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Abstract  

This study aims at providing a hybrid calibration framework to estimate Hertz-type contact 

parameters (particle-scale shear modulus and Poisson’s ratio) for both two-dimensional and 

three-dimensional discrete element modelling. Based on statistically isotropic granular 

packings, a set of analytical formulae between macroscopic material parameters (Young’s 

modulus and Poisson’s ratio) and particle-scale Hertz-type contact parameters for granular 

systems are derived under small-strain isotropic stress conditions. However, the derived 

analytical solutions are only estimated values for general models. By viewing each DEM 

modelling as an implicit mathematical function taking the particle-level parameters as 

independent variables, and employing the derived analytical solutions as the initial input 

parameters, an automatic iterative scheme is proposed to obtain the calibrated parameters with 

higher accuracies. Considering highly non-linear features and discontinuities of the macromicro 

relationship in Hertz-based discrete element models, the adaptive moment estimation algorithm 

is adopted in this study due to its capacity of dealing with noise gradients of cost functions. The 

proposed method is validated with several numerical cases including randomly distributed 

monodisperse and polydisperse packings. Noticeable improvements in terms of calibration 

efficiency and accuracy have been made.   

  

Keywords: Discrete element method; Hertz-Mindilin contact model, Calibration; Constitutive 

law; Adaptive moment estimation, Non-linear elastic model.  

Nomenclature  

  kn    normal contact stiffness   

  ks    tangential contact stiffness   

  δn   normal contact displacement, δn = (R1 + −R2z)  

  R1   the radius of particle 1  

  R2   the radius of particle 2  

  r   the radius of monodisperse particles  

  z    the distance between the centers of two particles  

 the effective radius of the contact  
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  R   

  fn     the normal contact force between two particles  

  sijc   the interparticle contact flexibility tensor at the cth contact   

  uc   the contact overlap at the cth contact  

  ∆fi
c  the force increment at the cth contact  

  G*    particle-scale shear modulus  

  E*  particle-scale Young’s modulus   

 ν*     particle-scale Poisson’s ratio  

  nc, sc and tc   three vectors of the local coordinates constructed at the cth contact  

 θ   the polar angle in the polar coordinate system  

  γ, β    the polar angle, and azimuthal angle in a spherical coordinate system  

  Lcj  the branch vector connecting centroids of particles in cth contact  

  V    the volume of a three-dimensional particle assembly   

  S    the area of a two-dimensional particle assembly  

  Nc   the total number of interparticle contacts in the volume V  

  Ajk    a second-order tensor associated with the particle structure   

  nkc  the unit outward normal vector at the contact interface of contact c  

  δij  Kronecker tensor  

  Sijkl   compliance tensor   

  εij   strain tensor  

  σkl     stess tensor  

  ρθ( )  contact density in two-dimensional models   ργβ( ,

 )  contact density in three-dimensional models  

  σc   istropical confining stress  

  E    the equivalent Young’s elastic modulus of a granular 

assembly  

  v     the equivalent Poisson’s ratio of a granular 

assembly  

  G    the equivalent shear modulus of a granular 

assembly  

 

  Nc   

the average coordination number in a granular 

assembly  

  ϕ  the porosity in a granular assembly  

  Np   the total number of particles  

  Sv   the total area of the voids   

  Vv   the total volume of the voids  

  Sp   the total particle area in a granular assembly  

  Vp    the total particle volume in a granular assembly  

  Cu   uniformity coefficient   

  d50   median diameter   

  d40   the diameter below 40% of the total particles  

  d60   the diameter below 60% of the total particles  

  t    iterative number  
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  Et    the targeted Young’s modulus of a granular assembly  

  νt    the targeted Poisson’s ratio of a granular assembly  

  Mt   an exponentially decaying average of past gradients of the 

cost function  

  Gt    
function  

an exponentially decaying average of past squared gradients 
of the cost  

  gt   the gradient of the cost function at the tth iterative step  

  λ1, λ2  weighting coefficients of the cost function   

  β1   a decay rate of the first-moment of the gradient  

  β2   a decay rate of the second-moment of the gradient  

  θi   independent variables during the Adam iterative process  

 
  G  

initial particle scale shear modulus  

  ν   initial particle scale Poisson’s ratio  

  G   normalized particle-scale shear modulus  

 ν   normalized  particle-scale Poisson’s ratio  

  ∆G   small increments of the normalised particle-scale shear modulus 

G    

  ∆ν    small increments of the normalised particle-scale Poisson’s 

ratio ν   

  α   learning rate  

  gt    the gradient of the cost function   

  η   a hyperparameter to determine the first increments of 

independent variables  
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1 Introduction  

Many studies have confirmed the ability of discrete element modelling (DEM) to capture 

intrinsic features of granular materials (Bourrier, et al.1, Sibille, et al.2, Nicot, et al.3, Wang, et 

al.4, Wang, et al.5, Liu, et al.6, Qu, et al.7, Wang, et al.8, Cambou, et al.9, Wautier, et al.10, 

Dugelas, et al.11, Qu, et al.12, Gao and Meguid13, 14). However, the choices of DEM parameters 

are often made in a trial and error manner (Coetzee15, 16, Qu, et al.17). A barrier to determining 

reasonable contact parameters is that a direct measure of particle-scale parameters is difficult 

to achieve for granular systems with several different constituents. Additionally, DEM models 

simplify the complexity of real physical systems, such as contact, particle geometry and particle 

deformation, and also often reduce the number of particles involved. Even if particle-scale 

parameters can be accurately measured, the measured data is not necessarily suitable for 

discrete element modelling. Thus the philosophy of calibration is admitting these numerical 

simplifications and tuning or calibrating the DEM model to capture the major responses 

observed in physical laboratory tests (O'Sullivan18).  

The calibration of DEM parameters, by its nature, is an inverse problem, which determines 

the causal factors (particle-scale parameters) from some measures or observations 

(macroscopic responses). The corresponding forward problem is predicting the macroscopic 

stress-strain relations of a particle assembly based on particle-scale parameters. This forward 

problem receives great interests to material science and physics and is widely investigated 

based on homogenisation methods to link continuum-based mechanics to the non-continuum 

particle-scale characteristics (Satake19, Bagi20).   

 In the past, various homogenisation methods are developed to derive micro-macro 

relationships of granular materials, such as Voigt’s hypothesis (kinematic assumption) (Liao, et 

al.21, Kruyt and Rothenburg22, Chang and Lun23, Digby24, Walton25, Chang, et al.26), Reuss’s 

hypothesis (static assumption) (Chou, et al.27, Li, et al.28, Chang and Liao29, Yimsiri and 

https://en.wikipedia.org/wiki/Causal
http://www.baidu.com/link?url=LolnB7MvTsTqEB0clXzfd4SN44oOjjIF2TPSzTme6uDvQrlZRuXquLV1Fjx5xP0vgh3zy4XOqOdq5KYTVepZ3_8J7vosKL1DI9vf8DcKWjHjdaGkWVTkowooVpKQjrbq
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Soga30), best-fit hypothesis (Liao, et al.21, Liao, et al.31) and Piece-wide fit hypothesis (Liao, et 

al.21). Some recent works aimed at defining a relevant mesoscale to link continuum-based 

mechanics at the macroscopic scale (Zhu, et al.32, Zhu, et al.33, Zhu, et al.34, Xiong, et al.35), 

precisely to circumvent the non-continuum microscopic characteristics at the contact scale.   

