen alpha1(I) chain like 
isoform X1 

Lucilia cuprina 0.34 

 Collagen alpha1(I) chain like 
isoform X2 

Lucilia cuprina 0.34 

 LPXTG cell wall anchor domain 
containing protein 

Streptococcus 
pyogenes 

0.48 

 
Table 3.3: BLAST results for individual R.pulmo peptides. Peptides sequences 

run through BLAST database and results showing top 3 related protein, species and 

E value for corresponding peptides.  

 

Collagen and collagen related proteins are frequently found amongst related proteins 

during the database search. Taking E values into account, peptides such as 

GTAGLLGATGK show that the peptide has similarity to polyketide synthase in 

Streptomyces, however the E value is 151 implying that this is likely to be by chance 

when compared to the peptide AGAPGVTGVAGETGAMGPR, matched to 

collagen-like protein partial from Lysinibacillus dusiformis which has an E value of 

0.038.  

 

3.2.4.3 Collagen alignment  

 

Sequence alignment compares sequences by searching for a similar arrangement of 

patterns between sequences. The three common sequence alignments are pairwise, 

multiple and structural sequence alignment. The overall aim in aligning sequences is 
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to understand whether they exhibit similarities as a result of structural, functional or 

evolutionary relationships (Renard et al., 2010). Data extracted from sequence 

alignment can identify sequence identity, where the positions of nucleotides and/or 

amino acids are exactly the same, sequence similarity, where the matches are taken 

into consideration and any substitutions are scored so that conservative sequences are 

give a higher score than non-conservative sequences, and sequence homology where 

the similarity between nucleotide or amino acid position is strictly due to an 

evolutionary event (Madden, 2013). The alignment of jellyfish collagen peptides to 

human COL1A1 and COL3A1, chosen due to the use of these collagen types in 

regenerative medicine, was obtained using Clustal Omega and shown in Figure 3.8 

and Figure 3.9, respectively.  
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Figure 3.8: Sequence alignment of human COL1A1 sequence to R.pulmo 

peptides. 32 peptides with an ACL% of 90 and above were compared against human 

COL1A1 using Clustal Omega to give an alignment. 
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Figure 3.8 (A) shows alignment of peptides against the known human COL1A1 

sequence at position 961 to 1020, whilst Figure 3.8 (B) shows positions 1021 to 

1080 using Clustal Omega. At nucleotide positions 998 to 1015 a partial alignment is 

made to 7 R. pulmo peptide sequences. At the positions 1070 to 1080, 10 R. pulmo 

peptides are partially aligned to the human COL1A1 sequence making this area of 

the human sequence the most highly aligned.  

 

 
 

Figure 3.9: Sequence alignment of human COL3A1 sequence to R.pulmo 

peptides. 32 peptides with an ACL% of 90 and above were compared against human 

COL3A1 using Clustal Omega to give an alignment. 

 

Figure 3.9 shows the alignment of 32 R. pulmo peptides, with an ALC of 90% and 

above, against human COL3A1. Of the 32 peptides, 16 peptide sequences were 

partially aligned at nucleotide positions 926 to 960. This region of the COL3A1 gene 

showed the highest proportion of sequence alignment.  
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Sequence alignments, both global and local, are used to search databases and obtain 

similarities against a target sequence. Sequences that provide similarities have 

traditionally been used in order to infer protein function (Clark and Radivojac, 2011). 

The identification of specific sites within a protein allows for the understanding of 

biological processes (Lapidoth et al., 2015).AbDesigner is a web application used for 

the design of peptide directed antibodies. The software displays protein features 

as a graphical output denoting regions of interest such as binding sites, post-

translational modification and local secondary structures using the relevant 

Swiss-Prot protein record (Pertsemlidis and Fondon, 2001). 

 

Human COL1A1 and COL3A1 were input through the AbDesigner software and 

nucleotide positions with high similarity to R.pulmo peptides were checked for 

functional relevance, shown below in Figure 3.10 and Figure 3.11, 

respectively.  
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Figure 3.10: AbDesigner output for human COL1A1. Positions 998 to 1015 (A) 

and 1070 to 1080 (B) highlighted to show functional features of the protein. 

 

Figure 3.10 (A) shows the Abdesigner output for human COL1A1 with position 998 

to 1015 highlighted. The graphical output depicts that this portion of the sequence is 

part of the mature collagen α1 chain, a part of the triple helical region and is also 

seen in pfam01391 peptide sequence that is crucial for triple helix formation. Figure 

3.10 (B) highlights the position 1070 to 1080 and once again shows that the sequence 

is found in the mature chain and triple helical region of the protein.  
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Figure 3.11: AbDesigner output for human COL3A1. Positions 926 to 960 are 

highlighted to show areas of functional relevance and interest. 

 

Figure 3.11 is the graphical output of human COL3A1 with nucleotide positions 926 

to 960 are highlighted in a box. The region corresponds to the area with the highest 

number of R.pulmo peptides showing partial similarity. In a similar fashion to the 

COL1A1 gene, the highlighted region shows the mature α1 chain of collagen and 

belongs to the triple helix region. COL3A1 also exhibits a splice variant in this 

region where this particular sequence does not occur in isoform 2 of the gene.  

 

The functional search of both human genes found a particular region of interest in 

COL1A1 for pfam01391. Pfam01391 is also known as the collagen triple helix 

repeat and contains 20 copies of Gly-X-Y repeat that forms a triple helix. Although 

this repeat is a critical structural feature to aid in tensile strength of connective tissue 

the triple helical structure can also be found in other collagens including bacterial 

collagen-like triple helix repeat proteins (Donkor et al., 2014). A final database 

search was done to evaluate any similarities between the unique 32 R.pulmo peptides 

and pfam01391 sequence as a function portion of the human COL1A1 sequence.  
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Figure 3.12: Sequence alignment of pfam01391 to R.pulmo peptides. 

 

Figure 3.12 shows Clustal Omega output for the pfam01391 sequence against 32 

high quality R.pulmo peptides. The pfam01391 sequence exhibits the typical Gly-X-

Y repeat expected to be found in the triple helix region of collagen molecules. The 

32 peptides analysed for alignment shows varying degrees of sequence similarity 

apart from peptide 19, which is not aligned to the pfam sequence at any position. All 

peptides exhibit areas of Gly-X-Y repeats however the substitution of 

hydroxyproline when compared to the pfam01391 sequence is to be expected due to 

the lower hydroxyproline content found in marine collagen.  

 

3.2.5 Collagen plasticity and moulding  

 
The majority of cells within human tissues reside within an ECM which are tissue 

specific in their composition (Mount, 2004). Due to the native state of tissue 

requiring a complex ECM, regenerative medicine employs the field of tissue 

engineering to mimic the environment and restore or improve tissue function that has 
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been lost to disease or trauma (Pertsemlidis and Fondon, 2001). The fabrication of 

scaffolds for regenerative medicine applications requires particular attention to 

scaffold architecture. A highly porous structure with interconnected pores is needed 

to allow diffusion of nutrients and waste products whilst a critical mean pore size is 

required for cell adhesion and migration, with this latter component being dependent 

on the tissue that is aiming to be restored (Pisitkun et al., 2012). 

 

In order to assess the plasticity of the collagen, the material was moulded using a 96 

well plate and crosslinked using the chemical crosslinking reagent EDC, which has 

previously been proven to form 3D constructs with collagen extracted from a 

different species of jellyfish (McElroy et al., 2011).  

 

A concentration of 4 mg/ml was chosen for scaffold fabrication in this instance. 

Previous research has used collagen scaffolds of varying concentrations (2-40 

mg/ml) however those with a low collagen content <4 mg/ml have been used to 

mimic tissue (Whatmore, 2001). A common source of collagen is that obtained from 

rat-tail that has been used in research, maintaining cell viability and proliferation 

(Chan and Long, 2008). Gelatin is thermally denatured collagen that has a 

disordered, random coil arrangement that has also been used to form scaffolds for 

answering biomaterials based questions (Dhandayuthapani et al., 2011). With this in 

mind, jellyfish collagen constructs were compared with rat-tail collagen and bovine 

gelatin scaffolds as a positive and negative control, respectively, for the ability to 

form a scaffold, average pore size within the constructs as well as stability and 

biodegradability.  

 

In the interest of time, scaffold materials will be abbreviated as shown in Table 3.4.  
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Table 3.4: Abbreviations for materials used to fabricate scaffolds. 

 

With collagen isolation from R.pulmo jellyfish optimised and characterisation of 

resultant peptides indicating similarity in specific regions when aligned with 

COL1A1 and COL3A1, in particular to pfam01391, the peptide sequence which is 

involved in the triple helix formation. Following these results scaffold fabrication 

and characterisation was performed. A summary of work for this chapter can be seen 

below in Figure 3.13.  
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Figure 3.13: Flow diagram of work concerning collagen isolation and scaffold 

fabrication. 

 

3.2.5.1 Moulding  

 
Scaffold fabrication can be achieved using various techniques, with freeze-drying 

considered to yield porous, foam-like constructs by sublimating the solution the 

polymer is frozen in (O'Brien, 2011).  

 

To fabricate scaffolds, 4mg/ml of RTCol, JCol or BGel were pipetted into a 96 well 

plate and freeze dried before crosslinking with the zero length crosslinker, EDC to 
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ensure stability against degradation. Following a final freeze-drying process, scaffold 

structures were analysed for pore size, thermal stability and stability against 

degradation. Construct gross structure is shown in Figure 3.14. 

 

 
 
Figure 3.14: 3D collagen moulding and gross sturcture. Scaffolds fabricated from 

RTCol, JCol and BGel viewed from the side (A) and top down (B). Scale bars 

indicate 5mm.  

 

Figure 3.14 shows fabricated scaffolds from side view (A) and top down (B). 

RTCol, JCol and BGel were all successfully moulded and crosslinked to produce 

cylindrical, porous scaffolds. All constructs had a height of approximately 5mm and 

width of 3mm. Scaffolds produced from each material maintained a dry, porous 

structure that was easily broken however when saturated with liquid scaffolds 

became sponge like in behaviour and absorbed and expelled liquid upon 

compression.  

 

3.2.5.1.1 Scaffold characterisation  

 
High-resolution morphology imaging is an accepted method to assess interconnected 

structures (Hoyer et al., 2014). Scanning electron microscopy (SEM) is based on 

accelerated electrons moving down a column and focused on the sample via various 
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electromagnetic lenses. Once the electrons hit the sample, backscattered or secondary 

electrons are detected and the signal converted to produce an electron micrograph 

(Antoine et al., 2014). Each collagen mould structure was coated with 15nm 

chromium to ensure conductance and avoid surface charging (Parenteau-Bareil et al., 

2010). Figure 3.14 show images for RTCol, JCol and BGel, moulded structures at 

4mg/ml., respectively. All structures were imaged at low (30-100K) and high 

magnification (600-500K).  

 

Scaffold pore size has been shown to impact cell behaviours such as migration, 

proliferation and differentiation (Gorgieva and Kokol, 2011). Computer software, 

including SEM software, has previously been used to analyse images and elucidate 

pore size (Lu et al., 2013). Images obtained using Hitachi S-4800 SEM software 

were used to measure 30 pores to obtain average pore size from scaffolds fabricated 

from RCol, JCol and BGel, from three replicates, shown in Figure 3.15, 3.16 and 

3.17, respectively.  
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Figure 3.15: SEM images of RTCol scaffolds and pore size at different 

crosslinking concentrations. Low magnification (A) and high magnification (B) 

SEM images were taken to assess architecture at 0.25, 0.5 and 1% EDC 

concentration. High magnification images were used to calculate average pore size 

(C). Data shown is the standard deviation from a minimum of three independent 

repeats, statistical significance shown according to paired Mann Whitney U test 

(*p<0.05; **p<0.01; ***p<0.001). Scale bars in low and high magnification 

represent 1mm and 200μm, respectively. 

 

Figure 3.15 (A) shows RCol scaffolds imaged at low magnification and Figure 3.15 

(B) at high magnification using SEM and demonstrate leafy, porous structures with 

interconnected pores after crosslinking with EDC at 0.25%, 0.5% and 1% w/v. 

Figure 3.15 (C) depicts the average pore size for scaffolds at each crosslinking 

concentration, obtained from high magnification images. Scaffolds crosslinked at 

0.25% EDC have an average pore size of 28.80μm, 0.5% show an average pore size 

of 32.69μm and 1% exhibit an average pore size of 28.85μm. No significant 

difference was observed in average pore size between different crosslinking 

concentrations. 
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Figure 3.16: SEM images of JCol scaffolds and pore size at different 

crosslinking concentrations. Low magnification (A) and high magnification (B) 

SEM images were taken to assess architecture at 0.25, 0.5 and 1% EDC 

concentration. High magnification images were used to calculate average pore size 

(C). Data shown is the standard deviation from a minimum of three independent 

repeats, statistical significance shown according to paired Mann Whitney U test 

(*p<0.05; **p<0.01; ***p<0.001). Scale bars in low and high magnification 

represent 1mm and 200μm, respectively. 

 

JCol scaffolds crosslinked with 0.25%, 0.5% and 1% EDC were imaged with SEM at 

low magnification, Figure 3.16 (A) and high magnification, Figure 3.16 (B), and are 

show to produced leafy, interconnected porous constructs. Figure 3.16 (C) shows the 

average pore size of scaffolds at different crosslinking concentrations with average 

values of 62.70μm, 61.43μm and 54.76μm for 0.25%, 0.5% and 1% EDC 

concentration, respectively. A significant difference in average pore size was 
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observed between 0.25% and 1% EDC concentration (p=0.019) and between 0.5% 

and 1% EDC concentration (p=0.039). 

 

 
 
Figure 3.17: SEM images of BGel scaffolds and pore size at different 

crosslinking concentrations. Low magnification (A) and high magnification (B) 

SEM images were taken to assess architecture at 0.25, 0.5 and 1% EDC 

concentration. High magnification images were used to calculate average pore size 

(C). Data shown is the standard deviation from a minimum of three independent 

repeats, statistical significance shown according to paired Mann Whitney U test 

(*p<0.05; **p<0.01; ***p<0.001). Scale bars in low and high magnification 

represent 1mm and 200μm, respectively. 

 

Scaffolds fabricated from BGel were imaged with SEM at both low and high 

magnification, shown in Figure 3.17 (A) and Figure 3.17 (B), respectively. These 

images depict that BGel scaffolds crosslinked at 0.25%, 0.5% and 1% EDC 

concentration give rise to a porous architecture with interconnected pores. High 

magnification images were used to obtain average pore size at each crosslinking 

concentration, shown in Figure 3.17 (C). Average pore sizes of were observed at 

26.09μm for 0.25% EDC, 96.77μm for 0.5% EDC and 83.66μm for 1% EDC with 
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BGel. A significant difference in average pore size was seen between 0.5% and 1% 

(p<0.001) and between 0.25% and 1% EDC concentration (p<0.001).  

 

3.2.5.2 Plastic compression  

 
Scaffolds produced in the traditional way are hyper hydrated and have properties that 

do not match native tissue due to the lack of fibril density (Ashworth et al., 2014). 

Unconfined plastic compression expels liquid from the moulded structure in order to 

increase fibrillar density (Vernon-Parry, 2000). The application of external 

mechanical force not only produces a mechanically stronger construct but also 

reduces the effects of contraction and degradation (Kashi et al., 2014). In order to 

test the suitability of plastic compression applied to JCol, 2ml of collagen was 

pipetted into a 24 well plates and scaffold produced using the method outlined in 

section 3.2.5.1. Following fabrication, scaffolds were compressed for 30 minutes 

using RAFT™ absorbers (Lonza, UK; cat: 016-1R32). 

 

 
 
Figure 3.18: SEM images of compressed JCol scaffolds at different crosslinking 

concentrations. Low (x50) and high (x300) magnification images of compressed 

JCol scaffolds crosslinked at 0.25, 0.5 and 1% EDC. Scale bars in low and high 

magnification represent 1mm and 100μm, respectively. 

 

Figure 3.18 shows SEM images of JCol scaffolds following compression and 

crosslinking at 0.25, 0.5 and 1% EDC. Scaffolds under all crosslinking conditions 
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show that constructs maintain a leafy structure with interconnected pores, exhibiting 

that compression does not change morphological features of scaffolds after being 

subjected to plastic compression.  

 

 

 
 
Figure 3.19: Weight of JCol scaffolds before and after compression and 

reswelling. JCol scaffolds crosslinked with 1, 0.5 and 0.25% EDC were weighed 

before and after compression and were placed in PBS before weighing to check for 

reswelling. All data shown is the standard deviation from a minimum of three 

independent repeats, statistical significance shown according to T test (*p<0.05; 

**p<0.01; ***p<0.001).  

 

Figure 3.19 depicts weights of JCol scaffolds at 1, 0.5 and 0.25% EDC crosslinker 

concentration during compression. Scaffolds crosslinked at 1% EDC had an initial 

wet weight of 132.89mg, which decreased to 15.89mg following compression. When 

compressed scaffolds were placed in PBS they rehydrated to have a final wet weight 

of 117.89mg. Both compressed and rehydrated scaffolds showed a significant 

decrease (p<0.001 for both) in weight compared to the initial samples. The exact 

same trend was seen for scaffolds crosslinked with 0.5% EDC. Original scaffold 

weight was 141.33mg, decreasing to 15.33mg after compression and increasing 

again after incubation in liquid to 121.44mg. Weight for compressed and rehydrated 

scaffolds were significantly decreased (p<0.001) when compared to the initial weight 

of fabricated constructs at 0.5% EDC concentration. Scaffolds produced with 0.25% 
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EDC had an initial wet weight of 67.44mg before compression where weight 

decreased to 5.67mg. When allowed to rehydrate in PBS scaffold wet weight 

increased to 57.0mg. In a similar fashion to scaffolds crosslinked at 1 and 0.5%, 

scaffolds compressed and rehydrated exhibited a significant (p<0.001) decrease in 

weight compared to the original scaffold weight.  

 

3.2.5.3 Collagen scaffold stability  

 
Native collagen possess an array of inter and intramolecular crosslinks that aid in the 

structural stability found within tissues. Extraction of collagen from tissues reduces 

the number of crosslinks and changes the physical properties of the material 

(Bružauskaité et al., 2016). In order to enhance the physical characteristics and 

resistance against proteolytic degradation of collagen scaffolds, crosslinking can be 

undertaken in various forms. A popular choice of chemical crosslinking is using the 

agent EDC that may be coupled with NHS, to form crosslinks that are lower in 

density that other crosslinking agents but have favourable biological properties (Loh 

and Choong, 2013). In order to form stable scaffolds from RTCol, JCol and BGel, 

materials were crosslinked with EDC at 0.25%, 0.5% and 1% w/v and assessed to 

ensure that an optimal crosslinking concentration would be applied for further 

experiments.  

 

3.2.5.3.1 Thermal stability  

 
Scaffolds produced for regenerative medicine have various characteristics that may 

be manipulated in order for them to be fit for purpose; this includes resistance against 

thermal and enzymatic degradation (Cheema and Brown, 2013). Differential 

scanning calorimetry (DSC) is a technique that allows for the observation of 

thermodynamic properties of biological macromolecules by measuring the 

differential heat flow from the calorimeter as reference and sample cells are heated 

linearly over a period of time. DSC has previously been used to identify biopolymer 

melting, lipid-protein interactions and conformational changes of proteins 

(Serpooshan et al., 2010). This technique has also been used to assess the efficiency 

and extent of crosslinking in scaffolds (Braziulis et al., 2012). In order to assess the 
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thermal stability of RTCol, JCol and BGel scaffolds crosslinked at 0.25, 0.5 and 1% 

EDC concentration, constructs were placed in platinum crucibles and heated from 

room temperature to 100°C and a graph obtained. An empty platinum pan was also 

measured as a reference.   
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Figure 3.20: DSC of scaffolds crosslinked at various EDC concentrations. DSC 

data for RTCol (A), JCol (B) and BGel (C) scaffolds crosslinked at 0.25%, 0.5% and 

1% EDC. 
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Figure 3.20 (A) shows DSC graphs of RTCol scaffolds crosslinked at 0.25, 0.5 and 

1% EDC. Scaffolds fabricated with 0.25% and 0.5% EDC show a peak at 37°C 

whilst those made with 1% EDC display a broader peak spanning a higher range of 

temperatures. Figure 3.21 (B) displays DSC graphs from JCol scaffolds. Constructs 

crosslinked with 0.25% and 0.5% EDC exhibit peaks at approximately 37°C in a 

similar fashion to RTCol scaffolds at the same concentration. JCol scaffolds 

crosslinked with 1% EDC show a broader peak showing much small change in 

thermal energy produced by these constructs. DSC of BGel scaffolds are shown in 

Figure 3.21 (C). These scaffolds display a change in trend from JCol and RTCol 

scaffolds with 1% EDC BGel scaffolds showing the greatest change in the thermal 

energy however the peak of the graph still occurs at 37°C. BGel scaffolds at 0.5% 

and 0.25% display broader peaks with a smaller change in thermal energy that span 

over 37°C. 

 

3.2.5.3.2 Collagen enzymatic degradation 

 
Scaffolds designed for regenerative medicine applications must fulfil the requirement 

of being biodegradable to enable adequate remodelling of the damaged tissue 

(Davidenko et al., 2015). As a consequence of the break down of the scaffold 

material, cells are able to produce their own extracellular matrix for tissue repair. It is 

important that the by-products of degradation be non-toxic in order to maintain a 

good level of cell viability (Ahmad et al., 2015). In vivo, collagenases such as MMPs 

are responsible for the degradation of collagen and work by binding to the collagen, 

unwinding the triple helix and finally cleaving each strand. As bacterial collagenases 

work under the same principles, they can be used to investigate degradation in vitro 

(Davidenko et al., 2015). Scaffolds fabricated from RTCol, JCol and BGel 

crosslinked with 0.25%, 0.5% and 1% EDC were incubated with serum free DMEM 

containing 300U/ml of collagenase and scaffold weight was monitored over a period 

of time to assess degradation.   
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Figure 3.21: Collagenase treatment of scaffolds crosslinked with EDC. Scaffolds 

crosslinked with 0.25% (A), 0.5% (B) and 1% (C) EDC were incubated with 

collagenase and weighed regularly to assess resistance to degradation.  
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Figure 3.21 (A) shows the weight of RTCol, JCol and BGel scaffolds crosslinked at 

0.25% EDC concentration following collagenase digest over a 12 hour period. 

RTCol scaffolds decrease in weight over time following incubation with collagenase. 

Average initial scaffold wet weight was recorded at 54.33mg and decreased until no 

remaining scaffold was visible at 4 hours. JCol scaffolds had a similar initial start 

weight of 53.89mg. At 4 hours JCol scaffolds crosslinked with 0.25% EDC were still 

visible and had an average weight 22.22mg however no scaffold was visible by 12 

hours. Gelatin scaffolds fabricated with 0.25% had a lower initial weight when 

compared to the other materials at 48.0mg and decreased in weight following 

collagenase digestion with an average weight of 17.11mg at 4 hours and no scaffold 

available to weight by 12 hours. The same experiment was conducted using scaffolds 

fabricated with 0.5% EDC, shown in Figure 3.21 (B). RTCol scaffolds at this 

crosslinking concentration began with an average weight of 48.78mg, which 

decreased to 6.11mg by 6 hours following incubation with collagenase. JCol 

scaffolds had a slightly higher average starting weight of 56.44mg that decreased to 

18mg after 6 hours whilst BGel scaffolds had an initial average weight of 43.78mg, 

decreasing after 6 hours to 14.33mg. At 12 hours no scaffold was visible to be 

weight for any material crosslinked at 0.5% EDC concentration. Figure 3.21 (C) 

shows average scaffold weight following 12 hours collagenase digestion of scaffolds 

crosslinked with 1% EDC. RTCol scaffold weight began at 63.78mg and fell to 

5.67mg after 6 hours. JCol scaffolds had an initial weight of 58.22mg, which 

decreased after 6 hours to 7.33mg whilst BGel scaffolds had a lower start weight of 

36.89mg that decreased to 11.78mg at 6 hours of incubation. At 12 hours no 

scaffolds fabricated from any tested material remained.  
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3.3 Discussion 

 
Suitable, alternative sources of collagen that are compatible with large scale 

extraction are needed to meet the ever-growing demand due to the copious use of 

collagen in the medical, food and cosmetic industries (Meena et al., 1999). Marine 

species have been identified as an abundant source of collagen with extraction 

demonstrated from, scales, skin, bones and cartilage (Silva et al., 2014). Seasonal 

blooms of jellyfish have been recognised as a potential source of collagen for 

regenerative medicine. While overfishing has disturbed parts of the world’s oceans, 

these abundant blooms can be harvested, with minimal cause for concern due to their 

involvement in beach closures, fish deaths and clogging of coastal power and 

desalination plants (Brotz et al., 2012).  

 

Focusing on identifying and developing a scalable extraction process for R. pulmo 

derived jellyfish collagen; the data presented here demonstrates clearly that acid 

extraction of jellyfish collagen can be incorporated into large, industry scale 

production. Jellyfish collagen solutions have been characterised for their similarity 

with mammalian collagen, using an array of accepted assays (Abraham et al., 2008). 

SDS PAGE, FTIR, differential scanning calorimetry and SEM analyse collagen 

purity, amide banding, thermal stability and morphological features such as banding 

and fibre orientation respectively (Abraham et al., 2008). The α1 band sequencing 

cross-references with 40 collagen/collagen related proteins when searching sequence 

similarity, while functional peptide sequencing indicates potential structural 

variations when compared directly to mammalian collagen. These are also observed 

when the collagen solution is freeze-dried to a sponge scaffold, potentially 

explaining differences in collagen scaffold interconnectivity, pore size, collagenase 

digestion and thermal stability (Terzi et al., 2018) 

 

Marine collagen suitability for applications in human regenerative medicine and 

tissue engineering is reliant on multiple characteristics determined by biological 

information such as evolutionary conservation and functional peptide homology 

(Pawelec et al., 2016). Whilst the evolutionary conservation between jellyfish and 

human collagens is beyond the scope of this project previous reports have 

demonstrated that jellyfish collagen exhibits a triple helix flanked by N and C 
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terminals in a similar fashion to mammalian collagen, see Figure 1.1 (Exposito et 

al., 2008). Sequence similarity was exhibited in the peptide sequences obtained from 

the alpha1 band, with top results reporting no alignment to mammalian and 18.75% 

marine sources. This observation is supported by electrophoretic migration of the α1 

band, at 175kDa in comparison to 135kDa observed in mammalian collagen types. 

Migration of triple helical proteins is not correlated to their molecular mass; Addad 

and Cheng have also shown difference in electrophoretic pattern. R pulmo jellyfish 

collagen gave α1 bands in a similar or slightly higher position when compared to rat-

tail collagen (Addad et al., 2011), whilst bands from R. esculentum jellyfish showed 

bands around 116kDa. The differences in electrophoretic pattern may be attributed to 

differences in structure that are thought to have arisen during evolution (Cheng et al., 

2017a).  

 

Jellyfish collagen from R. pulmo and R. esculentum has previously been extracted 

using the traditional procedure where tissue was allowed to dissolve in acetic acid for 

overnight (Bermueller et al., 2013). To increase the final collagen yield a pepsin 

digest step was added and salted out with the use of sodium chloride (Schmidt et al., 

2015). Finally, pure collagen was obtained through centrifugation and the pellet 

resuspended in acetic acid for downstream experimental analysis (Addad et al., 

2011). Pacak and colleagues understood the need for a rapid process to be developed 

for a cost effective way of meeting the ever-growing commercial demand for 

collagen. Using dermal samples, sources of collagen type I, from lamb, rabbit and 

human, a vigorous agitation protocol was developed reducing the time scale to 

approximately 3 hours (Pacak et al., 2011). In this chapter the rapid protocol outlined 

by Pacak was applied to isolate collagen from R. pulmo jellyfish. Modifications were 

made including use of different acids (sodium citrate and acetic acid) as well as 

extraction in the presence and absence of pepsin. 

 

It has previously been reported that acid plays a key role in collagen solubility due to 

the excess H+ ions that are present, allowing water access to collagen fibres’ held by 

either electrostatic swelling or lyotropic hydration (Kiew and Don, 2013). Acid 

hydrolysis of collagen is typically carried out using organic acids such as acetic, 

citric and lactic acids as it is seen as more efficient than the use of inorganic acids 

such as hydrochloric acid, as well as being capable of solubilising non-crosslinked 
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collagens (Schmidt et al., 2015). Extractions were executed using two common 

organic acids; sodium citrate and, more popularly used in research and industrial 

settings, acetic acid.  

