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HIGHLIGHTS  

• Pyrolysis - Gas chromatography time of flight mass spectrometry (Py-GCToF) 

presented as a standard methodology for identification and semi-quantification of 

micro and nanoplastics. 

• Fast sample preparation and obtainment of repeatable results even in real 

environmental aqueous samples. 

• Use of PTFE membranes as a sample support; an affordable, common and broadly 

applied material in the industry. 

 

Abstract 

The identification and quantification of micro and nanoplastics (MPs and NPs respectively) 

requires the development of standardised analytical methods. Thermal analysis methods 

are generally not considered a method of choice for MPs analysis, especially in aqueous 

samples due to limited sample size introduction to the instrument, decreasing the 

detection levels. In this article, pyrolysis - Gas chromatography time of flight mass 

spectrometry (Py-GCToF) is used as a method of choice for detection of MPs and NPs due 

to its unprecedented detection capabilities, in combination with PTFE membranes as 

sample support, allow for smaller particle sizes (>0.1µm) in water samples to be identified. 

The utilisation of these widely used membranes and the identification of several and 

specific (marker) ions for the three plastics in study (polypropylene (PP), polystyrene (PS) 

and polyvinyl chloride (PVC)), allows for the extraction of individual plastics from complex 



signals at trace levels. The method was validated against a number of standards, 

containing known quantities of MPs. Detection levels were then determined for PVC and 

PS and were found to be below <50 µg/ L, with repeatable data showing good precision 

(%RSD <20 %). Further verification of this new method was achieved by the analysis of a 

complex sample, sourced from a river. The results were positive for the presence of PS 

with a semi-quantifiable result of 241.8 µg/L. Therefore PY-GCToF seems to be a fit for 

purpose method for the identification of MPs and NPs from complex mixtures and 

matrices which have been deposited on PTFE membranes.   

 

Key words 

Microplastics 

Nanoplastics 

Pyrolysis 

Time of Flight Mass Spectrometry 

Micropollutants 

Water Quality  

 

1. Introduction 

Despite their vast applications, plastics are an environmental sensitive issue due to their 

resistance to biological, and chemical degradation, which entail the accumulation of these 

materials in the environment (da Costa et al., 2016). Plastic debris is fragmented into 

smaller particles by action of natural ultraviolet radiation and other physical forces 

(Andrady A. L., 2015). Microplastics (MPs) are considered synthetic materials below 5 mm 

(Arthur et al., 2009) whereby, the nanoscale is defined between 1nm to 100 nm (Klaine et 

al., 2008).  

The environmental fate of these micropollutants is a cause of concern. MPs and have 

been identified in samples of air (Gasperi et al., 2018), soil (Rillig et al., 2017), found in a 

number of water bodies (Horton et al., 2017), and a recent study have found MPs in rain, 



describing them as a new atmospheric pollutant (Wetherbee et al., 2019). It is postulated 

that NPs are small enough to cross the cell wall and can interact with the cell functions, 

causing increased cytotoxicity associated with oxidative stress (Barboza et al. (2018), de 

Souza Machado et al. (2018) and Schirinzi et al. (2017)). Tamara Galloway, (2015), 

expounded the different risks and hazard levels associated with plastics and potential 

dangerous additives. According to the study, leaching of toxic chemicals, from the core of 

the particle to the surface, could result in a long-term source of chemicals in body fluids 

and tissues. 

A standardised method to quantify MPs is yet to be published. It is also challenging to 

detect micropollutants smaller than 50-100 μm with current methods. According to 

Lehner et al. (2019), there is still no methodology reliable enough to detect NPs in 

complex environmental samples such as surface, ground, potable and raw waters. 

Common analytical techniques currently employed are FTIR, Ramman, Light microscopy 

and SEM.  Although practically useful for qualitative work, they do have associated 

limitations, such as identification amongst complex mixtures (Lusher et al. (2017), Song et 

al. (2015)), and detection levels of these instruments are limited by resolution. This makes 

it difficult to identify small particle sizes (<50 μm) and also to quantify low level material 

(Lusher et al. (2017), Song et al. (2015)).  