Although various hypothesises are involved and sophisticated formulations have been 

derived, the accurate prediction of constitutive relations of granular materials remains to be an 

outstanding issue. The reason for failure to accurately predict constitutive relationships of 

granular materials may be attributed to the fact that most homogenisation methods are derived 

from the continuum-based theory (Goldenberg, et al.36). Granular systems are observed to 

transfer internal forces in a chain-like (discontinuous and inhomogeneous) way when subjected 

to external loads (Ouaguenouni and Roux37, Sun, et al.38, Pouragha, et al.39, Nicot, et al.40). The 

existing literature has shown that the continuum elasticity is valid only under certain conditions 

for granular materials (Goldenberg and Goldhirsch41,42). However, the current knowledge about 

force-transmission mechanisms in granular materials (such as force chains) is still incapable of 

connecting the micro elasticity to the macro elasticity.  

Statistical or optimisation based algorithms become popular to determine particle-scale 

parameters in DEM as an inverse problem. Existing algorithms include the response surface 

methodology (Yoon43), artificial neural networks (Benvenuti, et al.44, Zhou, et al.45), Latin 

hypercube sampling and Kriging (Rackl and Hanley46), random forest (Boikov, et al.47), the 

genetic algorithm (Pachón-Morales, et al.48, Do, et al.49), the sequential quasi-Monte Carlo 

(Cheng, et al.50) and the Bayesian approach (Cheng, et al.51). Although these algorithms are 

useful to quantify a wide range of complex problems, their applications alone still suffer from 

numerical issues such as local optimum and time-consuming iterative process. Particularly, the 

development of statistical or optimisation based algorithms cannot replace the study on 

underlying physical laws.  

https://www.baidu.com/link?url=yoSvz2PVXKiazoOxSYO_MLLIowRKrJNAEifpoYhkKL0wwVWv7J4MLDVpJQbcxGZYcF-IY0MxzrHzEH9hDE_9eOfDPnvb1nKtuXqr2r0PXte&wd=&eqid=d812f3860009068d000000065d440642
http://www.baidu.com/link?url=TvQDOCAs9CeDMsOYFIGAikObIXR40FGmczFICYD99o2YWTGrkqJ-m6GjaoxzGAhoa2fFVAYQvq9Zsz5yK01XAWPcG5au3Qnj1RJg-90DH7q
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1 2 / 
3 2 / ∗ 

As the continuation of a sequence of work to address parameter calibration problems in DEM, 

the main objective of this paper is to extend a hybrid analytical-computational framework 

proposed in (Qu, et al.52) to effectively approximate the contact parameters in the 

pressuredependent Hertz-Mindlin-type contact models for both 2D and 3D cases. Based on 

Reuss’s hypothesis, a set of simplified static solutions relating particle-scale contact stiffnesses 

to macro material properties for Hertz-Mindlin-type contact models are explicitly derived in 

Section 3 and compared with the numerical results in Section 4. These semi-analytical formulae 

are then served as the initial estimation for the subsequent iterative scheme that aims to further 

improve the calibration accuracy numerically. However, due to the highly nonlinear feature of 

discrete particle systems which is made worse by the nonlinear relationship in the 

HertzMindlin-type contact model, the gradient-based iterative scheme adopted in (Qu, et al.52) 

tends to suffer from poor convergence for the problem concerned. Thus an alternative algorithm 

called the adaptive moment estimation (Adam) (Kingma and Ba53) that is developed for 

machine learning, is employed in Section 5 to automatically optimise the parameters to be 

calibrated. The detail of the algorithm and related computational aspects are provided and 

discussed. The numerical examples are also presented to demonstrate the performance of this 

hybrid calibration procedure for both monodisperse and polydisperse granular systems.  

  

2 Hertz contact law and interparticle behaviour  

The Hertz-Mindlin-type contact model remains the foundation for most contact problems 

encountered in engineering due to the relative rationality and simplicity. Under the condition 

that the surfaces of contacting elastic spheres are perfectly smooth, the relation between the 

normal contact force fn and normal contact overlap δn can be given by:  

2(2 )R G 3(1−ν ) 

   fn 

= 
∗ (δn )   (1)  
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where G* and ν* are the shear modulus and Poisson’s ratio of the particles; the overlap δn = + 

−(R1 R2 z), with R1 and R2 being the radii of the two particles and z being the distance  

 
between the two particle centres; and R is the effective radius of the contact defined as  

2RR1 2 

R= .  

R R1 + 2 

The normal contact stiffness kn is derived as the derivative of the normal force to the normal 

displacement δn :  

1/3 
 1/2 ∗ ∗2 

 ∂fn (2 )R G 1/2  3RG  1/3 

   kn = = ∗ δn =  ∗ 2  fn    (2)  

 ∂δn (1−ν ) (1−ν )  

The shear force is dependent on the deformation at the contact and the history of sliding, and 

is therefore complicated in its formulation. Based on different simplifications, several different 

formulations for shear stiffnesses are reported in the literature (Yimsiri and Soga30, Itasca54, 

Chang, et al.55, Cundall56, Tsuji, et al.57). Different shear stiffness formulations do yield 

different macro-micro expressions as shown in Section 3, but their actual differences are rather 

limited. Considering the interests of our current work, these comparisons are not presented here. 

In this paper, a simple and commonly used formulation for the Hertz stiffness ratio (shear 

stiffness ks to normal stiffness kn) is adopted as (Cundall56)  

 ks 2(1−ν∗) 

   kn = 2−ν∗   (3)  

Note that, although the Hertz contact model is developed for elastic spheres, we also apply it 

to 2D discs by treating the law as a nonlinear power-law, as a supplement of the linear elastic 

model. Thus, both 2D disc and 3D sphere cases are described below. It is also straightforward 

to implement other Hertz-type formulations for specific applications by following our proposed 

framework.  
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Let sij
c be the interparticle contact flexibility tensor at the cth contact. The relationship  

between the contact overlap uc
j (treated as a vector) and the contact force fi

c at the contact is 

given by:  

   ucj = s fijc ic 

  (4)  

As Fig. 1 shows, let the contact vector n be the direction normal to the contact plane and the 

vectors s and t be the directions transversal to the contact plane. Assuming that the shear contact 

stiffnesses in the s and t directions are the same and no coupling effect occurs between the 

normal and shear directions. The contact flexibility tensor sij
c can be expressed in terms of the 

unit vector nc, sc and tc of the local coordinate system constructed at the cth contact (Hicher and 

Chang58):  

 c 1 c c 1 c c c c 

 sij = n ni j + (s si j +t ti j )   (5) kn ks 

Considering the contact vectors nc, sc and tc in contact planes that are transverse isotropic, the 

flexibility tensor sij
c can be simplified as another expression as reported in (Zhu, et al.59):  

 c 1 c c 1 c c 

 sij = n ni j + (δij −n ni j )  (6) kn ks 

where nc can be expressed as follows (Hicher and Chang60)(see Fig. 2 for the 2D coordinate 

system):  

   nc = (cos ,sin )                            (2Dθ θ )  

  (7)  

 c 

 n = (cos ,sinγ γ β γ βcos ,sin sin )  (3D) 
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3 Semi-analytical solutions for predicting Hertz-type contact parameters  

The stress-strain relationships for granular materials have received great attention in the past. 