 

Collagen can be identified from FTIR, a non destructive, vibrational spectroscopic 

technique due to characteristic peaks that represent amide I (~1600-1700cm-1), amide 

II (~1549-1560cm-1) and amide III (~1240cm-1) (Belbachir et al., 2009). FTIR 

analysis of collagen extracted via acetic acid or sodium citrate gave peaks that were 

not within those previously reported for jellyfish collagen, in line with structural 

alterations in carboxyl group composition, vibrational banding related to N-H and C-

N bending/stretching and/or the crucial triple helical structure. These findings are 

consistent with Riaz et al, who found differences in all three amide peaks and 

attributed these to both structural differences between animals and isolation protocols 

(Riaz et al., 2018). This suggests that acid extraction alone may have altered the 

structure of jellyfish collagen during the isolation process, confirmed by the brittle 

material that was produced once solutions had been freeze-dried. 

 

Although acid extraction is an efficient method for obtaining collagen it should be 

noted that dilute acids are incapable of breaking mature crosslinks (Delgado et al., 

2017). The use of alkaline solutions has been tested however the loss of post-

translationally modified amino acids reduces the applicability of the collagen for 

commercial use (Yang and Shu, 2014). The use of proteolytic enzymes have been 

used in order to break mature crosslinks and increase the yield of collagen obtained 

from extraction (Schmidt et al., 2015). Pepsin is a proteolytic enyme that cleave the 

non-helical telopeptides regions from collagen molecules removing any 

intermolecular crosslinks and increasing the solubility of collagen in tissues (Duan 

and Sheardown, 2005). Regardless of the acid chosen for extraction, results show 

that the addition of a pepsin digest increased the yield of collagen. Extraction using 

sodium citrate isolated an average of 5.55% material, which increased to 6.83% with 

the addition of pepsin whereas acetic acid extraction isolated an average of 1.9% of 

material from jellyfish that increased to 7.2% when using pepsin.  

 

FTIR analysis of acid extracted collagen in the presence and absence of pepsin have 

shown similar spectra suggesting that enzymatic hydrolysis does not affect the 
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structure of collagen during isolation (Schmidt et al., 2015). However, studies 

comparing acid solubilised collagen and pepsin solubilised collagen have shown shift 

in FTIR spectra indicative of the isolation of a more stable triple helix (Riaz et al., 

2018). FTIR spectra obtained from isolation experiments show changes in amide 

peaks between acid extraction and acid with pepsin extraction. Sodium citrate 

extraction with pepsin saw a change in FTIR spectrum however the peaks witnessed 

were still out of the range identified in previous jellyfish collagen spectra and 

maintained a brittle physical property when freeze dried. This indicated that sodium 

citrate is not a suitable acid for the extraction of jellyfish collagen as it is not efficient 

potentially changes the structure of the protein during isolation (Schmidt et al., 

2015). On the other hand, acetic acid extraction using pepsin saw a shift in spectrum 

results so all peaks were found within the ranges previously documented for jellyfish 

collagen indicating that structural integrity was maintained during isolation (Riaz et 

al., 2018). However, once freeze dried the material proved difficult to resuspend 

causing us to believe that isolation of collagen contained contaminants. 

 

The addition of salts such as sodium chloride decreases protein solubility in a 

process termed salting out. This additional stage in isolation allows collagen to be 

precipitated out of solution for easier collection through centrifugation (Wahl and 

Czernuszka, 2006). Acetic acid extraction, in the absence of pepsin and the addition 

of a salting out stage isolated a soft, white material similar to that of mammalian 

collagen when freeze-dried. The presence of residual salt in collagen solution may be 

problematic, as it has previously been reported that the presence of NaCl decreased 

the thermal stability and affected the rheological properties of the protein (Duan et 

al., 2013). Salt precipitation using acetic acid revealed an amide I peak at 1685cm-1 

and the change may be due to carboxyl and amine groups forming new bonds, amide 

II at 1554cm-1 and amide III at 1243cm-1, with the last two peaks in the range found 

from previous jellyfish collagen studies. Although the yield of collagen was lower 

than pepsin extraction protocols, peaks from FTIR spectra for collagen obtained from 

salting out indicate the potential presence of the triple helix. Freeze dried material 

had a soft, white appearance in line with the physical characteristics of mammalian 

collagen showing that this extraction protocol produced a purer final product than 

previous extractions that were tested (Deyl et al., 2003).  
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The ability to mould or fabricate collagen into different forms is a characteristic that 

makes the protein highly desirable, with films, sponges and hydrogel constructs each 

being developed for tissue engineering and drug delivery (Lee and Shin, 2007). The 

adaptability of collagen into different forms is a characteristic that makes the protein 

highly desirable by different industries (Payne and Veis, 1988). Collagen obtained 

from an alternative source must prove to be malleable for different applications.  

 

Sponges are classified as porous structures that are defined by their interconnectivity 

and pore size, which affect cell migration, nutrient waste exchange and matrix 

deposition (Krimm and Bandekar, 1986). On the other hand, hydrogels are described 

as a network of polymer chains that are hydrophilic and possess the ability to retain a 

large amount of water (Cheng et al., 2017b). In vivo, collagen molecules undergo 

fibrillogenesis and aggregate to form supramolecular structures. Fibrillogenesis can 

be induced in vitro by mimicking physiological conditions such as exposing isolated 

collagen to neutral solutions and body temperature (Khan and Khan, 2013).  

 

In this study, collagen isolated from R. pulmo jellyfish were fabricated into sponge 

scaffolds using chemical crosslinking and lyophilisation as previously demonstrated 

with R. esculentum jellyfish collagen (Lee and Shin, 2007). Gelling properties of 

collagen are highly dependent upon the hydroxyproline and proline content of 

collagen molecules with mammalian collagen exhibiting a high imino acid 

(hydroxyproline and proline) content (Hoffman, 2002). Hydrogel formation from 

collagen obtained by marine species may be more difficult to achieve unaided as 

imino content from these animals has been shown to be significantly reduced 

compared to mammalian sources (Tronci et al., 2013). Hydrogels have received 

attention for cartilage repair as they can be injected non-invasively into the injury 

site, fill defects of different sizes and contain a homogenous mixture of cells in 

comparison to sponge scaffolds (Hoyer et al., 2014). The major disadvantage to 

hydrogel use in tissue engineering is their inherent mechanical weakness due to 

excessive water retention. This can be overcome by increasing the crosslinking 

density however this may compromise cell viability (Hashim et al., 2015).  

 

In vivo, collagen forms crosslinks in both enzymatic and non-enzymatic manners that 

are essential in the characteristic tensile strength that the protein exhibits (Chung and 
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Burdick, 2008). Due to the lower proline and hydroxyproline content documented in 

marine animals, fewer corsslinks are formed when compared to mammalian tissues, 

leading to less stable molecule and overall a lower denaturation temperature. 

Crosslinks can be efficiently recreated in vitro using physical and chemical methods 

(Bryant and Anseth, 2002). The chemical crosslinker EDC is a popular choice used 

during scaffold fabrication (Vickers et al., 2004). EDC is a zero length crosslinker 

and conjugates carboxyl groups to primary amines without becoming a part of the 

final bond. EDC reacts with carboxylic groups to form O-acylisourea, an 

intermediate that is displaced by nucleophilic attack from primary amino groups. 

Primary amine groups form amide bonds with carboxyl groups and the EDC by-

product is released as a soluble urea derivative that can be washed away, outlined in  

Figure 3.22 (Ahmad et al., 2015).  

 

 

Figure 3.22: EDC crosslinking reaction. Carboxyl groups react with primary amine 

groups via EDC formed intermediate to form amide bonds (Subhan et al., 2015). 

 

Although EDC results in a lower crosslinking density than other methods that have 

been researched it is favoured due to previous reports that it causes low levels of 

cytotoxicity (Suchy et al., 2015). However, further research into EDC crosslinking 

has shown that cell viability of lymphoma cells is inversely proportional to EDC 

concentration (Song et al., 2006). As found in the literature, EDC was used as the 

chosen chemical crosslinker for fabrication of JCol, RTCol and BGel scaffolds to aid 
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in mechanical and thermal properties (Rao and Winter, 2009).  Scaffolds were 

crosslinked using a range of concentrations to test effects of crosslinking density on 

scaffold characteristics in future downstream analysis.  

 

The success of sponge scaffold fabrication from jellyfish collagen is indicative of the 

use of these constructs in cartilage tissue engineering. Previously, collagen sponges 

produced from bovine sources have shown their potential in cartilage tissue 

engineering, exhibiting cell viability and cartilage specific matrix (Glowacki and 

Mizuno, 2007). More recently, jellyfish collagen scaffolds have been analysed for 

their chondrogenic potential. R. esculentum jellyfish sponge scaffolds were found to 

redifferentiate human nasal septal chondrocytes following loss of phenotype from 

monolayer culture (Bermueller et al., 2013) and R. pulmo collagen successfully 

differentiates human MSCs along a chondrogenic lineage (Pugliano et al., 2017). 

 

Current 3D tissue models involve monolayers of cells or cells embedded into 

hydrogels or sponges. Collagen gels, although biocompatible, still lack the desired 

mechanical properties due to the differences in fibril density (Hoyer et al., 2014). 

Cells interact with collagen via integrins that recognise specific motifs, in particular 

GFOGER (Ahmad et al., 2015). Davidenko and colleagues assessed the affect of 

crosslinking density on platelet adherence to collagen scaffolds. Platelets bind to the 

collagen peptide sequence GFOGER through the α2β1 integrin. Crosslinking with 

EDC requires the carboxyl group, in this case focused on the E (glutamic acid) of the 

peptide sequence, inhibiting integrin interaction and in turn decreasing the amount of 

cells attached to the scaffolds (Thoreson et al., 2015). It is important for cells to 

adhere to collagen scaffolds in large quantities as high stem cell density, in cartilage 

tissue engineering, is thought to encourage chondrogenic differentiation due to cell-

cell communication aiding in the expression of cartilage matrix specific proteins 

(Bax et al., 2017).  

 

Scaffolds produced for tissue engineering and modified by a crosslinking agent 

should strike a balance between thermal stability and susceptibility to degradation 

(Leitinger, 2003). The triple helical nature of collagen aids with the formation of 

networks that are held together through a combination of hydrogen bonds and Van 

der Waals forces that stabilise structures and enhance the mechanical and thermal 
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properties of the protein (Davidenko et al., 2015). As previously discussed the 

decreased amount of imino acids present in marine collagen leads to a lower 

denaturation temperature (Chung and Burdick, 2008). It is well documented that 

collagen derived marine species have a lower denaturation temperature than 

mammals due to their reduced proline and hydroxyproline content however 

crosslinking of the material can increase its stability (Davidenko et al., 2015). 

Denaturation of collagen alters the macromolecular structure of the molecule from a 

triple helix to random coil formation associated with gelatin (Subhan et al., 2015). 

This change in structure also leads to changes in cell binding domains whereby the 

GFOGER motif is lost and RGD becomes the primary integrin binding domain 

(Karim and Bhat, 2009).  

 

Differential scanning calorimetry is an effective tool used to measure phase 

transitions that occur as a result of heat energy released or absorbed by a sample 

(Cheema and Brown, 2013). The endotheromic or exothermic event is determined by 

the area under the peak whilst the maximum height of the peak is seen as the 

maximum heat capacity that occurs at phase transitions such as protein unfolding 

(Siljander et al., 2004). Hoyer previously showed that denaturation temperature of 

native collagen isolated from R. esculentum could be increased by crosslinking using 

EDC (Barczyk et al., 2010). Crosslinking with varying concentrations EDC revealed 

that JCol scaffolds are thermally stable at 37°C equalling the thermal stability shown 

by RTCol and BGel scaffolds.  

 

Whilst thermal stability plays an important role for future applications such as 

implantation into the human body degradation of scaffolds is essential for 

regenerative medicine as the guide new tissue formation before allowing remodelling 

and replacement (Wu et al., 2017). Degradation of native tissue ECM is often 

indicative of injury or disease however during the remodelling process the ECM can 

be broken down to release active peptides that aid in homeostasis and include 

peptides with antimicrobial, chemoattractant and angiogenic properties (Durowoju et 

al., 2017).  

 

In vivo, collagen is cleaved by proteolytic enzymes belonging to the MMP and 

ADAMTs families (Hoyer et al., 2014). Seven Clostridium hitolyticum (CHC) like 
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collagenases have been identified at low levels in human tissues and are found 

tightly bound to collagen (Zhang et al., 2014a). These enzymes are divided into 2 

classes where the first class cleaves collagen molecules at the N and C terminals 

before degrading the collagen into smaller fragments whereas the second class 

cleaves at the centre of the collagen molecule before further degradation (Badylak et 

al., 2008). Degradation of scaffolds can be assessed in vitro using collagenase 

obtained from CHC, which has been shown to cleave collagen into small fragments. 

In vitro degradation studies using collagenase from this species has been shown to 

correlate to in vivo degradation rates and therefore results obtained from this assay 

can be seen a preliminary data for degradation behaviour (Lu et al., 2011). A variety 

of collagenase concentrations have been used in the assessment of degradation from 

125U/ml (Mookhtiar and Wart, 1992) to 390U/ml (Gorgieva and Kokol, 2011).  All 

scaffolds treated with 300U/ml of collagenase were degraded over the course of 12 

hours indicating that the extent of crosslinking did not cause resistance against 

degradation and that if implanted degradation would be likely to occur in vivo.  

 

Tissue engineering requires scaffold structures that can either be preloaded with cells 

or allow for cellular infiltration following implantation into the injury site or risk 

being impractical (Alberti and Xu, 2016). Various methods can be used in order to 

obtain a porous scaffold including salt leaching, phase separation and freeze-drying. 

In the instance of freeze-drying, hydrated scaffolds are frozen before being placed in 

a freeze drier where the ice is sublimated into the gas phase (Alberti and Xu, 2016). 

The walls of the pores are formed when a thin film of material forms at the edge of 

the ice and grows. Additionally, when acetic acid is used, as can be the case with 

collagen solutions, the ice takes on a dendritic formation yielding an interconnected 

pore structure (Ng et al., 2009). Pore size produced by this method can be varied 

depending on different elements, for instance, the viscosity of the solution and the 

water to polymer ratio, whereas pore structure is dependent on the freezing 

temperature. Producing pores through freeze-drying is a favourable method as it 

removed the need of multiple washes and allows direct use of polymer solutions 

(Bružauskaité et al., 2016).  

 

The freeze-drying process was used to fabricate scaffolds from R. pulmo collagen 

using a 96-well plate as a mould (Caliari et al., 2015). Scaffolds produced in this way 
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formed sponge like structures that, upon analysis with SEM, displayed a highly 

interconnected porous structure that is consistent with literature and suitable for the 

maintenance of cell attachment, migration and diffusion of nutrients and waste 

(Jafari-Sabet et al., 2016). SEM analysis also showed JCol scaffolds exhibiting an 

average pore size between 54-63μm at different crosslinking concentrations, which 

was larger than RTCol scaffold and smaller than BGel scaffolds. The difference in 

pore size between marine and mammal sources may be due to differences in the 

collagen amino acid composition causing differences in the viscosity of solutions 

produced during extraction. Previous studies have found that scaffolds intended for 

chondrogenic purposes showed enhanced chondrogenic differentiation with small 

(20-150μm) pore size whilst large (250-500μm) pore size enhance ECM deposition 

and chondrocyte proliferation (Davidenko et al., 2015) showing that all scaffolds 

fabricated would not only be suitable for cell invasion but for applications in 

cartilage repair. 

 

Cells in human tissues respond to mechanical signals that determine cellular 

function, stem cell differentiation and homeostasis. Changes in mechanical 

properties of tissues lead to the onset of disease and so tuning the mechanical 

properties of scaffolds is important for correct tissue formation (Yamada et al., 

2014). It is thought that the force carrying capacity can be increased via the 

compression of the gel. Plastic compression allows for fibril density to be increased 

through the removal of fluid from hyper hydrated gels. Pressure is applied to any gel 

face and the primary fluid leaving surface continuously restricts the outflow of fluid. 

As the collagen gel becomes denser, through packing, the flow of fluid is blocked 

and so the process is self-limiting (Matsiko et al., 2015). With an overall aim to 

produce constructs that are biomimetic, PC collagen constructs have been shown to 

have tensile properties similar to some native tissues due to their increased protein 

concentration and interaction between fibrils bringing us closer to that goal (Cheema 

and Brown, 2013). Inconsistent with reports in current literature, which has used 

plastic compression of mammalian collagen for ocular surface (Mi et al., 2010) and 

tendon (Garvin et al., 2004) tissue engineering, JCol constructs did not plastically 

compress during this study. However plastic compression has been carried out on 

hydrogels and research has not used this technique on sponge structures (Jansen et 

al., 2015). Cartilage is described as a biphasic tissue that displays a creep and stress 
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response to loading (Cheema and Brown, 2013). The failure of the scaffold to 

plastically compress may be advantageous as increased fibril crosslink density has 

been associated with stiffer cartilage affected by conditions such as aging and 

diabetes (Neel et al., 2006).  

 

In conclusion, the presented data shows that a rapid extraction protocol for the 

isolation of collagen from R. pulmo jellyfish is possible, yielding 0.7% protein from 

native jellyfish tissue. This is further validated by incorporation into Jellagen 

production facility, a crucial step in commercial expansion. Isolation using acetic 

acid and salt precipitation yielded a soft, white material that gave amide I, II and III 

peaks that are characteristic of collagen. Further validation of the protein showed that 

alpha bands appeared in expected regions when subjected to gel electrophoresis and 

MSA of peptides aligned to triple helical repeats found in human collagen. Jellyfish 

collagen was found to be manipulated into sponge scaffold structured with the use of 

EDC chemical crosslinking that stabilised structure and thermal properties to 37°C 

and could be digested using bacterial collagenase, indicating that breakdown is likely 

to occur in vivo. These findings suggest that jellyfish collagen scaffolds should be 

further tested for their biocompatibility and application in cartilage tissue 

engineering.  
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4.1 Introduction  

 
In order to be considered biocompatible, a material must have the ability to perform 

a specific application in a foreign host, whilst eliciting an appropriate host response. 

Traditional mammalian collagen matrices are known to help natural cell-matrix 

interactions and are not seen to be cytotoxic (Antoni et al., 2015). Appropriate cell-

material interactions are crucial, aiming to ensure cellular adhesion as well as the 

maintenance of cell specific viability and proliferative capacity in contact with an 

exogenous collagen material. These properties are crucial to the successful use of 

biomaterials in tissue regeneration (Carletti et al., 2011).  

 

It is essential to characterise cellular viability and any potential phenotypic 

differentiation once a given candidate collagen structure is obtained. Material 

biocompatibility testing is routinely conducted in both in vitro and in vivo 

investigations, using both 2D (basic structure) and 3D (biomaterial specific 

structures) (Helmus et al., 2008). The assessment of cell viability can be undertaken 

in various ways including exclusion dyes such as trypan blue or those that gauge 

metabolic activity, as is the case for tetrazolium based methods (Martin-Piedra et al., 

2014).  

 

Alongside aiding cellular proliferation, collagen may have an effect on the 

morphology of certain cells. An important process in embryogenesis and cancer 

metastasis is an epithelial to mesenchymal transition (EMT; (Colas et al., 2012). 

During this process epithelial cells, which usually express E-cadherin, lose their 

apico-basal polarity and adhesive qualities and gain an increased motility and ability 

to remodel the stroma they are surrounded by. They also switch their cadherin 

expression, with an increase in N-cadherin expression observed (O'Brien-Ball and 

Biddle, 2017). Collagen type I has been found to induce EMT in certain cell types 

including that of lung, breast and pancreatic carcinomas (Medici and Nawshad, 

2010).  

 

Another appropriate response, is that of the host immune system, a key aspect when 

investigating materials for tissue engineering (Naahidi et al., 2017). It is possible to 

predict major biocompatibility issues in terms of the host immune system in vitro 
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using donor blood cells (Joubert et al., 2016). In this chapter, the suitability of 

collagen films extracted from the edible jellyfish, Stomolophus nomurai meleagris as 

a matrix support for mammalian cell culture was tested using human fibroblasts, 

endothelial cells and smooth muscle cells. Previously, all cell types have been shown 

to have a higher viability on jellyfish collagen when compared to tissue culture 

plastic over a 10-day period (Song et al., 2006).  

 

4.1.1 In vitro immunogenicity   

 
Immunogenic testing is ideally done within small animals such as rats and rabbits 

(Ghasemi and Dehpour, 2009). Scaffolds produced from various materials have been 

tested in order to investigate their ability to elicit an immune response. In the case of 

bovine and human osteochondral grafts, subcutaneous implantation into collagen 

sensitive mice has previously been carried out before conducting ELISPOT and 

ELISA assays. ELISPOT assays examine the cellular immune response measuring 

induction of IFN-ϒ, IL-2, IL-4 and IL-5, whilst ELISA assays measure humoral 

mediated immune response measuring IgG1, IgG2a, total IgG and IgM from blood 

samples (Kawalec-Carroll et al., 2006). 

 

In the absence of an animal house at Swansea University, appropriate in vitro 

methods were sought for this project. Previous work with non-mulberry silk 

scaffolds were tested for their immunogenicity with the use of human dendritic cells 

being assessed for their maturation and cytokine release (Musson et al., 2015). 

However monocyte-derived dendritic cell activation is time-consuming and 

complicated. Previous work within the Thornton group at Swansea University has 

assessed the immunogenicity of biomaterials using whole blood samples before 

analysing for specific leukocyte and platelet activation markers using fluorescence 

activated cell sorting (FACS) and building a cytokine release profile from blood 

serum via ELISA assays (Radley et al., 2017). 
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4.1.2 In vitro immune surveillance 

 
Although the immune system plays a key role in limiting infection and responding to 

injury it may mean rejection of implanted scaffolds leading to problematic 

consequences (Boehler et al., 2011). Divided into innate and adaptive responses 

(Parkin and Cohen, 2001), the human immune system provides provision for an 

immediate host defence, with the innate immune system encompassing cells such as 

neutrophils, monocytes and macrophages, depicted in Figure 4.1, whereas the 

adaptive immune response is considered a more sophisticated antigen specific 

reaction that incorporates T-cells and B-cells (Parkin and Cohen, 2001).  
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Figure 4.1: Host reponse to implanted biomaterials. A schematic detailing the 

immune response following the implantation of a biomaterial. Serum proteins adhere 

to the surface of the material and inflammatory cells such as neutrophils and 

macrophages are recruited to the site of injury. Mature macrophages also secrete pro-

inflammatory cytokines to aid in acute and chronic inflammation. After a period of 

days, macrophages will begin the healing process by secreting anti-inflammatory 

cytokines. Within weeks to months the adaptive immune response is triggered 

through antigen recognition via T lymphocytes and B lymphocytes. The end stage of 

the immune response upon implantation either leads to resolution or the formation of 

a fibrotic capsule (Kim et al., 2016). 

 

Upon the triggering of an immune response a characteristic cascade of events occurs. 

First, blood proteins adhere to the material before inflammation occurs (Anderson et 

al., 2008). Inflammation causes the recruitment of various cells including neutrophils 

and macrophages with the end result usually leading to fibrosis in the area of 

implantation (Jones, 2008). Fibrous encapsulation of the implanted material often 

leads to failure of the implant as in addition to the immune system effectively 

supplying protection against a foreign body it also isolates the material from 

surrounding tissue leading to issues with native tissue integration as well as access to 

nutrients for continued growth and development (Anderson et al., 2008). Whilst 
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matrices produced from synthetic materials can be modulated so that they do not 

elicit an immune response this is often not the case with matrices fabricated with 

natural materials as they contain a higher degree of ‘non self’ signals (Nilsson et al., 

2007). The extent of the immune response that is caused is dependent on a number of 

factors that include the degree of injury caused during implantation, the implantation 

location and the amount of provisional matrix that has been formed (Anderson et al., 

2008).  

 

4.1.3 Collagen immunogenicity  

 

Collagen was once considered to be non-immunogenic however the increase in 

interest in its use as a biomaterial has uncovered some characteristic immunological 

behaviours, believed to be due to the presence of noncollagenous proteins and cell 

remnants after extraction (Lynn et al., 2004). Any immune response elicited by 

collagen is due in part to target epitopes that reside on the telopeptide region of 

tropocollagen molecules. The immune response can also be influenced by factors 

including the helical composition of collagen and the amino acids presented on the 

surface (Gorgieva and Kokol, 2011). These factors in turn lead to a variation in the 

immunological properties between polymerised collagen and its non-polymerised 

counterpart as the accessibility of the epitopes decreases upon polymerisation 

(Parenteau-Bareil et al., 2010). 

 

4.1.4 Chapter hypothesis 

 
The hypothesis for this chapter is that marine collagen is a biocompatible biomaterial 

that allows for cell adhesion, viable proliferation and consistent morphological 

stability, in both immortalised and primary cell cultures from a variety of 

mammalian sources. This hypothesis is tested, in the first instance, using a 2D smear 

of collagen on plastic culture media. Immortalised cell lines and primary cells are 

seeded onto these collagen surfaces and monitored over time for their cellular 

phenotypes linked to immunogenicity and functional phenotypes. Secondly, collagen 

isolated from R. pulmo is fabricated to sponge scaffold structure as shown in section 

3.2.5.1 and subjected to in vitro immune analysis to define the in vitro immune 
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response elicited by R.pulmo derived collagen, compared to current research and 

clinical grade collagen sources.  

 

4.1.4.1 Aims and objectives 

 
The aims and objective to test this hypothesis are as follows; 

 

 Coat tissue culture plates with collagen isolated from R. pulmo (using 

methodology from Chapter 3), rat tail collagen, and gelatin. 

 Assess a variety of secondary (human endometrial cancer cell lines) cells for 

adhesion, viability and proliferation rate over a 96 hour period, benchmarking 

jellyfish derived collagen against the research and clinical grade alternatives. 

 Using light microscopy and ImageJ, assess cell type specific shape changes 

indicative of morphological differentiation over a 96 hour period. 

 Conduct an in vitro assay for biocompatibility and immune response elicited 

by jellyfish derived collagen comparing to rat tail collagen, bovine collagen 

and bovine gelatin, using blood cells isolated from a healthy volunteer cohort 

and established platelet (CD42b) and leukocyte (CD62L, CD11b and fMLPr) 

cell activation markers as well cell death (DRAQ7).  

 Analyse blood serum samples via ELISA to build a cytokine release profile. 

 

4.2 Results  

 
Collagen is used in both 2D cell culture and as a 3D scaffold for supported 3D 

culture methods, sometimes to simulate organotypic environments in in vitro culture 

(Duval et al., 2017). In addition, collagen is a suitable source of scaffolding material 

in regenerative medicine approaches such as cartilage, heart valves and treatment of 

corneal defects (Parenteau-Bareil et al., 2010).  

 

Stated simply as ‘the ability of a biomaterial to perform its function without eliciting 

local or systemic responses’, the biocompatibility of jellyfish derived collagen was 

assessed here using multiple in vitro methods (Ratner, 2011). 2D culture (using 

smears of collagen immobilised on a standard plastic culture dish) were assessed 
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initially, before using in vitro immune cell response model using healthy volunteers 

(13/WA/0190). A range of cellular subtypes were used to screen for 

biocompatibility, providing proof for proof of concept data aligned with applications 

markets agreed with Jellagen, UK.  

 

4.2.1 Collagen supported 2D culture  

 

Cells within the body exist within specific microenvironments, combined with 

collagen based matrix support mechanisms to underpin tissue architecture (Schindler 

et al., 2006).  

 

In order to assess the suitability of jellyfish derived collagen for plastic culture vessel 

coating, to better simulate the supported microenvironment during cell culture, 

Corning plastic dishes were coated (overnight at 4°C) with 30ug/ml of sterile, 

extracted (using protocol outlined in section 2.3.5) collagen. The vessels were then 

washed and used for the culture of a series of mammalian cell types, for a total of 4 

days, while monitoring cell viability, proliferation and morphology compared to a 

plastic only culture control. Research grade rat-tail collagen (RTCol) coated plates 

were used as a positive control and bovine gelatin (BGel) negative, as comparisons 

for jellyfish specific collagen (JCol). The experimental procedure used is shown in 

Figure 4.2.    
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Figure 4.2: Experimental procedure to assess jellyfish collagen suitability for 

coated 2D culture. 
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4.2.1.1 Human endometrial stromal cell culture 

 
Human endometrial stromal cells (hESC) are essential in the process of human 

reproduction, undergoing decidualisation an endometrial differentiation process that 

prepares the tissue for human blastocyst implantation (Dunn et al., 2003). During 

decidualisation stromal cells undergo a MET process to provide support for the 

invading embryo (Zhang et al., 2013). In vitro experiments have shown that 3D 

culture of hESC cells is a closer physiological model to the in vivo environment than 

when cultured in 2D due to their response to hormone stimulation and withdrawal 

(Schutte and Taylor, 2012).  

 

Human stromal cell lines (hESC) were cultured in the presence and absence of 

collagen sources to assess their proliferative capacity in vitro. Live/dead staining 

(CFSE/EthD2 ratio) was used to assess cellular viability over a 4 day period using In 

Cell microscopy (Ramirez et al., 2011). Cells were then counterstained with Hoescht 

in order to monitor cellular proliferation (Mozdziak et al., 2000). Representative 

images for hESC cells are shown in Figure 4.3, grown on RTCol, BGel and JCol 

compared to the plastic control.  