To overcome these limitations of resolution, this article focuses on the identification of 

MPs and NPs by analysis of their thermal degradation products using chromatographic 

and mass spectrometry, a highly sensitive technique commonly used to analyse complex 

samples and has been used in characterisation of synthetic polymers and copolymers 

(Silva et al. (2018), Fries et al. (2013), Hermabessiere et al. (2018), Ter Halle et al. (2017)). 

The following method employs a commonly used PTFE membranes (pore sizes 0.45 and 

0.1 μm) to deposit MPs and NPs from aqueous samples working in the limit range of 

nanoscale. After processing, these filters are analysed using Gas chromatography coupled 

to time-of-flight (ToF) mass spectrometry (see figure 1).  The verification of MP and NP 

type is based purely on the identification of the evolved degradation products. The 



plastics studied in this article are known to breakdown at temperatures below 500 °C 

(McNeill et al. (1995), Bockhorn et al. (1999), Faravelli et al. (2001)). The degradation 

products produced from the different plastics may be used as potential markers to 

identify a variety of plastics in a complex mixture or identify plastics from samples 

containing potentially difficult matrices, such as untreated water samples. The choice of 

membrane was also decided based on PTFEs’ higher thermal resistivity than common 

plastics, as it begins to degrade (>550°) (Odochian et al., 2014) and is less likely to 

contribute to background interference. 

The advantage of using a ToF (pulsed) analyser over more common scanning mass 

spectrometers (quadrupole analysers), is its superior acquisition speed and mass 

resolution (El-Aneed et al. (2009), Choi et al. (2003)), which is anticipated to bring 

sensitivity down to sub part per billion levels. In case of our system, this ToF operates in 

nominal mass units (not accurate mass) similar to the quadrupole but offers substantial 

sensitivity due to the fact that all ions in a ToF are transmitted to the detector. This has an 

added advantage of providing full scan (FS) data for structural interpretation. In 

quadrupole analysers sensitivity is reduced in FS operation, due to division of acquisition 

time across the full mass range (duty cycle) (Hoffmann and Stroobant, 2007). However, 

sensitivity can be boosted in scanning mass spectrometers by utilising single ion 

monitoring acquisition mode or combination of the two, but this comes at a compromise 

between sensitivity and acquiring full spectral data (Hoffmann and Stroobant, 2007). The 

combination of gas chromatography and mass selectivity of the mass analysers allows to 

match markers from reference materials to unknowns based on two parameters; 

retention time and spectral matching to further aid in plastic type identification. Together 

with unprecedented low-level detection capability of the instrument and small pore sizes 

of the membranes, it is anticipated the detection of MPs and NPs down to 0.45 and 0.1 

μm in cross sectional size at part per billion level. 



 

Figure 1. Illustrating the novel standard methodology proposed in this study for the 

identification of micro and nanoplastics using both laboratory and real environmental 

samples. 

 

2. Materials and methods 

2.1. Standard reference materials 

Powdered PVC (high molecular weight and bulk density of 1.4 g/ml) and PP (pellets and 

bulk density of 0.9 g/ml) were purchased from Sigma-Aldrich UK. PS, on granules of 900 

μm and a bulk density of 0.62 g/ml, was purchased from Goodfellow Cambridge Limited. 

Fluoropore® Polytetrafluoroethylene (PTFE) membranes (Merck Group UK) of 0.45 μm 

and 0.1 μm pore size were purchased for filtration purposes. Helium and nitrogen gases 

were purchased from BOC Gas & Gear (Port Talbot, UK). 

2.2 Instrumentation 

The plastic reference material was ground to less than 100 µm using an IKA® England LTD 

M20 Universal Mill to generate material considered to be in the micro to nano size range. 

Filtration experiment was then carried out using a glass vacuum filtration funnel and 

receiving flask with samples drawn through under negative pressure using Sparmax® 

vacuum pump (The Airbrush Company Ltd, UK). The filtrated membranes were cut using a 

TROTEC Speedy 300™ laser cutter (Trotec Laser UK).  Light microscopy of the membranes 

was used to determine coverage and particle size, these were done using Zeiss Primotech 

microscope (Carl Zeiss Ltd., Cambridge, UK) at 5 x and 10 x magnification. 