Based on the static assumption, the relationships can be described with both particle-scale 

normal and tangential contact stiffnesses. A detailed derivation of the stress-strain relationships 

of randomly distributed monodisperse packing with Hertz-Mindlin-type contact models is 

provided in Appendix under the conditions: (1) small strain conditions; and (2) statistically 

isotropic packings. In this Section, formulae for estimating particle-scale parameters are given 

for general cases. A set of semi-analytical solutions for directly predicting Hertz-type contact 

parameters are also offered.   

  

3.1 Analytical prediction of Hertz-type contact parameters   

In DEM simulations, the particle shear modulus G∗ or elastic modulus E∗ and particle  

Poisson’s ratio ν∗ are the input parameters of the Hertz-type contact model. According to the 

Appendix, when the macro-material properties (Young’s modulus E and Poisson’rato v) of a 

statistically isotropic monodisperse granular packing are given, the corresponding particlescale 

parametersG∗, E∗ and ν∗ can be analytically obtained as:  

2D case:   

     (8)  

 

   E∗ = 3N5(1 15 )c + ν 2  E2  (1−νσ) c − 12   (9)  

(1 7 )+ ν r  

   G∗ = 6SNc  E2  (1+ 7ν)σc   (10)  

(1+ 7ν)r 

3D case:  
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     (11)  

3 

 E∗ =16V (18 +1ν 2)  E2 2 σ νc (1 2 )−  

 (12)  

   Nc (8 +1ν ) r   6  

   G∗ = V  2 E   (1 2− ν)σc   (13)  

Nc 4 (r 8ν+1)   6(8ν+1)  

In the above formulae, Nc is the total number of interparticle contacts in the area S/volume V 

of the granular assembly; r is the particle radius; σc is the confining stress applied.  

  

3.2 Semi-empirical and semi-analytical solution for predicting Hertz-type contact parameters  

The ratio of S/Nc (2D) or V/Nc (3D) governs the density of the granular packing and its value 

is not available unless the packing reaches a stable equilibrium state. From the perspective of 

physics, the density of a granular packing is associated with the particle shape and size 

distribution used, the confining stress applied, and how the packing is initially generated.   

 
In this study, the coordination number Nc and the porosity ϕ are defined by:  

2Nc 

   Nc =   (14)  
Np 

S 

Sv  (2D) 

   φ=      (15)  

Vv  (3D) 

V 
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where Np is the total number of particles, and Sv or Vv is the total area/volume of the voids. 

Assuming that the total area/volume of particles is Sp or Vp, then V=Vv+Vp or S=Sv+Sp. For a 

monodisperse granular packing, the total particle area/volume can be determined by:  

Sp = N rpπ 2    (2D) 

 

    4 3   (16)  

V NP= p πr   (3D) 

  3 

Combining Eqs. (14)-(16), the ratio of S/Nc (2D) or V/Nc (3D) is given by:  

  S 2πr2 

 =   (2D) 

 Nc (1- )φNc 

    3    (17)  

V = 8πr  (3D) 

 Nc 3(1- )φNc 

For a randomly distributed granular assembly, although the relationship between the porosity  

 

ϕ and the coordination number Nc is not unique, a proportional relationship has been proven to 

exist (Liao, et al.31 , Hicher and Chang60). The coordination numbers and the porosities of some 

DEM packings are presented in Fig. 3. which shows that an approximately linear relationship 

can be found between the coordination number and the porosity.  

In DEM models, the porosity of a granular assembly is highly influenced by the initial friction 

coefficient of particles used while generating the assembly. In this study, the initial coefficient 

of friction is used to control the porosity in a granular assembly. The relations between the 

initial friction coefficient and porosity of the specimens are shown in Fig. 4, indicating that the 

porosity in a specimen increases with the initial coefficient of friction. Note that the porosity 

here does not account for the overlap of contacts and is thus slightly lower than the experimental 

porosity.   

http://www.baidu.com/link?url=fo1VfiOe8L2HRNwlqbZe6mYlWON6scz01dSq4zXxjXtKwppqc8y8XYr4iO-baliBJBVtvx9S8GVQdjvMYtIRV36nIY7EsRfc4jc_iYcWt9kraMzKqBdy2NIb2t85EQfU
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Then the relation between the packing related parameter (1- )φNc and the numerical initial 

friction coefficient is investigated in both 2D and 3D DEM models with a large range of 

porosities. Fig. 5 shows that a quadratic relation is found for both 2D and 3D cases. The relevant  

 

fitted relation can provide a satisfactory estimation for the packing parameter (1- )φNc in 

randomly distributed granular packings. The actual porosity in a granular packing may slightly 

vary with the changes in the particle size distribution, particle numbers involved in models, and 

confining stress conditions, and thus the empirical formulae in Fig. 5 is simply an initial 

estimation. By combining Eqs. (17), (8)-(10), and (11)-(13), a set of initial estimation for 

particle-scale parameters can be given.  

In the case that the estimation made by the provided empirical relations is found to be 

unsatisfactory during the subsequent iterative computations, a remedial measure that the S/Nc 

(2D) or V/Nc (3D) in the already generated model is used as a new approximation can be taken. 

The approximation will be further improved by the iterative scheme to be introduced in Section  

5.  

  

4 Comparisons between derived formulae and numerical tests  

Several benchmark tests are performed to show the difference between the derived formulae 

and numerical tests. The comparisons offer more understanding of the derived formulae in 

Section 3. On the other hand, it also provides justifications for extending the derived formulae 

to polydisperse granular packings (see Section 4.3).   

  

4.1 Benchmark test schemes  

To numerically determine the equivalent elastic properties of a granular assembly, 

biaxial/triaxial tests with constant lateral confining pressure are performed using DEM (shown 

in Fig. 6).  
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In the presence of a constant confining stress, the equivalent elastic modulus and Poisson’s 

ratio of granular materials can be numerically obtained as:  

   E=( )c  (18)  

∆εL 

   ν=−( )  (19)  

∆εT c 

where the subscript index c represents a constant confining stress condition; εL and εT are the 

strains in the loading and transverse directions, respectively.   

  

4.2 Monodisperse granular packings  

 Several monodisperse granular assemblies enclosed in a square/cubic box are generated to 

evaluate the derived analytical solutions. The granular assemblies are isotropically compacted 

to a predefined stress state.   