 

4.2.1.2 Cellular viability  

 

Live/dead staining showed the effect of collagen coating on hESC cell viability over 

the four day culture period compared to the plastic only control. In Cell microscopy 

images multiple fields of view (20-per well) of hESC cells cultured in a 24 well plate 

on day 1, 2, 3 and 4 of the 4 day culture period. Collated live/dead staining is shown 

in Figure 4.3, taken on day 2 of culture. 
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Figure 4.3: Live/dead staining of hESC cells. hESC cells cultured on plastic (A), 

RTCol (B), JCol (C) and BGel (D) were stained using hoescht, CFSE and EthD-2 

and imaged using In Cell microscopy (x20 magnification) to assess viability over a 

period of 4 days. Individual cells were identified with hoescht nuclear stain (seen in 

blue). Live cells were identified by CFSE (depicted in green) whilst dead were 

shown by EthD-2 (depicted in red). Scale bars equal to 0.1mm.  
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Figure 4.4 : hESC cell viability in coated culture vessels. hESC cells seeded onto 

RTCol, JCol and BGel coated culture dishes were compared to plastic only control. 

Direct comparison is shown between the plastic control and RTCol (B); JCol (C); 

BGel (D). All data shown is from a minimum of 3 independent biological repeats, 

statistical significance shown according to a Mann Whitney U test (*p<0.05; 

**p<0.01; ***p<0.001). 

 

Figure 4.4 (A) shows the comparison of hESC cell viability when grown on plastic 

compared to RTCol coated plates over four days. A decrease in viable cell number 

was observed at day 2 on plastic, followed by increased viability on day 3 and 4; 2 
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and 4 fold, respectively. RTCol cultured cells also exhibited increased viable cell 

number over each day of the culture period. On day 1 viable cells are higher in 

number on plastic compared to RTCol, 3,620 and 2,556, respectively, however on 

day 2, 3 and 4 RTCol cultured cells are increased compared to their plastic cultured 

counterparts. Dead cells for plastic and RTCol plates are similar in number and do 

not appear to increase during the culture period with cell numbers ranging from 103 

to 41 dead cells on plastic and 89 to 74 dead cells on RTCol over the 4 days. 

Differences in viable and dead cells between both culture conditions were not proven 

to be significant on any day of culture.  

 

A comparison to hESC grown on plastic and JCol is shown in Figure 4.4 (B). Viable 

cells on JCol show the same trend as those grown on RTCol with an increase in cell 

number over the 4 days. Day 1 viable cell number shows that plastic exhibits more 

viable cells than JCol however JCol boasts more viable cells than plastic over day 2, 

3 and 4 with this difference being significant (p=0.05) on day 2 with values of 2,781 

and 4,597 viable cells for plastic and JCol, respectively. Despite JCol exhibiting 111 

dead cells on day 4 of culture whilst plastic culture only showed 41 dead cells no 

significant difference was noted when comparing culture conditions.  

 

Figure 4.4 (C) shows viability of cells grown on BGel compared to plastic. Viable 

cells grown on BGel follow the same trend as other materials where the number of 

cells increases over 4 days. Day 1 shows plastic exhibiting a higher number of viable 

cells than BGel however on day 2 BGel shows a significant increase in viable cell 

number compared to plastic (p=0.05). On day 3 and 4 plastic cells are increased in 

number compared to those grown on BGel. On day 4 of culture 41 cells were shown 

to be dead on plastic whilst BGel displayed 119 cells however no significant 

difference was seen on any day when comparing conditions.  

 

4.2.1.3 Cellular morphology 

 

Cell shape is a measurement of circularity, using imageJ standard algorithm, with a 

circularity of 1 being epithelial in nature and 0 being mesenchymal. Data shown in 

Figure 4.5 was used to assess the morphological differentiation of hESC cells over 
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the chosen culture period. Standard light microscopy (Zeiss) was used in order to 

monitor hESC cell shape and morphology during the culture period (days 1, 2, 3 and 

4) of the 4 day culture period. Images taken at x10 magnification on an inverted light 

microscope were used, shown in Figure 4.5, with cell boundaries defined using 

imageJ. A minimum of 30 cells were identified from a minimum of 3 independent 

biological repeats and used to collate cell shape data.  

 

 

Figure 4.5: hESC cell morphology. hESC cells grown on plastic (A), RTCol (B), 

JCol (C) and BGel (D) were imaged with a light microscope (x10 magnification) 

over a 4 day culture period to assess any changed in morphology. Scale bars equal to 

0.1mm. 
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Figure 4.6 : hESC cell circularity in coated culture vessels. hESC cells seeded 

onto plastic (B), RTCol (C), JCol (D) and BGel (E) coated culture dishes. All data 

shown is the media +/- min/max from a minimum of 3 independent biological 

repeats, statistical significance is shown according to Mann Whitney U test 

(*p<0.05; **p<0.01; ***p<0.001).  

 

Figure 4.6 (A) shows the circularity of hESC cells seeded onto plastic culture dishes 

over a 4 day culture period. On day 1 hESC cells exhibit an average circularity value 

of 0.27 that decreases significantly (p=0.001) on day 2 to 0.22. When comparing cell 

circularity on day 3 and day 4 to day 1, both days exhibited a higher cell circularity 

value, both p<0.001, signifying a more circular cell morphology. hESC cells seeded 

on RTCol coated plates were assessed for their morphology, shown in Figure 4.6 

(B). When compared to day 1 cells circularity decreases on day 2 however the 

difference is not seen as significant however on day 3 and 4 the circularity of hESC 

cells increases from 0.19 on day 1 to 0.62 on day 3 and day 4 (p<0.001 in both 

cases). The same trend is seen for hESC cells grown on JCol coated plates, Figure 

4.6 (C) where cell circularity increases significantly (p<0.001) on day 3 and day 4 

when compared to day 1 rising from 0.23 to 0.63 and 0.57, respectively. Figure 4.6 

(D) shows circularity on cells cultured on BGel coated dishes. The same trend is 
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observed as seen on RTCol and JCol coated plated. On day 1 a circularity value of 

0.2 was observed for hESC cells grown on BGel. Cells assessed on day 3 were 

shown to exhibit an increased circularity value of 0.61 (p<0.001) when compared to 

day 1 and the same significant increase was also witness on day 4 with cells 

expressing an average value of 0.66 (p<0.001).  

 

4.2.2 Human endometrial epithelial cell culture  

 
Human endometrial epithelial cells (Ishikawa) are derived from Type I Endometrial 

cancer biopsies and are commonly used for the investigation of Endometrial Cancer 

(EC). Ishikawa cells cultured in the presence and absence of collagen sources were 

assessed for cellular viability, proliferation and morphology over a 4 day period 

using In Cell microscopy. Representative images are shown in Figure 4.7, grown on 

RTCol, BGel and JCol compared to the plastic control.  

 

4.2.2.1 Cellular viability  

 
Ishikawa cell viability was assessed over a 4 day period using live/dead staining after 

culture on collagen coated plates and compared to a plastic control. In Cell 

microscopy of Ishikawa cells cultured on 24 well plates were taken on each day of 

the 4 day period and data collated, shown in Figure 4.8, with representative images 

taken on day 2 of culture.  
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Figure 4.7: Live/dead staining of Ishikawa cells. Ishikawa cells cultured on plastic 

(A), RTCol (B), JCol (C) and BGel (D) were stained using hoescht, CFSE and EthD-

2 and imaged using In Cell microscopy (x20 magnification) to assess viability over a 

period of 4 days. Individual cells were identified with hoescht nuclear stain (seen in 

blue). Live cells were identified by CFSE (depicted in green) whilst dead were 

shown by EthD-2 (depicted in red). Scale bars equal to 0.1mm.  
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Figure 4.8 : Ishikawa cell viability in coated culture vessels. Ishikawa cells seeded 

onto RTCol, JCol and BGel coated culture dishes were compared to plastic only 

control. Direct comparison is shown between the plastic control and RTCol (B); JCol 

(C); BGel (D). All data shown is from a minimum of 3 independent biological 

repeats, statistical significance shown according to a Mann Whitney U test (*p<0.05; 

**p<0.01; ***p<0.001). 

 

Representative images of Ishikawa cells taken by In Cell microscopy are shown in 

Figure 4.7. Figure 4.8 (A) shows a comparison of viability of Ishikawa cells on 
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plastic and RTCol coated plates. Cells cultured under both conditions increased in 

number over 4 days. An increase in the number of plastic cultured viable cells was 

seen on day 2 when compared to RTCol at 13,280 and 8,642 cells, respectively, 

however on day 3 and 4 RTCol cultured cells outnumbered those grown on plastic. 

These differences were not shown to be statistically significant. The number of dead 

cells between both culture conditions was similar over the course of 4 days and did 

not exhibit any significant difference with both plastic and RTCol exhibiting 140 and 

146 dead cells on day 4, respectively. Ishikawa cells grown on plastic were 

compared to cells grown on JCol to assess viability, shown in Figure 4.8 (B). The 

same trend in JCol is observed as seen in RTCol cultured cells with day 2 showing a 

lower number of viable cells when compared to plastic and day 3 and 4 showing an 

increased cell count. Count for Ishikawa cells stained for death remained similar 

across culture conditions over 4 days. Differences witnessed in cell viability between 

plastic and JCol cultured cells were not proved to be significant. Figure 4.8 (C) 

depicts comparison between BGel coated plates and plastic control. Viable cell count 

of Iskikawa cells grown on BGel is lower on day 2, 3 and 4 when compared to 

plastic cultured cells. Dead cells identified on BGel coated plates appeared to be 

significantly higher on day 3 at 173 (p=0.05) and day 4 at 258 (p=0.05) when 

compared to plastic at 98 and 140 on day 3 and day 4, respectively.  

 

4.2.2.2 Cellular morphology 

 
Cell shapes of Ishikawa cells were monitored over the culture period using a 

standard light microscope. Images taken at x10 magnification, representative images 

seen in Figure 4.9, were assessed for their circularity, using ImageJ software. A 

minimum of 30 cells were assessed from 3 independent biological repeats and used 

to collate cell shape data, depicted in Figure 4.10.  
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Figure 4.9: Ishikawa cell morphology. Ishikawa cells grown on plastic (A), RTCol 

(B), JCol (C) and BGel (D) were imaged with a light microscope (x10 magnification) 

over a 4 day culture period to assess any changed in morphology. Scale bars equal to 

0.1mm. 
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Figure 4.10 : Ishikawa cell circularity in coated culture vessels. Ishikawa cells 

seeded onto plastic (B), RTCol (C), JCol (D) and BGel (E) coated culture dishes. All 

data shown is the media +/- min/max from a minimum of 3 independent biological 

repeats, statistical significance is shown according to Mann Whitney U test 

(*p<0.05; **p<0.01; ***p<0.001).  

 

Ishikawa cells cultured on plastic for four days were assessed for their circularity and 

data collated, shown in Figure 4.10 (A). Cells maintained a similar cell circularity 

value over day 1, 2 and 3 with values of 0.59, 0.61 and 0.62, respectively. Ishikawa 

cells on day 4 possessed a significantly lower (p=0.001) circularity value of 0.57 

when compared to cells on day 1. Figure 4.10 (B) shows circularity values of cells 

cultured on RTCol. A slightly different trend is seen than when compared to cells 

grown on plastic. Day 1, 2 and 3 exhibit similar circularity values however cells on 

day 4 express a significantly higher (p=0.032) circularity value of 0.60 when 

compared to day 1 cells with circularity of 0.56. Figure 4.10 (C) shows the 

circularity of Ishikawa cells cultured on JCol coated plates over 4 days with no 

significant difference observed over the course of the culture period. Cells cultured 

on BGel, Figure 4.10 (D), expressed similar average cell values on day 1 and 2 at 
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0.57 and 0.6, respectively. Day 3 cell circularity values were shown to be 

significantly higher (p=0.001) at 0.65 when compared to day 1 whilst day 4 cells also 

showed an increased value but was not seen to be significant in comparison to day 1. 

 

4.2.3 Type II endometrial epithelial cell culture  

 
Type II EC is characterised by dedifferentiation of tissues (Yokomizo et al., 2017). 

This is observed in vitro by a heterogeneous, mixed population of cells exhibiting 

both epithelial and mesenchymal morphological features in HEC50 cells (RBGO, 

2017, data not shown). In order to assess if this is a plastic culture vessel  effect or 

indeed a cellular phenotype of type II cancer, HEC50 cells were cultured on plastic 

and compared to growth on RTCol, BGel and JCol respectively.  

 

4.2.3.1 Cellular viability  

 
Live/dead staining showed the effect of collagen coating on HEC50 cell viability 

over the 4 day culture period and compared to the plastic only control. In Cell 

microscopy images of 20 fields of view per well of HEC50 cells cultured in a 24 well 

plate on day 1, 2, 3 and 4 of the 4 day culture period. Collated live/dead staining, 

taken on day 2 of cultres, is shown in Figure 4.11.  
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Figure 4.11: Live/dead staining of HEC50 cells. HEC50 cells cultured on plastic 

(A), RTCol (B), JCol (C) and BGel (D) were stained using hoescht, CFSE and EthD-

2 and imaged using In Cell microscopy (x20 magnification) to assess viability over a 

period of 4 days. Individual cells were identified with hoescht nuclear stain (seen in 

blue). Live cells were identified by CFSE (depicted in green) whilst dead were 

shown by EthD-2 (depicted in red). Scale bars equal to 0.1mm.  

 



Chapter 4                                                                   Biocompatibility & Immunogenicity 
 

 154 

 

 
Figure 4.12 : HEC50 cell viability in coated culture vessel. HEC50 cells seeded 

onto RTCol, JCol and BGel coated culture dishes were compared to plastic only 

control. Direct comparison is shown between the plastic control and RTCol (B); JCol 

(C); BGel (D). All data shown is from a minimum of 3 independent biological 

repeats, statistical significance shown according to a Mann Whitney U test (*p<0.05; 

**p<0.01; ***p<0.001). 

 

Representative images of HEC50 cells culture on different substrates are shown in 

Figure 4.11. Figure 4.12 (A) shows cells cultured on plastic compared to RTCol 
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coated plates over 4 days. Both culture conditions show an increase in viable cell 

number over the culture period with number of cells higher in plastic on day 1 (622) 

and 2 (11082) compared to RTCol at 395 and 8297, repectively and viable cell count 

higher in RTCol coated plates on day 3 (27494) and 4 (35884) when compared to 

plastic at 17661 and 28860, respectively.  Cells stained for death had similar values 

for both culture conditions and increased over the culture period. Figure 4.12 (B) 

compared plastic control to cells cultured on JCol and Figure 4.12 (C) to BGel 

coated plates. The same trend is seen whereby a higher number of viable cells are 

seen on day 1 and 2 on plastic culture compared to JCol and BGel and a lower 

number of viable cells is observed on day 3 and day 4 on plastic when compared to 

JCol and BGel. Dead cells were seen to higher in number by day 4 of culture JCol 

and BGel at 379 and 387 cells, respectively when compared to 272 cells when 

cultured on plastic alone. Despite the difference no statistical significance was 

observed.  

 

4.2.3.2 Cellular morphology 

 
Data shown in Figure 4.13 is used to assess the morphological differentiation of 

HEC50 cells over the chosen culture period. Light microscopy was used in order to 

monitor HEC50 cell shape and morphology during the culture period of the 4 days. 

Images, shown in Figure 4.13, taken through a x10 magnification objective mounted 

in an inverted light microscope and taken on day 2 of culture were used, and cell 

boundaries defined using ImageJ. A minimum of 30 cells were identified from a 

minimum of 3 independent biological repeats and used to collate cell shape data.  
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Figure 4.13: HEC50 cell morphology. HEC50 cells grown on plastic (A), RTCol 

(B), JCol (C) and BGel (D) were imaged with a light microscope (x10 magnification) 

over a 4 day culture period to assess any changed in morphology. Scale bars equal to 

0.1mm. 
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Figure 4.14 : HEC50 cell circularity in coated culture vessels. HEC50 cells 

seeded onto plastic (B), RTCol (C), JCol (D) and BGel (E) coated culture dishes. All 

data shown is the media +/- min/max from a minimum of 3 independent biological 

repeats, statistical significance is shown according to Mann Whitney U test 

(*p<0.05; **p<0.01; ***p<0.001).  

 

Figure 4.14 (A) depicts circularity values for HEC50 cells culture upon plastic 

dishes for 4 days. Values of cell circularity on day 1, 2 3 and 4 are similar with slight 

changes at 0.61, 0.66, 0.70 and 0.68, respectively, and show no significant difference 

when compared to day 1. HEC50 cells grown on RTCol, shown in Figure 4.14 (B), 

do not follow the same trend. Cells on day 1 exhibit an average circularity value of 

0.55 but this value increases significantly on day 2 to 0.63 (p=0.004), day 3 to 0.62 

(p=0.004) and day 4 to 0.62 (p<0.001) when compared to day 1. Figure 4.14 (C) 

shows cell circularity for HEC50 cells cultured on JCol showing no significant 

difference in circularity values over the 4 day culture period when compared to day 1 

as the cells exhibit similar values at 0.58, 0.58, 0.60 and 0.57, respectively. The same 
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trend is seen in cell cultured on BGel, shown in Figure 4.14 (D) where cells on day 1 

express a circularity value of 0.62 and cells on day 2, 3 and 4 possess similar values 

of 0.62, 0.61 and 0.66, respectively, and are not shown to be significantly different 

when compared to cells at day 1.  

 

4.2.4 Bovine chondroprogenitor cell culture  

 
Regenerative medicine approaches in cartilage repair, for prevalent diseases such as 

OA, are based on the use of stem and progenitor cell populations as source for cell 

based repair mechanisms (Rohban and Pieber, 2017). Autologous repair mechanisms 

use in situ mesenchymal stem cell populations or tissue-specific chondroprogenitor 

cell populations, usually in the presence (MACI) or absence (ACI) of a collagen 

scaffold (Dunkin and Lattermann, 2013). Development of these strategies relies 

heavily on the availability and compatibility of collagen scaffold materials both as a 

scaffold for implantation and in culture to ensure the proliferation of progenitor cells 

to the required numbers needed for enhanced chondrogenesis or repair (Iwasa et al., 

2009). It is essential that these cells be close to native form during expansion to 

maintain their chondrogenic potential (Khan et al., 2009).  

 

Bovine chondroprogenitors are used to model stem cell therapies in OA repair 

strategies, to optimise proliferative and differentiation conditions in vitro, prior to 

potential implantation (Marcus et al., 2014). In order to assess the suitability of JCol 

in this process, bovine CP populations were extracted from MCP joints using an 

established differential fibronectin adhesion assay (Dowthwaite et al., 2004). Clonal 

expansion (to P4) preceded seeding onto plastic culture vessels coated with JCol. 

Once again, as a comparison RTCol and BGel were used as benchmarks for research 

and clinical grade collagen respectively. During early culture (a course of 4 days) the 

CPs were monitored for viability, proliferation and morphological transformation 

using InCell and light microscopy methods as outlined above (section 4.2.1.1).  
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4.2.4.1 Cellular viability  

 
The effect of collagen coating on bovine CPs cell viability was assessed using 

live/dead staining over a period of four days and compared to a plastic only control. 

In Cell microscopy images of 20 fields per well of CPs were taken on day 1, 2, 3 and 

4 of the culture period. Figure 4.15 shows collated live/dead staining taken on day 2.  

 

 

Figure 4.15: Live/dead staining of bovine CP cells. CP cells cultured on plastic 

(A), RTCol (B), JCol (C) and BGel (D) were stained using hoescht, CFSE and EthD-

2 and imaged using In Cell microscopy (x20 magnification) to assess viability over a 

period of 4 days. Individual cells were identified with hoescht nuclear stain (seen in 

blue). Live cells were identified by CFSE (depicted in green) whilst dead were 

shown by EthD-2 (depicted in red). Scale bars equal to 0.1mm.  

 



Chapter 4                                                                   Biocompatibility & Immunogenicity 
 

 160 

 

 
Figure 4.16 : Bovine CP cell viability in coated culture vessels. Bovine CP cells 

seeded onto RTCol, JCol and BGel coated culture dishes were compared to plastic 

only control. Direct comparison is shown between the plastic control and RTCol (B); 

JCol (C); BGel (D). All data shown is from a minimum of 3 independent biological 

repeats, statistical significance shown according to a Mann Whitney U test (*p<0.05; 

**p<0.01; ***p<0.001). 

 

Representative images, taken by InCell microscopy, and analysed for cell viability 

on plastic, RTCol, JCol and BGel coated plates are highlighted in Figure 4.15. 

Figure 4.16 (A) shows the comparison of cell viability of bovine CP cells when 

cultured on plastic and RTCol over a 4 day period. At day 1, live cell number is 

similar between both culture conditions. Both culture conditions show the same trend 
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with an increased number of cells over four days however at day 2, 3 and 4, the 

number of viable cells grown on plastic is increased compared to those grown on 

RTCol with day 4 exhibiting a total of 25,406 viable cells on plastic and 18,456 on 

RTCol coated plated. Bovine CP cell death was similar when cultured on both plastic 

and RTCol at 41 and 35 on day 4 of culture, respectively. No significant differences 

were observed in the number of live or dead cells at each day under these culture 

conditions. Bovine CPs grown on plastic and JCol were compared for cell viability, 

shown in Figure 4.16 (B). The same trend is seen where the number of viable cells 

increases whilst the number of dead cells remain similar over 4 days. JCol appears to 

have an increased number of viable cells every day with a smaller difference 

observed when compared to plastic (29,707 and 25,406 on day 4 of culture, 

respectively) however these difference were not shown to be significant. A final 

comparison to plastic was made using BGel coated plated, indicated in Figure 4.16 

(C). Viable cells grown on BGel coated plates did not see the same trend as plastic 

control, with a decrease in number seen on day 2, from 2,158 to 1,581, before 

increasing on day 3 and 4. No significant difference was observed in viable cells 

between plastic and BGel culture conditions. Similar values were observed for 

bovine CP cell death on day 2 and 4 however a significant level of cell death was 

witnessed on day 1 at 376 cells (p=0.05) and 3 at 85 cells (p=0.05) on BGel coated 

plates when compared to plastic.  

 

4.2.4.2 Cellular morphology 

 
Circularity of bovine CP cells were assessed over the course of 4 days. Data shown 

in Figure 4.17 were attained on day 2 of culture and morphology with light and cell 

boundaries defined using ImageJ. A minimum of 30 cells were identified from a 

minimum of 3 independent biological repeats and used to collate cell shape data.  
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Figure 4.17: Bovine CP cell morphology. CP cells grown on plastic (A), RTCol 

(B), JCol (C) and BGel (D) were imaged with a light microscope (x10 magnification) 

over a 4 day culture period to assess any changed in morphology. Scale bars equal to 

0.1mm. 
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Figure 4.18 : Bovine CP cell circularity in coated culture vessels. Bovine CP cells 

seeded onto plastic (B), RTCol (C), JCol (D) and BGel (E) coated culture dishes. All 

data shown is the media +/- min/max from a minimum of 3 independent biological 

repeats, statistical significance is shown according to Mann Whitney U test  

(*p<0.05; **p<0.01; ***p<0.001).  

 

Figure 4.18 (A) shows cell circularity of bovine CP cells cultured on plastic dishes 

over the course of 4 days. Cell circularity on day 1 of culture is 0.39, which 

significantly increases on day 2 (p=0.032) to 0.4. Circularity values on day 3 and 4 

show no significant difference when compared to day 1, showing bovine CPs 

maintain a similar morphology in plastic culture. Circularity of cells cultured on 

RTCol are shown in Figure 4.18 (B) and show differences from day 1, 2, 3 and 4 

with circularity values observed at 0.42, 0.41, 0.49 and 0.47 with only day 4 proven 

to be a significant increase in circularity (p=0.09) when compared to day 1. Figure 

4.18 (C) shows CPs cultured on JCol where no significant differences were observed 

between cells cultured over the course of 4 days. The same trend is seen in Figure 

4.18 (D) where cells grown on BGel coated plates show no significant difference in 

cell circularity over the culture period when compared to day 1 of culture.  
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4.2.5 In vitro immunogenicity 

 
The immunogenic response elicited by the JCol scaffold moulded in Chapter 3 was 

assayed. In order to assess the effect of JCol on platelet activation, leukocyte 

activation and cell death, a series of CD markers were identified and used to gate 

platelet, neutrophil, monocytes and T-cells by cell number (CD42B, CD11B, 

FMLPR and DRAQ7) and/or median fluorescent intensity (CD62L) respectively. In 

each instance JCol scaffolds were compared to RTCol and bovine collagen (BCol) as 

research and clinical grade collagen sources, respectively, as well as BGel as a 

negative control (denatured collagen source).  

 

EDC, used in Chapter 3, to control scaffold structural integrity and porosity has been 

shown to be toxic to cells at concentrations above 1% (Thoreson et al., 2015). In 

order to assess the effect of EDC concentration on platelet activation, leukocyte 

activation (using CD62L, CD11B, FMLPR) and cell death (DRAQ7), 0.25%, 0.5% 

and 1.0% EDC crosslinked scaffolds were assessed. Each collagen source was 

assessed at each concentration of EDC to ensure comprehensive screening and 

identify any potential issue with the crosslinker chosen.  

 

4.2.5.1 Platelet activation 

 
4 beta-phorbol-12-myristate-13-acetate (PMA), routinely used to induce platelet 

activation and subsequent shielding of CD42b in human donor models (Jerushalmy 

et al., 1988). In order to assess donor suitability for platelet activation, three donor 

blood samples were exposed to PMA (2 hours) and stained for CD42b (Figure 4.19). 

Panel A shows the scatter plot and resultant histogram from the control donor blood 

data while Panel B indicates the altered scatter graph and histogram in the presence 

of PMA. As a result of proprietary FACS analysis software (Kaluza, UK), this data is 

then collated to a scatter graph summarising the individual donor effect and median 

across donor cohort (Figure 4.19, Panel C).  
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Figure 4.19: Platelet activation in the presence and absence of PMA. Blood from 

three healthy donors was analysed FACS for CD42b expression, expressed as a 

scatter plot and histogram (A) and compared to PMA stimulated blood (B). Analysis 

of FACS data for unstimulated and stimulated blood samples were obtained with 

Kaluza (C). Data shown are individual values plotted as a dot plot with median 

values depicted as a line. No statistical comparison is conducted due to low donor 

number. 

 
Figure 4.19 (A) shows FACS scatter diagram from a single healthy volunteer 

depicting gating of platelets stained for CD42b and representative histogram showing 

platelet population within the defined gates. Figure 4.19 (B) shows FACS scatter 

diagram and histogram of a platelets from a single healthy volunteer after treatment 

with PMA depicting movement of platelets out of the predefined gates. Figure 4.19 

(C) shows individual donor variation in % gated platelets with a decreased in gated 

values being observed in the PMA treated blood samples when compared to the 

baseline.  

 

Three healthy donors were recruited to this study and their whole blood samples 

incubated in the presence and absence of the scaffold materials. Following a 2 hour 

incubation period the blood was collected, stained for CD42b (FITC) and processed 

for FACS analysis (see Figure 4.20).  
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Figure 4.20 : Platelet activation in the presence of collagen scaffold material. 

 

Following whole blood incubation from three donours, JCol platelet activation was 

compared directly to that of RTCol, BCol and BGel sources at 0.25% (A); 0.5% (B) 

and 1% (C) EDC cross linker. As a positive control PMA was used to stimulate 

platelet activation in each case. All data shown are individual values plotted as a 

scatter plot with median values depicted as a line. No direct statistical comparison is 

conducted due to the low donor number.  

 

Figure 4.20 (A) shows individual donor variation in their %-gated platelets, with one 

donor consistently showing increased platelet % following incubation with RTCol, 

BCol, JCol and BGel respectively. Despite this a clear trend observed where Jcol 

exhibits increased platelet % compared to the other collagen sources, indicating 

decreased platelet activation in this scaffold sub type, at this concentration of EDC. 

Figure 4.20 (B), which is 0.5% EDC shows a slight difference in trend where JCol 

and RTCol exhibit a similar number of % gated platelets whilst BCol and BGel 

exhibit a lower number of % gated cells indicating an increase in platelet activation 

in these latter scaffolds. Figure 4.20 (C) shows JCol exhibits an increase % number 

of platelets compared to other scaffold materials at 1% EDC crosslinker 

concentration. 

 

4.2.5.2 Leukocyte activation; innate immune response  

 
Leukocyte activation, in the form of neutrophil and monocyte recruitment to the site 

of implantation is considered an early or innate immune response (Chaplin, 2010). 
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Both cell types have been shown to shed CD62L or L-selectin and are thought to 

mediate migration and adhesion at the site of inflammation (Yang et al., 2011). In 

addition both cell types are known to express increased levels of CD11b, known to 

mediate migration and adhesion to the material or foreign/invading object (Muller, 

2013). Finally, fMLPr is used as a further marker indicative of leukocyte activation 

and cytokine release in the presence of an implanted material, with increased 

detection signifying a stronger immune cell response (Pan et al., 2000).  