Thermo-gravimetric analysis of the raw materials (plastics and membranes) was 

performed on a simultaneous thermal analysis (STA) 6000 by Perkin-Elmer 6000 

(Llantrisant UK) this was used to determine the mass losses over a temperature range of 

30 -700 °C.  

Pyrolysis of the filtrate membranes was achieved using a CDS Pyroprobe® 5150 from 

Analytix Ltd (Boldon, UK). The pyrolysis products was then analysed using gas 

chromatography time of flight mass spectrometer (GC-ToF) that consisted of an Agilent 

7890B GC (Agilent Technologies, Santa Clara, CA) and a Pegasus BT mass analyser (LECO 

Corporation, Saint Joseph, MI).  

2.3 Microplastic preparation 

In order to obtain particle sizes below 100 µm in cross sectional area, the raw plastics 

(PVC, PP and PS) were mechanically ground using an analytical mill. Preliminary 

experiments by Steyaert et al. (2012) demonstrated that milling was effective at 

generating consistent pulverised mixtures with particles smaller than 1 mm. The 

frequency of rotation used for this investigation was 20,000 rpm and plastics were milled 

for 10 min. The grinding chamber was loaded with 15 g of each plastic. To avoid the 

overheating of the unit and the agglomeration of the plastic particles, the mill was 

stopped for at least one minute after a minute of grinding. Light microscopy results show 

MPs were evenly distributed across the filter and all appear to below 100 µm in size as 

expected (see figure 2). 

 



Figure 2. Illustrating light microscopy images of MPs generated by milling then filtered on 

to PTFE membrane. Left image is 5 x magnification and image on right is 10 x 

magnification. 

 

2.4 Microplastic filtration and sample preparation 

For membrane samples containing only one of the plastics, 1 g of ground of the material 

was added 500 ml of deionised water and stirred to ensure homogeneity of the solution 

and that sufficient material was deposited on the membrane. The same procedure was 

followed to prepared mixed samples of each plastic, reducing the quantity of material 

used to 0.25 g of each ground plastic. 

 A vacuum pump connected to the side arm of the receiver flask created a negative 

pressure of 675 mmHg which was used to draw through the sample (water containing 

MPs). The 0.45 and 0.1 μm pore size filtered membranes were dried in an isolated fume 

cupboard at room temperature under constant air flow to aid evaporation. 

Afterwards, several 10 mm x 1 mm shards of the membranes were cut systematically to 

give representative coverage of the filter. This process ensured high precision and 

repeatability of the filter cutting process. All samples were placed into small glass bottles 

with a metal and natural rubber lid to keep them in the same conditions. 

2.5 NP and MP detection 

2.5.1 STA analysis 

Simultaneous thermal analysis (STA) of all plastics in study and PTFE membranes were 

carried out utilizing nitrogen as the purge gas at a flow rate of 20 ml/min. The samples 

were heated up to a temperature of 700 °C at a heating rate of 15 °C/min. 

2.5.2 Pyrolysis GC-ToF 

Samples were pyrolysed using the CDS Pyroprobe. The samples were introduced into 

quartz tubes and heated from 30 °C to 500 °C at a rate of 20 °C/ms with a hold at 500 °C 

for 20 seconds. A nitrogen purge at 20 ml/minute around the probe ensures the sample is 



maintained in a pyrolytic environment.  Pyrolysis products were captured using a Tenax® 

trap utilised for sorption of broad range of compounds (C6-C40). This was initially held at 

50 °C. Prior injection, the trap was heated to 300 °C to desorb the captured analytes. The 

transfer lines connecting the pyroprobe unit to the GC were held at 300 °C to avoid 

analyte condensation. The trapped analytes are then exchanged into a gas flow of ultra-

pure helium before being transferred to the GC unit. 