To prevent possible rearrangements of particles (irreversible plastic deformation) for the 

granular system subjected to a small strain condition, the initial coefficient of friction is then 

replaced with a relatively larger coefficient of friction (e.g. 1.0), prior to performing loading 

and unloading tests.   

The model parameters used are listed in Table 1. Note that these parameters are rather 

arbitrally chosen to show the differences between the static analytical solutions and the DEM 

results.  

A loading-unloading case can be used to check whether the granular specimen is in a state of 

elastic deformation during loading/unloading. The specimen is loaded along the vertical 

direction until the axial strain is up to a relatively small value (5×10-4 is adopted in our model). 

The axial deviatoric stress versus the axial strain is shown in Fig. 7. Although the Hertz-type 

contact model is non-linear, the small-strain Young’s modulus still shows a response similar to 
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linear behaviour. Particularly, the unloading stress-strain curves perfectly match with the 

loading stress-strain curves, indicating that the granular specimen subjected to an axial strain 

of 5×10-4 is under an elastic state. This check is always recommended for a specific model due 

to two reasons: (1) the specimen before testing may not be in a sufficiently converged state 

(may affect the initial stress-strain curves); (2) the model porosities affect the range of the 

elastic region. i.e, the elastic region for a loose model may stop at a relatively small axial strain 

while the counterpart for a dense model exists even under a relatively large axial strain.  

Figure 8 shows the comparison of Young’s modulus between the DEM simulations and the 

static analytical solutions, with the initial friction coefficient ranging from 0 to 1. The results 

show that there are evident discrepancies between the DEM simulations and the static solutions. 

One of the main reasons responsible for the differences is that the static homogenisation 

hypothesis cannot incorporate the force-transmission features in granular materials, where 

external loads are transferred in a way totally different from that in continuum media (Luding61, 

Peters, et al.62, Zhang, et al.63).   

The derived Poisson’s ratio is analytically determined by the ratio of the normal stiffness to 

the tangential stiffness and is thus independent of confining stress, porosity and fabric. Figure 

9 gives a comparison of Poisson’s ratio between the analytical solution and the numerical 

solution. The difference between them increases as the porosity increases. A significant 

discrepancy between the analytical solution and the DEM simulations can be found. Similar 

results are reported in (Gaspar64, Gu and Yang65). Gaspar (Gaspar64) reported that the reasons 

for the discrepancy of Poisson’s ratio are attributed to the presence of a significant amount of 

heterogeneity caused by the heterodisperse nature of the simulation. Gu and Yang (Gu and 

Yang65) thought that the reason may be attributed to the fact that the stress exponent n for elastic 

modulus is higher than 1/3 as predicted by the Hertz-Mindlin law. Apart from these reasons, 
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the simplification of the tangential stiffness formulation may also give rise to some relative 

error between the analytical solution and DEM modelling.  

Although the static analytical solutions alone cannot predict Young’s modulus and Poisson’s 

ratio with high accuracy, they do provide approximates which are relatively close to the true 

values, compared to an arbitrary guess. These approximate values will be effectively employed 

as the initial inputs in the next section to obtain the refined estimations.   

  

4.3 Polydisperse granular packing  

Although the analytical expressions (8)-(13) are derived based on the premise that the 

particles are equal-sized, they are extended here for polydisperse packings with the particle 

diameter 2r being replaced by the median diameter (d50) of the polydisperse granular packing.  

To find out how much error may be introduced by such an extension, 19 tests are conducted 

with various uniformity coefficients (Cu) but a fixed d50:   

   Cu=d60/d40   (20)  

where d60 and d40 are the diameters below 60% and 40% of the total particles, respectively. The 

particle size distributions employed for the simulations are shown in Table 2. Except for the 

first specimen, the radii of particles in the other specimens are evenly distributed between the 

minimum and maximum radii.   

Figure 10 shows the differences between the DEM simulations and the static analytical 

solutions when the coefficient of uniformity (Cu) in a granular packing increases gradually. The 

derived Young’s modulus decreases with an increase in the coefficient of uniformity in both 

2D and 3D cases, which compensates the errors originally arising from the static hypothesis to 

a certain extent. Therefore, although the formulae (8) and (13) are derived from the 

monodisperse packing, both formulae will be employed as the initial guesses in the next section 

to obtain the refined estimations  
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5  Improved estimation scheme with a machine learning algorithm  

5.1 The basic idea and framework for optimal estimation of particle-scale parameters  

The key idea of our iterative methodology is to view the DEM simulation as an implicitly 

defining mathematical function (say: f), which takes the inputted Hertz-type parameters as 

independent variables (elastic modulus E* and Poisson’s ratio ν*) while the simulated 

macroscopic responses as the function value (say fdem). Then an iterative scheme is used to solve 

an equation:   

   fdem(E*,ν*) = fexperiment, or fdem(E*, ν*)-fexperiment = 0   (21)  

Then the calibration problem is converted to a problem of numerically finding roots of the 

implicitly defined mathematical equation. Nevertheless, this requirement is too strict, and it is 

almost impossible in this way to obtain the values of the parameters to be calibrated for general 

cases. Thus, the calibration problem has to be converted to a minimisation problem where the 

values of the parameters are sought to minimise the difference between the simulated 

macroscopic responses and the targeted values. There are in theory many numerical schemes 

available that could be employed to solve the minimisation problem, such as the Newton 

Raphson Method, and gradient-based methods (Qu, et al.52, Madsen66).   

However, for a highly nonlinear discrete granular system, particularly for the Hertz-type 

based DEM models, the traditional methods suffer from the problems of existing many local 

optimums and/or poor convergence. The gradient-based method proposed in our previous 

work (Qu, et al.52) for the calibration of linear contact parameters has proved to be 

inefficient and no successful calibration has been achieved for the current problem 

concerned.  

The alternative optimisation method to be adopted in this study is the so-called adaptive 

moment method (Adam). This method was developed in 2015 in the field of machine learning 

https://brilliant.org/wiki/newton-raphson-method/
https://brilliant.org/wiki/newton-raphson-method/
https://brilliant.org/wiki/newton-raphson-method/
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(Kingma and Ba53), and is appropriate for problems with very noisy gradients which is exactly 

the problem that a DEM model has. Our numerical tests to be presented in the section indicate 

that this method is superior to many traditional optimisation methods.   

  

5.1.1 Cost function   

As stated, the calibration procedure of particle-scale parameters for a granular assembly is 

equivalent to finding the values of the calibration parameters to minimise the difference 

between the targeted macroscopic properties and the actual values achieved numerically. The  

cost or error function to be minimised is constructed as:  

   L E( ,ν λ) = 1(E Et −1) +2 λνν2(t −1)2  (22)  

where E and ν are the equivalent Young’s modulus and Poisson’s ratio of the granular 

assembly; Et and νt are the targeted Young’s modulus and Poisson’s ratio, respectively; λ1 and 

λ2 are two positive weighting coefficients with λ1 + λ2 = 1. When only Young’s modulus is 

calibrated, λ1=1 and λ2 = 0. When both modulus and Poisson’s ratio are calibrated with equal 

importance, λ1=λ2=0.5.  