 

4.2.5.2.1 LPS established baseline  

 
LPS is a known stimulant of the human immune system, used as a positive control to 

demonstrate active immune cells during in vitro immunogenic screening (Alexander 

and Rietschel, 2001). In order to establish the immune response capability of each 

donor, LPS was added for a 2 hour period prior to whole blood staining for CD62L, 

CD11b and fMLPr.  In the presence of CD62L, CD11b and fMLPr staining, 

neutrophil and monocyte cells were identified from the FACS trace by gating 

according to CD15+ and CD14+ mean fluorescent staining respectively, as used by 

Radley and colleagues (Radley et al., 2017). Figure 4.21, shows the neutrophil 

(CD15+) specific CD62L, CD11b and fMLPr stimulation in the presence of LPS. 



Chapter 4                                                                   Biocompatibility & Immunogenicity 
 

 168 

 
 
Figure 4.21: LPS induced donor specific neutrophil cell response. Whole blood 

samples were stained for CD62L, CD11b and fMLPr to indicate neutrophil specific 

response in the presence of LPS. Specific neutrophil responses were identified using 

cell type specific stains CD15+. Panels A, B and C indicate the CD62L, CD11b and 

fMLPr neutrophil specific response as a FACS scatter graph compared to control and 

Kaluza analysed summation respectively. All data shown as individual scatter 

readings or summarised donor cohort.  

 

Figure 4.21 (A) shows FACS scatter graphs depicting the change in gating of 

neutrophils (CD15+) stained for CD62L from unstimulated and LPS stimulated 

blood from a single healthy donor. Data from three healthy patients were summated 

in a dot plot showing individual donor variation in their median fluorescence 

intensity and shows that LPS stimulated blood shows a decrease in median 

fluorescence intensity of CD62L when compared to baseline unstimulated blood. 
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Figure 4.21 (B) shows the change in gating of neutrophils stained for CD11b from a 

single healthy donor, depicted as a FACS scatter graph. Summarised data from three 

healthy donors is shown in the dot plot expressing individual donor variation in % 

gated cells, with LPS stimulated blood exhibiting an increase in % gated cells 

expressing CD11b when compared to unstimulated blood. Figure 4.21 (C) shows 

FACS scatter graphs depicting the change in gating for fMLPr stained neutrophils 

from unstimulated and stimulated blood. Individual donor variation in % gated cells 

from three healthy donors shows a small decrease in the % gated neutrophils 

expressing fMLPr when compared to unstimulated blood.   
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Figure 4.22: LPS induced donor specific monocyte cell response. Whole blood 

samples were stained for CD62L, CD11b and fMLPr to indicate monocyte specific 

response in the presence of LPS. Specific neutrophil responses were identified using 

cell type specific stains CD15+. Panels A, B and C indicate the CD62L, CD11b and 

fMLPr neutrophil specific response as a FACS scatter graph compared to control and 

Kaluza analysed summation respectively. All data shown as individual scatter 

readings or summarised donor cohort.  

 

Figure 4.22 (A) shows a change in gating of monocytes (CD14+) stained for CD62L 

from unstimulated and LPS stimulated blood. Data from three donors were 

summarised as a dot plot exhibiting individual donor variation in median 

fluorescence intensity, with LPS stimulated blood showing a decrease in median 

fluorescence intensity of CD62L when compared to baseline blood. Figure 4.22 (B) 

shows FACS scatter graphs depicting the change in gating of monocytes stained for 
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CD11b. Data from three donors were summated in a dot plot showing individual 

donor variation in % gated cells and shows that LPS stimulated blood has an 

increased number of % gated monocytes expressing CD11b when compared to the 

unstimulated counterpart. Figure 4.22 (C) depicts the change in gating of monocytes 

related to their expression of fMLPr from a single donor. A dot plot collated from 

three donors shows individual donor variation in % gated cells and shows a decrease 

in the % gated monocytes expressing fMLPr in LPS stimulated blood when 

compared to unstimulated blood samples.  

 

4.2.5.2.2 Neutrophil specific activation  

 
Whole blood from the three donors was then exposed to the RTCol, BCol, JCol and 

BGel scaffolds over a period of 2 hours, prior to collection, staining with CD62L, 

CD11b as well as fMLPr and counter stained with CD15+ to identify specific 

neutrophil activation. Data shown in Figure 4.23 depicts the donor cohort median 

activation for neutrophil specific CD62L, CD11b and fMLPr activation in the 

presence of 0.25, 0.5 and 1.0% EDC cross linker (Figure 4.23).  
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Figure 4.23: Neutrophil activation in the presence of collagen scaffolds. Specific 

neutrophil (CD15+) activation was detected through levels of CD62L (A); CD11b 

(B) and fMLPr (C), following a 2 hour incubation with RTCol, BCol, JCol and BGel 

scaffolds respectively. All marker stains were also analysed as a function of EDC 

cross link percentage and are shown here as three panels, (i 0.25%), (ii 0.5%) and (iii 

1%). All data shown as summarised donor cohort responses following Kaluza 

collation; median value depicted a line in each variable and sample type. 

 

Figure 4.23 (Ai) shows individual donor variation in their median fluorescence 

intensity following incubation with RTCol, BCol, JCol and BGel at 0.25% 

crosslinking concentration. RTCol exhibits a higher median fluorescence intensity 

value than when compared to other scaffold material, indicating decreased shedding 

of CD62L in blood incubated with RTCol at this EDC concentration. Figure 4.23 
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(Aii), at 0.5% EDC, shows a difference in trend where RTCol and BGel exhibit 

similar values in median fluorescence intensity whilst a decreased median 

fluorescent intensity is observed in BCol and JCol samples. Figure 4.23 (Aiii) shows 

RTCol, BCol and JCol to have similar median fluorescence intensity values whilst 

BGel exhibits a decrease in value at 1% EDC concentration. Figure 4.23 (Bi) shows 

donor variation in % gated neutrophils showing an increase in neutrophil percentage 

following incubation with RTCol, BCol, JCol and BGel, respectively. A trend is 

observed where RTCol exhibits a lower number of % gated neutrophils expressing 

CD11b when compared to BCol, JCol and BGel at 0.25% EDC concentration 

indicating decreased neutrophil activation for this specific scaffold material. Figure 

4.23 (Bii) shows BCol and JCol have similar % gated neutrophils, which are 

increased when compared to RTCol and BGel at 0.25%. Figure 4.23 (Biii) shows % 

gated neutrophils expressing CD11b following incubation with scaffolds at 1% EDC 

concentration. A similar trend is observed where RTCol exhibits a decreased number 

of % gated neutrophils when compared to BCol, JCol and BGel. Figure 4.23 (Ci) 

shows individual donor variation in in % gated neutrophils stained for fMLPr 

following incubation with RTCol, BCol, JCol and BGel at 0.25% crosslinker 

concentration. A trend is observed where RTCol and JCol exhibit a decreased % 

gated neutrophils when compared to BCol and BGel, indicating an increase in 

neutrophil activation in the former scaffold subtypes at this concentration. Figure 

4.23 (Cii) shows a difference in trend with RTCol and BCol showing increased % 

gated neutrophils when compared to JCol and BGel counterparts at 0.5% crosslinker 

concentration. Figure 4.23 (Ciii) depicts % gated neutrophils expressing fMLPr 

following incubation with scaffolds crosslinked with 1% EDC. At this concentration 

RTCol and BGel show a decreased in % gated neutrophils in comparison to BCol 

and JCol, indicating the former scaffold materials have an increase in neutrophil 

activation. 

 

4.2.5.2.3 Monocyte specific activation  

 
Donor whole blood exposed to RTCol, BCol, JCol and BGel scaffolds (2 hours) 

were stained with CD62L, CD11b as well as fMLPr and counter stained with CD14+ 

to identify specific monocyte activation, with all data depicted in Figure 4.24. 
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Figure 4.24: Monocyte activation in the presence of collagen scaffolds. Specific 

monocyte (CD14+) activation was detected through levels of CD62L (A); CD11b 

(B) and fMLPr (C), following a 2 hour incubation with RTCol, BCol, JCol and BGel 

scaffolds respectively. All marker stains were also analysed as a function of EDC 

cross link percentage and are shown here as three panels, (i 0.25%), (ii 0.5%) and (iii 

1%). All data shown as summarised donor cohort responses following Kaluza 

collation; median value depicted a line in each variable and sample type. 

 

Figure 4.24 (Ai) shows variation between individual donors in median fluorescence 

intensity after incubating blood with scaffolds fabricated from RTCol, BCol, JCol 

and BGel crosslinked at 0.25%. When compared to other scaffold subtypes, RTCol 

exhibits increased median fluorescence intensity for CD26L indicating a decrease in 

monocyte activation compared to other tested materials at this crosslinker 
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concentration. Figure 4.24 (Aii) shows median fluorescence intensity of monocytes 

stained for CD62L at 0.5% EDC concentration. A change in trend is observed with 

RTCol, BCol and JCol expressing lower median fluorescence intensity values that 

BGel. Figure 4.24 (Aiii) shows a difference in trend again with RTCol and BCol 

expressing similar median fluorescence intensity values whilst JCol and BGel 

express similar, increased median fluorescence intensity values at 1% EDC 

concentration, indicating and increase in monocyte activation in the former scaffold 

materials. Figure 4.24 (Bi) shows individual donor variation in % gated monocytes 

stained for CD11b following incubation with RTCol, BCol, JCol and BGel. At 

0.25% EDC concentration, BCol exhibits the highest value of % gated monocytes 

when compared to other scaffold materials whilst RTCol shows the lowest % gated 

monocytes. Figure 4.24 (Bii) shows a similar trend at 0.5% EDC concentration with 

BCol exhibiting increased % gated, RTCol and BGel showing similar values and 

JCol exhibiting the lowest % gated monocytes indicating that JCol has a decreased 

level of monocyte activation compared to its counterparts. Figure 4.24 (Biii) shows 

% gated monocytes expressing CD11b following incubation with scaffolds at 1% 

EDC concentration. RTCol exhibits a decreased number of % gated monocytes when 

compared to BCol, JCol and BGel. Figure 4.24 (Ci) shows % gated monocytes 

stained for fMLPr following incubation with RTCol, BCol, JCol and BGel at 0.25% 

EDC concentration. A trend is observed where RTCol, BCol and JCol similar 

increased expression in % gated monocytes when compared to BGel. Figure 4.24 

(Cii) shows a difference in trend where BCol expresses and increased % gated 

monocytes, BCol and JCol exhibit similar values and RTCol exhibits the lowest 

value of % gated monocytes stained for CD11b at 0.5% crosslinker concentration. 

Figure 4.24 (Ciii) depicts % gated monocytes expressing fMLPr following 

incubation with scaffolds crosslinked with 1% EDC. At this concentration a change 

in trend occurs once again with BCol, JCol and BGel expressing similar increase 

values in % gated monocytes compared to RTCol at this crosslinker concentration. 

  



Chapter 4                                                                   Biocompatibility & Immunogenicity 
 

 176 

4.2.5.3 Leukocyte activation; adaptive immune response  

 
Leukocyte activation, in the form of T-cell recruitment to the site of implantation is 

considered a later, or adaptive immune response (Chaplin, 2010). T-cells function to 

recognise antigens bound to major histocompatibility (MHC) molecules to help 

discriminate from non-self (Kennedy, 2010). CD62L, CD11B and fMLPr are also 

accepted markers for T cell activation and are monitored here in T-cells specifically 

through counter staining using antibodies (APC-Vio770) to identify CD3+ cells.  

 

In order to establish the capability of the specific T cell populations in the peripheral 

blood donor cohorts, CD62L, CD11B and fMLPr expression was monitored 

following LPS incubation (2 hours). Following the establishment of this baseline 

response (shown in Figure 4.25), the scaffold materials were each assessed for T-cell 

activation profiles. 
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Figure 4.25: LPS induced donor specific T-cell responses. Whole blood samples 

were stained for CD62L, CD11b and fMLPr to indicate T-cell specific response, 

using CD3+ stains in the presence of LPS. Panels A, B and C indicate the CD62L, 

CD11b and fMLPr T-cell specific response as a FACS scatter graph compared to 

control and Kaluza analysed summation respectively. All data shown as individual 

scatter readings or summarised donor cohort.  

 

Figure 4.25 (A) depicts a change in gating of T-cells (CD3+) stained for CD62L 

from unstimulated and LPS stimulated blood from a single healthy donor. Data from 

three healthy donors were summated in a dot plot showing individual donor variation 

in their median fluorescence intensity and show LPS stimulated blood has a 

decreased median fluorescence intensity of CD62L when compared to baseline, 

unstimulated blood. Figure 4.25 (B) shows a change in gating for T-cells stained for 
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CD11b from a single healthy donor. Data summated in a dot plot showing individual 

donor variation in % gated T-cells shows similar values between that of unstimulated 

and LPS stimulated blood. Figure 4.25 (C) shows FACS scatter plots depicting the 

change in gating for fMPLr stained T-cells from unstimulated and LPS stimulated 

blood. Individual donor variation in % gated from three healthy donors shows a 

decrease in % gated T-cells expressing fMLPr in LPS stimulated blood when 

compared to the unstimulated control.  

 

 

Figure 4.26, shows the T-cell specific response (CD3+) through CD62L, CD11b and 

fMLPr stimulation in the presence of RTcol, BCol, JCol and BGel in turn, across the 

three EDC % cross linking concentrations respectively.   
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Figure 4.26: T-cell activation in the presence of collagen scaffolds. Specific T-cell 

activation was detected through levels of CD62L (A); CD11B (B) and FMLPr (C), 

following a 2hr incubation with RTCol, BCol, JCol and BGel scaffolds respectively. 

All marker stains were also analysed as a function of EDC crosslink percentage and 

are shown here as three panels, (Ai 0.25%), (Aii 0.5%) and (Aiii 1%). All data 

shown as summarised donor cohort responses following Kaluza collation; median 

value depicted a line in each variable and sample type. 

 

Figure 4.26 (Ai) shows individual donor variation in their median fluorescence 

intensity following incubation with RTCol, BCol, JCol and BGel at 0.25% 

crosslinking concentration. RTCol, JCol and BGel exhibit similar values for T-cell 

median fluorescent intensity whilst BCol exhibits decreased median fluorescence 

intensity when compared to the other scaffold materials. At 0.5% EDC 

concentration, Figure 4.26 (Aii), there is a change in trend with BCol, JCol and 

BGel expressing similar median fluorescence intensity values and RTCol showing 
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decreased median fluorescence intensity for CD62L indicating T-cell activation in 

the latter material compared to other subtypes. Figure 4.26 (Aiii) shows BCol and 

JCol exhibit similar decreased median fluorescence intensity than RTCol and BGel 

at 1% EDC concentration. Figure 4.26 (Bi) shows individual donor variation in % 

gated T-cells stained for CD11b, with one donor consistently showing increased 

platelet % following incubation with RTCol, BCol, JCol and BGel at 0.25% EDC 

concentration. A trend is established with RTCol, BCol, JCol and BGel % gated T-

cells exhibit similar low values. Figure 4.26 (Bii) shows the same trend with all 

scaffold materials showing decreased % gated T-cells stained for CD11b at 0.5% 

EDC concentration. Figure 4.26 (Biii) shows the same trend at 1% EDC 

concentration where RTCol, BCol, JCol and BGel express a similar, low % gated T-

cell population. Figure 4.26 (Ci) shows individual donor variation in % gated T-cells 

stained for fMLPr following incubation with RTCol, BCol, JCol and BGel at 0.25% 

crosslinker concentration. A trend is seen where RTCol, BCol and JCol express 

similar % gated T-cells whilst BGel exhibits increased % gated T-cells stained for 

fMLPr. This trend is seen again at 0.5% EDC concentration (Figure 49 Cii) and at 

1% EDC concentration (Figure 4.26 Ciii). 

 

4.2.5.4 Leukocyte cell death   

 
The initiation of the immune system in response to a biomaterial leads to the 

activation of various different cell types. Immobilised platelets recruit neutrophils 

and monocytes, which in turn activate and recruit T-cells to the surface of the 

biomaterial. This build up of cells can induce cell death causing a defective cellular 

immune response (Radley et al., 2017). DRAQ7 is an anthracycline derivative that 

exclusively stains dead cells, capitalising on membrane permeability and binding to 

nuclear DNA (Akagi et al., 2013). 

 

In order to establish whether scaffold materials at any given EDC concentration were 

causing excessive cell death, blood samples were stained with DRAQ7 following 

incubation with RTCol, BCol, JCol and BGel. A baseline was established with the 

use of healthy donor blood and LPS stimulated blood, seen in Figure 4.27.  
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Figure 4.27: LPS induced specific cell death. Whole blood samples were stained 

with DRAQ7 to indicate cell death in the presence and absence of LPS stimulation. 

LPS stimulated cellular response is shows as a flow cytometric histogram compared 

to control and Kaluza analysed summation for neutrophils (A), monocytes (B) and T-

cells (C), respectively. All data shown as individual readings or summarised donor 

cohort.   

 

Figure 4.27 (A) shows a change gating in neutrophil (CD15+) stained for DRAQ7 

from a single healthy donor in the presence and absence of LPS stimulation showing 

a broader peak with LPS stimulation indicative of cell death. Data from three healthy 

donors were summated in a dot plot showing individual donor variation in their % 

gated neutrophils. Increased % gated neutrophils are seen in LPS stimulated samples 

compared to control. Figure 4.27 (B) shows a histogram depicting a change in gating 

of monocytes stained with DRAQ7 in the presence and absence of LPS. A shift in 
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the gating is seen towards the left indicating cell death in LPS treated blood. 

Summated data from three patients shows an increase in % gated monocytes in 

stimulated blood compared to its unstimulated counterpart. Figure 4.27 (C) exhibits 

the same trend when observing T cells (CD3+). Flow histograms show a change in 

gating indicative of increased cell death when observing a single healthy patient after 

treatment with LPS. A dot plot accounting for individual donor variation in % gated 

T-cells stained for DRAQ7 shows and increased percentage when comparing LPS 

stimulated blood to unstimulated baseline blood.  

 

Figure 4.28, shows the neutrophil (CD15+), monocyte (CD14+) and T-cell (CD3+) 

specific cell death response through DRAQ7 staining in the presence of RTcol, 

BCol, JCol and BGel in turn, across the three EDC % cross linking concentrations 

respectively.  
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Figure 4.28: Leukocuyte cell death in the presence of scaffold structures. 

Leukocyte cell death in the presence of scaffold structure (A) neutrophils (B) 

monocytes (C) T cells 

 

Figure 4.28 (Ai) shows individual donor variation in % gated neutrophils following 

incubation with RTCol, BCol, JCol and BGel at 0.25% crosslinker concentration. A 

trend if observed in which there is an increasing value in % gated neutrophils 

expressing DRAQ7 from RTCol, BCol, JCol and BGel, respectively, and BGel 

showing the more increased value. Figure 4.28 (Aii) shows a difference in trend 

with one donor consistently showing increased % gated neutrophils at 0.5% EDC 

concentration however median values of all scaffold sub types are similar. Figure 

4.28 (Aiii) shows BCol exhibiting increased % gated neutrophils expressing DRAQ7 

when compared to other scaffold materials at 1% EDC concentration. Figure 4.28 
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(Bi) shows increased % gated monocytes stained for DRAQ7 in BCol culture when 

compared to other materials at 0.25% EDC concentration. Figure 4.28 (Bii) depicts 

similar % gated monocyte values for RTCol, BCol and JCol at whilst an increased % 

gated monocyte value is seen for BCol at 0.5% EDC concentration. A slight change 

in trend is seen at 1% EDC crosslinking concentration, depicted in Figure 4.28 (Biii) 

with similar % gated values seen for RTCol, BCol, JCol whilst increased % gated 

value is seen for BGel at this concentration. Figure 4.28 (Ci) shows individual donor 

variation in % gated T cells stained for cell death with DRAQ7 following incubation 

with scaffolds crosslinked at 0.25%. A trend is observed where BCol has increased 

% gated monocytes compared to other scaffold subtype that exhibit similar, lower 

values. The same trend is observed in Figure 4.28 (Cii) where BCol has increased % 

gated T cells compared to all other scaffold materials tested. Figure 4.28 (Ciii) 

shows a change in trend at 1% crosslinker concentration where RTCol and BGel 

have similar decreased % gated T cells when compared to BCol and JCol at this 

concentration.  

 

4.2.5.5 Cytokine release profile 

 
Cytokines, released upon activation of immune cells, are key modulators in 

inflammation and can be categorised as either pro-inflammatory or anti-

inflammatory (Turner et al., 2014). In order for the immune system to function in an 

orderly manner, cytokine release is regulated in cascades responding to initial 

inflammatory response followed by another cascade in order to allow for the reaction 

to subside (Lacy and Stow, 2011).  

 

4.2.5.5.1 Pro-inflammatory cytokine – interleukin 6 

 
Interleukin 6 (IL-6) is seen as a pro-inflammatory cytokine that is involved in the 

activation of the immune system (Scheller et al., 2011). Although IL-6 plays a 

prominent role in immune initiation it is also prevalent in chronic disease showcasing 

its role in both acute inflammation during innate immune response and in the 

development of the humoral response including T cell activation (Gabay, 2006). In 

order to establish if RTCol, BCol, JCol and BGel scaffolds crosslinked at varying 
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concentrations released an increased concentration of IL-6, blood from healthy donor 

volunteers was incubated with scaffolds for a 2 hour period before further 24 hour 

incubation with media in the presence and absence of LPS. Following centrifugation 

to obtain blood serum an IL-6 ELISA was run to create a release profile for each 

material.  

 

 
Figure 4.29: IL-6 release profile in the presence of scaffolds. Whole blood serum 

samples incubated in media in the absence (A, C, E) and presence of LPS (B, D, F) 

was subjected to ELISA to obtain concentration of IL-6 released. All data shown is 

the standard deviation from a minimum of 3 independent biological repeats, 

statistical significance shown according to a paired Mann Whitney U test (*p<0.05; 

**p<0.01; ***p<0.001). 
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Figure 4.29 (A) and (B) show the IL-6 concentration for scaffolds crosslinked at 

0.25% EDC concentration from unstimulated and stimulated samples, respectively. 

In unstiumlated culture conditions (A), RTCol, BCol, JCol and BGel all show a 

significant (p<0.001) increase in the average IL-6 concentration in blood serum after 

24-hour incubation when compared to baseline donor blood samples. The addition of 

LPS to culture conditions (B) sees a change in trend where RTCol shows no 

significant difference in IL-6 concentration compared to baseline blood whereas 

BCol and BGel both show a significant increase (p=0.020 and p=0.002) and JCol 

exhibits a further significant difference (p<0.001) at this crosslinking concentration. 

Figure 4.29 (C) shows IL-6 concentration for scaffolds crosslinked at 0.5% EDC 

concentration in the absence of LPS. At this concentration RTCol shows no 

significant difference in IL-6 levels when compared to baseline blood however, BCol 

(p<0.001), JCol  (p<0.001) and BGel (p=0.028) all display significant increase in 

their IL-6 concentration when compared to blood incubated in the absence of a 

scaffold. Figure 4.29 (D) displays data from the LPS stimulated samples crosslinked 

at 0.5% EDC and show a similar trend to the unstimulated counterpart. Once again it 

is observed that RTCol has no significant difference in IL-6 concentration when 

compared to baseline blood samples whilst BCol (p=0.005), JCol (p=0.002) and 

BGel (p=0.029) all display a significant increase in IL-6 concentration following 24-

hour incubation. Figure 4.29 (E) depicts IL-6 concentration in blood serum samples 

following incubation of scaffolds crosslinked with 1% EDC. At this concentration 

both RTCol and BGel show no significant difference in concentration when 

compared to baseline blood samples however BCol (p<0.001) and JCol (p=0.036) 

exhibit significant increased levels of IL-6. Figure 4.29 (F) shows IL-6 

concentration of blood serum samples in the presence of LPS and displays a 

difference in trend with RTCol (p<0.001) and BCol (p=0.012) showing a significant 

increase in concentration whilst JCol and BGel show no significant difference when 

incubated with scaffolds at 1% EDC concentration.  

 

4.2.5.5.2 Anti-inflammatory cytokine – interleukin 10 

 
Interleukin 10 (IL-10) is a potent anti-inflammatory cytokine that inhibits specific 

immune specific cells limiting the damage sustained by tissues (Couper et al., 2008). 
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IL-10 is produced by nearly all leukocytes including monocytes, macrophages and T 

cells. The interaction of IL-10 with other anti-inflammatory molecules enables the 

inhibition of allergic responses as well as enhancing the regulatory function of T 

cells (Iyer and Cheng, 2012). All scaffolds crosslinked with 0.25%, 0.5% and 1% 

EDC were incubated with human blood for 2 hours before transferring blood to 

media in the presence and absence of LPS for a further 24 hour incubation period. 

On completion of incubation, blood serum was collected and subjected to ELISA to 

obtain IL-10 concentrations and create a release profile.  
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Figure 4.30: IL-10 release profile in the presence of scaffolds. Whole blood serum 

samples incubated in media in the absence (A, C, E) and presence of LPS (B, D, F) 

was subjected to ELISA to obtain concentration of IL-6 released. All data shown is 

the standard deviation from a minimum of 3 independent biological repeats, 

statistical significance shown according to a paired Mann Whitney U T test 

(*p<0.05; **p<0.01; ***p<0.001). 

 

Figure 4.30 (A) depicts IL-10 concentration in blood serum samples following 

incubation of scaffolds crosslinked with 0.25% EDC in the absence of LPS. At this 

EDC concentration no significant difference was observed with any scaffold material 

(RTCol, BCol, JCol and BGel) when compared to baseline blood samples. Figure 

4.30 (B) shows IL-10 concentration of blood serum samples in the presence of LPS 

and displays a difference in trend with RTCol (p=0.012), JCol (p=0.003) and BGel 

(p>0.001) exhibiting a significant increase in the serum IL-10 concentration whilst 
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BCol showed no significant difference in comparison with baseline LPS stimulated 

blood. Figure 4.30 (C) and 4.30 (D) show the IL-10 concentration for scaffolds 

crosslinked at 0.5% EDC concentration from unstimulated and stimulated samples, 

respectively. In unstiumlated culture conditions (C), BCol, JCol and BGel all no 

significant difference in IL-10 concentration after 24-hour incubation when 

compared to baseline donor blood samples, whilst RTCol appears to show a 

significant decrease in IL-10 concentration (p=0.033). The addition of LPS to culture 

conditions (D) sees a change in trend where JCol exhibits no significant difference 

when compared to baseline blood but RTCol (p=0.019), BCol (p=0.045) and BGel 

(p<0.001) display significant increase in IL-10 concentration levels compared to 

baseline. Figure 4.30 (E) shows IL-10 concentration for scaffolds crosslinked at 1% 

EDC concentration in the absence of LPS. At this concentration BCol, JCol and 

BGel display no significant difference in serum IL-10 concentration when compared 

to the baseline sample whilst RTCol exhibits a significant decrease in IL-10 

concentration (p=0.031). Figure 4.30 (F) displays data from the LPS stimulated 

samples crosslinked at 1% EDC and show a similar trend to the unstimulated 

counterpart. At this concentration, when compared to baseline samples, RTCol 

exhibits no significant difference whereas BCol (p=0.023). JCol (p=0.004) and BGel 

(p<0.001) exhibit a significant increase in IL-10 concentration when compared to 

baseline blood following incubation.  

 

4.3 Discussion 

 
Following successful scalable isolation of JCol solutions in Chapter 3, the objective 

of this chapter was to assess JCol biocompatibility. Defined as the ability of a 

material to perform with an appropriate host response, JCol biocompatibility was 

assessed here in two ways. Firstly in assessing its effect on cellular viability and 

phenotypic stability using a host of human cancer cell lines and progenitor 

populations isolated from bovine donors. Secondly, JCol biocompatibility was 

assessed in terms of inducing a potential human immunogenic response, assaying for 

in vitro effects of JCol sponge scaffolds on peripheral blood mononuclear cells 

(PBMC) isolated from healthy human donors. JCol solution coated cell culture 

plastics demonstrated compatibility with human derived functional epithelial and 

mesenchymal cell line populations, maintaining cellular viability, proliferation rate 
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and morphology in short term culture. No adverse affects were witnessed in 

comparison to mammalian sources of research grade collagen. Similarly, no 

significant activation of isolated PBMC cells were observed across a spectrum of 

innate and adaptive immune cells, in an in vitro immunogenicity model. 

Significantly, in line with the initial inflammatory response observed in the critical 

first 1-7 days post biomaterial implantation, PBMC cell cytokine release profiles in 

the presence of JCol scaffolds were found to be comparable to commercial bovine 

collagen sources. These results indicate that jellyfish derived collagen solutions are 

compatible with both coated plate cell culture and potential regenerative medicine 

approaches. 