To ensure good chromatography and analyte separation a 30 m, a non-polar column with 

a 5 % diphenyl dimethyl polysiloxane phase was purchased from Restek Ltd (Worthing, 

UK) with a column id 250 µm and a film thickness of 0.25 µm. The column flow was 

established at 1.2 mL minute (ultra-pure helium) and GC oven ramp of 40 to 300 °C at 10 

°C/min. The inlet conditions were set at 250 °C with the split vent open at ratio of 75:1 to 

prevent column overloading.  The transfer line connecting the GC to the mass analyser 

was heated at 250 °C to minimise peak broadening. In the mass analyser the source 

(electron ionisation) operated at standardised 70 eV for reproducible spectra and source 

kept hot at 250 °C to limit source contamination. The MS acquisition parameters were set 

at 15 spectra/s with an extraction frequency of 15 kHz, collecting spectra between 50-500 

mz. The data software package used to interpret the mass spectral information was 

ChromaTOF (LECO Corporation, Saint Joseph, MI). 

In order to limit chromatographic data, marker ions for the characteristic compounds 

generated by PS, PP, PVC, will be used for ease of data interpretation (see table 1.). For PS 

and PVC, light alky aromatics and polyaromatics will be predominate, such as toluene, 

styrene and naphthalene (McNeill et al., 1995). These spectra are well defined and 

typically their fragmentation patterns produce high abundance fragment or precursor ions 

such as 91 mz for toluene, 104 mz, for styrene and 128 mz for naphthalene (Watson and 

Sparkman, 2008) For PP, the typical products generated are aliphatic (Bockhorn et al., 

1999) and fragmentation of these compounds generate very similar spectra predominant 

with low mass fragment ions (Stevensons rule for sigma cleavage) (Watson and Sparkman, 

2008). These low fragmentation ions are fairly common with many other compounds. For 

this reason, a higher molecular weight fragment ion will be chosen at a compromise 



(although less abundant) such as 97, 111 or 125 mz, as higher masses are deemed less 

common and more distinguishing. Retention time will also be crucial distinguishing feature 

for characterisation of PP by overlaying samples with a reference material 

2.5.3 Semi-quantification of PVC and PS breakdown products 

A sample containing a mixture of PS and PVC was filtered and prepared as in 2.4 but on 

this occasion each cut filter was spiked with 1 ng of chlorobenzene d5 internal standard 

prior pyrolysis and run in triplicate. This was used for semi quantification of the emerging 

plastic break down products for PVC and PS, which were typically aromatic. Semi-

quantification was based on the summation of the area count of the individual marker 

ions of PS and PVC, compared to the area count of the spiked internal standard (equation 

1).  In addition to this, three blank PTFE samples were also run and spiked with 1 ng of 

chlorobenzene d5 for determination of analytical limit of detection (LOD) of PS and PVC. 

The LOD for each plastic was calculated by the 3 x standard deviation of the marker ions in 

the PTFE filter blank. 
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3. Results 

3.1 Verification of thermal degradation  

In order to corroborate the data shown in the literature (Matsuzawa et al. (2004), Yu et al. 

(2016)), thermo-gravimetric analysis was performed on the raw plastic material and PTFE 

membranes using a Perkin-Elmer STA6000 apparatus. The outcome can be observed in 

figure 3.  

Results for PVC, in line with Yu et al. (2016), show the expected curve in two phases, with 

the first one associated to a mass loss around 65 % at temperatures between 250-350 °C 

and the second one presenting a mass loss of around 95 % of the material at 



temperatures of 500 °C with a total decomposition at temperatures of 525 °C. For PP, the 

curve obtained demonstrates how this material starts decomposing at temperatures of 

300 °C, with a drastic mass loss in the interval of 400-475 °C where the total amount of PP 

is completely disintegrated. PS showed an even earlier degradation than PP, started 

breaking down at 375 °C and degrading completely before reaching 450 °C. A small 

percentage of mass, in the order of 3 %, was lost from PTFE membranes before reaching 

the temperature of 500 °C. Once this threshold was exceeded, this material started 

decomposing and was completely consumed at the temperature of 650 °C. Therefore, a 

temperature of 500 °C was deemed appropriate for analysis of MPs. The increased mass 

transfer of the MP decomposition products to the column, will overall enhance the signal 

of plastic markers to that of the background noise contributed by the PTFE filter.  