  

5.1.2 Optimisation with adaptive moment estimation (Adam)  

As the equivalent Young’s modulus E and Poisson’s ratio ν are functions of the particle-scale 

shear modulus G* and Poisson's ratio ν*, the calibration procedure is now reduced to a 

minimisation problem with both G* and ν* being the variables to be sought. Considering the 

highly non-linear and discontinuous features of the cost function, a recently popular machine 

learning algorithm, the Adaptive Moment Estimation method (Adam) (Kingma and Ba53, 

Ruder67), is adopted to optimise the calibration parameters. Adam is a first-order gradientbased 

optimisation of the cost function based on adaptive estimates of lower-order moments of a 

https://en.wikipedia.org/wiki/Local_minimum
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gradient. The method is computationally efficient and works well on problems with noise 

gradients. Thus it is particularly suitable for the current problem.  

 The implementation of the Adam method requires computing an exponentially decaying 

average of past gradients (say Mt) and an exponentially decaying average of past squared 

gradients (say Gt) as follows:  

   Mt =β1Mt−1 + −(1 β1)gt  (23)  

   Gt =β2Gt−1 + −(1 β2)gt ⊗gt  (24)  

where the subscript t denotes the iterative number (starting from 1); gt denotes the gradient of 

the cost function at the tth iterative step; the symbol  represents element-wise multiplication; 

β1 and β2 are the decay rates of the first-moment and the second-moment of the gradient; and 

their values are typically initialised to 0.9 and 0.999, respectively.   

Due to the fact that these moving averages are initialised as vectors of 0’s, the moment 

estimates are biased towards zero at the initial timesteps and especially when both decay rates 

are close to 1 (Kingma and Ba53). This initialisation bias is practically corrected with 

biascorrected moment estimates as follows:  

= Mt t  (25)   ˆ 

   Mt 

1−β1 

   Gˆt = Gt t  (26)  

1−β2 

To find the minimum of a function using the Adam algorithm, independent variables (say θi) 

are iteratively updated by:  

 α ˆ 

   θ θi := −i ˆ +εMt  (27)  

Gt 

https://en.wikipedia.org/wiki/Local_minimum
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where α is the learning rate; the symbol “:= ” means assignment; the symbol ε is a smoothing 

term usually initialised to a tiny number such as 10-8.   

The selection of the learning rate is not unique and the optimal value cannot be explicitly 

determined. Empirically, the learning rate can be chosen from 0.1, 0.01, and 0.001, depending 

on its influence on the optimisation process. The learning rate will affect the overall 

performance in terms of computational time and accuracy.   

  

5.1.3 Feature scaling  

Feature scaling is used to normalise the range of independent variables. Due to the fact that 

the raw data comes from different measures and has different scales, the gradient-based 

machine learning algorithm usually requires feature scaling to facilitate a faster converge of the 

iterative process. In our study, both particle-scale Young’s modulus E* and Poisson's ratio ν*, 

are normalised by the initial values (denoted as E and ν, and given by Eqs. (8-9) or (11-13), and 

the resulting normalised Young’s modulus E and Poisson's ratio ν are expressed as:  

  E


=
E∗ , ν=

ν
∗  (28)  

 E ν 

Now the cost function can be rewritten as:  

 

  L E( ,ν) = F E( ∗,ν∗) = f E( 

,ν)  (29)  

  

5.1.4 Gradient approximation  

Direct calculation of gradients is possible only when the closed-form expression of the cost 

function is already known. In contrast, the derived analytical solution in Section 3 is simply an 

estimation and the actual relationship between macroscopic parameters and particle-scale 

parameters is nearly impossible to determine. In this study, the finite-difference method is used 

to approximate the gradient (Feng, et al.68), i.e., let the gradient of the cost function gt be:  
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  gt   (30)  

where the partial derivatives of the cost function are given as:  

∂∂EF∗ = E ∂∂Ef≈ ∆EE  f E( +∆E, )ν− f E( ,ν)  

    (31)  

∂F 
=

ν ∂f 
≈ 

ν 
 

 ∂ν∗ ∂ν∆ν  f E( 

,ν ν+∆ )− f E( 


,ν)  

where ∆E and ∆νare two (small) increments of the normalised particle-scale Young’s 

modulus E and Poisson’s ratio ν.  

At the first iteration, ∆E and ∆νare set to be ∆E E=η and ∆νην= 
 where the parameter η is 

typically taken around ~0.1. For other iterations, ∆E and ∆ν are taken to be the step 

increments of E and ν (refer to Eq. (27)). This means that the gradient of the cost function is 

approximated by its secant slope. With the purpose of constructing the partial gradients gt, the 

particle scale modulus and Poisson’s ratio are updated three times in each iteration. The three 

updates correspond to f E( ,ν) , f E( +∆E, )ν, f E( ,ν ν+∆ ) , respectively, in Eq. 

(31).  

When these parameters are changed, a new specimen is created and a re-equilibration is 

required. Except for the minor changes of the updated particle modulus and Poisson’s ratio, the 

other input parameters or initial conditions such as the confining stress and the initial particle 

friction keep the same. Therefore, the void ratio and internal force-chains distributions are 

similar but not identical to the other specimens. The small variations in the granular fabric are 

also one of the sources of highly non-linear relationships between micro and macro parameters.   

  

5.2 Numerical tests of the proposed with the proposed calibration framework  
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Four numerical cases including monodisperse random packings (Case 1 for 2D and Case 2 

for 3D) and polydisperse random packings (Case 3 for 2D and Case 4 for 3D), are performed 

to show the robustness of the proposed method. The targeted Young’s modulus and Poisson’s 

ratio are 10GPa and 0.2, respectively, for all the test cases (assuming that they are 

experimentally determined material properties). Furthermore, the iterative process is terminated 

when the cost function is reduced to less than 10-4 or when no improvement is possible. All the 

numerical cases in this study are performed with Particle Flow Code (PFC) software. These 

DEM specimens are also made to a quasi-isotropic state, which is obtained by applying an 

isotropic pressure on all the boundaries of the specimen with a small initial friction coefficient. 

The particles will rearrange themselves to comply with the isotropic confining boundary 

pressure. The fabric components in the generated assembly are checked to ensure that a quasi-

isotropic state is obtained in every tested specimen.  

  

Case 1: Monodisperse random packing (2D)  

A monodisperse granular packing with 1787 particles (the radius is 0.1m, the initial 

coefficient of friction is 0.1) is randomly generated in a square container and isotropically 

consolidated to a uniform stress state of 1MPa. The learning rate α and parameter β are taken 

as 0.01 and 0.03, respectively. After 5 iterations with 16 groups of numerical models performed, 

the macroscopic Young’s modulus can be effectively predicted within an error of 1%. It takes 

4.55 hours to perform the tests on a computer CPU: AMD A8-6600K, RAM:16G. The same 

computer configuration is used for all the four cases in this study. Note that the computed 

Poisson’s ratio is larger than 0.5. Actually, the numerical Poisson’s ratio is different from a 

physical one as it incorporates compensations for simplification factors such as contact 

formulations, roughness, and even particle shape.   