 

Cell culture support matrix 

 

The ECM is a dynamic structure that is intimately linked to cellular behaviour such 

as proliferation, morphology and viability (Liberio et al., 2014). Integrins expressed 

by cells allow for the attachment of cells to ECM components, such as collagen, 

generating intercellular signalling cascades that control gene expression patterns. The 

microenvironment in which a cell exists therefore is an important determinant of it’s 

functional development (Damsky and Ilic, 2002). Isolated ECM components such as 

collagen, elastin, fibronectin, laminin, vitronectin and even ECM peptides have been 

used in tissue culture to better mimic in vivo cell behaviour (Liberio et al., 2014).  

 

Collagen, as the main component of connective tissue, has become an integral 

addition to cell culture practices for basic coating and gel preparations, enabling 

attachment cells to be grown (Somaiah et al., 2015b). Collagen coated tissue culture 

plates are used for cell attachment, growth and differentiation for many cell 

applications, providing rapid cell attachment, rapid recovery and healthy cell growth 

(Cooke et al., 2008). These plates are found in research labs for projects such as 

controlled differentiation of human embryonic stem cells and induced pluripotent 

stem cells into cells that resemble adult mesenchymal stem cells (Liu et al., 2012).  

 

The influence of JCol on cellular function was initially tested here, in a ‘pseudo’ 3D 

environment. Routine tissue culture plastics were coated with JCol using methods 

previously employed by Sewing and colleagues (Sewing et al., 2017). Both the 
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epithelial and mesenchymal cells grown on the JCol lawns adhered, proliferated and 

exhibited a wide distribution of cellular shape, indicative of biocompatible substrate. 

This may be due in part, to the non-mammalian peptide presentation (shown in 

Chapter 3) and or potential variations in triple helical structure, once again observed 

in Chapter 3, albeit in a sponge scaffold confirmation.  The structure of collagen 

coated onto plates, both from the collagen source and the method of coating, has 

been shown to play an important role in material driven cell responses (Plant et al., 

2009). Denatured collagen binds cells via the αvβ3 integrin through recognition of 

the RGD peptide (Elliot et al., 2005). Cell response on denatured collagen has shown 

to have spread morphology and develop actin stress fibres compared to intact fibrillar 

collagen (Plant et al., 2009).  

 

Epithelial cells are attached to the basement membrane, which signals for cell 

survival, proliferation and differentiation as well as cues that enable the cells to 

establish polarity (Lee and Streuli, 2014). Loss of cell polarity is associated with 

tumour initiation and is thought to be due, in part, to defective ECM turnover (Lee 

and Vasioukhin, 2008). Data obtained from R. pulmo collagen coated plates show 

that epithelial cancer cells remain viable and retain their proliferative capacity over a 

4-day culture period. More importantly, using shape index as an indicator, the 

morphology of multiple cell types were seen to remain stable over the culture period. 

The importance of collagen binding motifs in cancer is highlighted by research that 

shows that vinculin may be important in the suppression of tumour metastasis as it 

reduces cell motility (Goldmann et al., 2013).  Cell migration relies upon contractile 

forces and causes the alteration of cell shape to a more elongated form allowing 

movement through pores (Friedl and Gilmour, 2009). 

 

The effect of collagen coating on cellular function may also be dependent on the time 

of cells cultured on the material. In vitro culture of cancer stem cells (CSCs) from 

cancers such as breast, ovarian and colon has been established using serum-free 

media, changing their anchorage-dependent nature to non-adherent and causing 

CSCs to form 3D spheroids (Arab-Bafrani et al., 2016). The culture of CSCs on 

collagen type I coated substrates has shown phenotypic maintenance of cells and 

increased expression of the CSC characteristic surface marker CD133 (Kirkland, 

2009). Whilst lymphnode carcinoma of the prostate (LNCaP) cells, a prostate cancer 
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cell line, were shown to display a round morphology and aggregate on collagen IV-

coated cultures however they exhibited lower cell viability when compared to 

laminin, fibronectin and poly-amino acid coating (Liberio et al., 2014). On the other 

hand, bone marrow derived MSCs showed enhanced proliferation, cell adhesion and 

viability on collagen I culture dishes compared to traditional tissue culture plastic 

(Somaiah et al., 2015a). 

 

Cells adhere to the ECM via large protein complexes termed focal adhesions 

(Maziveyi and Alahari, 2017). Actin filaments of stress fibres are found attached to 

the β subunits of integrins via adapter proteins such as vinculin and vimentin (Lodish 

et al., 2000b). The clustering of integrins forms focal adhesions with the connection 

between ECM and cells allowing for signals to be bidirectionally transmitted 

(Radinsky et al., 2002). HESC cells were the only cells to exhibit a significantly 

rounder morphology on day 3 and 4 all coated plates when compared to day 1. This 

may be due to a high cell density within the individual well rather than an effect of 

collagen coating. Human MSCs have been shown to take on a round morphology at 

higher cell densities even when seeded on soft substrates leading to the belief that 

cell morphology is governed not only by cell-matrix interactions but also cell-cell 

interactions (Venugopal et al., 2018). Pseudo 3D models produced by collagen 

coating have also been found to induce apical-basal polarity, which does not 

naturally occur in all cell types and therefore may change cell spreading and 

migration which may be another reason why HESC cells exhibited changes in 

morphology (Duval et al., 2017).  

 

Chondrocytes undergo dedifferentiation during in vitro expansion exhibiting 

fibroblast morphology and altering collagen expression from type II to type I (Lee et 

al., 2017). The differentiation potential of these cells is lost with the increasing 

number of passages, which is needed in order to obtain the high cell number needed 

for cartilage repair strategies (Mark et al., 1977). R. esculentum collagen was been 

used to coat plates and assess the phenotypic stability of chondrocytes. Porcine 

chondrocytes were found to maintain the characteristic ovoid morphology showing 

that jellyfish derived collagen behaved in a similar fashion to vertebrate collagen 

type II in the stability of cell morphology (Sewing et al., 2017). Van den Dolder and 

Jansen worked on the culture of rat bone marrow derived cells on collagen-coated 
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titanium meshes and found that cells decreased proliferation and stimulated 

osteoblastic differentiation compared to uncoated titantium mesh (Dolder and Jansen, 

2006). Other studies have demonstrated that collagen-coated microcarriers enhance 

cell attachment and can maintain long term expansion of embryonic stem cells 

(McKee and Chaudhry, 2017a). 

 

Culture of cells in 2D for in vitro expansion and analysis can often alter the function 

of cells. Primary human hepatocytes have been shown to lose hepatic function hours 

after 2D culture in vitro (Bell et al., 2018), embryonic stem cells (ESCs) have 

exhibited altered shape and gene expression (McKee and Chaudhry, 2017b) and 

pluripotent stem cells grown in collagen-coated culture flasks cause undesired 

gradients in media components, gas and waste (Kropp et al., 2017). Culture of cells 

on collagen coating may be improved by the addition of other ECM proteins to 

enhance biological complexity and better mimic the native 3D environment however 

this was beyond the scope of the project (Grun et al., 2009).  

 

JCol in vitro immunogenicity 

 

The immune response is a sophisticated biological reaction to foreign bodies 

(Andorko and Jewell, 2017). Divided into two phases, innate immunity is a rapid 

response involving leucocytes and cytokines whilst adaptive immunity requires T 

and B lymphocytes that can take days or weeks to develop (Parkin and Cohen, 2001). 

Biomaterials used for scaffold fabrication must not only have an architecture and 

mechanical integrity conducive for cell growth and differentiation but also avoid the 

elicitation of an immune response (Brown and Badylak, 2014). The failure of a 

scaffold to integrate into native tissue due to an adverse immune response can cause 

inflammation, infection and potentially necrosis of the tissue (Velnar et al., 2016).  

 

Animal models are routinely used in the development of constructs for tissue 

engineering; both in primary experiments and stages before clinical application 

(Zorlutuna et al., 2013). Immunogenicity testing is typically carried out using mice 

however these animals are too small to properly evaluate the tissue that is formed so 

larger animals such as rabbits should instead be used for analysis of regenerated 

tissue formation (Ikada, 2006). The use of animal models does however raise ethical 
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issues with researchers having to justify the use of animals by the purpose of the 

research having a clear significance to increasing scientific knowledge (Ghasemi and 

Dehpour, 2009). Immunogenicity can be evaluated through in vitro examinations to 

give preliminary results to support how a biological system may respond to a 

scaffold structure, which in turn, would give some justification towards moving to a 

more expensive, ethically challenging animal model (Hartung and Daston, 2009). 

 

When designing an in vitro immunogenicity model, it is important to follow the 

guidelines stated by the International Organisation of Standardisation for biological 

evaluation of medical devices (Musson et al., 2013). The protocol outlines clear 

guidance for in vitro tests, which requires direct contact of cells to the material 

followed by quantitative or qualitative analysis of cell viability. This allows 

researchers to have a large degree of freedom when designing their experiments in 

terms of the chosen cell types and additional analysis (Scheideler et al., 2013). Most 

in vitro models consider varying aspects of both innate and adaptive immune systems 

using flow cytometry, from activation of immune cells to the concentration of 

cytokines released following exposure to the biomaterial of interest (Musson et al., 

2013). 

 

Radley and colleagues investigated the immunogenic potential of biomaterials as 

ventricular assist devices. Using FACS analysis and ELISAs and whole blood 

samples to assess cell death, activation of immune cells and cytokine release (Radley 

et al., 2017). The use of whole blood for immunogenicity testing is believed to be 

indicative of in vivo immune response as these assays aim to replicate the response 

involving immune cells such as neutrophils, monocytes and T-cells (Joubert et al., 

2016). 

 

The native mammalian response to tissue injury is well documented and can be 

categorised into different phases, outlined in Figure 4.31 (Brown and Badylak, 

2014). Following tissue injury or insult, platelets are activated and form a provisional 

fibrin clot that signals for further cell migration (Broughton et al., 2006). Neutrophils 

are recruited to the site of inflammation and phagocytose any foreign material as 

well as signalling for the recruitment of macrophages, which are pro-inflammatory in 

their phenotype, secreting cytokines for further leukocyte recruitment (Barrientos et 
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al., 2008). The secretion of cytokines subsequently initiates a proliferative phase at 

the injury site that exhibits the production and deposition of new ECM forming 

granulation tissue (Brown and Badylak, 2014). The final stage of the healing process 

is remodelling where MMPs degrade and remodel the tissue leading to either scar 

tissue formation or maturation (Diegelmann and Evans, 2004). 

 

 

 
 
Figure 4.31: Schematic of established phases in wound healing. Initial 

inflammation decreases over time as regeneration of tissue occurs (Corradetti et al., 

2017) 

 

Blood is usually the first biological fluid to come into contact with tissue-engineered 

devices (Jones, 2008). The blood-material interface triggers a number of reactions 

including protein adsorption to the construct and platelet activation that may lead to 

coagulation and thrombosis (Andorko and Jewell, 2017). Collagen is seen as an 

important protein involved in the early stages of platelet activation during thrombosis 

(Morishige et al., 2011). Data from this chapter shows that platelet activation occurs 
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in whole blood samples incubated with JCol scaffolds, however it was not as 

prominent as platelets stimulated with PMA. Comparable platelet activation occurred 

in all scaffolds tested, with comparable results between JCol and mammalian 

collagen sponge scaffolds. 

 

Collagen is thought to be a suitable biomaterial for tissue engineering applications as 

it has previously been shown to exhibit low levels of immunogenicity (Lynn et al., 

2004). Biomaterials composed of collagen and/or other native ECM components 

have been successful in the regeneration of functional tissues in both preclinical and 

clinical stages (Dziki et al., 2017). Intact, collagen triple helical structures are 

thought to contain telopeptide regions (Exposito et al., 2010). The R.pulmo 

extraction process described in Chapter 3, without pepsin digest, is thought to result 

in maintenance of the telopeptide region (Schmidt et al., 2015).  Epitopes present at 

telopeptide region of tropocollagen molecules have been shown to be responsible for 

the initiation of an immune response, both in vivo and in vitro (Lynn et al., 2004). 

The conformation of the triple helix therefore, as well as the subsequent 

fibrillogenesis, may influence the immunogenic potential of collagen, possibly 

through controlling the accessibility of antigenic determinants (Parenteau-Bareil et 

al., 2010).  

 

Jellyfish-derived collagen has previously been tested for its immunogenic properties 

and in vivo data has shown responses comparable to bovine collagen and gelatin 

(Song et al., 2006). However, jellyfish-derived collagen that maintained telopeptides 

displayed enhanced production of immune markers including IgM and IgG in human 

peripheral blood lymphocytes and cytokines release. This data indicates that 

structural composition of collagen plays a role in the immunogenic properties of the 

biomaterial (Nishimoto et al., 2008).  

Data obtain in this experiment demonstrates that activation of neutrophils and 

monocytes occurs in blood incubated with scaffold structures however response from 

JCol scaffolds are comparable with that elicited from commercial and research grade 

BCol scaffolds and RTCol scaffolds, respectively. Within 24-48 hours of scaffold 

implantation, neutrophils begin to infiltrate the construct and undertake various roles 

in the innate immune response (Anderson et al., 2008). Typically, these cells are 



Chapter 4                                                                   Biocompatibility & Immunogenicity 
 

 197 

tasked with clearing pathogens via phagocytosis and recruiting other immune cell 

types to the site of injury (Cravedi et al., 2017). As well as clearing the implant of 

any pathogens, neutrophils are also responsible for beginning the degradation of 

biomaterial implants via MMPs and proteinase 3 and releasing cytokines to modulate 

the continuation of the immune response (Soehnlein, 2012).  

Monocytes also play a role in the initiation of the inflammatory response through 

phagocytosis of pathogens and the release of inflammatory cytokines (Parihar et al., 

2010). Stimulation of monocytes can cause differentiation into macrophages that 

continue the progression the immune response (Jakubzick et al., 2017).  The 

excessive accumulation of monocytes has been associated with the aggravation of 

diseases such as multiple sclerosis and arthritis (Linker et al., 2009).  

 

IL-6 is a pleiotropic pro-inflammatory cytokine primarily produced by monocytes 

and macrophages but can also be secreted by neutrophils, T and B cells (Horii et al., 

1988). IL-6 has multiple functions including the differentiation of myeloid cells, 

activation of natural killer cells and affecting the adaptive immune response by 

stimulating the differentiation of T-cells (Striz et al., 2014). The IL-6 cytokine data 

shown here, indicates that scaffolds produced by jellyfish collagen cause a 

significant increase in IL-6 production compared to baseline blood however it should 

be noted that levels of IL-6 production are similar to those produced by bovine 

collagen, currently commercially available, and therefore we believe the response 

caused by JCol could be overcome in vivo. With regards to the final application of 

jellyfish collagen scaffolds in cartilage tissue engineering, interestingly, anti-IL-6 

antibodies have been shown to inhibit damage to joints and improve joint function in 

patients suffering with rheumatoid arthritis (Buckland, 2013). The results obtained 

from this study indicate that the levels of IL-6 should not be disruptive to tissues 

within the native joint therefore causing no increase in damage via IL-6 signalling 

pathway.  

 

J774.1 cells, a mouse macrophage-like cell line, have previously been used in 

conjunction with collagenase treated Nemopilema nomurai jellyfish collagen to show 

enhanced immunostimulatory properties, particularly in the production of IL-6 (Putra 



Chapter 4                                                                   Biocompatibility & Immunogenicity 
 

 198 

et al., 2014). This, once again, suggests that the conformation of collagen molecules 

is important in the immunogenicity of the material.  

 

The adaptive immune response is stimulated by the innate phase, which causes the 

proliferation and differentiation of T- and B-cells (Pennock et al., 2013). The 

primary role of T-cells is the destruction of infected cells however they are also able 

to recognise peptide fragments on antigen presenting cells such as macrophages and  

dendritic cells (Chaplin, 2010). T-cells are able to discriminate between self and non-

self via MHC molecules (Bjorkman, 1997). The T-cell activation data from in vitro 

tests in this project show that T-cell activation levels were similar to baseline blood 

when whole blood was incubated with scaffolds from BCol, RTCol, BGel and JCol.  

 

IL-10 is an anti-inflammatory cytokine that was originally associated with T-cells 

however recent research has discovered that IL-10 secretion can occur in a number 

of immune cells including monocytes/macrophages (Magombedze et al., 2015). The 

IL-10 data collected from our study is most likely to occur from secretion of 

monocytes as the time frame suggests that the adaptive immunity would not have 

taken effect. IL-10 has been shown to inhibit the differentiation of monocytes to 

dendritic cells and repress expression of inflammatory cytokines such as IL-1 and IL-

6 (Mosser and Zhang, 2009). Results of IL-10 data from this work show that it is 

expressed at much lower concentration (~0 – 60,000pg/ml) compared to IL-6 (~0 – 

350,000pg/ml). The relative expression levels of cytokines may be due to the time 

frame in which the immune response occurs. Initial IL-6 expression is likely to 

occur, as inflammation is one of the key events that primarily occur in the immune 

response cascade. The lower expression of IL-10 may be contributed to the fact that 

inflammation has not been sustained over a long time period, becoming chronic, and 

therefore the need for an increased anti-inflammatory response is not yet required. 

More specifically, our IL-10 data showed that JCol scaffolds increased IL-10 

production compared to baseline blood in LPS stimulated samples indicating that 

jellyfish collagen may have an additive effect upon immune response with LPS, 

however IL-10 production was comparable to that of commercial bovine collagen.  

 

It is important to note that materials can be modified to enhance the 

immuosuppresive capabilities (Andorko and Jewell, 2017). Synthetic materials are 
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often seen to elicit immune response upon implantation however this has been 

rectified through coating with native ECM material (Dziki et al., 2017). Studies have 

shown that polypropylene meshes coated with porcine dermal hydrogels reduced 

macrophage recruitment and formed loose connective tissue following ECM 

degradation (Wolf et al., 2014). ECM hydrogel coating of polypropylene fibres also 

decreased the amount of collagen deposition around the site of implantation leading 

to better integration of implant and native tissue (Faulk et al., 2014).  

 

The augmentation of biomaterial-based scaffold, using cytokines in the immune 

cascade, can also be considered to potentially enhance the regenerative capacity of 

the construct. IL-4 is regarded as a pro-remodelling cytokine and meshes coated with 

IL-4 have exhibited a reduction in the formation of a fibrotic capsule, allowing for a 

better tissue-implant interface (Hachim et al., 2017). Preliminary in vitro 

immunogenicity results from this study seem to suggest that jellyfish collagen has a 

similar immunogenic effect on cells as bovine collagen, indicating that 

immunomodulation of the material is currently unnecessary. However, 

immunomodulation may be of interest following potential in vivo testing of jellyfish 

collagen scaffolds for cartilage tissue engineering, to enhance regeneration, as a 

shortened rehabilitation period is ideal for cartilage repair (Dunkin and Lattermann, 

2013).    

 

Notably, MSCs have been shown to modulate the immune response upon 

implantation into biological systems (Fahy et al., 2015). In vitro studies of MSCs 

have shown their capability of supressing T-cell proliferation, regardless of the donor 

source leading to the belief that MSCs would be capable of dampening of evading 

the adaptive immune response (Abdi et al., 2008). Promisingly, in vivo clinical trials 

using MSC based cell therapy have displayed accelerated recovery of patients 

suffering with severe cases of graft versus host disease, however a limited number of 

studies have followed up on these results (Blanc et al., 2004). Nevertheless, it is 

important to understand that multiple components of the tissue engineering triad can 

affect the biocompatibility and immunogenicity of the final engineered tissue 

(O'Brien, 2011). 
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In conclusion, this chapter shows that multiple cell types remain viable and maintain 

their proliferation rate when grown on jellyfish collagen coated plates, with cells 

cultured in this way also exhibiting phenotypic stability. Preliminary data was 

obtained by in vitro testing of immunogenicity, using human whole blood samples, 

showing clearly that JCol scaffolds have comparable platelet and leukocyte 

activation compared to RTCol and BCol scaffolds, considered research and 

commercial grade materials, respectively. Cytokine release profiles for pro-

inflammatory IL-6 and anti-inflammatory IL-10 also showed comparable results 

across scaffold structures. These results show that R. pulmo derived jellyfish 

collagen scaffolds can be moulded into a stable structure that shows little in vitro 

immunogenicity and may be suitable for applications in regenerative medicine. 

. 
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5.1 Introduction 

 
Once seen as a disease brought on by ‘wear and tear’ recent research has shown that 

OA is a multifactorial disease, taking into account factors such as genetics, ethnicity 

and physical activity (Musumeci et al., 2015). OA is an age-related disease resulting 

in pain, loss of joint mobility and disability, with its prevalence expected to rise as 

life expectancy increases, especially in the western world (Blalock et al., 2015). 

Affecting the entire synovial joint OA is characterised by the loss of articular 

cartilage (Amoako and Pujalte, 2014).  

 

Combinations of abnormal mechanical loading and synovial inflammation are known 

to cause deregulation in chondrocytes that populate articular cartilage, causing a shift 

in the equilibrium of anabolic and catabolic processes in ECM remodelling 

(Goldring and Goldring, 2007). This shift, leading to cartilage tissue breakdown due 

to defective homeostasis results in a loss of tissue function. In addition, 

chondrocytes, the principal cellular components begin to undergo phenotypic change 

such as hypertrophy and osteophyte formation occurs (Goldring and Goldring, 2007). 

In cases where chondrocytes undergo epiphyseal differentiation, they begin to 

express collagen type X, symptomatic of calcified tissue formation, leading to 

vascular invasion and loss of resistance against compression (Saito and Kawaguchi, 

2010).  

 

As cartilage has a limited capacity for self repair most partial and full thickness 

lesions require surgery. The choice of surgery is dependent on the type of lesion and 

surgical preference (García-Carvajal et al., 2013). As chondrocytes are characterised 

by their inability to migrate through matrix, early surgical approaches include 

microfracture and autologous chondrocyte implantation (ACI) (Windt et al., 2013), 

where the aim is to bring an exogenous source of cells to fill defects, either beneath 

the subchondral bone plate or autologous cells from joint cartilage. A two-step 

procedure, ACI requires the harvesting of the patients chondrocytes from a non 

weight-bearing portion of cartilage. Cells are then expanded for four weeks before 

being implanted into the defect and covered with a periosteal flap (McCarthy et al., 

2016). Chondrocytes obtained in this manner can however lead to donor site 
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morbidity, while chondrocytes cultured in monolayer have been known to de-

differentiate into a fibroblastic phenotype (Vinod et al., 2017). 

 

5.1.1 Matrix assisted environment 

 
Articular cartilage is avascular and contains a high extracellular matrix to cell ratio 

(Fox et al., 2009). The ECM, consisting of collagen and proteoglycans, provides an 

environment within tissues that supports cellular differentiation and function; 

impacting upon cellular behaviour by regulating processes such as gene expression, 

homeostasis and regeneration (Liu et al., 2017). It is accepted that the ECM provides 

particular cellular cues, sets physical boundaries for developing tissues and plays a 

particularly important role in the differentiation and maturation of multiple cell types 

during development. Interaction between cells and matrix can either occur through 

direct contact or through the matrix bound morphogens and growth factors 

(Behonick and Werb, 2003).  

 

Matrix-assisted autologous chondrocyte implantation (MACI) is a regenerative 

medicine technique that is similar to ACI, with the addition of a matrix scaffold, to 

support guided tissue formation (Jacobi et al., 2011). Autologous chondrocytes are 

harvested and expanded to an appropriate number before being seeded into a 

biocompatible, biodegradable and mechanically suitable 3-dimensional (3D) scaffold 

structure (O'Brien, 2011). After four weeks of supported 3D cell culture, the scaffold 

is cut to size and implanted into the defect (Nixon et al., 2015).  

 

By providing a more physiological growth environment, the use of a 3-dimensional 

matrix is believed to minimise the chance of cell de-differentiation and increase the 

chondrogenic potential of the implant (Niethammer et al., 2016). A number of 

collagen-based scaffolds are currently commercially available for MACI procedures 

including MACI, Novocart3D and CaRes. MACI is a type I/III collagen membrane 

whilst Novocart 3D is a chondroitin sulphate containing biphasic sponge, both of 

which are seeded with autologous cells and cultured before implantation. On the 

other hand, CaReS is a type I collagen gel where cells can be immediately mixed 

following harvesting and implanted after two weeks of culture (Chicatun et al., 
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2017). Five year follow up studies following patients that have received MACI 

surgery for cartilage defects in the knee reported satisfactory and improved pain and 

movement from 58% to 98% of patients (Basad et al., 2014). 

 

With MACI proving a successful surgical option, a myriad of materials have been 

tested for their cartilage producing properties in search for clinically relevant 

biomaterials (Jacobi et al., 2011). Synthetic polymers such as polylactic acid, agarose 

and alginate based hydrogels and protein based matrices fabricated from collagen 

and gelatin have all been tested for their capability for inducing chondrogenic 

differentiation to form cartilage, following seeding with cell sources and short-

medium term culture (Armiento et al., 2018). In vitro studies have routinely used 

pellet culture (matrix-free) as a control 3D model for the induction of chondrogenesis 

in MSCs (Watts et al., 2013). In this chapter, R.pulmo derived collagen is fabricated 

into a scaffold matrix and tested for its suitability in supporting chondroprogenitor 

differentiation in vitro.  

 

5.1.2 Chondrogenesis 

 
Chondrogenesis is a dynamic process that occurs during the development of 

vertebrates where cells undergo a specific differentiation process to form cartilage. 

Hyaline cartilage, composed of clusters of chondrocytes, originates from condensed 

mesenchymal tissues and is the precursor for endochondral bone development 

(Zuscik et al., 2008). The various stages of the process, including joint patterning, 

interzone formation, cavitation and morphogenesis are dependent upon a myriad of 

growth factors (Handorf et al., 2015).  

 

When considering chondrogenic differentiation of stem cells, a critical component is 

the transforming growth factor beta (TGFβ) family, which was once described as 

cartilage-inducing factor (Yu et al., 2012). The TGFβ superfamily contains a number 

of TGFβ isoforms as well as bone morphogenetic proteins (BMPs). The isoforms 

bind to ligands that activate type 1 (BMP) and 5 (TGFβ) activin-like kinase receptors 

(ALKs), which in turn phosphorylate SMAD proteins that translocate to the nucleus 

and modulate cell-specific gene expression, outlined in Figure 5.1 (Kroon et al., 
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2015). Previous developmental studies have shown a high level of TGFβ2 and 

TGFβ3 to be present in articular cartilage, whilst expressing a much lower level of 

TGFβ1. However in vitro experiments have shown that immature cartilage explants 

treated regularly with TGFβ1 promotes homeostasis of the tissue (Khan et al., 2013).  

 

 
 
Figure 5.1: Schematic representation of signalling crosstalk for chondrocyte 

differentiation (Mariani et al., 2014) 

 

The use of TGFβ1 as a growth factor to promote chondrogenesis may be ideal as it 

prevents terminal differentiation and formation of hypertrophic cells along with the 

over-expression of collagen X, associated with the formation of calcified cartilage 

(Wang et al., 2014). Pellet cultures treated with TGFβ1 have shown to be larger and 

contain greater amounts of collagen type II as well as DNA content than their 

counterparts lacking the growth factors; further strengthening the argument that 

TGFβ1 is a suitable growth factor for cartilage regeneration (Goldberg et al., 2005). 
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5.1.3 Different matrix types 

 
A number of mammalian collagen-based materials are commercially available and 

used for MACI cartilage repair, however, research efforts are still focussed into 

finding suitable, sustainable sources of collagen that will aid in enhanced 

chondrogenesis (Jeuken et al., 2016). Previous studies have utilised jellyfish collagen 

from the jellyfish species Rhopilema esculentum as a scaffold material for cartilage 

repair. Both bodies of work produced a 3-D matrix that required crosslinking to 

maintain stability before seeding their preferred cell types; human bone marrow 

derived mesenchymal stem cells for cartilage repair. Culture of human MSCs on R. 

esculentum collagen scaffolds with chondrogenic media lead viable cells throughout 

the scaffold and an increase in chondrogenic markers such as COL2, ACAN and 

SOX9 (Hoyer et al., 2014).  

 

5.1.4 Cell source 

 

Within the clinical setting, chondrocytes are used routinely for cartilage restoration 

with both ACI and MACI using autologous chondrocytes to repair damaged tissue, 

correlating with better pain management and increased range of motion within the 

joint (Munirah et al., 2010). Using chondrocytes however, can be problematic due to 

their low proliferative capacity, leading to larger portions of cartilage being taken 

from healthy areas, increasing the chance of donor site morbidity. In addition, 

chondrocytes tend to dedifferentiate and produce collagen type I, characteristic of 

mechanically inferior fibrocartilage that is unsuitable for functional joint repair 

(Phull et al., 2016).  

 

Cartilage tissue maintains a population of progenitor cells at the articular surface 

which are thought to be involved in appositional growth and are capable of 

chondrogenic differentiation (Marcus et al., 2014). The advanatges of such a 

progenitor population are two-fold; as a result of maintained niche-specific 

expression repertoire they maintain the ability to undergo chondrocyte differentiation 

and drive enhanced chondrogenesis and they are also compatible with culture 

expansion in large numbers (Jayasuriya and Chen, 2015b). In ovo studies involving 
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bovine-derived chondroprogenitor cells have previously been engrafted into the wing 

bud of a juvenile chick and found to produce tissue specific matrix, further 

highlighting the plasticity of chondroprogenitor cells and their ability to form 

cartilage (Karlsson and Lindahl, 2009). 