 

Figure 3. A thermo-gravimetric plot for different polymers; PVC (blue curve), PS (green 

curve), PP (red), and PTFE (black). PTFE degrades at higher temperature compared to the 

other plastics. 

3.2 Detection of plastic markers.  

Samples of raw PTFE membranes (process blanks) and PTFE membranes containing MPs 

(from filtration of water samples spiked with MPs) were prepared before being analysed 

using the Py-GCToF. The samples contained PVC, PS and/or PP. The markers ions for these 



MPs were identified by overlaying the results of the filtered sample membranes with the 

PTFE process blanks. Further confirmation of the markers was done be comparison against 

raw plastics run under the same pyrolysis conditions. By comparing the blank (PTFE filter 

only) with the respected samples of MPs, it is possible to clearly identify the components 

of the individual plastics from the PTFE filter (see figure 4). 

 

Figure 4. Shows overlaid total ion chromatogram (TIC) of PCV deposited by filtration 

compared with PTFE filter blank. Clearly there are identifiable differences, coming from the 

PVC such as toluene, styrene and naphthalene. 

 

3.2.1 PVC thermal decomposition 

The thermal breakdown of PVC at 500 °C was investigated by McNeill et al., (1995), 

Bockhorn et al. (1999), Faravelli et al. (2001))., and showed that over 50 % of the material 

is lost as HCl gas and the remaining organic product (tar), light aromatic compounds such 

as benzene and toluene make up the majority of the liquid (80 %) (McNeill et al., 1995). 



Benzene and HCl emerge at temperatures as low as 200 °C, and it is not until higher 

temperatures that the emergence of the other alky aromatics and polyaromatic 

hydrocarbons emerge (above 300  °C) (McNeill et al., 1995). Toluene being the most 

abundant of the aromatic compounds during the second loss and the presence of alky 

aromatic species (styrene, xylene) and poly-aromatic compounds (indene, naphthalene) 

are present but at lesser amounts (McNeill et al., 1995). The same authors proposed that 

the main driving force for PVC thermal degradation occurs as a result dechlorination via 

random scission of secondary chlorine atoms, to form initiation sites (see figure 5 (3)). 

Benzene and alkyl benzenes are then formed through intramolecular cyclisation of the 

chain ends (McNeill et al., 1995) . The inner part of PVC is cross-linked via Diels-Alder 

condensation reaction of double bonds belonging to other chains, at higher temperatures 

these structures degrade to produce aromatic hydrocarbons through cyclisation of free 

ends (McNeill et al., 1995). 

 



 



Figure 5. Shows the simplified mechanism for thermal decomposition of PP (1), PS (2), PVC 

(3), and degradation is initiated through formation of primary radicals. 

For filtered PVC, the main compounds identified were toluene, alkyl aromatics and 

polyaromatic hydrocarbons which are typical with PVC thermal degradation (McNeill et 

al., 1995) (see figure 6).  The only chlorinated product identified was chlorobenzene and 

this was of low abundance, which is typical of PVC thermal decomposition (Sin et al., 

2012),. The increase in pyrolysis temperature then showed the emergence of aromatic 

and poly aromatic compounds, with their formation likely due to rearrangements of the 

scission products of the polymer back bone. 

 

Figure 6. Comparison of extracted ions (91, 117, 130 m/z) for PVC from sample deposited 

with only PVC (bottom) particles and a sample deposited with a mix of plastics particles 

(PP,PS,PVC), (above) deposited on 0.1 µm. 

 

3.2.2 Polypropylene thermal decomposition. 

For PP, a repeating pattern of branched alkenes (see figure 7) is prominent throughout the 

chromatogram, this is likely from random thermal scission of the polymer back bone, 

which reveals a homologous pattern (Bockhorn et al., 1999). For PP, Bockhorn et al. (1999) 



showed that above 400 °C, PP degrades into a large number of aliphatic compounds which 

were mainly branched and unsaturated hydrocarbons ranging from C11 to C31. Typical 

compounds identified were 2,4,6-trimethyl-1-nonene and 2,4,6,8-tetramethyl-1-decene. 