  

http://www.baidu.com/link?url=AMaORhs3WbXv5x1zTkvraBqdw508NnvpwNsN7gTdi8X5JbAIz9b3prssPdq8oYIfRo2vowLfHdqem08Y05Zr5ZSxtp_e_ddgDy_uJCBhBXabctMcJ-XGISYDWOXSalvB
http://www.baidu.com/link?url=AMaORhs3WbXv5x1zTkvraBqdw508NnvpwNsN7gTdi8X5JbAIz9b3prssPdq8oYIfRo2vowLfHdqem08Y05Zr5ZSxtp_e_ddgDy_uJCBhBXabctMcJ-XGISYDWOXSalvB
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Case 2: Monodisperse random packing (3D)  

A monodisperse granular packing with 9167 particles (the radius is 0.1m, the initial 

coefficient of friction is 0.2) is randomly generated in a cubic container and isotropically 

consolidated to a uniform stress state of 1MPa. Both macroscopic Young’s modulus and 

Poisson’s ratio are calibrated in this case. The learning rate α and parameter β are taken as 

0.03 and 0.05, respectively. After the 6th iteration, the macroscopic Young’s modulus can be 

predicted within an accuracy of 1% (the CPU time required is 11.65 hours), and after 13 

iterations with 40 groups of numerical models performed, both Young’s modulus and 

Poisson’s ratio can be estimated within an accuracy of 1% (the computational time required 

is about  

25.17 hours). The iterative process is shown in Fig.11.  

  

Case 3: Polydisperse random packing (2D)  

A polydisperse granular packing with 1655 particles (the radius is 0.1m, the initial 

coefficient of friction is 0.1) is randomly generated in a square container and isotropically 

consolidated to a uniform stress state of 1MPa. The learning rate α and parameter β are taken 

as 0.01 and 0.03, respectively. After 4 iterations with 13 numerical models performed, the 

macroscopic Young’s modulus can be effectively predicted within an accuracy of 1% (the 

CPU time required is 5.58 hours).   

It should be mentioned that only Young’s modulus is calibrated in the two-dimensional cases, 

as it seems hard to calibrate both Young’s modulus and Poisson’s ratio at the same time in these 

cases. The reasons for the poor convergence experienced when calibrating both Young’s 

modulus and Poisson’s ratio simultaneously may be attributed to: (1) the 2D formulae still 

continue using the expression developed from the interactions in three-dimensional spheres; (2) 

the simplification of the tangential stiffness formula in the Hertz-Mindlin law. A detailed 
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investigation of interactions between non-linear elastic contacts (especially in 2D case) is out 

of the scope of this study but will be pursued in the future.   

  

Case 4: Polydisperse random packing(3D)  

A polydisperse granular packing with 7386 particles (the radius is 0.1m, the initial coefficient 

of friction is 0.2) is randomly generated in a cubic container and isotropically consolidated to 

a uniform stress state of 1MPa. Both macroscopic Young’s modulus and Poisson’s ratio are 

calibrated in this case. The learning rate α and parameter β are taken as 0.1 and 0.03, 

respectively. After 4 iterations with 13 groups of numerical models performed, the macroscopic 

Young’s modulus can be predicted within an accuracy of 2% and the Poisson’s ratio is predicted 

within 1% (the CPU time is 10.7 hours). Further iterations, however, cannot improve the 

solution accuracy anymore due to the highly non-linear and random nature of granular 

packings. Considering the measurement precision in experiments, the achieved prediction 

errors are acceptable. The iterative process is shown in Fig.11.   

Figure 11 exhibits the evolutionary histories of the cost function during the iterative process 

for all four cases. Clearly, the cost function is not monotonically decreasing, due to nonlinear 

and discontinuous features of the relationship between the particle-scale contact stiffnesses and 

the macroscopic material properties. However, the cost function in all the cases exhibits a 

significant decrease from a relatively large initial value to a relatively small value (around 1×10-

4). The corresponding errors of Young’s modulus decrease from 10%~20% to 1% or 2%. The 

tests show that the proposed framework can be used to estimate particle-level Hertz-type 

contact parameters for both monodisperse and polydisperse packings.   

  

6 Illustration of nonlinear features of micro-macro relations in a granular system  

Although the non-linear features of the micro-macro relationship in granular materials have 

been discussed in some existing research (Goldenberg, et al.36, Hicher and Chang60), a clear 
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understanding of the Hertz-type based granular models is still lacking. In this section, the micro-

macro relation in a numerical granular system based on the Herz-Mindlin contact law is 

visualised to illustrate its highly nonlinear features.   

400 groups of models are simulated with the input parameters in Case 2 presented in Section 

5.2 as a basis. The microscopic parameters (particle shear modulus and Poisson’s ratio) are 

selected by picking the optimal microscopic set that has been obtained as the initial point and 

its surrounding parameters with uniformly spaced to a maximum relative variation of 1%. 

Except for the minor changes of the particle modulus and Poisson’s ratio, the other input 

parameters or initial conditions keep the same. 9167 monodisperse particles are involved for 

each model with a porosity of around 0.3 (without considering the overlap amid particles).  

The simulation results are presented in Figs. 12-14 with the fitted surfaces to show the 

micromacro relationships. Figs.12 and 13 display the macroscopic Young’s modulus and 

Poisson’s ratio normalised by the target Young’s modulus and Poisson’s ratio given in Section 

5.2, respectively, against the particle-scale Hertz-Mindilin parameters. Fig.14 shows the 

logarithmic cost function (defined by Eq. (22)) against the Hertz-Mindilin contact parameters. 

These figures clearly demonstrate that the relationship between the micro and macro parameters 

in DEM is highly nonlinear with many local optima and noisy gradients.   

It should be mentioned that Figs. 12-14 are just approximated visualisations. If a narrower 

microscopic parameter space is adopted, the fitted surfaces will be different. However, the 

current ‘resolution’ is able to provide useful explanations why a common optimisation 

algorithm, such as the gradient descent, is difficult to minimise the loss function in order to 

obtain satisfactory calibration parameters. In addition, the surrogate models are widely used to 

calibrate DEM parameters (Richter, et al.73, Nguyen, et al.74). Figs. 12-14 may support an 

implication that only the surrogate model with a narrow parameter space is capable of 
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predicting macroscopic input parameters with high accuracy, for the Hertz-type based DEM 

models.  

  

7 Conclusion  

A combined analytical-computational method has been proposed to calibrate the Hertz-type 

contact parameters for DEM simulation. Based on Reuss’s hypothesis and empirical 

simulations, a set of semi-analytical and semi-empirical formulae linking particle-scale contact 

parameters to macroscopic deformation parameters are derived for both 2D and 3D models. 

These formulae are taken as initial inputs for the following auto-trainings by using a wellknown 

machine learning algorithm - adaptive moment estimation and then much-improved predictions 

of microscopic parameters are obtained.  