 

5.1.5 Hypothesis 

 
The hypothesis for this chapter states that R. pulmo derived collagen scaffolds 

support bovine chondroprogenitors to undergo chondrogenesis (with TGFβ1 

treatment) and will enhance cartilage production when compared to a non-matrix 

assisted (pellet) culture, under the same conditions. 

 

5.1.5.1 Aims and objectives 

 
The aims and objectives to test this hypothesis are as follows; 

 

 Isolate chondroprogenitor cells from immature bovine cartilage and 

characterise these cells for plasticity by undergoing chondrogenesis, 

osteogenesis and adipogenesis in a 2D environment 

 Undertake 21 day induction of chondrogenesis of cells with and without 

TGFβ1 in collagen scaffolds and pellet culture 

 Assess structural properties of pellet and scaffold culture compared to native 

bovine cartilage using SEM 

 Characterise ECM composition of scaffold and pellet culture compared to 

native bovine cartilage through analysis of hydroxyproline content, sulphated 

GAG content and collagen deposition via biochemical assays and histological 

staining 

 Assess cartilage specific-gene expression of scaffold and pellet cultured 

chondroprogenitor cells in comparison to native bovine cartilage 
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5.2 Results 

 
Tissue engineering is a multidisciplinary field that requires a supporting structure 

with a 3D architecture, an appropriate cell source and media constituents to affect a 

functional differentiation to support new tissue formation (O'Brien, 2011). Collagen 

scaffold fabrication must take into account the porosity to enable cell invasion, 

nutrient diffusion and, in the case of this application, chondrogenesis. Stem cells 

have gained favour as a suitable cell source in regenerative medicine due to their 

plasticity, availability and lack of donor morbidity (Makris et al., 2015). The TGFβ 

family are known to have an extensive role in skeletal and cartilage formation, with 

TGFβ1 expression found at proliferative and upper hypertrophic zones whilst the 

tissue undergoes endochondral ossification (Grimaud et al., 2002).  

 

5.2.1 Bovine chondroprogenitor isolation and culture 

 

Chondroprogenitor cells isolated from articular cartilage have been show to have tri-

lineage capability in vito and in ovo (Dowthwaite et al., 2004). The use of progenitor 

cells for cartilage regeneration is thought to circumvent issues that arise from using 

fully differentiated chondrocytes such as dedifferentiation and limited cell expansion 

in vitro (Marcus et al., 2014). Furthermore, the presence of growth factors and ECM 

molecules such as TGFβ and matrilin-3, have been shown to promote 

chondrogenesis in chondroprogenitor cells, with matrilin-3 also showing inhibition 

of hypertrophy, a common issue in cartilage regeneration (Jayasuriya and Chen, 

2015a).  

 

Due to an abundant supply and less stringent ethical implications bovine cartilage 

was chosen as the tissue source (Reinholz et al., 2004). The animal tissue used in this 

study was obtained from healthy animals entering the food chain, classified as food 

grade material that is discarded during food processing.  
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Figure 5.2: Bovine metacarpophalangeal joint. MCP joint obtained from 

immature bovine legs. Annotated areas of the joint depict regions from which 

cartilage was taken for chondroprogenitor isolation.  

 

Following harvesting, the immature bovine legs were washed and decontaminated 

prior to MCP joints being opened to access the cartilage. Sections of cartilage were 

obtained from the medial and lateral condyle as well as the condylar ridge for 

digestion and isolation of chondroprogenitor cells as well as for histological staining 

and biochemical analysis, as depicted in Figure 5.2.  

 

5.2.1.1 CP isolation and tri-lineage potential  

 

Chondroprogenitors have a capacity to self-renew in vivo, in order to maintain a 

resident progenitor population to facilitate growth and repair. This capability to self-

renew enables chondroprogenitors to form colonies in 2D culture, where each 

individual colony is formed through repeated replication of an original cell 

(Jayasuriya & Chen 2015). Colonies comprised of over 32 cells, representing colony-

forming cells, were isolated from each other and expanded in basal culture media as 

monoclonal populations and prepared for tri-lineage assessment.  
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Stem cells possess the ability of multi-lineage differentiation (Ullah et al., 2015). The 

minimum criteria for classification of MSCs is outlined by the International Society 

of Cellular Therapy and includes display of specific cell surface markers, plastic 

adherence and the ability to differentiate into adipocytes, chondrocytes and 

osetoblasts in vitro (Dominici et al., 2006). Figure 5.3 shows images of 

chondroprogenitor cells during trilineage differentiation. 

 

 
 
Figure 5.0.3: Images of chondroprogenitor cells during trilineage differentiation 

and stained cells after 21 days of culture. Chondroprogenitor cells were imaged at 

day 0 and 21 of chondrogenic, osteogenic and adipogenic culture. At day 21 cells 

were fixed and stained with Alcian Blue, Alizarin Red and Oil Red O to confirm 

differentiation into chondrogenic, osteogenic and adipogenic lineages, respectively. 

Scale bars show 0.1mm.  

 

Figure 5.3 shows images of chondroprogenitor cells during tri-lineage 

differentiation. During chondrogenesis cells are plastic adherent and have a primarily 

fibroblastic morphology at day 0. By day 10 of chondrogenic culture, cells 

proliferate and maintain close contact with some cells losing their fibroblastic shape 

and becoming more rounded. At day 21, many cells can be seen to maintain a 

circular morphology, continue to maintain close contact to each other and clusters of 
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cells are visibly stained with alcian blue confirming the production of extracellular 

matrix associated with chondrogenesis. Cells undergoing osteogenesis kept a 

fibroblastic morphology as well as being plastic adherent at day 0. Similar to 

chondrogenesis, cells underwent proliferation by day 10 and 21 and formed clusters 

where cells began to take on more circular morphology. When stained with alizarin 

red after 21 days of osteogenic differentiation to identify calcification, areas of cell 

cultures stained positively. When cells were subjected to adipogenic culture, at day 0 

they maintained a fibroblastic morphology as well as being plastic adherent in the 

same fashion as cells undergoing chondrogenic and osteogenic culture. At day 10, 

unlike the other lineages, cells did not appear to proliferate at the same rate and 

morphological changes were more prominent, changing from fibroblastic to 

triangular and by day 21 cells did not appear to undergo proliferation and kept a 

triangular shape. After fixation cells were stained with Oil Red O and vacuoles 

within cells were stained red indicating the presence of fatty acid deposits.  

 

5.2.2 3D enhanced chondrogenesis  

 
In order to facilitate the production of cartilage for regenerative medicine cells must 

undergo chondrogenic differentiation. The use of TGFβ1 is well documented as a 

growth factor to induce chondrogenesis and is used in vitro due to the role of the 

TGFβ superfamily in chondrogensis during development (Wang et al., 2014). 

Chondrogenic differentiation has previously been proven to be enhanced in a 3D 

culture environment when compared to 2D culture (Watts et al., 2013). The signature 

for in vitro enhanced chondrogenesis includes the production of collagen type II, 

aggrecan and SOX9 following 21 days of culture (Khan et al., 2009). Analysis of 

these characteristics can be accomplished in various ways including histological and 

biochemical examination as well as qPCR to quantify gene expression.  

 

In this chapter, the assessment of enhanced chondrogenesis was carried out following 

isolation of bovine CPs, cell seeding into scaffold or pellet and 21 days of culture in 

chondrogenic media in the presence and absence of TGFβ1, outlined in Figure 5.4. 
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Figure 5.4: Approach for enhanced chondrogenesis. CPs isolated from bovine 

MCP joints were characterised and allowed to culture for 21 days in pellet or 

scaffold culture in the presence or absence of TGFβ. Following completion of the 

culture period, constructs were analysed using biochemical analysis, histology and 

qPCR to give an enhanced chondrogenic profile.  

 

5.2.2.1 Scaffold characteristics for 3D culture 

 
Cellular function and tissue regeneration is closely related to pore size and so the 

fabrication of scaffolds with desirable pore size is fundamental step in tissue 

engineering (Zhang et al., 2014b). As shown in section 3.2.5.1.1 sponge scaffolds 

produced by JCol are highly porous and interconnected structures.  EDC is a well 
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characterised chemical crosslinking reagent that forms a network of crosslinks within 

collagen scaffolds and increases mechanical stability of the construct (Ma et al., 

2014). Scaffolds fabricated 1% EDC crosslinker concentration were chosen for 

chondrogenesis in agreement with work previously conducted by Hoyer and 

colleagues (Hoyer et al., 2014). 

 

In order to determine which EDC crosslinking concentration would be appropriate 

for 3D chondrogenesis studies, scaffolds crosslinked with 1%, 0.5% and 0.25% EDC 

were seeded with bovine CPs and cultured for 7 days. Scaffolds were then fixed, 

embedded in paraffin wax and stained with haematoxylin before being imaged with a 

light microscope, shown in Figure 5.5. 

 
 
Figure 5.5: Early seeding studies using scaffolds with decreasing EDC crosslink 

concentrations. Bovine CPs seeded into scaffolds crosslined at 1%, 0.5% and 0.25% 

EDC and cultured for 7 days in chondrogenic media. Scaffolds were stained with 

haemotoxylin and eosin and imaged at x10 (A, B and C) and x40 (D, E and F). Scale 

bars show 0.1mm.  

 

Figure 5.5 (A) is a low magnification (x10) image of a scaffold seeded with bovine 

CPs and stained with haematoxylin following 7 days of culture. The porous structure 

of the scaffold is maintained. When imaged at a higher magnification (Figure 5.5 

(D)) circular cells are seen in close proximity to ribbons of collagen. Scaffolds 
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crosslinked with 0.5% EDC and imaged at low magnification are seen in Figure 5.5 

(B). The porous structure of the scaffold was maintained however areas of the 

scaffold appeared to have contracted. At higher magnification, Figure 5.5 (E), 

circular cells stained with haematoxylin were present and attached or near to 

collagen ribbons in the same fashion as cells seen in scaffolds crosslinked at 1% 

EDC. Figure 5.5 (C) shows scaffolds crosslinked at 0.25% and stained with 

haematoxylin. At this concentration the scaffold exhibited the most contraction 

during the 7-day culture period altering the pore size within the scaffold. At x40 

magnification, Figure 5.5 (F), a higher amount of cells can be seen compared to 1% 

and 0.5% crosslinked scaffolds they had a circular morphology and are attached to 

collagen ribbons in a similar manner to the other scaffolds.  

 

Following preliminary results, it was decided that scaffolds crosslinked with 1% 

EDC would be taken forward for chondrogenesis studies as cells were found to 

invade the structure and minimal contraction of the scaffold occurring during culture. 

 

JCol scaffolds were fabricated to a sponge support and crosslinked using 1% EDC. 

This resulted in a freeze-dried product with an average porosity of 54.76um ±4.72 

and a stable structure of interconnected pores seen using SEM (Figure 5.6 (A) and 

(B), respectively). 

 

 
 
Figure 5.6: Average pore size and pore structure of JCol scaffolds. Average pore 

size of JCol scaffolds (A) and pore structure imaged at x200 magnification using 

SEM (B) crosslinked at 1% EDC concentration. 
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5.2.3 Cellular invasion and proliferation 

 
Related to pore size, the permeability of a scaffold allows for cellular invasion and 

distribution as well as allowing for the diffusion of nutrients and waste, as well as the 

formation of essential cell-cell contact (Ashworth et al., 2016). Bovine CP cultures 

were seeded onto the scaffolds and assessed for their invasion and proliferation 

capacity. Haematoxylin and eosin (H&E) staining is a standard stain used for 

histological examination of tissues allowing for the identification of tissue 

morphology and distribution (Chan, 2014).  

 

5.2.3.1 Native bovine punch biopsy baseline 

 
As a benchmark for enhanced chondrogenesis in vitro immature bovine MCP 

derived hyaline articular cartilage was stained using H&E. Immature joint punch 

biopsies (6mm) were washed in PBS, fixed in 10% NBF and wax embedded before 

being sectioned (7um) and stained with H&E. Sections were then imaged using a 

light microscope at low and high magnification. 

 

 
 
Figure 5.7: Hemotoxylin and eosin staining of immature bovine cartilage. Native 

immature bovine cartilage was stained using hematoxylin and eosin and imaged at 

low magnification (x4) (A) with superficial (S), middle (M) and deep (D) zones 

labelled. High magnification images (x40) were taken of the superficial (B), middle 

(C) and deep (D) zones. Scale bars are equal to 0.1mm. 
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Figure 5.7 (A) shows the full depth of a section of native immature bovine cartilage 

obtained from the MCP joint and imaged at low magnification (x4). The depth of the 

cartilage is approximately 0.9mm at the thickest section and the width of the section 

of tissue is approximately 5.1mm and stained pink throughout. Figure 5.7 (B) shows 

the superficial zone of the cartilage at high magnification (x40). Cellular content is 

easily identified in this region, appearing as a dark pink colour, exhibiting a more 

flattened and discoid morphology. Superficial zone cells seem to maintain a closer 

proximity to each other with visible pink background staining of the tissue. The 

middle zone of the cartilage, seen in Figure 5.7 (C), also displays prominently pink 

stained cells that have a more circular morphology compared to those in the 

superficial zone. This zone exhibits numerous cells that are further spaced apart 

compared to the superficial zone, while there is no visible staining of the tissue. 

Figure 5.7 (D) is a high magnification image of the deep zone of cartilage tissue. 

Cells again in pink, maintain a circular morphology and are sparse in appearance 

when compared to the other zones. Staining of the tissue is also consistently visible 

in the deep zone. 

  

5.2.3.2 Scaffold assisted CP invasion 

 
Culture-medium equilibrated scaffolds were seeded with 0.5x106 immature 

chondroprogenitor cells and cultured in 24 well plates for 21 days (Corradetti et al., 

2016). In order to assess cell distribution throughout scaffold and pellet cultures 

following 21 days of chondrogenesis, constructs were fixed, embedded and sectioned 

before staining with H&E. Sections were assessed using light microscopy and 

imaged at low and high magnification. 
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Figure 5.8: Hematoxyline and eosin staining of JCol scaffolds after 21 days of 

chondrogenic culture supplemented with TGFβ1. JCol scaffolds (in the saggital 

plane) were stained using hematoxylin and eosin and imaged at low magnification 

(x4) after 21 days of culture using chondrogenic media containing TGFβ1 with 

superficial (S), middle (M) and deep (D) zones labelled. High magnification images 

(x40) were taken of the areas representing the superficial (B), middle (C) and deep 

(D) zones. Scale bars are equal to 0.1mm. 

 

Figure 5.8 (A) shows a JCol scaffold in the saggital plane stained with hematoxylin 

and eosin and imaged at low magnification (x4) following CP seeding 21 days of 

chondrogenic culture with TGFβ1. The length of the scaffold is approximately 

4.5mm from superficial to deep zone. The width of the scaffold differed at different 

points, with an approximate width of 2.4mm at 1mm depth into the scaffold and 

1.43mm at 3.2mm depth. A network of collagen can be seen stained in pink at this 

magnification with a more intense staining seen around some of the edges of the 

scaffold.  
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A high magnification image of the area thought to represent the superficial zone, 

seen in Figure 5.8 (B), shows intense pink staining of the tissue. Some cells can be 

seen stained pink and are circular in morphology unlike those found in native 

cartilage that appear more disc-like in shape. The area believed to represent the 

middle zone, depicted in Figure 5.8 (C), shows collagen ribbons stained red with 

areas nearby stained a less intense pink colour. The cells in this area are circular in 

shape and maintain close contact. Figure 5.8 (D) shows a high magnification image 

of the area believed to be the deep zone. In a similar fashion to the middle zone, 

collagen ribbons are stained red with nearby areas stained less intensely. No cells are 

apparent in the deep zone of the scaffold.  
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Figure 5.9: Hematoxylin and eosin staining of JCol scaffold after 21 days of 

chondrogenic culture without TGFβ1. JCol scaffolds in the saggital plane were 

stained using hematoxylin and eosin and imaged at low magnification (x4) after 21 

days of culture using chondrogenic media in the absence TGFβ1 with superficial (S), 

middle (M) and deep (D) zones labelled. High magnification images (x40) were 

taken of the areas representing the superficial (B), middle (C) and deep (D) zones. 

Scale bars are equal to 0.1mm. 

 

Figure 5.9 (A) shows a low magnification (x4) image of a JCol scaffold following 

21 days of chondrogenic culture without TGFβ1. At this resolution a network of 

collagen ribbons can be seen, stained pink, throughout the scaffold, which is 

approximately 5.86mm in length and 3.01mm in width. The width of the scaffold is 

more uniform unlike the scaffold with TGFβ1 treatment. Figure 5.9 (B) is a high 

magnification (x40) image of an area representing the superficial zone. Unlike 

TGFβ1 treatment scaffolds collagen ribbons were stained in red but at a decreased 

intensity and cells can be seen clearly stained in pink. The morphology of these cells 

is a mix of circular and discoid shapes maintaining close contact to one another. The 

middle zone of the scaffold, Figure 5.9 (C), depicts red stained collagen ribbons 
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with large unstained areas between them when compared to the same zone of TGFβ1 

treatment scaffolds. No cells appear to be visible within this zone showing a 

difference between untreated scaffold in comparison to treated scaffold and native 

tissue. Figure 5.9 (D) shows the deep zone of the scaffold imaged at high 

magnification. Staining of the deep zone of this scaffold highlights the collagen 

ribbons in red but does not show any cells to be present this far down into the 

scaffold.  

 

 
 

Figure 5.10: Hematoxylin and eosin staining of chondroprogenitor cells in pellet 

culture with TGFβ1. Pellets were stained and imaged at low magnification (x10) 

following 21 days of chondrogenic culture with TGFβ1 (A). High magnification 

images (x20) were taken of the edge of the pellet (B) and the centre (C). Scale bars 

equal to 0.1mm.  

 

Figure 5.10 (A) is a low magnification (x10) image of chondroprogenitor cells 

following 21 days of chondrogenesis in pellet culture in the presence of TGFβ1. The 

pellet is approximately 1.32mm in length and 0.94mm in width and has not kept a 

typical spherical shape. Faint pink staining is seen throughout the pellet however the 

intensity of staining is increase at the edges of the construct. The edge of the pellet is 

seen at high magnification (x20) in Figure 5.10 (B) a thin band of intense pink 

staining is seen at the edge before becoming more evenly distributed as it moves 
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away from the edge. Figure 5.10 (C) is an image of the centre of the pellet at high 

magnification. A large number of cells can be seen throughout the entire image 

unlike what is seen in the scaffolds where the cells appear in contact with collagen 

ribbons leaving areas unpopulated by cells.  

 

 
 
Figure 5.11: Hematoxylin and eosin staining of chondroprogenitor cells in pellet 

culture without TGFβ1. Pellets were stained and imaged at low magnification (x10) 

following 21 days of chondrogenic culture without TGFβ1 (A). High magnification 

images (x20) were taken of the edge of the pellet (B) and the centre (C). Scale bars 

equal to 0.1mm.  

 

Figure 5.11 (A) is a low magnification image (x10) of chondroprogenitor pellet 

culture in the absence of TGFβ1. The construct is approximately 1.06mm wide and 

1.02mm in length. The pellet has not kept a typical spherical structure and appears to 

be less structured than pellets treated with TGFβ1. Staining for cells can be seen 

throughout the construct however the intensity varies throughout with darker staining 

seen towards the edges of the pellet. Figure 5.11 (B) shows the edge of the pellet at 

high magnification (x20) where a thin band of intense staining can be seen and even 

cell distribution is witnessed below the band and through the centre of the pellet, 

highlighted in Figure 5.11 (C).  
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5.2.3.3 DNA quantification 

 
To assess whether scaffold and pellet culture systems were conducive towards cell 

proliferation, quantification of cell number was obtained following 21 days of culture 

in chondrogenic media. On the completion of culture all samples were subjected to 

papain digestion and DNA quantified using a picogreen assay, shown in Figure 5.12. 

Each mammalian cell is believed to contain approximately 7.7pg of DNA allowing 

for an approximation of cell number, Figure 5.13 (Talukdar et al., 2011).  

 

 
 
Figure 5.12: DNA content of pellet and scaffold structures. DNA content of 

native immature bovine articular cartilage (A) was taken as a benchmark. After 21 

days of chondrogenic culture pellet and scaffold cultures with and without TGFβ1 

were analysed for their DNA content. All data shown is from a minimum of 3 

independent biological repeats, statistical significance shown according to a Mann 

Whitney U test (*p<0.05; **p<0.01; ***p<0.001). 

 

Figure 5.12 (A) shows DNA content of immature bovine articular cartilage obtained 

from the MCP joint via punch biopsy (6mm). The average DNA content from native 

tissue was 18.17μg  ± 1.12 and was used as a benchmark sample. The same number 

of cells were used to seed pellet as well as scaffold cultures. Figure 5.12 (B) depicts 

the DNA content of pellet and scaffold cultures following 21 days of chondrogenesis 

in the presence and absence of TGFβ1. Pellet cultures were shown to have 0.57ug of 

DNA, which was significantly lower when compared to scaffolds and TGFβ1 treated 

pellets and scaffolds, p=0.000, p=0.002 and p=0.000, respectively. DNA content for 

TGFβ1 treated pellets was 0.66ug, which was significantly lower than scaffolds in 

the absence and presence of TGFβ, p=0.000 for both. When analysed for DNA 

content, scaffolds in the presence and absence of TGFβ1 had 1.93ug and 1.41ug 
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DNA, respectively and TGFβ1 treated scaffolds exhibiting a significantly higher 

amount of DNA than the untreated counterpart, p=0.011. 

 

 
 
Figure 5.13: Cell number from pellet and scaffold structures following 

chondrogenesis. Cell number of native bovine articular cartilage was approximated 

from DNA content and used as a benchmark (A). Following 21 days of TGFβ1 

treated and untreated chondrogenesis pellet and scaffold cultures were analysed for 

cell numbed using DNA content. All data shown is from a minimum of 3 

independent biological repeats, statistical significance shown according to a Mann 

Whitney U test (*p<0.05; **p<0.01; ***p<0.001). 

 

Figure 5.13 (A) shows the cell number from 6mm punch biopsies of immature 

bovine MCP articular cartilage to be 235,999 ± 145,689. Cell number was also 

calculated for pellet and scaffold cultures in the presence and absence of TGFβ1, 

shown in Figure 5.13 (B). The trend displayed from cell number data is the same as 

DNA content. Pellet cultures exhibited an average cell number of 73,533, which was 

significantly lower than treated pellet (p=0.002) and scaffold (p=0.000) cultures and 

untreated scaffold (p=0.000) culture. The average cell number for treated pellet 

culture was 85,565 cells that were significantly lower than scaffolds in the presence 

(p=0.000) and absence (p=0.000) of TGFβ1. Scaffold cultures yielded a higher cell 

number after 21 days with untreated scaffold exhibiting 251, 219 cells and treated 

scaffolds exhibiting 184, 190 cells, displaying a significant difference between both 

conditions (p=0.011).  
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5.2.4 Proteoglycan synthesis 

 
Cartilage possesses a characteristically high amount of proteoglycan that plays 

various roles within the tissue from aiding in the initial assembly of the ECM to 

allowing for osmotic swelling following decompression (Knudson and Knudson, 

2001). Osmotic pressure is obtained due to the proteoglycans drawing cations into 

the tissue through their negatively charged GAGs that are added during post 

translational modification, providing compressive resistance (McNary et al., 2012). 

The degradation of proteoglycans within cartilage is a characteristic of osteoarthritis 

and causes the breakdown of cell-matrix communication and fibrillar networks as 

well as altering the biochemical properties of the tissue making it unfit for the 

purpose of absorbing impact (Stanton et al., 2011). 

 

Toluidine blue is a metachromatic dye that can be used to help identify the 

composition of tissues. Metachromasia is highly selective meaning that it can only 

stain certain structures within tissues by absorbing light at a different wavelength, 

changing the colour of the dye without altering chemical structures (Sridharan and 

Shankar, 2012).  

 

5.2.4.1 Native immature baseline 

  

Punch biopsies (6mm) from immature MCP joints were washed in PBS, fixed in 

10% NBF. 7μm sections of wax embedded tissues were strained with toluidine blue 

and imaged with a light microscope. 
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Figure 5.14: Toludine blue staining of immature bovine cartilage. Native 

immature bovine cartilage was stained using toluidine blue and imaged at low 

magnification (x4) (A) with superficial (S), middle (M) and deep (D) zones labelled.. 

High magnification images (x40) were taken of the superficial (B), middle (C) and 

deep (D) zones. Scale bars are equal to 0.1mm. 

 

Figure 5.14 (A) shows a section of native immature bovine cartilage stained with 

toluidine blue. The approximate length and width of the section of tissue is 5.71mm 

and 1.14mm, respectively. Dark blue staining is seen throughout the tissue whilst 

some regions appear to have been stained in a less intensely. Figure 5.14 (B) shows 

the superficial zone of cartilage at high magnification (x40) stained in a dark blue 

colour. The middle zone of cartilage, Figure 5.14 (C), is stained in a paler blue 

colour than the superficial zone. White areas with faint blue staining indicate areas 

populated by a cell depicting that the middle zone contains numerous cells that are 

close together. Figure 5.14 (D) shows the deep zone of cartilage, which appears blue 

towards the middle zone and a light purple colour the further down the stained tissue 

section. The edge of the deep zone is a deep blue colour. Just as seen in the middle 

zone, unstained sections containing bright blue dots indicated space occupied by 

cells that appear circular in shape and seem to be sparser than in the middle zone.  
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5.2.4.2 Scaffold assisted matrix deposition 

 
Scaffold seeded with immature CP cells and cultured for 21 days. Following culture, 

constructs were washed, fixed, embedded and sectioned. The assessment of 

proteoglycan production and deposition was done via toluidine blue staining on 7μm 

section of sample and imaged under a light microscope. 

 

 
 
Figure 5.15: Toludine blue staining of JCol scaffolds after 21 days of 

chondrogenic culture supplemented with TGF1. JCol scaffolds were stained 

using toluidine blue and imaged at low magnification (x4) after 21 days of culture 

using chondrogenic media containing TGFβ1 with superficial (S), middle (M) and 

deep (D) zones labelled.. High magnification images (x40) were taken of the areas 

representing the superficial (B), middle (C) and deep (D) zones. Scale bars are equal 

to 0.1mm. 

 

Figure 5.15 (A) is a low magnification (x4) image of a JCol scaffold after 

chondrogenic culture with TGFβ1 with an approximate length and width of 4.71mm 

and 2.77mm, respectively. At this magnification the network of collagen has been 
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stained blue, with darker staining seen up to 0.067mm before the staining becomes 

less intense. Unlike native tissue there are unstained areas throughout the scaffold 

whilst the edge of the scaffold has a deep blue stain that is 0.15mm thick. Figure 

5.15 (B) shows the superficial section of the scaffold at high magnification (x40) 

exhibiting a thick blue layer at the edge with some purple staining in areas surround 

the collagen ribbons. In the middle zone, Figure 5.15 (C), collagen and cells are 

stained in dark blue. Areas close to collagen ribbons are stained in a faint purple 

colour in a similar fashion to that of the superficial zone of the scaffold. Figure 5.15 

(D) depicts the deep zone of the scaffold. In this section the collagen is stained in 

dark blue as it has been throughout the entire construct however there does not 

appear to be any staining bridging collagen ribbons in the same fashion seen in the 

middle and superficial zones.  
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Figure 5.16: Toludine blue staining of JCol scaffolds after 21 days of 

chondrogenic culture without TGFβ1. JCol scaffolds were stained using toluidine 

blue and imaged at low magnification (x4) after 21 days of culture using 

chondrogenic media in the absence TGFβ1 with superficial (S), middle (M) and deep 

(D) zones labelled. High magnification images (x40) were taken of the areas 

representing the superficial (B), middle (C) and deep (D) zones. Scale bars are equal 

to 0.1mm. 

 

Figure 5.16 (A) shows a JCol scaffold, imaged at low magnification (x4), without 

TGFβ1 treatment, with a length of 4.95mm and a width of 2.93mm at 1mm depth 

and 2.22mm at a depth of 3.72mm. The network of collagen is stained in blue 

throughout the entire scaffold with visible unstained gaps within the pores. Figure 

5.16 (B) depicts the superficial region of the scaffold with collagen stained in blue 

and the edge of the scaffold have a slightly thicker blue stain but this is not as 

prominent as the TGFβ1 treated scaffold. Figure 5.16 (C) shows the middle zone of 

the scaffold at high magnification (x40) with collagen stained in blue however the 

areas between collagen ribbons do not appear to be as intensely stained as those in 

the same zone of TGF treated scaffolds. The deep zone of the scaffold, shown in 
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Figure 5.16 (D), shows collagen ribbons stained in blue with no apparent staining in 

between ribbons and no cells visibly stained in this region.  