The proposed mechanism is a radical chain mechanism, initiated by random scission of the 

polymer into primary radicals (Figure 5 (1)). Propagation reactions progress with either β 

scission of the primary radicals to produce secondary radicals and ethane, or through 

cyclic intermolecular hydrogen transfer of the primary radicals. Intramolecular hydrogen 

transfer advances with another β scission generating predominantly alkenes. At higher 

temperatures, more scissions lead to more primary radicals that can react with each other 

to form alkanes (termination reaction) (Bockhorn et al., 1999). 

 

 

Figure 7. Comparison of PP ions from sample filtered with only PP (top), with sample 

containing a mix of plastics (PP, PS, PVC), filtered using 0.10 µm filter (middle) and sample 

containing a mix of plastics filtered using 0.45 µm (bottom). The chromatogram from the 

filter containing mixed plastic aligns neatly with the filter containing only PP. Retention, is 



therefore a good verification parameter for PP. Although peak intensity varies, this is 

directly linked to the amount of material deposited on the filter (PP deposited only having 

the greatest intensity as more PP is present).   

 

3.2.3 Polystyrene Thermal decomposition. 

Pyrolysis of PS, revealed a rather complex array of compounds. As with PP, the thermal 

degradation follows a typical radical chain initiated mechanism, where initiation, 

propagation and termination reaction are the main mechanism (Faravelli et al., 2001). For 

PS, initiation can take place through either random scission of the C-C backbone, forming 

a primary radical (
•
carbon adjacent to the benzyl group) and a benzyl radical (

•
carbon 

directly bonded to the benzene functional group) and through chain-end scission (See 

figure 5 (2)). Chain-end scission forms a benzyl radical as before, and a stabilized allyl 

benzyl radical (Faravelli et al., 2001). Propagation then consists of H-abstractions and β 

scissions. There are two types of H-abstractions, intermolecular, in which radicals abstract 

H from other molecules and intramolecular abstractions, whereby primary radicals from 

random scission and chain end scission react to form another molecule and radical 

(Faravelli et al., 2001). Termination proceeds under second-order kinetics as either 

recombination or disproportionation reactions of radicals to form molecules (Faravelli et 

al., 2001). In practice the thermal degradation of PS predominantly generates the 

monomer styrene (60-80 %) and to a lesser degree, aromatics, light hydrocarbons, alkyl 

aromatics and dimers and trimers (all below <10 %) (Faravelli et al., 2001). Therefore, not 

surprisingly, styrene being the most predominant due to the polymer being comprised of 

polymerized styrene monomers. However, a similarity between PS and PVC is the fact that 

they both contain toluene and styrene, but a distinguishing feature of PS, is the peak ion 

ratio of styrene to toluene is around >40 :1 and PVC has a peak ion ratio of toluene to 

styrene of 100 :1 with toluene peak  at significant abundance (see figure 8) . Notably with 

PS is the increase in single ring aromatic compounds such as 1,2,3-trimethyl-benzene and 

3-butenyl-benzene, each as a result of scission the PS polymer and rearrangements of side 

groups. Towards the later end of the chromatograms, PS degradation compounds have 



increased molecular mass and it is apparent these are larger units of the polymer such as 

stilbene, which appears to be a dimer of styrene.  

A number of markers (ions) were identified for PVC, PS and PP and are listed in table 1. 

These plastics markers were identifiable on 0.45 µm and 0.1 µm filters, putting the 

detection of cross-sectional area to as low as a 100 nm. 

 

Figure 8. Shows the ions ratio of 104 mz (styrene): 91 mz (toluene), in PS (top) and PVC 

(bottom). PS contributes to significantly more towards styrene compared to PVC, whose 

main contribution is toluene. 



 

Figure 9. Shows the detection of styrene from plastic mixture deposited on 0.1 µm PTFE 

filter. Styrene peak (104 mz) is significantly greater in abundance compared to the process 

PTFE filter blank. 