The proposed framework is tested with randomly generated monodisperse and polydisperse 

packings in both 2D and 3D cases. The results show that the refined particle-scale contact 

parameters are able to match the macroscopic elastic modulus within an error of 1~2% after a 

few iterations. The total computational costs involved, however, depends on selecting a 

reasonable learning rate. This issue is worth being pursued further to make the calibration 

procedure more effective.   

It should be emphasised that both of the initial analytical solutions and the following 

optimisation algorithm is indispensable for a successful calibration in the proposed framework. 

Without a relatively accurate initial guess, the optimisation algorithm suffers from 

unpredictable local optimums and slow convergence. On the other hand, without the use of 

optimisation algorithms, the derived continuum-based analytical solution only provides a 

lowlevel approximation to the actual parameters.  

  

Appendix: Stress-strain relationship of granular material   

(1) Micromechanical definition of stress   

https://www.baidu.com/link?url=BeEbpQva8Ujy5mFZQAtB4u1w0NDttiBafagOEuGkmek7fLSb8XipXkquB2Lsd96aGYvewgfUKt2mcoYfFAUbjJaLCCvTjvR32i17EXpQvR7&wd=&eqid=be74ba480003cdd1000000065d6ba79b
https://www.baidu.com/link?url=zhUFAJgjQaXY34H-odWP01G-5fWLbvwuHkxqACTUtuhTad1VQeF9CIJaQ55UU5J8akSfUSDj3cZ9F0j_6OXmaX3_nQeGGU-vWhUoLLNZm2C&wd=&eqid=c097f940000013a9000000065d6ba88f
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Stress is a continuum quantity and therefore does not exist at the pore spaces in a particle 

assembly. To link the macroscopic stress to particle-scale contact forces, averaging procedures 

are necessary. The increments of the average stress tensor ∆σij in a control volume V is well 

derived with a scheme of averaging contact forces of particles in the volume (Chang, et al.26, 

Christoffersen, et al.69):  

 1 Nc c c 

   ∆ =σij ∑∆f Li j  (32)  

V c=1 

where Lc
j is the branch vector (vector connecting centroids of particles in the c-th contact). In 

the case that a quasi-static loading state is used in DEM models, the Eq. (32) complies with the 

uniformity assumptions of Caillerie (Caillerie70, Wang, et al.71) and therefore the secondary 

terms of the calculated stress tensor are negligible.   

  

(2) Micro-macro relationship based on the static hypothesis  

Since the Hertz-type contact stiffnesses are pressure-dependent, the static hypothesis is 

introduced to derive the stress-strain relationships considering that the Hertz-type contact 

stiffness at any given stress conditions can be easily determined by static hypothesis. (Yimsiri 

and Soga30).   

By using the static hypothesis, the particle contact forces can be approximated by the mean 

stress of the packing structure as (Chang, et al.26, Chang and Liao29).  

   ∆ =∆fi
c σij A njkk

c (i, j,k=1,2,3)    (33)  

where the tensor Ajk is a parameter associated with the particle structure and will be determined 

subsequently; and nk
c is the unit outward normal vector at the contact interface.   
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The inter-particle force formulation obtained from the static hypothesis must be consistent 

with the pre-stated definition of stress for a granular packing. Substituting Eq. (32) into Eq. 

(33) gives rise to:  

1 Nc 

   ( ∑L n Aickc ) jk =δij  (34)  

V c=1 

where Nc is the total number of interparticle contacts in volume V and δij is the Kronecker 

tensor. Then the tensor Ajk  can be given as:  

−1 

  1 Nc  

   Ajk =  ∑L njckc   (35)  

 V c=1  

(3) Micromechanical description of strain  

The strain tensor εij can be defined by the principle of energy conservation. Without 

considering the work of body forces of particles, the external work done to the assembly is 

equal to the internal work done over all interparticle contacts in volume V:   

1 Nc 

V c=1 

Since the stress increments ∆σij can be arbitrarily given, the strain tensor εij can be described as:  

   ∑∆f uic ic =∆σεijij  

V c=1 

By substituting Eq. (33) into Eq. (36),  

(36)  

1 Nc 

   ∆σ εij ( ij − ∑u A nic jk kc ) = 0   (37)  
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 1 Nc c c 

   εij = ∑u A ni jk k 

 (38)  

V c=1 

Note that the current strain definition is not unique in granular mechanics. More definitions for 

the average strain tensor can be found in (Bonelli, et al.72).  

  

(4) Constitutive relationship and compliance tensor  

According to the principle of solid mechanics, the stress-strain relations can be expressed with 

the compliance tensor Sijkl as follows:  

   εij = Sijklσkl  (39)  

By combining Eqs. (4), (33) and (38), the compliance tensor can be expressed as:  

 1 Nc 
c c c 

   Sijkl =  A Almjn ∑n s nm ikn (i, j,k,l,m,n=1,2,3)  (40)  

 V c=1 

  

(5) Integral form of compliance tensor and stress-strain relationship  

Under the condition that all particles are of equal size, the branch vector Lc
j can be rewritten 

as:  

   Lc
j = 2rnc

j  (41)  

where r is the radius of monodisperse particles.  

For a granular assembly with a large number of particles and contacts, the orientations of 

contact normals can be assumed to obey a statistically even distribution. Eq. (40) can thus be 

expressed in a continuum form. Let the distribution density function of particle contacts be ρθ 
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ραβ( ) or ( , ), where θ is the angle in the polar coordinate system (2D, see Fig. 2) and α, β are 

the angles in the spherical coordinate system (3D, refer to Fig. 1). The density function of 

contacts represents the number of contacts that direct to a certain angle in space and therefore 

satisfies the condition:  

∫2πρθ θ( )d =1                        (2D) 

 0 

    2π π   (42)  

 ∫ ∫ ργβ γγβ( ,)sin d d =1   (3D) 

  0 0 

The number of contacts in a local area dΩ is given as Ncρθ( )dΩ or Ncργβ( , )dΩ, where 

Nc is the total number of contacts in the volume V.   