 

 
 
Figure 5.17: Toluidine blue staining of chondroprogenitor cells in pellet culture 

with TGFβ1. Pellets were stained with toluidine blue and imaged at low 

magnification (x10) following 21 days of chondrogenic culture in the presence 

TGFβ1 (A). High magnification images (x20) were taken of the edge of the pellet 

(B) and the centre (C). Scale bars equal to 0.1mm.  

 

Figure 5.17 (A) is a low (x10) magnification image of a pellet following 21 days of 

chondrogenesis in the presence of TGFβ1 that is approximately 1.43mm in length 

and 1.16mm in width. The pellet has not kept the spherical shape throughout the 

culture period but appears to be intact with staining visible through the entire 

construct. The edge of the pellet, seen in Figure 5.17 (B), is stained a dark blue 

indicating a high level of proteoglycan in these areas. Figure 5.17 (C) is the centre 

of the pellet imaged at high magnification (x20). In this area the staining is purple 

and less intense than at the edges indicating lower GAG content.  
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Figure 5.18: Toluidine blue staining of chondroprogenitor cells in pellet culture 

without TGFβ1. Pellets were stained and imaged at low magnification (x10) 

following 21 days of chondrogenic culture in the absence of TGFβ1 (A). High 

magnification images (x20) were taken of the edge of the pellet (B) and the centre 

(C). Scale bars equal to 0.1mm.  

 

Figure 5.18 (A) is a low magnification (x10) image of pellet culture following 21 

days of chondrogenesis in the absence of TGFβ1 and stained with toluidine blue. The 

pellet is an irregular shape and measures 1.15mm and 0.65mm at the longest and 

widest points, respectively, and stained throughout. Figure 5.18 (B) is the edge of 

the pellet stained in a mixture of blue and purple staining indicating slightly weaker 

and uneven proteoglycan deposition when compared to TGFβ1 treated pellet. Figure 

5.18 (C) shows an area toward the centre of the pellet with variation in the intensity 

of staining. The staining appears in a gradient from intense blue at the centre and 

become a faint purple as it moves towards the edge showing the uneven production 

of proteoglycan.   

 

5.2.4.3 Glycosaminoglycan quantification 

 
To quantitatively assess GAG content a DMMB assay was conducted following 

completion of 21 days of chondrogenesis. Samples were digested enzymatically 



Chapter 5                                                                                     Enhanced Chondrogenesis 
 

 231 

using papain and GAG content of the digest determined using 1,9-dimethyl-

methylene blue (DMMB) dye. DMMB is a cationic dye that binds specifically to 

negatively charges sulphated glycosaminoglycans including chondroitin sulphate that 

is found in aggrecan within cartilage (Lakin et al., 2013). 

 

 
 
Figure 5.19: Sulphated glycosaminoglycan content of pellet and scaffold 

cultures after 21 days of chondrogenesis. sGAG content of native immature 

cartilage (A) was determined and normalised per ug of DNA and used as a 

benchmark. Pellet and scaffold cultures treated and untreated with TGFβ during 

chondrogenesis were analysed for sGAG content (B). All data shown is from a 

minimum of 3 independent biological repeats, statistical significance shown 

according to independent samples T Test (*p<0.05; **p<0.01; ***p<0.001). 

 

Native immature bovine cartilage was used for a benchmark for sGAG content, 

Figure 5.19 (A). Analysis showed that the average sGAG content of bovine MCP 

joint cartilage was 100.03μg/μg of DNA ± 40.09. Figure 5.19 (B) shows the sGAG 

content from pellet and scaffold cultures following 21 days of chondrogenesis. Pellet 

cultures contained 7.68μg/μg of sGAG after 21 days that was significantly lower 

when compared to the TGFβ treated pellet and scaffold counterparts (p=0.000 and 

p=0.048, respectively). Pellet cultures treated with TGFβ during chondrogenesis 

exhibited the highest amount of sGAG at 38.21μg/μg, which was significantly 

increased compared to treated and untreated scaffolds (p=0.000 for both). Scaffolds 

that underwent chondrogenesis without growth factor treatment contained 9.28μg/μg 

whilst treated scaffold exhibited sGAG content of 16.39μg/μg with no significant 

difference found between the two culture conditions.  
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5.2.5 Collagen content 

 
Collagen is the most abundant protein in the ECM of articular cartilage and accounts 

for approximately two thirds of its dry mass (Eyre, 2002). Although type II collagen 

represents 90% of the collagen in the ECM other collagens are also present in small 

proportions and include collagen type III, IV, V, VI, IX and XI and enable the tissue 

to function by aiding the formation and stabilisation of the type II fibrillar network 

(Fox et al., 2009). 

 

Picrosirius red is a staining method used in order to identify fibrillar collagen 

networks (Lattouf et al., 2014). It is a linear anionic dye containing six sulfonate 

groups that associate to cationic collagen fibres, in particular reacting with amino 

groups of lysine, hydroxylysine and guanidine groups of arginine. This enhances 

collagen birefringence when viewed under polarised light (Montes and Junqueira, 

1991). The birefringence is specific to collagen and the amount of light absorbed by 

the dye is dependent on the orientation of collagen fibres (Bhutda et al., 2017). 

 

5.2.5.1 Native immature baseline 

 
Cartilage obtained from immature MCP joints (6mm punch biopsy) were washed, 

fixed and embedded in preparation for histological analysis. Section of native tissue 

were stained with picrosirius red and imaged using a light microscope with a 

polarised light filter.  
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Figure 5.20: Picrosirius red staining of native immature bovine cartilage. 

Immature bovine cartilage stained with picrosirius red imaged with a light 

microscope at low magnification (A) and high magnification (B) and with polarised 

light to show birefringence at low magnification (C) and high magnification (D). 

Scale bars equal to 0.1mm. 

 

Figure 5.20 (A) is a low magnification (x4) image of a section of native immature 

bovine cartilage stained with picrosirius red taken with a light microscope. The depth 

of the tissue is approximately 0.93mm at the thickest point and is stained entirely red. 

Figure 5.20 (B) is a high magnification (x20) image of the tissue focusing on the 

superficial and transition into the middle zone of the cartilage. The tissue is stained 

in red, indicating the collagen distribution through the tissue, with unstained regions 

representing areas populated by cells. Figure 5.20 (C) and Figure 5.20 (D) are the 

same images imaged under polarised light. Under polarised light native immature 

cartilage fluoresces a yellow colour at the very surface of the superficial zone and 

through the middle zone. The deep zone and a region of the middle zone, 

approximately 0.27mm, beneath the superficial zone do not appear to exhibit a lot of 

fluorescence although the high magnification image seen in Figure 5.20 (D) shows 

some fluorescence directly around areas where cells are present.  
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5.2.5.2 Scaffold assisted collagen content 

 
Scaffolds equilibrated in serum free media were seeded with 0.5x106 

chondroprogenitor cells and cultured for 21 days with chondrogenic media. 

Following the culture period, collagen deposition was assessed histologically via 

picrosirius red staining of samples and imaging using polarised light microscope.  

 

 
 
Figure 5.21: Picrosirius red staining of JCol scaffolds following 21 days of 

chondrogenic culture with TGFβ1. Low magnification (x4) image of JCol scaffold 

imaged with a polarised light microscope (A) with labelled superficial (S), middle 

(M) and deep (D) zones. High magnification (x20) images were taken of areas 

representing the superficial (B), middle (C) and deep (D) zones. 

 

Figure 5.21 (A) is a low magnification (x4) image of a JCol scaffold stained with 

picrosirius red following 21 days of chondrogenic culture with TGFβ1. The collagen 

network is stained throughout, with the majority of the scaffold fluorescing in red. 
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The scaffold has maintained its shape until 1.7mm where it begins to constrict for 

0.68mm before maintaining the original shape again. Figure 5.21 (B) shows the 

superficial zone of the scaffold at high magnification (x20). The superficial region 

gives off a yellow fluorescence similar to what is seen in native immature tissue. The 

middle zone, depicted in Figure 5.21 (C), show the edges of ribbons of collagen 

fluorescing in yellow whilst the majority of the network remains red in colour. The 

same pattern can be seen in the deep zone of the scaffold, Figure 5.21 (D). The 

collagen network in the deep zone appears to be broken towards the edge of the 

tissue with larger swollen pores when compared to the superficial and middle zone.  

 

 
 
Figure 5.22: Picrosirius red staining of JCol scaffolds following 21 days of 

chondrogenic culture without TGFβ1. Low magnification (x4) image of JCol 

scaffold imaged with a polarised light microscope (A) with labelled superficial (S), 

middle (M) and deep (D) zones. High magnification (x20) images were taken of 

areas representing the superficial (B), middle (C) and deep (D) zones.  
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Figure 5.22 (A) is a low magnification image (x4) of a JCol scaffold cultured 

without TGFβ1 for 21 days. The overall collagen network does not appear to 

fluoresce with the same intensity as scaffolds treated with TGFβ1 and the shape of 

the scaffold has been altered during the culture period. A clear defined fluorescence 

is not seen across the entire superficial region as seen in native tissue and treated 

scaffolds. In the high magnification image of the superficial zone, Figure 5.22 (B), 

ribbons of collagen are seen in red with yellow fluorescence present at the edges of 

the protein. The pattern of fluorescence is similar in the middle and deep zones, 

shown in Figure 5.22 (C) and Figure 5.22 (D), respectively, at a decreased intensity. 

Pores appear the be larger throughout the scaffold when compared to growth factor 

treated scaffolds that only exhibited larger pores in the deep zone of the scaffold. At 

the deep zone, the scaffold does not appear to have held its integrity with broken 

pores visible in the region. 

 

 
 
Figure 5.23: Picrosirius red staining of chondroprogenitor cells in pellet culture 

with TGFβ1. Pellets were stained and imaged at low magnification (x4) with 

polarised light following 21 days of chondrogenic culture with TGFβ1 (A). High 

magnification images (x20) were taken of the edge of the pellet (B). Scale bars equal 

to 0.1m.  

 

Figure 5.23 (A) is a polarised light image of a pellet after 21 days of chondrogenesis 

in the presence of TGFβ1. The pellet has kept its spherical shape and measures 

approximately 1.93mm in width and 1.46mm in length. Yellow and green 

birefringence is seen around the edge of the pellet with less intense birefringence 

seen towards the centre. Figure 5.23 (B) is a high magnification image of the edge of 

the pellet highlighting the birefringence in this area, which is approximately 0.1mm 

in depth.  
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Figure 5.24: Picrosirius red staining of chondroprogenitor cells in pellet culture 

without TGFβ1. Pellets were stained and imaged at low magnification (x4) with 

polarised light following 21 days of chondrogenic culture without TGFβ1 (A). High 

magnification images (x10) were taken of the edge of the pellet (B). Scale bars equal 

to 0.1mm.  

 

Figure 5.24 (A) is a low magnification polarised light image of a pellet following 21 

days of chondrogenesis in the absence of TGFβ1. The pellet has lost its spherical 

structure and is 2.74mm in length. The width of the pellet varies throughout the 

length with it measuring 1.48mm in width at 0.71mm and 0.92mm in width at 

1.52mm. Birefringence is seen along the edges of the pellet and is yellow in colour. 

Figure 5.24 (B) is a high magnification image of the edge of the pellet. The image 

depicts the yellow birefringence at the edge of the structure whilst the collagen fibres 

appear red towards the centre.  
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5.2.5.3 Hydroxyproline quantification 

 
The collagen content from construct was quantified spectrophotometrically following 

21 days of culture. Papain digested samples were subject to hydroxyproline assay to 

quantify the amount of 4-hydroxyproline found in collagen of cartilage that aids in 

the stabilisation of the triple helix.  

 
 
Figure 5.25: Hydroxyproline content of pellet and scaffold cultures after 21 days 

of chondrogenesis. Hydroxyproline content of immature bovine cartilage (A) 

normalised per ug of DNA. TGFβ treated and untreated pellet and scaffold cultures 

were assessed for hydroxyproline content following chondrogenesis (B). All data 

shown is from a minimum of 3 independent biological repeats, statistical significance 

shown according to Mann Whitney U test (*p<0.05; **p<0.01; ***p<0.001).  

 

Figure 5.25 (A) shows hydroxyproline content of immature bovine cartilage 

normalised to DNA content to be 67.02ug/ug of DNA ± 16.50 and was used as a 

benchmark. Figure 5.25 (B) displays hydroxyproline content of pellet and scaffold 

cultures following 21 days of chondrogenesis. Untreated pellets were analysed and 

shown to have no hydroxyproline content that could be detected by the assay. TGFβ 

treated pellet (p=0.02) scaffolds (p=0.000) and untreated scaffolds (p=0.000) all had 

a significant increase in hydroxyproline content when compared to untreated pellets.  

The hydroxyproline content of TGFβ treated pellet culture was 7.62 ug/ug, which 

was significantly lower, compared to scaffold cultures with and without growth 

factor treatment (p=0.000 for both). When comparing TGFβ treated scaffolds and 

untreated scaffolds, no significant difference was observed with hydroxyproline 

content determined to be 350.57ug/ug and 335.25ug/ug, respectively.  
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5.2.6 Histology summary 

 
Following 21 days of chondrogenic culture, JCol scaffolds were stained for the 

presence of characteristic components of cartilage matrix GAGs and collagen. These 

were compared to native bovine cartilage to understand whether scaffold structures 

had similar matrix deposition to native tissue.  

 

 
 
Figure 5.26: Summary panel of histological analysis of native tissue and JCol 

scaffolds with and without TGF1 treatment. 

 

Figure 5.26 is a summary panel of histology images showing the comparison of 

GAG content (Tol Blue) and collagen deposition (PSR) between native bovine 

articular cartilage and JCol scaffolds with and without TGFβ1 supplementation. In 

summary, Tol Blue staining of native cartilage is present throughout the biopsy 

sample compared to the appearance of a band of staining at the top of scaffold 

structures that is enhanced by growth factor treatment. PSR analysis of native 

cartilage shows a thin area of fluorescence at the superficial zone that can also be 

seen in treated scaffolds but is not observed as clearly in untreated scaffolds.  

 

5.2.7 Gene expression analysis 

 
Enhanced chondrogenesis in vitro is characterised by the expression of SOX9, 

ACAN and COL2A1, which are expressed during development of cartilage 
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(Yamashita et al., 2010). SOX9 establishes condensation and initiates 

chondrogenesis and regulates expression of COL2A1, which is a major component 

of cartilage ECM along with aggrecan (Bell et al., 1997). 

 

 
 
Figure 5.27: Fold change of SOX9 gene expression compared to native cartilage. 

Fold change of SOX9 gene expression of pellet and scaffold cultures following 21 

days of chondrogenesis in the presence and absence of TGFβ compared to immature 

native bovine cartilage.  

 

Figure 5.27 shows the fold change in gene expression of SOX9 from pellet and 

scaffold cultures following 21 days of chondrogenic culture in the presence and 

absence of TGFβ. Untreated pellet cultures showed a  decrease of SOX9 gene 

expression by a fold change of 14692.97 (min: 436.01; max: 28949.92; medium: 

14692.97) when compared to native bovine articular cartilage and exhibited the 

biggest decrease in SOX9 expression when compared to all other culture conditions. 

TGFβ treated pellet cultures displayed a decreased fold change of 5.66 (0.89; 10.42; 



Chapter 5                                                                                     Enhanced Chondrogenesis 
 

 241 

5.66) in comparison to native cartilage. When compared to all other conditions, 

growth factor treated pellet culture showed the smallest fold change in gene 

expression. Untreated scaffold cultures showed a decreased fold change in SOX9 

gene expression by 14.29 (8.68; 22.82; 14.29) whilst TGFβ treated scaffold cultures 

showed a decrease by 332.41 fold (14.45; 648.52; 332.41) when compared to native 

bovine cartilage.  

 

 
 
Figure 5.28: Fold change of COL2A1 gene expression compared to native 

cartilage. Fold change of COL2A1 gene expression of pellet and scaffold cultures 

following 21 days of chondrogenesis in the presence and absence of TGFβ compared 

to native immature bovine cartilage. 

 

Figure 5.28 shows the decrease in COL2A1 gene expression, expressed as fold 

change, of pellet and scaffold cultures in the presence and absence of TGFβ 

compared to native immature bovine cartilage. Pellets cultured without TGFβ 

displayed a decrease in COL2A1 gene expression by 939.86 (4.30; 1875.41; 939.86) 

when compared to native tissue and exhibited the lowest change when compared to 
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all other conditions. TGFβ treated pellets had a decrease in expression by 1564.04 

(24.77; 3103.31; 1564.04). The largest change in COL2A1 gene expression occurred 

in untreated scaffold cultures and decreased by 1860.31 (492.05; 2781.17; 1860.31) 

in comparison to native tissue whilst treated scaffold cultures only decreased by 

1092.1 (103.51; 3017.91; 1092.1). 

 

 

 
 
Figure 5.29: Fold change of ACAN gene expression compared to native 

cartilage. Fold change of ACAN gene expression of pellet and scaffold cultures 

following 21 days of chondrogenesis in the presence and absence of TGFβ compared 

to immature native bovine cartilage.  

 

Figure 5.29 displays the difference in ACAN gene expression, in terms of fold 

change, of pellet and scaffold cultures following 21 days of chondrogenic culture 

compared to native bovine articular cartilage. Untreated and treated pellet cultures 

showed an increase in ACAN gene expression by 53.49 (3.80; 103.17; 53.49) and 

18.90 (3.50; 34.29; 18.90), respectively, when compared to native tissue. Conversely, 
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scaffold cultures without growth factor treatment showed a decrease in ACAN 

expression by 41.77 (3.18; 69.13; 41.77) whilst treated scaffold cultures showed less 

of a decrease in gene expression at 10.96 (6.08; 14.88; 10.96) compared to immature 

bovine cartilage. 

 

 
 
Figure 5.30: Fold change of RUNX2 gene expression compared to native 

cartilage. Fold change of RUNX2 gene expression of pellet and scaffold cultures 

following 21 days of chondrogenesis in the presence and absence of TGFβ compared 

to native immature bovine cartilage. 

 

Figure 5.30 shows the difference in RUNX2 gene expression, expressed as fold 

change, from pellet and scaffold cultures following 21 days of culture and compared 

to immature bovine cartilage. Pellet cultures show a decrease in RUNX2 expression 

by 6.02 (0.28; 11.76; 6.02) whilst TGFβ treated pellets were shown to increase gene 

expression by 36.07 (0.57; 71.56; 36.07) compared to native tissue. Treated pellets 

were the only culture condition tested to show an increase in RUNX2 gene 
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expression. Scaffold cultures exhibited a decreased gene expression by 2.49 (0.19; 

1.71; 2.49) and TGFβ treated scaffold cultures showed the largest decrease in 

RUNX2 gene expression when compared to native bovine cartilage by 45.29 (0.19; 

133.98; 45.29).  

 

 
 
Figure 5.31: Fold change of COL1A1 gene expression compared to native 

cartilage. Fold change of COL1A1 gene expression of pellet and scaffold cultures 

following 21 days of chondrogenesis in the presence and absence of TGFβ compared 

to native immature bovine cartilage.  

 

Figure 5.31 is the fold change difference in COL1A1 gene expression of pellet and 

scaffold cultures on completion of 21 days of chondrogenesis compared to bovine 

articular cartilage. All culture conditions tested showed an increase in COL1A1 gene 

expression. Untreated and growth factor treated pellet cultures showed an increase in 

gene expression by 4831.74 (0.01; 9662.48; 4831.74) and 1150.02 (1.37; 2298.68; 

1150.02), respectively, compared to bovine cartilage. Untreated scaffold cultures 

exhibited an increased gene expression by 2139.27 (782.35; 3074.63; 2139.27) 

compared to native tissue. The largest increase in COL1A1 gene expression 
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compared to immature bovine cartilage was witnessed in TGFβ treated scaffold 

cultures at 32681.15 (782.35; 3074.63; 2139.27).  

 

 
 
Figure 5.32: Fold change of COL10A1 gene expression compared to native 

cartilage. Fold change of COL10A1 gene expression of pellet and scaffold cultures 

following 21 days of chondrogenesis in the presence and absence of TGFβ compared 

to native immature bovine cartilage.  

 

Figure 5.32 shows the decrease in COL10A1 gene expression, displayed as fold 

change, for scaffold and pellet cultures in the presence and absence of TGFβ 

compared to immature bovine articular cartilage. Pellet cultures in the absence of 

TGFβ expressed a decrease in gene expression by 36.2 (0.15, 72.25; 36.2) compared 

to native tissue. TGFβ treated pellet culture showed the lowest fold change in 

COL10A1 gene expression when compared to all other culture conditions at 13.99 

(0.00; 27.97; 13.99). Scaffold cultures without TGFβ treatment decreased gene 
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expression by 27.81 (1.06; 73.05; 27.81) when compared to native tissue whilst 

TGFβ treated scaffold cultures exhibited the highest decrease in COL10A1 

expression at 60.29 (0.46; 174.92; 60.29).  

 

 

5.2.8 Protein expression 

 
Successful regeneration using tissue engineered constructs is dependent upon matrix 

remodelling and deposition by cells residing in scaffolds (O'Brien, 2011). 

Immunohistochemistry (IHC) is the identification of tissue constituents by antibody 

recognition of specific antigens (Shi et al., 2011).  

 

TGFB treated scaffolds were stained using bovine aggrecan and collagen type II and 

type I antibodies to evaluate whether bovine CPs had deposited matrix and undertake 

matrix remodelling.  
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Figure 5.33: Immunohistochemistry of TGFβ1 treated scaffolds. Scaffolds were 

stained for chondrogenic markers collagen type II and aggrecan as well as collagen 

type I, typically found in fibrocartilage. Images with a light microscope at x20 

object. Scale bars are 50 μm. 

 

Figure 5.33 is a panel of immunohistochemistry images of TGFβ treated scaffolds. 

A no antibody control was used to account for any false positive (Figure 33 (D)). 

Figure 5.33 (A) and Figure 5.33 (C) representative staining of collagen type I and 

type II in scaffolds showing no staining by their respective antibodies. Figure 33 (B) 

shows staining of aggrecan within TGFβ1 treated scaffolds after chondrogenesis. 

Aggrecan antibody staining is apparent in areas around collagen ribbons indicating 

matrix deposition.  

 

5.3 Discussion  

 

The limited regenerative capacity of cartilage has lead to the development of 

different intervention techniques including the fabrication of cartilage that can be 

implanted into cartilage defects (Zhang et al., 2009). Although these surgical 

interventions have exhibited varying degrees of success, research into 

chondrogenesis has continued, in order to improve patient outcome and decrease the 

duration of rehabilitation (Redman et al., 2005). Current methods involve both 

cellular approaches and matrix-assisted approaches displaying advantages in 

chondrogenesis and cartilage production (Bernstein et al., 2009). An early proof of 

concept pre-clinical study is outlined in this chapter, demonstrating the suitability of 

inert, JCol scaffolds in combination with bovine CP populations, for a next 

generation regenerative medicine approach to cartilage repair capitalising on 

enhanced in vitro chondrogenesis.  

 

JCol scaffolds are a suitable environment for CP chondrogenesis. Cell invasion is 

observed through the construct apart from the ‘deep zone’ and cell content is higher 

than pellet culture, when starting with the same seeding concentration. Histological, 

biochemical and gene analysis shows that JCol scaffolds express genes typically 

associated with chondrogenesis and that matrix deposition is enhanced with TGFβ 
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although gene expression was lower than that observed in pellet culture. 

Hypertrophic markers were observed in scaffold cultures however they were 

expressed at lower levels compared to pellets indicating that cellular hypertrophy and 

osteogenesis may be less likely to occur in scaffold structures. These results indicate 

that JCol scaffolds are suitable for development in this space, with focus placed on 

the mechanical stability of structures and cell seeding efficiency for the homogenous 

deposition of matrix, which may lead to better functional tissue development. 

 

Sponge scaffold supported chondrogenesis  

 

1% EDC JCol sponge scaffolds were fabricated and seeded (density of 0.5x106) with 

bovine CPs, with cell invasion observed throughout the construct depth, meeting the 

requirement of high cell density favoured by in vitro chondrogenesis (Bornes et al., 

2016). No significant contraction occurred after the initial 7 days of culture. 

Contraction of gels has previously been shown to reduced cell attachment collagen 

synthesis both of which would be counterproductive for cartilage regeneration 

(Nakagawa et al., 1989).  

 

Following the full 21 day culture period, data obtained from pellet cultures showed a 

decrease in cell number from initial seeding thought to be caused by the generation 

of a hypoxic core at the centre of the dense structure causing uneven oxygen tension 

(Dexheimer et al., 2012). On the other hand scaffold cultures were shown to have a 

higher cell number although this was still below the initial cell seeding density. The 

porous structure of scaffolds allows for oxygen to be passed throughout the entire 

structures and so loss of cells in scaffold constructs may have occurred due to the 

efficiency of the seeding method. Cells were seeded at high density and low volume 

at the top of the scaffold and allowed to attach for 20 minutes before flooding with 

media potentially causing the loss of any unattached cells (Bueno et al., 2007). Cells 

may also have been lost if they were not able to attach to binding motifs present on 

JCol scaffolds causing anoikis (Lee et al., 2015).  

 

Scaffolds produced from type I and II collagen have been shown to promote 

chondrogenesis in vitro however degradation products released during remodelling 

of type II collagen may cause catabolic events to occur in vivo (Dewan et al., 2014). 
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A variety of commercially available scaffolds used in MACI procedures are 

composed of collagen (type I and III) or collagen hybrids including NeoCart and 

CaReS and NovaCART 3D, shown in Table 5.1 (Jacobi et al., 2011).  

 

 
 
Table 5.1: Table of commercially available scaffolds for MACI procedures 

(Jeuken et al., 2016) 

 

Commercially available collagen based scaffolds have been used in MACI surgery 

with varying degrees of success (Iwasa et al., 2009). Although, they are typically 

shown to be superior to microfracture surgery in their repair capabilities in long term 

follow up studies there are still issues regarding cellular differentiation and the onset 

of hypertrophy in chondrocytes (Jeuken et al., 2016). Research with jellyfish derived 

collagen scaffolds has been shown to be a promising alternative matrix material with 

cells expressing chondrogenic markers (Hoyer et al., 2014), displaying higher cell 

viability and comparable in vivo immune response to  bovine collagen (Song et al., 

2006).Work outlined in Chapters 3 and 4 have shown that R. pulmo jellyfish collagen 

can be moulded into a scaffold structure and is biocompatible with cells, eliciting a 

response similar to commercially available collagen. 

 

As well as the biomaterial source for scaffold construction, cell source plays an 

important step in being able to produce the desired tissue type (O'Brien, 2011). CPs 

were used here, demonstrating an ability to undergo chondrocyte differentiation. In 

comparison, the use of chondrocytes has proven to have limitations including donor 

site morbidity, limited cell source and dedifferentiation during 2D in vitro expansion 
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before seeding into scaffolds (Li et al., 2015). Multipotent cells such as MSCs, while 

they have the capability to differentiate into osteogenic, chondrogenic and 

adipogenic lineages (Murray and Péault, 2015), are epiphyseal in nature if isolated 

from bone marrow, and usually produce chondrocytes that undergo terminal 

differentiation and hypertrophy (Williams et al., 2010). 

 

MSCs can be harvested from a number of other tissues due to their broad distribution 

throughout the human body, including adipose tissue, synovial tissue and umbilical 

cords (Williams et al., 2011). Cartilage repair research using such MSCs have given 

promising results with a high proliferative capacity, induction of a minimal immune 

response following implantation and good chondrogenic potential exhibiting 

COL2A1 and ACAN in culture (Zhang et al., 2009). Using an autologous population 

that can be harvested from the same injured joint, due to their clonogenic potential 

and culture proliferation however is advantageous. CPs obtained from cartilage are 

believed to be further along the stages of commitment to the chondrogenic lineage 

compared to MSCs (Jayasuriya and Chen, 2015a). Effective in vivo cartilage repair 

has been observed in caprine models where CPs gave similar results in terms of 

repair and integration as full depth chondrocytes (Williams et al., 2010). 

 

Enhanced chondrogenesis  

 

In developmental biology, chondrogenesis is the process by which chondrocytes 

arise from mesechymal progenitor cells and produce cartilage anlagen for developing 

bone (Goldring, 2012). The process begins through mesenchymal condensation to 

form anlagen where cells actively express ECM components and cell adhesion 

molecules including aggrecan and collagen type II (Boyce et al., 2018). At a certain 

cell per volume ratio, cells at the centre of the condensed structure cease proliferation 

and establish cartilaginous nodules (Berge et al., 2008). Formation of the anlagen is 

driven by Sonic Hedgehog (Shh) through interaction with the transmembrane 

receptors Patched 1 and 2 and the subsequent recruitment and activation of 

Smoothened and Gli transcription factors, respectively (Wilson and Chuang, 2010). 