 

Table 1. A table listing the compounds and marker ions for the different plastics, PVC, PP 

and PS. 

Sample Compound identified Retention 

time S
-1 

mz marker ion. 

 

 

 

PVC 

Toluene 

Ethyl benzene 

Styrene 

Indane 

Indene 

1,4 dihydronaphthalene 

Naphthalene 

1-Methyl-naphthalene 

Biphenyl 

437 

534 

565 

714 

722 

834 

852 

945-960 

1009 

91 

91 

104 

117 

116 

130 

128 

142 

154 

 

 

 

 

7-Methyl-decene 

3- Dodecene 

2,4-Dimethyl-1-decene 

5-Methyl-undecene 

706 

709 

711 

745 

111, 97 

111, 97 

111, 97 

111, 97 



PP 7-Methyl-1-undecene 

7-Methyl-2-decene 

1-Tridecene 

2,6,8-Trimethyl-octene 

2,4,6-Trimethyl-nonene 

2,4,6,8-tetramethyl-1-decene 

788 

864 

924 

1101 

1120 

1244 

111, 97 

111, 97 

111, 97 

111, 97 

111, 97 

111, 97 

 

 

 

 

 

 

PS 

Toluene 

Styrene 

1-Ethyl-2-methyl benzene 

1,2,3-Trimethyl-benzene 

2-Propenyl-benzene 

3-Butenyl-benzene 

3-Phenyl-1-propyne 

1-Methylenepropyl-benzene  

Bibenzyl 

1,1'-(1-Methyl-1,2-ethanediyl)bis-

Benzene 

Stilbene 

1,2-Dihydro-3-phenylnaphthalene 

2,5-Diphenyl-1,5-hexadiene 

441 

561 

621 

656 

697 

716 

722 

729 

1112 

1138 

1239 

1311 

1351 

91 

104 

117, 105 

120, 105 

117, 91 

132, 91 

115 

132, 117 ,91 

182, 104, 91 

105, 91 

180, 165 

191, 128, 91 

143, 130, 104, 91 

 

3.3 Identification of microplastics in complex mixture. 

Using ion filters for PVC (91, 117, 128, 130, 142), PP (111, 97) and PS (91, 104, 105, 117, 

180) on the software, it was possible to differentiate individual MP types from a mixture 

that had been filtered on to 0.45 and 0.1 µm filter. PVC, PP and PS markers were all 

extractable from the chromatogram and each plastic identifiable. This was confirmed by 

comparison samples of the raw plastics that were previously run. Figure 6 shows an 

example of PVC ions (91 mz) identified from a mixture of plastics deposited on 0.1 µm 

filter, while figure 7 shows markers identified for PP in the mixture deposited on 0.45 µm 

filter and compared with raw PP for confirmation.  

3.4 Semi-quantification of PVC and PS breakdown products 

             The samples prepared in 2.5.3 for semi quantification were run in triplicate from 

randomized positions on the filter and processed accordingly for the marker ions for PVC 

and PS to determine analytical limit of detection (LOD) and precision of the method. The 

analytical LOD for PVC and PS marker ions was determined by assessing standard 



deviation of multiple blank samples (filter only and internal standard) and multiplying by a 

factor of three, to give a value of 48.6 and 42.7 ng (per 10:1 mm) respectively. The sample 

LOD value for PVC and PS can then be back calculated for 1 L sample, by utilising all the 

known parameters of the filtration process, such the diameter of the filter (40 mm) and 

sample volume filtered (500 ml filtered) are known, which puts the LOD at value at 48.9 

and 42.9 µg/L respectively (please see equation 2 below for further clarification). Using 

this methodology, semi-quantification of PVC and PS from the mixed sample on the 0.45 

µm filter determined an average mass for PVC markers 282 µg/L with a % RSD of 19.72 % 

and 299.6 µg/L for PS with an RSD of 4.75 %. The low % RSD for both MPs suggest the 

analytical method is repeatable and that the MPs form a homogenic layer on the PTFE 

filter which is in line with the microscopy images (figure 2).  