Under the condition that the particle assembly is statistically isotropic or quasi-isotropic, the 

distribution density function should be a constant:  

  1 

ρθ( ) = 2π      (2D) 

      (43)  

 ργβ( ,) = 
1
  (3D) 

  4π 

Replacing the summation in Eq. (35) by integration leads to:  

  rNc 2π −1 V 1 0 −1 V 

 ∫0 n n djk 

θ
 = rNc 0 1  = rNc δjk                               (2D,  j,k=1,2) 

πV 

  −1 

   Ajk =  −1 1 0 0     (44)  

  rNc π π2  3V   3V 
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 ∫ ∫0 0 n njk sinγγβd d  = 2rNc 00 0 1  1 0  = 2rNc δjk    (3D,  

j,k=1,2,3) 

 2πV 

 

Therefore the summation in Eq. (40) leads to:  

  V 2π c c c 

 2πr N2 c δδlmjn ∫0 n s n dm ikn θ                       (2D) 

   Sijkl =   (45)  

  9V2 δδlm jnn s nm ikc c nc sinγγβd d    (3D) 

16πr N 

 9V 
n s nl

c 
ik

c c
j sinγγβd d  (3D, , , , 

=1,2,3)i j k l 16πr N2 c 

By performing integration on Eq. (46), the stress-strain relationship under the small strain 

condition becomes:  

2D case:  

 ε11  a b    σ11  

     V     (47)  

 ε22 = 2 b a     σ22   
   8r Nc    

 2ε12           c σ12  

  c 

For isotropic fabric, δ δlm = =jn 1 so thatl = m j, = n. Eq. (45) becomes:  

 

  V 2π c c c 

2πr N2 c ∫0 n s n dl ik j θ             (2D, 

= =1,2, = =1,2)i j k l  

   Sijkl =    (46)  
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 3 1 1 1 1 3 

where a = +  ,b = − , c = +  .  
 kn ks kn ks kn ks 

3D case:  

 ε11  a b b         σ11  

 ε22   σ22  

   b a b           

 

   ε33  3V b b a         σ33   (48)  

  = 2    

 2ε23  20r Nc                    c σ23  

 2ε13                     c σ13  

      

 2ε12                           c σ12  

 3 2 1 1 4 6 

where a = +  ,b = − , c = +  .   
 kn ks kn ks kn ks 

The stress-strain relation for an isotropic elastic solid is given as:  

2D plane stress case :  

  

2D plane strain case:  

 ε11   1   −ν     σ11  
  1    ε22 = 

E −ν    1       σ22  
 

 2ε12              2(1+ν) σ12  

 (49)  

  

3D case:  

 ε11   1−ν ν   −  σ11  
  (1+ν)    ε22 = E  −ν ν σ    

1−  22  
 

2ε12                       2 σ12  

 (50)  

  ε11  

 

 ε 
 22  

 1   −ν ν   −   

 

−ν    1    −ν   

σ11  

σ22  

 
σ33   

  

σ23  

σ13  

(51)  

ε33  1 −ν ν  −     1   

 =  

2ε23  E                    2(1+ν)    

2ε13                                  2(1+ν)  

     

2ε12                                              2(1+ν) σ12  
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The analytical solution of small strain modulus and Poisson's ratio of an isotropic granular 

assembly can be determined by comparing Eqs. (47-48) with Eqs. (49-51) as 2D plane stress 

case:  

 8N r k kc 2 n s v= kn −ks 2N r k kc 2 n s 

  

(6) Small-strain modulus based on Hertz-Mindlin-type contact relations  

For an isotropic elastic assembly under isotropic stress conditions (say the confining stress is 

σc), no shear stress is present in the isotropic elastic body and thus no tangential force occurs at 

the contacts. Recalling the static hypothesis, the normal contact forces at all contacts are of the 

same magnitude (Yimsiri and Soga30). With Eqs. (33) and (44), we can determine:  

3V 

   fn = σc   (55)  

2rNc 

By combining Eqs. (2)-(3), (46) and (55), the contact stiffnesses in both 2D and 3D model 

become:  

                                                 

1 V k(2n +3 )ks 2kn +3ks 3 (3V kn +2 )ks 

where E , v and G are the equivalent elastic constants of the granular packing.   

   E = ,  , G=   

 k( n +3 )ks kn +
1ks V k( n +ks) 

2D plane strain case:  

(52)  

 2N r2(3k +k k k) k −k 2N r k k2 

   E = c ns2 n s , v
= 

2kn
n +2

s
ks , G

=
V k( cn +kn ss)  

k( n +ks) 

3D model:  

(53)  

20N r k k2 k k− 10N r k k2  E = c n s , v= n s , G= 

c n s  (54)  
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   9VG∗2 1/3 

 kn = ∗ 2 σc  

  2Nc(1−ν )  

 

   
 

36V(1−ν∗)G∗2 σc 
  

 (56)  

 

 ks =  Nc ∗  

 

  (2−ν ) 

Although the solutions in plane strain and plane stress cases are slight different, the difference 

is small. In this study, only the plane stress solutions are used to derive the analytical 

expressions for 2D models.  

The small-strain modulus can be expressed as a function of isotropic confining stress:  

2D case:  

2 

 8r2 N G∗ 3 

   E 

= c 36(1−ν∗)σ   (57)  

   v   (58)  

2 

 2r2 N G∗ 3  

   G= (4 3 )− 
ν 

 Vc  36(1−ν∗)σc   (59)  
∗ 

3D case:  
 2 1 

20r2 

G∗N  3 (1−ν∗)σ 3 

(8−7ν∗)  V   c  

  E = ∗  c   c    

 (5−4 )
ν 

 V   6  

(60)  
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   v   (61)  
 2 1 

 20r2 G∗Nc  3(1−ν∗)σc 3  

   G= ∗    

 (10−7ν )  V   6  

(62)  

Note that the Poisson’ ratio in Eq. (61) is already derived in the literature (Yimsiri and Soga30). 

The derived equivalent Poisson’s ratio is irrelevant to the confining stress in Eqs. (58) and (61), 

which is actually not consistent with the physical intuition of granular material. The difference 

is partly due to the simplification of the tangential stiffness formulation.   
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Fig.1 Spherical coordinate system and local system at cth contact plane   
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Fig. 2 Polar coordinate (2D) for directional distribution of inter-particle contact   
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(a) 2D model  

  

  
(b) 3D model  

Fig.3 Porosity vs coordination number in used DEM packings (2D and 3D)   
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Fig.4 Initial coefficient of friction vs porosity in DEM packings   
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(a) 2D model  

  

(b) 3D model  

Fig. 5 Empirical relationship between initial coefficient of friction   
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and packing parameter (1- )φNc  

  

  

Fig.6 Schematic diagram for biaxial tests (2D and 3D)  
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Fig.7 Axial deviatoric stress with respect to axial strain for load/unload tests    
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(a) 2D model   

  

  

 (b) 3D model  

Fig.8 Comparision of macroscopic Young’s modulus obtained by direct DEM simulations 

and static analytical solutions for different initial coefficients of friction  
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Fig.9 Comparision of macroscopic Possion’s ratio obtained by direct DEM simulations  and 

static analytical solutions for different porosities   
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 (a) 2D model                                                     

  

 (b) 3D model  

Fig.10 Macroscopic Young’s modulus with respect to the coefficient of uniformity in granular 

packing (DEM simulations and static analytical solutions)   
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Fig.11 The convergent histories of the cost function for four test cases   
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Fig. 12 A fitted surface of the normalised Young’s modulus against Hertz-Mindilin contact 

parameters in a narrow parameter space for a 3D monodisperse packing 
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Fig. 13 A fitted surface of the normalised Poisson’s ratio against Hertz-Mindilin contact 

parameters in a narrow parameter space for a 3D monodisperse packing 

  
Fig. 14 A fitted surface of the logarithmic cost function against Hertz-Mindilin contact 

parameters in a narrow parameter space for a 3D monodisperse packing  
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