 

The activation of this signalling system induces the expression of SOX9, which is 

critical during chondrogenesis and can be regulated by Notch signalling (Monsoro-
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Burq, 2005). Once SOX9 is activated chondrogenesis continues, the anlagen 

elongates, and endochondral ossification occurs where chondrocytes continue to 

express SOX9 but also express RUNX2 and Osterix, important transcription factors 

seen as critical for the skeleton mineralisaion and bone formation. They are 

responsible for causing enlargement of cells and expression of collagen type X as 

well as alkaline phosphatase, characteristics of hypertrophy and calcification 

(Nishimura et al., 2012).  

 

Chondrogenic media used in this chapter was supplemented with TGFβ1 to in order 

to stimulate chondrogenesis in line with research findings in literature. TGFβ and 

BMP families are essential in the initiation of chondrogenesis (Mariani et al., 2014). 

TGFβ signals via activin-like kinase (ALK) 1 and 5 to activate Smad pathways, 

outlined in Figure 5.1 (Finnson et al., 2008). Both pathways regulate the 

differentiation and phenotypic characteristics, to stabilise chondrocyte phenotypes 

(in the superficial and medial zones) or induce chondrocyte specific hypertrophic 

differentiation in the deep zone cartilage (Mariani et al., 2014). TGF 1 specifically, 

is considered an essential molecule in the anabolic processes in cartilage formation 

(Serra et al., 1997). Experiments involving TGFβ1 null mice showed no defect in 

cartilage formation however 50% of embryos underwent early termination 

suggesting a lethal effect due to the lack of TGFβ1 family (Wang et al., 2014).  

 

Differentiation of cells causes the loss and expression of different genes depending 

on the lineage that is to be created therefore analysis of specific gene expression 

profiles can indicate whether the desired tissue is being formed during regenerative 

medicine (Alberts et al., 2002). In this chapter, a panel of genes was chosen for 

analysis, that are present in chondrogenesis, shown in Figure 5.1, with hypertrophic 

marker (RUNX2, COL10A1) chosen as negative controls. 

 

SOX9 is considered the master regulator of chondrogenesis due to its role in 

proliferation and differentiation of cells via direct control of the expression of 

specific chondrogenic genes (Green et al., 2015). Most notably, SOX9 binds to a 48 

base pair enhancer region in COL2A1 and works with SOX5 and SOX6 to regulate 

aggrecan expression, leading to SOX9, COL2A1 and ACAN being seen as 

characteristic markers of chondrogenesis (Kupcsik et al., 2010). Data from this 
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project shows that pellet cultures had the highest SOX9 expression compared to JCol 

scaffold cultures. The chondrogenic potential of pellets is further witnessed by TGFβ 

treated cultures exhibiting the highest expression of ACAN and COL2A1. This may 

be due to pellet culture emulating condensation events that occur naturally during 

development through close cell-cell contact (Goldring, 2012).  

 

Developmental studies have also shown that SOX9 is upregulated in hypoxic 

conditions, which may occur at the centre of pellet structures (Yodmuang et al., 

2015). This is observed here, as pellet cultures stained with Toluidine Blue are 

labelled throughout whereas scaffold cultures show the most intense Toluidine Blue 

staining at the seeding interface, where the majority of cells are present. In a similar 

fashion to previous research with R. pulmo collagen in cartilage engineering, our data 

also showed an increase in SOX9 and ACAN expression in TGFβ treated scaffolds 

compared to the untreated counterpart displaying the additive effect of growth 

factors in regenerative medicine (Pugliano et al., 2017). Cell density is thought to be 

key in GAG accumulation with high cell density leading to increased production 

(Kobayashi et al., 2007). 

 

Pore size is a critical component when designing scaffolds for tissue engineering 

(Murphy et al., 2010). Although JCol scaffolds were proven to have an average pore 

size that is condusive to chondrogenesis (Matsiko et al., 2015) our results show 

chondrogenic genes are better expressed in pellets where cell-cell contact is apparent. 

Large pore sizes result in a decrease of surface area leading to reduction in ligand 

density for cell binding (Murphy et al., 2010). This may be the case with JCol 

scaffolds whereby cell attachment is lower and reduces cellular processes such as 

differentiation (O'Brien et al., 2005). The development of scaffolds with different 

pore sizes will help to further our understanding and enhance chondrogenesis.  

 

Collagen was observed in all culture conditions via polarised light microscopy from 

picrosirius red staining. Gene expression analysis of cells from different culture 

conditions displayed the type of collagen produced during differentiation. Untreated 

JCol scaffolds exhibited the highest expression of COL1A1 and one of the lowest 

expressions of COL2A1 compared to other culture conditions. The expression of 

COL1A1, typically seen in abundance in fibrocartilage, may be due to the 
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mechanical weakness of JCol scaffolds, with mechanotransduction signalling to cells 

for the production collagen suitable for the environment in which they are attached to 

(Kock et al., 2012). A decrease in COL1A1 was observed in JCol scaffolds treated 

with TGFβ treatment and is potentially linked to the upregulated expression of SOX9 

leading to expression of COL2A1.  

 

Type II collagen accounts for approximately 90% of the total dry weight of articular 

cartilage and aids in the tensile strength of the tissue (Bhosale and Richardson, 

2008). The production of the correct collagen type is important in order to produce a 

functionally relevant tissue for implantation (Roberts et al., 2009). Fibrocartilage is 

an inherently mechanically weaker form of cartilage that is predominantly composed 

of type I collagen (Hollander et al., 2003). The production of type I collagen in 

cartilage tissue engineered constructs would lead to a weaker cartilage and higher 

risk of readmission for surgery and therefore COL2A1:COL1A1 ratio is often seen 

as an important aspect of in cartilage regeneration (Albrecht et al., 2011). However, 

it should be noted that collagen type I is expressed in native immature articular 

cartilage in the superficial zone (Teshima et al., 2004). Immunohistochemistry of 

TGFtreated scaffolds did not show collagen type I or II to be present, following 

culture period however this may be due to the specificity of the antibody used and 

the inability to recognize epitopes presented on jellyfish collagen (Matos et al., 

2010). 

 

As a master regulator, SOX9 is also linked with the transcription regulation of 

RUNX2, inhibiting its expression during chondrogenesis (Zhou et al., 2006). 

RUNX2 is responsible for the maturation and hypertrophy of chondrocytes, which 

suggests that during skeletal development RUNX2 supresses SOX9 expression to 

allow for endochondral ossification and bone development (Cheng and Genever, 

2010). Once hypetrophic, chondrocytes express collagen type X which in turn 

influences the environment for matrix deposition and tissue mineralisation (Gu et al., 

2014). The overexpression of RUNX2 is also believed to play a role in the 

pathogenesis of OA as it induces the expression of MMP13 and ADAMTS5 that are 

responsible for the degradation of the cartilage matrix (Komori, 2018).  
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Interestingly, data from this project shows that untreated pellet cultures although 

displaying the highest SOX9 expression, also displayed the highest levels of RUNX2 

and COL10A1 suggesting more cells were beginning to undergo hypertrophy in 

comparison to other culture conditions. A decrease in RUNX2 and COL10A1 was 

observed in TGFβ1 treated pellet cultures showing the effect of TGFβ1 in 

chondrogenesis.  Treated and untreated scaffold structures show similar levels of 

RUNX2 expression, with TGFβ scaffolds showing a lower level of COL10A1 

expression compared to the untreated scaffold. Human MSCs cultured in jellyfish 

collagen scaffolds have previously been shown to upregulate COL10A1 gene 

expression following 3 weeks of chondrogenic culture (Hoyer et al., 2014). 

However, the reliability of COL10A1 as a hypetrophic marker in vitro has been 

questioned as previous research has shown that COL10A1 expression occurred 

earlier than COL2A1 expression in chondrogenic pellet culture (Mwale et al., 2006). 

The data here suggests that collagen scaffold support is needed to mitigate the 

temporal expression of these collagen variants, in line with that observed in 

developmental biology.  

 

Overall, this chapter demonstrates that JCol scaffolds are a suitable environment for 

chondrogenesis of bovine derived CPs. Cell invasion is observed through the 

construct, though does not appear apparent in the ‘deep’ zone, and cell content is 

higher than pellet culture. Histological, biochemical and gene analysis shows that 

JCol scaffolds express genes typically associated with chondrogenesis and that 

matrix deposition is enhanced with the use of growth factors such as TGFβ. 

Hypertrophic markers were observed in scaffold cultures however they were 

expressed at lower levels compared to pellets indicating that cellular hypertrophy 

may be less likely to occur in scaffold structures. These results indicate that JCol 

scaffolds should be developed further for regenerative medicine and tissue 

engineering of cartilage with focus placed on the mechanical stability of structures 

and cell seeding efficiency for the homogenous deposition of matrix for functional 

tissue development. 
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6.1 Thesis Summary 

 

Collagen is an integral component of the ECM and contributes to the structural 

integrity of tissues as well as influencing multiple cellular functions (Frantz et al., 

2010). The deregulation of, or imbalance between anabolic and catabolic processes 

regarding the ECM is a contributing factor towards the development of disease 

(Bonnans et al., 2014). Although some tissues, such as skin, have the ability to 

regenerate after injury others lack the capability to do so and require intervention 

through tissue engineering strategies. Surgical techniques to repair damage which 

results from such disease processes have evolved from cellular and gene therapies, to 

matrix assisted implantation techniques that are beginning to rival allogneic 

implantation of donor material (Hosseinkhani et al., 2014).  

 

Traditionally mammalian derived collagens used in such repair approaches present 

widespread challenges, from environmental (farming), ethical, immunological and 

contamination considerations (Karim and Bhat, 2009). 3% of the population exhibit 

allergic reactions to bovine derived collagen (Lee and Lee, 2016). Collagens are a 

robust protein family, with a high degree of evolutionary conservation indicating a 

wider pool of sources being available (Exposito et al., 2002). In addition, synthetic 

variants that capitalise on collagen structural composition have been explored (Saha 

et al., 2007).  

 

Marine sources (from animals including fish, jellyfish and sea urchins) are becoming 

more prominent and further explored (Subhan et al., 2015). As well as overfishing 

leading to the decline of specific fish species, cold and warm water fish display 

differences in their collagen properties, indicating that fish may not be a suitable 

sustainable collagen source (Karim and Bhat, 2009). Particular interest has been 

given to jellyfish as their anatomy is largely composed of collagen and the increase 

in heat has caused seasonal blooms that are disruptive to both sea and terrestrial life 

(Brotz et al., 2012).  

 

R.Pulmo harvested collagen represents a possible alternative, inert and structurally 

compatible, next generation collagen source to furnish cleaner, more robust 

regenerative medicine approaches tailored made for individual applications. 
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Mammalian collagen isolation methods have proven to produce high yields whilst 

maintaining the triple helix structure, presenting cell binding motifs for attachment 

and providing mechanical strength for scaffolds (Exposito et al., 2010). Presented 

here is a large body of evidence; from triple helical structure, peptide sequence 

conservation and mammalian homology, to sponge scaffold fabrication and in depth 

characterisation, to support the adoption of such marine collagens in human 

regenerative medicine. JCol is biocompatible in that it supports non differentiated 

mammalian cell culture (in 2D and 3D), does not initiate an adverse immunogenic 

response in vitro and is an appropriate scaffold for enhanced mammalian cell 

chondrogenesis.  

 

 
 
Figure 6.1: Schematic of experimental areas and outputs achieved in this 

project. 

 

Articular cartilage is a tissue with limited regenerative capacity and tissue trauma can 

lead to the development and progression of OA (Goldring and Goldring, 2007). 

Many commercially available polymer like scaffolds for procedures such as MACI 

exist, with collagen being favoured (Jeuken et al., 2016). JCol sponge scaffolds used 

as a natural matrix derivative support chondroprogenitor cell growth, chondrogenic 

differentiation and now need to be tested for integration with native tissue, in humans 

(Khan et al., 2008).  
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6.2 JCol structural composition, isolation and sponge fabrication  

 

Maintenance of collagen structure following isolation is imperative as disturbance 

can cause loss of function (Bonnans et al., 2014). The development of a more 

efficient and rapid R. pulmo jellyfish collagen isolation method was fully optimised 

here and has since been adopted by our industrial partner (Pacak et al., 2011). 

Incorporating measurements for purity, yield and the conservation of all important 

amide I, II, III peaks using techniques such as FTIR enabled modified isolations, 

through the use of different acids, enzymatic digestion and salting out procedures 

(Schmidt et al., 2015).  

 

Acetic acid solubilisation followed by salting out with sodium chloride provides a 

collagen preparation re-suspended in acetic acid with maintained amide peaks 

supportive of a collagen sub type capable of triple helix structure formation. Altered 

electrophoretic patterns observed in the alpha1/2 bands compared to RTCol, where 

the migration was slower, provide an indication that this helical structure is altered in 

JCol (Addad et al., 2011). Peptide analysis preformed on 1-derived band showed 

sequence alignment with human collagen peptides that are imperative to triple helix 

structure, validating that our isolation method maintained the essential building 

blocks for a ‘collagen like’ triple helical structure. When fabricated to a 3D sponge, 

JCol collagen provided a larger pore size when compared to mammalian collagen 

sources, at each cross-linking concentration. The differences in structural 

composition of collagen between the species may lead to overall changes in aspects 

such as fibre diameter and density, which in turn causes changes in architecture and 

pore size (Lang et al., 2013). Certain pore sizes have been shown to favour specific 

regenerative applications and so these differences may prove to be advantageous 

however structural differences in collagen can also alter mechanical properties and 

therefore adjustments may be required to achieve a biomimetic matrix model (Yang 

and Kaufman, 2009). 

 

Collagen derived scaffold structures can form varying constructs with hydrogels and 

sponge scaffolds being prominent (Lee and Shin, 2007). Mammalian collagens are 
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compatible with sponge structures and also gel between room temperature and 37°C, 

during the process of fibrillogenesis (zhu and Kaufman, 2014). JCol fabrication 

techniques produce a sponge scaffold typical of marine collagen (Hoyer et al., 2014) 

however  no gelation occurred between 4 and 37C. Fibril formation is informed by 

the amino acid composition, with Cheng et al. showing a lower hydroxyproline 

content compared to mammalian counterparts, leading to a lower crosslinking 

density and a lower denaturation temperature (Cheng et al., 2017a). 

 

EDC cross-linking stabilised this sponge structure, providing mechanical, structural 

and thermal integrity (Davidenko et al., 2015). The low hydroxyproline content in 

JCol results in a low denaturation temperature (29°C), making it unsuitable for 

implantation into the human body (Subhan et al., 2015). Thermal stability increased 

after crosslinking. This trend was also witnessed in scaffold degradation properties 

with 1% crosslinked jellyfish scaffolds taking more time to undergo full digestion 

with collagenase however the scaffold did not show resistance.  

 

The mechanical properties of scaffolds have been closely linked with functional 

cellular differentiation (Plant et al., 2009). AFM analysis of scaffold during this 

project was unable to obtain mechanical data as hydrated constructs proved too soft 

in their nature. This is an issue often seen in hydrogels whereby water retention 

causes gels to be inherently weak (Brown et al., 2005). Increasing the concentration 

of EDC may further enhance the mechanical properties of scaffolds however it has 

been reported cell viability decreases with increasing EDC concentration. Also, as 

EDC capitalises on glutamic acid, found in the GFOGER cell binding motif, 

increasing concentration may lead to lower cell attachment (Thoreson et al., 2015).  

 

Previous reports have shown that plastic compression can remove excess water and 

increase fibril density, producing a stronger product (Cheema and Brown, 2013). 

Applied to jellyfish collagen scaffolds, plastic compression was unsuccessful as 

reswelling occurred, which is not seen in mammalian collagen constructs. It should 

be noted that literature based around plastic compression appears to have been 

conducted on hydrogels and not on collagen sponges and therefore it may be the 

form of scaffold that caused reswelling. To tailor scaffolds for specific applications it 

would be interesting to look at parameters involved in compression such as initial 
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fibril density and further develop the technique (Brown et al., 2005). In the absence 

of plastic compression, fabrication of size and shape scaffolds may affect cell-cell 

and cell-matrix interactions as well as the all important matrix cell density ratio, 

which drives functional differentiation in many tissues (Mao et al., 2016). During the 

project, scaffold fabrication was limited to a 3ml cylinder due to company interaction 

and restrictions around IP development.  

 

Scaffolds for tissue engineering are not seen as permanent implants but rather as 

temporary structures to provide guidance for the regeneration of tissues and therefore 

must be able to be remodelled by cells (Peters and Mooney, 1997). Sponge scaffold 

pore sizes fell within the critical range for applications in cartilage tissue engineering 

with the range obtained (20-150μm) previously reported to facilitate chondrocyte 

differentiation (Matsiko et al., 2015). Chondroprogenitor cell invasion, over 21 days, 

supports the suitability of a wider porosity as well as the presentation of appropriate 

mammalian cell binding motifs throughout the structure (Davidenko et al., 2016). 

Peptide alignment indicated areas of high sequence similarity with human COL1A1 

and COL3A1 and further functional analysis indicating these regions belong to 

pfam01391, the triple helical motif belonging to collagen. Collagen composition and 

structure plays a role in binding of cells through integrin binding (Emsley et al., 

2000). CP cell invasion and proximity to collagen ribbons, observed through 

histological staining, indicate that specific binding motifs such as GFOGER are 

present allowing cell-matrix interactions (Rentsch et al., 2014).  

 

Our results indicate show that JCol can be isolated from native tissue and shows 

presence of triple helix composition through functional peptide analysis and FTIR in 

a similar fashion to mammalian collagens. JCol scaffolds manipulated into sponges 

facilitate cell invasion and growth of cells within a 3D environment due to the 

similarity of the niche with native ECM of tissue when compared to cell only 

alternatives. The natural ECM environment guides cellular functions and the loss of 

this can cause alterations in cell phenotype and behaviour (Bonnans et al., 2014). A 

number of cell types have proved difficult to culture in 2D whilst maintaining their 

native biological including cancer cells and hepatocytes, whilst differentiation of 

stem cells into functional mature tissue cells show varying characteristics (Duval et 

al., 2017). Initial results regarding CPs and JCol scaffolds indicate that these 
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structures may present themselves as a suitable source for the in vitro culture of cells 

whilst maintaining their native biological phenotype and function.  

 

6.3 CPs, scaffold assisted enhanced chondrogenesis  

 

Biomimetic structures have been developed in order to produce a more functionally 

relevant engineered tissue for repair purposes (Zhang, 2012). The aim of biomimetic 

constructs is to provide a familiar niche for stem and progenitor cells to enable 

interaction and to enhance their differentiation capacity (Vinatier et al., 2009). 

Biomimicry can take multiple forms from matrix informed scaffold design, 

decoration of structure with ligands and mechanical tuning (Ravichandran et al., 

2012). Scaffolds in this project fulfil the requirements of biomimicry as they are 

produced from collagen, a natural matrix component and facilitate cell invasion.  

 

The MACI technique aims to produce a biomimetic environment by providing a 

scaffold to guide the growth of cells and enhance the production of cartilage specific 

matrix. Previous publications have shown that cartilage tissue engineering continues 

to aim for biomimicry of the native tissue through the alteration of pore size, use of 

different cell sources and biomaterials during in vitro examination (Taraballi et al., 

2017) . Although preclinical testing is basic as it removed from the entire tissue 

system, behaviour exhibited by the cells is seen as indicative of physiological 

function due to the mimicry of the construct involved. 

 

Pellet culture is the standard practice used for studying in vitro chondrogenesis, 

replicating the high cellular density needed to assess chondrocyte production of 

distinct cartilage matrix properties and protein components including distinct 

collagen architecture, as well as COL2A1 and GAG production (Bernstein et al., 

2009). Missing the fundamental complexity of the tissue due to the absence of ECM 

support, this model is inadequate to predict the in vivo potential of next generation 

MACI approaches (Achilli et al., 2012). Clinical studies have already shown that 

MACI surgery gives better cartilage repair in patients compared to those who were 

treated using microfracture or ACI indicating that matrix models have an enhanced 

chondrogenic capacity (Jeuken et al., 2016). This may indeed be due to the enhanced 
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progenitor or stem cell migration to a familiar niche, relying on mechanical 

properties, concentration gradients of growth factors or simply the presentation of 

cell collagen peptides such as those detected in JCol.  

 

Bovine chondroprogenitors migrated throughout the JCol scaffold and showed 

enhanced differentiation in the presence of TGFβ1 (10ng/ml-1), previously shown to 

induce mesencymal cell condensation and initiate chondrogenesis in MSCs (Wang et 

al., 2014). Although pellet cultures exhibited a higher expression of SOX9, ACAN 

and COL2A1 when compared to scaffolds, interestingly they also exhibited the 

highest expression of hypertrophic markers RUNX2 and COL10A1. These results 

indicate that the presence of a matrix structure enables the guidance of CP cells 

towards chondrogenic lineage without inducing high amount of hypertrophic 

markers (Watts et al., 2013). 

 

Native Immature cartilage is seen to be softer and weaker than mature cartilage 

(Julkunen et al., 2009). Implantation of a scaffold in early chondrogenic stages 

would still require maturation and risks damage whereas in vitro maturation may 

produce tissue closer to native cartilage, increasing the likelihood that the cartilage 

implant could withstand the forces applied through the injured joint post operation 

(Jin et al., 2011). Initial models should show the process of chondrogenesis and 

cartilage formation and limited immunogeniticy occurs in vivo using heterotropic and 

orthotropic models where the construct is placed in at a non cartilage and non-weight 

bearing cartilage site (Reinholz et al., 2004). The presence of chondrogenesis in 

these constructs would allow for further in vivo testing for immunogenicity and 

finally in a weight-bearing model. While a non-weight bearing approach is one 

method of progressing a pre clinical study, in vitro maturation is an alternative option 

(Khan et al., 2013). Maturation is the process whereby cartilage undergoes resorption 

to form organised zonal structure and collagen fibre orientation resulting in increased 

mechanical integrity (Hunziker et al., 2007). Previous work has shown that a 

combination of growth factors can induce maturation including FGF2 and TGFβ1 

(Khan et al., 2013) and members of the BMP family causing growth and resorption 

as well as hypertrophy (Kraan et al., 2010). Enhanced chondrogenesis and 

maturation within the 3D JCol sponge could provide a tissue engineered construct, 

requiring a shorter rehabilitation process benefiting patient rehabilitation and 
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potentially reducing the economic burden of OA patients recovering from repair 

surgery (Schrock et al., 2017).  

 

The zonal variation throughout the depth of articular cartilage allows for its 

compressive resistance and therefore the advancement of chondromimetic scaffolds 

may potentially take native structure into account (Fox et al., 2009). Matrix based 

approaches have been researched in an attempt to emulate the structure (Klein et al., 

2009). These techniques have primarily involved the formation of biomaterial 

density throughout the construct leading to a more natural distribution found within 

the tissue to encourage hapotaxis before differentiation (Mimura et al., 2008). The 

development of JCol scaffolds through the modelling of concentration gradient may 

not only better mimic native cartilage but would potentially allow for better cell 

distribution and matrix deposition.   

 

6.4 Biocompatibility  

 

Whilst preclinical demonstration provides a robust defence of specific applications, 

ultimately these constructs need to be implanted. The initial implantation of a 

biomaterial is accompanied by injury that triggers the immune system (Franz et al., 

2011). This is characterised by adsorption of blood proteins to the biomaterial and 

acute inflammation caused by the activation of leukocytes (Brown and Badylak, 

2014). The persistence of leukocyte activation eventually results in chronic 

inflammation and fibrotic capsule formation with the risk of rejection and necrosis of 

implant and native tissue (Wiles et al., 2016).  

 

Using a bovine model, no information could be garnered regarding the compatibility 

of our cartilage construct. In the absence of ethical permissions and financial scope, 

an in vitro model was used during this project to identify any JCol characteristics 

indicative of abnormal immunogencicity, using human donor blood samples. 

Fulfilling the requirements set out by the International Organisation of 

Standardisation (Radley et al., 2017), immune cells from innate and adaptive phase 

were screened via FACS for activation markers (CD62L, CD11b and fMLPr) in the 
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presence and absence of JCol scaffolds, comparing favourably to research and 

clinical grade collagen.  

 

Cytokines are released by immune cells as a response to foreign material and have 

different functions (Turner et al., 2014). A cytokine release profile was also collated 

from in vitro testing with IL-6, a pro-inflammatory cytokine, and IL-10, an anti-

inflammatory cytokine chosen for investigation and shown to be comparable across 

all scaffold materials.  Carbodiimide crosslinking has been shown to increase M1 

response leading to an upregulation of proinflammatory cytokines (Boehler et al., 

2011) however our results showed that a there was minimal differences seen between 

crosslinking concentrations. The immune response is a cascade of reactions that are 

dependent on one another with neutrophil and monocytes activation leading to the 

increase in pro-inflammatory cytokine release and the subsequent activation of the 

adaptive arm of the response and anti-inflammatory cytokine release (Chaplin, 

2010). JCol scaffolds show that the levels of leukocyte activation lead to the relative 

cytokine release, exhibiting a favourable response compared to rejection of tissue. 

 

The preliminary data shown was gathered from a cohort of three donors, with donor 

variability clearly observed. Despite this variability, a similar trend was observed in 

mammalian research and clinical grade collagen, sources that are already used in 

vivo (Song et al., 2006). Similarly our in vitro testing incubated scaffolds with blood 

for 2 hours before analysing leukocyte activation and allowed 24 hours before 

cytokine analysis. This would suggest that the response to jellyfish scaffold is 

representative of the innate immune response and that in vivo analysis through an 

animal model over a longer time period would account for the adaptive immune 

response. In order to enhance the reliability of this data and account for variability a 

larger cohort would need to be screened prior to a full in vivo analysis.  

 

In vitro testing does not mimic the complex in vivo environment and response to 

biomaterials (Chu et al., 2010). The development of in vitro models allows for 

preliminary results to guide research towards the use of animal models that can 

assess immunogenicity in response to biomaterial implantation as well as 

regeneration through analysis of gene and protein expression (Al-Maawi et al., 

2017).  
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Heterotropic models take into account the performance of the construct under in vivo 

conditions by assessing tissue formation and immune response. However the 

response may be altered compared to when placed at the defect and therefore 

heterotropic models will inform in vitro and in vivo studies (Reinholz et al., 2004). In 

vivo cartilage studies are typically conducted using small animals however the small 

joint size leads to thin cartilage that does not benefit clinical translation (Chu et al., 

2010). Large animal, caprine, ovine and equine, models by-pass the limitation of 

rodent and lapine models, with larger joints that mimic load bearing patterns more 

similar to that seen in humans (Cook et al., 2014). 

 

Previous publications have reported different ways in which scaffolds can be 

immune tuned in order to avoid the elicitation of an immune response and potential 

rejection of the construct. Scaffold material choice and topography play a role in 

immune response modulation can be acquired by surface treatment and coating 

(Boehler et al., 2011). Increasing hydrophobicity of scaffolds has been shown to 

limit dendritic cell maturation (Kou and Babensee, 2011) whilst osteopontin coating 

displayed a reduction in the thickness of fibrotic capsule formed around the implant 

(Liu et al., 2008) and serum coated biomaterials induced anti-inflammatory cytokine, 

IL-10 (Boehler et al., 2011). 

 

ACI circumvents graft rejection by utilising cells from the patients however the 

limited number of cells and donor site morbidity make the technique less appealing 

(McCarthy et al., 2016). The use of allogenic cells, either alone or in combination 

with a scaffold for MACI can evade the further damage of healthy tissue via 

harvesting but may elicit an immune response (Dunkin and Lattermann, 2013). 

Research has been conducted in the immunomodulation of scaffold for cartilage 

tissue engineering with biomaterials coated in anti-inflammatory proteins shown to 

modulate inflammation in subcutaneous implantation (Fahy et al., 2015). 

 

6.5 Concluding remarks 

 

Currently, mammalian collagen is used in 2D and 3D culture to varying success 

and growing concerns over economic and ethical issues have resulted in the 
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interest of alternative sources. This thesis has shown that R. pulmo jellyfish 

collagen can be extracted at industrial scale whilst maintaining structural 

integrity and can be used to fabricate sponge scaffold structures. This thesis has 

demonstrated jellyfish collagen is biocompatible with multiple cell types 

displaying viability and phenotypic stability in comparison to traditional tissue 

culture plastic and other collagen sources. Furthermore, the in vitro 

immunogenic profile was found to be comparable to rat-tail and bovine 

collagen, both of which are used for research and clinical applications. In 

addition, chondrogenesis of bovine CPs within JCol scaffolds exhibited an 

enhanced chondrogenesis observed through chondrogenic gene expression and 

matrix deposition, with minimal expression of hypertrophic markers. Results 

from this thesis indicate that R. pulmo derived jellyfish collagen is a suitable 

alternative source of collagen that fulfils minimal requirements for tissue 

engineering purposes, specifically cartilage engineering. The knowledge from 

this body of work can now inform industrial partner, Jellagen, movements 

towards the development of R. pulmo collagen solutions and biomaterials for 2D 

and 3D culture models for preclinical and clinical application. 
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