. = 0123245×
6
7                                                          Equation 2. 

C is concentration of nano plastic material per volume of sample (ng/mL ~ µg/L) 

AF is the area of the filter (mm
2
) 

AS is area of sample shard 

M is mass calculated by semi-quantitation 

V is volume of sample used in mL 



 

Figure 10. Example of semi-quantification of polystyrene from a sample containing a 

mixture of plastics. It is assumed that majority of toluene emerges from PVC and therefore 

ignored from styrene calculation, whist the main product from polystyrene degradation is 

styrene. 

 

3.5 Semi-Quantification of micro (nano)-plastics in river water. 

A 200 mL sample of untreated river water taken from the river Tawe, South Wales at a 

location GPS location 51.7265391, -3.8386937 was filtered using a 0.45 µm PTFE 

membrane, before being dried, cut, spiked with internal standard and pyrolysed as before. 

The sample was run in triplicate and assessed for the marker ions for PS, PP and PVC. The 

results identified multiple marker ions for PS, but markers for PP and PVC were 

unobserved, once calculated, PS gave a semi-quantifiable result of 241.8 µg/L with a % 

RSD of 17.25 % for the repeated analysis. This value was above the LOD threshold of 48.9 

µg/L for PS markers with multiple markers being identified, and it is likely that PS micro 

(nano)-plastics have been identified using a real sample matrix.  The river sample was run 

as a proof of concept and the positive results suggest this method is appropriate for 

identifying low level of MPs and NPs above 0.45 µm in water samples containing a 



complex matrix. As mentioned previously, MP’s and NP’s are associated with several 

potential risks for animals and human health due to their interaction with chemicals in the 

environment. The existence of these micropollutants in rivers, even at low concentrations, 

cannot be ignored and suitable methodology has be put forward to assess their wider 

environmental impact.  

 



Figure 11. Is an example of the comparison of ion 104 and 105 mz from deposited PS on 

PTFE filter with filtered River Tawe sample. The ion 104 mz is associated with styrene and 

105 mz for 1-ethyl-2-methyl benzene and 1,2,3-Trimethyl benzene, which are commonly 

found in polystyrene these have been identified in both samples. 

Conclusion 

The deposition and analysis of MPs and NPs on PTFE membranes, has proven to be a 

robust and reliable method for the identification of submicron particles, with a cross 

sectional area down to 0.1 µm extracted from aqueous samples. With the combined 

efforts of the superior sensitivity of Py-ToF, used as the analytical device in this 

investigation, MPs and NPs can be identified in complex aqueous samples at 

concentrations as low as 50 parts per billion. Although PTFE contributes to some of the 

ions (at 500 °C) present in the baseline, the MPs and NPs contribute to peaks with greater 

signal to noise ration and therefore are distinguishable. The utilisation of PTFE membranes 

is due to the characteristics of this material, being highly accessible and broadly used, 

inexpensive and considerably thermal resistant,  which allows this technique to be easily 

applied without time-consuming procedures and with sample volumes under 500 ml. The 

membranes supporting the micropollutants can be prepared in under an hour.  The use of 

specific differential markers ions for plastics allows the determination of PS, PP and PVC 

even when present in a mixture. By the introduction of a known compound as an internal 

standard it was now possible to quantify to the markers present on the filters. The 

summation of these values gave an indicator to the amount of MPs present on the filter.  

The repeatability of this analytical method was good with % RSD <20 % for the PVC and PS, 

which also indicates that the MPs have been laid down on the membranes homogenously. 

Finally this method is suitable for the analysis of complex matrix samples, and it was 

possible to identify PS on a membrane filtered with water obtained from a local river. The 

use of PTFE filter does have its limitations, the presence of background material emitted 

from the filter does increase the theoretical analytical detection level due to enhanced 

noise region, and this may also cause difficulty in analysis of plastics that may emit similar 

breakdown products as the filter. The applicability of this new approach in order to detect 

and quantify other type of plastics and eliminate the ion baseline associated with the use 



of PTFE membranes is presently being carried out and results will be published in the near 

future. 
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